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A STUDY OF VANTAGE POINT NEIGHBOURHOOD SEARCH IN THE
BEES ALGORITHM FOR COMBINATORIAL OPTIMIZATION
PROBLEMS

SUMMARY

The overall aim of this works to prove the hypothesis that the n#lantage Point
Bees Algorithmcapable of solvig combinatorial optindation problems.

In this thesis, Bees Algorithns presentedor Traveling Salesman Proble(MSP)
with new neighbourhood local search algorithfime Bees Algorithm for discrete
problems including local and global search strategsed ufor algorithmA new
neighbourhood procedure wadeveloped to deal with local searctvith
combinatorial domains.

Chapter Antroduces to basic conceptstbe additionalbackground mizrial needed
for the reader tdully understand the main body of shhesis.It also defines the
notion of optimization and the combinatoriatpntinuous, and mixedariable

optimization problems using the same commfyamework. It reviews the
background literaturen optimizationthe definition of optimization and optiaation

techniques and combinatorial optimization problems.

Chapter Jeviews the definition of swarm intelligence and highlights swarm behaviours.
Swarm Intelligence (Sl) is an engineering branch and it is defined as the collective
problem solving capaliiies of social animals.There are lots of swariased
optimization algorithms that mi mi c natur
optimal solution.The developments of populatidiased algorithms are also presented

in this chapter andbackground lierature on swarrbased optimisation algorithms
relevant to the work presented@his covers the Genetic Algorithms (GAs), Ant Colony
Optimisation (ACO), Particle Swarm Optimisation (PSO) and Jregsred algorithms
including the Bees Algorithm itselfBehaviours of honeybees intheir natural
environment including food foragingare explained in details. Computational
simulations ofhoneybee behaviours are reviewed to show the link between nature
and optimisatioralgorithms.Honeybees inspired algorithmeeaa branch of Swarm
Intelligence algorithms, which are motivated by the fascinating behavibur o
honeybees. Their behaviourstudied in order to develop metaheuristic algorithms
that can mimic the bees sehing abilities.

Chapter 4 describes a studyfahe main characteristics of th@éasdard Bees
Algorithm. This is undertaken through an exploration of the parameters of the
algorithm in order to help understand the methods bychvliis performance is
improved. Then, it focuses omnhancements to thBees Algorithm for local and
global search. The algorithm is improved with #uglition of dynamic recruitment,
proportional patch shrinking and site abandonnsds.
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The Bees Algorithm required six parameters. There are number of scout bees (n),
number of selected sites (m), number of tognking (elite) sites among the m
selected sites (e), number of bees recruited for eactelitersite (nsp), number of

bees recruited for each elite site (nep), and neighbourhood size (ngh) and the
stopping criterionThe algorithm starts with the n scout bees being placed randomly

in the search spaa@nd presents a neighbourhood search associated with a random
search. The Bees Algorithm involves global and neighbourhood séaustep 1 the
algorithm starts with the scout bees being placed randomly in the search space. In
step 2the fitnesses of the posvisited by the scout bees arealuatedin step 4,
bees that have the highest fitnesses are choa
have been visited wilbe chosen for neighbourhood search. Then, in steps 5 and 6,
the algorithm conducts searches in the neighbourhood of the selected bees in terms of
more bees for the e best bees.

Chapter 5describesapplications ofthe Bees Algathm in combinatorial domais.

The Bees Algorithm as described above is applicable to both combinandal
functional optimisation problems sbetperformance of the Bees Algorithmas
tested on contimus and combinatorial problems. Travelling Salesninoblem
(TSP) definition is given and sveral local search algorithms are suggested for the
algorithmas well as site abandonment in continuous optimization problems.

In chapter 6 The Bees Algorithm with Vantage Point Neihbourhood Search is
described.The simplest vgiree construabn begins with selecting a pivot element,
vantage point randomly. Given a set S of metric space elements (i.e combinatorial
search space elements), the algorithm returns pointer to the root of an optimized vp
tree that satisfied the local optimum valuer(&xample in TSP returns the optimal
tour for each iteration of recruit phase). The algorithm of making vantage point
neighbourhood searh for the Bees Algorithmnesents a modification of the
neighbowhood search procedure in the Bees Algoriflemcombiratorial domains. We
proposed vantage point neighbourhood search procedure for the Bees Algorithm local
search in the recruitment selectiomo develop a new local search in the recruitment
phase we use the vantage point tree algorithm with median cedoslaThe Bees
Algorithm with vantage point neihbourhood procedure is suggested as an addition to
the Bees Algorithm to deal with combinatorial domaiiitie algorithm is applied to

the Travelling Salesman Problem (TSP) to show that the algorithm is lbott @nd
efficient

XXii



BAKI k NOKTASI KOMKULUK ARAMASI NI'N ARI AL
KOMBKNATORYAL OPTKMKZASYOMEPROBLEMLETF

UYGULANMASI

¥ZET
Bu tez - al &k mas é nkaynaka reammed daanarcaen éakritéa raér néen
al gor i tknoansbé mméant or y a l uz ayflaa é&mae rkio mxiurl u ¥k a k
gel i kti.Gel mesi dilren yakl akém Gezgin Sat e«
Satécée Probl emi -%z¢éimegnegn en i yil enmesi i

Butezalk°l ¢ mdennkbbaderciveb®bli¢gmde tezin ama-
bahsedilerek hpot ezi n a- &k |Taenza sné aymeapcéel mexrnt &r z e k
ol ar ak gel i kKt i ri |lymrk aslegaqyriisterhal apé @ dna z a
al goritmal arénén kesi klI: uzayl ardaki | ok
gel i ktirmektir.

¢cal ekxkmané@n ¢mki @it i mi zasyon kavr aménen a -
probl emlerinin karakterizasyonuna ayr éel

bahsedilerek kombinatoryal optimizasyproblemlerininmatematiksemodellemesi

a-ékl adméekmiezasyon dmetketsli aar & °tzgme lgr et en

ve yaklakék -°2z¢:;m ¢reten gnoaelree ni lsiezgnase
ayréel megktadkr hayatt aki optimizasyon prob
for mgl geliktirilerek -°g2igkempnegeemkeklada
problem -°z¢l meye -aleéekeéel déj énda, -%z¢m
raj men i stenilen sBuurkakiulldiek ét amambhanina:
-%z¢meg ol duk - a-zéraptimzsy@nlprobbelerainn eNP- © kKepm ar ar
sezgisel (heuri sti Kl ay rkt eyrilngre mg eslve kptriorbil
genelli kle ama- fonksiyonu ve késétlareén
model |l emede kull anélan dejikkenlerin tg¢r
Sezgi sel al goritmalar i se genel ama-1| éed:¢
uygulanabilirG¢ n¢ m¢gzde kar mak ék opmodellermassweon pr
-%z¢l mesinde dokuwlll ameemeetdalmd ek-ian art mekt

boyutlu kombinatoryia |, tamsayelée ve dojrusal ol may e
-%z¢l mdasikogpdmi zasyon tekni kl erii yetersiz
fenomenl erden esinlenilerek algoritmalar
Kombinatoryal opti mi zas yuoznay@Erab |seanhliepr i p rk
i -in en iyVyi -%z¢mg arayan, di kkate al én
karar deji kkenlerinin dejerlerini bul ma:
Kombinatoryal optimizasyon problemleri en azlama (minimization) ve enk | a ma

(maxi mi zation) ol arak i1 kiye ayreéeleéer. En
at ama probl emi, at°lye -izel gel eme prob
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kombi natoryal optimizasyonbi prokbl eumy uli aama
al anl arleadadébazeé

i -é¢nce BYr¢mdekasé ve s¢r¢ zekasésyakl akéméneé

tabaelkzgi sel optimizasyonSafl glori bmaleeré yi mc eeltek
dajéenék yapeéel é bir eyl Biryleyidgsanganréé naengdaa naérnéd a Kk u
olarak ifadee di | e b izl e&r& adeStemsigminb i r amaca y°neli k dav

ger -ekl exktirmek ve hedeafsee wllaxknaakk iif-aidre beidrilli
Doj adanersalnd@®mi t malodraénn sysergi nmbeil@ddeal lwéa lena k &

Il -g¢degsel-°gmebleeceril erini k uyl°lnatnearml eet ki | i
gel iikltmelk bcantdavranékl!l ar éné mat emati ksel o |
odakl| aCme&k & s éentdkaikliek i mi n bir sonucu ol an k
°nenphr -al aréndan biri i se bipeaeylsedem@tdeekl!| e
Kol ayl ékla g°zlenebil en bu Akol |l ektif ZzekOc
davraneéxkl|l ar dan doffamalkityaedtélrer iTneimsiid arid eat me k
kurallar kullanm&t a ve grubun kalan késméyla etkil ek
ul akmaktadér . Grup faaliyetlerinin topl amé
doj] makKuakd ésr¢g,r ¢l erinin havada s¢zeél mesi ve f a
yi yecek aramacéekawroanpédrlrame,n talraberce y¢zm
bul dukl aré yiyecek kaynajénéen kalitesi hakk
danysag mbluarsgr ¢ davranékl aréndan sadece birka:
S¢r¢ zek®©seée (Swarm Intellimedek)lesebigl eceéjpni w
Ve s¢r ¢gdeki bireyl er araséndaki il eti Ki min
kapsamaktader . S¢r¢de °zerk yapeéedaki basit
il etikim kurarlar ve Dbirbirl eramdemeéhyaraeket |
(selfFfor gani zati on) °nceden yapeél mék herhangi b
Bu i se esnekmerekeszaj lmimr y°%°netim biri mi ol ma
Doj adaki bu sosyal sistemler sezgi sel y°nt
problenl er i ne uygul anmaséyla °nemli tekniklerin
Sezgi sel y°ntemlerin geliktirilmesinde kull a
|l i teratg¢re kazandéer éllnéerke n & ¢ rmo d elelkeayse&En dalvg
gelmektedir. Modern segi s e | al goritmal ar én en t emel i
al goritmal arder . Gel i Ki me dayal e al goritmal
al goritmal ar bu alanda | it eKaatégqwwhgker ipmiorbl enm
kol oni hal i nrdéee kmo d&b/iréamnex | Ko leoni si Opti mi zasyc
bal ék s¢reé¢l erinion sosyal davranékl aréndan e S
Optimizasyonu ve areélarén yiyecek arama davr a
Ar é Al gariirtgmd ladraa | afgorionplaa énri .z asy on

