İSTANBUL TEKNİK ÜNİVERSİTESİ ★ FEN BİLİMLERİ ENSTİTÜSÜ

142994

BALİSTİK KORUYUCU TEÇHİZATIN İMALATINDA
KOMPOZİT MALZEME KULLANIMI

YÜKSEK LİSANS TEZİ
Halil BULUT
(514011023)
142994

Tezin Enstitüye Verildiği Tarih : 5 Mayıs 2003
Tezin Savunulduğu Tarih : 26 Mayıs 2003

Tez Danışmanı : Prof. Dr. Adnan DİKİÇİOĞLU
Diğer Jüri Üyeleri Prof. Dr. Oktay BODUR
Doç. Dr. Erdem İMRAK

MAYIS 2003
ÖNSÖZ

Farklı bir eğitim ortamında bulunmanın ayrıcalığı ile her biri dalında uzman olan öğretmen üyelerinin bilgilerini paylaşma imkanı buldum. Bu süreç içerisinde öğretilen bilimsel araştırma yöntemleri ve verilen bilgileri, geliştirek hem mesleğimde, hem de diğer alanlardaki kararlarında kullanmak sureti ile daha başarılı olacağımı inanmaktayım.

Türk Silahlı Kuvvetleri personeline Türkiye' nin çeşitli üniversitelerinde yüksek lisans eğitim imkanını tanıyan komutanlarına saygılarını sunarım.

Çalışmam esnasında her türlü desteği sunan başta değerli hocam sayın Prof. Dr. Adnan DİKİÇİÖĞLU'na, Makine Mühendisliği Bölümü öğretim üyelerine, Kara Harp Okulu Komutanlığı'na, 500 neç Ana İstihkam Depo ve Fabrika Komutanlığı personeline ve aileme teşekkürlerimi sunarım.

MAYIS 2003

Halil BULUT
İÇİNDEKİLER

ÖNSÖZ
Kısaltmalar
Tablo Listesi
Şekil Listesi
Sembol Listesi
Özet
Summary

1. Giriş

2. Kompozit Malzemeler

2.1. Tanım

2.2. Kompozit Malzemelerin Özellikleri

2.3. Kompozit Malzemelerde Yapı Bileşenleri

2.4. Kompozit Malzemelerin Sınıflandırılması

2.4.1. Takviye Malzemesine Göre

2.4.1.1. Fiber Takviyeli Kompozit Malzemeler

2.4.1.2. Fiber Takviyeli Kompozit Malzemelerin Üretiminde Kullanılan Takviye Malzemelerinin Üretim Şekilleri

2.4.1.3. Parçacıklarla Takviyeli Kompozit Malzeme

2.4.1.4. Tabakalı Kompozit Malzemeler

2.4.2. Matris Malzemesine Göre

2.4.2.1. Metal Matris Malzemeleri

2.4.2.2. Polimer Matris Malzemeleri

2.4.2.3. Seramik Matris Malzemeleri

3. BKE De Kullanılan Ana Malzemeler ve Özellikleri

3.1. BKE Teknolojisindeki Son Gelişmeler

3.2. BKE Teknolojisinde Kullanılan Ana Malzemeler

3.2.1. Sert Malzemeler ve Özellikleri

3.2.2. Yumuşak Malzemeler ve Özellikleri

3.2.2.1. Para-Aramid

3.2.2.2. Polietilen

iii
4. BKE TEÖRİSİ VE TASARIM KRİTERLERİ

4.1. BKE Teorisi
4.2. Uygun Malzeme Seçim Kriterleri
4.3. Mermi Özelliklerinin Tasarımı Etkisi
4.4. Savaşlarda Kayıp İstatistikleri
4.5. BKE Tasarımı
 4.5.1. Yumuşak Koruyucu Tasarımı
 4.5.1.1. Kumaş Özelliklerinin Koruyucu Tasarımı Etkileri
 4.5.1.2. Değişik Kumaşların Kombinasyonu ile Tasarım (Hibrit)

5. BALİSTİK KOMPOZİT BAŞLIK VE KORUYUCU YELEK

5.1. Balistik Miğferin Önemi
5.2. Miğfer Seçimi ve Tasarımını Etkileyen Kriterler
 5.2.1. Baş Yapısına Uygunluk
 5.2.2. Miğferin Ağırlık Merkezi
 5.2.3. Miğferin Küreselliği
 5.2.4. Teçhizat Takılmasına Uygunluk
 5.2.5. Ayarlanabilir, Şok Emici Ağ/Kolon Sistemi
 5.2.6. Havalandırma
 5.2.7. Çene Baği Düzeni
 5.2.8. Miğferin Alın ve Enşe Kısımları
5.3. Başlık Balistiği
5.4. Dünya Ordu Başlıkları
5.5. NIJ Standardı Balistik Test Esasları
5.6. Çöküntü Sınırları
5.7. İmal Edilecek Kompozit Başlığın Tasarım Esasları
5.8. Kompozit Başlığın İmalatı
5.9. Dünya Ordularında Kullanılan Koruyucu Yeleker
5.10. İmal Edilecek Balistik Koruyucu Yeleğin Tasarım Esasları
5.11. Koruyucu Yeleğin İmalatı

6. UYGULANAN TESTLER

6.1. Balistik Koruyucu Kompozit Başlık Kumaşına Uygulanılan Testler
 6.1.1. Kritik Hataların Muayenesi
 6.1.2. Fiziksel ve Kimyasal Özelliklerin Muayenesi
 6.1.3. İşletme Muayenesi
6.2. Balistik Koruyucu Kompozit Başıklara Uygulanan Testler

6.2.1. Fiziki Kontrol
6.2.2. Renk Kontrolü
6.2.3. Lastik Kenar Bandı Testi
6.2.4. Düşürme Testi
6.2.5. Suya Daldırma Testi
6.2.6. Balistik Mukavemet Testi
 6.2.6.1. V50 Testi
6.2.7. Yapısal Mukavemet Testi
6.2.8. Sıcak/Soğuk Balistik Mukavemet Testi

6.3. Balistik Koruyucu Zırh Kumaşına Uygulanan Testler

6.3.1. Kritik Hataların Muayenesi
6.3.2. Fiziksel ve Kimyasal Özelliklerin Muayenesi
6.3.3. Balistik Test
6.3.4. Kopma Mukavemet Testi

6.4. Balistik Koruyucu Yeleklere Uygulanan Testler

6.4.1. Balistik Test Yöntemi
6.4.2. Şarapnel Test Yöntemi

7. SONUÇLAR VE ÖNERİLER

KAYNAKLAR

EKLER

ÖZGEÇMİŞ
KISALTMALAR

HS : High Strength
MMK : Metal Matrisli Kompozit
PMK : Polimer Matrisli Kompozit
MMM : Metal Matris Malzemesi
PE : Polietilen
YYPE : Yüksek Yoğunluklu Polietilen
PA : Poliamid
SMK : Seramik Matrisli Kompozit
UHMWPE : Ultra High Molecules Weight Polyethylene
BKE : Balistik Koruyucu Elemanlar
HT : High Tenacity
HM : High Modulus
CTP : Cam Takviyeli Plastik
STANAG : Nato Standart Agreements
PASGT : Personel Armor Systems for Ground Troops
CVC : Combat Vehicle Crewmen
HIBM : Hava İkimal Bakım Merkezi
NIJ : National Institute of Justice
AP : Armor Piercing
FMJ : Full Metal Jacketed
JSP : Jacketed Soft Point
LRHV : Long Rifle High Velocity
RN : Round Nose
SWC : Semi Wedcutter
CARC : Chemical Agent Resistant Coating
<table>
<thead>
<tr>
<th>Tablo No</th>
<th>Giriş Adı</th>
<th>Sayfa No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tablo 2.1</td>
<td>Günümüzde kullanılan fiberlerin bazı mekanik özelliklerleri</td>
<td>8</td>
</tr>
<tr>
<td>Tablo 2.2</td>
<td>Değişik tipteki camların genel karakteristik özelliklerleri</td>
<td>10</td>
</tr>
<tr>
<td>Tablo 2.3</td>
<td>Değişik cam türlerinin mekanik özelliklerleri</td>
<td>11</td>
</tr>
<tr>
<td>Tablo 2.4</td>
<td>E-cami ile bazı karbon fiberlerinin mekanik özelliklerinin karşılaştırılması</td>
<td>15</td>
</tr>
<tr>
<td>Tablo 2.5</td>
<td>MMM olarak en çok kullanılan üç metalin bazı mekanik özelliklerleri</td>
<td>28</td>
</tr>
<tr>
<td>Tablo 2.6</td>
<td>Bazı termoplastik malzemelerin mekanik ve fiziksel özellikleri</td>
<td>30</td>
</tr>
<tr>
<td>Tablo 2.7</td>
<td>Bazı termoplastik malzemelerin mekanik ve fiziksel özellikleri</td>
<td>31</td>
</tr>
<tr>
<td>Tablo 2.8</td>
<td>SMK malzemelerde kullanılan seramiklerin bazı mekanik özellikleri</td>
<td>34</td>
</tr>
<tr>
<td>Tablo 3.1</td>
<td>Balistik koruyuculardan kullanım alanları</td>
<td>36</td>
</tr>
<tr>
<td>Tablo 3.2</td>
<td>Balistik koruyucu imalinde kullanılan malzemeler</td>
<td>36</td>
</tr>
<tr>
<td>Tablo 3.3</td>
<td>Sert koruyucu malzemeler</td>
<td>37</td>
</tr>
<tr>
<td>Tablo 3.4</td>
<td>Balistik koruma amaçlı kullanılan seramik malzemelerin karşılaştırılması</td>
<td>37</td>
</tr>
<tr>
<td>Tablo 3.5</td>
<td>Balistik koruma amaçlı kullanılan seramiklerin özellikleri</td>
<td>38</td>
</tr>
<tr>
<td>Tablo 3.6</td>
<td>Değişik mermi türlerine karşı seramik kompozit plakaların ve çelik plakaların kullanılması durumunda ağırlık yönünden karşılaştırılması</td>
<td>39</td>
</tr>
<tr>
<td>Tablo 3.7</td>
<td>Yuvarlanan koruyucu malzemeler</td>
<td>40</td>
</tr>
<tr>
<td>Tablo 3.8</td>
<td>Piyasada bulunan kevlar Fiberlerinin bazı mekanik özelliklerleri</td>
<td>42</td>
</tr>
<tr>
<td>Tablo 3.9</td>
<td>Kevların bazı mekanik özelliklerinin diğer malzemele karşılaştırılması</td>
<td>43</td>
</tr>
<tr>
<td>Tablo 3.10</td>
<td>Çeşitli kimyasal malzemelerin Kevlar 29 fibrinin çekme dayanımı üzerindeki etkisi</td>
<td>47</td>
</tr>
<tr>
<td>Tablo 3.11</td>
<td>Çeşitli kimyasallara karşı Kevlar 29 ve Kevlar 49 Fiberlerinin karşılaştırılması</td>
<td>49</td>
</tr>
<tr>
<td>Tablo 3.12</td>
<td>Balistik alanda kullanılan Twaron Fiberlerinin mekanik özellikleri</td>
<td>57</td>
</tr>
<tr>
<td>Tablo 3.13</td>
<td>Dyneema ile diğer Fiberlerin bazı mekanik özelliklerinin karşılaştırılması</td>
<td>59</td>
</tr>
<tr>
<td>Tablo 3.14</td>
<td>Çeşitli kimyasalara karşı Dyneema ile Aramid Fiberlerinin karşılaştırılması</td>
<td>63</td>
</tr>
<tr>
<td>Tablo 3.15</td>
<td>Dyneema fibrinin bazı termal özelliklerı</td>
<td>66</td>
</tr>
<tr>
<td>Tablo 3.16</td>
<td>Değişik askeri başlıkların balistik performanslarının karşılaştırılması</td>
<td>71</td>
</tr>
<tr>
<td>Tablo 3.17</td>
<td>Çeşitli kimyasallara karşı Spectra ve Aramid Fiberlerinin karşılaştırılması</td>
<td>74</td>
</tr>
<tr>
<td>Tablo 3.18</td>
<td>Spectra 1000 Fiberinin özellikleri</td>
<td>75</td>
</tr>
</tbody>
</table>
Tablo 3.19. Spectra 2000 fiberinin özellikleri ... 75
Tablo 4.1. Çeşitli yeleklerin balistik performanslarının karşılaştırılması 88
Tablo 4.2. Balistik koruyucu sistemlerde hibrit yapının diğer yapılarla karşılaştırılması ... 90
Tablo 5.1. Parçacıkların ağırlık yönünden dağılımı .. 93
Tablo 5.2. 1.1 gramlik parçanın sebebi olduğu zaiyatin önlenmesi ve mermi çarpma hızları arasındaki ilişki ... 98
Tablo 5.3. Bazı dünya ordularının başlıklarında tercih ettikleri koruma seviyesi ... 100
Tablo 5.4. Çeşitli mermilerin çarpmı hızları ve çokıntı miktarları 102
Tablo 5.5. Üretilecek kompozit başlıkların ebatları ve ağırlıkları 106
Tablo 5.6. Balistik koruyucu kompozit başlık imalati iş akış şeması 112
Tablo 5.7. Ülkemizin ve bazı dünya ordularının kullandığı koruyucu yeleklerin özellikleri ... 113
Tablo 5.8. Balistik koruyucu yelek imalatı iş akış şeması 118
Tablo 5.9. İnsört imalatı iş akış şeması ... 119
Tablo 6.1. Balistik koruma seviyesi ... 128
Tablo 7.1. Kevlar ve Dyneema fiberlerinin karşılaştırılması 131
SEKIL LISTESİ

<table>
<thead>
<tr>
<th>Şekil No</th>
<th>Açıklama</th>
<th>Sayfa No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Şekil 2.1</td>
<td>Değişik şekilli fiber takviyeli kompozitler a)Tek yönlü sürekli fiberler b)Kesikli fiberler c)Enine ve boyuna(ortogonal) fiberler d)Rastgele düzlemleri yönlendirmiş fiberler</td>
<td>8</td>
</tr>
<tr>
<td>Şekil 2.2</td>
<td>CTP'nin çekme mukavemeti üzerine cam elyaf şekliinin etkisi</td>
<td>12</td>
</tr>
<tr>
<td>Şekil 2.3</td>
<td>Karbon fiberlerin temel yapısal özellikleri</td>
<td>14</td>
</tr>
<tr>
<td>Şekil 2.4</td>
<td>Düz dokuma</td>
<td>19</td>
</tr>
<tr>
<td>Şekil 2.5</td>
<td>Kabarik dokuma</td>
<td>20</td>
</tr>
<tr>
<td>Şekil 2.6</td>
<td>Atlas dokuma</td>
<td>21</td>
</tr>
<tr>
<td>Şekil 2.7</td>
<td>Mat dokuma</td>
<td>22</td>
</tr>
<tr>
<td>Şekil 2.8</td>
<td>Atıkların daha fazla kullanıldıği tek yönlü dokuma</td>
<td>22</td>
</tr>
<tr>
<td>Şekil 2.9</td>
<td>Parçacıklarla takviyeli kompozitler a) Büyük parçacık takviyeli kompozitler b) Dispersiyonla dayanımı artırılmış kompozitlerin yapısı</td>
<td>23</td>
</tr>
<tr>
<td>Şekil 2.10</td>
<td>Tabakalı bir kompozitin yapısı a) Izotropik b) Ortotropik yapısı</td>
<td>25</td>
</tr>
<tr>
<td>Şekil 3.1</td>
<td>Sıcaklığın Aramid ve Polimer esaslı fiberlerin dayanımı üzerine etkisi</td>
<td>41</td>
</tr>
<tr>
<td>Şekil 3.2</td>
<td>Kevlar spesifik çekme modülüne karşılık gelen çekme dayanımının diğer malzemelerle karşılaştırılması</td>
<td>44</td>
</tr>
<tr>
<td>Şekil 3.3</td>
<td>Sıcaklığın Kevlar 29 fiberinin çekme dayanımı üzerindeki etkisi</td>
<td>45</td>
</tr>
<tr>
<td>Şekil 3.4</td>
<td>Kevlar 29 ve Technora fiberlerinin yüksek sıcaklıkta zamanın bağı olarak dayanımlarında meydana gelen azalma</td>
<td>46</td>
</tr>
<tr>
<td>Şekil 3.5</td>
<td>Kevlar 49 ve bazı fiberlerin gerilme-geriminin eğrisi</td>
<td>48</td>
</tr>
<tr>
<td>Şekil 3.6</td>
<td>1.1 gramlık parçacıklarla V50 testi</td>
<td>50</td>
</tr>
<tr>
<td>Şekil 3.7</td>
<td>1.1 gramlık parçacıklarla yapılan V50 testi sonucunda Kevlar ve Naylon kumaşın absorbe etikleri enerjinin karşılaştırılması</td>
<td>51</td>
</tr>
<tr>
<td>Şekil 3.8</td>
<td>1.1 gramlık parçacıklarla V50 testi</td>
<td>52</td>
</tr>
<tr>
<td>Şekil 3.9</td>
<td>1.1 gramlık parçacıklarla yapılan V50 testi sonucunda Kevlar, Aluminyum ve Camın absorbe etikleri enerjinin karşılaştırılması</td>
<td>53</td>
</tr>
<tr>
<td>Şekil 3.10</td>
<td>9.3 gramlık parçacıklarla yapılan balistik mukavemet testi sonucunda çeşitli zırh sistemlerinin karşılaştırılması</td>
<td>54</td>
</tr>
<tr>
<td>Şekil 3.11</td>
<td>9.72 gramlık parçacıklarla yapılan balistik mukavemet testi sonucunda çeşitli zırh sistemlerinin karşılaştırılması</td>
<td>55</td>
</tr>
<tr>
<td>Şekil 3.12</td>
<td>3.56 gramlık parçacıklarla yapılan balistik mukavemet testi sonucunda çeşitli zırh sistemlerinin karşılaştırılması</td>
<td>56</td>
</tr>
<tr>
<td>Şekil 3.13</td>
<td>Dyneema ve diğer fiberlerin spesifik dayanımları ve dayanımlarına karşılık gelen spesifik modüllerinın karşılaştırılması</td>
<td>60</td>
</tr>
<tr>
<td>Şekil 3.14</td>
<td>Dyneema ve diğer balistik fiberlerin gerilme-geriminin eğrileri</td>
<td>61</td>
</tr>
</tbody>
</table>
Şekil 3.15 Dyneema ve diğer takviye fiberlerin ağırlığa bağlı çekme gerilimlerine karşılık gelen hacime bağlı gerilimlerinin karşılaştırılması .. 62
Şekil 3.16 Ultraviyole ışınının etkisiyle Dyneema ve Aramidlerde meydana gelen dayanım kaybı .. 64
Şekil 3.17 Alkali ve asitli ortama maruz kalan Dyneema ve Aramidlerde meydana gelen dayanım kaybı .. 65
Şekil 3.18 Balistik alanda kullanılan bazı fiberlerin ses iletme hızı 67
Şekil 3.19 Balistik alanda kullanılan bazı fiberlerin darbe dayanımları 68
Şekil 3.20 Dyneema UD66 fiberinin mikroyapısı .. 69
Şekil 3.21 9 mm parabellum mermisine karşı Dyneema ve Aramid esaslı koruyucu yeleklerin V50 hızlarının karşılaştırılması 70
Şekil 3.22 Yüksek sıcaklıklarda Spectra fiberinin dayanımında meydana gelen azalma ... 72
Şekil 3.23 Yüksek sıcaklıklarda Spectra fiberinin modülünde meydana gelen azalma ... 73
Şekil 4.1 Tasarım desteği .. 79
Şekil 4.2 Balistik dayanım ... 80
Şekil 4.3 Vietnam savaşı istatistiği .. 82
Şekil 4.4 Lübnan ve Kore savaşlarının istatistikleri 83
Şekil 4.5 Vietnam savaşına göre vücutun bölgelerine bağlı kayıp istatistikleri ... 84
Şekil 5.1 Müfrez evriminin uzun yolu .. 91
Şekil 5.2 Kore ve Vietnam savaş istatistiklerine göre yaralanma ve ölülerin dağılımı ... 92
Şekil 5.3 Zırhlı araç mığferi ... 94
Şekil 5.4 ABD PASGT mığferi iç görümü .. 95
Şekil 5.5 ABD PASGT mığferi .. 96
Şekil 5.6 V50 sisteminin grafik açıklaması ... 98
Şekil 5.7 NIJ standartı balistik testi .. 101
Şekil 5.8 Balistik testlerde kullanılan mermi türleri 103
Şekil 5.9 Merminin kompozit kabuğa giriş, seyri ve kompozit kabuk üzerinde bırakığı çökünüz miktarı .. 104
Şekil 5.10 Başlık şablonunun çizilmesi ... 107
Şekil 5.11 Şablonların kesilmesi ... 107
Şekil 5.12 Preforming kalbin içine yerleştirilmesi 108
Şekil 5.13 Başlığın kalıpta basılması .. 108
Şekil 5.14 Çapakların temizlenmesi ... 109
Şekil 5.15 Kenar bandının takılması .. 109
Şekil 5.16 Başlığın boyanması ... 110
Şekil 5.17 İç aksam malzemesinin imalati .. 110
Şekil 5.18 İç aksam malzemeleri ... 110
Şekil 5.19 Birleştirilmiş iç aksam .. 111
Şekil 5.20 İç aksamin başlığa takılması .. 111
Şekil 5.21 İmalat tamamlanmış kompozit başlık 111
Şekil 5.22 Yelek şablonunun çizilmesi ... 115
Şekil 5.23 Çizilen şablonların kesilmesi .. 115
Şekil 5.24 Koruyucu yeleğin dikilmesi ... 116
| Şekil 5.25 | Polietilen malzemenin insört plaka haline getirilmesi | 116 |
| Şekil 5.26 | İnsört plakının çapaklarının temizlenmesi | 117 |
| Şekil 5.27 | İmalatı tamamlanmış koruyucu yelek | 117 |
| Şekil 6.1 | Lastik kenar bandı testi | 122 |
| Şekil 6.2 | Suyaaldırma testi | 123 |
| Şekil 6.3 | Balistik test laboratuvarından genel görünüş a)Hız barelli b) Cronograf (Hız ölçer) c)Atış cihazı | 124 |
SEMBOL LİSTESİ

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>Elastisite modülü</td>
</tr>
<tr>
<td>M</td>
<td>Mol</td>
</tr>
<tr>
<td>E_k</td>
<td>Kinetik enerji</td>
</tr>
<tr>
<td>E_{sp}</td>
<td>Spesifik enerji emme kapasitesi</td>
</tr>
<tr>
<td>P</td>
<td>Yoğunluk</td>
</tr>
<tr>
<td>σ_{rup}</td>
<td>Kırılma dayanımı</td>
</tr>
<tr>
<td>ε_{rup}</td>
<td>Kırılma anına kadar ki uzama miktarı</td>
</tr>
<tr>
<td>V_s</td>
<td>Fiber içinde sesi iletme hızı</td>
</tr>
</tbody>
</table>
ÖZET

Bu alandaki en önemli gelişme 1985 yılında çelikten on beş kat daha güçlü ve yoğunluğudan az olduğu için yüzeylen “yüksek moleküller ağırlıklı polietilen” in UHMWPE bulunması olmuştur. UHMWPE fiber Dyneema adıyla DSM ve Spectra adıyla Allied Signal tarafından üretilmektedir.

Türk Silahlı Kuvvetlerinin ayrılmaz parçası olan Kara Kuvvetleri, kendisine verilen görevleri başarı ile yerine getirmesi için en iyi korumayı sağlayan balistik koruyucu teçhizatı enveranterinde bulundurmalıdır.

Bu ise çalışmasında, BKT’ın imalatında kullanılan aramid ve ultra yoğun moleküller yapıtı polietilen malzemenin başta balistik dayanım değeri, çeşitli mekanik özellikleri, korozyon ve kimyasallara karşı yüksek dayanım özellikleri, BKE teorisi ve tasarım kriterleri ve de en son bölümde imalat aşamaları ve uygulanan test yöntemleri incelenmiştir.
THE USAGE OF COMPOSITE MATERIALS IN THE PRODUCTION OF BALLISTIC PROTECTION EQUIPMENT

SUMMARY

By the rapid development of weapon industry, the outcome of war begins to be more destructive. By the incredible development of telecommunication possibilities, people can learn the casualties of clashes at any place of the world simultaneously and show great reactions to these casualties. Thus armies’ first priorities reach their targets at the battlefield with least casualties under increasing public opinion pressure. In return to rapid development of weapon industry, ballistic protection equipment develops at the same speed.

At the first centuries, warriors wore thick leather and metal armors in order to protect themselves from effects of weapons. First protection garments of modern era was made of nylon. But these protection garments, made of nylon, were heavy and had special features that prevented users movement. At the beginning of 70’s, paraaramid fiber which is five times stronger than steel was found by Du Pont Company and this wonderful ballistic protection material has began to be used. Nowadays para-aramid fibers are produced as the name of Kevlar by Du Pont Company and as the name of Twaron by Teijin Company.

Most important development in this field is the discovery of “ultra high molecular weight polyethylene” UHMWPE, which is 15 times stronger than steel, in 1985. UHMWPE fibers are produced as the name of Dyneema by DSM and as the name of Spectra by Allied Signal Company.

Turkish Land Forces should have best ballistic protection equipment, which gives best protection, in its inventory in order to perform its duties successfully.

In this study, Ballistic impact properties, high strength properties against corrosion and chemicals, various mechanical properties of aramid and ultra high molecular weight polyethylene, theory of ballistic protection and designation criterion, production stages and test methods are investigated.
1. GİRİŞ

İnsanlar tarihîn ilk yıllarından beri silahların etkisinden korunmak için büyük gayret ve arayış içersindeydi. ABD Savunma Bakanlığı'nın Vietnam savaşı sonrası yaptığı araştırmalar, Balistik Koruyucu teçhizatın gelişimi açısından bir milat olmuştur. Savaş istatistikleri vücudun en hassas bölgelerinin baş ve vücudun üst bölgesi olduğunu göstermiştir. Yine aynı istatistik incelediğinde asıl tehdit maruz kalılan direkt mermi isabetleri olmayıp el bombası, roket, havan ve top gibi silahların parçacık etkisi ile meydana getirdiği yaralanmalar ve ölümlerdir. Dünya ordularının kullandığı BKT’deki çalışmalar belirlenen bu konsept ışığında gerçekleşmektedir.

Son gelişmelerin ışığında yapılan balistik koruyucular, eskiye nazaran daha kullanışlı hale gelmiştir. Üstün nitelikli malzemeler kullanılarak daha yüksek koruma seviyesine erişilmiştir. Görülendi ki, silah ve mühimmat çeşitleri geliştirilirken onlara karşı koymak için gereken koruma teknolojisi de aynı hızla gelişmektedir.

