LEE- Jeodinamik-Doktora
Bu koleksiyon için kalıcı URI
Gözat
Yazar "Sarıkaya, Mehmet Akif" ile LEE- Jeodinamik-Doktora'a göz atma
Sayfa başına sonuç
Sıralama Seçenekleri
-
ÖgeAladağlar ve Karanfil Dağı kuvaterner buzullaşması ve eski ikliminin kozmojenik izotoplar ve buzul modelleri ile belirlenmesi(Lisansüstü Eğitim Enstitüsü, 2023-06-06) Köse, Oğuzhan ; Sarıkaya, Mehmet Akif ; 602172004 ; JeodinamikOrta Toroslar'ın en büyük kütlesini oluşturan Aladağlar ve yaklaşık 10 km güneyinde bulunan Karanfil Dağı bu çalışmanın inceleme alanını oluşturmaktadır. Çalışma alanı temelde karbonatlı kayaçlardan oluştuğundan, bu bölgedeki akarsular mevsimlik akarsu özelliğine sahiptir. Bu durum buzul süreçleri sonrasında akarsuların gelişmesini engeleyerek Karanfil Dağı ve Aladağlar'da buzul vadilerinin ve morenlerin korunmasını sağlamıştır. Ayrıca, çalışma alanı jeolojik ve tektonik özelliklerinin yanı sıra buzul ve akarsu süreçleri ile karstik süreçler arasındaki etkileşimin anlaşılması için örnek bir topoğrafya sunmaktadır. Jeomorfolojik çalışmalar kapsamında arazi çalışmaları ve uzaktan algılama yöntemleri kullanılarak çalışma alanının buzul jeomorfoloji haritası üretilmiştir. Bölgenin 1:50.000 ölçekli buzul jeomorfoloji haritası oluşturulmuş, buzul vadileri, sirkler, arêtler ve piramidal zirveler, döküntü ile örtülü buzullar, morenler ve sandur depoları belirlenmiştir. Kozmojenik 36Cl yüzey tarihlendirme yöntemiyle ana kaya ve morenler üzerinden toplam 121 adet örnek toplanarak Aladağlar ve Karanfil Dağı'nda geçmişte buzulların oluşturduğu yer şekilleri tarihlendirilmiştir. Karanfil Dağı SBM dönemi buzul koşullarını anlamak amacıyla üç boyutlu bir fiziksel buzul akış modeli (PISM) kullanılmıştır. Farklı sıcaklık ve yağış değerleri kullanılarak 21 farklı paleoiklim simülasyonu üretilmiştir. Bu paleoiklim simülasyonları arazi gözlemleriyle karşılaştırılmıştır. Aladağlar'da 47 ve 38 bin yıl öncesine dayanan en yaşlı morenler, dağın batı-kuzeybatısında bulunan Körmenlik ve Maden vadilerine aittir. Körmenlik vadisinin çıkışında bulunan Sulucaova sanduru ise 79 bin yıl öncesine ait buzullaşmanın varlığını göstermektedir. Körmenlik ve Maden vadilerinden elde edilen kozmojenik tarihlendirme sonuçları SBM öncesini, MIS 3 sırasındaki buzul geri çekilmesinin kanıtlarını sunmaktadır. Önceki çalışmalar kapsamında Yedigöller Platosu'nun kuzey sınırını çizen Akçay Sırtı'ndan elde edilen ana kaya yaşları tekrar hesaplanmıştır. Elde edilen sonuçlar 3500 metre yükseklikte bulunan Akçay Sırtı'nın en az 55.2 ± 12.0 bin yıldan beri buzullarla kaplı olmadığını