Karénca Kol oni sar éhlcqaor-ietvimaes émnalrat lkaredna g°re b
arasénda gidebil eceji yol l arée belirlemektedir
kar énca yol akinfyasal birkoub éa a&kmdkako yo § & ml uj u zamana

bajl & ol ar ak] eazaymlakkasdéar i seobmaKkkoi&k dy adl.auhna y o]
kesi ktiji noktada karénca HKamgi wollau gsied-eeced]i i
il k °nce kokod umil utf amanerP r e i¢kiencibial &@rlaksties
g°re karar vermektedir. Bu Igerl @ rkd ggl¢ared n saeyn
yol da gitmesini engell eyerek yeni ve daha keé
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Sezgi sel yonteaamPa&mr i mac dk r Sgdn jPSOpekmi zasyd
olara k K uKk vV e bal ék s¢rél erinin olmayane ket | €
neg mer ik rpe o bolpet minea | sonu-1ar bul mak -
basitlektirilmik sosyal sistemin bir sim,
Aréel arén yiyecekbilgar pag!| alk&@manewreé eanber | em
zamanl arda sdrgimnek @yakd & renra aKaliehbirar énda
yiyecek bkhgnaja& él ar , yi yecek kvawektarj € hal
mi kt ar & doainlsgi dredd fnkléegrélydécapaybakar el é meKk:¢
sayesinde aré kol oni si kaliteli yiyecek |

D°rde¢ncyg b°l ¢m nAerné tAe ngeglr i it lad raes enmwek ani z mq
l i terat¢rdeki uygulAaneal Aalagaréi (kkofajals Bhara k t a d € 1
(2005 taraf éndddmup?nedraill nirkel ar @énén yedepecek ¢
pop¢l asyon tabanl é bir arama algoritmaséde

Temel Ar & DbAlrgoorki tpnaarsaémeitcraer €i -searpaietl&dileaiani)r, :
noktat i nden se-il esnebPl ge map€kge(M)indeki e
iyie b°l geye g°nderil ewb8tgeyaygsadenepkrn ke
b°l ge b o yeudurdurma Rrigeh.)Algoritma n adétci a r éanréank u @ e néa n a
astgele yerl|l ekKzairéall ammecsa 2il yearbeatk |l ead21 en no
démda dejerl endiril idre.j e4.i naed é&mdca pemriéjiaru
u ar éldrge l®irt de komkul uB.adeammasédai seni ber
omkKuUul uj undbaa kd raa kK tvéer mha h a utemsi edeneen iyica -0z ¢
°|l geeg-ei,l en dijer b°hagel gfadgPrkedakadadl:
apé/ll@démda yeni pop¢l asyonbwn gelde ki ureunl i
uygunl uk dejeri mel sahide madraé poe-il lam)y.o n& a k
yenipot ansi yel -%z¢mler ehdakeEmekh uzbBgéna
Her bir iterasyonus onunda yeni pop¢l asrysoen- iilkein phaerr- .
b°l genin temsil ciyaganikci avreé | maa 20Q¢RcA08é))., ar a ma
Algortmadur dur ma kri teri saj Bumdasdh aakasaradeéem
t emel Aré Al goritmasénén | okalésamweannga, (sroer
adem i se gl obal ar ama késmene ol ukturm
(randomness) Kansé devam ettireilerek al
sajl amak ama-|lanmaktadér.

< oOXoL —

Beki méihge kombinat oryalAl guazraiytl my gleah @ammea s é
ncel erGmizigtiinr . Sat écé Rar kbnbieatoryal gptinkizasyonN P

probl eml eri Aré Al goritmaseé il e en iyiler
fazénda -exitli modi fi kasyonl ara gidil mekt
Gezgin Satéce Pupnbkke@mkl| améabaréendaknokt al a
ile t¢ém noktalarén en az maliyetl e dol aké
ama-layan kombinatoryal bir optimizasyon p
arakteéer macel ar é&mesinnncsjebre bi | gigseirniek - hayatt alk
uyarl anabilir ol masédeér.

Farl é bir komkul uk aramaseéneéen Ar é Al gor
Probl emi ne il@hud welza n naa seakl naansnedenttl&emAar € Al gor i t
komkul uk yakluam&mekddlonksi yonun tanéméndar
problemlerine rahat-a uyzgludmdabikloimklé mk Ila
-eki tli komkul uk o pabitmektetlir | er i kull anél ar ak
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Alténcé b°l ¢mde bakéexkuhoktasamésanénagAr poAhty
il e Gezgin Satéce Pmobtlée&mi nGeagyignettikana s €&é yRip @
TSP ol arak tanémlanmék ol up Sinmenaeam&ylGezgin

uygul amaya Maltenmkékueay yapeéslein earamaul | anan
algoritmalare °zellikle y¢ksek do¥utl u uzayl
yakeén Kk komklbemnaemralmalks ét aramasé metriKk uzay
al goritmal aréndandeéer . Bakeék nobrtmatské ( Vant ag
uzayda Vantage Poiftr ee ol ukt urul masé metri k wuzayl ar dé
bir bakka uygul amasédéer. Vantage Hroint Areée /
yi yecek kaynaj] énén divzeark | aibhlcasa®dil ahkmyganakl ar
bakl arsondasghabul unan wuzakl ékl arén medyané he
uzakl|l éktya ybeucleukkn aklag nm&tdwgandan b¢igy¢k ya da me
ol an uzakl gkyaceoki!| tkgnaakylraér ek ¢ mede topl anér
-%2z¢me ul ak mak I - 1 anl ame dwyzagyydtakn kaykld 1as;rké
araseéendan yeni g i dao K teastgpdle olardksaen-.i Y it ¥ & ¢ enk
uzayeéndaki ytagam mdlatsae&l are,m( yegergiek RBaty@aad&!| Br et
i -in gidilecek sel nkadart itgrasyosk devam redlilieB g k € k
Noktasé Ar éTemélgorAtriemasslégor i t mas e il e aynée
Uygul anan modi fi kasyon | okal arama fazénda o
Ar & Al gor intemakseéknidlad eaAgl@€dnd radr it dina kana t er i safj l
kadar devam ederek optimum sgreecte uémkaga -
kadar al goritma -al éxktéreéeler. 51 «kxehirlik
algoritma késa s¢rede optimal dejere ol duk-a
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1. INTRODUCTION

This thesisfocuses on natusimspired optimisation algorithms, in particultre Bees
Algorithm that developed for combinatorial domains with new local search

procedure and applied to Traveller Salesman Problem (TSP)

The Travelling Salesnma Problem (TSP) is one of the most interesting and
challenging combinatorial optimization problem§SP is all about finding a
Hamiltonian path with minimum cost. hay be defined as a problem that is a
simpleto describebut a dificult to solve, whichis why it has received so much
attention from the scientific communityhis problem isa mathematicaNP-hard
problemandhas a world range of applications foany fields such as transportation,

logistics and semiconductor industri@i€araboga and Goamli, 2011)

To solve tle problem, many researchers have proposed different approaches
including metabkuristic methods. Somanimal behaviours have potential to be
adapted to solve TSP. In nature, there exist many processes which seek a stable state
andthese processes can be seenasral optimization processes (Eberhart, 2001).
Over the last 30 yearsseveral attempts have been made to develop global
optimizationalgorithms thasimulate these natural optimization processes.

In the literature a lot ometaheuristic algorithms have been appliedgtimization
problens to obtainbetter results imeasonable&eomputational timesSome of these
algorithms include Evolutionargligorithms may be considered as one of the first of
this class of algorithmgKo-, 2010) Other algorithmsinclude Ant Colony
Optimization (ACO)(Dorigo et al, 199%), Particle Swarm OptimizatioKennedy
and Eberhart, 1998ndbeesinspired algorithms including the Bees Algoritf{fPham

et al.2005,20063.

In this thesisBees Agorithm is presentedor Traveling Salesman Proble(MSP)
with a new neighbourhoodlocal search algorithmThe Bees Algorithm for

combinatorial optimizatiorproblems including local and global search strategies



used for algorithmA new neighbourhood proceduredeveloped to deal with local
searchwith combinatorial domains.

1.1 Purpose of Thesis

In this thesisan efficient and robustocal neighborhoodearch algorithm is proposed
for combinatorial domains to increase the efficiency of the Bees Algorithm and it
have been used successfully the solution of theTravelling Salesman Problem
(TSP).

Neighborhood search istal constituenof all swarm based optimization algorithms.
The Bees Algorithm has originally developed for continuous domains but
combinatorialdomains need a completely different approach when it comes to

mathematical definition of theathematicatlistance(Ko-, 2010).

We aim to enhancthe BeesAl g o r i neighbeéh®od search procedurdefined
for combinatorial domainsandimprove its performace for combinatorial domains

as its performing for continuous domains

For continuous domains in the original Bees Algoritlfimghd defines the initial size
of neighbourhood for local searching. For examplg,isfthe position of an elite bee
in the i™ dimension, follower bees will be replaced randomly in the interval
X, © Nghis set to define the boundaries of local search for new solution to improve

e

the ®lution quality and performanc&hanbarzadeh et &007).

For combinatoriabomains,combinations of several methods have been deployed to
perform the neighborhood seardkiter modifying the neighbourhood part Bees
algorithm we compare it with several exchange neighbourhood strategies and local
search algorithms including sitep(2 point) swap, double (4 point) swap, insért

point swap, 20pt and 30pt (Ko-, 2010).

In thisthesis the performance of thBees Algorithmoptimization with vantageqint
local search algorithm is eleated for the Travelling SalesmanoBlem (TSP)and
the results arecompared with the original Bees Algorithm including several

exchange local search strategies.

In the context of developing an algorithinst, the biological and morphological

features ohoneybees are presented. Theriginal Bees Algrithm is presented with



vantage point local search. Then we are proposiaghematical simulatiomvith
experimentafor understanding the succesfullnes of tiedified algorithm.

1.2 Literature Review

The rapid development of engineering sciences and insraasthe number of
complex processes in industry and manufacturing mean that traditional optimisation
techniques are no longer adequate to solve complex-wauitible optimisation
problems with large numbers of parameters. These usually require intelligen

optimisation toolsch as the Bees Algorithm (Pham et al. 2QIR)6b).

Over the years, swarm intelligenbas inspired scientist to developed population
based algorithms to deal with many complex mdiiiable optimization problems.
Because of many ooplex multivariade optimization problems cannbke solved
exactly within polynomially bounded computation times populabased
algorithmswere implementedKo-, 2010). A recent trend in thdield of Swarm
Intelligence @) is populationbased algorithand they ar¢he utilisation otools to

solve optimisation problems which are defined as minimisati@ostffunctions.

