LEE- Bilgi ve Haberleşme Mühendisliği Lisansüstü Programı
Bu topluluk için Kalıcı Uri
Gözat
Yazar "Töreyin, Behçet Uğur" ile LEE- Bilgi ve Haberleşme Mühendisliği Lisansüstü Programı'a göz atma
Sayfa başına sonuç
Sıralama Seçenekleri
-
ÖgeDistilling knowledge of neural networks for image analysis, model compression, data protection and minimization(Graduate School, 2024-07-04) Keser, Reyhan Kevser ; Töreyin, Behçet Uğur ; 708182005 ; Information and Communication EngineeringKnowledge distillation is an effective tool for model training, which refers to the process of knowledge transfer between models. In the context of knowledge distillation, the model to be trained with the injected knowledge is named student, where the teacher refers to the model whose knowledge is acquired. It can be exploited for various aims including improving model performance, accelerating the model, and reducing model parameters. Further, with the advent of diverse distillation schemes, it can be efficiently applied in various scenarios and problems. Thus, it has a wide range of application fields including computer vision and natural language processing. This thesis comprises the studies conducted on numerous problems of knowledge distillation, as well as the literature review. The first problem we focus on is hint position selection as an essential element in hint distillation, which is transferring features extracted in intermediate layers, namely hints. First, we demonstrate the importance of the determination of the hint positions. Then, we propose an efficient hint point selection methodology based on layer clustering. For this purpose, we exploit the k-means algorithm with specially designed metrics for layer comparison. We validate our approach by conducting comprehensive experiments utilizing various architectures for teacher-student pairs, hint types, and hint distillation methods, on two well-known image classification datasets. The results indicate that the proposed method achieves superior performance compared to the conventional approach. Another problem focused on in this thesis is model stealing, which refers to acquiring knowledge of a model that is desired to be protected due to the privacy concerns or commercial purposes. Since knowledge distillation can be exploited for model stealing, the concept of the undistillable teacher has been introduced recently, which aims to protect the model from stealing its knowledge via distillation. To contribute to this field, we propose an approach called averager student, whose goal is distilling the undistillable teacher, in this thesis. We evaluate the proposed approach for given teachers which are undistillable or normal. The results suggest that the proposed method outperforms the compared methods whose aim is the same as ours. The last problem we addressed is cross distillation, which means the distillation process between teacher and student models that operate on different modalities. In this work, we introduce a cross distillation scheme that transfers the compressed domain knowledge to the pixel domain. Further, we employ hint distillation which utilizes our previously proposed hint selection method. We evaluate our approach on two computer vision tasks, that are object detection and recognition. The results demonstrate that compressed domain knowledge can be efficiently exploited in a task in the pixel domain via the proposed approach. The proposed approaches in the context of the thesis, contribute to studies on image analysis, model compression, data protection, and minimization. First, our study on the selection of efficient hint positions aims to improve model compression performance, although the proposed approach can also be employed for other distillation schemes. The gains of our method in terms of model compression are presented as well as the performance results of the proposed algorithm. Then, our work on model stealing targets to contribute to the literature on model intellectual property (IP) protection and data protection, where we introduce an algorithm to distill a protected model's knowledge. Moreover, our study on cross distillation provides a contribution to data protection and minimization studies, where we propose a distillation methodology that utilizes compressed domain knowledge on pixel domain problems. Our approach demonstrates a technique that expands limited knowledge by employing different modality data instead of more samples. Since we utilize compressed domain images and eliminate the need for more samples to boost performance, we prevent the use of more data that may be personal or sensitive.
-
ÖgeEfficient super-resolution and MR image reconstruction networks(Graduate School, 2023-01-30) Ekinci, Dursun Ali ; Töreyin, Behçet Uğur ; 708191011 ; Information and Communication EngineeringThe process of generating a high-resolution image from a low-resolution image is known as image super-resolution. From a low-resolution image, many high-resolution images can be produced. Therefore, super-resolution is a difficult problem with ill-posed nature. In recent years, many deep neural networks were suggested to retrieve missing high-frequency features. Models started to get deeper to enhance performance. But, using these models in devices with limited resources is challenging due to their high computational complexity and memory requirement. Therefore, in this thesis, different knowledge distillation schemes are suggested to compress super-resolution networks. Offline- and self-distillation frameworks are used to decrease the number of repeating residual blocks in SRResNet and EDSR networks. Test results are obtained on benchmark datasets for scale factor four. After many experiments, results show that previous layers learn to produce similar outputs to following layers. However, when redundant layers are removed, performance of the compressed networks are less than their vanilla trained versions. Therefore, further study on this subject is required to prevent performance decrease. Magnetic resonance imaging is a valuable tool in medicine to identify diseases. To obtain a high quality image, enough $k$-space data is needed. This increases the necessary scan time. As in other image processing fields, deep neural networks are also used in magnetic resonance image reconstruction task from undersampled data. Since super-resolution also aims to restore missing information, using some concepts from super-resolution can help improve reconstruction performance. In this study, Iterative Up and Down Network is proposed to solve this problem. Network benefits from iterative up and down sampling framework and multiple scale factors. Training of the network is done using fastMRI dataset. Test results are obtained on two datasets which are fastMRI and IXI. Proposed network has processing units and test results show that increasing the number of these units improve the performance of the network. Also, using multiple scale factors further increased the performance. Quantitative results show that suggested approach is superior than some well-known state-of-the-art networks. When qualitatively compared to other methods, suggested model performs favorably.