Bu tez çalışmasının ikinci ve üçüncü bölümlerinde, K.K.K personelinin görevlerini daha etkin bir şekilde ifa edebile sine imkan sağlayacak balistik koruyucu teçhizatın imalatında kullanılan malzemelerin fiziksel ve mekanik özellikleri incelenektedir.

Dördüncü bölümde BKE teorisi, uygun malzeme seçim kriterleri ve çeşitli BKE tasarımını, beşinci bölümde mifher seçimini ve tasarımını etkileyen kriterler, kompozit başlığın tasarım esasları ve imalatı, balistik koruyucu yeleğin tasarım esasları ve imalat aşamaları ve son bölümde imalat öncesi balistik koruyucu kompozit başlık kumaşına ve yelek kumaşlarına uygulanan testler ve imalat sonrası başlık ve yeleğe uygulanan testler incelenektedir.
2. KOMPOZİT MALZEMELER

2.1 Tanım

Diğer bir tanma göre kompozit malzeme, belirli bir amaca yönelik olarak, en az iki farklı maddenin bir araya getirilmesiyle meydana gelen malzeme grubudur. Üç boyutlu nitelikteki bu bir araya getirmede amaç, bileşenlerin hiçbirinde tek başına mevcut olmayan bir özelliğin elde edilmesidir. Diğer bir deyişle, amaçlanan doğrultuda bileşenlerinden daha üstün özelliklere sahip bir malzeme üretilmesi hedeflenmektedir [2].

Üçüncü bir tanımlamaya göre, kompozit malzemeler, şekil ve/veya kimyasal bileşimleri farklı, birbirleri içerisinde pratik olarak çözünmeyen iki veya daha fazla sayıda makro bileşenin kombinasyonundan oluşan malzemeler şeklinde tanımlanabilir. Belirli bir uygulama için malzemeden beklenen değişik fiziksel, mekaniksel veya kimyasal özellikler, bu özelliklere sahip bileşenler tarafından sağlanır. Yukarıdaki tanımlamaya göre kompozit malzemeler makro ölçüde heterojen karakterli bir yapıya sahiptirler. İç yapıları çıplak gözle incelendiğinde (makroskobik muayene) yapı bileşenlerinin seçilip ayırt edilmesi mümkünür. Yazılarında birden fazla sayıda fazin yer aldığı klasik alaşımlar ise makro ölçüde homojen olmalarına
karşılık mikro ölçüde (mikroskobik muayene ile seçilebilen) heterojen malzemelerdir [3].

Yapılan tanımlamalar göre, kompozit malzemede genelde dört koşul aranmaktadır:

- İnsan yapısı olması, dolayısıyla doğal bir malzeme olmaması,
- Kimyasal bileşimleri birbirinden farklı ve belirli arayüzlerle ayrılmış en az iki malzemenin bir araya getirilmiş olması,
- Farklı malzemelerin üç boyutlu olarak bir araya getirilmiş olması,
- Bileşenlerinin hiçbirinin tek başına sahip olmadığı özellikleri taşması, dolayısıyla bu amaçla üretilmiş olması [4].

2.2 Kompozit Malzemelerin Özellikleri

Kompozit malzemelerinin üretilmesinde aşağıda sıralanan aşağıdaki özelliklerden birinin veya birkaçının geliştirilmesi amaçlanmaktadır. Aşağıda sıralanan bütün bu özellikler aynı anda oluşmaz ve herhangi bir uygulama için de böyle bir gereksinime ihtiyaç yoktur.

Fakat aşağıda sıralanan bu özellikler için gerekli şartlar, uygun matris ve takviye eleman çifti, üretim tekniği, optimizasyonu, bileşenlerin mukavemet özellikleri ve diğer faktörler göz önüne alınarak üretim yapılsa istenilen özelliği elde etmek mümkündür [1].

- Mekanik dayanım, basınç, çekme, eğilme, çarpma dayanımı
• Yorulma dayanımı, aşınma direnci,
• Korozyon direnci,
• Kırılma tokluğu,
• Yüksek sıcaklığa dayanıklılık,
• İsp iletkenliği veya ışıl direnç,
• Akustik iletkenlik, ses tutuculuğu veya ses yutuculuğu,
• Elektrik iletkenliği veya elektriksel direnç,
• Rijitlik,
• Çekicilik ve estetik görünüm
• Ağrılık

Kompozit malzemelerin yukarıda sıralanan avantajlarının yanında bazı dezavantajları da mevcut olup aşağıda sıralanmıştır:

• İşlenmesinin güç olması yanında maliyetin yüksek oluşu ve gerektiği yüzey kalitesinin elde edilemiyışı
• Üretiminin güçlüğü
• Diğer malzemeler gibi geri dönüşümün (recycle) olmayışı
• Kıırılma uzamasının az oluşu [1]
• Enine özelliklerdeki zayıflıklar
• Zayıf matris ve düşük sertlik,
• Çevresel koşulların matris üzerindeki etkileri,
• Birleştirme sırasında karşılaşılan zorluklar,
Analiz safhasındaki karşılaşılan zorluklar [6].

Kompozit yapıların mekanik karakterleri metal yapılarınından daha komplektir. Metallerden farklı olarak kompozit malzemeler izotropik özellik taşımazlar yani özelliklerini bütün yönlerde farklılık gösterirler.

Kompozitlerin tamiri metallerle kıyaslandığında kolay bir prosedür değildir. Bazen kompozit yapının içindeki kritik eksikler ve çatıklar tespit edilmeyebilir [7].

2.3 Kompozit Malzemelerde Yapı bileşenleri

Hacim bileşeni olan matrisin esas fonksiyonları fiber, partikül gibi diğer yapı bileşenlerinin kendi bunyesinde dağılmasını sağlamak, bu bileşenler arasında bağlayıcı bir faz etkisi göstermek, sürekli fiber kompozitlerde olduğu gibi malzemeye gelen gerilimleri pekiştirici faza iletmek ve kompozit malzemenin uygun tekniklerle şekillendirilmesini sağlamak [3]. Takviyeleri çevreleyen matris fazı ayrıca yapının tamamına gelen yükleri takviyelere iletir ve yükün mümkün olduğu kadar eşit şekilde takviyelere yayılması sağlar. Matris fazının diğer bir görevi ise takviyeleri yüksek sıcaklık ve nem gibi zararlı dış etkenlerden korumaktır [6].

Fiberler, partiküller, pullar, tabakalar şeklindeki takviye elemanları kompozitin iç yapısını oluşturutan bileşenlerdir ve esas yük taşıyıcı eleman olarak görev yaparlar.

Uygun matris/takviye elemanı seçiminin, sistem mekanik ve fiziksel özelliklerine üzerine etkisi büyükttür. Çünkü kompozit içerisinde matrisler tarafından yükün takviye elemanına iletilmesinde matris ile takviye elemanı arasındaki ara-yüzey bağının da kuvvetli olması gerekmektedir. Ara-yüzey bağının kuvvetli olması ise bileşenlerin uyumuna ve matrisin islatabilirlik özelliğine bağlıdır [1].

2.4 Kompozit Malzemelerin Sınıflandırılması

Değişik kaynaklarda kompozit malzemeler farklı biçimlerde sınıflandırılmış olup bu sınıflandırmaların aşağıdaki şekilde özetleyebiliriz.

* Takviye Malzemesine Göre
 * Fiber Takviyeli Kompozit Malzemeler
 * Sürekli Fiber Takviyeli Kompozitler
 * Kesikli Fiber Takviyeli Kompozitler
 * Rastgele Düzlemsel Olarak Yönlendirilmiş Kompozitler
 * Parçacık Takviyeli Kompozitler
 * Büyük Parçacıklarla Dayanımı Artırılmış Kompozitler
 * Dispersiyonla dayanımı Artırılmış Kompozitler
 * Tabakalı Kompozit Malzeme
 * Matris Malzemesine Göre
 * Metal Matrisli Kompozit Malzemeler
 * Seramik Matrisli Kompozit Malzemeler
 * Plastik Matrisli Kompozit Malzemeler
2.4.1 Takviye Malzemesine Göre

2.4.1.1 Fiber Takviyeli Kompozit Malzemeler

Fiber takviyeli kompozit malzeme en basit halıyla ikili fazlı bir sistem olarak ele alınabilir. Kompozitin sürekli fazını (matris fazı), fiberleri bir arada tutan ve kompozit içindeki hacim oranının yüksekliği nedeniyle kompozitin ana bileşeni olarak da tanımlanan matris malzemesi oluştururaktır. Bu matris içinde takviye olarak kullanılan fiberlerde ikinci fazı oluşturur.

Matris malzemesi fiberleri bir arada tutarken aynı zamanda uygulanan yükü fiberlere transfer eder ve ayrıca yapının sünnetliğini ve topluğunu temin eder. Sürek matris içindeki güçlü, bükmüse, kırmızı fiberler de transfer edilen yükün büyük bir kısmını taşır.

Takviye fazının etkinliği, takviye malzemesinin E-modülü'nün matrisin E-modülü'den çok daha yüksek olmasını bağdır. Matrisin ve fiberin E-modülü değerleri birbirlerine çok yakın olması durumunda, fiberler taşımaya yeterince katılmamakta ve dolayısıyla kompozit malzeme istenilen özelliklere sahip olamamaktadır.

Şekil 2.1 Değişik şekilli fiber takviyeli kompozitler a) Tek yönlü sürekli fiberler b) Kesikli fiberler c) Enine ve boyuna(ortogonal) fiberler d) Rastgele düzlemsel yönlendirilmiş fiberler

Tablo 2.1 Günümüzde kullanılan fiberlerin bazı mekanik özellikleri

<table>
<thead>
<tr>
<th>Fiber</th>
<th>Yoğunluk (g/cm²)</th>
<th>Çekme Dayanımı (MPa)</th>
<th>Elastisite Modülü (GPa)</th>
<th>Kopmada Uzamada (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-camı</td>
<td>2.54</td>
<td>3600</td>
<td>76</td>
<td>4.8</td>
</tr>
<tr>
<td>C-camı</td>
<td>2.45</td>
<td>3400</td>
<td>70</td>
<td>4.8</td>
</tr>
<tr>
<td>S-camı</td>
<td>2.49</td>
<td>4500</td>
<td>70</td>
<td>5.4</td>
</tr>
<tr>
<td>Kevlar</td>
<td>1.44</td>
<td>3600</td>
<td>130</td>
<td>2.3</td>
</tr>
<tr>
<td>Karbon (Yüksek Dayanım:HS)</td>
<td>1.75</td>
<td>3400</td>
<td>230</td>
<td>1.1</td>
</tr>
<tr>
<td>Boron</td>
<td>2.7</td>
<td>3100</td>
<td>379</td>
<td>1.0</td>
</tr>
</tbody>
</table>
• **Sürekli Fiber Takviyeli Kompozitler**

Fiber takviyeli kompozitin mikro-yapısal özelliği, fiberlerin uzun ve tek boyutlu olmasıdır. Genelde fiberler yönlendirildiği için mekanik özellikleri anistropiktir.

• **Kısa(Kesikli) Fiber Takviyeli Kompozitler**

Kısa fiber olarak adlandırılan fiberler yaklaşık 3-5 μm çapında ve 0.5-6 mm uzunluğunda üretilirler. Bu fiberle takviyelendirilen kompozitler, takviye elemanının egriyik içinde malzeme ile birleştirilmesi için sıkıştırma döküm (squeeze casting) yöntemi ile preformlara basınçlı olarak eriyik emdirilir. Eriyik içinde takviye elemanının hacim oranı, asında sıvının viskositesinin yükselmesi ile sınırlı kalmaktadır. Preform halindeki fiberlerle sıvı metal emdirilirken hacim oranları önem arzettığından fiber oranı yaklaşık % 33 civarında olup bu değerin üzerine çıkıldığında istenen özellikleri elde etmek zordur olmaktadır. Bu tip kısa fiber takviyeli kompozit örneği Şekil 2.1(b)'de gösterildiği gibi, genellikle rastgele yönlendirilir.

Sürekli fiberlere göre kısa fiberli kompozitlerde üretim işleminin hızlı ve maliyetinin düşük olduğu ve şekilde verme yeteneğinin yüksek olması nedeni ile tercih edilirler [1].

• **Rastgele Düzlemsel Yönlendirilmiş Kompozitler**

Bu kompozitlerde kısa elyaflarda oluşur, fakat elyaflar matris içinde Şekil 2.1(d)'de gösterildiği gibi rastgele iki boyutlu olarak yönlendirilmektedir. Bu tip yönlendirilmiş bazı kompozitler soyum silisden oluşan orta suyu bir bağlayıcı ile tutularak katı preform(ön biçim verilmiş şekil) haline getirilir. Bu işlemden sonra
preslenir veya santrifüj sistemi ile iyice sıkıştırılıp kurutularak firnlanır. Ön biçimlenmiş fiberler genellikle gelişigüzel veya iki boyutlu yerleştirilerek yönlendirilir.

Fiberlerin kompozit içerisinde gelişigüzel yerleştirilmeleri ne kadar düzenli olursa fiber hacim oranı o kadar artar. Kompozitin tüm yönerdeki mekanik özellikleri fiberlerin yerleştirilmesine bağlı olarak değişir. İşlem düzgün yapılsa tüm yönerde aynı mekanik özellikleri elde edilebilir [1].

Günümüzde çok sık olarak kullanılan fiberlerin özellikleri hakkında kısaca bahsedelim:

- Cam Fiberler

Camlar, yüksek oranda gevrek karakterlerinden dolayı kırık ve çatlaklara karşı oldukça hassasdır. Fakat çok küçük boyutlarda, fiber formunda üretilen camlar bu özelliklerini kaybederek çok iyi mekanik karaktere sahip olurlar. Maliyetinin çok düşük olmasının yanında üretim prosesi oldukça basittir [10].

<table>
<thead>
<tr>
<th>Cam Tipi</th>
<th>Karakteristik Özellikleri</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>İyi elektrik özellikleri</td>
</tr>
<tr>
<td>D</td>
<td>Yüksek dielektrik değerler</td>
</tr>
<tr>
<td>A</td>
<td>Yüksek alkali içeriği</td>
</tr>
<tr>
<td>C</td>
<td>İyi kimyasal dayanım</td>
</tr>
<tr>
<td>R,S</td>
<td>Yüksek mekanik özellikleri</td>
</tr>
</tbody>
</table>

Tablo 2.3 Değişik cam türlerinin mekanik özellikleri [2]

<table>
<thead>
<tr>
<th>Özellikler</th>
<th>E-camı</th>
<th>A-camı</th>
<th>S-camı</th>
<th>C-camı</th>
<th>D-camı</th>
<th>R-camı</th>
</tr>
</thead>
<tbody>
<tr>
<td>Özgül Ağırlığı (g/cm³)</td>
<td>2.54</td>
<td>2.445</td>
<td>2.49</td>
<td>2.45</td>
<td>2.16</td>
<td>2.58</td>
</tr>
<tr>
<td>Çekme Dayanımı (MPa)</td>
<td>3600</td>
<td>3100</td>
<td>4500</td>
<td>3400</td>
<td>2450</td>
<td>4400</td>
</tr>
<tr>
<td>Kopma Uzama Oranı (%)</td>
<td>4.8</td>
<td>-</td>
<td>5.4</td>
<td>4.8</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Çekme E-Modülü (GPa)</td>
<td>76</td>
<td>72</td>
<td>86</td>
<td>70</td>
<td>53</td>
<td>85</td>
</tr>
<tr>
<td>Kırılma İndisi</td>
<td>1.548</td>
<td>1.512</td>
<td>1.523</td>
<td>-</td>
<td>1.47</td>
<td>-</td>
</tr>
<tr>
<td>Isıl Genleşme Katsayısı (cm/cmK⁰)</td>
<td>1.6 x 10⁻⁸</td>
<td>-</td>
<td>1.7x 10⁻⁸</td>
<td>2.2x 10⁻⁸</td>
<td>3.1x 10⁻⁸</td>
<td>1.6x 10⁻⁸</td>
</tr>
<tr>
<td>Yumuşama noktası (°C)</td>
<td>850</td>
<td>700</td>
<td>-</td>
<td>690</td>
<td>770</td>
<td>990</td>
</tr>
</tbody>
</table>
Pratikte cam fiberler fitil, dokuma ve keçe şeklinde olmak üzere üç kullanma şekli vardır. Cam fitil, elyaf demetlerinin fitil şeklinde sarılması; cam dokuma, cam fitillerin hasır şeklinde sarılması; cam keçe, cam demetlerin kirpılmış halde birim alan homojen olarak dağılmış ile elde edilir. Cam fitil takviye edilen plastige en yüksek çekme mukavemeti verir; onu cam dokuma ve onu da cam keçe izler (Şekil 2.2). Ancak cam fitil, tek yönde (cam fiberlerin yönünde), cam dokuma iki yönde, cam keçe ise herhangi bir doğrultuda malzemenin mukavemetini artırır [11].

Camların dayanımı, özellikle, yüzey üzerinde kusurlar ve mikro-çatıklarla birlikte kaçınılmaz dahili hatalara bağlıdır. Yüksek kaliteli fiberleri üretmek için yüksek safıhtaki malzemelerin homojen şekilde ergim olması, yüksek sıcaklıkta çekilmesi ve hemen koruyucu kaplama uygulanmış olması gerekmektedir [1].

![Şekil 2.2 CTP’nin çekme mukavemeti üzerine cam elyaf şeklinin etkisi](image-url)
• Karbon Fiberler

Karbon fiberler, fiberlerle takviyeli kompozit malzeme üretiminde kullanılan önemli fiber türüdür. 1960’lı yılların ikinci yarısından itibaren kullanılmaya başlanan bu fiberlerin düşük yoğunluklarının yanında çekme mukavemetleri ve elastisite modülleri yüksektir.

Grafit karbon atomlarının hezagonal düzlem katmanında ABABAB sırasıyla düzenli olarak dizilmesiyle oluşur. Tabakalar içinde atomlar arasında kuvvetli kovalent bağlar mevcut iken katmanlar arasında çok zayıf bağlar meydana gelir.

Karbon fiberin yapışal özellikleri şu faktörlere bağlı olarak değişmektedir. Bunlar;

• Fiber doğrultusu
• Kristalliği
• Kusurların etkisi

Bunlardan; (a) Doğrultu iyileştiği, boyuna çekme dayanımı ve modülü, elektrik ve ısıl iletkenliği, boyuna negatif ısıl genleşme katsayısı artarken enine çekme dayanımı ve modülü azalır.

(b) Kristalliği iyileştiği zaman ısıl ve elektrik iletkenliği boyuna negatif ısıl genleşme katsayısı ve oksidasyon direnci artar. Fakat boyuna çekme ve basma dayanımı, enine çekme dayanımı ve çekme modülü yanında boyuna kayma modülü de azalır.

(c) Kristal hatası olmadığı zaman, çekme dayanımı, ısıl iletkenlik ve elektrik iletkenliği ve oksidasyon direnci artar (Şekil 2.3) [1].
Şekil 2.3 Karbon fiberlerin temel yapısal özellikleri

Karbon fiberler mekanik özelliklerini 1500 °C’ye kadar muhafaza etmelerinden dolayı özellikle yüksek sıcaklık uygulamalarında sık sık kullanılmaktadır. Örneğin roket nozullarında, fren bloklarında ve finan elamanı olarak kullanılmaları sayılabilir [10].
<table>
<thead>
<tr>
<th>Özellikler</th>
<th>E-camı</th>
<th>Yüksek Moleküllü Karbon</th>
<th>Çok Yüksek Moleküllü Karbon</th>
<th>Yüksek Moleküllü Karbon*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yoğunluk (kg/m²)</td>
<td>2.600</td>
<td>1.810</td>
<td>1.950</td>
<td>2.000</td>
</tr>
<tr>
<td>Çap (µm)</td>
<td>10-20</td>
<td>5-7</td>
<td>5-7</td>
<td>12</td>
</tr>
<tr>
<td>Young Modülü (GPa)</td>
<td>73</td>
<td>400</td>
<td>600</td>
<td>280</td>
</tr>
<tr>
<td>Spesifik Modül (MN m/kg)</td>
<td>28</td>
<td>210</td>
<td>310</td>
<td>140</td>
</tr>
<tr>
<td>Çekme Dayanımı (MPa)</td>
<td>3.400</td>
<td>2.800</td>
<td>2.000</td>
<td>2.000-2.400</td>
</tr>
<tr>
<td>E Camına Göre Fiyati</td>
<td>1</td>
<td>30-50</td>
<td>200-400</td>
<td>50-100</td>
</tr>
</tbody>
</table>

* Çekme prosesi ile üretilmiştir.

- **Organik Fiberler**

Organik fiberler, inorganik fiberlerin sahip olmadığı özellikleri ile birçok alanda kullanılmaktadır.

Bunlar Du Pont firması tarafından üretilen Kevlar fiberi, Teijin firması tarafından üretilen Twaron fiberi, Allied Signals firması tarafından üretilen Spectra fiberi ve
DSM firması tarafından üretilen Dynema fiberidir. Bu fiberler hakkında detaylı bilgi BKE teknolojisinde kullanılan ana malzemeler bölümünde verilecektir.

2.4.1.2 Fiber Takviyeli Kompozit Malzemelerin Üretiminde Kullanılan Takviye Malzemelerinin Üretim Şekilleri

- Keçe (Chopped Strand Mat: CSM)

Keçelerin bir takım dezavantajları da vardır. Keçe kullanılan kompozit malzeme katmanları, diğer takviye formlarının kullanıldığı katmanlara göre en zayıf dayanımına sahip katmanlardır. Bunun nedenlerinden biri, yapısında kullanılan sürekli fiberlerin sürekli fiberler kadar güçlü olmaması, diğer bir neden ise yüksek kısmi hacim oranının elde edilememesidir. Kompozitin matris bileşeni, takviye bileşenine göre daha zayıftır ve yüksek kısmi hacim oranına sahip kompozit malzeme katmanlarının mukavemetleri daha fazladır. Keçe kullanıldığı durumlarda elde edilebilecek kısmi hacim oranı kompozit malzeme hacminin yaklaşık % 20’si ve ağırlığının yaklaşık % 30’u mertebeindedir. Çok daha uygun özel takviye formları kullanılarak bu oranlar hacim bazında % 65’e ve ağırlık bazında da % 80’e kadar çıkarılabilir [8].
• **Fitil (Roving)**

Fitiller, cam fiberlerin 120 tane kadarken bir araya getirilmesiyle ve bunların bir makara etrafına sarılmasıyla imal edilirler. Fitil yapımında kullanılan cam fiberleri genelde 10-15 μm çapında olup bunların üzerinde cam ile reçinenin kimyasal reaksiyonu sağlamak maksadıyla bir bağlayıcı ile kaplanır.

• **Hazır Kalıplama Bileşenleri (Prepreg)**

Takviye olarak kullanlan fiberlerin, önceden reçine ile sılatlarak ve daha uygun katalizör katılmış olarak kullanılmaya hazır hale getirilmesiyle hazırlık alma bileşenleri elde edilir. Yakın zamanlarda kullanıma başlanan hazırlık alma bileşenleri ilk önce uzay sanayinde kullanılmaya başlanmış, daha sonra gemi inşaat sektöründeki yerini almıştır. Hazır kalıplama bileşenlerinin sılatılması sırasında kullanılan reçinelere tamama yakını epoksi reçineler olup [12], bunlar sadece yüksek basınç ve steaklık şartları altında kullanılmaya uygun olarak dizayn edilmiştir.

Hazır kalıplama bileşenlerinin imalatı esnasında, kumaş elyafı tatbik edilen reçine, son kullanlmadaki optimum lif/reçine oranı sağlayabilmek maksadıyla, elyafın merdaneler arasında geçirilmesi esnasında dikkatli bir şekilde kontrol edilerek uygulanır.

Her iki yüzü de koruyucu kaplamalarla kaplı olan hazırlık alma bileşenlerinin üzerindeki bu koruyucular kumaş elyafın tatbik edilme safhasına kadar üzerlerinden çıkarılmamalıdır. Genellikle 25-475 mm genişliğinde sargılar halinde satılan hazırlık alma bileşenleri ambalajlarından çıkıktıkları anda kullanıma hazır hale ve hemen kullanılmalıdır. Bu bileşenler ambalajlarından çıkıktıklarında belli derecede yapışkandırlar ve bu sayede, istenilen şekilde kesilip uygulanacakları yerlere tatbik
edildiklerinde pozisyonlarını muhafaza ederler. Ayarlama ve yeniden yerleştirme zorluğuya karşılaşmaması için, hazır kalıplama bileşenlerinin yapışkanlık derecesinin çok yüksek olmaması istenir. Eğer malzeme çok kıvrımlı veya ayrıntılı bir kalıp içerisinde uygulanacağı pozisyonu koruyabilecek kadar yapışkan değil ise, bu bölgeye sıcak hava verilerek yapışkanlığı artırılabilir.

Kullanım açısından hazır kalıplama bileşenlerinin çok önemli avantajları vardır. Temizdirler, kolaylıkla kullanılabilirler, fiber/reçine oranının çok sıklı kontrol edilebilmesinden dolayı kompozit malzeme katmanlarında optimum dayanımı sağlarlar [8].

- **Kumaş (Fabric)**

Yüksek performanslı kompozit malzemelerin elde edilmesinde, genellikle daha hafif ve daha dayanıklı, diğer takviye malzemelerinin formlarıyla karşılaştırılmışlardır, en iyi sonucu veren ve en çok kullanılan form kumaşlardır. Kumaşların kullanımı yüksek lif/reçine oranına imkan vermesinin yanı sıra aynı zamanda daha ince kompozit katmanların elde edilmesine ve tasarım ve imalatçının istenilen mukavemet değerlerine daha kolay ulaşmasına imkan verir. Kumaşların balistik özelliklerinin ölçülmesine dair yapılan çalışmalarda, kumaşlar kompozit yapılarla göre daha düşük ağırlıklarında daha iyi balistik sonuçlar vermektedir [13].

Düz Dokuma (Plain weave)

En basit dokuma şekli olan düz dokuma, her çözğu veya atkı'nın, kendisine dik atkı veya çözgünün altından ve üstünden geçerek olduğu dokuma şeklindeki kumaşlardır. Düz dokuma kumaşları kolaylıkla işlenebilir ve tutarlı bir kompozit katmanı kalınlığı sağlar. Çok sık dokunmuş olanlarına reçine tatbiki nispeten zordur (Şekil 2.4). Lif veya fitillerin çok fazla kıvrılmaları, mekanik özelliklerinin diğer dokumalara göre daha düşük olmasına sebebiyet verir [8].

Şekil 2.4 Düz dokuma
Kabarık Dokuma (Twill weave)

Kabarık dokuma kumaşlar, çöزgü ve atıkların farklı kombinasyonlarıyla, örneğin 2x2 veya 2x1, dokunmasıyla elde edilirler. Şekil 2.5'te kabarık dokuma kumaşın 2x1 şeklinde dokunması gösterilmiştir. Burada çözgüler iki atıkın üzerinde ve birinin altından geçirilerek dokunmuştur. Bu kumaşların reçineye yatırılması düz dokuma kumaşlarından daha kolay olup, kivrımları daha az olduğu için mekanik özellikleri daha kuvvetlidir [8].