Among the most common populatitmased algorithms atevolutionary Algorithms
(EA), the Genetic Algorithns (GA) (Goldberg,1989) Paticle Swarm Optimization
(PSO) (Eberhart and Kennedy 199%Ant Colony Optimization(ACO) (Dorigo et
al., 1991;Dorigo et al.,, 1996)and beesnspired algorithms including the Bees
Algorithm ( Pham et al., 2005, 2008%elf which mimics the foraging beti@ur of

honeybee# nature.

Evolutionary Algorithms(Rechenberget al 1965), (Fogekt al 1966)and Genetic
Algorithms may be considered as one of the first class of this class of algarithms

(Ko-, 2010). The Genetic Algorithms(Holland, 1975)is basedon biological

evolution and adaptation in natusdthough they are considered in populatizased
algorithms,they may also separated from swapased optimization due to their
centralised control mechanisiRarticle Swarm Optimization algorithm imitateke

action of flying swimming or walkingagents keeping themselvelbse byother

membersn a swarmAnt Colony Optimisatior(Dorigo et al., 1991)is inspired by the

antsdé foraging behaviour where thewpodtend t

source and their nesthich have no centralisantrol over their individuals.
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In addition to these algorithm$he Bees Algorithm (Pham et al., 2005), which imitates
the foraging behaviour of honey bees, is a beggired algorithmThe algorithm ks

been widely applied to solve many complex optimisation problems and received a
number of improvement@®hmad, 2012)The Bees Algorithm i®othimplemented for
continuous domains and combinatorial domains. For combinatorial domains, it is quite
difficult to implement the current algorithsinceit has beemroposed originally for
continuous domainsTherefore, it is interesting to explore the opportunities and

limitations of the improved algorithm to this challengimgwdomainfor the BA

Four forms ofhoneybee behaviour have emerged in the literature, narniely,
foraging behaviour (Seeley, 199@he nesting site selection (Seeley and Visscher,
2003; Passino et al., 2008), the mating behaviSung, 2003Haddad et al., 2006)
andthe honeybee teamwostrategy (Sadik et al., 2006)hese types of behaviour
have been modelled to derive various BeegoAthms with many applications (Otri,
2011).

The traveling salesman problem (TSP) is a aketbwn NRhard optimization
problem, in which we require to @&emine the shortest closed route passing through
a set of n cities under the condition that each city is visited exactly once. Many
problems in science, engineering, and bioinformatics fields, such as flexible
manufacturing systems, routing as well as dalieg problems, physical mapping
problems(Alizadeh 1993),genome rearrangemef@ankoff, 1997and phylogenetic

tree constructiorfKorostensky, 2000)can be formulated as a TSP. A large number

of approaches have been devoted to solve the TSP.

1.3 Hypothess

The overall aim of this work was to prove the hypothesis tthiaBees Algorithm
with vantage point local search of neighbourhoodapable of solvingrravelling
Salesman Problem, which belongs to-hd?d optimization problerefficiently and
robustly. We want to implementan efficient algorithm, whichimproves the local
search structure of Bees Algorithin. this thesis, Bees Algorithm is presentfed
Traveling Salesman ProbleriTSP) with a new neighbourhood local search
algorithm. The Bees Algorithmof combinatorial optimization problems including
local and global search strategies used for algorithtmnew neighbourhood

procedure igleveloped to deal with local seamfth combinatorial domains.
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The objective®f this work were:

1. To implementa new Ieal search algorithm for combinatorial domains to

increase the efficiency of the Bees Algorithm.

2. To determine whether a vantage point local seasiphbourhoodmproves

the efficiency of thd8ees Algorithm.

3. To compare both the original and improved vanmsiof local search strategies

of theBees Algorithm for Travelling Salesman Problem.






2. MOTIVATIONS, BACKGROUND AND BASIC DEFINITIONS

This chapterprovides o comprehensive inside irftackgroundto understad the
main body of thisthesis. It also defines the notion of optimization aride
combinatorial continuous, and mixedariable optimization problems using the same

commonframework.

2.1 Optimization

Optimization is everywhere ansl one of the most importatools in different fields

of engineeringYang, 2010) However, many optimization problems turns out to be
very difficult and can not be solved exactly within a polynohidbounded
computation times ( Pham et., al 2008he latest developmentsver thelast two
decedes tend to use metaheuristic optimization techniques to solve sti@rd\NP

problem.

Definition 2.1 Optimizationis the search for a set of variables that eitheximize

or minimizea scalacost function "Qa) .

The ndimensional decision vectom, consists of the mlecision variables over
which the decision maker has control. The cost functiomudtivariate since it
depends on more than one decision variable, as is common of realworld
relationslips. The goal is to minimize (maximize) the cost function while satisfying

the constraints in the problem.

2.2 Optimi zation Problems

An optimization problem defined as follows [Boyd and Vandenbe2@iod]:

Definition 2.2 Given a functiondb © a find & v D @~ 3£0) /B

(minimization) or £C8) A8 (maximization).



FunctionAs called objective function, its domainis called the search space, and
the elements of, are called feasible solutions. A feasible solution X is a veaftor
optimization variable8 8 I8 8 FB 8A feasible solution8* that minimizes

(or maximizes) the objective function is called an optimal solution.
Each optimisation problem consists of four essential components:

1) An objective function orifness function to be optimised,

2) A set of variables that need to be calculated to find the value of the objective
function(s),

3) A set of constraints that determine the allowed values of the variables,

4) The search space that encompass all possible salwti@problem.
With regards to these four components:

1. The degree of nonlinearity of the objective function determines whether the
problem solved is a linear or nonlinear problem. In additionweftry to
classify optimization problems according to numbgobijectives, then e
are two categoriesn one objective function it is called a singibjective
problem, otherwise, in a multibjective problem a number of objective
functions are needed.

2. The type of variables employehat divides problems inb either continuous
problems, or discrete and combinatorial problemsst be considered. In
continuous problems the variables employed in the objective function are real
values, whereas in discrete and combinatorial problems they are redtricted
assumenly discrete valuesSpcha, 2007) :

1 discrete optimizationproblems in which all the optimization

variables X;, i=1, » n are discrete, i.e., belong to a countable
set, X. I D,i =1, »n.
1 continuous optimizatiorproblems in which all te optimization

variablesX,, i =1, » n are continuousX, | R, i =1, »n.

1 mixedvariable optimizatiomproblems in whiclp out of

€ n 1 variables are discreteX, i D,i =1, »p andn are

continuous X, 1 R,i=p % » ¢



3. If the problem has no constraints or conditions that satisfy it, it is called an
unconstrained problem, otherwise it is called a constrapretllem where it
contains one or more constraints that must be satisfied.

4. The search space determines if the problem is a static/deterministic problem
which does not change over time, or if it is a dynamic/stochastic problem where
thesearch space changager time (Blackwell and Branke, 2004), (Otri, 2D1
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Figure 2.1 : Classification of optimization probleng¥ang, 2010)

Optimization problems involving a large number of finiteusimins often arise in
academiagovenment, and industryHowever, for many realorld optimization
problems, it is not necessary to guaeanto find an optimal solution.Often a
reasonably good (approximatg solutionis sufficient to find.Hence,optimization

algorithmsandapproximate rathodswere born.

In this thesis we mentionTravelling Salesman Problem that plays an important role
in combinatorial optimization problem€ombinatorial optimization problems are in
fact a subset ofliscreteoptimizationproblems characterised by finigize of their

domain.



2.3 Combinatorial (Discrete) Optimization Problems

The name given to combinatorial optimization problems,coebinatorial comes
from the fact that such problems may be expressed as those of finoingatation

or combinationof afinite set of elements. Combinatorial optimization problems are
therefore characterized by mite set of possible solutionsnd itis a branch of
optimisation in applied mathematics and compwgeience, related to operations

research, algorithm theorym@ computational complexityeory.

Definition 2.3 A combinatorialoptimizationproblem|}  {fl] can be definetty
X ={x,,x,, » X} isasetof variable with domain D,» D, ,and constraints

with variablesdefined over subsets 8fwherean objective function
f:D,® D, » 3D, -R'
to be minimizedandthe set of all possiblee&sible assingment is
S={s={(x.v).»(x%.v)} IviD,ssatisfies all thermtraintg

S is solution space or search space of the optimization problem, as each element of

set can be seen as a candidate solution but one has to find a sstutiof with
minimum objective function value, tha f(s*)¢f(s), | w~ { and vz~ | is
called a globally optimal solution ofjiH

Many algorithms and solution methods exist for solving combinatorial optimization
problems. Some of them are exact methods called exact or completthalgdhat
areguaranteed to find fasptimal solutions given sufficient timealled deterministic
algorithms.Some othersare approximation techniques, usually edlmetaheuristics,
within stochastic algorithmehich will give a good problem solution ia reasonable

amount of time, with no guaranteeaochieve optimality.

Algorithms often comparedn terms of their efficiency robustnessand speed.
Algorithm analysis is usually compared actual running time of algorithmshar@

notation is often used farovide an asymptotic upper bouafithe complexity of an
algorithm.An algorithm is ofO(n) (Order n), whera is the size of the problem, if

the total number of steps carried out by the algorithat most a constant times
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In addition to analyzinghie efficiency of an algorithmt is sometimesecessaryo

know what types of algorithms exist for solving a particular problem. The field of
complexity analysisinalyzes problems rather than algorithms. Two important classes

of problems are usually idefied in this context. The first class is calld¥
(polynomial time problems)It contains problems that can be solved using
algorithms with running times such @¢n), O(log(n))andO( ) .They are relatively

easy problems Another important class isalled NP-hard (nondeterministic
polynomial time problemsNP-hardpr obl ems dondt -tinewautioa, a pol

for example TSP is a welinown combinatorial Nfhard optimizationproblem (Hosny,
2010).

In this study, practical solutions farSP prdalem are addressed. In the literature,
there are useful theories, solutions, and case studies to sathecombinatorial
optimization problems and na optimization problemcan be solved using
metaheuristicalgorithrms. That are mostly natureinspired and pgulationbased.
Populationbased algorithms is about basic concept of swarm intelligence theory.
Swarm intelligence has inspired scientists to develop poputatised algorithms to

deal wih complex optimisation problems.

From a mathematical point of wie basic ingredients of a combinatorgdtimization
problem arean instancefor examplein the TSPthe set of citiesrd the set of costs
of traveling;a finite space ofeasible solutionsn the TSP, all the possible round
trips with requested prope&ssand acostfunctionover he space of feasible solutions
in the TSP, the total cost @very rounetrip. The optimization problem is solved
when, given an instance, feasible solution which minimizes the cost function is
found Swarm Intelligence (Shand p@ular swarmbased algorithmsn several
optimization tasks and research probleand it have been successfully applieda
variety of problem domains.
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3. SWARM INTELLIGENCE

3.1 Swarm Intelligence

Swarm Intelligence (Sl) is an eingering branch and is defined as the collective

problem solving capabilities of social anim@Bonabeay 1999),( K p2010).There are

variety of the interesting insect or animal behaviour in the nature, for example a flock of

birds sweeps across tkky. A group of ants forages for food, a school of fish swims,
turns, flees together etc. Scientists call
and they studied how to model biological swarms to understand how such social animals

interact, achie# goals, and evolve.

