LEE- Yapı Bilimleri Lisansüstü Programı
Bu topluluk için Kalıcı Uri
Gözat
Yazar "Karagüler, Mustafa Erkan" ile LEE- Yapı Bilimleri Lisansüstü Programı'a göz atma
Sayfa başına sonuç
Sıralama Seçenekleri
-
ÖgeFarklı tip ve oranda kullanılan liflerin betonda rötreye etkisinin incelenmesi(Lisansüstü Eğitim Enstitüsü, 2024-07-09) Arslan, Koray Mehmet ; Karagüler, Mustafa Erkan ; 502172646 ; Yapı BilimleriBeton, günümüzde Dünya'da en çok tercih edilen yapı malzemesidir. Bileşenleri birçok bölgede doğadan kolaylıkla temin edilebilir. Konulduğu kalıbın şeklini alabilmesi betonun çoğu yapı malzemesine karşın üstün özelliğidir. Bu kadar yoğun kullanılmasına rağmen beton yapının servis ömrünü ve taşıyabileceği servis yüklerini doğrudan etkileyebilecek çatlaklar oluşabilmektedir. Yarı gevrek bir malzeme olan betonda çatlaklar çeşitli nedenle oluşabilir. Betonun çekme dayanımı zayıftır, şekil değiştirme kapasitesi sınırlıdır. Dolayısıyla enerji sönümlendirme yeteneği zayıf ve çatlaklara karşı dayanıksızdır. Tez çalışması kapsamında betonun ve harcın rötre kaynaklı çatlakları ve çatlak önleme yöntemlerinden lif katkıları araştırılmıştır. Kompozit bir yapı malzemesi olan betonda lif kullanımı ile ilgili çalışmalar çoğunlukla mekanik özellikler, özellikle de eğilme dayanımının gelişimi üzerinedir. Lif kullanımının çimento esaslı kompozitlerde rötreyi ne derece etkilediği üzerine yapılan çalışmalar sınırlıdır. Var olan çalışmalar ise tek tip lif kullanımı veya tek tip rötre tipi üzerine yoğunlaşmıştır. Çimento esaslı kompozitlerde çatlak gelişimi 3 mertebede oluşmaktadır. Çatlak başlangıcı nano boyutta gerçekleşmekte sonrasında gelişerek mikro boyuta ilerlemekte ve nihayetinde de makro ölçekte gözle görülür yapısal hasar durumuna gelmektedir. Bu çatlak gelişimleri plastik rötre veya kuruma rötresi nedeniyle olabilmektedir. Bu tez çalışmasının odak noktası, plastik rötre ve kısıtlanmış rötre kaynaklı çatlakların önlenmesi, azaltılması veya geciktirilmesinin liflerle ne derece mümkün olduğunu deneysel olarak ortaya koymaktır. Lif katkılarıyla birlikte betonun temel parametrelerinin de ne ölçüde değiştiği ayrıca belirlemektir. Bu kapsamda, hangi deney yöntemlerinin kullanılabileceği, hangi çalışmalara eklemeler yapılabileceği literatür taramaları ve ön deneylerle belirlenmeye çalışılmıştır. Ön çalışmalarda, plastik rötre etkilerinin kısıtlanmış rötreyle birlikte etki ettirilebilecek deney düzeneği, liflerin maksimum ve minumum ne oranda karıştırılabileceği, dolayısıyla lif katkı limitleri belirlenmeye çalışılmıştır. Üç ölçekte meydana gelen çatlaklara karşı üç ölçekte lif kullanımı tasarlanmıştır. Bunlardan nano mertebede çatlaklar için çok katmanlı karbon nano tüp (MWCNT) katkısı yalın çimento harcını lifli kompozit haline getirmiştir. Nano lif katkılı deneyler için iri agregalı beton numuneler yerine ince agrega kullanılan harç bazında numuneler üretilmiştir. Nano ölçekte yapılan lifli