Müzik Tarzını Ve Bestecisini Kolmogorov Uzaklık Tanımlarını Kullanarak Bulma

dc.contributor.advisor Adalı, Eşref tr_TR
dc.contributor.author Sönmez, Abdullah tr_TR
dc.contributor.department Bilgisayar Mühendisliği tr_TR
dc.contributor.department Computer Engineering en_US
dc.date 2005 tr_TR
dc.date.accessioned 2015-04-07T13:59:50Z
dc.date.available 2015-04-07T13:59:50Z
dc.description Tez (Yüksek Lisans) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2005 tr_TR
dc.description Thesis (M.Sc.) -- İstanbul Technical University, Institute of Science and Technology, 2005 en_US
dc.description.abstract Bu çalışmada, Kolmogorov Uzaklık Tanımı ve k-NN sınıflandırıcısı kullanılarak müzik tarzı ve bestecisi bulunmuştur. Müzik parçaları arasındaki uzaklık hesaplanmadan önce müzik parçaları olarak kullanılan MIDI biçimli dosyalar ön işlemeden geçirilmiş ve matematiksel katar gösterilişleri elde edilmiştir. Farklı ön işleme metotları denenmiş ve her bir metodun başarımı k-NN sınıflandırıcısının hata düzeyine bakılarak ölçülmüştür. Ön işleme metotlarından çok seslilikten tek sesliliğe dönüşümün yapılması ve art arda gelen notalar arasındaki farkın alınması metodu en etkin metot olarak belirlenmiştir. Kullanılan test kümesinin elemanlarına bağlı olarak farklı örnekleme periyotlarında farklı başarım değerleri elde edilmiş ve en yüksek başarımın farklı türler için farklı örnekleme periyotlarında elde edildiği görülmüştür. Çalışmada %90’lara varan bir başarım elde edilmiştir. Sonuçları literatürdeki çalışmalarla karşılaştırdığımızda, sadece melodi ve ritmin kullanılarak bu kadar yüksek bir başarım elde edilmesi geliştirilen ön işleme metotlarının, kullanılan uzaklık tanımının ve sınıflandırıcısının etkinliğini göstermektedir. tr_TR
dc.description.abstract In this study genre and composer of music pieces are identified by using Kolmogorov Distance Measure and k-Nearest Neighbour (k-NN) classifier. The MIDI music input files are pre-processed into a mathematical string representation before the distance metric is computed. Different pre-processing techniques are considered and the performance of each technique is estimated by means of the test error of the k-NN classifier. As a pre-processing technique representing the music pieces in a monophonic format and taking the difference between notes in consecutive time intervals is found to be most effective. Different time interval lengths are found to be best for different classification tasks. Accuracy rates up to 90% are obtained. In comparison with the previous studies in the literature, this performance in classification accuracy by using only melody and rhythm shows the effectiveness of the developed preprocessing techniques, the distance measure and the classifier in music genre and composer classification. en_US
dc.description.degree Yüksek Lisans tr_TR
dc.description.degree M.Sc. en_US
dc.identifier.uri http://hdl.handle.net/11527/490
dc.publisher Fen Bilimleri Enstitüsü tr_TR
dc.publisher Institute of Science and Technology en_US
dc.rights İTÜ tezleri telif hakkı ile korunmaktadır. Bunlar, bu kaynak üzerinden herhangi bir amaçla görüntülenebilir, ancak yazılı izin alınmadan herhangi bir biçimde yeniden oluşturulması veya dağıtılması yasaklanmıştır. tr_TR
dc.rights İTÜ theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. en_US
dc.subject Müzik tr_TR
dc.subject Tarz tr_TR
dc.subject Besteci tr_TR
dc.subject Kolmogorov tr_TR
dc.subject NCD tr_TR
dc.subject Music en_US
dc.subject Genre en_US
dc.subject Composer en_US
dc.subject Kolmogorov en_US
dc.subject NCD en_US
dc.title Müzik Tarzını Ve Bestecisini Kolmogorov Uzaklık Tanımlarını Kullanarak Bulma tr_TR
dc.title.alternative Music Genre And Composer Identification By Using Kolmogorov Distance Measure en_US
dc.type Thesis en_US
dc.type Tez tr_TR
Dosyalar
Orijinal seri
Şimdi gösteriliyor 1 - 1 / 1
thumbnail.default.placeholder
Ad:
3390.pdf
Boyut:
2.13 MB
Format:
Adobe Portable Document Format
Açıklama
Lisanslı seri
Şimdi gösteriliyor 1 - 1 / 1
thumbnail.default.placeholder
Ad:
license.txt
Boyut:
3.14 KB
Format:
Plain Text
Açıklama