Figure 3.1 : Fish scoolingleft) andBirds flocking in \-formation(Xiong, 2010).

Swarm Intelligence is the emergent collective intelligence ofumgoof simple
autonomous agentBonabeay 1999). An autonomous agents is a subsystéhat
interacts with its environment, which probably consist of other agents but acts
independent from all others age(itsu, 2000)

Sl is the direct result of setfrganisation inwhich the interactions of lowdevel
components create a gloHalel dynamic structure that maybe regarded as
intelligence K o - , ). Zhesk wer level interactions are guided by a simple set of
rules. Individuals of colony only have logalvel information about environment and

they follow withoutany knowledge of globaffects (Dorigo, 1999).

13



There are several other optimization techniques based on Sl principles have been
proposed in the literature, ingling Artificial Bee Colony( Kar aboj,a, 2005)
Bacterial Foraging(Passino, 2002)Ant Colony Optimization (Dorigo, 1999)

Artificial Immune System(De Castro, 1999and Glowworm Swarm Optimization

(Krishnanand and Ghose 2009l these S| models intrinsically share the principal

inspirational origin of the intelligence of different swarms in nature, such as swarms

of E. coli bacteria as in Bacterial Foraging, swarms of cells and molecules as in

Artificial Immune System(Hunt, 1996),(De Castro, 2002 (Read, 2012)gnd the

amazing swarms of honelyees as inhe Artificial Bee Colony SystentMadureira,

2005) (Panigrahi, 2011)

3.2 SelfOrganization in Nature

Self-Organization is a set of dynamical mechanism whereby structures appear at the
global level of a system from interactionsits lowerlevel components. The four
basis of seHorganization are positive feedback (amplification), negative feedback
(for counterbalance and stabilization), amplification of fluctuations (ramdomness,

errors, random walks) and multiple interactions @igo, 1999).

Positive feedback idefined as the first rule of $abrganization and it is basically

set of simple rules that help to generate the complex strudtegative feedback
reduces the effects of positive feedback. Ramdomness adds an nhcéatzdr to

the system and enables the colonies to discover new solutions for example most
challenging food sources, nest sites etc. Multible interactions between individulas are
the last one. There should be minimum number of individmdsiduals whoare
cgpable of interacting with eaabther to turn their independent lodalel activities

into one interconnected livingrganism. Asa result of combination fothese

elements, a decentralised structureise at ed ( Ko-, 2010) .

Usually there is no cenfraontrol structure dictating how the individual agents
should behave, but local interactions between such agents often lead to the
emergence of a global behavior. Examples of systems like this can be found in
nature, including ant colonies, bird flockifgge swarming, animal herding, bacteria

molding and fish schooling.

14



Figure 3.2 : Self-organization in a termite simulatigiMitchel Resnick, 1994)

3.3 SwarmBased Optimization Algorithms

There arelots of swarmbasedoptimization algorithmgSOAs)thatmi mi ¢ nat ur e
methods to drive aeach towards the optimal solutioBOAs use a population of
solutiors for every iteration insteadfo a si ngl e, 2010)l Uhisiiskey ( Ko -

difference between SOAs and the othgpes of search algorithms.

On the types of searel applied to solve the optimisation problem there are two
possibilities: Single Point Search (Trajectory) (SPS) which is also known as a Direct
Search (DS), and Populati@ased Search (PBS) which is also knoagna Swarm
Based Search (SBS) (Otri, 2011).

SOAs include Evolutionary Algorithms.€. the Genetic Algorithm}he Ant Colony
Optimisation (ACO) and the Particle Swarm Optimisation (P®Othis section, we
will focus on the main chararcteristics and the ways that each algorithm generate new

solutions
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3.3.1 Genetic &orithms

Genetic Algorithns (GAs) was intraluced by John Holland (Goldber$j989) and
developed based on the genetic processes of biological orgaisimsased on
natural selection and genetic recombinatidnis a heuristic algrithm which
simulates principles of evolution biology for finding solutions of complex problems
which cannot be solved with any other exact algorith@enetic algorithmgliffer
from the more normal optimization and search procedurdour ways(Goldbemg,
1989):

1 GAs work with a coding of the parameter set, not the paramaters themselves;

1 GAs search from a population of points, not a single point;

1 GAs use ogjective function information, not derivatives or other auxiliary
knowledge;

1 GAs use probabilistic@nsition rules, not deterministic rules

A genetic algorithm mimics this natural evolutionary process in its optimization
problem cycle.A simple genetic algorithm based optimizer is characterized by

individual encoding, individual fitness, selection maaism and genetic operators.

Individual encoding means that genetic algorithms encode solutions to the given
problem as chromosomal strings and operate on these encodings during the
optimization process. This helps minimize the amount pobblem specific
information needed during the optimization process of a genetic algorithm.
encoding scheme that maps each chromosome string to a unique solution is preferred
as the genetic algorithm will not waste time evaluating multiple encodings of the
same solutionThe solution is traditionally represented by binary numbers, string of
zeros and ones but it is possible to use any other represenkatioexample, for a
traveling salesman problem (TSP), a permutation of all the cities in the problem

instance can besed a solution encoding scheme.

The fitness measure of the chromosome should reflect the quality of the
correspondingolution to the problem. For example, in a TSP instance, the length of
the overall tour represented by the permutation encoding coulddsignad as the

fithess measure
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The selection mechanism is used to select two individuals for crossover (mating).
The purpose of these operations is to allow substrings in the fit individuals in a
population to survive for many generatiohtence, the pant individuals for these
operations are generally selected based on their fithess values. This will promote
survival of fitter genes in the offspring and should lead to fitter individuals in the

future generations.

Genetic algorithms use two kinds of ggo@perators called crossover and mutation.
The crossover operator performs a probabilistic exchange of chromosomal
information between two individuals to produce a new individual. The crossover

operator selects two parent individugtsn the populatiofbased on a selection scheme.

The mutation operator typically picks a random individual from the population and
performs an inversion or some other random operation on the individual
chromosome. After a certain number of generations, the crossover openg®ito
produce offspring that are very similar to the parent individuals. Then the mutation
operator plays a critical role in restoring lost genetic material or providing diversity
in the current populationnitialization i made first population whictsiusually generated

randomly. This population can have any giZeom a few to millions

1. Evaluationi each population is evaluated = there is computedalied fitness
function of given solution. The purpose of this function is to find out to how ektent
this solution fulfills given requirements. This requirement can have differentifgrm
the fastest computing as possible, the best solution as possible etc.

2. Selectioni the purpose is to improve fithess value of population. So it is impgrtant
to select justpopul ati on which iis the right pat:t
principle of evolution, only the strongest individuals can life. There are many
methods of selection but the basic idea is still the sarselection of the best
candidates for making thebt possible future generation

3. Crossoveli this operation makes new population by making hybrid of two selected
populationsi they can be callegharents The basic idea is to combine the best
attributes of each parent.

t

4. Mutationi this operation makes theqeedure of making new generation little p

random. It is important for possible improvement.

5. Repeatt generate new generation and continue from step two.

Figure 3.3 : Pseudecode of theGA algorithm.
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Genetic Algorithms usually ends after a given count of iteratiaftst a given time
of solving or after achieve given solutions. The solution of GAs heavily depends on

defined on count of populations and count of iterations.

Count of iterations means how many times is algorithm repeated. First run has as
input paraméer random value but every next starts from the best founded solution
from previousiterations. Count of iterations means how many times is algorithm
repeated. First run has as inparameter random value but every next starts from the

best founded soluin from previousteration
3.32 Ant colony gptimization algorithms

The successful swarm intelligence model is Ant Cpl@ptimization (ACO), which

was introduced by M. Dorigpand has been originally used to sobambinatorial

optimization problems inhe late 1980dlt is mimic theforaging behavior of social

antl't i1 s a natur al observation that a group ¢
out the shortest route between their food and their nest without any visual
informationWhen searching for fud, ants initially explore the area surrounding their
nestrandomly.As soon as an ant finds a food source, it evaluates the quantity and

carries some of it back to the nest. During the return trip, the ant deposits a chemical

pheromone trail on the groun@lhe quantity of pheromone deposited, which depends

on the quantity and quality of the food, will guide other ants to the food source

Ant System (AS) was the first ACO approach to be publisretlitis an terative
distributed algorithm(Dorigo et al, 1991; Dorigo et al., 1996(, K (2010).At each
iteration, a set of artificial ants are consideréte generalstructure of any ACO
algorithm, Starting with an initializatioaf the algorithm, iteration after iteration all
ants first construdheir tou and then update the pheromone trails accordingly. In an
extended scenarice. an optional case local search method can be used to improve
the ants' tourdefore updating the pheromome positive feedback and decay is
negative feedbaclkheromones updated by all the ants after a complete tour is the

key idea in thisalgorithm. Pheromone updat§ () for the edges of the graptb)

that isjoining thecities"Gand’(Gs calculated as follows (Dorigo et al., 1991):
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[ « (1' ) j 19 Pk (3.1)
k=1

whered is the number of ant§," T1ip is the eaporation rate, and” is the

quantityof pheromone laid on the edg@®

The value dthe quantity of pheromone laid on thdges is determined by the tour
length 0 of an antdefined by

-
. T ifantkusededgf i )j initstou

Lym =1 (L) (3.2)
|l 0 otherwiseg

Ants move from one city to another city according to prdlgb A transition
functionis used to calculate the probability of an ant moving from the “Ciy’Q
Secondly, defia a visible degreg , ¢ p¥Q 8The probability of the kth ant
choosing city igjiven by

. a. b
| f L ﬂj[a . ifjiN(Sf),
p(s j|s) :‘} a ingp ;! i (3.3)
i O otherwise ,
Nest Nest Nest
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Figure 3.4 : Ants behaviour in finding the shortest roif2origo, 1996)
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The basic idea and procedure of ACO algorithm

1. Representhe solution space by a construction graph.

2. Set ACO parameters and initialize pheromone trails

3.Generate ant solutions from each ajnt 6s

pheromone trails.
4. Update pheromone intensities.

5. Go to step 3, ankpeat until convergence or termination conditions are met.

Figure 3.5 : Pseudecode of theACO algorithm.