katkı müdahelesi direkt çimento hamurunu etkileyecek dolayısıyla bütün kompozitin karakterini değiştirebilecektir. Günümüzde nano teknoloji hızla gelişmekle birlikte halen yapı sektörü ve yapı malzemeleri açısından görece pahalıdır. Küçük hacimli numunelerde daha az katkı malzemesiyle çalışmak bu boyutta lif katkısını daha gerçekçi kılmaktadır. Birkaç gram ağırlığındaki nano lifleri incelediğimizde birbirlerine dolanmış, topaklanmış yüzbinlerce lifi görebiliriz. Bir süredir yapılan çalışmalarda araştırmacılar nano liflerin çimento esaslı kompozitlere nasıl karıştırılabileceği üzerine değerlendirmeler yapmışlardır. En yaygın kabul gören yöntem ultrasonik homojenizatörlerle yapılan karıştırma işlemidir. Bu yönteme göre küçük bir kapta su ile karışmış olan nano liflerin içine ultrasonik ses dalgaları yayabilen ismine prop denilen bir uç daldırılır. Çok hızlı titreşen ve çok seri ultrasonik dalgalar liflere etkitilerek liflerin birbirlerinden mekanik olarak ayrıştırılması sağlanır. Çökelen lifler çok fazla beklenmeden harç karışımına eklendiğinde genellikle topaklanma sorunu ortadan kalkmaktadır. Bu yöntemin bazı sakıncaları ve eksiklikleri vardır, bunlar; hacimsel olarak maksimum 1 litre gibi çok küçük üretimlere imkân vermesi ve ayrıştırma işleminin yoğun mekaniksel işlemle yapılması, dolayısıyla liflerde kopma, çözülme gibi sorunlara yol açabilme ihtimalidir. Karbon nano liflerin yüksek çekme dayanımı ve elastisite modülü gibi çok üstün mekanik özelliklere sahip oldukları bilinmektedir. Tez çalışmasında kullanılan nano lifler çok düşük oranlarda seçilmiştir ve bu lifler ya standart bir harç karıştırıcı ile ya da basit bir sıcaklık ayarlı titreştirici kullanılarak harç içerisinde dağılım sağlanmıştır. Ön deneylerle bulunan sonuçlara göre seçilen oranlar çimento ağırlığının %0,025'i, %0,0375'i ve %0,050'si şeklindedir. Taramalı elektron mikroskobu ile yapılan inceleme görüntülerine göre tez çalışmasında yapılan nano katkılı üretimlerde topaklanma sorunu gözlenmemiştir. Harç numunelerde ayrıca beton numunelerde de kullanılan mikro polipropilen lif katkılarının etkileri de araştırılmıştır. Mikro PP lifler harç numunelerde çimento ağırlığının %0,25'i, %0,50'si ve %1,0'i oranlarında seçilmiştir. Kısıtlanmış rötre deneyleri için genellikle takip edilen yöntem ASTM C1581 standardıdır. Söz konusu standarda göre ortada çelikten bir halka vardır ve etrafına taze haldeyken yerleştirilen beton, su kaybı nedeniyle hacimsel olarak büzülmeye çalışacak ancak deney düzeneğinin ortasında bulunan rijit çelik nedeniyle büzülmesi kısıtlanacak ve nihayetinde iç gerilmeleri çekme dayanımı aşınca çatlayacaktır. Tez çalışmasında kullanılan harç numunelerinin agrega dane boyutları ASTM C1581 standardında tarif edilenin yaklaşık 1/4'ü mertebesindedir. Dolayısıyla harç numunelerde yapılacak kısıtlanmış rötre deneyleri için söz konusu standartta tarif edilen ölçülerin 1/4'ü ölçeğinde bir çelik