Please use this identifier to cite or link to this item: http://hdl.handle.net/11527/7172
Title: Hava Öngörüsünde Uyarlanabilir Ensemble Modellemesi
Other Titles: Adaptive Ensemble Modelling For Weather Prediction
Authors: Kadıoğlu, Mikdat
Çakır, Sedef
432455
Meteoroloji Mühendisliği
Meteorological Engineering
Keywords: yapay sinir ağları
ensemble
sayısal hava öngörüsü
artificial neural network
ensemble forecasting
numerical weather prediction
superensemble
Issue Date: 6-Jan-2013
Publisher: Fen Bilimleri Enstitüsü
Institute of Science and Technology
Abstract: Ensemble yöntemi, modellerin başlangıç koşullarından ve kendi yapılarından kaynaklanan hataları azaltmak amacıyla kullanılmaktadır. Bu çalışmada sayısal hava öngörü modellerindeki yapısal, fiziksel hatalar dikkate alınmış ve fiziksel şemalarında değişiklikler yapılmış atmosfer-okyanus modelinin dört farklı versiyonundan elde edilen iki haftalık ortalama sıcaklık tahminleri kullanılmıştır. Bu verilerden hesaplanan anomali değerleri üç farklı yolla bir araya getirilerek ensemble tahminleri elde edilmiş ve performansları kıyaslanmıştır. Bunlardan ilki; bias-düzeltmesi yapılmış ensemble ortalamasıdır. Kontrol tahmin olarak belirlenmiştir ve diğer iki yöntemin başarısı bu metoda göre değerlendirilmiştir. İkinci yöntem ise; lineer regresyon metoduna bağlı olarak model versiyonlarını performanslarına göre ağırlıklandırıp birleştiren süperensemble metodunun adaptif olarak çalışacak şekilde uygulanmasıdır. Üçüncü ve esas performansı üzerinde durulan ensemble sistemi ise YSA metoduna dayalı olarak geliştirilmiştir ve ağırlıklandırma süreci yine adaptif olarak çalışmaktadır. Türkiye genelinde 50 istasyon için uygulanan ensemble tahminlerinin genel doğruluk başarı değerlendirmeleri sonucu, kontrol ensemble sistemi olarak kabul edilen bias-düzeltmesi yapılmış ensemble tahminlerin ortalamasına göre, Süperensemble ve YSA’ya dayanan ensemble tahminlerinin daha başarılı olduğu ortaya konmuştur. Özellikle Karadeniz ve Marmara bölgesindeki kontrol tahmininin yüksek hata verdiği istasyonlarda üye modelleri ağırlıklandırarak, ensemble tahminleri elde etmek büyük başarı sağlamıştır. YSA metodu ile elde edilen ensemble tahminlerin Süperensemble yöntemi ile yakın sonuçlar verdiği, beklendiği şekilde de YSA‘nın daha başarılı tahminler yaptığı görülmüştür.
Ensemble method has been widely used to get rid of the errors due to the sensitivity to the initial state of the system as well as the model itself. In this study, we are concerned with the errors coming from the numerical weather prediction models. We used two-week mean temperature values from four different atmosphere-ocean coupling models with modified physical schemes. Ensemble forecast of anomalies calculated from those values were brought together in three different ways, and their performances are compared. The first is the bias removed ensemble mean, which is chosen as the control forecast, and the others are compared accordingly. The second method contains the adaptive application of superensemble method which combines the weighted average of model versions that were produced by looking at the performances using linear regression techniques. Third and the most important method in this study is the Artificial Neural Network ensemble method, and the weighting of averages is again adaptive in this method. According to the accuracy of the ensemble forecast results based on Turkey-wide 50 stations’, Superensemble and Neural Network ensemble forecasts are found to be more successful relative to the average of the control system, which is bias removed ensemble mean. Especially in Black Sea and Marmara regions with the highest forecasting errors of the control system, weighting of the ensemble member models give superior results. Forecasting results of Superensemble and Neural Network methods are close to each other in general, and as expected Neural Network based ensemble is more successful.
Description: Tez (Doktora) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2012
Thesis (PhD) -- İstanbul Technical University, Institute of Science and Technology, 2012
URI: http://hdl.handle.net/11527/7172
Appears in Collections:Meteoroloji Mühendisliği Lisansüstü Programı - Doktora

Files in This Item:
File Description SizeFormat 
12607.pdf3.44 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.