There are hundreds of implementations of the ACO metaheuristic successfully
applied to numerous optimization problems in various domains, including famous
NP-hard combinatorial optimization problemg/hile ACO was initially introduced
with an application to the TSP as a prodfconcept/classical applicatioand then
ACO algorithms have later been successfully applied to a-veidge of optimization

problems.
3.3.3 Particle swarm gptimization (PSO)

Particle Swarm Optimisation (PSO) was introduced by Kennedy andh&ber
(Eberhart and Kennedy 199Kenned et al. 199). PSOis populatiorbased
stochastic optimisation technique and is inspired by the behavioudtoakeof birds.

The algorithm consists of a swarm of particles moving in a space. Every particle holds a
position and velocity vector representing a candidate solution to the probiem.
addition, each particle memorises its own best position found santha global best

position that is obtained through communication with its neighbour.

Similar to evolutionary algorithms, the PS@itialises with a population of random
solutionsand t searches for local optima lsymply updating generations of indiwudls.

The seudecode o f the PSO algorithia given below:
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1. Create particles (population) distributed over solution sggte/’) .

2. While (Stopping criterion not met) do

3. Evaluate each particlivefusctioposi ti on acc:t
k+1 k

4.1f §  is better thanS (update pbest)
sk_$<+1

5. Determine the best particle (update gbest).

6. Update particlesd velocities acclordi ni

vt =y +qranq( pbest .—ks) grand pbest*)

7. Move particles to their new positions according to

Sk+1 - $< 4'\}({

8. Go to step Auntil stopping criteria are satisfied.

Figure 3.6 : Pseudecode of the?SOalgorithm(Eberhart and Kennedy, 1995

The algorithmstarts with creating particles that are uniformly distributed throughout

the solutionspace by defining the initial conditions for each agé&aich agent is

defined with aninitial position { ) and an initial velocity ). Each particle has a

memory function that remembers two pieces of information, the first piece of

information results from the memory of the particle of its past states as thaobest

far position that it hasisited, called the local best, and the second piece of

information results from the collective experience ofpaliticles as the global best

position attained by the whole swarm, called the global best. Both the local best

position of each particle antid global best position of the entire swarm guide the

movements of all particles towards new improved positions and eventwafitydt

the global minima/maxima (Otri, 2011).
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3.3.4Beesinspired algorithms

3.3.41 Bees in ature

Honeybees inspired algdnins are a branchf &warm Intelligencealgorithms, which

are motivated by the fascinating behaviotihoneybees. Their behaviourstudied

in order to develop metaheuristadgorithms thatcan mimic the bees sehing

abilities in nature There are seval examples of such behavigisuch as waggle

dance that is by a scout (worker) b#est has returnebackto the comb with pollen

or nectar. It isbasicallya

| anguage

t hat

it el

| s O

ot her

signaling both distance and directiarth particular movements, the worker bee uses

the dance language to recruit sorddirect other workerdor gathering pollen and

nectar.

Austrian ethologistKarl von Frischwas one of the first people timanslate the

meaning of thewaggle dance(Frisch 1967) Bees communicatethrough this

waggledance, whicltontains the followng information:

1 Thedirectionof flower patches (angle between the sun and the patch)

1 Thedistancdrom the hive (duration of the dance)

1 Thequalityrating (fitness) (frequencyf the dance)

1 The order of the source by pollens on their legs ( to specify the patch

coordinates )

Figure 3.7 : Round [ance(left) andWaggle Cance of hondyeeg(Frisch, 1967).

2

9
y
.

Food sources that are at intermediate distances, be®eam 150 meters from the

hive, are described by thefisickle dance. This dance is cresceshaped and
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representsa transitional dance between the round dance and a wagglee
(Winston,1987).

3.3.42 Nectar-source ®lection andthe nestsite slectionmodels

A colony of honey beesan extend itself over long distances (more than 10 km) and
in multiple directions simultaneously to exploit a large number of food souBees.
Algorithm starts with scout bees being placed randomly on the search space.

If the bees have no knowledge abthe food sources in the search field they will be
an unemployed foragers bees, so bee initializes its search as an unenlpltieed.
bee starts searching spontaneously witreout krowledge, it will be a scout bee
(Seeley, 1995)If the unemployed forger attends to a waggle dance done, the bee
will start searching by using the knowledge from waggle dance is a recruit bee.
When the recruit bee finds and exploits the food source, it will raise to be an

employed forager who memorizes the location of duelfsource.

The value of a food source depends on different parameters such as its proximity to
the nest, richness of energy and ease of extracting this enekggording to the
fitness, patches can be visited by more bees or may be aban@ibadukes ealuate
thedifferent patches according tectar qualityand eergy usageBy performing the
waggle dance, successful foragers share the information about the direction and
distance to patches of flower and the amount of nectar within this flower with thei

hive mates.

Dance floor |

»»»»»

Figure 3.8 : The dancer bees meet other bees at the dancd flkap2010).

Camazine presented a differential equations modehton e y beesb beh.
Individual bees are represented in this model using a flow diagram for the-nectar
source selectiorprocessesand they do not have global information about the
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distribution of nectar sourcesach one will comply with certain rules to determine
where it will go to forage. This process is described by a flow diagram illustrated in
Fig. 3.7.

According to tle model, there arsevendecision making branches for the situation
of acolony choosing between two nectar sounvgch nectar source to forage and
whether to dancelhere ardoraging at nectar source, foraging at nectar source B
dancing for nectaraurce$ , dancing for nectar sourck , unemployed foragers
observing a dancd¥, unloading nectar from sourde andunloading nectar from

source(

In this model, there are two factors affecting the proportion of the totafeora
number n each compartment{l) the rate at which a bee moves from one
compartment to another and (2) the probability that a bee takes a fork at each of the
five branch points (diamonds), r, stands for a rate constant defined as the fraction of
bees leaving a comaptment in a given time interval equal@g@™ wher e each
the time to get from one compartment to another. The unit of the rate constant is

given asx Q¢ (Camazinel991).

Thefirst branch point is encountered after a bee has unloaded har inetbe hive.
Here, beemay abandon the nectar source and return tad#éimee floor to follow
another dance stands for the abandoning function that denotes the probability
that a bee may abandon the nectar source or go back to the dande fibserve
another dancer be@his function depends on the profitability the source, s
represents the probability that a bee leavidg abandoning th@ectar source and

becominga follower bee (F).

The second branch point is for thees that did not abandon their sourds this

point, a bee decides whether to dance for the nectar source or to fly back to the nectar
sourceD denotes the probability of performing a dance for the nectar sdtsce
value also depends on theofitability o f thenectar source similar to the abandoning

functiond denotes the probability glerforming a dance for the nectar source.

The third branch occurs on the dance floor when a follower bee dances to decide for
one of the nectar soursa) , denotes the probability of a followéee following

dances for nectar source A and leaving for this nectar sotnas, the probability of
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following a dancer bee for AQ , andthe probability offollowing a dancer bee for
B "Q):

fA=_ Dada (34)
DAdA + DBdB
fe—=_ Dsds (35)

P Dpd,+ Dgdg

The time limitation of$ and$ has been weightednd denoted a® andQ .
Therefore, each funion indicates the proportion of the to@hncing for each nectar source
by taking intoaccount the number of dancers and the time spent danEmpgations of the
model, with some assumptions for simplicity, are written adatewing set of differenl

equations(Camazine et al. 1991):

dA
S -fHA £pH, pD. fipF pA (36)
dD
th = fdA (1 'fo) pHy BDa (3.7)
dH
at - PA TPH. (39)
dB—lfBlfB H fBp,F pA 39
E—( 'd)( x)ps B pé"DB = B, ()
dD,
dtB =f8 (1 -fXB) pH, p.D; (3.10
dHs _ B -pHg (3.11)
dt
dF
Ez f)?leA +f><Bp5HB p4F (312)

A detailed derivation and discussion ofshesquations is given in Camazine and
Sneyd (1991).
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Figure 3.9 : A mathematical model shows how hortege colonies allocaferages.

At any moment each forager can be in one of the seven compartments
shown ( R , $ ,$ , A, B, F) denote the compartments as well as
the number of foragers in the compartments). The rate at which bees
leave each compartment is indicated by 1 . The functions
"QHQ, QRQ and so on, indicate the probatyilof taking one or the
other fork at each of the fivbranch points black diamondSdeley

Camazine, and Sneyd 1991

Nestsite selection is anoth@mportant practice which requires an optimisation
process asectar source selection behaviour doetioneybee colonies. Nesite
selection inhoneybee colonies can be summarised as a social decision making
process. In thiprocess, scout bees locate several potential nest sites, evaluate them,
and select thbest one on a competitive signalling baglagsino and Seeley, 2006).
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In nature, honey bees have several complicated behaviors such as mating, breeding
and foragingandthese behaviors have been mimicked for several honey bee based
optimization algorithmsHoney bees optimization algorithrase caggorized in this

work by concerning the behavioural characteristics of honey Géese are foraging

behaviours, marriage behaviours &wkeen bee concept

The researches, their main contributions and applications are summarized as shown
in Table3.1 Yonezawa and Kikuch(1996) examine the foraging behaviour of honey
bees andato and Hagiwarél997) introducedhoneybees inspired algorithrcalled

the bee system, as an improved version of genetic algorithms. This syates to

be inspired basicallfromé f i n douroegandaecrsaiting others ta behaviour.

Seeley and Buhrman (1999) investigated the nest site selection behaviour of honey
beecolonies.The nest site selection process starts with several husdeed bees.

After the scouts return tthe cluster, report their findings by meaof waggle
dances, and decide the nevsingite.Luck and Teodorovic (2001) published the first
study on Bee System based on the PhD th@sisy named the model the Bees
System and aimed to deal with the TravgjliSalesman Problergo the algorithm
wasdeveloped for combinatorial domains and applied to traveller salesman problems
(TSP) that aim tdind the minimum distance route.

Yang (2005)was inspired The Virtual Bee Algorithm (VBA) by a swarm of virtual
beeswhere it began with bees wandering randomlyhe search spac&he VBA
initially created a population of virtual bees, where each bee was associated with a
memory bank. Then, the functions of optimisation (objectives) were converted into

virtual food.

1. Creating a populationfamulti-agents or virtuabees, each bee is associated
with a memory bank with several strings;
2. Encoding d the objectives or optimization functions and converting into| the
virtual food;
3. Defining a criterion fo r communicating therection and distance in the

similar fashion o f the fitness function or selection criterion in the genetic

algorithms;
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4. Marching or updating a population o f individuals to new positions [fo r
virtual food searching, marking food and the direction withuairtwaggle
dance;

5. After certain time o f evolution, the highest mode in the number of virtual
bees or intensity/frequency of visiting bees corresponds to the best estimates;

6. Decoding the results to obtain the solution to the problem

Figure 3.10 :Pseudecode of the/BA algorithm.