kalıp imal edilmiştir. Ebatlardaki ölçeklendirme hariç geri kalan tüm prosedür standardın tarif ettiği şekilde uygulanmıştır. ASTM C1581 standardı direkt kuruma rötresi kaynaklı kısıtlanmış rötre çatlaklarını araştırmaya imkân veren bir standarttır. Söz konusu standarda göre üretilen numunelerin kalınlığı 35 mm'dir ve betonun üzeri buharlaşmayı engelleme maksatlı parafinle kaplanmaktadır. Pratik kullanıma baktığımızda kuruma rötresi ve plastik rötre birlikte etki etmektedir. Beton taze haldeyken de rötre etkilerine maruz kalmaktadır. Tez çalışmasında kuruma rötresi kaynaklı kısıtlanmış rötre çatlakları yanında plastik rötre etkilerini de inceleyebileceğimiz ASTM C1581 yönteminin modifiye edilmiş hali olan yeni bir deney düzeneği de tertip edilmiştir. Modifiye yönteme göre üretilen betonlar 135 mm gibi daha geniş bir alana yayılmakta ancak yükseklikleri daha az olmaktadır. Bu geniş alana rüzgâr etki ettirilmekte ve yüzeydeki buharlaşma hızlandırılmaktadır. Hem standart yöntem hem de modifiye yöntem için birbirine eş numuneler aynı anda üretilmiştir. Yani aynı harman karışımın bir kısmı standart yöntem için ayrılmış kalan kısmı ise modifiye deney yöntemi ve mekanik özellik deneyleri için kullanılmıştır. Beton numuneler için hiç lif katkısı içermeyen referans numunelerin yanında metreküpteki ağırlığına göre mikro PP lifler %0,25, %0,375, %0,50, %0,75, %1,0, %1,5, %2,0, %2,5 oranında, makro PP lifler %0,50, %0,75, %1,0, %1,5, %2,0, %3,0, %4,0 ve mikro ve makro PP liflerin birlikte hibrit şekilde kullanıldığı hibrit lifler %0,5 mic + %0,5 mac, %1,0 mic + %1,0 mac, %0,75 mic + %1,5 mac, %2,0 mic + %2,0 mac, %1,5 mic + %3,0 mac şeklindedir. Kısıtlanmış rötre deneylerinin yanında tüm karışımlara ait serbest rötre ölçümleri de yapılmıştır. Herhangi bir kısıtlama olmayan serbest rötre numuneleri ölçüleri 40 x 40 x 160 mm ölçülerinde uçlarında metal pimler takılmış prizmatik geometrilidir. Mekanik özellikleri belirlemek amacıyla beton numunelerde ultrases geçiş hızı, elastisite modülü ve basınç dayanımı deneyleri için 100 mm çaplı 200 mm yükseklikli silindir, eğilme dayanımı ve kırılma enerjisi deneyleri için 70 x 70 x 280 mm ebatlı prizmatik numuneler hazırlanmıştır. Harç bazında mekanik özellik deneyleri için ise UPV, elastisite modülü ve basınç dayanımı için 50 mm çaplı 100 mm yükseklikli silindir numuneler, eğilme dayanımı ve kırılma enerjisi deneyleri için ise 40 x 40 x160 mm ebatlı prizmatik numuneler hazırlanmıştır. Elde edilen sonuçlara göre, mikro ve makro olarak her iki ölçekte de etkinlik yeteneği sayesinde hibrit kullanılan liflerin hem mekanik özellikler hem de rötre çatlaklarını önleme konusunda anlamlı üstünlüğü vardır. Lif kullanımı çimento esaslı kompozitlerde birçok anlamda iyileştirme sağlasa da özellikle yoğun PP kullanımı işlenebilirliği önemli ölçüde azaltmakta, basınç dayanımı ve elastisite modülü değerlerinde ise bir miktar azalmaya sebebiyet vermektedir.