Şekil 2.5 Kabarık dokuma

Atlas Dokuma (Satin Weave)

Atlas dokuma kumaşlar, kabarık dokuma kumaşlara benzer şekilde dokunur. Çözgüler daha fazla atıkın üzerinde ve bir atıkın altından geçirilir (Şekil 2.6). Bir yüzeyin çoğunlukla atık, diğer yüzeyinde çoğunlukla çözgüden oluşması, yüzeylerin çok daha düzgün olması imkan verir. Reçine tatbiki çok kolay olup, daha az kivrımlı yapıları mekanik özelliklerinin yüksek olmasını sağlar. Pürüzsüz bir yüzeyle
sağlanabileceği minimum katlı kompozit malzeme katmanı için atlas dokuma kumaşlar kullanmalıdır. Bu özelliklerin yanında, çok sıkı dokumamasından dolayı reçine tatbiki sırasında yüzeylerin bozulma ihtimali olduğundan çok dikkatli olunmalıdır [8].

Şekil 2.6 Atlas dokuma

Mat Dokuma (Mat weave)

Aynı zamanda sepet dokuma da denilen mat dokuma kumaşlarında genellikle iki çözgü ve atkı tek çözgü ve atkı gibi birbirlerinin üzerinden ve altından geçirilerek dokunur (Şekil 2.7). Daha çok kevlar ile kullanılan bu şekil dokuma, genellikle daha küçük liflerle daha ağır fakat daha ucuz kumaşların elde edilmesi maksadıyla kullanılır.

Üretimde kullanılan çözgü ve atıkların sayısı ve boyutlarını değiştirerek, farklı uygulamalara göre farklı kombinasyonlar oluşturulabilir.

Şekil 2.7 Mat dokuma

En çok kullanılan kumaş formu dengelenmiş yapı olmasına karşın, çift yönlü kumaşlarda kullanılan enine ve boyuna fiberlerin oranı % 70'e % 30 çözgü/atık veya atık/cözgü mertebesine kadar çıkabilmektedir. Eğer kumaşın % 70'i veya fazlası bir yönde yönlendirilmiş ise buna “tek yönlü dokuma” denir (Şekil 2.8). Daha çok fitillerin kullanıldığı bu kumaşlarda, enine veya boyuna özelliklerinden biri çok iyi iken diğeri zayıftır. Kaliplamada arzulanan yerlerde beklenen fazla yüklere karşı, o bölgenin güçlendirilmesi için tek yönlü kumaşlar rahatlıkla kullanılabilir. Tek yönlü kumaşlar reçine tatbiki daha zor olup, uygulama esnasında kumaşın dağılmamasına dikkat edilmelidir [8].

Şekil 2.8 Atıkların daha fazla kullanıldığı tek yönlü dokuma

22
Eğer kumaşın yapısında iki veya daha fazla fiber bulunuyorsa, bunlara karma kumaş denilir. Farklı fiberlerin aynı kumaş üzerinde bir araya getirilmesinin amacı, bu fiberlerin farklı özelliklerinin aynı kumaş üzerinde toplanması ve bunun kompozit malzeme katmanlarına uygulanmasıdır. Örnek olarak çok sağlam ve çarpmadan dayanımı yüksek bir yapı istenilyorsa, mümkün olan en küçük ağrıltık, Kevlar 49 ve karbonun bir arada kullanıldığı fiber sayesinde imal edilir. Aynı şekilde cam fiberleri ile Kevlar 49 ve/veya karbon fiberinin bir arada bulunduğu, bir fiber maliyetin optimizasyonu nedeniyle tercih edilir [8].

2.4.1.3 Parçacıklarla Takviyeli Kompozit Malzeme

- Büyük Parçacıklarla Dayanımı Artırılmış Kompozitler

Şekil 2.9 Parçacıklarla takviyeli kompozitler a) Büyük parçacık takviyeli kompozitler b) Dispersiyonla dayanımı artırılmış kompozitlerin yapısı

23
Bu tip kompozitlerde artan takviye elemanı ilavesi ile birlikte yapı içerisinde porozite vb. hatalar artmaktadır. Dolayısı ile haddeleme gibi ikinci bir işlemde uygulanabilmektedir[1].

- **Dispersiyonla Dayanımı Artırılmış Kompozitler**

Dispersiyonla kuvvetlendirilmiş kompozitlerde prensip; sert, inert ve refrakter karakterli, birkaç mikron boyutundaki partikülleri sünek bir yapı içerisinde homojen bir şekilde dağıtılmaktır. Bu parçacıkların çapı 0.01 ile 0.1 μm ve uzunluğu 50-200 μm arasında, kullanılan parçacıkların hacim oranı % 1-15 arasında değişir.

Disperse faz olarak genellikle yüksek ergime sıcaklıkları, ısıl kararlılıkları ve metalik sistemler de düşük çözünürlikleri nedeniyle oksitler kullanılır. Disperse olan fazın mukavemet üzerindeki etkisi esas olarak, dislokasyon hareketlerini önlemeleri şeklindedir. Partiküllerin boyutu, matris içerisinde dağılım homojenliği, partiküller arası mesafe ve matris-partikül ara yüzey özellikleri kompozit performansını etkileyen faktörlerdir. Yüksek sıcaklık uygulamaları için, disperse olan fazın matris içindeki çözünürliğinin düşük olması, ergime sıcaklığı ve ısıl kararlılığının yüksek olması arzu edilir [3].

Şekil 2.9’da görüldüğü gibi; büyük parçacıkla kuvvetlendirilmiş kompozitlerle dispersiyonla kuvvetlendirilmiş kompozitler arasındaki fark, boyut ve hacim oranları ile ilgiliidir.

2.4.1.4 Tabakanı Kompozit Malzemeler

Tabakanı kompozit, şekil 2.10’da gösterildiği gibi, temel malzeme eksenleri doğrultusunda değişik yönlere tabaka ve katmanların üst üstü konularak bir araya getirilmesi ile tabakalı (laminate) kompozitlerin elde edilmesi mümkün olmaktadır. Laminetler, matris içerisine rastgele yönlenmiş fiberler, tek yönlü elyaflar veya farklı fiber takviyeli tabakadan oluşabilir.
Şekil 2.10 Tabakalı bir kompozitin yapısı a) İzotropik b) Ortotropik yapla

Tabakalar bir araya getirmekdeki amaç; değişik fiziksel, mekaniksel veya kimyasal özelliklerin kazanılmasına yönelik olabilir. Çok değişik kombinasyonlarla tabakanmış kompozitlerin üretimi mümkünür. Metaller üzerine uygulanan metalik, organik veya seramik kaplamalar; cam-plastik-cam tabakalarından oluşan kompozitler, kağıt üzerine kaplanmış plastik kompozitler, reçine ısmirilmiş kağıt tabakalarından oluşan kompozitler, farklı fiber yöneltirmesine sahip tek tabakaların birleştirilmesiyle elde edilen yapılar bu tür kompozitlere örnek olarak gösterilebilir [3].

2.4.2 Matris Malzemesine Göre

Matris, kompozit malzemenin basma dayanımını etkileyen fiberlerin basma yüklerini altında muhtemel eğilimlerini önleyici yanal desteği sağlar. Kompozit malzemenin işlenebilirliği ve kompozit yapıdaki kusurlar, çoğunlukla yapısındaki matrisin fizişel ve ısısal özelliklerine, örneğin viskozite, erime sıcaklığına, kürleme ısısına v.b gibi özelliklerine bağlıdır.

Uygulanacak yapının amaçına uygun olarak, bir matristen istenen ve beklenen özellikler şunlardır:

- Nem emişinde minimizasyon,
- Tatbiki esnasında akıcılığından dolayı takviye malzemesi ile çok iyi temas edip boşluk bırakmama,
- İslaklık ve liflerle bağlanabilme,
- Yüksek sıcaklıklara dayanım,
- Mükemmel kimyasal özellikler,
- Düşük büzülme oranı,
- Yükleri takviye elemanlarına transfer edebilmesi için elastiklik,
- Boyutsal kararlılık,
- Düşük ısı genleşme katsayısı,
- Uygun dayanım, modül ve uzama(uzama oranı takviyelerin uzama oranlarına göre daha yüksek olmalı),
- Kolayca tatbik edilebilme [6].

Kompozit malzeme yapısında kullanılan matris malzemelerini, Metal Matris Malzemeleri, Polimer Matris Malzemeleri ve Seramik Matris Malzemeleri olmak üzere üç sınıf içinde inceleyebiliriz:

2.4.2.1 Metal Matris Malzemeleri

Bu malzemeler yüksek rijitlik, dayanım, korozyon dayanımı, ısıt özellik, aşınma dayanımı ve yorulma dayanımına sahiptir. Metal matrislerde sürekli fiber, sürekli fiber ve parçacıklar takviye olarak kullanılır [14].
Bunlar taşıyıcılık açısından özellikle plastik matris malzemelerine kıyaslava daha yüksek dayanıma, elastik modüle ve topluğa sahip olup yüksek sıcaklıklarda özellikleri daha iyidir.

Metal matrisli, fiber takviyeli kompozitleri üretmek daha güç ve bunun maliyeti de çok yüksek olmasına karşın, metal matris malzemeleri kompozitin topluğunun önemli ölçüde artırmaktadır ve yüksek sıcaklık etkisindeki uygulamaları olanaq vermektedir. Ayrıca metal matrisler her elyafla ile iyi ara yüzey oluşturur. Metallerle en kolay bağ oluştururan silisyum karbür ile kaplanmış boron elyaflar. Fakat bunlar pahalıdır [15].

MMK’lerde çok yaygın olarak kullanılan matris malzemesi; düşük yoğunluklu, iyi topluk ve mekanik özelliklere sahip olan hafif metaller ve alasımlardır. Bu hafif metal alasımları dayanım ve özgül ağırlık oranlarının iyi olması nedeniyle hafif yapı konstrüksiyonlarında tercih edilir. Atmosfere karşı korozyon dayanımının da çok yüksek olması diğer karakteristik özelliklerinden birisidir [1].

MMK lerde, sürekli matris fazı monolitik alasımlardır ve takviye elemanı ise yüksek performanslı karbon, metal veya seramik esaslı malzemelerden oluşur. PMK lerin aksine, alevlenme ve çeşitli çözücü, yakıcı madde gibi organik sıvılardan en az seviyede etkilenirler [16].

Polimer matris malzemelerinin tersine, metal matris malzemeleri takviyelere tatbik edildiklerinde dayanımındaki artış daha az olur. Asıl önemli artış ise kimyasal özelliklerinde, sürünme dayanımlarında ve ısı çarpmaya karşı dayanımlarında meydana gelir [7].

Metal matris malzemesi olarak en çok kullanılan üç metale ait bazı özellikler Tablo 2.5’te gösterilmiştir.
<table>
<thead>
<tr>
<th>Özellikler</th>
<th>Alüminyum</th>
<th>Magnezyum</th>
<th>Titanyum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yoğunluk (g/mm³)</td>
<td>2.70</td>
<td>1.80</td>
<td>4.5</td>
</tr>
<tr>
<td>Elastisite Modülü (GPa)</td>
<td>70</td>
<td>45</td>
<td>110</td>
</tr>
<tr>
<td>Poisson Oranı</td>
<td>0.33</td>
<td>0.35</td>
<td>0.36</td>
</tr>
<tr>
<td>Çekme Dayanımı (GPa)</td>
<td>0.2-0.6</td>
<td>0.1-0.3</td>
<td>0.3-1.0</td>
</tr>
<tr>
<td>Kopmada Uzama (%)</td>
<td>6-20</td>
<td>3-10</td>
<td>4-12</td>
</tr>
</tbody>
</table>

Kompozit üretiminde metal matris malzemesi olarak, bakır, alüminyum, titan, nikel, gümüş gibi metallar başta gelmektedir. Matris malzemesi ergimim halde, moleküler yapıda, levha veya ince tabaka(folyo) şeklinde olabilmekte ve kullanılan üretim teknolojisine bağlı olarak dökme, karışıma, presleme, elektroliz yoluya kaplama, haddeleme yöntemleriyle fiberle birleştirilmektedir. Bu birleştirme ve kompoziti oluşturma işleminde en önemli nokta, takviyede kullanılacak olan yüksek dayanımlı lif, tel vekillar(whisker) zedelenmemesi, tahrip olmaması, dolayısıyla özelliklerinin bozulmamasının sağlanmasıdır.

Metal matrissli ve fiber takviyeli kompozitlerde, fazlar arasında elektrokimyasal etkileşim olması, fazlardan birinin korozyona uğraması gibi sorunlarla da karşılaşılmaktadır. Örneğin, alüminyum alaşımı bir matris içinde karbon fiberi kullanılması halinde, bu iki malzeme arasında galvanik korozyon görülmektedir. Bunun önüne geçmek için karbonun yüzeyi önce nikel veya gümüşle kaplanmaktadır [2].
2.4.2.2 Polimer Matris Malzemeleri

Polimerlerin sınıflandırılmasında değişik kriterler kullanılmaktadır. Temel olarak iç yapılarına göre termoplastik ve termoşetler olmak üzere iki kategori içinde değerlendirilmektedir:

- Termoplastikler

Bu tez çalışmasında, balistik koruyucu teçhizatların imalinde kullanılan Dyneema ve Spectra Polietilen; Kevlar ve Twaron ise Aramid sınıfı içinde incelediği için sadece bu iki malzeme grubu hakkında aşağıda kısaça bilgi verilmiş olup detaylı inceleme BKE teknolojisinde kullanılan ana malzemelerin incelenecesi bölümde yapılacaktır.

Polietilen

Balistik koruyucu teçhizatında geniş kullanım olan Dyneema ve Spectra bu sınıfa dahildir. Polietilen, düşük nem emme kapasitesine sahiptir ve deformasyon direnci iyidir. Düşük maliyet, kimyasal kararlılık ve kolay işlem görmesi PE’ i cazip yapar.
Düşük ve yüksek yoğunluklu olmak üzere 2 türü vardır. Yüksek yoğunluklu polietylen (YYPE) daha yüksek kristalik ve lineerliğe sahip olup 0.96 g/cm³ yoğunluğa sahiptir. Bu onları daha rıjet ve dayanıklı yapar.

Poliamid (PA)

Tablo 2.6 Bazı termoplastik malzemelerin mekanik ve fiziksel özellikleri

<table>
<thead>
<tr>
<th>Malzeme Özellikleri</th>
<th>Polietylen</th>
<th>Politetratken</th>
<th>PA 6.6</th>
<th>Polipropilen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yoğunluk (g/cm³)</td>
<td>0.95</td>
<td>0.92</td>
<td>1.14</td>
<td>0.90</td>
</tr>
<tr>
<td>Elastik modülü (MPa)</td>
<td>1000</td>
<td>22</td>
<td>700</td>
<td>1400</td>
</tr>
<tr>
<td>Çekme dayanımı (MPa)</td>
<td>30</td>
<td>14-34</td>
<td>70</td>
<td>35</td>
</tr>
<tr>
<td>Kopma uzaması (%)</td>
<td>10-1200</td>
<td>100-650</td>
<td>300</td>
<td>10-500</td>
</tr>
<tr>
<td>Isıl genleşme kat.</td>
<td>60-110</td>
<td>100-220</td>
<td>70-120</td>
<td>80-100</td>
</tr>
</tbody>
</table>
• Termoset

Termoset grubunu oluşturan en önemli plastikler olarak şunlar sayılabilir: Poliester, fenolik, epoksi reçine ve poliüretan sayılabilir.

Tablo 2.7 Bazı termoset plastiklerin mekanik ve fiziksel özellikleri

<table>
<thead>
<tr>
<th>Malzeme cinsi</th>
<th>Epoksi</th>
<th>Poliester</th>
<th>Fenolik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yoğunluk (g/cm³)</td>
<td>1.11</td>
<td>1.04-1.46</td>
<td>1.24-1.32</td>
</tr>
<tr>
<td>Elastik modül (MPa)</td>
<td>7000</td>
<td>3400</td>
<td>4800</td>
</tr>
<tr>
<td>Çekme dayanımı (MPa)</td>
<td>70</td>
<td>41-90</td>
<td>34-62</td>
</tr>
<tr>
<td>Kopma uzaması (%)</td>
<td>3-6</td>
<td>42</td>
<td>1.5-2.0</td>
</tr>
<tr>
<td>Isıl iletkenlik</td>
<td>0.19</td>
<td>0.19</td>
<td>0.15</td>
</tr>
<tr>
<td>Isıl genleşme katsayısı (1/°C)</td>
<td>45-65</td>
<td>55-100</td>
<td>68</td>
</tr>
</tbody>
</table>
Poliester

Termosetlere uygulanan teknolojilerle kalıplanabilen, oda sıcaklığında ve atmosfer basıncında işlem (cure) görebilen, fiyat, mekanik, elektrik, kimyasal ve boyut kararlılığın bakımından elverişli bir termosettir. İlave yapılrsa daha esnek ve darbeye mukavemetli veya sert ve gevrek yapılabilir. Poliester, cam veya karbon fiberi ile kuvvetlendirilebilir ve asbest, kağıt, mineral gibi dolgu maddeleri ile takviye edilebilir.

Doymamış poliester oda sıcaklığında sıvı halindedir; buna sertleştirici veya bir katalizör ilave edilirse oda sıcaklığında ve atmosfer basıncında katı halini alır.

Özel amaçlar için poliester karbon fiberi ile de kuvvetlendirilebilir. Çok iyi mekanik ve ısı özellikleri sahip olan bu bileşim cam fiberi ile kuvvetlendirilmiş poliestere göre 2.5-4 misli daha pahalıdır.

Bazı özel amaçlar için poliester, asbest, kağıt, mineral gibi dolgu malzemelerle takviye edilir [11].

Poliester reçine kullanmanın avantajları arasında düşük viskosite, hızlıkürleme zamanı ve düşük malzefiyeti sayabiliriz. En büyük dezavantajları yüksek buzulme oranlandır. Bu şekilde kompozit malzeme kalıptan daha kolay çıkarılabilmesine rağmen, matris ve reçinenin farklı buzulme oranları kalıp yüzeyinde çok üstünlüklerin oluşmasına sebebiyet verir.

Epoksi

Epoksi reçineler genelde biri hidrojen, ikisi de karbon olmak üzere üç elemanlı halkalardan oluşan epoksi gruplarını ihtiva eden, düşük moleküler ağırlığa sahip sıvı reçinelerden imal edilirler.

Epoksi reçineler çok yönülükleri ve diğer reçinelerde göre üstün özelliklerinden dolayı, uzay araçlarından köprülerle, askeri hava araçlarından spor malzemelerine ve deniz taşıtlarına kadar çok geniş kullanım yelpazesine sahip bir malzeme grubudur [9].
Epoksi reçineler mükemmel mekanik özellikleriyle geniş kullanım alanına sahiptir. Özellikle çok sıcak ve nemli ortamlarda mekanik özelliklerini uzun süre muhafaza etmektedir. Epoksi reçineler, ayrıca çok iyi boyutsal kararlılığa, kolayca işlenebilirliğe, düşük maliyete ve çeşitli fiberlere kolayca yapışabilme özelliğine sahiptir [17].

Fenolikler
Kevlar fiberi fenolik reçine emdirilmesi suretiyle balistik koruyucu teçhizatında kullanılmaktadır.

2.4.2.3 Seramik Matris Malzemeleri

Seramikler iyi dayanış ve sertliğe sahip olmalarına karşın seneklilikleri, şekillendirilebilirlikleri ve darbe dayanımı zayıftır. Bunun sonucu olarak seramikler, yapı ve yük taşıma uygulamalarında metallerden daha az kullanılır [19].

Seramik matrisli kompozit malzemelerde kullanılan fiberler çatlamaların ilerlemesini durdurarak veya geçiktirerek topluluğu artırır [20].

Tablo 2.8 SMK malzemelerde kullanılan seramiklerin bazı mekanik özellikleri [21]

<table>
<thead>
<tr>
<th>Özellik</th>
<th>Alimüna</th>
<th>Berilyum oksit</th>
<th>Aluminyum nitrit</th>
<th>Silikon karbit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yoğunluk (g/cm³)</td>
<td>3.98</td>
<td>2.87</td>
<td>3.27</td>
<td>3.10</td>
</tr>
<tr>
<td>Elastisite modülü (GPa)</td>
<td>370</td>
<td>345</td>
<td>300</td>
<td>407</td>
</tr>
<tr>
<td>Poisson oranı</td>
<td>0.22</td>
<td>0.26</td>
<td>0.23</td>
<td>0.14</td>
</tr>
<tr>
<td>Basma dayanımı (MPa)</td>
<td>2600</td>
<td>1550</td>
<td>2000</td>
<td>4400</td>
</tr>
</tbody>
</table>
3. BKE DE KULLANILAN ANA MALZEMELER VE ÖZELLİKLERİ

3.1 BKE Teknolojisindeki Son Gelişmeler

İnsanın, vücutunu silahların etkisinden koruma isteği, insanlığın varoluşu kadar eskidir. Eski Roma devrinde, savaşçılar bu amaçla kalın deri ve metal kaplı zırhlar giyerlerdi. Ancak savaşçıyı ata bindirmek için vinç kullanıyordardi.

Bu alandaki en önemli gelişme de 1985 yılında çelikten on kat daha güçlü ve yoğunluğu sudan az olduğu için yüzebilen “yüksek moleküler ağırlıklı polietilen” in UHMWPE (Ultra High Molecule Weight Polyethylene), bulunması olmuştur.UHMWPE Fiberi Dynema adıyla DSM ve Spectra adıyla Allied Signal tarafından üretilmektedir.

Son gelişmelerin işığında yapılan balistik koruyucular, eskiye nazaran daha kullanışlı hale gelmiştir. Üstün nitelikli malzemeler kullanılarak daha yüksek koruma seviyesine erişilmişdir. Görülen o ki, silah ve mühimmat çeşitleri gelişikçe onlara karşı koymak için gereken koruma teknolojisi de aynı hızda gelişmektedir. Balistik koruyucuların kullanım alanları da verilen tabloda görüleceği gibi her geçen gün genişlemektedir (Tablo 3.1).
Tablo 3.1 Balistik koruyucuların kullanım alanları

KORUMA SİSTEMLERİ

ARAÇ KORUMA
- Uçak
- Helikopter
- Deniz Vassıtları
- Vip Araçları
- Personel Taşıyıcılar
- Tanklar

PERSONEL KORUMA
- Balistik Koruyucu Yelek
- Kompozit Miğfer
- Koruyucu Kalkan
- Koruyucu Çanta
- Pilot Koltuğu
- Bomba İmha Elbisesi

DİĞER ALANLAR
- Nöbetçi Kulübesi
- Cephanelik
- Uçak Köpükleri
- Bomba Battaniyesi
- Konuşmacı Kürsüler
- Kapılar, Pencere ler

3.2 BKE Teknolojisinde Kullanılan Ana Malzemeler

Balistik koruyucu imalinde kullanılan malzemeleri üç ana gruba toplamak mümkündür. Bunlar sert ve yumuşak koruyucu malzemeler ve reçinelerdir. Bu üç ana malzeme grubunun değişik kombinasyonlarıyla da, kompozit koruyucular elde edilir [22].

Tablo 3.2 Balistik koruyucu imalinde kullanılan malzemeler

BALİSTİK KORUYUCU MALZEMELER

SERT MLZ.

YUMUŞAK MLZ.

REÇİNELER

KOMPOZİT MLZ.
3.2.1 Sert Malzemeler ve Özellikleri

Sert (rijit) malzemeler, seramikler, cam ve metaller olmak üzere üç ana grupta toplanabilir. En yaygın kullanımı olan türü seramiklerdir. Gelişen teknolojinin bir ürünü olarak Al₂O₃ Alimüna, SiC Silikon Karbür, B₄C Bor Karbür gibi balistik amaçlı seramik plakalar ortaya çıkmıştır. Ancak Türkiye’de bu tür seramiklerin üretimi olmadığından yurt dışından temin edilmeleri gerekmektedir.

Tablo 3.3 Sert koruyucu malzemeler

<table>
<thead>
<tr>
<th>SERT KORUYUCU MLZ.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SERAMİK</td>
</tr>
<tr>
<td>Alimüna</td>
</tr>
<tr>
<td>Silisyumkarbür</td>
</tr>
<tr>
<td>Borkarbür</td>
</tr>
<tr>
<td>CAM</td>
</tr>
<tr>
<td>Cam</td>
</tr>
<tr>
<td>Polikarbonat</td>
</tr>
<tr>
<td>METAL</td>
</tr>
<tr>
<td>Çelik</td>
</tr>
<tr>
<td>Alüminyum</td>
</tr>
</tbody>
</table>

Sert ve rijit koruyucu malzemeler içinde en etkin ve yaygın olarak kullanılan tür seramiklerdir. Aşağıda verilmiş olan tabloda da görüleceği gibi Al₂O₃ Alimüna seramikler performans ve fiyat yönünden vücut koruyucuları için en uygun seramik türüdür [22].

Tablo 3.4 Balistik koruma amaçlı kullanılan seramik malzemelerin karşılaştırılması

<table>
<thead>
<tr>
<th>SERAMİK TÜRÜ</th>
<th>Yoğunluk g/cm²</th>
<th>Elastisite Modülü GPa</th>
<th>Sertlik</th>
<th>Maliyet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bor Karbür B₄C</td>
<td>2.48</td>
<td>440</td>
<td>2790</td>
<td>4</td>
</tr>
<tr>
<td>Silikon Karbür SiC</td>
<td>3.2</td>
<td>370</td>
<td>2700</td>
<td>2</td>
</tr>
<tr>
<td>Alimüna Al₂O₃ (%) 85 P</td>
<td>3.43</td>
<td>227</td>
<td>1800</td>
<td>1</td>
</tr>
<tr>
<td>Bor Karbür ve Silikon Karbür Karışımı</td>
<td>2.6</td>
<td>340</td>
<td>2750</td>
<td>3</td>
</tr>
</tbody>
</table>

P : % Saflik Oranı
Herhangi bir tür seramiğin balistik performansını, seramiğin sertliği belirlemektedir. Seramiğin yoğunluğu ise herhangi bir kullanım yeri için gereken seramiğin ağırlığını belirlemektedir. Bu durumda, düşük yoğunluklu ve yüksek sertliğe sahip seramiklerin balistik performansı daha yüksektir.

Bütün bunların yanı sıra, balistik çarpma altında seramiğin davranışı da çok önemlidir. Merminin seramikte oluşturduğu tahribat, çarpma altında oluşan ve seramik malzeme içinde ilerleyen şok dalgasının hızıyla da ilgilidir. Aslında bu malzememin diğer özelliklerinin bir sonucu olarak ortaya çıkırsa da tasarımciyi sonucu götüren önemli bir özelliktir [22].