Karaboga and Basturk introduced tloeaging behaviour of honey bee swarm and
proposes a new algorithm simulating this behaviour for solving +dinftensional

and multtmodal optimization problems, called Artificial Bee Colony (ABChe
algoithm usesthree types of bees, called employed bees, onlooker bees and scout
bees and the main stepisthe algorithm are

1. Send the employed bees onto the food sources and determine their nectar
amounts;

2. Calculatethe probability value of the sources witlhich they are preferred
by the onlooker bees;

3. Stop the exploitation process of the sources abandoned by the bees;

4. Send the scouts into the search area for discovering new food sources,
randomly;

5. Memorize the best food source found so far.

For each flover patchan artificial onlooker bee chooses a food source depending
on the probability value associated with that food soufcecalculated by the

following expression

« SN

a ey f1

where"Q'Qs the fitness value of the solutiomvhich is proportional to the nectar
amount of the food source in the gitcon i and SN is the number of food

sourcewhich is equal to the number of employed bees or onlooker bee

In order to produce a candidate food position from the old one in memory, the

ABC uses the following expression
0 W o+ W W (3.19)
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wherek N {1; 2; . ..; SN andj ™~ {1;2;...:D}ande N pip are
randomlyhosenandk "QABC alsouses site abandonment, which is simply leaving
a patch if no rare improvement islwserved on the patch after certain number of
iterations! t i s ¢ a Askumd thah thd abamdoried sourcexisand

jN {1; 2;...;D} then the scout discovers a new food source to be replaced

with w . It defined in the followingequation:

A (3.15)

1. Initialize the population of solutiond ;N {1;...; SN}
2. Evaluate the population

3. cycle=1

4. repeat

5. Produce new solutions for the employed bees by using (7) and evaluate them
6. Apply the greedy selection process for the employed bees
7. Calculate the probability values Pi for the solutionby (6)

8. Produce the new solutions ti for the onlookers from the solutions xitselec

depending om and evaluate them
9. Apply the greedy selection process for the onlookers

10. Determine the abandoned solution for the scout, if exists, and replacg it

with a new randomly produced solutianby (8)
11. Memorize the best solution achesl so far
12. cycle = cycle + 1

13. until cycle =MCN

Figure 3.11 :Pseudecode of theABC algorithm.( Ko -, 2010) .

Another implementation of bee behaviour was presented by (Teodorovic, 2006) to

solve transportation problems and was called Bee Colony Optimis@8Q0). A

FuzzyBee System was also proposed in (Teodorovic et al., 2006). BCO has been

developed for combinatorial problems and the pseamdteof the algorithm is given

below
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1. Initialization. Determine the number o f bees B, and the number of iteratipns I.

Select the et of stages ST =4 "Yq €°Y0}. Find any feasible solutior of
the problem. This solution is the initial best solution.

Seti 1. Until i = |, repeat the following steps:

Set j 1. Until j = m, repeat the following steps:

Forward pass: Allow bees to fly from the hive and to choose B patrtial solutions

from the set of partial solutionéat stage 0

Backward pass: Send all bees back to the hive. Allow bees to exchange

information about quality of the partial solutioosgeated and to decide whether

abandon the created partial solution and become again uncommitted fo

continue to expand the same partial solution without recruiting the nestmates, pr

dance and thus recruit the nestmates before returning to #teccpartial
solution. Setj: =j+ 1.

4. If the best solutionw obtained during the-th iteration is better than th
bestknown solution, update the best known solution ¢x: =
5. Set,i:=i+1.

Figure 3.12 :Pseudecode of tle BCO algorithm( K 02010).
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4. THE BEES ALGORITHM

The Bees Algorithm was developed by a graf researchers at the Manufacturing
Engineering @ntre, Cardiff University (Pharat al, 20(). It is a population based
search algorithm that mimics the food foraging behaviour of honeybees to find the
optimal solution for both continuous and combiniioproblem.In its basic version, the

algorithm performs a kindf neighbourhood search combined with random search

The Bees Agorithm required six parameters. There are number of scout bees (n),
number of selected sites (m), number of-tapking (elie) sites among the m selected
sites (e), number of bees recruited for eachelda site (nsp), number of bees recruited
for each elite site (nep), and neighbourhood size (agl)the stopping criteriolhe
algorithm starts with the n scout bdesing paced randomly in the search spaual

presents a neighbourhood search associated with a random search

The Bees Algorithm (BA) involves global and neighbourhood se#ciumber of bees
are employed to explore at random the solution spatfee gbbal sarch procedure that
enables the bees to escape from local optith&s kind of search is crucial as it enables
the bees to escape from local optinAt the same timeneighbourhood search
concentrates exploitation around promising soluti@wh of themin populationbased
algorithms may locate solutions that gradually come closer to an opfiniiglize

population with random solutions;

Evaluatefitness of the population.

While (stopping criterion not met)

Select sites for neighbourhood search.

Recrut bees for selected sites (more bees for edit=st) and evaluate fitnesses.

a b~ w0 nPE

Select the fittest bee from eaditesto form the new population.
6. Assign remaining bees to search randomly and evaluate their fithesses.

7. End While.

Figure 4.1 : Pseudecode of the Bes Agorithm( K 02010)
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Table 4.1 :Basic parameters of the Bees AlgoritHimK 02010)

Parameter Symbols
Number of scout bees in the selected patch n
Number of best patches in the selected patck m
Number of elie patches in the selected best e
patches

Number d recruited bees in the elite patch nep

Number of recruited bees in the relite best nsp

The size of neighborhood for each patch ngh

Number of iterations Maxiter

In step 1 the algorithm starts with the n scout bees baaxged randomly in the

search space. In steptBe fitnesses of the points visited by the scout bees are
evaluatedl n st ep 4, bees that have the highest
and those sites that have been visited will be chosen fohb@irhood search. Then,

in steps 5 and 6, the algorithm conducts searches in the neighbourhood of the

selected bees in terms of more bees for the e best bees.

| Random Initialisation (n) |
I Selection n |
' v
—>| Fitness Evaluation | Elite Sites e Best Sites m
nep Bees per Patch nbp Bees per Patch
Local Search | Fitness Evaluation I I Fitness Evaluation |
| Select Patch Fittest I | Select Patch Fittest |
Global Search
New Population i
| Random (n-m) | i
! :
No ('onv@ | Fitness Evaluation | i
1
Yes
Solution

Figure 4.2 : Flowchart of the basic Bees Algorithi@tri, 2011)
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Initialise a Population of # Scout Bees

> Evaluate the Fitness of the Population

__________________________________________________________________________

Select m Sites for Neighbourhood Search

l

Determine the Size of Neighbourhood
(Patch Size ngh)

1

1

)

i

|

iy |
¢ i
= i
2 i
1] |
= ]
e i
= l |
— |
= i
= |
- |
= i
— |
=0 |
= |
> |
z |
i

1

1

1

1

Recruit Bees for Selected Sites
(more Bees for the Best e Sites)

}

Select the Fittest Bee from Each Site

Assign the (n—m) Remaining Bees to Random Search

New Population of Scout Bees

Figure 4.3 : Flowchart of the basic Bees Algorithm

Example 4.1: Stepl: Initialize population with random solutions with = 20.

Evaluate fitness of the population

e o )
o @
PY ®
® ®
V @ o
o
o
'Y o
o
®
] ° P
-

Figure 4.4 : 20 scout bees anglaced randomly in the search space.
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Step 2:Select theparameters of Bees Algorithm:

f n =20 number of scout bees
m = 3 rumber of sites selected outroVisited sites
e =1 number of best sites outmfselected sites
nep= 7 number of bees recruited for besites

nsp= 2 number of bees recruited for other€) selected sites

= =4 =4 =2 =4

ngh = 3 neighbourhood sizé Nngh

Select sites for neighbourhood search. (Bees that have the h

fithesses are chosen).

o ® Y
L °
Y [ )
® ™
1 ) [ ]
" °

: ® L

T e
®

™ u i

N

Figure 4.5 : m=3 selected bees for neighbourhood search.

Recruited bees for selected sites (more bees for best e sites

evaluate fihesses.

The best e sites (more bees for best e sites)

O o
0 —— @)
o 0
Yy o O
O
®
0O [ ]
O
0 C E
® (
%
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Select the fittest bee from each patch. ( For each patch, only the bee w
highest fitness will be selected to form the next bees population. )

Figure 4.1 :Recruitment phase for local search.

Assing remaining bees to searchndomly and evaluate the

fitnesses.

\ New Population
Al.

° ® .
o
° ® °
°
\
®
)
e )
o ® e
° o
[ ] Y °
® ° ”

Figure 4.2 : Generate new population with local and global search phase.
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Graph 1. Initinlise population with random solutions Graph 4. Recruit bees around selected sites (more bees
and evaluate the fitness for the best ¢ sites),
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!
!
L] ( ) 1
'
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Graph. 2. Select sites for neighbourhood search™”

and™v Graph 5. Select the fittest from cach site %"
' !4
|
L) 4 \ ’
' ¥ 5 N | ’ n
°
Graph 3. Define neighbourhood range. Graph 6. Assign remaining bees “o0™ 1o search

randomly and cvaluate their fitness

Figure 4.3 : Simple example of Bees Algorithm with n=10 scout beds p2010).

4.1 Neighbourhood / LocalSearch ofBees Algorithm

As in all the evolutionary algorithms, the neighbourhood search is one of the
essentiaparts of swarrbased algorithmas well as for the Bees Algorithrin the

Bees Algorithm, the searching process in a selected site is simitlwat of the
foraging field exploitation of honey bee colonies in natlitee harvesting process
explained in previous chapter includes a monitoring pHasethe purpose of

recruitingmore bees t@electedsite that can be used asreeighbourhood seel in
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the Bees AlgorithmEssentially, when a scout bee finds a good field (godwation),
she advertises her field to more be&s.we explained in the previous chapter the
nestingsite selection of honeybedshaviour has been used as a neighbourhood

sarchin the proposed Bees Algorithm

After ranking the sampled solutions and locating the most promising ones (i.e. the
highest ranking locations), other beee recruited to search the fitness landscape in
the neighbourhood of these solutioné. neighbohood search sites of size ngh is
selectedvhich will be used to update the m bees declarbad is important as there

might be better solutions than the original solution in the neighborhood area

In the neighbourhood search procedure, more forager &reesecruitedin the
neighbourhood of the elite (e) sites, and fewer beasna the norelite (me) sites
andthanks to this strategy the foraging effort was concentrated on the very best (i.e.,
elite) solutionsFor every selected site, bees are randaigiributed to find a better
solutionwithin the given neighbourhood area (i.e., flower patch)sie shown in

Fig. 4.7, only the fittest (best) bee thosen as a representathee and the centrd o

the neighbourhood shifted to the position of the best(i.e from A to B).