göstermektedir. Bu bulgu, Yedigöller Platosu'ndaki buz örtüsünün 3500 m yüksekliklere kadar ulaşmadığını açıkça ortaya koymaktadır. Ayrıca, Kemikli Vadisi'nin yukarı çığırında, 3200 metre yükseklikteki Akçay Platosu'ndan alınan ana kaya örnekleri de bölgenin 76.7 ± 23.8 bin yıldan beri buzullarla kaplı olmadığını göstermektedir. Aladağlar'ın doğusunda bulunan Hacer Vadisi ise en uzun buzulun geri çekildiği alan olup buzulun geri çekilme süreci 15 bin ile 12.5 bin yıl öncesine kadar devam etmiştir. Bu geri çekilme, Geç Buzul döneminden Genç Dryas dönemine kadar olan buzullaşmanın varlığını göstermektedir. Aladağlar'ın doğusunda bulunan Susuz ve Sineklikapız Vadileri'nden de Erken Holosene ait kozmojenik tarihlendirme xxii sonuçları elde edilmiştir. Aladağlar'da buzullar, 55 bin yıl önce en yüksek zirvelerden geri çekilmeye başlamış olup Holosen döneminin başlangıcına kadar iki takke buzulu aktif kalmıştır. Karanfil Dağı'nın ilk buzul jeomorfoloji haritası ve Kozmojenik 36Cl buzul kronolojisi bu çalışmada sunulmuştur. Buzul yer şekilleri arasında sirkler ve morenler detaylı bir şekilde haritalanmıştır. Dağın kuzey yamacında bulunan 2000-2400 m yüksekliğe sahip ve 1-2 km uzunluğunda iyi korunmuş dört terminal ve yanal moren seti (M1, M2, M3 ve M4) detaylı bir şekilde haritalanmış ve tarihlendirilmiştir. M1 (17.3 ± 2.4 bin yıl), M2 (18.6 ± 1.6 bin yıl) ve M3 (20.0 ± 2.6 bin yıl) morenlerinin ortalama yaşları, Karanfil Dağı'ndaki buzulların SBM sırasında maksimum boyutlarına ulaştığını göstermektedir. M4 moreni, daha kuzeye bakan ve korunaklı bir sirke sahip olup, moren yaşı14.6 ± 2.4 bin yıl olarak ölçülmüştür. M4'ten elde edilen ortalama yer şekli yaşı, M4 buzulunun Geç Buzul dönemine kadar varlığını sürdürdüğünü (16-20 bin yıl arasında) göstermektedir. C1 sirk tabanındaki kalıntı kaya buzulunun yaşı ise (9.9 ± 0.9 bin yıl) Holosen başlangıcındaki permafrost koşullarının varlığını kanıtlamaktadır. Karanfil Dağı'nda SBM buzullarını oluşturan iklim koşullarını anlamak için üç boyutlu fiziksel PISM buzul akış modeli çalıştırılmış ve 21 farklı simülasyon üretilmiştir. Karanfil Dağı için en uygun model sonuçları, SBM'deki buzulların günümüze benzer yağışlar altında oluşabilmesi için sıcaklık düşüşünün günümüzden 8.3 ± 0.5 °C daha fazla olduğu bir iklimi göstermektedir. SBM döneminin günümüze göre %20 daha nemli iklim koşullarına sahip olması durumunda, SBM buzullarının oluşabilmesi için gereken sıcaklık düşüşü 6.9 ± 0.4 °C olarak hesaplanırken, %20 daha kurak iklim koşullarında ise bu sıcaklık düşüşünün 10.4 ± 0.6 °C olması gerektiği hesaplanmıştır.