<table>
<thead>
<tr>
<th>SERAMİK TÜRÜ</th>
<th>Yoğunluk g/cm²</th>
<th>E GPa</th>
<th>Dalga hızı M/s</th>
<th>Tokluk K<sub>c</sub>,MPa²</th>
<th>Sertlik Kg/mm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soda Cami</td>
<td>2.5</td>
<td>72</td>
<td>5370</td>
<td>0.5</td>
<td>450</td>
</tr>
<tr>
<td>Cam Seramik</td>
<td>2.52</td>
<td>95</td>
<td>6140</td>
<td>0.7</td>
<td>-</td>
</tr>
<tr>
<td>Steatite</td>
<td>2.70</td>
<td>110</td>
<td>6380</td>
<td>1.5</td>
<td>600</td>
</tr>
<tr>
<td>% 85 alimüna</td>
<td>3.45</td>
<td>250</td>
<td>8510</td>
<td>4</td>
<td>970</td>
</tr>
<tr>
<td>% 95 alimüna</td>
<td>3.72</td>
<td>322</td>
<td>9300</td>
<td>4.5</td>
<td>1150</td>
</tr>
<tr>
<td>% 99 alimüna</td>
<td>3.92</td>
<td>375</td>
<td>9580</td>
<td>4.0</td>
<td>1720</td>
</tr>
<tr>
<td>Sintox</td>
<td>4.15</td>
<td>340</td>
<td>9060</td>
<td>7.8</td>
<td>1570</td>
</tr>
<tr>
<td>Alimyum nitrat</td>
<td>3.30</td>
<td>330</td>
<td>10000</td>
<td>3.5</td>
<td>1100</td>
</tr>
<tr>
<td>Titanyum Didorit</td>
<td>4.48</td>
<td>575</td>
<td>11330</td>
<td>5-11</td>
<td>3350</td>
</tr>
<tr>
<td>Boron Karbit</td>
<td>2.5</td>
<td>450</td>
<td>13420</td>
<td>3.6</td>
<td>2800</td>
</tr>
<tr>
<td>Elmas</td>
<td>3.47</td>
<td>1035</td>
<td>17250</td>
<td>-</td>
<td>8000</td>
</tr>
</tbody>
</table>

Balistik koruyucularda seramik plaka yerine yüksek sertlikte (60-70 Rc) çelik plakalarda kullanılabilir. Ancak, daha ağır olacaktır vucut koruyucuları için çelikten çok seramik kullanılmaktadır. Ağırlığın kullanımı etkilemediği yerlerde
(Nöbetçi kulübesi, kapılar, duvarlar, vb) çelik kullanımı ucuzluğuna bakımdan daha caziptir [22].

Tablo 3.6 Değişik mermi türlerine karşı seramik kompozit plakaların ve çelik plakaların kullanılması durumunda ağırlık yönünden karşılaştırılması[22]

<table>
<thead>
<tr>
<th>Mermi Tipi</th>
<th>Mermi Hızı (m/s)</th>
<th>Alümina Komp. Ağırlığı (kg/m²)</th>
<th>Zırh çeliği Ağırlığı (kg/m²)</th>
<th>Ağırlıktan kazanç(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.62 x 51</td>
<td>840</td>
<td>38</td>
<td>45</td>
<td>20</td>
</tr>
<tr>
<td>Normal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.62 x 51 AP</td>
<td>830</td>
<td>46</td>
<td>104</td>
<td>55</td>
</tr>
<tr>
<td>7.62 x 39 mm</td>
<td>710</td>
<td>38</td>
<td>88</td>
<td>57</td>
</tr>
<tr>
<td>5.56 x 45 mm</td>
<td>985</td>
<td>33</td>
<td>68</td>
<td>49</td>
</tr>
</tbody>
</table>

Sert ve koruyucu malzemelerin diğer bir çeşidi de cam ve polikarbonat plaka kombinasyonlardır. 4-6 mm kalınlıkta camlar ve 6-8 mm kalınlıkta polikarbonat plakalar kullanılmaktadır. Saydamlık bir koruyucu elde etmek için, kür sonrasında saydam bir reçine sistemi gerekmektedir. Yapılan denemeler sonucunda HE 1908 yapıştırıcının bu amaçla en uygun reçine olduğu ortaya çıkmıştır. Uygulama zorluğu nedeniyle aynı saydamlığı sağlaması nedeniyle PVB film reçine uygundur. HE 1908 Engineering Chemicals B.V Hooland firması tarafından üretilmektedir. Değişik koruma seviyelerinde balistik koruyucu cam imal etmek için, camlar üst üstü konarak reçineyle birleştirilir. Tek yönden kursun geçiren cam yapmak için polikarbonat levha kullanılır. Polikarbonat levhanın olduğu taraf kursun geçirir [23].
3.2.2 Yumuşak Malzemeler ve Özellikler

Yumuşak malzemeler aşağıda şekilden görüleceği gibi para-aramid, polietilen, cam elyafı ve balistik naylon olmak üzere dördede ayrılır.

Tablo 3.7 Yumuşak koruyucu malzemeler

<table>
<thead>
<tr>
<th>YUMUŞAK KORUYUCU</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLZ.</td>
</tr>
</tbody>
</table>

- PARA-ARAMİD
 - Kevlar
 - Twaron
- POLIETİLEN
 - Dynema
 - Spectra
- CAM ELYAFI
 - S-Cami
 - E-Cami
- BALİSTİK NAYLON
 - Naylon 6
 - Naylon 66

En yaygın kullanımı olan türleri para-aramid ve polietilenidir. Bazı alanlarda (araç zırhlama) cam elyafı da kullanılmaktadır. Aşağıda sırasıyla yaygın kullanımı olan malzemelerin özelliklerini sırasıyla inceleyelim:

3.2.2.1 Para-Aramid

- **Kevlar**

Yüksek oranda yönlendirilmiş liflerin molekül zincirleri poliporafenilen tereftalamitten oluşan Kevalerin özellikleri aşağıda sıralanmıştır [25].

- Yüksek ergime sıcaklığı > 530 °C
- Yüksek termal kararlılık
- Düşük alevlenme özelliği
- Düşük yoğunluk (1.44-1.45)
- Yalıtıkandır
- Yüksek spesifik dayanım ve modül
- Düşük sürünme özelliği
- Kesmeye karşı yüksek dayanım
- Deniz suyu, yağ ve çözücüler içinde iyi bir kararlılık
- Sıcaklığı geçirimsizliği (yalıtkanlılığı) yüksek
- Düşük aşınma direnci
- Ultraviyole ışınlarına karşı direnci zayıftır [26].

Kevlar yüksek termal dayanımı sahip olması karşın mukavemeti artan sıcaklık ile birlikte düşmekteidir. Bu yüzden dolayı uzun süreli kullanım sıcaklığı 150 – 175 °C (300 – 350 °F) civarındadır. Aşağıdaki grafiği incelediğimizde Kevlar fiberinin 170 °C (345 °F) daki dayanımı oda sıcaklığındaki dayanımının % 80 seviyesinde iken, Technoranın ise dayanımı % 70 seviyelerine düşmüştür [27].

![Diğer Fiberlerin Dayanımı Grafiği](image-url)

Şekil 3.1 Sıcaklığın Aramid ve Polimer esaslı fiberlerin dayanımı üzerine etkisi
<table>
<thead>
<tr>
<th>Fiber</th>
<th>Özgül ağırlığı</th>
<th>Başlangıç çekme modülü (GPa)</th>
<th>Çekme dayanımı (MPa)</th>
<th>Uzama miktari, %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Reçine emdirilmemiş</td>
<td>Reçine emdirilmiş</td>
<td>Reçine emdirilmemiş</td>
<td>Reçine emdirilmiş</td>
</tr>
<tr>
<td>Kevlar 29</td>
<td>1.44</td>
<td>71.8</td>
<td>-</td>
<td>2920</td>
</tr>
<tr>
<td>Kevlar 49</td>
<td>1.44</td>
<td>70.5</td>
<td>83</td>
<td>2920</td>
</tr>
<tr>
<td>Kevlar 68</td>
<td>1.44</td>
<td>112.4</td>
<td>124</td>
<td>3000</td>
</tr>
<tr>
<td>Kevlar 119</td>
<td>-</td>
<td>99.13</td>
<td>-</td>
<td>3050</td>
</tr>
<tr>
<td>Kevlar 129</td>
<td>1.44</td>
<td>54.6</td>
<td>-</td>
<td>3050</td>
</tr>
<tr>
<td>Kevlar 149</td>
<td>1.44</td>
<td>96.0</td>
<td>-</td>
<td>3380</td>
</tr>
<tr>
<td>Kevlar HT</td>
<td>1.44</td>
<td>142.7</td>
<td>-</td>
<td>2340</td>
</tr>
<tr>
<td></td>
<td>1.44</td>
<td>99.1</td>
<td>-</td>
<td>3370</td>
</tr>
</tbody>
</table>

Kevlar fiberi üstün özelliklerinin yanında belli bazı sınırlamalara sahiptir. Özellikle eğilme ve bükümelere karşı oldukça zayıftır. Sonuçta bu zayıflık kevlar fiberini basma kuvvetlerine karşı hassas hale getirir. Çünkü basma kuvvetleri altında mikro seviyedeki eğilmeler, bükümeler hidrojen bağlarını kopmasına dolayısıyla dayanımının düşmesine neden olur.
Kevlar fiberi güçlü ultraviyole emiciderdir. Maruz kaldıkları ultraviyole ışınları altında sarı renkteki fiberler önce portakal rengine sonra kahverengiye dönmektedir. Özellikle uzun süre bu ışınlara maruz kaldığında mekanik özelliklerinde ciddi azalma gözlenmektedir [27].

Kevlar 29

<table>
<thead>
<tr>
<th></th>
<th>Kevlar 29</th>
<th>Kevlar 49</th>
<th>Naylon</th>
<th>E-Camı</th>
<th>Çelik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uzama,%</td>
<td>4.0</td>
<td>2.5</td>
<td>18.0</td>
<td>4.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Yoğunluk</td>
<td>1.44</td>
<td>1.44</td>
<td>1.14</td>
<td>2.54</td>
<td>7.85</td>
</tr>
<tr>
<td>Ses Hızı m/s</td>
<td>7590</td>
<td>9295</td>
<td>3000</td>
<td>5210</td>
<td>4870</td>
</tr>
</tbody>
</table>

Tekrarlı gerilmeler ve darbelerin etkisi altında Kevlar 29 fiberleri, fiberglass yapılardan hemen hemen 100 kat daha uzun süre sürekliliğe (durability) sahiptir. Özellikle çatlayın söz konusu olduğu yapılarda, Kevlar 29 fiberindeki dayanımı kaybı fiberglass tabakalardan 2-3 kat daha azdır [28].
Şekil 3.2 Kevların spesifik çekme modülüne karşılık gelen çekme dayanımının diğer malzemelerle karşılaştırılması

Kevlar fiberinin genel özelliklerinden bahsederken iyi bir termal dayanım sahip olduğunu belirtmiş ve yüksek sıcaklıklar altında dayanımında azalmalar olduğunu bahsetmiştik. Kevlar 29 fiberini (−196 °C) - 150 °C sıcaklıklar arasında teste tabii tuttuğumuzda mekanik özelliklerinde herhangi bir kayıp olmadığını görüyoruz. Fakat 160 °C den itibaren mukavemetinde belli azalmaların olduğu görülmüştür [28].

Bir sonraki sayfadaki grafikte sıcaklığın Kevlar 29 aramidinin çekme dayanımı üzerine etkisini görmekteyiz [27].
Şekil 3.3 Sıcaklığının Kevlar 29 fiberinin çekme dayanımı üzerindeki etkisi
Şekil 3.4 Kevlar 29 ve Technora fiberlerinin sıcaklıkta zamana bağlı olarak dayanımlarında meydana gelen azalma

Kevlar 29 fiberleri düşük alevlenme özelliğine sahiptir. Bu fiberler erimemelerine rağmen 427 °C civarlarında karbonize olurlar.

Kevlar 29 fiberi düşük dielektrik sabitine sahiptir ki bu özelliği radyo dalgalarının geçirimini mükemmel hale getirir. Bu özelliğinden dolayı kritik askeri bölgelerdeki çeşitli muhabere antenleri bu fiberden üretilmektedir. Ayrıca balistik koruyucu teçhizatta, ip ve kablo yapımında yaygın olarak kullanılmaktadır [28].
Kevlar 29fiberi birçok kimyasal maddelere karşı mükemmel dayanma sahip olmasının yanında bir çok güçlü aside ve bazlara karşı zayıf dayanım gösterir. Bu çıplak fiberler ultraviyole ışınları altında ayrışurlar ve performansları düşer. Bu zaafiyeti ortadan kaldırmak için reçine veya birtakım özel boyalar fiberi zararlı ışınların etkisinden korur [28]. Tablo 3.10’da Kevlar 29fiberinin çeşitli kimyasallara 100 saatlik maruz kalması sonunda çekme dayanımında meydana gelen azalmayı görmekteyiz.

Tablo 3.10 Çeşitli kimyasal malzemelerin Kevlar 29 fiberinin çekme dayanımı üzerindeki etkisi

<table>
<thead>
<tr>
<th>ÇEVRE</th>
<th>ÇEKME DAYANIMI</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 Saat maruz kalma, 21 °C (70 °F)</td>
<td>Yüzde Kayıp</td>
</tr>
<tr>
<td>AŞİTLER</td>
<td></td>
</tr>
<tr>
<td>Formik (% 90)</td>
<td>10</td>
</tr>
<tr>
<td>Hidroklor (% 37)</td>
<td>90</td>
</tr>
<tr>
<td>Hidroflor (% 10)</td>
<td>12</td>
</tr>
<tr>
<td>Nitrik (% 70)</td>
<td>100</td>
</tr>
<tr>
<td>DİĞER KİMYASALLAR</td>
<td></td>
</tr>
<tr>
<td>Fren sıvısı (312 saat)</td>
<td>2</td>
</tr>
<tr>
<td>Gress (MoS ve lityum esaslı)</td>
<td>0</td>
</tr>
<tr>
<td>Jet sıvısı(JP-4)(300 saat)</td>
<td>0</td>
</tr>
<tr>
<td>Ozon (1000 saat)</td>
<td>0</td>
</tr>
<tr>
<td>Tap su</td>
<td>0</td>
</tr>
<tr>
<td>Kaynamış su</td>
<td>0</td>
</tr>
<tr>
<td>Aşırı ısıtılması su 156 ° C, 80 saat</td>
<td>16</td>
</tr>
</tbody>
</table>
KEVLAR 49

Kevlar 49’un yoğunluğu 1.44 gr/cm³ olup bu değer cam fiberlerin yoğunluğundan % 40, karbon fiberlerin yoğunluğundan ise % 20 oranında daha azdır. Kevlar 49’un en önemli özelliklerinden ve en büyük avantajlarından biride çarpma dayanımının yüksek olduğu olup bu kriter, gemi gövdelerinin tasarım ve üretimi aşamasında çok önemli avantaj sağlar. Bu özelliğine bağlı olarak, katmanlarında Kevlar 49 bulunan kompozit malzemelerde oluşabilecek çatlakların ilerlemesi engellenir [8].

Tablo 3.9’u incelediğimiz zaman Kevlar 29 dan daha az sünek olması, fiber içinde ses hızı daha iyi iletmesinden dolayı balistik başta olmak üzere diğer uygulamalarda daha yüksek performans göstermesi beklenmektedir. Şekil 3.5 de Kevlar 49 fiberine uygulanan çekme testi görülmesi olup gerilme – gerinim eğrisi lineer bir ilişkiye sahiptir.

![Gerilme Grafik](image)

Şekil 3.5 Kevlar 49 ve bazı fiberlerin gerilme-gerinim eğrisi
Darbe etkisi altında, metalter enerjisi plastik akmalarla emerlerken ileri kompozitler darbe enerjisinin hem elastik olmak hem de elastik olmayan değişik deformasyon modlarında emerler. Kevlar 49 ve S-camın enerji emme kabiliyeti (gerilme-gerinim eğrisi altındaki alan) diğer malzemelerden daha yüksektir (Şekil 3.5) [29].

Organik yapılarından dolayı aramid fiberler düşük termal iletkenlik karakterine sahiptir. Kevlar 49 fiberi aynı zamanda cam, karbon esaslı kompozit malzemelere göre düşük termal yayılma sabitine sahiptir ki bu da kalıplama sırasında meydana gelen iç gerilmelerin düşük seviyede meydana gelmesine neden olur.

Kevlar 49 havacılık ve uzay sanayiinde, denizcilik sektöründe, otomobil ve diğer sanayi dallarında kullanılan kompozit malzemeleri güçlendirici lifler olarak kullanılabilecek özelliklere sahiptir.

Çeşitli kimyasallara karşı Kevlar 29 fiberinden daha iyi dayanım göstermektedir (Tablo 3.11) [29].

<table>
<thead>
<tr>
<th>Kimyasal Türleri</th>
<th>Süre (Saat)</th>
<th>Kevlar 29</th>
<th>Kevlar 49</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hidrokarbon Sıvı</td>
<td>100</td>
<td>****</td>
<td>****</td>
</tr>
<tr>
<td>Hidrokarbon Sıvı</td>
<td>100</td>
<td>**</td>
<td>*</td>
</tr>
<tr>
<td>Nitrik Asit (%) 10</td>
<td>100</td>
<td>****</td>
<td>****</td>
</tr>
<tr>
<td>Sulfür Asit (%) 10</td>
<td>1000</td>
<td>****</td>
<td>***</td>
</tr>
<tr>
<td>Sodyum Hidroksit</td>
<td>1000</td>
<td>****</td>
<td>****</td>
</tr>
<tr>
<td>Amonyum Hidroksit</td>
<td>1000</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Etil Alkol (%) 100</td>
<td>1000</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Deniz suyu (%) 100</td>
<td>100</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Jet yakıtı (%) 100</td>
<td>312</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

* : % 0-9 Dayanım Kaybı
** : % 10-24 Dayanım Kaybı
*** : % 25-44 Dayanım Kaybı
**** : % 45-74 Dayanım Kaybı

49
• **Kevlerin Balistik Özellikleri**

Yumuşak (kumaş) Zırh

![Diagram](image-url)

Şekil 3.6 1.1 gramlık parçacıklarla V50 testi
Şekil 3.7 1.1 gramlık parçacıklarla yapılan V50 testi sonucunda Kevlar ve Naylon kumaşın absorbe ettiği enerjinin karşılaştırılması

Yapışsal Olmayan Balistik Koruyucu Elemanlar

Bu tip BKE'ları iki gruba ayırmak mümkündür.

1 numaralı Tip Uygulamalar:

Genellikle tabanca tehditlerine ve parçacıklara karşı iyi bir koruma sağlamaktadır. Bu kategoriye giren BKE ler, kompozit kumaş tabakalar (Kevlar fiber takviyeli) ve reçine sisteminden oluşmaktadır. Aşağıdaki şekillerde standart fragman testine göre birim yoğunluk artışça, Kevlar, cam ve alüminyum göre daha iyi netice vermektedir [30].

Joules

Kevlar Kumaşı

Naylon Kumaşı

Alansal Yoğunluk kg/m²

Kat Sayısı

0 25 50 75 100 125 150

1 2 3 4 5 6

51
Şekil 3.8 1.1 gramlık parçacıklarla V50 testi
Şekil 3.9 1.1 gramlık parçacıklarla yapılan V50 testi sonucunda Kevlar, Aluminyum ve Camın absorbe ettikleri enerjinin karşılaştırılması.

2 ncı Tip Uyglamalar:
Bu sınıf BKE zırh delici mermilere ve yüksek hızlı mermilere (V > 500 m/s) karşı yüksek dayanım göstermekte olup genellikle özel seramik veya işlenmiş metaller sert temas yüzeyi olarak sisteme dahil edilmektedir. Ayrıca bu tip BKE ler araba, kamyon, helikopter gibi araçların zırhlamasında kullanılır.

Şekil 3.10 9.3 gramlık parçaçıklarla yapılan balistik mukavemet testi sonuçunda çeşitli zırh sistemlerinin karşılaştırılması
Şekil 3.11 9.72 gramlık parçacıklarla yapılan balistik mukavemet testi sonucunda çeşitli zırh sistemlerinin karşılaştırılması
Şekil 3.12 3.56 gramlık parçacıklarla yapılan balistik mukavemet testi sonucunda çeşitli zırh sistemlerinin karşılaştırılması
- **Twaron**

Twaron fiberi, balistik koruyucu teçhizatın imalatında kullanılan diğer bir aramid sınıfı malzemedir. Aşağıdaki tabloyu incelediğimizde çekme dayanımı (tenacity) ve elastisite modülü Kevlara göre daha düşüktür. Yapılan çalışmalar neticesinde Twaron fiberi mikroyapsal açısından ve mekanik özelliklerini bakımından Kevlar 29 fiberine benzemektedir [31].

Tablo 3.12 Balistik alanda kullanılan Twaron fiberlerinin mekanik özellikleri [32]

<table>
<thead>
<tr>
<th>Malzeme</th>
<th>Twaron Standart</th>
<th>Twaron CT</th>
<th>Twaron HM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yoğunluğu (g/cm³)</td>
<td>1.44</td>
<td>1.44</td>
<td>1.45</td>
</tr>
<tr>
<td>Çekme dayanımı (mN/dtex)</td>
<td>195</td>
<td>230</td>
<td>195</td>
</tr>
<tr>
<td>Elastisite modülü (GPa)</td>
<td>70</td>
<td>90</td>
<td>121</td>
</tr>
<tr>
<td>Uzama miktarı (%)</td>
<td>3.6</td>
<td>3.3</td>
<td>2.1</td>
</tr>
</tbody>
</table>

Akzo Nobel firması tarafından 1991 yılında yüksek dayanımı sahip Twaron CT fiberi piyasaya sürülmüştür. Bu fiber özellikle balistik korumada çok iyi sonuçlar vermektedir [32].

Twaron fiberi, sıcaklık altında davranışı, darbe dayanımı ve çeşitli kimyasallara karşı dayanımı gibi çeşitli mekanik özellikleri hakkında gerek literatürde gerek üretici firmayla (Teijin) yazışmalarda, gerekse firmanın Türkiye distributionyle yapılan görüşmelerde gerekli bilgilere ulaşılamamıştır.

Ancak şirketin balistik departmanıyla yaptığım yazışma sonucunda fiberin bazı özellikleri şu şekilde sıralanabilir:

- Twaron fiberinin erime noktası yoktur fakat 450 °C’ nin üzerinde ayrışma gösterir.
- Twaron fiberinin alevlenme özelliği düşüktür.
- Twaron fiberi, balistik uygulamalarda performansını 10 yıl kaybetmeden koruyabilmektedir [33].
Twaron fiberi aramid sınıfı bir malzeme olduğundan dolayı, dahil olduğu sınıfın tipik özelliklerini göstereceği değerlendirilmektedir.

3.2.2.2 Polietilen

- Dyneema

Hollanda’nın DSM firmasının patenti ile üretilen Dyneema, bu emsalsiz özelliklerini, molekülerinin paralel yapısından ve kullanılan ultra yoğun moleküler yapıtı polietilenin yüksek kristalleşme niteliğinden almakta ve gelişmiş kompozit teknolojisinde yeni bir çığır açmaktadır. Yoğunluğuna birden düşük olup suda yüzebilme kabiliyetine sahiptir. Şu anda dayanımı en yüksek fiber olup en iyi kalitede ve en yüksek dayanına sahiptir. 15 kat daha yüksek dayanına sahiptir.

Dyneema ticari fiberinin üretim başlangıç yılı 1990 yıllarına dayanmaktadır. Dyneema fiberi üretiminde diğer fiberlerin üretimine göre daha az enerji ihtiyacına olmakla beraber zararsız kimyasallar kullanılmaktadır. İmalat işlemi kolaylıkla geri-dönüşümlü bir proses haline getirilmiş böylece imalattan – proses aşamasına kadar çevresel kirleneme en az düzeyde indirilmiştir.

Polietilen malzemelerde atomlar düzenli bir yönleme göstergememektedir. Kristallenme oranı % 60’dan daha düşük seviyedeşir. Gel-spin prosesi sonucunda polietilen fiberler oldukça yüksek çekme gerilmesine ve modüle sahiptir, % 95’den daha yüksek yönelmeye sahip, kristallenme oranı % 85’e seviyede sahiptir [34].

Günümüzde 3 çeşit Dyneema fiberi geniş kullanım alanlarına sahiptir:

a) Dyneema SK60 : Yüksek mukavemetinin yanı sıra, suda yüzebilme ve sudan etkilenmemeye özellikleriyle denizcilikle ilgili uygulamalarda büyük bir avantaj sağlar [35].

b) Dyneema SK65 : Dyneema SK60 dan yüksek dayanımı ve modüle sahiptir. Yüksek performans ve maksimum ağırlık kazancı gerektiren alanlarda geniş kullanım sahiptir.

c) Dyneema SK66 : Bu fiber balistik koruma sistemlerinde kullanılmak üzere geliştirilmiş olup ayrıca en yüksek seviyede enerji emisyonunu ultrasonik hızlarda gerçekleştirdir. Aşağıdaki tabloda Dyneema ile diğer fiberlerin özellikleri karşılaştırılmıştır.
<table>
<thead>
<tr>
<th></th>
<th>Yoğunluk</th>
<th>Dayanım</th>
<th>Modül</th>
<th>Uzama Miktar</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>g/cm³</td>
<td>N/dex</td>
<td>g/den</td>
<td>N/dex</td>
</tr>
<tr>
<td>Dyneema SK60</td>
<td>0.97</td>
<td>2.8</td>
<td>32</td>
<td>2.7</td>
</tr>
<tr>
<td>Dyneema SK65</td>
<td>0.97</td>
<td>3.1</td>
<td>35</td>
<td>3.0</td>
</tr>
<tr>
<td>Dyneema SK66</td>
<td>0.97</td>
<td>3.3</td>
<td>37</td>
<td>3.2</td>
</tr>
<tr>
<td>Aramid-kompozit</td>
<td>1.45</td>
<td>2.05</td>
<td>23</td>
<td>2.9</td>
</tr>
<tr>
<td>Aramid-balistik</td>
<td>1.44</td>
<td>2.35</td>
<td>26</td>
<td>3.3</td>
</tr>
<tr>
<td>Karbon HM</td>
<td>1.85</td>
<td>1.2</td>
<td>14</td>
<td>2.3</td>
</tr>
<tr>
<td>E Cami</td>
<td>2.60</td>
<td>1.35</td>
<td>15</td>
<td>3.5</td>
</tr>
<tr>
<td>S Cami</td>
<td>2.50</td>
<td>1.85</td>
<td>21</td>
<td>4.6</td>
</tr>
<tr>
<td>Poliamid HT</td>
<td>1.14</td>
<td>0.8</td>
<td>9</td>
<td>0.9</td>
</tr>
<tr>
<td>Polyester HT</td>
<td>1.38</td>
<td>0.8</td>
<td>9</td>
<td>1.1</td>
</tr>
<tr>
<td>Polipropilen</td>
<td>0.90</td>
<td>0.6</td>
<td>7</td>
<td>0.6</td>
</tr>
<tr>
<td>Çelik</td>
<td>7.86</td>
<td>0.2</td>
<td>2</td>
<td>1.77</td>
</tr>
</tbody>
</table>

Şekil 3.13’de Dyneema ve diğer fiberlerin spesifik dayanımları ve dayanımlarına karşılık gelen spesifik modüllerinin karşılaştırılması verilmektedir. Grafikte de gördüğümüz gibi Dyneema en yüksek dayanıma sahip olmasının yanında modülü sadece özel bir karbon fiberinden düşük seviyededir.