Fitness Fitness

Best Bee T £ e 7

Figure 4.4 : Graphical Explanation of the Neighbourhood Sed€uini, 2011).
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4.2 Improvementsto the Bees Algorithm

We purpose to impovéhe efficiency of theBees Algorithm inlocal search and
global search witldynamic recruitment, praptional shrinking for selected sites and

site abandonment

Dynamic recruitment aim to improve the way tlihé bees are recruited int
selected site and it is deal with the local search space fa§idr. dynamic
recruitment strategy if there is any pnovement on the recruited site according to
original bee, the recruited bee will replace the original and path will move to a new

position around the fittest and new position.

Proportionalshrinking ideadefined withwhich the initial patch size is set as
starting patch size in the firgeration of the algorithmShrinking Constant (sc) is
called the to a contraction of patch sizes of all selegited (m) in every iteration of
the algorithm proportional to a constant ratidepending on the iterato(i), the
patch size of the sitm . C EB) is calculated as a contraction from the previous

size . CEE p) proportionalto the value okc

wherese mip AT A CEB) 18

Ngh, () ImitialPatchSize

4
>1 Ngh () =Ngh (i (1 sPand Nghi() “1)

Ngh,, ()=}
’I’ |

This strategy is proposetb improve solution quality and evoluation tim€&o
improve the efficiency of local search we use site abondenment strategy. If there is
no improvement of the fitness, value of the fittest bee after a certain number of

iterations the site will be abondened

The site abondenment strategy is proposed to escape from local in many complex
optimization problemdnvestigations are also given on details ofltdoal and global
search methods used in the algorithm. Also, details ointipgovements made to
local and global search methods are presented, includimgamic recruitment,

proportional shrinkingandabad on ment str ategies (Ko-,
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8. Assign remaining bees to search randomly and evaluate their fitnesses.

Initial population with n random solution.
Evaluate fitness of the population.

While (stopping criterion not met)
Selectsites (m) for neighbourhood search.

Recruit bees for selected sites (more bees for best e sites), evaluate fitnesses, 9

fittest bee from each site and shrink patches
for (k=I ; k=e ; k++) /I Elite Sites
for (Bee=I ; Bee= nep ; Ba-+) // More Bees for Elite Sites
BeesPositionInNghO = GenerateRandomValuelnNigim( x+ngh to xngh),
Evaluate Fitness = Bee(i); //Evalute the fithees of recruited Bee(i)
If (Bee(i) is better then Beel)) RepresentativeBee = B@);
for (k=e ; k=m ; k++) // Other selected sites-¢n
for (Bee=l ; Bee= nsp ; Bee++) // Less Bees for Other Selected Sigs (m
BeesPositionInNghO = GenerateRandomValuelnigh( x+ngh to xngh);
Evaluate Fitness =d(i); //Evalute the fitnees o f recruited Bee(i)
If (Bee(i) is better then Beel))
RepresentativeBee = Bee(i);
for (patch=l; patch=m; patch++)
I/l Shrink all patches (m) proportional to SC
. CEE . CEE p p 3#;
If (Iteration > sat)
If (no improvement on the site)
Save the Best Fitness;
Abandon the Site;

Bee(m) = GenerateRandomValue(All Search Space);

/I (n-m) assigned to search randomly into whole solution space

select the

Figure 4.5 : Pseudecode of thamprovedBees Algorithm( K 92010)
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4.3 Bees Algorithm Applications

The Bees Algorithm as described above is applicable to both combinatadial

functional optimistion problems sohte performance of the Bees Algorithwas

tested on contimus and combinatorial problems.

4.3.1 Continuous domainsapplications

Several continuous applications of the Bees Algorithm are inclufingtional

optimization problems withmathematicatest functionsare given below:

1 De Jong's functionShekel 6s

the correct valuesfats parameters and seven problemsbienchmaking

the algorithm.

1 Mathematical benchmarksunctions ( Ghanbar zade hR010200 7 ;

A

Foxhol es

Sholedolu 2009)andeight benbmark functions (Mathu2000)

The results compared with those obtained using other optimisation

algorithms. Theest functions and theiptima are shown ibelow:

Table 4.2 : Test Functions (Mathug000)

No | Function Name | Interval Function Global Optimum
1 | Des L2088, F =(3905.93) - 100(x" - x) - (1 - x)? Xl
on; max /- = 2 - - -] =
¢ 2.048) X173 XV | F=3905.93
Goldstein & min £ =[1+(x,+ x,+1(19-14 x,+3 x. —14 x, +6 x, x,+ 3 x})] X(0,-1)
2 . [-2,2] X(30+(2 x,~3 x,) (18-32 x, +12 x +48 x,~ 36 x, x,+27 x )] fi
minF =a(x,-bx, +¢ x,~d)’ +e(l- f)cos(x,) +e ACRULIRAT)
o [ (5,10] - | 4 X21.2.215)
ranin =Jy = = | — = - = =gy g
ekl 4[22) o= XNd=6e=10.f =2 X7 X(6617.2.475)
F=0.3977272
Martin & X(5,5)
4 0,10 minF =(x,— x.)’ +((x, + x,—10)/3)
Gaddy [0, 10] X1~ X, Xt X, F=0
[-1.2,1.2] 5 X(1,1)
5 | Rosenbrock mn F =100 (x. - )2+ (- x)?
[-10, 10] © (xi-xs | F=0
: ) i ; ; X(1,1,1,1)
6 | Rosenbrock [-1.2,1.2] | min F =3 (100 (x/- x,,)" + (- x)"} ot
[-5.12, s, X(0,0,0,0,0,0)
7 |H here min F =
. 5.12) 2 F=0
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Table 4.3 :ResultgMathur, 2000)

NE The Bees
SIMPSA SIMPSA GA ANTS Algorithm
¢ | mean | o | mean | mean | . | mean | o
func § no. of g no. of é no. of § no. of § mean no.
no 2 eval. | 2 eval. | 2 eval. 2 eval. | 2 | of eval
1 Rk | kkx ] k%% | ¥%% 1 100 | 10160 | 100 | 6000 | 100 1210
2 | REx | kRx | x| k%% | OO | 5662 | 100 | 5330 | 100 999
3 TEE | ek Lee | kR 1100 ) 7325 100 | 1936 | 100 1657
4 | ¥Rk | k%% | okkx | kx| 100 | 2844 | 100 | 1688 | 100 526
5a | 100 | 10780 | 100 | 4508 | 100 | 10212 | 100 | 6842 | 100 898
5b | 100 | 12500 | 100 | 5007 | *** il 100 | 7505 | 100 2306
6 99 | 21177 | 94 | 3053 | *** e 100 | 8471 | 100 | 29185
T | wee | e | kx| *x | 100 | 15468 | 100 | 22050 | 100 7113

*** Data not available

Table 4.2 presents the results obtained by the Bees Algorithm and those by the
deterministic Simplex method (SIMPSA), the stochastic simulated annealing
optimisation proceare (NE SIMPSA, the Genetic Algorithm (GA) and the Ant
Colony System (ANTS) (Mathur, 2000). Again, the numbers of points visited shown

are averages for 100 independent runs.

1 Neural network training for a variety of industrial applications and recufistee

design.

I Mechanical desigiike desing of welded beam, desing of coil spr{agg 2009;
Pham and Ghanbarzadeh 2Q07)

1 Wood defect classification (Pham and Haj Darw&bil0; Pham, 2007c; Pham
2006b).

1 Environmental/Economic Power Dispatch Problems (EE@Bg and Haj Darwish
2008)

Chemical engineering process (Pham et al., 2008)
Digital Filter Optimization

Function Optimizastion
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4.3.2 Combinatorial domainsapplications

There are lot®f applications of Bees Algorithino a combinatorial optimisation

problemin the literature is given below below:
1 Job Shop Schetlng Problem (JSSP) (Phar2007b)

1 Wood defect classification (Pham and Haj Darwish 2010; Pham et al.,
2007c; Pham et al., 2006b).

1 Printed CircuiBoard (PCB) problem (And010)

Beforewe focitsed ondetails ofthe BeesAlgorithm for combinatorial domains
we will give, a important no free lunch theorem that is abmathematical

analysis of computingsomputational complexitgndoptimizationproblems.
4.4 No Free Lunch Theorem

Theorem 4.5.1(Weak NFL)Given search algorithms, 0 and function fN @
there exists dunction "Q ¥ & such thatn | A& A dQ HMWEAO

A is cardinality.

Definition: A performance measukeith respect to a €' @ is any function

defined overthe collection of all search algorithms such thato is a
function ofthe multiset {{{ "Q Q¥ "Q}. Search algorithms perform equally

well on F if they areevaluated identically by every performance measure with

respect to F.

Theorem 4.52 (NFL) Every efficient search algorithm performs equally well on

F if and only if Fis closed.

No-free-lunch theorems may be of theoretical importance, and they can also have
importantimplications for algorithm development in practidéhe theorem says

that, the fact there is nauniversally efficient algorithm saof algorithm A
performed better than algorithm B in some class of problems, then algorithm B
performed better than algorithm A in some other class of problems. On average,
each algorithm produdesimilar performance in respect to other algorithms. In
addition, the performance of an algorithm on a set of benchmarking problems did
not guarantee giving similar performance on a different class of problems
(Wolbert1997).
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http://en.wikipedia.org/wiki/Computational_complexity
http://en.wikipedia.org/wiki/Optimization_%28mathematics%29

Obviously, in reality, the gbrithms withproblemspecific knowledge typically

work better than random search, and that there is no universally generic tool that
works best for all the problems. Therefore, have to seek balance between
speciality and generality, between algorithimicity and problem complexity,

and between problespecific knowledg®f optimization problems.
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5.BEES ALGORITHM FOR COMBINATORIAL SPACES

Combinatorial optingation problems have attracted much attentibmesearchers
over the yeargan generally be defined as problems that reqgeagching for the
best solution among a large number of finite discrete candidate solutions
Approximation algorithms, likepopulationbased algorithmsare techniques that

solvedNP-har dé CO pr obl| emoantof computatioetemse.ona b | e

In this chapter, the Bees Algorithm is pgated for combinatorial domains amavas

tested on Travelling Salesman Problem with different neighbourhood strategies

In the basicversion of the BeesAlgorithm, a kind of neighbourhood search
combined with a randonsearch to enable it to locate the global optimum
combinatorial domainsunlike continuous domains, there is no mathematical
distance definition for neighbourhood sear8bwe use similar but not same version

of the Bees Algorithm for continuous domains as we presented in the previous

chapter.

