Yangın Kompartımanlarının Yalıtımında Kullanılacak Yangın Durdurucuların Seçimi İçin Yöntem Önerisi

thumbnail.default.placeholder
Tarih
2016-01-25
Yazarlar
Tabak, İdil
Süreli Yayın başlığı
Süreli Yayın ISSN
Cilt Başlığı
Yayınevi
Fen Bilimleri Enstitüsü
Institute of Science And Technology
Özet
Yangının binada yayılmasını önlemek için oluşturulan “yangın kompartımanları”na çeşitli servisleri ulaştırmak için bırakılan açıklıklar, bu kompartımanların zayıf noktaları olmaktadır. Kompartımanın işlevini yerine getirebilmesi için böylesi yerlerin, yangın durdurucular aracılığıyla yönetmeliklerce belirlenmiş süreler boyunca yangın geçirimsiz hale getirilmesi gerekmektedir. Ancak piyasada bulunan yangın durdurucuların gerek firma gerekse ürün açısından çok çeşitli olması, konu ile ilgili uzman sayısının az olması, tasarım için ayrılan sürenin konu ile ilgili uzun uzadıya inceleme yapıp karar almak için yeterli olmaması, bina yapımında koordinasyon ve denetlemeden sorumlu tasarımcıların bu denli detay ve kritik konuda yeterli bilgiye ve deneyime sahip olamaması, kullanılacak yangın durdurucu malzemenin seçimini zorlaşmaktadır.  Yangın kompartımanlarında kullanılacak doğru yangın durdurucunun seçiminin, konunun uzmanı olmayan tasarımcılar tarafından da, dağılmadan, kolay anlaşılabilir adımlarla, kapsamlı bir yaklaşım izlenerek yapılabilmesi için bir seçim sistemi geliştirilmesi gerekliliği belirlenmiştir. Bu amaca yönelik olarak çeşitli literatür araştırmaları yapılmış, yangın ve yangın durdurucu ürünlerle ilgili bilgiler edinilmiştir. Paralel olarak uzmanlarla görüşmeler ve piyasa araştırmaları yapılarak günümüzde arz edilen ürünlerin ortak yönleri ve farklılıkları belirlenmiştir. Performans kriterlerini karşılayabilmek için hangi standart ve yönetmeliklerin esas alındığı araştırılmıştır. Bu yönetmelikler incelenerek, yangın durdurucu ürünlerin kullanımlarının zorunlu olduğu bölgeler belirlenmiştir. Standartlarda ürünlerin hangi performanslarının ölçüldüğü, ölçüm sırasında nelere dikkat edildiği ve ürünlerin performansını hangi detayların etkileyebileceği dikkate alınmıştır. Çalışmanın sonunda bütün bu verilerden yola çıkılarak tasarım sürecinde karar vericiye yardımcı olmak amacıyla, yangın kompartıman duvarı/döşemesindeki servis geçişlerinin ve derzlerin hedeflenen süre boyunca yangın geçirimsizliğini ve duman sızdırmazlığını sağlayacak en verimli yangın durdurucunun seçimi için bir yöntem önerilmiştir. Yöntemde öncelikle uygulama alanında kullanılabilecek tüm yangın durdurucu ürünler belirlenmektedir. Sonrasında verilen seçim akış şeması üzerinde genel ölçekten özele doğru sıralanmış sistemlerin her birinin performans gereksinimleri belirlenmiştir. Seçim akış şeması üzerinde giderek özelleşerek, geçerli olan performans gereksinimlerini karşılayamayan yangın durdurucu ürünler elenmektedir. Eleme sonucunda kalan yangın durdurucular arasından ek kriterler kullanılarak bir seçim yapılmaktadır. Seçim yardımcısı olarak, yangın durdurucuların tüm özelliklerini içeren bir yangın durdurucu performans değerlendirme tablosu geliştirilmiştir. Ayrıca çalışmada önerilen yöntem, bir uygulama ile örneklendirilmiştir.