Şekil 3.13 Dyneema ve diğer fiberlerin spesifik dayanımları ve dayanımlarına karşılık gelen spesifik modüllerinin karşılaştırılması
Şekil 3.14 Dyneema ve diğer balistik fiberlerin gerilme-gerinim egrileri
Şekil 3.15’i incelediğımızde Dyneema sadece ağırlık kazancı sağlamakla kalmayıp bunun yanında hacimsel olarak da mükemmel bir kazanım sağlaması ile de diğer fiberlerden daha iyi özellik sunmaktadır [36].

Hacime bağlı çekme gerilmesi, GPa

Şekil 3.15 Dyneema ve diğer takviye fiberlerin ağırlığa bağlı çekme gerilmelerine karşılık gelen hacime bağlı gerilmelerinin karşılaştırılması

Tablo 3.14 Çeşitli kimyasallara karşı Dynema ve Aramid fiberlerinin karşılaştırılması

<table>
<thead>
<tr>
<th>6 Aylık Maruz Kalma Süresi</th>
<th>Dynema</th>
<th>Aramid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Damıtılmış su</td>
<td>***</td>
<td>***</td>
</tr>
<tr>
<td>% 10 deterjan</td>
<td>***</td>
<td>***</td>
</tr>
<tr>
<td>Hidroklorikasit(pH = 0)</td>
<td>***</td>
<td>***</td>
</tr>
<tr>
<td>Nitrikasit (Ph =1)</td>
<td>***</td>
<td>*</td>
</tr>
<tr>
<td>Glasial asetikasit</td>
<td>***</td>
<td>***</td>
</tr>
<tr>
<td>Amonyum hidroksit</td>
<td>***</td>
<td>**</td>
</tr>
<tr>
<td>Sodyum hidroksit (pH > 14)</td>
<td>**</td>
<td>*</td>
</tr>
<tr>
<td>Petrol</td>
<td>***</td>
<td>***</td>
</tr>
<tr>
<td>Kerosen</td>
<td>***</td>
<td>***</td>
</tr>
<tr>
<td>Toluene</td>
<td>***</td>
<td>**</td>
</tr>
<tr>
<td>Triklorometan</td>
<td>***</td>
<td>***</td>
</tr>
</tbody>
</table>

*** Etkilenmez ** Az miktarda etkilenir * Ciddi şekilde etkilenir
Şekil 3.16 Ultraviyole ışınlarının etkisiyle Dyneema ve Aramidlerde meydana gelen dayanım kaybı
Şekil 3.17 Alkali ve asitli ortama maruz kalan Dyneema ve Aramidlerde meydana gelen dayanım kaybı
Yüksek molekül ağırlıklı polietylenden üretilen Dyneema fiberi ayrıca mühendislik fiberi olarak da tanımlanır. Mühendislik fiberi olarak Dyneema çok iyi aşınma dayanımına sahiptir.

Dyneema fiberinin erime sıcaklığı maruz kaldığı şartların durumuna göre 144 ile 152 °C arasında değişmektedir. Yüksek sıcaklığı maruz kalan Dyneema fiberinin dayanımında ve modülünde ciddi azalmalar meydana gelir iken sıfırın altında sıcaklıklarda ise sözü geçen özelliklerinde artışlar meydana gelir. Genellikle 80 ile 100 °C arasında kullanımı tavsiye edilmektedir. Fakat yüksek sıcaklıklarla kısa süreli maruz kalırsa fiber özelliklerinde hemen hemen ciddi bir kayıp söz konusu değildir [36].

Tablo 3.15 Dyneema fiberinin bazı termal özellikleri

<table>
<thead>
<tr>
<th>Erime Sıcaklığı</th>
<th>144 – 152 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Termal İletkenliği (fiber eksenli boyunca)</td>
<td>20 W / mK</td>
</tr>
<tr>
<td>Termal Yayınma Sabiti</td>
<td>- 12 . 10⁻⁶ per K</td>
</tr>
</tbody>
</table>

Dyneemanın Ballistik Özellikleri

Balistik korumada en önemli parametreler enerji emme kabiliyeti ve ses ileme hızıdır. Şekil 3.18'de görüldüğü gibi sesi ileme hızı diğer fiberlere göre çok iyidir. Dyneema fiberini delmek için gerekli enerji miktarının diğer fiberlerden yüksek olması ballistik uygulamalar için uygun bir fiber olduğunu gösteresidir (Şekil 3.19) [36].
Şekil 3.18 Balistik alanda kullanılan bazı fiberlerin sesi iletme hızı
Şekil 3.19 Balistik alanda kullanılan bazı fiberlerin darbe dayanımları
Diğer önemli bir parametre de meydana gelen çökünü miktarının etkisidir. Fiber içinde sesi yüksek hzlarda iletme kabiliyeti darbe enerjisinin geniş bir alanda dağıtılmasına, çökünü çapının genişlemesine, çapın genişlemesi ile çökme derinliğinin diğer bir deyişle travmanın azalmasına yol açar. 9 mm merminin etkisiyle meydana gelen çökünü miktarı aramidden daha az seviyedir.

Dyneema UD66 fiberi balistik koruma sistemlerinde yaygın olarak kullanılan fiberdir. Şekil 3.20’de Dyneema UD66’ın mikroyapısını görmekteyiz. UD66 fiberi tek yönlü (eksenli) yapıya sahip değildir, iplikler birbirlerine paralel uzanmaktadır [36].

Şekil 3.20 Dyneema UD66 fiberinin mikroyapısı

Dyneema UD66 dan imal edilen yelekler, örgü karakterine sahip olmayıp çok düşük ağırlığa sahiptir. Bu yelekler mermilerin yanı sıra bomba, elbombası, hava gibi parçacık etkisine sahip mühimmatı karşı da balistik koruma sağlar. Şekil 3.21’de, 9 mm parabellum mermisinin Dyneema UD66 fiberinden imal edilen yelege karşı etkisini görmektedir. Açıkça görüldüğü gibi Dyneema UD66 dan imal edilen yelekler Aramid esaslı yeleklere göre, daha düşük ağırlıklarda daha yüksek hzlardaki mermilere karşı daha iyi balistik koruma sağlar [36].
Şekil 3.21 9 mm parabellum mermisine karşı Dynema ve Aramid esaslı koruyucu yeleklerin V50 hızlarının karşılaştırılması
Dyneema UD66 dan imal edilen başlıklar normalde parçacıklara karşı koruma sağlamalarını için dizayn edilmiştir. Değişik formdaki ve değişik matris sistemine sahip Dyneema fiberleri 1.1 gramlık mermilerle test edilmiştir. En iyi sonucu termoplastik reçineli matris sistemi vermektedir [36].

<table>
<thead>
<tr>
<th>Başlık Tipi</th>
<th>Kabuk ağırlığı [g]</th>
<th>V50 Seviyesi (m/s)</th>
<th>Enerji Emme [J (kg/m²)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dyneema SK66 kompozit</td>
<td>850</td>
<td>580</td>
<td>26</td>
</tr>
<tr>
<td>Dyneema SK66 / çelik kombinasyonu</td>
<td>1280</td>
<td>625</td>
<td>21</td>
</tr>
<tr>
<td>PASGT aramid kompozit</td>
<td>1300</td>
<td>620</td>
<td>19</td>
</tr>
<tr>
<td>Deneysel aramid başlık (İngiliz)</td>
<td>1020</td>
<td>610</td>
<td>25</td>
</tr>
<tr>
<td>Poliamid kompozit</td>
<td>900</td>
<td>350</td>
<td>10</td>
</tr>
<tr>
<td>Geleneksel çelik başlık</td>
<td>1470</td>
<td>430</td>
<td>8</td>
</tr>
</tbody>
</table>

Tablo 3.16 Değişik askeri başlıkların balistik performanslarının karşılaştırılması

Spectra

Allied Signal şirketi tarafından 80’li yılların başında piyasaya sürülen Spectra fiberi UHMW Polietilen olup jel-eğime prosesi sonucunda üretilmektedir. Çelikten 10 kat daha iyi dayanma sahip olmasının yanında dayanımı aramidlerden % 40 daha iyidir. Piyasaya sürülen Spectra fiberi mükemmel özelliklerele günümüzde havalıkta, spor malzemelerinde ve askeri alanda geniş kullanma sahiptir [37].

Polietilen fiberlerin en büyük dezavantajları düşük erime sıcaklığına sahip olmaları (147 °C – 297 °F) ki kullanım şartlarını büyük oranda etkilemektedir. Genellikle polietilen fiberler 100 °C (212 °F) nin altında kullanılmaktadır. Dolayısıyla polietilen fiberlerin bir üyesi olan Spectra fiberler aynı hassasiyeti yaşamaktadır. Aşağıdaki
grafikte gördüğümüz gibi artan sıcaklıkla birlikte Spectra fiberinin modülü ve dayanımı azalmaktadır. Bu grafiği Kevların 41 nci sayfadaki grafiği ile karşılaştırdığımızda artan sıcaklık Spectra fiberin dayanımında ve modülünde daha büyük kayıplara yol açmaktadır (Şekil 3.22-23) [27].

![Sıcaklık vs. Dayanım Grafik](image)

Şekil 3.22 Yüksek sıcaklıklarda Spectra fiberinin dayanımında meydana gelen azalma
Sekil 3.23 Yüksek sıcaklıklarda Spectra fiberinin modüldünde meydana gelen azalma

Spectra fiberi oldukça düşük yoğunluga sahiptir. Yoğunluğunun 1 den düşük olmasından dolayı (0.97) suda yüzebilen nadir fiberlerden birisidir ve aramid fibere göre yoğunluğu üçte ikisi seviyesindedir.

Spectra fiberi aramidler gibi aynı mikroyapıya sahiptir. Fiberler arasında zayıf Van Der Waals bağları bulunduğundan dolayı basma kuvvetlerine karşı zayıftır.

Spectra fiberi elektriksel olarak yalıttan karaktere sahiptir. Dielektrik sabiti 2.2 iken bu sabit aramid fiberleri için 3.85, E-camu için 6.31 dir. Spectra fiberi beyaz renkte olup radar, sonar ve X ışınlarını geçirebilmektedir [27].

Spectra fiberi inert karaktere sahip olduğundan dolayı birçok organik çözücülere ve değişik kimyasallara karşı mükemmel dayanım gösterir. Aşağıdaki tabloyu incelediğimizde Spectra fiberi Aramide göre olağanüstü kimyasal dayanımı sahiptir [27].

<table>
<thead>
<tr>
<th>Kimyasallar</th>
<th>Dayanım Azalması, %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Spectra</td>
</tr>
<tr>
<td></td>
<td>6 ay (4380 saat)</td>
</tr>
<tr>
<td>Deniz suyu</td>
<td>100</td>
</tr>
<tr>
<td>Hidrolik sıvı</td>
<td>100</td>
</tr>
<tr>
<td>Kerosen</td>
<td>100</td>
</tr>
<tr>
<td>Gasolin</td>
<td>100</td>
</tr>
<tr>
<td>Toluen</td>
<td>100</td>
</tr>
<tr>
<td>Asetik asit</td>
<td>100</td>
</tr>
<tr>
<td>1M Hidroklorikasit</td>
<td>100</td>
</tr>
<tr>
<td>5M Sodyumhidroksit</td>
<td>100</td>
</tr>
<tr>
<td>Amonyumhidroksit</td>
<td>100</td>
</tr>
<tr>
<td>Perkloroetilen</td>
<td>100</td>
</tr>
<tr>
<td>% 10 deterjan solusyonu</td>
<td>100</td>
</tr>
</tbody>
</table>

** : Test etmek için çok zayıf

Tablo 3.18 Spectra 1000 fiberinin özellikleri [38]

<table>
<thead>
<tr>
<th>Ağrılık/Birim Uzunluk(Denier)</th>
<th>375</th>
<th>550</th>
<th>1100</th>
<th>1300</th>
</tr>
</thead>
<tbody>
<tr>
<td>Çekme gerilmesi (GPa)</td>
<td>3.00</td>
<td>3.25</td>
<td>3.08</td>
<td>3.00</td>
</tr>
<tr>
<td>Modül (GPa)</td>
<td>103</td>
<td>111</td>
<td>107</td>
<td>98</td>
</tr>
<tr>
<td>Uzama, (%)</td>
<td>3.1</td>
<td>3.1</td>
<td>3.3</td>
<td>3.4</td>
</tr>
<tr>
<td>Yoğunluk (g/cm³)</td>
<td>0.97</td>
<td>0.97</td>
<td>0.97</td>
<td>0.97</td>
</tr>
</tbody>
</table>

Tablo 3.19 Spectra 2000 fiberinin özellikleri [39]

<table>
<thead>
<tr>
<th>Ağrılık/Birim Uzunluk(Denier)</th>
<th>100</th>
<th>130</th>
<th>180</th>
<th>195</th>
</tr>
</thead>
<tbody>
<tr>
<td>Çekme gerilmesi (GPa)</td>
<td>3.34</td>
<td>3.25</td>
<td>3.25</td>
<td>3.21</td>
</tr>
<tr>
<td>Modül (GPa)</td>
<td>124</td>
<td>113</td>
<td>116</td>
<td>113</td>
</tr>
<tr>
<td>Uzama, (%)</td>
<td>3.0</td>
<td>2.8</td>
<td>2.9</td>
<td>2.9</td>
</tr>
<tr>
<td>Yoğunluk (g/cm³)</td>
<td>0.97</td>
<td>0.97</td>
<td>0.97</td>
<td>0.97</td>
</tr>
</tbody>
</table>
4. BKE TEORİSİ VE TASARIM KRİTERLERİ

4.1 BKE Teorisi

Balistik koruyucu tasarımının esasını bir fibere uygulanan balistik çarpma teorisi oluşturmaktadır. Balistik koruyucuya uygulanan herhangi bir balistik çarpma aşağıdaki şekilde sonucu doğurmaktadır.

Balistik çarpma anında, koruyucu yüzeyinde, dışa doğru ve mermi hareket yönüne dik olarak hareket eden bir şok dalgası meydana gelir. Bu şok dalgasının hızı, mermi hızıyla doğru orantılı olup, hız arttıkça mermiyle etkileşime giren fiber sayısı da artar. Yanı hasar alanı genişler [22].

Mermi koruyucuya çarpışında, koruyucu malzeme şiddeti mermi hızıyla doğru orantılı olarak değişen bir çekme kuvvetine maruz kahr ve içeri doğru çıktığu oluşturulur.

Toplam emilen enerji, dışa ve içe doğru ilerleyen şok dalgasının arkasında oluşan deformasyon enerjisine eşittir.

Yapılan denemeler sonucu, para-aramid fiberlerin, sıvı uçlu ve zirh delici mermilere göre karşı korumada daha etkili olduğu ortaya çıkmıştır.

Fiberlerin çekme mukavemeti, aynı zamanda balistik çarpmaya mukavemetini belirleyen en önemli özellikleridir. Burada fiberin dinamik modülü ve topluğu esas teşkil etmektedir.

Yüksek enerjili mermileri durdurmak için seramik ile Para-aramid veya "yüksek moleküler ağırlıklı polietilen" den oluşan kompozit koruyucular kullanılmaktadır. Burada esas olan, belir bir hız ve enerji sınırını aşan, ucu sivi veya çelik uçlu mermileri durdurmak için, merminin bu özelliklerini bozucu, ortadan kaldırıcı bir etki yapacak sert ve balistik koruyucu özelliklerine haiz bir malzemenin ön koruyucu olarak kullanılması ve bu yolla hızı ve enerjisi azalmış, ucu kütleştirmişi veya
çarpma öncesi sert olan çekirdeği parçalanmış merminin arkaya konulan kompozit yapıyla (back-up) tutulmasıdır. Bu tasarımda ön koruma olarak Al₂O₃, Alümina, SiC Silikon Karbayt veya B₄C Boron Karbayt gibi seramik plakalar kullanılacağı gibi yüksek sertlikteki (70 – 90 RC) çelik veya balistik amaçlı Alüminyum plakalar kullanılabilir.

Bu plakanın arkasına uygulanılan kompozit yapısı (back-up) içinde polyester gibi zayıf bir reçine sistemiyile takviye edilmiş para-aramid veya cam elyafı kumaş veya yüksek moleküler ağırlıklı polietilen kullanılabilir. Böylece öndeki plaka, uygulanan çarpmının etkisini azalırken arkadaki kompozit yapısı (back-up) geriye kalan mermi ve seramik parçalarını tutar. Ön plaka ve back-up miktarları (kalınlıkları) merminin tehdit seviyesine göre ayarlanır.

Balistik koruyucular, sadece mermiyi durdurmak için değil, aynı zamanda mermi durdurulurken emilen enerjiyi dağıtacak şekilde dizayn edilirler. Çünkü emilen enerjinin yüzeye iyi dağıtılamaması nedeniyle oluşabilecek travmatik şok da ciddi yaralanmalara sebeb olabilir.

Balistik koruma seviyesi, V50 balistik limiti kavramıyla tanımlanmaktadır. V50 balistik limiti, teorik olarak, bir koruma sisteminin, atılan mermileri koruyucu katmanlarının arasında durduracak şekilde dizayn edilmesidir. Bir koruyucuya atılan parçalardan % 50 sinin koruyucuyu tamamen deldiği, % 50’ sinin delmediği andaki 1.1 gram (17 grain)’ lik parçacığın hızı, bu koruyucunun V50 (m/s) limitidir. Yapısal sınıflandırmada V50 limitinin altında kalan mermiler bu koruyucu tarafından durdurulacaktır. V50 testinin nasıl yapılacağı STANAG 2920 ile belirlenmiştir [22].

4.2 Uygun Malzeme Seçim Kriterleri

onların tasarım aşamaları içerisinde nasıl en iyi kullanılabileceğini bilinmesidır. Bu amaçla yapılacak tasarımında hangi malzemenin en uygun malzeme olduğunu belirlemesi için, malzeme seçim kriterlerinin bilinmesi gerekliyor. BKE teknolojisinde malzeme seçim kriterleri olarak;

- Ağırlık
- Balistik performans
- Malzeme maliyeti
- Kullanım rahatlığı
- Kullanma ömrü
- Çevre faktörlerinden etkilenme
- Kimyasallardan etkilenme

özellikleri göz önünde bulundurulmalıdır.

BKE tasarımında, ağırlık, koruma seviyesi, kullanım rahatlığı ve maliyet dengesinin kurulması gerekmektedir. Örneğin, gereğinden fazla koruma seviyesi istendiğinde, kullanılabacak koruyucu malzeme artacağından; personelde kullanım rahatlığı ortaya çıkacak, ağırlık ve maliyet artacaktır. Başka bir örnek vermek gerekirse, ucuz olduğu için balistik performans / ağırlık oranı düşük olan bir malzeme seçilirse daha hafif olabilecek bir koruyucu, maliyeti düüsemek amacıyla ağırlaştırılmış olacaktır [22].

Şekil 4.1 Tasarım desteği

[Diagram: Ağırlık, koruma seviyesi, tasarım, kullanım rahatlığı, maliyet]
BKE tasarımında yumuşak koruyucularda kullanılan kumaşların iplik mukavemeti yanında, diğer kumaş özelliklerinin de etkisi vardır. Aynı iplikten dokunan iki kumaşın balistik performansları aynı olmayabilir. Kumaşın dokuma tipi, iplikçik sayısı, atki çözu sayısı, yüzey işlemesi gibi özellikleri de balistik performansı etkilemektedir. Bu durumda aşağıdaki şema dikkate alınmalıdır [22].

Şekil 4.2 Balistik dayanım

4.3 Mermi Özelliklerinin Tasarına Etkisi

Gelişen teknolojinin de yardımcıla, değişik silahlar için, hız, şekil, çekirdek yapısı gibi özellikleri birbirinden çok farklı, değişik amaçlara hizmet eden birçok mermi türü geliştirilmiştir. BKE’den da böyle çeşitli gösterten mermilere karşı koruma sağlanaları beklenmektedir. Her alanda gelişen teknoloji, balistik koruyucu özelliğine sahip malzemelerde de atış yapmış ve tasarımcıya yüksek performanslı malzemeler sunulmuştur. Bunlardan başlıcalar; Para-aramid, UHMWPE, Fiberglass fiberleri, Alimüna, Silis-karbür, Bor-karbür seramikleri, Balistik amaçlı çelik ve Alüminyum gibi metaller vb.’dir. Tasarım esnasında balistik koruyucu malzemelerin özelliklerini bilmek kadar, tehlike arz eden mühimmatın özelliklerini bilmek de gereklidir. Göz önünde bulundurulması gereken başlıca mermi özellikleri şunlardır:

- Mermi çekirdeğinin sertliği (çelik, kırışın, bakır, vb)
- Merminin ucunun sivri veya kut oluşu
- Çekirdek ağırlığı
- Mermi hızı
- Çokluğu yapma etkisi
- Delme etkisi
- Ateşlendiği namulu uzunluğu

Mermi çekirdeğinin sertliği arttıkça delme gücü de buna bağlı olarak artar. Çünkü merminin durdurulabilmesi, mermi çekirdeğinin çarpma anında ezilmesi ve yayılanması oranında mümkündür. Bu nedenle sert uçlu mermilerin yumuşak koruyucularla durdurulması düşünülmemektedir. Bu mermiler zırh delici (AP) olarak tanımlanmakta olup, çekirdekleri genellikle çelikten yapılır ve ancak seramik veya metal gibi sert koruyucularla durdurulabilir.

Yukarıda açıklanan aynı sebepten dolayı küt uçlu mermilere göre sivri uçlu mermileri durdurmak daha zordur. Bunlar için sert koruyucu kullanmak daha uygundur.

Mermi hızı ve çekirdek ağırlığı, merminin çarpma anındaki enerjisini göstermektedir. Bu da çarpmanın şiddetini belirler. Tasarında, karşısında konulacak merminin enerjisine göre, uygun miktarda koruyucu malzeme kullanmak gerekir. 300 J enerjiye sahip bir mermi için 4 kg/m² lik koruyucu kullanılbsa, 330 J enerjili mermi için aynı alçakta 4.4 kg/m² lik bir koruma gerekir.

Merminin çekirdeğinin büyük veya küçük oluşu ve çarpma anında mermi çekirdeğinin uğradığı tahribatın çeşidi, çarpma sonrasında oluşacak çokluğu veya koruyucuda oluşan delinme miktarını belirler. Uygun yumuşak olan mermi çekirdekleri çarpma anında iyice yayılanacagından koruyucunun ilk katlarında kalır ancak büyük miktarda çokluğu yaratır. Aksi davranış gösteren mermiler ise daha fazla delinmeye sebep olur. Çokluğu yaratılan mermilere .357 magnum JSP, delinme yaratılan mermilere ise 9 mm tombak kaplı mermi örnek verilebilir.

Herhangi bir koruyucu tasarımında yapılmadan önce bütün bu etkenler dikkate alınmalı, gereken testler yapılmalı ve ondan sonra karar verilmelidir.
4.4 Savaşlarda Kayıp İstatistikleri

İnsanın kendini dış etkenlerden koruma ihtiyacı'nin doğmasıyla, vücudun hangi bölgesini hangi seviyede korumak gerektiğini problemi ortaya çıkmıştır. Bu sorulara cevap verirken tehlike arz eden mühimmatın cinsi ve hangi oranda etki ettiği bilinmelidir. Savaş esnasında, konvansiyel silahlar kullanıldığı gibi çok ileri teknolojilerin kullanıldığı ve karşı güçlerin topyekün ortadan kaldırılmasına yol açan silahlarda kullanılmaktadır. Burada anlatılan BKE'lar, bu silahlardan yalnızca tabanca, tüfek, el bombası ve mayın gibilerine karşı kullanılmaktadır.

Yukarıda sorulan sorulara ışık tutmak ve en uygun koruyucu kombinasyonunu seçmek için savaşlardaki kayıp istatistiklerine bakmak gereklidir. Aşağıda verilmiş olan grafikten de anlaşılacağı gibi Vietnam savaşında koruyucu teçhizat kullanılan personel 9900 kayıp verirken, kullanmayanlar 35800 kişi kayıp vermiştir [22].

VIETNAM

![Grafik](image)

Şekil 4.3 Vietnam savaşı istatistiği

Bu grafikten de anlaşılacağı gibi Balistik koruyucu yelek ve mişfer kullanan kuvvetler % 70 – 80 daha az kayıp vermektedir. Aşağıda verilen grafiklerin de gösterdiği gibi koruyucu teçhizat sadece ölümleri değil yaralanmaları da azaltmaktadır.
LÜBNAN

KORE

Şekil 4.4 Lübnan ve Kore savaşlarının istatistikleri

Şekil 4.5 Vietnam savaşına göre vücudun bölgelerine bağlı kayıp istatistikleri

Yukarıda verilen oranlar, içinde bulunan savaşın türüne göre değişebilir. Ayrıca ifa edilmekte olan göre göre de koruyucuların tipi değişmektedir. Örneğin, nöbet tutmakta olan personele vücudun bütün bölgelerini kapatans bir koruyucu uygunsu, arazi taraması yapan personele, hareket etkinliğini azaltmayacak türde bir koruyucu daha uygundur.

4.5 BKE Tasarımı

4.5.1 Yumuşak Koruyucu Tasarımı

göre bir tasarım yapılmalıdır. İstekler yapılarırken o günkü teknolojinin sunduğu imkanlar göz önünde bulundurulmalıdır. Örneğin 12.7 mm lik mermiye karşı bir balistik koruyucu yelek istenirse, bu günkü teknolojiyle 20 kg ağırlığı olacağını ve bunun tasarımının mümkün olmayacağını istek makaminca bilinmeliydi. Bu bilgiler işiğında, aşağıdaki bölümlerde tasarımın ayrıntıları açıklanmıştır. Bir tasarım yapılmadan önce bunlara dikkat edilmesi gerekmektedir [22].

4.5.1.1 Kumaş Özelliklerinin Koruyucu Tasarımına Etkileri

Günümüzde yumuşak koruyucu denince akla ilk gelen malzemeler Para-aramid ve UHMW Polietylen kumaşlardır. Cam elyafı kumaşlar ise artık bu amaçla kullanılmamaktadır.

