Müzik Tarzını Ve Bestecisini Kolmogorov Uzaklık Tanımlarını Kullanarak Bulma

dc.contributor.advisorAdalı, Eşref
dc.contributor.authorSönmez, Abdullah
dc.contributor.departmentBilgisayar Mühendisliği
dc.contributor.departmentComputer Engineering
dc.date2005
dc.date.accessioned2015-04-07T13:59:50Z
dc.date.available2015-04-07T13:59:50Z
dc.descriptionTez (Yüksek Lisans) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2005
dc.descriptionThesis (M.Sc.) -- İstanbul Technical University, Institute of Science and Technology, 2005
dc.description.abstractBu çalışmada, Kolmogorov Uzaklık Tanımı ve k-NN sınıflandırıcısı kullanılarak müzik tarzı ve bestecisi bulunmuştur. Müzik parçaları arasındaki uzaklık hesaplanmadan önce müzik parçaları olarak kullanılan MIDI biçimli dosyalar ön işlemeden geçirilmiş ve matematiksel katar gösterilişleri elde edilmiştir. Farklı ön işleme metotları denenmiş ve her bir metodun başarımı k-NN sınıflandırıcısının hata düzeyine bakılarak ölçülmüştür. Ön işleme metotlarından çok seslilikten tek sesliliğe dönüşümün yapılması ve art arda gelen notalar arasındaki farkın alınması metodu en etkin metot olarak belirlenmiştir. Kullanılan test kümesinin elemanlarına bağlı olarak farklı örnekleme periyotlarında farklı başarım değerleri elde edilmiş ve en yüksek başarımın farklı türler için farklı örnekleme periyotlarında elde edildiği görülmüştür. Çalışmada %90’lara varan bir başarım elde edilmiştir. Sonuçları literatürdeki çalışmalarla karşılaştırdığımızda, sadece melodi ve ritmin kullanılarak bu kadar yüksek bir başarım elde edilmesi geliştirilen ön işleme metotlarının, kullanılan uzaklık tanımının ve sınıflandırıcısının etkinliğini göstermektedir.
dc.description.abstractIn this study genre and composer of music pieces are identified by using Kolmogorov Distance Measure and k-Nearest Neighbour (k-NN) classifier. The MIDI music input files are pre-processed into a mathematical string representation before the distance metric is computed. Different pre-processing techniques are considered and the performance of each technique is estimated by means of the test error of the k-NN classifier. As a pre-processing technique representing the music pieces in a monophonic format and taking the difference between notes in consecutive time intervals is found to be most effective. Different time interval lengths are found to be best for different classification tasks. Accuracy rates up to 90% are obtained. In comparison with the previous studies in the literature, this performance in classification accuracy by using only melody and rhythm shows the effectiveness of the developed preprocessing techniques, the distance measure and the classifier in music genre and composer classification.
dc.description.degreeYüksek Lisans
dc.description.degreeM.Sc.
dc.identifier.urihttp://hdl.handle.net/11527/490
dc.publisherFen Bilimleri Enstitüsü
dc.publisherInstitute of Science and Technology
dc.rightsİTÜ tezleri telif hakkı ile korunmaktadır. Bunlar, bu kaynak üzerinden herhangi bir amaçla görüntülenebilir, ancak yazılı izin alınmadan herhangi bir biçimde yeniden oluşturulması veya dağıtılması yasaklanmıştır.
dc.rightsİTÜ theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission.
dc.subjectMüzik
dc.subjectTarz
dc.subjectBesteci
dc.subjectKolmogorov
dc.subjectNCD
dc.subjectMusic
dc.subjectGenre
dc.subjectComposer
dc.subjectKolmogorov
dc.subjectNCD
dc.titleMüzik Tarzını Ve Bestecisini Kolmogorov Uzaklık Tanımlarını Kullanarak Bulma
dc.title.alternativeMusic Genre And Composer Identification By Using Kolmogorov Distance Measure
dc.typeMaster Thesis

Dosyalar

Orijinal seri

Şimdi gösteriliyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
Ad:
3390.pdf
Boyut:
2.13 MB
Format:
Adobe Portable Document Format

Lisanslı seri

Şimdi gösteriliyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
Ad:
license.txt
Boyut:
3.14 KB
Format:
Plain Text
Açıklama