-
ÖgeImproving the thermal conductivity of fiber-reinforced concrete panels for exterior facades with phase change materials(Graduate School, 2023-07-07) Safaralipour, Yalda ; Karagüler, Mustafa Erkan ; 502142421 ; Construction SciencesNew technologies and modern developments in the production industry, and building construction have reduced the time and cost of construction. However, most of these developments have caused lightweight materials and structures with low thermal mass. Thermal mass lack can fail to reduce the dynamic thermal load by combining with dynamic thermal stimulation and cause an increase in thermal conductivity, energy consumption for space conditioning, and large temperature fluctuations throughout the day. The building facade is the most important part of a building related to temperature stability and energy consumption. Which, like an envelope, covers the building and protects it from severe climatic conditions. In different climates, facades are designed with unique and different specifications, to provide comfortable thermal conditions for residents. To provide the thermal comfort of the interior, heat losses must be minimized which occurs mostly due to the temperature difference between indoors and outdoors. According to the currently mentioned aspect, fossil fuel consumption and anthropomorphic environmental effects rising and resulting in the wastage of energy and carbon dioxide production. In this case, finding alternative energy sources or developing storage methods becomes important. Since the most energy loss occurs from the facades, according to the aspects currently mentioned, the current project's development aims to provide comfortable conditions for the interior areas by adding phase change materials (PCM) to the exterior panels on the facade. This study aims to reduce the heat transitions between the indoor and outdoor environments in existing or newly constructed buildings and to provide the thermal comfort of the indoor space and consume less energy. For this reason, searching around the materials or systems to be applied on the exterior facade, was targeted to reducing or delaying the heat transfer between the interior and exterior areas. To reduce thermal conductivity, the temperature difference between the inner and outer surfaces of the materials and elements should be reduced and balanced. PCMs can stabilize and reduce heat transfer due to their special thermal and storage properties. Adding these materials to prefabricated facade panels which are frequently used as Polypropylene-Fiber Reinforced Concrete (PPFRC) panels, causes the building shell to act as a heat balancer and prevent indoor areas heat losses. The ability of building elements in storing thermal energy has a sufficient role in properly using solar energy. Due to their ability to store latent heat, phase change materials (PCMs) are a group of functional materials with high energy storage densities over a constrained temperature range. (Cabeza et al., 2011). PCMs added to building facades contribute to reducing indoor temperature fluctuations, reducing heating and cooling loads, and lowering energy consumption by making the system have high thermal capacity. Several projects discussed in the literature review section on adding PCM materials contribute to the overall energy performance of the building by causing an increase in the thermal storage capacity of the elements. From a thermodynamic point of view, a change in the entropy of a phase change material (PCM) results in the absorption or release of thermal energy, commonly referred to as latent heat, which depends on PCMs unit mass. By adding thermal energy and starting the melting process, molecules' bones are broken. Current phase change materials are mixtures of liquid and solid molecules. The melting phase begins by gaining kinetic energy and heating the particles of the solid phase to break the forces that keep them together in the solid structure. Eventually, the molecules rearrange themselves and cause an entropy change, this phase is an endothermic process (Safaralipour and Karagüler, 2023). Most typically, PCMs used in building envelope applications must undergo a complete phase transition within 24 hours to be fully effective. This is why the temperature at which the PCM is installed must fluctuate (perhaps daily) within the functional temperature range of the PCM. Ideally, all the heat of transition must be available at the melting and freezing temperature points. However, this happens with paraffin-based PCM. Therefore, this range of temperature should be as little as possible for designing the best PCM systems. The fact of temperature hysteresis is one of the difficulties between the melting and solidification of PCM. In this study, the ability to use phase change materials in facade cladding to improve the insulating properties of PPFRC panels was investigated. With the latent heat storage feature of the phase-change material and the delayed action it will create in heat transfer, it is expected to reduce the heat losses that occur