Bu kumaşların kullanıומה asıl amaç belirli bir mühimmat çeşidine karşı koruma sağlamaktadır. tasarımıda birinci planda mermi ve kumaş özelliklerinin dikkate alınması gerekmektedir. Yapılan deneyler sonucu bu amaç yönelik bir çok veri ortaya çıkmıştır. Tabanca ve makinalı tabanca mermilerine karşı 280 gr/m², 12.7 x 12.7 iplik/cm, 1100 dtex, 235 CN/Tex Para-aramid kumaş veya 155 gr/m², 440 dtex, 3100 CN/tex UHMW Polietylen kullanmak gerekmektedir. Sadece parça tesirine karşı ise 190 gr/m², 11.3 x 11.3 iplik/cm, 840 dtex, 235 CN/Tex Para-aramid kumaş veya 167 gr/m², 17.5 x 17.5 iplik/cm, 440 dtex UHMW Polietylen kumaş kullanmak daha uygundur. Yumuşak koruyucu imalinde kullanılacak olan Para-aramid kumaşlar ZEPPEL gibi bir madde ile su geçirmez apre yapılmalıdır. Çünkü Para-aramid kumaşlar nemden kötülük yilde etkilenmektedir. Aynı şekilde UHMW Polietylen kumaşlar da katların birbirleri üzerinde kayımlarını sağlamak amacıyla polietylen filmlle kaplanmalıdır. Kullanım yerine uygun olmayan bir malzeme
seçildiğinde, travma etkisinin artması, malıyet artması, ağırlığın artması, delinme gibi sonuçlar söz konusu olmaktadır [22].

Bunlardan başka, kullanılabilecek kumaş kat sayısını çok iyi ayarlamak gerekmektedir. Bunun için uygulanacak yöntem şöyle olmalıdır.

- Koruma sağlaması gereken mühimmat seçilir.
- Daha önceki test sonuçları incelenir.
- Firmaların önerdiği miktarlar incelenir.
- Koruma sağlaması gereken mühimmatın enerji seviyesi, ucunun şekli vb. özelliklere göre oranlama yoluyla eski bilgilerden kullanılabilecek kat sayısını hesaplanır.
- İhtiyaç makaminin istediği delinme, mukavemet, çöküntü ve ağırlık değerleri ile karşılaştırma yapılır.
- Tabanca koruyucu kat sayısı bulunur.
- Öngörülen mühimmatla numune üzerinde testler yapılır.
- Test sonucuna göre gerekli ayarlama yapılır ve en son olarak kat sayısını kesinleştirilir.

Ancak imalat için alınacak asıl malzeme de aynı testlerden tekrar geçirilmelidir. Kullanılacak kat sayısının, kumaşin alan ağırlığıyla çarpılmasıyla bulunur. Kg/m² birimiyle verilen bu değer bir çok kodunda koruma seviyesinin bir göstergesi olarak da verilmiştir [22].

Bir mermi için bilinen ve kullanıldığıında istenen performansı veren bir koruyucunun Kg/m² değeri, aynı merminin değişik hızda olanı için yapılacak tasarım ışık tutabileceğiktir. Şöyle ki, .357 magnum JSP mermisinin 425 m/s hızda olan tipi için 6.2 Kg/m² lik, 280 gr/m² kumaştan yapılmış olan koruyucunun ihtiyacı karşıladığı ispatlanmış ise aynı merminin 380 m/s hızda olanı için kullanılanı gereken Kg/m² değeri bulunabilir. Burada hızların karelerinin oranı koruyucularınin Kg/m² lerinin oranını vermektedir.

\[
\frac{(425)^2}{(380)^2} = \frac{6.2}{x} \Rightarrow x = 4.96 \text{ Kg/m}^2
\]

(4.1)
Yukarıda yapılan basit bir hesapla 380 m/s hızdaki .357 magnum JSP mermisi için gereken koruyucu miktarı bulunmaktadır. Bu değerden kat sayısı şöyle bulunur:

\[
\text{Koruyucu Miktarı} = 4.96 \text{ kg/m}^2
\]

\[
\text{Kumaş Alan Ağırlığı} = 0.28 \text{ kg/m}^2
\]

\[
\text{Kat Sayısı} = \frac{\text{Koruyucu Miktarı}}{\text{Kumaş Alan Ağırlığı}} = 17.7 \sim 18 \text{ kat} \quad (4.2)
\]

Burada gereken kat sayısı 18 kat olarak bulunmuş olur.

Birbirinden farklı mermiler arasında bu tür bir hesap yapılması gerektiğinde, mermilerin enerjilerinin oranı esas alınmalıdır. Yukarıdaki örnekte verilen bilgiler ışığında 9 mm, 7.45 gr çekerdek ağırlığına ve 400 m/s hız sahip bir mermi için gereken kat sayısı şöyle hesaplanır.

.357 Mag. JSP, 10.2 gr, 425 m/s, 6.2 kg/m² bilgisi mevcuttur. 9 mm, 7.45 gr, 400 m/s mermisi için koruyucu miktarı ve kat sayısı bulunmaktadır.

\[
E'_k = E_k(0.357 \text{ Mag.}) = \frac{1}{2} \times (10.2 \times 10^{-3}) \times (425)^2 = 921 \text{ J} \quad (4.3)
\]

\[
E'_k = E_k(9 \text{ mm}) = \frac{1}{2} \times (7.45 \times 10^{-3}) \times (400)^2 = 596 \text{ J} \quad (4.4)
\]

Yukarıda hesaplanan kinetik enerjileri ile koruyucu miktarları arasında doğrusal ilişki mevcuttur ve buradan hareketle gerekli koruyucu miktarı bulunur.

\[
\frac{E'_k}{E_k} = \frac{921}{596} = 6.2/x \Rightarrow x = 4.01 \text{ kg/m}^2 \quad (\text{koruyucu miktarı}) \quad (4.5)
\]

Hesaplanan koruyucu miktarının kumaş alan ağırlığına oranlanması sonucu gerekli kat sayısını buluruz.

\[
\text{Kat Sayısı} = \frac{4.01}{0.28} = 14.3 \text{kat } \sim 15 \text{ kat} \quad (4.6)
\]

9 mm, 7.45 gr mermisi için 280 gr/m² lik kumaştan 15 kat kullanmak gerekmektedir.

Aynı yöntem kullanılarak verilen bir kg/m² (koruyucu miktarı)’nin belli bir mermiye hangi hızda kadar durdurabileceği de hesaplanabilir.

Bu tür hesaplar yapılırken, her hesaptan sonra koruyucunun ağırlığı, balistik performansı, malzeme maliyeti, kullanım rahatlığı vb. özelliklerini kontrol edilmelidir. İstemeneyen sonuçları gidermek için tasarımda geriye dönülerek düzeltmeler
yapılmalıdır. Mühim olmuyorsa ihtiyaç makamıyla görüşülecek durum bildirilmeli ve seçenekler gösterilerek mümkün olan en iyi sistemin seçimi yapılmalıdır.

Tasarımda önemli bir yer tutan ağırlık konusu tek başına değerlendirilmelidir. Aynı koruma seviyesindeki iki balistik koruyucu yelek karşılaştırılırken ağırlıkları ile birlikte koruma alanları da göz önünde bulundurulmalıdır.

Burada karşılaştırılacak değer ağırlığın (gram) koruma alanına (cm²) oranı olmuştur. Bu oranın düşük olduğu yelekler diğerlerine göre daha üstündür. Bunun daha iyi görülebilmesi için aşağıda değişik yelekler karşılaştırılmiştir.

Tablo 4.1 Çeşitli yeleklerin balistik performanslarının karşılaştırılması

<table>
<thead>
<tr>
<th>Yelek No</th>
<th>M Yelek Ağırlığı (gr)</th>
<th>A Yelek Koruma Alanı (cm²)</th>
<th>M/A (gr/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9000</td>
<td>650</td>
<td>13.8</td>
</tr>
<tr>
<td>2</td>
<td>8000</td>
<td>550</td>
<td>14.5</td>
</tr>
<tr>
<td>3</td>
<td>9500</td>
<td>750</td>
<td>12.7</td>
</tr>
<tr>
<td>4</td>
<td>8800</td>
<td>630</td>
<td>14.0</td>
</tr>
<tr>
<td>5</td>
<td>6000</td>
<td>400</td>
<td>15.0</td>
</tr>
</tbody>
</table>

Yukarıdaki tabloda da görüleceği gibi 3 nolu yelek diğerlerinden daha ağır olmasına rağmen (M/A) oranı en düşük, yanı en iyi seçenektir. Bu karşılaştırma yapılırken ifa edilecek görevin gerektirdiği minimum koruma alanı seçmeye özen gösterilmelidir. Çünkü, gereğinden fazla koruma alanına sahip bir tasarımın seçilmesi, yelek ağırlığının ve maliyetinin artmasına sebep olmaktadır [22].

4.5.1.2 Değişik Kumaşların Kombinasyonu İle Tasarım (Hibrit)

Herhangi bir yumuşak koruyucuda tek tür koruyucu malzeme kullanılabildiği gibi, aynı kompozit koruyucularda olduğu gibi birden fazla malzemenin kombinasyonları da kullanılabildir. Bu yolla, bir malzemenin yumuşaklığı diğerinin çöktüğü (travma) azaltma etkisi gibi özellikler aynı yerde toplanmış olur. Boylece bir çeşit malzemenin tek başına veremediği özellikleri aynı yelekte toplamak mümkün olmaktadır. Örneğin, 6.2 kg/m² lik 280 gr/m² Para-aramid kumaşın yapılmış olan koruyucuya .357 mag. JSP 425 m/s’ lik mermi ile ateş edildiğinde travma derinliği 30 – 35 mm
arasında değişmektedir. Yine 6.2 kg/m² lik, UHMWPE 155 gr/m² kumaştan yapılmış olan koruyucuda ise aynı testin sonucu 20-25 mm olmaktadır. Çokıntılı miktarını düşürmek istediğimizde, yukarıda bahsedilen iki koruyucunun belli oranlarda birleştirilmeleri ile yapılan koruyucular 30-35 mm den daha iyi sonuçlar verecektir. Sadece UHMWPE tek başına kullanıldığında rahatsız verecek derecede sert olmaktadır ve hareketleri kısıtlanmaktadır. İki malzeme belli oranlarda karışım olarak kullanıldığımızda, bu malzemelerin mukavemet, rijitlik, elastik, yoğunluk, balistik performans, maliyet, rahatlık gibi özellikleri de aynı oranda karşıtırılmış oluruz. Bu da daha üstün özelliklere sahip koruyucular elde etmek için iyi bir yoldur.

Genelde imalatçılar yaptıkları yeleklere kullandıkları malzemeleri bu şekilde değiştirerek değişik özelliklere ürünler ortaya çıkarmaktadırlar. Bu tür yelek hafif ve pahalı iken, diğerleri daha ağır ama daha ucuz olabilmektedir. İhtiyaç sahipleri açısından, ürün çeşitliliğinin sağlanması gerekmektedir. Böylece her kullanım amaçına yönelik en uygun koruyucunun seçimi kolaylaşmakta ve görevin ifasına katkıda bulunmaktadır [22].

Şimdi bu uygulamaya bir örnek verelim. Para-aramid ve UHMWPE kullanılarak bir ihtiyacın nasıl karşılanıdığını görelim.

İhtiyaç : .357 Mag JSP m/s mermisine karşı 30 mm.lik bir çokıntılı limiti sağlayan bir koruyucu istenmektedir.

Para-aramid’in performansı : 6.8 kg/m² lik koruyucu miktari ile 30 mm çokıntılı şartını karşılamaktadır.

UHMWPE’ nin performansı : 6.0 kg/m² lik koruyucu miktari ile 30 mm çokıntılı şartını karşılamaktadır.

Yukarıda iki malzemenin % 50 - % 50 oranlarında birleştirilmeleri ile oluşan yeni hibrit koruyucunun performans değerleri aşağıda verilmiştir.
Tablo 4.2 Balistik koruyucu sistemlerde hibrit yapının diğer yapılarla karşılaştırılması

<table>
<thead>
<tr>
<th>Özellikler</th>
<th>Para-aramid</th>
<th>UHMWPE</th>
<th>% 50 - % 50 Karışım</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kumaş Cinsi</td>
<td>280 gr/m²</td>
<td>155 gr/m²</td>
<td>Önde para-aramid</td>
</tr>
<tr>
<td>1 m² ağırlığı, kg</td>
<td>6.8</td>
<td>6.0</td>
<td>6.4</td>
</tr>
<tr>
<td>Çöküntü değeri, mm</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Maliyet, S/m²</td>
<td>324</td>
<td>351</td>
<td>337.5</td>
</tr>
<tr>
<td>Rahatlık</td>
<td>İyi</td>
<td>kötü</td>
<td>Orta</td>
</tr>
</tbody>
</table>

Yukarıdaki tabloyu incelediğimizde; maliyet açısından UHMWPE, rahatlık açısından ise Para-aramid kumaş daha cazip özelliklere sahiptir. Fakat maliyet-kullanıcı rahatlığı dengesi beraber düşünülündüğünde ise hibrit sistemin daha uygun olduğu açıkça görülmektedir.
5. BALİSTİK KOMPOZİT BAŞLIK VE KORUYUCU YELEK

5.1 Balistik Miğferin Önemi

İnsanlar çağlar boyu savaştılar, kendini daha iyi korumak için, başını ve vücutunu zirh ile koruma yollarını araştırmıştır. Milattan önceki yıllarda kalın deriden yapılan zirhlar, orta çağlarda yerini şövalyelerin bakır ve demirden yapılan zirhlarına bırakmıştır. Zırhlannmada bütün vücutun korunması önemli olmakla birlikte, daha hassas oluştu ve tüm vücuta kumanda edişi nedenleri ile, başın korunması daima ön planda gelmiştir.

Şekil 5.1 Miğfer evriminin uzun yolu

XX. yüzyılın başında, bugün anladığımız anlamda balistik miğfer, özellikle çeşitli top mermilerinin savurduğu parçacıklardan baş bölgesini korumak amacı ile, askerin standart teçhizatı arasına girmiştir. Miğfer yapımında kullanılan alışılmış çelikler, 1970’li yıllardan itibaren yerlerini önce çeşitli naylon türevlerine, daha sonra Kevlar’ın piyasaya çıkması ile Aramid kumaş-reçine kombinasyonuna ve nihayet yüksek yoğunluklu Polietilenin devreye girmesi ile, bugünkü “Gelişmiş Kompozit” türlerine bırakmıştır. Bugün modern miğfer üretimine hakim olan iki ana malzeme,
çelikten en az on defa daha mükavim olan Aramid ve Polietilen türveleridir. Özellikle ABD Savunma Bakanlığı Sağlık Dairesince Kore ve Vietnam çatışmalarına dayanarak yayınlanan istatistiklerde, yaralanma ve ölümlerin nedenlerine göre yapılan araştırmada, % 75'nin parça tesirlerinden kaynaklandığı belirtilmektedir. Yine aynı istatistiklerde ölüm yol alan parça tesiri yaralanmalarının isabet bölgesine göre yapılan ayrımda baş bölgesine vaki isabetlerin sebep olduğu kayıpların % 45 gibi oldukça yüksek bir yer tuttuğu görülebilir (Şekil 5.2).

![A-Nedenlere Göre]

45% 55%

![B-İsabet Bölgesine Göre]

Şekil 5.2 Kore ve Vietnam savaşı istatistiklerine göre yaralanma ve ölümlerin dağılımı

Bu iki istatistiksel veri beraberce yorumlandığında, yaralanma ve ölümlerin üçte birinin başa isabet eden şarapnel, roket ve kaya parçaçıklarından ileri geldiğini söylemek mümkün olmaktadır. Şarapnel, roket ve diğer silahların, patlama ve koparma yolu ile yaydıkları parçaçıklar incelendiğinde çok büyük bir bölümünün bir gram' dan daha hasıf olduğu görülecektir (Tablo 5.1) [40].
Tablo 5.1 Parçacıkların ağırlık yönünden dağılımı

<table>
<thead>
<tr>
<th>Ağırlığı / Gram</th>
<th>Yüzdesi</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1 – 1.0</td>
<td>% 77</td>
</tr>
<tr>
<td>1.0 – 10.0</td>
<td>% 21</td>
</tr>
<tr>
<td>10.0 -</td>
<td>% 62</td>
</tr>
</tbody>
</table>

Halen yürürlükte olan çeşitli Stanag ve standartlarda, parçacıkların balistik tesirlerini ölçekte 1.1 gramlık metal çekirdekler kullanılması bir tesadüf eseri olmayıp muhtemelen bu istatistik değerden kaynaklanmaktadır. Sonuç olarak, bugünkü gelişim çizgisi içerisinde miğerlerin tasarım ve değerlendirilmelerinde en önemli balistik faktörün parça tesirine karşı koruma olduğunu söylemek mümkündür.

5.2 Miğer Seçimi ve Tasarımını Etkileyen Kriterler

Miğer seçimi ve tasarımını etkileyen 2 ana faktör;
- Kullanım Rahatlığı ve
- Balistik Koruma seviyesidir.

Bu faktörlerden balistik koruma seviyesi genelde tehdidin cinsi, insan vücudunun dayanma gücü ve kullanım rahatlığı arasında bir tercihe dayanmasına rağmen; kullanım rahatlığı, başka şekilde olmak üzere çok sayıda farklı kriterlerden etkilenmektedir. Esasen, tasarımında güzel görünüm kaygısının daha ağır bastığında inanılan Alman 1A1 çelik miğerinin görünümü ile teknolojisinin en son olanaklarını kullanarak tasarlanan yeni kompozit Alman miğerinin karşılaştırılması dahi aşağıda açıklanacak faktörlerin bir çoğu hakkında yeterli ipucu verecektir.

Şimdi bu faktörlerle kısaca göz atma çağırsınız:

5.2.1 Baş Yapısına Uygunluk

Bilindiği gibi, ırkların baş yapıları sivri, yassı, yuvarlak gibi çeşitli gruplara ayrılmaktadır. Her ne kadar, miğer iç donanımının bir parçası olan ağ/kolon sistemleri ile miğer bir oranda başa uydurmak mümkün ise de, miğer genel şeklin belirlenmesinde kafa yapımı uygun bir tipin seçilmesine dikkat edilmeli ve gerekirse, seçilen tip üzerinde ayarlamalar yapılmalıdır [40].
5.2.2 Miğferin Ağırlık Merkezi

 Başın ani hareketleri ile beraber miğferin savrulmaması, öne veya arkaya kaymaması için ağırlık merkezi mümkün olduğu kadar ortada ve aşağıda olmalıdır. Bu nedenle, miğferin şekli tasarlanırken, özellikle yatakar ateş pozisyonundaki görüş açısını hiçbir şekilde daraltmaya ve diğer kullanım ihtiyaçlarına azami oranda cevap vermeye gayret ederken, ağırlığın dengeli olarak dağılımına ve ağırlık merkezinin mümkün olduğunca başın orta-alt kısmına gelmesini sağlamak lazımdır.

5.2.3 Miğferin Küreselliği

 Mermilerin en etkili çarış açılarının dik açılar olduğu bilinmektedir. Merminin miğfere açılı olarak çarpması, merminin sekerek yön değiştirmesine veya bu olmasına dahi, kat etmesi gereken malzemeden derinliğini azaltığından, miğferin balistik mukavemetinin artmasına yol açacaktır. Bu nedenle miğfer tasarlanırken, miğferin üst bölümü hariç, düz veya düşük eğimli alan bırakılmamasına çalışmalıdır.

5.2.4 Teçhizat Takılmasına Uygunluk

 Miğferin tasarım aşamasından başlayarak, bir yandan kulak bölgesini korurken, telsiz kulaklığı ve gaz maskesi ile ilave teçhizatın takılabilmesine de imkan sağlamalıdır. Aynı kalıptan ufak değişikliklerle CVC miğferi de üretebilir olması, ilave bir avantaj sağlamaktır. Şekil 5.3’de ABD ordusunda kullanılan ve PASGT sistemi içinde tarif edilen Zırhlı Araç Personel Miğferi (Başlığı) görülmektedir [40].

Şekil 5.3 Zırhlı araç miğferi
5.2.5 Ayarlanabilir, Şok Emici Ağ/Kolon Sistemi

Bu sistem, çene bağı ve havalandırma bölümü ile beraber, miğerin başa oturması ve giyim rahatlığının sağlanmasında en önemli faktördür. Genel olarak, ABD Silahlı Kuvvetleri’ nin kullandığı PASGT Miğerinde, ortadan yuvarlak bir lastige bağlı ve alt bölümünden baş çevresine ayar imkanı veren sistem, ufkak değişiklikler ile, yaygın olarak kullanılmaktadır. Bununla beraber, Alman’ların 90’ lı yılların başında geliştirdiği, bilindiği kadar ile Almanya dışında sadece Kayseri 2 ncı HİBM’de bir benzeri uygulanan ve geçmeli çıtçıtlar vasatası ile her başa tam olarak ayarlanabilmesi mümkün kilan sistem, yaygın olarak kullanılan diğer sistemlere göre büyük üstünlük sağlamaktadır.

5.2.6 Havalandırma

Şekil 5.4’te de kısmen görüleceği gibi, dış kabuk ile iç donanım arasında 20–28 mm. bir boşluk kalmaktadır. Bu boşluk, miğer kabuşuna isabet eden mermi veya parçacığın, yapabileceği azami çıktınınun dahi başa zarar vermesine engel olduğu gibi, başın hava almasına imkan vermek içindir. Bununla beraber, miğer iç donanım ile dış kabuk arasındaki bölüm, öngörülen bolğun eşi metastafelerde dağılımını sağlayacak bir düzen ile takviye edilmese, miğer başın sert hareketlerinde kısmen oynama yapar ve kullanına rahatsızlık verir. İsrail yapısı miğerlerde, iç donanım ile dış kabuk arasında 3 naktada yumuşak sünğer yerleştirilerek hem bu mahzur giderilmiş, hem de başın yeterince hava almasına olanak sağlanmıştır. İngiliz ve diğer bazı ülke miğerlerinde de benzer uygulamalar mevcuttur. Bununla beraber gerek başa göre ayarlanabilme ve gereksiz havalandırma açısından en uygun sistemin yeni Alman miğerleri ile bir benzeri Kayseri’ de uygulanan iç donanım sistemi olduğu değerlendirilılmektedir [40].
5.2.7 Çene Bağı Düzeni

Miğferin, ayarlandıktan sonra başa sabitlenmesinde en önemli görev, kolayca ayarlanabilir çene bağı sistemine düşmektedir. Bu sonuc ya ayarlanabilir çene bağına oturtulan, ter emici yumuşak süngerden yapılmış bir çenelik ile veya bir adedi çene altı diğer çene üstünden geçen ve çeneye rahatça oturan ikili bir kolon düzeni ile sağlanmaktadır. Her iki sistemde acil durumlarda miğferin sütunle baştan çıkarılabilmesini sağlamak amacı ile, belli bir kuvvetle çekildiğinde açılan, özel bir çit-çit veya düzeneğe ihtiyaç vardır. Şekil 5.5’te ABD PASGT miğferi görülmektedir.

Şekil 5.5 ABD PASGT miğferi

5.2.8 Miğferlerin Ahn ve Ense kısımları

Modern miğferlerin tümünde, başın koruma alanı azaltmadan görüş açısının artırmak için, yukarıdaki şekillerde de görüldüğü gibi, miğferlerin ön bölümleri yüksek tutulmuştur. Bu bölüm, normal olarak kaş hızasının biraz üstüne isabet etmekte olup, askerin yatakar ateş etmesinde kendisine yeterli görüş imkanı sağlamalı ve miğferi geriye itmesine ihtiyaç bırakmamalıdır. Yatakar ateş etme durumunda baş geriye itileceğinden, miğferin arka bölümünün enseye değerek rahatsızlık yaratmaması için, ense bölümünün hafifçe oyuk olarak tasarlanmasında yarar vardır [40].

Kullanım rahatlığına etki eden faktörleri gözden geçirdikten sonra, şimdi de ikinci ana faktör olan “Balistik Koruma Seviyesi” ne etki eden hususları inceleyelim. Balistik Koruma Seviyesi, daha önceki bölümlerde de belirtildiği gibi;

- Tehdidin cinsi ve korunma seviyesi
- Maliyet
- Hafifliğin sağlayacağı kullanım rahatlığı ve,
- İnsan vücudunun dayanıklılığı gibi,

Nitekim, Kayseri 2. HİBM Komutanlığı tarafından, istek üzerine, 15 m.’ den G-3 mermisini durdurabilen miğer üretilebileceği Ankara Hava Lojistik Komutanlığı Atış Poligonunda yapılan atışlı denemeler ile gösterilmiş, ancak mermi çekirdeğindeki 330 kg.m’ nin üzerindeki enerji ve bunun yaratacağı momente hiçbir insan boynu dayanamayacağından, balistik mukavemeti daha fazla artırmak yoluna gidilmemiştir. Bugün mermi olarak miğerlerin balistik denemelerinde nadiren 70-80 kg.m kinetik enerji taşıyan 9 mm. parabellum mermisi ile yapılan balistik mukavemet denemelerine rastlanmakla beraber, gerek Nato STANAG 2920 ve gerekse ABD Askeri Şartnamesi MIL-STD-662E’ ye göre balistik mukavemet denemelerinin, söz konusu dokümanlardada tarif edilen V50 esasına göre, parça tesiri yaratan 1.1 gramlık metal çekirdeklere yapılması öngörülmüştür. Bu tür denemelerde aranan V50 hız sınırı 580-620 m/s arasında değişmektedir. Parçacıkların % 50’ sinin test edilen malzemeyi delip, % 50’ sinin delmeyeceği hız sınırını bulmayı amaçlayan ve balistik mukavemeti bu esas göre değerlendirilen V50 tarfinin grafik açıklaması Şekil 5.6’ da görülmektedir [40].
Şekil 5.6 V50 Sisteminin grafik açıklaması

5.3 Başlık Balistiği

Dünya ordularında kullanılmakta olan çelik başlıkların 1980'li yılların başlarında balistik koruyucu performansı, o devirde kullanılmakta olan ve NATO tarafından temel çap olarak kabul edilmiş bulunan 155 mmlık obüs mermisinin parça tesirinden koruma esasına dayanmaktadır.

Balistik koruyuculuğ, V50 değeri esas alınarak ölçülmektedir [41]. NATO STANAG 2902'ye göre V50 kısaca; 50 metre mesafedeki 17 grain(1.1 g) ağırlığındaki parça tesiri simülasyon parçasının ölçülen hızını göstermektedir. Bu tarihlerde 17 grainlik parçanın V50 hızı teorik olarak koruyucu malzemeyi % 50 oranında delme ihtimali bulunduğunu kabul edilmektedir.

NATO tarafından kabul edilen ve başa isabet etmesi muhtemel 1.1 gr. 1 hik parçanın sebeb olduğu zaiyatin önlenmesinde mermi çarpma hızlarını, başlıkların koruma faktörü açısından incelenirse aşağıdaki tablo ortaya çıkar.

