Parametrik Olmayan Bayesçi Karışım Modelleri İçin Ardışık Monte Carlo Örnekleyiciler

thumbnail.default.alt
Tarih
2012-05-23
Yazarlar
Ülker, Yener
Süreli Yayın başlığı
Süreli Yayın ISSN
Cilt Başlığı
Yayınevi
Fen Bilimleri Enstitüsü
Institute of Science and Technology
Özet
Bu çalışmanın temel amacı, parametrik olmayan Bayesçi model seçim teknikleri içinde önemli bir yere sahip olan Dirichlet süreci karışım modelleri (DPM) için etkin ardışık Monte Carlo (SMC) örnekleyiciler tasarlamaktır. Tasarlanan algoritmalar, önerilen sınıf güncelleme metotları sayesinde, yeni gelen gözlemlerin ışığında parçacık gezingelerinde değişiklik yaparak gerçek DPM sonsal dağılımına daha iyi bir yaklaşıklık sağlamaktadır. Önerilen metot, DPM sonsal dağılımının çözümünde kullanılan diğer ardışık Monte Carlo örnekleyicileri genelleme özelliğe sahiptir. Tek ve çok boyutlu olasılık dağılımı kestirim problemlerinde yapılan değerlendirmelerde, özellikle sonsal dağılımın izole modlara sahip olduğu koşullarda, önerilen metodun klasik metotlara göre çok daha yüksek doğrulukta sonuca yakınsayabildiği görülmüştür. Ayrıca, manevralı hedeflerin takibinde ortaya atılan en yenilikçi modellerden biri olan değişken oranlı parçacık süzgeçleri (VRPF) tezde ele alınmış ve çoklu model yaklaşımları değişken oranlı modeller ile birleştirilerek, takip başarımını arttıran çoklu model değişken oranlı parçacık süzgeçleri (MM-VRPF) önerilmiştir. Çoklu model yaklaşımının manevralı hedef gezingelerini daha iyi modellediği benzetim sonuçları ile gösterilmiştir.
In this thesis, we developed a novel online algorithm for posterior inference in Dirichlet Process Mixture (DPM) models that is based on the sequential Monte Carlo (SMC) samplers framework. The proposed method enables us to design new clustering update schemes, such as updating past trajectories of the particles in light of recent observations, and still ensures convergence to the true DPM posterior distribution asymptotically. Our method generalizes many sequential importance sampling based approaches and provides a computationally efficient improvement to particle filtering that is less prone to getting trapped in isolated modes. Performance has been evaluated in univariate and multivariate infinite Gaussian mixture density estimation problems. It is shown that the proposed algorithm outperforms conventional Monte Carlo approaches in terms of estimation variance and average log-marginal. Moreover, in this thesis we dealt with the maneuvering target tracking problem. We incorporated multiple model approach with the recently introduced variable rate particle filters (VRPF) in order to improve the tracking performance. The proposed variable rate model structure, referred as Multiple Model Variable Rate Particle Filter (MM-VRPF) results in a much more accurate tracking.
Açıklama
Tez (Doktora) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2012
Thesis (PhD) -- İstanbul Technical University, Institute of Science and Technology, 2012
Anahtar kelimeler
Parçacık süzgeçleri, hedef takibi, ardışık Monte Carlo, Monte Carlo, Parametrik olmayan modelller, Dirichlet süreci karışım modellleri, Particle filters, target tracking, sequential Monte Carlo, Monte Carlo, Nonparametric models, Dirichlet process mixtures
Alıntı