-
ÖgePaleoclimatology and glacial geochronology of the Western Taurus (Sw Türkiye) using comparative, relative and numerical methods(Graduate School, 2024-07-26) Altınay, Onur ; Sarıkaya, Mehmet Akif ; 602192005 ; GeodynamicsTürkiye possesses a remarkable heritage of the Late Pleistocene glaciations, evident across almost all of its lofty mountainous. Numerous individual mountains, particularly in the Eastern Black Sea and Taurus mountain ranges, host most of these glacial landscapes. In the 20th century, many pioneering studies on Late Pleistocene glaciations were conducted by various researchers in Anatolia. However, it was not until the 21st century that a comprehensive understanding of the glaciers in both spatial and temporal dimensions became possible. Thanks to numerical dating techniques, we now know the temporal resolution of the glaciation. Among these methods, the Terrestrial Cosmogenic Nuclide Dating (TCND) has gained considerable popularity since the early 2000s. In this study, first I reviewed the existing records on glacial chronology in the SW Türkiye. Additionally, I employed TCND to elucidate and fill certain gaps in the glacial geochronology of the Western Taurus Mountains. Finally, I tested a calibrated dating technique known as Schmidt Hammer Exposure-Age Dating (SHD) on different lithologies in the region for a cross-validation of TCND ages. In the first part of this thesis, the Late-glacial to Holocene glacier chronologies in Türkiye are reviewed. Despite the extensive extent of Turkish glaciers during the Last Glacial Maximum (LGM), traces of glaciers from the Late-glacial period are notably scarce in Türkiye. Certain landforms have been evaluated as Late-glacial and/or younger, but solid evidence, such as numerical dating, has not been obtained. In this section, Late-glacial and Holocene glacial areas are identified based on their TCND chronologies. Most of these areas are part of the Taurus Mountains, including the Dedegöl Mountains, Geyikdağ, Bolkar Mountains, and Aladağlar. Younger Dryas advances are evident in these mountains, especially in Aladağlar. Erciyes Volcano is the only location outside the Taurus Mountains in this study. Generally, the Late-glacial to Holocene glaciers of Turkish mountains extend from 14.8 ± 2.9 ka to 1.0 ± 0.3 ka, with certain Early to Late Holocene ages. Evidence for Little Ice Age (LIA) glacier advances is rare in Türkiye. Despite the rich glacial chronology of the Taurus Mountains, there are still areas with well-developed glacial geomorphology but lacking a strong dating control. In this thesis, I examined two of these areas to reveal their glacial history. One of these areas is known as Mount Barla, situated in the northernmost part of the Western Taurus Mountains. Polygenetic and polycyclic processes play an important role in the origin of the glacial valleys of Mt. Barla. Glacial, karst, mass movement, and fluvial processes are intertwined, paving the way for glacial valley formations. The paleoglaciers here date back to 78.5 ± 17.6 ka (MIS5). It is also observed that there was a co-deglaciation between two different glacial valleys. The TCND ages indicate that these glacial retreats occurred around 42.1 ± 5.2 ka and 45.5 ± 6.8 ka (MIS 3). Despite the absence of an LGM deglaciation, the final glacial retreat dates back to 16.6 ± 2.6 ka (Late-glacial). Mount Davraz is another mountain with a well-established glacial geomorphology. However, this mountain has also lacked numerical ages until this thesis. It is located roughly 30 km south of Mount Barla, yet the paleoglaciers shaped this mountain's geomorphology in a notably different manner. The peculiar glacial geomorphology, considering its relatively small scale, is attributed to the existence of piedmont glaciers during the Late Pleistocene. The paleoglaciers within the cirques on the north-facing slopes, aligned in an E-W direction, were sufficient to support these piedmont glaciers. The paleoglaciers of Mount Davraz most probably benefited from strong southerly winds. These winds carried snow from the relatively flat top side to the north-facing slopes of the mountain. Consequently, the piedmont glaciers moved northward, extending over a northerly flat area and forming the Davraz paleoglacier. In this study, the remnants of this paleoglacier were dated using the TCND method. These remnants, known as "hummocky moraines," are common landforms formed after the disappearance of an ice sheet or a piedmont glacier. I utilized TCNs obtained from glacial boulders located on these moraines to calculate the latest deglaciation phase in Mount Davraz. The results indicate two periods: the Davraz paleoglacier began to retreat from east to west around 21.8 ± 2.4 ka (LGM) and completely disappeared around 17.7 ± 2.2 ka (Late-glacial). Finally, I utilized Schmidt Hammer Exposure-Age Dating (SHD) to evaluate its applicability on Mount Sandıras, Karadağ, and Akdağ, as part of the Western Taurus Mountains. I measured rebound values (R-values) from the glacial surfaces to assess surface hardness. These measurements were conducted on both dated ("control surfaces" with TCND ages) and undated surfaces (test surfaces), with each control and test surface forming a sample group. The primary objective of this approach was to ascertain whether serpentinized harzburgite (Mount Sandıras) and limestone (Karadağ and Akdağ) surfaces are suitable for SHD applications. While the method yielded partial success with Mount Sandıras samples, the results from Karadağ and Akdağ did not align with expectations. The SHD glacial chronology of Mount Sandıras exhibited a substantial fit with its TCND glacial chronology.