Tablo 5.2 1.1 gramlık parçanın sebeb olduğu zaiyatin önlenmesi ve mermi çarpma hızları arasındaki ilişki

<table>
<thead>
<tr>
<th>V50 m/s olarak balistik koruma</th>
<th>Zaiyati önleme yüzdesi</th>
</tr>
</thead>
<tbody>
<tr>
<td>380</td>
<td>50</td>
</tr>
<tr>
<td>450</td>
<td>75</td>
</tr>
<tr>
<td>550</td>
<td>90</td>
</tr>
<tr>
<td>620</td>
<td>92</td>
</tr>
<tr>
<td>760</td>
<td>95</td>
</tr>
</tbody>
</table>
Tablo 5.2’den de görüleceği gibi en fazla zayıf 550-620 m/s arasındaki hızlarda oluşmaktadır. 550 m/s ve 620 m/s hızlara karşı koruma sağlayan aynı ebattaki (örneğin orta boy) iki kompozit başlık arasındaki fark ise 150-200 gr. arasında olmaktadır.

Parça tesiri testlerini uygulamanın zorluğu göz önüne alınarak, testler başlıklara yaklaşık 15 metreden dik olarak atılan 9 mm Parabellum tabanca mermisi ile yapılmaktaydı. Daha sonraları 203 mmlik (8 inç lik) obüslerin yaygın olarak kullanımını sonucunda, mevcut başlıkların parça tesirine karşı koruyuculuğunun artırılması zorunluluğu doğmuştur.

203 mm lik obüs parçası tesrinin simüle edilerek testlerin yapılması için V50=620 m/s mertebesine çıkılması ihtiyacı doğmuştur. NATO Standardizasyon Anlaşması STANAG 2920’ye göre 1.1 gr lik parça tesiri simülasyon parçasının V50 hızını 620 m/s olarak kabul edilmekteydır. Bu sebeple 9 mm Parabellum Makinalı Tabanca (örnegin MP5) mermisinin 15 metreden dik olarak atışı öngörülmüştür. Bu mesafede yapılan atmışlara dayanabilecek çelik mıferlerin yaklaşık 2 kg’ı geçen ağırlıkları çelik yerine kullanılabacak daha haif bir malzeme ihtiyaç göstermiştir.

Gelişmeler yakın gelecekte başlıkların 1.1 gr lik simülle parça yerine 2 veya 4 gramlık simule parçalarına ve bunlarının 600-700 m/s hızlarına karşı koruma sağlanması gerekli olacaktır. Halen 700 m/s üzerindeki hızlarda koruma yapılabilmektedir. Ancak ağırlık birkaç daha artarken, başıktaki şok sebebiyle boyunda ve baş içerisinde olması muhtemel travmalar kesin olarak önlenememektedir. Şu anda üzerinde çalışılan en önemli konulardan biri darbeden doğan şokun ve dolayısı ile travmanın önlenememesidir.

Ayrıca konuşma tertibatı kulakların rahatlıkla kullanılabilemesi, gaz maskesini, tüple solunum aparatı ve mikrofon takılabilmesi de önem kazanmaktadır. Ülkeler balistik koruma, diğer kullanım ihtiyaçları, imalat imkanları gibi çeşitli faktörleri göz önüne alarak ihtiyaçlarını tespit etmeye ve sonuçta başlık şekillerini belirlemektedir [42].

5.4 Dünya Ordusu Başlıkları

Çeşitli ordular, kendi kullanım amaçlarına uygun olarak, 1980’li yılların başından itibaren kompozit balistik koruyucu başlıkların üretimine ve kullanımına
başlamışlardır. Balistik koruma seviyeleri de gerek koruyucu başlıklar ve gerekse balistik koruyucu yelekler için standart test seviyelerine kavuşturulmuştur. NIJ'e göre standart koruma seviyeleri aşağıda verilmektedir.

A. SINIF I
(260-330 m/s hızındaki mermilere karşı koruma)

B. SINIF II-A
(332-381 m/s hızındaki mermilere karşı koruma)

C. SINIF II
(358-425 m/s hızındaki mermilere karşı koruma)

D. SINIF III-A
(426-600 m/s hızındaki mermilere karşı koruma)

Hemen her ülke kendi ihtiyaçlarına uygun bir balistik koruma ve şekil esasına göre ihtiyaçlarına tespit etmektedir. Tablo 5.3'de bazı ülkelerin tercih ettikleri koruma seviyeleri belirtilmiştir. Başlık şekilleri, örneğin İngiltere' de tamamen tas biçimini korurken, İsveç'te ön tarafı tas şeklinde ancak arkası enseye doğru uzatılmış durumdadır [42].

Tablo 5.3 Bazı dünya ordularının başlıklarda tercih ettikleri koruma seviyesi

<table>
<thead>
<tr>
<th>ÜLKE</th>
<th>İMALAT/TEDARİK TARIHI</th>
<th>KORUMA SEVIYESİ(M/S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALMANYA</td>
<td>1990</td>
<td>620</td>
</tr>
<tr>
<td>AVUSTURYA</td>
<td>1996</td>
<td>620</td>
</tr>
<tr>
<td>BELÇİKA</td>
<td>1994</td>
<td>550</td>
</tr>
<tr>
<td>DANİMARKA</td>
<td>1996</td>
<td>610</td>
</tr>
<tr>
<td>FİNLANDIYA</td>
<td>1991</td>
<td>550</td>
</tr>
<tr>
<td>FRansa</td>
<td>1996</td>
<td>700</td>
</tr>
<tr>
<td>HOLLANDA</td>
<td>1995</td>
<td>610</td>
</tr>
<tr>
<td>İNGİLTERE</td>
<td>1988</td>
<td>400</td>
</tr>
<tr>
<td>İSPANYA</td>
<td>1987</td>
<td>550</td>
</tr>
<tr>
<td>İSVEÇ</td>
<td>1994</td>
<td>550</td>
</tr>
<tr>
<td>İSVİÇRE</td>
<td>1997</td>
<td>600</td>
</tr>
<tr>
<td>İTALYA</td>
<td>1993</td>
<td>550</td>
</tr>
<tr>
<td>NORVEÇ</td>
<td>1997</td>
<td>610</td>
</tr>
<tr>
<td>A.B.D</td>
<td>1996</td>
<td>620</td>
</tr>
<tr>
<td>POLONYA</td>
<td>1996</td>
<td>620</td>
</tr>
</tbody>
</table>
Genel olarak İngiltere dahil edilmezse, başlık koruma seviyeleri 550-620 m/s arasında yoğunlaşmaktadır. İngiltere’ de obüs mühimmatı parça tesiri yerine el bombası parça tesiri yerine el bombası parça tesiri esas alınmış ve gerek bu balistik koruma ihtiyacından ve gerekse üretiminde kolaylık, dolayısı ile daha ucuz olması açısından tas şekli seçilmiştir [42].

5.5 Nij Standardı Balistik Test Esasları

Mermer ve çarapname karşı korumada kullanılan kompozit malzemelere uygulanan standartlar, genellikle A.B.D’ de geliştirilen NIJ Standart 0101.03’ e uygun olarak yapılmaktadır. Buna göre NIJ standardı balistik test esasları;

- Merminin istenilen çarpma hızına göre balistik koruyucunun yerleştirileceği mesafe tespit edilir.
- Mermer hedef zırh hedef yüzeyi tanjant doğrultusuna olan dik doğrultuya göre en fazla ± 5° sapma ile çarpabilir. Şekil 5.7, vuruş açısının şemmatik gösterimi içermektedir.
- Hedef zırhın arkasındaki çıkıntıyı ölçmek için çabuk katılaşmayan yağ esaslı model kili kullanılır. Ancak aynı katkıktaki herhangi bir macun da kullanılabilir.
- Hedef zırh üzerindeki isabetler zırh kenarından asgari 7.6 cm içeri ve daha önceki bir vuruşa en fazla 5 cm yakınıkta olmalıdır.
-Çarpma hızları arasındaki tolerans ± 50 m/s den fazla olmamalıdır [43].

Şekil 5.7 NIJ standardı balistik testi
<table>
<thead>
<tr>
<th>KORUMA DERECESİ</th>
<th>TEST ATIŞI</th>
<th>TEST MERMİSİ</th>
<th>NOMINAL ÇEKİRDEK AĞIRLIĞI (g)</th>
<th>ASGARI HIZ V50 (m/s)</th>
<th>ARKA ÇÖKÜNTÜ AZAMI (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1</td>
<td>38 Özel RN Kursun</td>
<td>10.2</td>
<td>259</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>22 LRHV Kursun</td>
<td>2.6</td>
<td>320</td>
<td>44</td>
</tr>
<tr>
<td>II-A</td>
<td>1</td>
<td>357 Magnum JSP</td>
<td>10.2</td>
<td>361</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>9 mm FMJ</td>
<td>8.0</td>
<td>332</td>
<td>44</td>
</tr>
<tr>
<td>II</td>
<td>1</td>
<td>357 Magnum JSP</td>
<td>10.2</td>
<td>425</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>9 mm FMJ</td>
<td>8.0</td>
<td>358</td>
<td>44</td>
</tr>
<tr>
<td>III-A</td>
<td>1</td>
<td>44 Magnum Kursun SWC</td>
<td>15.55</td>
<td>426</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>9 mm FMJ</td>
<td>8.0</td>
<td>426</td>
<td>44</td>
</tr>
<tr>
<td>III</td>
<td></td>
<td>7.62 mm FMJ (308 Winche.)</td>
<td>9.7</td>
<td>838</td>
<td>44</td>
</tr>
</tbody>
</table>

AP: Zırh Delici
FMJ: Metal Ceketli
JSP: Ceketli, Yumuşak Uçlu
LRHZ: Yüksek Hızlı, Uzun Tüfek Fişesi
RN: Yuvarlak Uçlu
SCW: Gömme Başı
Şekil 5.8 Balistik testlerde kullanılan mermi türleri

Buna göre şekil 5.8’de gösterilen mermilerin koruma dereceleri şu şekilde dir:

A. III. Derece koruma
B. III-A Derece koruma
C. II. Derece koruma
D. II-A ve I. Derece koruma sağlayan malzemelerdir.

5.6 Çöküntü Sınıri

Balistik denemeler kapsamında yer alan ve miğferin balistik özelliklerini tariф eden bir diğer husus da müsaade edilen çöküntü miktarıdır. Bir çok ülke şartnamelerinde 28 mm.'ye kadar olan çöküntülere müsaade edilirken, bazı ülkelerde bu değer 18-20 mm.'ye kadar düşmektedir. Esasen T.S.K için hazırlanan teknik şartname de çöküntü sınırı 20 mm. olarak tespit edilmiştir [40].
Şekil 5.9 Merminin kompozit kabuğa girişi, seyri ve kompozit kabuk üzerinde bıraktığı çıkıntılı miktarı

5.7. İmal Edilecek Kompozit Başlığın Tasarım Esasları

İmal edilen başlıklar, KKK-TEKŞ-B-387 D numaralı teknik şartnameye göre aşağıdaki istek ve özellikleri taşımaktadır.

- Başlık aşağıda belirtilen dört ana bölümden oluşacaktır.
 1. Başlığın kompozit malzemeden imal edilmiş olan koruyucu dış kısmı
 2. Şok sönmleyici iç aksam
 3. Kafa bandı
 4. Çenealtı kayışı

- Başlığın kompozit malzemeden imal edilmiş olan koruyucu dış kısmında imalat hatasından meydana gelmiş olan herhangi bir çukur, delik veya bombe, kırık, çatlaq, köşeli veya çıkıntılı iç veya dış yüzey hatası bulunmamaktadır. Ayrıca, bu tür hatalar kesinlikle herhangi bir dolgu malzemesi ile doldurulmak suretiyle giderilmeye çalışılmayacaktır.

- Başlığın kompozit malzemeden imal edilmiş olan koruyucu dış kısmı ve bunun çevresindeki kenar bandı ile çenealtı kayışının rengi, genel şartnamede belirtilmektektir. İç aksam ise siyah veya askeri haki renkte olacaktır [44].

Her başlıkla birlikte ayarlanması, bakımı ve temizlenmesi için Türkçe hazırlanmış bir kullanma talimatı verilecektir. Kullanıldığında takdirde başlığa zarar verebilecek temizlik malzemeleri özellikleri bu talimatta belirtilcektir.

Başlığın kullanıcının başına oturmasını ve kafa ölçüşüne ayarlanmasını sağlayan bütün parçaları, kafaya aşırı bir baskı yapmayacak şekilde ve ayarlanabilir olacaktır. Başlık giyildiği zaman, bu ayarlama aksamin başı acıtmaması ve rahat kullanım sağlanması maksadıyla ayarlama aksamin etrafi yumuşak bir malzeme ile kaplanmış olacak ve bu kaplama malzemesinin ek yeri, kafaya gelen kısımda değil, iç kısımda olacaktır. Ayrıca, başlığın giyildiği zaman baça yeteli kadar geçmesi için, iç aksamin baça oturan bölümünde ağ v.s gibi simülayıcı bir parça olacaktır.

Başlığın iç aksam ve çene altı kayışında kullanılan kumaş şeritte, yırtık, iplik kaçağı, gevşek dokuma, (varsa) deri aksamda yırtık, yüzey bozukluğu, rahatsız edici sertlik, metal veya plastik bağlıtçı parçalarında gevşek veya çok siki takılma, çapaç, çatlaq, kullanıldığında rahatsızlık verecek bir husus, keskin köşe ve kenar, sivri uç, çıkıntı, dikişlerde gevşeklik, aşırı sıkılık, boşluk, sıra atlaması, dikiş sonunun serbest kalması, parçalarda eksiklik, yanlış montaj ve onarım bulunmayaacaktır. Ayrıca; deri malzeme kullanılmaması durumunda, suni veya yarma deri kullanılmayacaktır.

Başlığın iç aksam ve çene altı kayışı, başlığın büyüklüğü ile uyumlu ölçülerde, rahat kullanım temini için gereklili ayarların yapılabilmesine elverişli yapida, kullanım şartlarına uygun mukavemet ve yapısal özelliklerde olacaktır [44].
- Başlıklar; küçük, orta, büyük olmak üzere üç ölçütde ve her şey dahil olmak üzere azami ağırlıkları aşağıdaki tabloda belirtilmiştir.

<table>
<thead>
<tr>
<th>Kompozit Başlık</th>
<th>Ebatları (cm)</th>
<th>Azami ağırlıkları (gr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Küçük ölçünlü başlık</td>
<td>51-54</td>
<td>1.350</td>
</tr>
<tr>
<td>Orta ölçünlü başlık</td>
<td>55-57</td>
<td>1.450</td>
</tr>
<tr>
<td>Büyük ölçünlü başlık</td>
<td>58-60</td>
<td>1.550</td>
</tr>
</tbody>
</table>

- Başlıklarda iç aksam ve kafa bandı ile, başlığın kompozit malzemeden imal edilmiş olan körüyucu dış kısmı arasında kalan kısmında çok önleme gayesi ile tedbir alınmış olacak.
- Ayrıca başlığın çene altı kayışında çeneyi rahatsız etmeyip kavrakacak şekilde çene altı plastiği bulunacaktır. Rengi iç aksamin rengine uygun olarak askeri haki veya siyah renkte olacaktır.
- Başlığın kompozit malzemeden imal edilmiş olan körüyucu dış kısmı, infrared özellikleri boyanmış hissi ile boyanmıştır. Bu boyanın özelliklerini gösteren usulara arasi yeterli olmamış sertifikası haiz olan laboratuvarlardan alınmış test sonuçları ve test metodu bildirilecektir. Ayrıca; başlıkta CARC kullanılması tercih edilecektir.
- Başlıkların yanmazlık özelliği bulunacaktır.
- Başlıkların iç yüzeyinin tepe kısmına; üretici firma ismi ve/veya varsa amblemi, imal tarihi/ay/yıl olarak, başlığın ölçüslü ve varsa seri numarası uygun bir şekilde yazılacaktır. Bu bilgiler, su ve nemle bozulmayacak ve silinmeyecek şekilde olacaktır [44].

5.8 Kompozit Başlığın İmalatı:

-18 °C'de soğuk hava depolarında saklanan prepg kumaşlar 1 gün öncesinden çıkarılarak normal oda şartlarındaki isıya ulaşması için bekletilir. Normal oda şartlarındaki isıya ulaşan prepg kumaşlar kesim masasına kesilecek şekilde düzgüne serilir. Serilen kumaşın üzerine başlık hatlarını oluşturan kesim şablonlarını yerleştirilerek kumaşın üzerine şablonlar çizilir. Özellikle şablonların çizilmesi esnasında en az miktarda kumaş kaybının olması için optimum çizim tekniği uygulanır.
Çizilen şablonlar kesim biçakları ile düzgünce kesilerek her bir şablon numaralandırılarak çıkarılır.

Numaralandılarak çıkarılan şablonlar preforming öncesinde tezgahın üzerine sırasıyla dizilir. Dizilen şablonlar preforming yapılış sırasına göre her parçadan gerekli miktarda alınarak preforming yapacak personel için malzeme toplanır. Bu aşamada özellikle kesilen şablonlar belli bir formatta toplanır. Burada parçalar belirli format çerçevesinde istenilen kat sayısı kadar üst üstü konulur. İmalatın bu aşamasındaki bilgiler çok gizli dereceli teknolojik bilgiler olduğu için genel ifadelerle olayı ifade etmeye çalıştım.
Toplanan preforming malzemeleri, preforming yapacak personel tarafından sırasıyla düzgün bir şekilde homojen et kalınlığı oluşturarak preforming kalıbın içine yerleştirilir. Böylece kompozit başlığın ham halı oluşturulmuş olur.

Şekil 5.12 Preforming kalıbın içine yerleştirilmesi

Şekil 5.13 Başlığın kalıpta basılması
Preste başılmış olarak çıkan başlığın soguması beklendikten sonra kenarlarında kalan çapaklar traslanarak temizlenir.

Şekil 5.14 Çapakların temizlenmesi
Daha sonra bu başlığın üzerine iç aksam teçhizatının takılmasını için gerekli montaj delikleri açılır ve başlığın kenarına lastikten imal edilmiş olan kenar bandı yapıştırılır.

Şekil 5.15 Kenar bandının takılması
Bu aşamadan sonra başlıklar boyanmak üzere boyahaneye gönderilir. Başlıkların üzeri infrared özellikli boya ile boyanır.
Şekil 5.16 Başlığın boyanması

Boyama işlemi yapılırken de plastik enjeksiyon presinde basılan iç aksam şok emici plastik malzemeleri birleştirilir. Bu iç aksam malzemesi tamamıyla 500 ncü Ana İstihkam Depo ve Fabrika Komutanlığı tarafından tasarlanarak üretimi gerçekleştirilmektedir.

Şekil 5.17 İç aksam malzemesinin imalati

Şekil 5.18 İç aksam malzemesi
Boyahaneden gelen boyanmış başlıklarla birleştirilen iç aksam civatalarla monte edilerek kompozit başlık imalati tamamlanmış olur. İş akış şemasında görüldüğü gibi, imalatın her kademesinde malzemelerin düzgün işlenip işlenmediğine dair ara muayeneler yapılmaktadır.

Şekil 5.20 İç aksamin başlığa takılması

Şekil 5.21 İmalatı tamamlanmış kompozit başlık
Tablo 5.6 Balistik koruyucu kompozit başlık imalatı iş akış şeması
5.9 Dünya Ordularında Kullanılan Koruyucu Yelekler:

Koruyucu yeleklerin tarihsel gelişimi kompozit başlıkların gelişimi gibi karmaşık bir yapıda değildir. Önceleri çelikten imal edilen yelekler günümüzde kompozit malzemeden imal edilmektedir. Bugün dünya ordularının kullandığı yeleklere bakıldığımda temel olarak birbirlerine benzemektedirler.

Tablo 5.7 Ülkemizin ve bazı dünya ordularının kullandığı koruyucu yeleklerin özellikleri

<table>
<thead>
<tr>
<th>Ülke</th>
<th>Kullanılan malzeme</th>
<th>İnsört malzemesi</th>
<th>Koruma derecesi</th>
<th>Kompozit Malzeme Ağ.</th>
</tr>
</thead>
<tbody>
<tr>
<td>İsviçre</td>
<td>Aramid</td>
<td>Çelik</td>
<td>III-A</td>
<td>III</td>
</tr>
<tr>
<td>Almanya</td>
<td>Aramid</td>
<td>Çelik</td>
<td>III-A</td>
<td>IIIİ</td>
</tr>
</tbody>
</table>

5.10 İmal Edilecek Balistik Koruyucu Yeleğin Tasarım Esasları:

- Kompozit yelek üretiminde Aramid konfort malzeme ve polietilen kompozit malzemeler kullanılmaktadır. En üst kısımdaki kamuflaş renkli kılıf aşınımaya karşı son derece dayanıklı Kondura kumaşla kaplanmaktadır. Yeleğin ön ve arka kısımlarına konulacak olan balistik koruyucu ilaveler kompozit tipte olacak, çelik olmayacaktır.
- Aramid Konford malzemeden yapılan soft kısm personelin önünde ve arkasında mevcut olup, III-A seviyesinde tabanca ve makinalı tabanca atışlarına karşı koruma sağlarken, Polietilen malzemeden yapılan insört plakalar ise yine personelin hem önünde hem de arkasında mevcut olup III seviyesinde piyade tüfeklerine karşı balistik koruma sağlamaktadır.
- Yelek ağırlığı en çok 4.0 kg.(kasık koruyucu ve balistik koruyucu ilaveler hariç) olacaktır. Kasık koruyucunun ağırlığı en çok 0.60 kg. olacaktır. Yeleğin ön ve arka kısmında kullanılabilecek balistik koruyucu ilavelerin her biri en çok 2.0 kg. olacaktır.

- Yeleğin ön ve arka kısımlarında; yeleğin koruma seviyesini III seviyesine çıkarmak için gerekli balistik koruyucu ilaveler için cepler bulunacaktır. Balistik koruyucu ilavelerin boyutları 25 ± 0.5 x 30 ± 0.5 cm. olacaktır.

- Yelekler, küçük, orta, büyük ve ekstra büyük beden ölçülerinde üretilecektir.

- Yelekler vücuda giyildiğinde, kullanıcının oturup kalkmasını ve kollarının hareketini engellemeyecek, otururken bedenden aşağı sarkmayacak ve yürürken sağa sola kaymayacak şekilde olacaktır. Yelek bedeni kavratacak, kullanıcının oturduğu ya da hareket ettiği zaman aşağı yukarı doğru kaymayacaktır.

- Atıştı testte yelekte meydana gelecek azami çökınti 20 mm. olacaktır.

- Yeleklerin dış kumaşı, kamulaj desenli olacaktır.

- Yelek, kullanıma instinaden dış kumaşın kirlenmesi durumunda, sabunlu veya deterjanlı bezle silinebilir veya yıkanabilir olacaktır. Bu nedenle dış kumaş kirlandığında, balistik koruma malzemesi dışarıya çıkarılabilecek olacak ve dış kumaşın temizliği yapılabilecektir. Yeleğin dış kumaşı bu şekilde temizlendiğinde çekme, boyut değişmesi, deformasyon ve renk solması olmaz olacaktır [45].
- Yeleklerle birlikte bir miktar da kasık koruyucu verilecektir. Kasık koruyucu; yeleğin koruması ile aynı silah ve mühimmete karşı koruyucu özellikle olacaktır.
- Söz konusu yelek, personelin günlük eğitim kıyafetinin üzerine (kış mevsiminde giyildiği takdirde parkanın altında) giyilmek suretiyle kullanılabilecektir [45].

5.11 Koruyucu Yeleğin İmalatı:

Depodan alınan kumaşlar kesilmiş üzere kesim masasının üzerine serilir. Yeleği oluşturan şablonlar kumaşın üzerine yerleştirilerek şablonlar çizilir. Aynı işlem yeleği oluşturan balistik aramid kumaş ve kılıf kumaşı içinde uygulanır. Daha sonra kumaşlar şablonların çizildiği yerlerden kesim makasları ile kesilir.

Şekil 5.22 Yelek şablonunun çizilmesi

Şekil 5.23 Çizilen şablonların kesilmesi
Kesilen bu kumaşlar balistik korumayı sağlayacak kalınlıkta üst üstü konularak dikilmek suretiyle birleştirilir. Diş kısm ise kolon lastik ve çırt kesimleri ile beraber dikilerek balistik korumayı sağlayacak olan malzemenin içine konulabileceğini bir kılıf şekline getirilir. Daha sonra balistik korumayı sağlayan malzeme(aramid kumaş) kılıfnin içine yerleştirilir.

Şekil 5.24 Koruyucu yelegen dikilmesi

Aynı zamanda kompozit yeleklerin içine yüksek hızlardaki mermilerden koruma sağlayacak biçimde insört plaka konur. İnsört plakalar ise balistik koruma sağlayan polietilen kumaşın kesilerek insan vücuduna uyacak şekilde kavis verilmiş kalıplarda belirli basınç ve sıcaklıkta basılara hazırlanır. Yine aynı şekilde insört plakaların basılmasına kullanılan basınç ve sıcaklık değerleri gizli teknolojik bilgi kapsamına girmektedir.

Şekil 5.25 Polietilen malzemenin insört plaka haline getirilmesi
Hazırlanan insört plakalar yeleğin içerisine yerleştirilir. En son aşamada yelekler çantaların içerisine yerleştirilerek imalat tamamlanmış olur. Fabrikada yürütülen bütün imalat işlemlerinde olduğu gibi koruyucu yeleğin imalatının her aşamasında malzemelerin düzgün işlenip işlenmediği ara muayeneler ile kontrol edilir.

Şekil 5.27 İmalatı tamamlanmış koruyucu yelek
Tablo 5.8 Balistik koruyucu yelek imalatı iş akış şeması
Tablo 5.9 İnsört imalatı iş akış şeması

SOĞUK HAVA DEPOSU -> İLK MUAYENESİ

-> KUMAŞ KESİMİ

-> KALIPTA BASILMASI

-> BASILAN PARÇALARIN KESİLMESİ

-> BASILAN PLAKALARIN KENARLARININ TRAŞLANMASI

-> PLAKALARIN KAPLANMASI

-> ARA MUAYENE

-> ARA MUAYENE

-> ARA MUAYENE

-> ARA MUAYENE

-> ARA MUAYENE
6. UYGULANAN TESTLER

6.1 Balistik Koruyucu Kompozit Başlık Kumaşına Uygulanan Testler:

Kompozit başlık üretmek maksadıyla satın alınan hazır prepreg kumaşlar, imalat öncesinde kimya laboratuvarında aşağıdaki testlere tabii tutulur.

6.1.1 Kritik Hataların Muayenesi:

Muayene normal gün ışığından bir metre mesafeden kumaşlar tasarım esasları bölümünde bahsedilen kritik hatalar yönünden parça-parça gözden geçirilerek suretiyle yapılacaktır. Kritik hatalar rastlandıkları her parça başına birer adet olarak değiştirilmelidir. Kritik hatalar aşağıda sıralanmıştır:

- Parçanın baştan başa, kenardan ortaya, kenardan kenara kadar renk değişimi göstermesi.
- Açıkça görünen düzgün dokunmamış ve terbiye edilmişlik hali.
- Kumaşın küfü ve kirli olması, rahatsız edici koku yayması.
- Kenarların kısmen veya devamlı olarak katlanmış, bükmüş olması.
- Kumaşta patlak, delik ve yırtık bulunması [46].