Dividing a building into fire resistant sections called “fire compartments” is an extensive passive protection measure. However it is necessary to make some openings onto fire separating elements enclosing fire compartments in order to install plumbing, electrical or mechanical equipment. Even a joint between adjacent building elements, a movement joint or joints to compensate some constructional imperfections might pass through a fire compartment.  These joints and service openings are the weakest points of fire compartments whose essential function is to prevent fire from spreading across the building. Although the openings for service penetrations and joints seem negligible compared to the whole compartment barriers’ surface area, they may contribute to the spread of fire through adjacent compartments and cause deaths as well as damages. In section 3. of the study, the openings on fire compartment barriers are grouped by orientation or by dimension. The openings may be horizontal (basically, the ones that are situated on floor slabs or ceilings) or vertical (the ones that are situated on vertical building elements such as walls) in terms of orientation. They may also be situated in between these two entities in the form of joints. On the other hand, the openings may be grouped by dimension too. In this case, they are not strictly separated from each other but they are limited by four overlapping dimension intervals: leakage openings, small openings, mid-sized openings, big openings. This grading system introduces a structured framework to analyse the case. The service openings and joints on fire barriers should be absolutely equipped with fire stopping products. These are used for helping fire separating building elements to regain their original fire resistance performance as required by regulations. Although there is already a quite wide range of firestops in the market today, new products which are more efficient, more easily applicable or more economical will be launched going forward as the producers invest in research and development. After a profound literature research and analysis of products supplied by six big companies from different parts of the World, the most common fire stops are classified in 17 groups as presented in section 4. Those products are sealants, brush grade sprayable mastics-paintings, foams, collars, wraps, bands, sleeves, putties, plugs, blocks, pillows, mortars, batts, vents, cavity barrier curtains, cast-in devices and strips. Lastly listed a backing material used for supporting some of these firestops.  Analysing this much of firestop products from all around the World, the testing standards that producer companies use to demonstrate their products’ performance are taken into consideration too. Most of them are analysed in section 4.1.5 . Fundamentally, the service penetrations and joints undergo different types of tests in both Europe and United States of America. Service penetrations are tested in full scale in laboratories, while only a section of joints can be tested in laboratories. The result of the tests in both America and Europe shows the time elapsed until the system fails to meet the minimum performance requirements. The performances measured by these tests are insulation and integrity functions of a system where a firestop product is installed. In case of a loadbearing system, the loadbearing capacity is added to performance requirements. Standards applied in United States of America and Canada have an additional request: to apply a hose stream test to measure resistance of the system, just after a fire incident, against pressurized water. Furthermore, voluntary tests evaluating water resistance or amount of air leakage through the test sample may be found on these standards  Wide range of products, limited timing of design phase and insufficient number of expert on this subject makes it more and more complicated to choose the right product for a specific place. Especially the designers who are in charge of the coordination and control of the building phase may have difficulties to select the right firestopping product to ensure a complete fire resistance. This difficulty in selecting the right type of product may only be tackled by a systematic approach, which is the main objective of this study. In order to help the decision maker during the design phase, the study suggests a selection framework to find the most efficient firestop product providing a complete fire resistance and smoke proofing of service penetrations on the compartment wall/ floor for a required time.  As the first step in this method, all of the firestop materials that may be purchased and transported to the construction site on time are listed. On consecutive sequences, selection system gradually sets performance requirements for firestop products. The ones that do not meet those requirements are eliminated. Right after defining all the possibilities, the elimination process begins as described in section 5.1.1 . The codes, standards, regulations and certification requirements of the respective country the construction takes place in, are thoroughly examined in this step. This may also show the amount of fire resistance time is required. In addition, if there is a special certificate requirement for the respective building, the additional requirements that the product needs to meet are listed as well. Firestops, which cannot meet such requirements, are eliminated. Building type is the next step for defining some other performance criteria, as described in section 5.1.2 . The building’s fire hazard group would influence the selection of the firestop product. A building classified in extra hazard group may necessitate some extra measures compared to the ones in light hazard group. Additionally, the building’s function may add some further requirements such as acoustical or anti-bacterial attributes.  Similarly, some other attributes such as moisture resistance or air leakage resistance, etc. might be needed depending on the function of the room where the firestop will be applied, see 5.1.3 .  In addition, the building element type is determinant of some further requirements, see 5.1.4 . The firestop product selected should be compatible with the material of the building element. Also the firestop material should be adaptable to the orientation and thickness of the building element. Finally, after the firestop material has been applied, the system as a whole should at least equal the fire resistance of the building element’s own. Dimension and type of the opening will be affecting firestop selection as well. If there are multiple service penetrations or the space between the services is not in a straight geometrical shape, more fluid firestops may be selected in order to fill the opening between services. On the other hand, if the opening cannot be reached easily, the firestops with difficult installment process should be eliminated. Additionally, for a loadbearing opening or movement joint, a product with the capability of moving or loadbearing should be chosen. The service element type is the final criteria. Service elements may be combustive, moving or conducting electric. All of these properties have different performance requirements. Furthermore, if the service element melts at high temperatures reached during a fire, the respective firestops should be intumescent which increases their volume at the temperature causing the service element to melt. On the other hand, the firestops that reacts with the material of service elements should not be used. Also if the service element is not permanent or if the service element will be changed often during the building lifetime, firestops that can easily be removed and reapplied need to be preferred.  Even after this detailed filtering process, there still can be more than one firestops left. In this case, there will be some further criteria including the affordability, the credibility of the producer, the installment time and the level of damage to health and environment. After this last step, the most effective product will be chosen, but still this should be checked via feedback. If there no problem is detected, a competent and educated group of workers should install the selected firestop product. In case there is still an opening left after the installment of the firestop, the selection system should be repeated again for that new opening until it is fully eliminated.
Açıklama
Tez (Yüksek Lisans) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2015
Thesis (M.Sc.) -- İstanbul Technical University, Institute of Science and Technology, 2015
Anahtar kelimeler
Pasif yangın emniyeti, yangın, yangın durdurucu,  yangın durdurucu seçimi, Passive fire safety, fire, fire stopper,  fire stopper selection
Alıntı