due to the temperature difference between the indoor and outdoor areas. According to this characteristic of the phase change material, the phase change material begins to melt if the outside environment's temperature exceeds the melting temperature point of the phase change material used in the facade, and starts to store the heat with the latent heat storage system. It stores this heat in itself until the outdoor temperature drops below the melting point, preventing or delaying its transfer to the indoor space. Conversely, if the temperature of the external environment falls below the melting point of the phase-change material, then it releases the stored heat, causing the difference between the internal and external temperatures to decrease. Due to this feature of the phase change material, it always acts as an insulating barrier in the system. To assess the produced composite's thermal conductivity coefficients, one reference sample without PCM, and five samples with different PCM ratios were prepared. The proportion of PCM added is prepared as 10%, 20%, 30%, 40%, and 50% of the total mass volume. For the coding system of the prepared samples, SV (Sample by Volume) was used as the title and the current PCM ratio in the sample was shown as a number in front of it. In this study, the latent heat storage properties of phase change materials added to PPFRC concrete mortars were investigated, and the thermal conductivity values of the composites obtained at the desired temperature were reduced. As mentioned earlier, the calculation and evaluation process were done by comparative methods due to the experimental setup. By the following calculation method, the thermal conductivity of the prepared sample was determined and compared with the reference sample (sample without PCM). Therefore, a barrier should be created on the exterior of the building to reduce the heating and cooling energy used in harsh climates (dry, hot, cold) and reduce heat loss. The most basic feature of this barrier is that it consists of insulating or heat-balancing materials. Phase change materials that can be used as heat stabilizers have a temperature range according to the needs of different climates and can be used as heat regulators. The use of phase change materials with melting points close to the indoor comfort temperature is a common way to regulate indoor temperature. According to the area's climate and annual average temperature records, the best melt point for phase change material could be selected. Since each region has a different climate, the average annual temperature of that region should be taken into account to obtain a more efficient system. In addition, to extend the working life of the phase change material and to get the most efficiency from the system, at least one phase change should occur every day, and for this reason, the melting temperature of the phase change material should be close to the annual average temperature of the region. The current climate change and energy consumption crisis in the world have led As a result, the heat storage and heat transfer delay action of the phase change material starts at the melting temperature point. In the applied test system, since two different temperatures are controlled, one side is assumed to be indoor and the other side is assumed to be outdoor. Thereupon, the phase change material causes the indoor environment to be less affected by the temperature fluctuation of the external environment, due to both heat storage and heat transfer retardation. To obtain an efficient system from phase change materials, they must be selected from the right group and have the right melting point. Additionally, phase change should occur continuously and at least once a day in the system to maintain its efficiency for a long time. According to the data obtained, by rising the outdoor temperature above the phase change materials melting point, PCM starts to melt and store the excess energy as latent heat and prevents the temperature increase of the material. In addition, as the temperature increased, the thermal conductivity coefficient decreased more. Afterward, with the decrease in the outdoor temperature, the phase-change material solidifies and the stored heat is released to the outside environment and causing the temperature difference between indoors and outdoors to decrease again. Based on the information obtained from the experiments, the expected efficiency in decreasing the thermal conductivity coefficient was realized using phase change material in PPFRC mortar. The increase in efficiency was proportionate to the use of PCM at a higher rate in the main mortar. However, as to the quantity of phase change material used, as the use of PCM increases, the density and compressive strength of the composite material decrease. Therefore, the PCM ratio should be determined by considering the physical properties and thermal conductivity value expected from the composite material.
-