6.1.2 Fiziksel ve Kimyasal Özelliklerin Muayenesi:

- Malzeme Cinsi Tayini: TS 4739’a göre yapılır.
- Doku Tayini: Bir büyütec vasıtası ile yapılır.
- İplik Sikliği Tayini: TS 250’ye göre yapılır.
- Metrekare Ağırlığı Tayini: TS 251’e göre yapılır [46].

6.1.3 İşletme Muayenesi:

Numune olarak alınan malzeme ile on adet kompozit başlık imalat edilir. İmal edilen başlıklar balistik teste tabii tutulur ve NIJ STD 3-A’ya uygun balistik koruma sağlamadığını bakılır [46].
6.2 Balistik Koruyucu Kompozit Başlıklarla Uygulanan Testler :

6.2.1 Fiziki Kontrol:
İmal edilen başlık numunesi KKK-TEKS-B-387-D numaralı teknik şartnamede belirtilen dört ana bölümden oluşup oluşmadığı kontrol edilir. Yine aynı başlık numunesi dış kısmında imalat hatasından meydana gelen herhangi bir çukur, delik veya bombe, kırık, çatlak, köşeli veya çinkıntılı iç veya dış yüzey hatasının olup olmadığını kontrol edilir. Son sahada ise iç aksam ile koruyucu dış arasında kalan kısımda şok önlemek amacıyla tedbir alınıp alınmadığı kontrol edilir [44].

6.2.2 Renk Kontrolü
Başlık numunenin koruyucu dış kısmını ve bunun çevresindeki kenar bandı ile çene altı karşının ve iç aksamın renkleri genel şartname esaslarını taşıyıp taşımadığı kontrol edilir.

6.2.3 Lastik Kenar Bandı Testi:
Başlığın kompozit malzemeden imal edilmiş olan koruyucu dış kısmının çevresinde bulunan kenar bandı önce gözle kontrol edilir. Bu kontrolde, söz konusu bandın renginin başlıkla aynı renk tonunda olması, tek parça ve başlık kenarına düzgün bir şekilde yapıtırılmış bulunması, kesik, yırtık, delik bulunmaması, varsa birleşme yerinin bütün başlıklarla aynı yerde ve başlığın arka kenar ortasında ve birleşme yerlerinde açıklik bulunmaması hususları kontrol edilir. Daha sonra parmakla yuvarlamak suretiyle yapıtmamış yüzey kontroline tabii tutulur. Bu yuvarlama işlemi neticesinde, başlıkta ayrılan kısım, yapıtmamış olarak değerlendirilir. Bu yapıtmamış kısımların bir başlıktaki toplam uzunluğu 51 mm. yi geçmemelidir. Ayrıca her bir yapıtmamış alanın münferit uzunluğu 13 mm.den genişliği ise 4 mm.den çok olmamalıdır. Yapıtmamış kısımlar arasında en az 13 mm. yapıtılmış bölüm bulunmalıdır.

Yukarıdaki paragrafta belirtilen kontrolü müteakip, başlığın kompozit malzemeden imal edilmiş olan koruyucu dış kısmının çevresinde bulunan kenar bandı bir ucuna iki dakika süreyle asılacak 0.8 kg.lik bir ağırlık, bu süre içinde kenar bandının sökülmesine sebep olmazaktır. Bu teste başlamadan başlık için orta kenar ortasındaki bandın ek yerinden bir tarafa doğru yaklaşık 70 mm.lik bir bölüm sökülecek ve ağırlık bunun ucuna bağlanacaktır. Burada şu hususa dikkat edilmelidir:
70 mm.lik sökülmenin bittiği yerde yukarıdaki paragrafta belirtilen ve müsaade edilen ölçude yapılmamış kısımda bulunmayacaktır [44].

Şekil 6.1 Lastik kenar bandı testi

6.2.4 Düşürme Testi:
İç aksamıyla komple başlık 2 m. yükseklikten gelişigüzel değişik pozisyonlarda sert beton zemin üzerine 10 kez düşürülüp tabakalarında ayrılma, kavrama, kırılma, çatlama, perçin/vida ve iç aksamlarda kopma, açılma olmayacaktır. Ayrıca, (direk çarpma noktası ve bu noktadan hemen yanları hariç) diğer kısımlarda kaplama ve boyada düğülme, kavlama, soyulma vs. olmayacaktır [44].

6.2.5 Suya Daldırma Testi:
6.2.6 Balistik Mukavemet Testi:

Test için başlık, atış esnasında çeşitli pozisyonlara çevrilebilen test sehpasına sabitlenir. Atış 5 m. mesafeden icra edilir. Hız ölçümü için iki sensör arasındaki mesafe en az 1 m. olacaktır. Atışlar başlık yüzeyine 90 ± 1 derecelik açı ile yapılacaktır.

Teste tabii tutulacak 24 saat süreyle 23 ± 2 °C’de bırakılmış olacaktır. Bu testte MP5 makinalı tabanca ve 9 mm. çaplı FMJ mermi kullanılacaktır. Atış 5 m. mesafeden başlığın alt kenarından en az 50 mm. uzakta ve başlık üzerinde varsız daha önceki bir vuruş noktasından veya bir delikten en az 80 mm. uzakta olacak şekilde başlığın herhangi bir yerine bir adet olacak şekilde yapılacaktır. Atış, başlık yüzeyine 90 ± 1 derecelik açı ile gerçekleşirilecektir. Bu atış neticesinde delinme ve vuruş yerinde dip çatlağı olmamalıdır. Deformasyonun ölçümü vuruş yerinin iç tarafına gelecek şekilde başlık yüzeyine yerleştirilecek cam macunu veya benzeri bir malzeme vasıtasıyla yapılacaktır.

Cam macunun kalınığı en az 10 cm. olmalıdır. Cam macunu test sehpasında bulunabilecek bir deformasyon ölçüm vasıtası ile vuruş yerinde tutulmalıdır. Macunun başlık yüzeyine yapışmaması için gerekli tedbir alınacaktır. Atıştan sonra tespit edilecek çökıntı değeri şartnamede belirtilen çökıntı değerinden fazla olup olmaması kontrol edilecek [44].
Şekil 6.3 Balistik test laboratuvardan genel görünüş a) Hız barelleri
b) Cronograf (Hız ölçer) c) Atış cihazı

6.2.6.1 V50 Testi:

Teste tabii tutulacak başlık 24 saat süreyle 23 ± 2 °C' de bırakılmış olacaktır. Atışlarda kullanılacak standart şarapnel, NATO standarı STANAG 2920 de A3 şarapneli olarak tanımlanmış olan 5.385 mm. kalibrelık 1.102 gram (17 grain) şarapnellidir. Atışlar başlığın her iki yanına, ön ve arkasına ve tepe kısmına olmak üzere beş bölgeye yapılacaktır. Her bölgeye en az iki geçerli vuruş yapılacaktır. Ancak tepe kısmına yapılacak vuruşlardan biri hemen başlığın tepesinde merkez kısmına yapılacaktır. Vuruş noktaları arasında veya herhangi bir perçin deliğine en az 40 mm. olacak şekilde yapılacaktır. Şayet vuruşlardan biri, daha önceki vuruş
nedeniyle tabakalarına ayrılmış bir bölgeye yapılmışsa bu vuruş geçersiz sayılacaktır. Balistik koruma sınıının tespitini için her başlığa, yukarıda belirtildiği şekilde ortalamı 10 vuruş yapılacaktır. Bunlardan 5 adedi, başlığı tamamiyla delen en düşük hızda; 5 adedi ise başlığı delmeyen en yüksek hızda olacaktır. Fakat bu hızlar arasında 40 m/s den fazla olmayacaktır. Şayet bu farkın 40 m/s den büyük olması durumunda, V50 hesabında başlığı delen en düşük hızı 7 mermi ile delmeyen en yüksek hızı 7 mermi hesaba alınacaktır. Ancak bu 14 merminin hızları arasındaki fark 50 m/s den fazla ise test yeni bir numune ile tekrarlanacaktır. Sonuçta başlığın tespit edilecek olan V50 balistik mukavemet sınırı 650 m/s den az olmamalıdır [44].

6.2.7 Yapısal Mukavemet Testi:

Çevre sıcaklığında(20 ± 5 °C) en az 12 saat şartlandırılmış olan başlık, iki plaka arasına (kulakta kulağa kuvvet uygulanabilecek şekilde) yerleştirilerek, aşağıda belirtildiği şekilde kuvvet uygulandığında, yine aşağıda belirtilen sınırlar içerisinde, deformasyon meydana gelecektir. Başlangıç kuvveti olarak 15 kg. uygulanacaktır. 2 dakika sonra iki plaka arası mesafe ölçülecektir. Bundan sonra kuvvet her iki dakikada 15 kg. artıştırlık suretiyle 90 kg.lık üst değere çıkılacaktır. 90 kg.lık kuvvet altında iki dakika tutulduktan sonra iki plaka arasındaki mesafe ölçülecektir. Daha sonra plakaları uygulanan kuvvet, tekrar ikişer dakikalık sürelerle 15’er kg. azaltılarak, başlangıçta 15 kg. değeriinde indirilecektir. Bu yüksek altında beş dakika bekletilecek ve sürenin sonunda iki plaka arasındaki mesafe ölçülecektir. 90 kg.lık kuvvetle, 15 kg.lık başlangıç kuvveti altında ölçülen deformasyonların farkı 40 mm.yi aşmayacaktır. Kuvvetin en son 15 kg.a indirilmesinden sonra plakalar arasındaki ölçülen mesafe başlangıç durumuna göre 5 ± 3 mm.den fazla olmayacaktır [44].

6.2.8 Sıcak/Soğuk Balistik Mukavemet Testi:

Toplam 8 adet numune alınacak, bunlardan 4 adedi -35 °C ve % 90 bağlı nemde, 4 adedi ise +63 ve % 90 bağlı nemde 24’er saat şartlandırılacaktır. Şartlandırmının bitimini müteenki, en geç 10 dakika içerisinde daha önceki maddede bahsettigimiz şekilde balistik teste tabii tutulur ve test sonucunda delinme olmamalıdır. Ayrıca, vuruş yerinde oluşanak kökünü, şartamede belirtilen sınırlar içerisinde olmalıdır. Ancak 24 saat süreyle 23 ± 2 °C’deki şartlandırma hususu bu testlerde uygulanmayacaktır.
Yukarıda yapılan testlerin yanı sıra imal edilen koruyucu başlığa boya, yanmazlık ve yüzeybilme, iç aksam ve çene altı kayışı ve ağırlik testleri uygulanır. Uygulanan bu testlerde elde edilen sonuçların, tasarım esaslarındaki kriterleri taşıyıp taşımadığı değerlendirilir.

6.3 Balistik Koruyucu Zırh Kumaşına Uygulanan Testler:

6.3.1 Kritik Hataların Muayenesi:

Muayene normal gün ışığından bir metre mesafeden kumaşlar tasarım esasları bölümünde bahsedilen kritik hatalar yönünden parça-parça gözden geçirilmek suretiyle yapılacaktır. Kritik hatalar rastlandıkları her parça başına birer adet olarak değiştirilmelidir. Kritik hatalar aşağıda sıralanmıştır:

- Parçanın baştan başa, kenardan ortaya, kenardan kenara kadar renk değişimi göstermesi.
- Açıkça görünen düzgün dokunmamış ve terbiye edilmemişlik hali.
- Kumaşın küfü ve kirli olması, rahatsız edici koku yayması.
- Kenarların kısmen veya devamlı olarak katlanmış, bükülmüş olması.
- Kumaştan patlak, delik ve yırtık bulunması [47].

6.3.2 Fiziksel ve Kimyasal Özelliklerin Muayenesi:

- Malzeme Cinsi Tayini: TS 4739’da yapılır.
- Doku Tayini: Bir büyüteç vasıtası ile yapılır.
- Metrekare Ağırlığı Tayini: TS 251’e göre yapılır [47].

6.3.3 Balistik Test:

Zırh malzemesinden üç adet plaka preslenerek NIJ Standart 0101.03’e göre balistik testleri yapılır [47].

6.3.4 Kopma Mukavemeti Testi:

TS 253’e göre yapılır [47].

126
6.4 Balistik Koruyucu Yeleklere Uygulanan Testler:

İmalatı müteakip yelekler tasarım esaslarında belirtilen kriterleri taşıyıp taşımadığı öncelikle gözle kontrol edilir.

Dış kumaşın fiziksel ve kimyasal özelliklerinin muayenesi aşağıdaki test yöntemlerine göre yapılır:

- Malzeme cinsi: TS 4739 ve bilinen kimyasal analiz yöntemleri
- İplik numarası: TS 255
- Doku: Uygun büyüteç ile
- İplik sıklıkları: Uygun büyüteç ile
- \(m^2 \) Ağırlığı: TS 251
- Kopma Mukavemeti: TS 253
- Yırtılma Mukavemeti: TS 1998
- Sürtünme Hası şekti: TS 717
- Hava Şartları Hası şekti: TS 4460
- Su Geçirmezlik Tayini: TS 257, 60 cm/dk. Su basıncı artış hızında
- Su İlticaşlık Tayini: TS 259 [45]

6.4.1 Balistik Test Yöntemi:

Teste tabii tutulacak yeleklerin yarısı kuru halde, diğer yarısı ise içler olarak test edilir. Bunun için komple yelek (balistik koruyucu ilavesi konulmuş olarak), iç su dolu bir kaba beş dakika bırakılacaktır. İşlek yeleklerin balistik testi bu işlemden sonra 10 ile 30 dakika içerisinde yapılır.

Balistik test öncesinde, teste tabii tutulacak yelek parçasının arkasına, arka kısm malzeme konularak temas etmesi sağlanacaktır.

Balistik teste tabii tutulacak her yelek numunesinin ön veya arka kısmına(balistik koruyucu ilave konulmadan), Tablo 6.1'de II. koruma seviyesine uygun olarak seçilecek herhangi bir cins mühimmat ile yapılacak üç vuruş neticesinde delinme olmayacaktır. Bu atışlarda meydana gelecek deformasyon derinliği tasarım esaslarında belirtilen 20 mm.lik çoküntü miktardan az olmalıdır. Kasık koruma parçasının testi de burada belirtildiği şekilde Tablo 6.1'de II. koruma seviyesine uygun olarak seçilecek herhangi bir cins mühimmat ile ve tek atış yapılabaktır [45].
6.4.2 Şarapnel Test Yöntemi:

Test edilecek balistik yelek testten önce 24 saat şartlandırılacaktır. Sıcaklık 20 ± 2 °C olacak ve bağlı nem % 65 ± 5 alınacaktır. Yelek üzerinde en az altı atış yapılacaktır. Tam vuruş olmayan atışlar balistik limit hesaplamasının yapılmasında kullanılmayacaktır. Vuruş noktasının, yelegi tutan herhangi bir tutucudan, destekleme noktasından, kenardan, daha önceki bir vuruş noktasından ya da bir deforme olmuş malzemeden en az 30 mm. uzakta olması sağlanacaktır. Ayrıca, dokunmuş malzemenin üzerinde aynı ip üzerine iki atış yapılmayacaktır [45].

Tablo 6.1 Balistik Koruma Seviyesi

<table>
<thead>
<tr>
<th>Mermi Tipi</th>
<th>Nominal Mermi Kütleşi (gram)</th>
<th>Silah Cinsi</th>
<th>Mermi Hızı (m/sn)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEVIYE-I (5 Metre Mesafeden)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.35 cal.</td>
<td>3.20 ± 0.1</td>
<td>Tabanca</td>
<td>En az 190</td>
</tr>
<tr>
<td>.38 cal. Special</td>
<td></td>
<td>Tabanca</td>
<td>En az 250</td>
</tr>
<tr>
<td>(Tombak Kaplı)</td>
<td>10.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.65 cal.</td>
<td>4.57 ± 0.1</td>
<td>Tabanca</td>
<td>En az 260</td>
</tr>
<tr>
<td>(Tombak Kaplı)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 mm. kısa</td>
<td>6.0 ± 0.1</td>
<td>Tabanca</td>
<td>En az 260</td>
</tr>
<tr>
<td>(Tombak Kaplı)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.22 cal.</td>
<td>2.60</td>
<td>Tabanca</td>
<td>En az 320</td>
</tr>
<tr>
<td>SEVIYE-II (5 Metre Mesafeden)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.45 cal. (Tombak Kaplı)</td>
<td>14.9 ± 0.1</td>
<td>Mk.Tb. ve Tb.</td>
<td>En az 252</td>
</tr>
<tr>
<td>9 mm. parabellum</td>
<td>7.45 ± 0.1</td>
<td>Tabanca</td>
<td>En az 335</td>
</tr>
<tr>
<td>(Tombak Kaplı)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 mm. parabellum</td>
<td>7.45 ± 0.1</td>
<td>MP5 Mk.Tb.</td>
<td>En az 365</td>
</tr>
<tr>
<td>(Tombak Kaplı)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 mm. parabellum</td>
<td>7.45 ± 0.1</td>
<td>Sten Mk.Tb.</td>
<td>En az 385</td>
</tr>
<tr>
<td>(Tombak Kaplı)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.357 Mag. (JSP)</td>
<td>10.20</td>
<td>Tabanca</td>
<td>En az 425</td>
</tr>
<tr>
<td>SEVIYE III (15 Metre Mesafeden)</td>
<td>15.55</td>
<td>Tabanca</td>
<td>En az 426</td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>.44 Mag.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.62 mm. (308 Winchester, FMJ)</td>
<td>9.7</td>
<td>Tüfek</td>
<td>En az 838</td>
</tr>
<tr>
<td>7.62 mm.x 51 (NATO Normal)</td>
<td>9.45 ± 0.1</td>
<td>G3 P.Tf.</td>
<td>En az 812</td>
</tr>
<tr>
<td>7.62 mm. (M2 Normal)</td>
<td>9.85</td>
<td>M-1 P.Tf.</td>
<td>En az 826</td>
</tr>
<tr>
<td>7.62 mm.x 39 (Normal)</td>
<td></td>
<td>AK 47 Kalashnikof P.Tf.</td>
<td></td>
</tr>
<tr>
<td>7.62 mm.x 39 (AP)</td>
<td></td>
<td>AK 47 Kalashnikof P.Tf.</td>
<td></td>
</tr>
<tr>
<td>5.56 mm.x 45 (NATO Normal)</td>
<td></td>
<td>M16A2 P.Tf.</td>
<td></td>
</tr>
</tbody>
</table>

İlk atış yapılıırken ulaşılmak istenen V50 değeri için gerekli olan barut değeri hesaplanarak kullanılacaktır. Eğer ilk atış ile tam delme sağlanmış ise, ikinci atışta barut ayarlanması hızın ilk atışın yaklaşık olarak 30 m/s aşağında olacaktır şekilde yapılacaktır. Eğer ilk atış kısmı delmeye sebebiyet verdiysе, ikinci atısta barut ayarlaması, hızın ilk atışının yaklaşık olarak 30 m/s üstünde olacaktır şekilde yapılacaktır. İlk tam delmeyi sağladığın sonra bundan sonraki atışlar için sabit bir barut miktarını eklemeleye ve hızda yaklaşık olarak 15 m/s yükselte veya azaltma sağlayacak şekilde barut ayarlaması yapılacaktır. Atışlara aşağıdaki şekilde devam edilecek ve V50 değeri hesaplanacaktır.

Belirli bir sayıda atış yapıldıktan sonra, V50 değeri tam atışlardan en düşük değerli üç tam delme atış ve en yüksek değerli üç kısmi delme atışın aritmetik ortalaması alınarak bulunacaktır. Ortalama almak için kullanılan hızların en yüksek ile en düşüşü arasında en fazla 40 m/s olacaktır.

Eğer yukarıdaki hızların arasındaki fark 40 m/s'den fazla ise atışlar en yüksek beş kısmi delme hızı ile en düşük beş tam delme hızının en yüksek ve en düşüşü arasında 50 m/s olarak şekilde sürdürulecektir. V50 değeri bu on atış hızının aritmetik ortalaması alınarak bulunacaktır.
Eğer en yüksek kimi delme hızı en düşük delme hızının 50 m/s den daha fazla üstünde ise hesaplama yapmak için 7 kimi delme hızı ve tam delme hızı kullanılır. Bu hızlarda en yüksek ile en düşük arasında maksimum 60 m/s fark olacaktır. Eğer en yüksek hızla en düşük hız arasında 60 m/s den fazla fark varsa test yeni bir balistik yelekle tekrarlanacaktır [45].
7. SONUÇLAR VE ÖNERİLER

Türkiye Cumhuriyeti'nin teminatı olan Silahlı Kuvvetlerinin yurt savunmasında ve uluslararası alanda görevlerini yerine getirebilmesi için eğitim ve disipline olduğu kadar çapımızın teknolojik ihtiyaçlarını karşılayan silah, araç ve gereçede gereksinimi bulunmaktadır.

Silahlı Kuvvetlerin ihtiyacı duyduğu harp silah, araç ve gereçlerinin teminindeki temel stratejisi öncelikle yerli sanayi imkanlarının kullanılması, bununla beraber diğer ülkelerle araştırma geliştirme faaliyetlerine katılma ve ortak üretim imkanlarının yaratılmasıdır.

Balistik koruyucu teçhizatın imalatında Kevlar ve Dyneema fiberleri en çok tercih edilen iki fiberdir. Aşağıdaki tabloda iki fiberin üstün yanları ve dezavantajları sıralanmaktadır:

Tablo 7.1 Kevlar ve Dyneema fiberlerinin karşılaştırılması

<table>
<thead>
<tr>
<th>Balistik fiberler</th>
<th>Avantajları</th>
<th>Dezavantajları</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kevlar</td>
<td>Termal dayanım</td>
<td>UV ışınlarına karşı dayanımı</td>
</tr>
<tr>
<td></td>
<td>Yüksek balistik performans</td>
<td>Yüksek nem kapma</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Çeşitli kimyasallara karşı dayanımı</td>
</tr>
<tr>
<td>Dyneema</td>
<td>Düşük yoğunluk</td>
<td>Düşük termal dayanım</td>
</tr>
<tr>
<td></td>
<td>Düşük nem kapma</td>
<td>Kolay alevlenme</td>
</tr>
<tr>
<td></td>
<td>Yüksek dayanım</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Çeşitli kimyasallara karşı dayanımı</td>
<td></td>
</tr>
</tbody>
</table>

Bir malzemenin balistik performansı, onun sınırlı bir alanda enerjiyi emmesine ve emdiği bu enerjiyi hızlı ve etkin bir şekilde yaşamına bağlıdır. Bu düşüncede ışığında
fiber esaslı koruyucularda; çekme dayanımı, uzama miktarı ve fiber içinde ses iletme hızı en önemli parametrelerdir.

Malzemenin spesifik enerji emme kapasitesi yoğunluğu, kırılma dayanımına ve kırılma anına kadar ki uzama miktarına bağlıdır.

\[E_{sp} = 0.5 \sigma_{rup} \times \varepsilon_{rup} / \rho \]

(7.1)

Ses hıza spesifik modülün kareköküne eşittir:

\[V_s = (E/\rho)^{0.5} \]

(7.2)

Balistik koruyucu teçhizatın imalatında kullanılan fiberlerin çekme dayanımlarının, fiber içindeki sesi iletme hızlarının ve spesifik enerji emme kâbiliyetlerinin yüksek, yoğunluklarının düşük olması arzu edilir.

Balistik korumada kullanılacak malzemelerin yukarıda sıralanan parametrelerinin iyi olması demek kullanımının sınırsız olacağını anlamına gelmez. Bunların yanısıra; kumaş yapısı, tabakaların birim ağırlığı, fiber-fiber, fiber-mermi sürtünmesi, matris yapısı, proses şartları ve de mermilerin ya da parçacıkların şekilleri ve mekanik çalışmaları da önemlidir ve mutlaka hesaba katılması gereken parametrelerdir (48).

Kısacası sıralanan verileri alt alta topladığımızda balistik korma açısından bir fiberin ismini en iyi olarak göstermek yanlış olacağını kanaatindeyim.

Balistik koruyucu teçhizatı incelediğimizde koruyucu yeleklere açısından ultra yoğun moleküler yapıtı polietilen ve kevldardan oluşan hibrit sistemin üstünlüğü tartışılmaz durumdadır. Şu anda dünya ordularının büyük kısmının envanterinde bu hibrit sistemden oluşan koruyucu yelekler bulunmaktadır.

Koruyucu başlık açısından karar vermek, bir konsepti öne çıkarmak oldukça zor. Ancak 500 nci Ana İstihkâm Depo ve Fabrika Komutanlığı balistik test laboratuvarında yapılan testler sonucunda aramid esaslı başlıkların daha iyi sonuçlar verdiği görülmuştur.

Sonuç olarak; KKK, envanterinde en iyi balistik koruyucu teçhizat olarak adlandırılan ultra yoğun moleküler yapıtı polietilen ve kevldardan oluşan koruyucu yelek ve aramid esaslı başlıkları bulundurmakta olup ve bunları yerli sanayi imkanlarını ile imal etmektedir.
KAYNAKLAR

[33] Hartert, Ruediger, Ballistic Department, 2 Aralık 2002 tarihli e-maili.

EK-A BİRİM DÖNÜŞÜM TABLOSU

Birimlerin bir birbirine dönüştürülmesi esnasında karşılaşılan güçlüklerin giderilmesi için aşağıdaki tablodan yararlanabilir.

<table>
<thead>
<tr>
<th>Birimler</th>
<th>GPA</th>
<th>g/den</th>
<th>g/tex</th>
<th>N/tex</th>
<th>CN/tex</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 GPa</td>
<td>1</td>
<td>11.62</td>
<td>104.6</td>
<td>1.026</td>
<td>10.26</td>
</tr>
<tr>
<td>1 g/den</td>
<td>0.0861</td>
<td>1</td>
<td>9.009</td>
<td>0.0883</td>
<td>0.8830</td>
</tr>
<tr>
<td>1 g/tex</td>
<td>0.0098</td>
<td>0.111</td>
<td>1</td>
<td>0.0098</td>
<td>0.0980</td>
</tr>
<tr>
<td>1 N/tex</td>
<td>0.9750</td>
<td>11.33</td>
<td>102.0</td>
<td>1</td>
<td>10.00</td>
</tr>
<tr>
<td>1 CN/dtex</td>
<td>0.0975</td>
<td>1.133</td>
<td>10.20</td>
<td>0.100</td>
<td>1</td>
</tr>
</tbody>
</table>

NOT: 1 GPa : 10^9 N/m²
decitex(dtex) : 10.000 m ipliğin gram olarak ağırlığı
tex : 1000 m ipliğin gram olarak ağırlığı
denier(den) : 9000 m ipliğin gram olarak ağırlığı
1 cN/tex : 0.01 N/tex
1 gpd : 8.826 cN/tex
ÖZGEÇMİŞ