In combinatorial domains, the patch idea of the Bees Algorithm for continuos
domians replaced by a local search operator to be ableftyrpea local searcthe

main difference otombinatorial domaindRemoving the shrinking procedure is also
another difference. However, the abondonment procedure can ba uset of the
solution spacgto improve theglobal search partThe pseudaode of the Bees

Algorithm for combinatorial domains is given in Figure5.1.
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1. Initial population with n random solution; random(Sequence(n)).
2. Evaluate fitness of the population.

3. While (stopping criterion not met)

4. Select sites (m) for neighbourtub search.

5. Recruit bees for selected sites (more bees for best e sites), evaluate fithesses, §

fittest bee from each site and shrink patches
for (k=I ; k=e ; k++) /I Elite Sites
for (i=l ; i= nep ; i++) // More Bees for Elite Sites
RecruitedBek)(i) = NeighbourhoodOperator(Sequence(k));
Evaluate Fitness = RecruitedBkKi); //Evalute the fitneesfaecruited Bee(i)
If (Bee(i) is better than Beel)) RepresentativeBee = RecruitedBee(k)(i);
for (k=e ; k=m ; k++) // Other selected si{@s-e)
for (Bee=l ; Bee= nsp ; Bee++) // Less Bees for Other Selected Sigls (m
RecruitedBee(Kk)(i) = NghOperator(Sequence(k));
Evaluate Fitness = RecruitedBk)Ki); //Evalute the fithneesfaecruited Bee(i)
If (Bee(i) is better than Beel)) RepresentativeBee = RecruitedBee(k)(i);
6. If (Iteration > sat)
If (no improvement on the site)
Save the Best Fitness;
Abandon the Site;
Bee(m) = GenerateRandomValue(All Search Space);

7. Assign remaining bees to search randomly and evaluate their fithésgasn)

assigned to search randomly into whole solution space

8. End While

select the

Figure 5.1 : The pseudaode of the Bees Algorithm for combinatorial domains
(Ko-, 2010).
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5.1 The Travelling Salesman Problem

Traveling Salesman Problem (TSP) is about findinglaanitonian path with
minimum cost This costis referred to as theur length.Since it is the length of
the tour a salesmamould make when visiting the cities in the order specified by
the permutation, returnirgt the end to the initial city.

Definition 5.1 A graphG is a composite of a sei of verticesand another set

O of edgeswhere an edge is a set of two distinct vertices. For example we may

havew ={1,2, 3,4} with'O ={{1, 2}, {1, 3}, {2, 3}, {2, 4}

Definition 5.2 Let G = (V,E) be an undirected graph. Arkitonian cycle of G
is a cycle that visits everyertex vN V exactly once. Instead of Hamiltonian

cycle, we sometimes also use the téoor.

Suppose a salesman is given a set of cities associatettavighing distances (or

costs) from any city to amgther city.

The salesman must visit every city only once and then return &taheng city

with minimum distances (or costs}iven a starting city, it haso p choices

for the second city,w ¢ choices for the third city, etc. Multiplying these
together one getsw p Afor one city andw Afor the V cities. Another
solution is to try all the permutations (ordered combinations) and see which one
is cheapest. At the end, the order is also factorial of the number of cities. Briefly,
the solutionsvhich appear in the literature are quite simildre TSP igherefore

to determine a Hamiltonian tour with minimum cdisatis one of the discrete
optimization problems which idassified as Nfhardcombinatorial optimization
problem.

Definition 5.3 Let G = (VE) be a graphV is a set of m cities, V=(, € }

andE is a set of arcs or edge§  AJAN .

Remember thatot formulate an optimization model, we neteddefine a search
space andearch space contains the set of feasible solutions of an optimization

problem. Furthemore, a search space can define relationships (for example

distances) betweesolutions.
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Very generally, a search space can be definedtapadogical spacé\ topological
space is a generalization of metric search spaces (as well as other typestof searc

spaces)

Definition 5.4 A topological spacés an ordered pairéi'Yhwhere® is a set of
solutions (points) andVYis a collectionof subsets ofo called open sets. A satis in

X (denoted P ) if every elemento N Yis alsoin X (x¥ Y+ xN X).
A topological space®’Y has the followingroperties

1. the empty set and whole space are in"Y

2. the intersection of two elements of T is agaiiYrand

3. the union of an arbitrary number of element§Y¥id again in"Y

Metric search spaces are a specialized form of topological spaces where the
similaritiesbetween solutions are measured by a distance. Therefore, in metric search
spaces, we have a set X of solutions anebévalued distance functioalso calleca

metric QD® ® © A that assigns a reahlued distance to any combination of

two elanentsx, y ¥ X. In metric search spaces, the following properties must hold:

1. Qahw  mh
2. Qo mh

3. Qawy  Qachoh

4. Qo Qawd Qdr 01 QOO Aot N O3

A6 Hi I 8 @xample of a metric that can be defined son is the Euclidean
metric. In Euclidean spaces, a solution x & @ is a vector of continuous

values(w M ). The Euclidean distance between two solutiasdwis defined

d(x y) = [A (x -y) (5.1)

i=1

For n = 2, wehave a standard-@mensional search space ahé distance between
two elementschi™ s . Many optimization models use metric search spaces. A
metric search space #&topological spae where a metric between the elements of
the setX is defined.Therefore, we can define similarities between solutions based on
the distancel.
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Definition 5.5 (Metric TSP)Let G be a complete undirected gra@hwith a weights
QDO 0 © s that sasfy the triangle inequalityd(u,w) ¢ d(uy +d v W for

all 6l N ® "0. E is normally associated with a distance (or cost) matrich

is defined as) @&  Qp the problem is aymmetric TSP (STSP). Otherwise, it
becomes an asymetricTSP (ATSP).

-
///\\\

Figure 5.2 : Triangularity in a road netwh. The distance from A to B is
determinedy the shortegbbuteQ 66 Qohd Qo  for
every X (Hetland, 2009).

Example 52: Sabrinahas the followng list of errands:
U Pet store (the black cat needs a new litterbox) (P)
0 Greenhouse (replenish supply of deadly nightshade) (G)
U Pick up black dress from cleaners (C)
U Drugstore (eye of newt, wing of bat, toothpaste) (D)

0 Target (weekly special on cauldrorf¥)

In witch which order shoul&abrinado these errands in order nanimize the time

spent?
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Hamilton circuit:
HDTGPCH P

Hamilton circuit:
HCDTPGH

Figure 5.3 : TheHamiltonianpathminimize the time spent
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5.2 Proximity Queries in Metric Spaces

Let D be a setd a distance function defined &, andd ORQ a metric space.

Given a setd P ‘O, structurethe elements oo so that similarity queries can be

answeredasically three types of querigsmetric spaces:

1. Find objects whose feature values fall within a given range or whetisthace,
using a suitably defined distance metric, from some query ofgéistinto a

certain range (range queries).

2. Find objects whose features have values similar to those of a givenapjecy
or set of query objects (nearest neighbor queries). In aaereducethe
complexity of the search process, the precision of the required simdaritype

an approximation (approximate nearest neighbor queries).

3. Find pairs of objects from the same set or different sets which are sufficiently
similar to each othgiclosest pairs queries).

5.2.1Range query

This is the most common type of query that is meaningdabost in every
application. The query AR is specifed by thequery objectj and the query radius
i and retrieves all objects whicire within thedistance of r from gshown in

Figure5.4:

YA = 68 1AM (5.2)
fo
ul2
O
u2
T O
uld s
w Sw O
u Q) 4 ,
6 ul4 D -
uls
O
~ ul
8 O 63 u8

Figure 5.4 :'Y jfi  retrieves all objects which are within the distante to the
query objectj # E U BAT.p
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5.2.2Nearest reigbor query (NN(Qq))

This query finds one nearest neighbor, thaths, object closest to the given query
object.In general case whefer k nearest neighbors that isNN(q) query retrieves

k nearest neighbors to the objgct
667 6N 1d 0N TR QR
N O0n  YPOEYs e Koy YNor e YDQAN®  QANG
In case ofQ O 0} we are satisfied with anyes of k elements satisfying the

condition.Here we select the q apavot elemensometimes called cenger

5.3Neighbourhood Strategies
Definition 5.4 A neighbourhood is a function
0qdYo ¢
that assigns to every M "Yoi ‘GB0"© Q@@ 6ii P"Y and N(s) called the

neigbourhood of,sS is the search space containing all possible sokitio

A neighborhood definition can be viewedasnapping that assigns to each solution
sES a set of solutions y that are neighbofs.

There are several exchange neighbourhood strategies and local search algorithms in
the literature Among simple locasearch algorithms, thmost famous are-@pt and

3-Opt and insert ect. thatvap operators are considered as exchamgghbourhood
strategies (Aarts and Lenstra, 1997). They simply change the position of a randomly
selected city to create an altered p&i.contrast, 20pt and 30pt are simple local
search algorithms that delete two or three edges, thus breaking the tour into two paths

and then reconnecting those paths later.

These approaches can be roughly divided into local (heuristic) search antl globa
search approacheSome of the local search approachessash as pt, 3opt(Lin,

1965). The global search approaches, such as simulated ann@glikgPatrick,
1983), Hopfield neural networksand evolutionaryalgorithms (Nagata 1997) |,
(Freislelen, 1996), (Dorigo, 1997), (Tao, 1998), (Mulhem, 1998) ,(Zhenya, 1999)
have been proposed to reduce ilheffect of these local search methods, but they

oftenconverge more slolyw compare to local search approaches (Tsai, 2002).
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2-Opt algorithm deletesvo edges, thus breaking the tooto two paths, and then

reconnects those paths in the other possible $eg Figure 2.

Figure 5.5 : A 2-Opt move: original tour on the left and resulting tour on the right
(Johnson, 1997).

3-Opt algorithm deleteiteeedges, ths breaking the tounto threepaths, and then

reconnects those paths in the other possible $eg Figure 4.

Figure 5.6 : A 3-Opt move: original tour and resulting todohnson, 1997).

We dondt necess aroptlwe garcbndnueewitht 4opt and eogn, at 3
but each of these wiltake more and more time and will only yield a small

improvement on the-Zand 3opt operator

Figure 5.7 : The doubldoridgemove4-o pt move i s chfriddeBbdbhe
(Davendra, 2010).
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