ÖgeYapı malzemelerinde küf büyümesinin tahmini ve büyümesinin engellenmesi(Lisansüstü Eğitim Enstitüsü, 2023-05-26) Türk, Bahar ; Karagüler, Mustafa Erkan ; 502132403 ; Yapı Bilimleriİç ortamlarda mantar gibi mikroorganizmaların büyümesinin, bina yapısına ve insan sağlığı üzerinde olumsuz bir etkisi vardır. Ne kadar yapı biliminde önemli gelişmeler olsa da, iç ortamda küf büyümesinin sistematik olarak inceleyip tasarım aşamasında önlenmesi ile ilgili etkili bir yöntem yoktur. Ulusal ve uluslararası standartlar, yönergeler ve birçok araştırma projelerinde, küf büyümesinin önlemesi için sadece bağıl nemin belirli bir sınırın altında tutulmasına odaklanılır. Oysaki birçok çevresel ve biyolojik faktörler, küf mantar oluşumunu etkileyebilir. Bu nedenle, iç ortamda mantarların büyümesini kontrol etmek için etkili faktörler ve bunların birbirleriyle etkileşimlerinin belirlenmesi bu çalışmada önemli bir yer almaktadır. Küf gelişimini önlemek için kullanılan, bir yöntem de biyosit kullanılmasıdır. Biyositlerin uygulanmasında, özellikle iç ortam kullanımında her zaman ek sağlık riskleri olabilir. Ayrıca, küf oluşumunu yalnızca sınırlı bir süre için önlemek mümkündür. Aslında, bu konuda bazı ilerlemeler kaydedilmiştir. Bu bağlamda borat bazlı çok bileşenli sistemler insan sağlığına olumsuz etkisi olmayan ve uzun süreli koruma sağlayabilen bir ürün olarak değerlendirilmiştir. Aynı zamanda diğer biyositlere göre daha düşük maliyetli bir üründür. Bu konu ileride yapılacak ayrı bir çalışma olarak değerlendirilebilir. Literatür çalışmalarının incelenmesi ve bu konuda yapılan bilimsel araştırmaların avantaj ve dezavantajlarını göz önünde bulundurarak mantarların büyümesinin öngörülmesi ve büyümeyi önlemek için sistematik bir plan tasarlanmıştır. Araştırmalara göre, küf mantarlarının büyümesi için en önemli faktörler ise, • Sıcaklık • Bağıl nem • Mantarların büyüdüğü yüzeylerin özellikleri (özellikle besin içeriği açısından) • Aynı zamanda bu üç faktörün beli bir süre bir arada olması halidir. İç ortamlarda, mantar türlerinin belirlenmesi ve bu türler arasındaki nem ve ısı koşullarına bağlı olarak farklı büyüme şartlarının incelenmesi, bu çalışmanın önemli aşamalarından biridir. Mantar büyümesinin ön koşulları ve çevre koşullarını hesaplayan tüm modern yöntemlerin incelenmesi ile binalarda iç yüzeylerde küf mantarı oluşumunu önlemek için yeni bir analiz yöntemi geliştirilmiştir. Bu yöntemde, ısı ve bağıl neme bağlı olarak küf spor çimlenme süreçlerin belirlenmesinde İzoplet sistemi kullanılmıştır. Yapı malzemelerinin küfe karşı dirençlerini hesaba katmak için, yapı malzemeleri dirençlerine göre üç farklı sınıfa ayrılmıştır. İki sınıf için iki farklı izoplet sistemi tanıtılmıştır. Üçüncü sınıf ise küf mantarlarına dayanıklı olduğundan bir sistem belirlenmesine gerek kalmamıştır. Aynı zamanda, binalarda iç yüzey hidrotermal koşullarının hesaplanmasında WUFI simülasyon programı kullanılmıştır. Deneysel çalışmalardan ve literatür taramasından elde edilen sonuçlara göre, küf mantarı büyümesinin ilk belirtilerinin gözlemlenmesi (çıplak gözle) için gereken süre, substratların besin içeriğine bağlıdır. Buna göre, substrat ne kadar besin yönünden zengin ise, küf büyümesi için gereken sıcaklık ve bağıl nem o kadar düşük olur ve maruziyet süresi ise daha kısadır. Bu nedenle, optimal kültür ortamında küf büyüme süresi diğer substratlara göre önemli derecede farklıdır. Spor çimlenmesi ve görünme aşamasına gelmesi için sporun belirli bir nem içeriğine ulaşması gerekir. Bu nem değeri birçok araştırma projesinde yapı malzemelerinin kritik bağıl nemi olarak tanıtılmıştır. Bu çalışmada aynı terim kullanılmaktadır. Bu bilgilere dayanarak, geçici iç ortam hidrotermal koşulları altında yapı malzemelerinde kritik bağıl nemin belirlenmesi, küf büyümesini tahmin etmek için yeterli olabilir. Yapı malzemelerinin nem içeriği bu değerlerin altında kalırsa iç ortamlarda küf oluşumu engellenebilir. Bu çalışmada, yapı malzemelerinin kritik bağıl nemi ve bu değere ulaşması için gereken süre yapı malzemesine bağlı olarak tasarlanan izoplet sistemi ve WUFI simülasyonundan elde edilen datalara göre belirlenir. Yeni yöntem, pratik bir yöntem olarak, mimarların iç ortamda küf oluşumunu önlemek için uygun bir yapı tasarımına ve her bina katmanı için doğru malzemeleri seçmesinde yardımcı olur. Bu tezde kullanılan simülasyon programı bina kusurlarında meydana gelen nem ve rutubet problemlerini (su kaçağı gibi) içermediği için çalışma dışı bırakılmıştır. İç mekanlarda küf mantarının büyümesi, çeşitli koşullardan etkilenir. pH seviyesi, oksijen içeriği ve ışık dahil olmak üzere bu elementlerden bazıları modelde dahil edilmemiştir. Bu konuları dikkate alan senaryolar ve ek mekanizmalar gelecekteki çalışmalar için bir konu olmaya devam edebilir. Sonuç olarak, küf riski için bu tezde önerilen yeni yöntem, belirli durumlarda standart değerlendirmede gizli kalacak sebepleri başarıyla belirlemektedir. küf oluşumunu kontrol altına almak veya engellemek için bu problemin üzerinde önemli bir etkiye sahıp olan faktörlerin tanımlanması en etkili adımdır.Geliştirilen yöntem, farklı bina türlerinde küflenmeyi önlemek için bina performans kriterlerinin düzenlenmesi için bir temel sağlayabilir.