Süperlatislerde Akustik Fononlarla Elektronların Etkileşmesi

dc.contributor.advisor Postacıoğlu, Nazmi tr_TR
dc.contributor.author Özen, Gülten Taşçı tr_TR
dc.contributor.authorID 75192 tr_TR
dc.contributor.department Fizik Mühendisliği tr_TR
dc.contributor.department Physics Engineering en_US
dc.date 1998 tr_TR
dc.date.accessioned 2018-12-05T07:22:11Z
dc.date.available 2018-12-05T07:22:11Z
dc.date.issued 1998 tr_TR
dc.description Tez (Yüksek Lisans ) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 1998 tr_TR
dc.description Thesis (M.Sc.) -- İstanbul Technical University, Institute of Science and Technology, 1998 en_US
dc.description.abstract Bu çalışmanın amacı iki boyutlu süperlatiste serbest yüzeylerin deformasyonundan kaynaklanan elektron- fonon etkileşmesini incelemektir. Yapının içinde hareketli Rayleigh dalgası arayüzeyi deforme edecektir. Bu nedenle elektronun kendi imajıyla olan etkileşmesi değişecektir. h kalınlığında ve z eksenine dik ince bir tabaka düşünüldü. İlk önce bir Rayleigh dalgası için yaydım bağıntısı bulundu. Yaydım bağıntısının hesaplanması için yer değiştirme faktörü yazıldı. Yerdeğiştirme bileşenleri ve normal gerilmeler belirlendi. Serbest yüzeydeki sınır koşulları uygulandı. Bu, serbest yüzeylerde Ö veö bileşenleri sıfır olacaktır. Bu enine ve boyuna dalgaların lineer kombinasyonunu düşünmemizi sağlayacaktır. Sınır koşullan, bu dalgaların genlikleri arasında iki lineer bağıtıyı verir. Homojen lineer denklemler sisteminin aşikar olmayan çözümlerini elde edebilmek için determinantın sıfır olması gerekmektedir. Bu da bize yaydım bağıntısını verir. Bu Rayleigh dalgalarının ikinci kuantizasyonu yapıldı. Bunun için ilk önce sistemin enerjisi bulundu. Bu enerji Lagranjiyen'de kullanıldı. Lagranjiyen'den yararlanarak sistemin Hamiltonyen'i hesaplandı. Yaratma ve yoketme operatörleri, ardından momentum ve konum operatörleri belirlendi. Serbest yüzeylerin deformasyonundan kaynaklanan elektron-fonon etkileşmesini hesaplamak istiyoruz. Fononlardan kaynaklanan serbest yüzeylerin de formasyondan dolayı elektronun enerjisinden gelen tedirgemeyi inceledik. Fononlar yüzeyde deformasyon meydana getirecekler. Bu deformasyon, elektronun enerjisini tedirgeyecektir. Serbest yüzeylerdeki sınır koşullarını kullanarak elektrostatik alan hesaplandı. Bu sınır koşulları, yerdeğiştirme alanının normal bileşenlerinin ve elektrik alanın teğetsel bileşenlerinin sürekliliğidir. En son aşama olarak elektronun enerjisine olan katkı hesaplandı. tr_TR
dc.description.abstract The Quantum Well is a system in which the electron motion is restricted in one direction thus producing quantum confinement; in other words,the spectrum in one of the quantum numbers changes from continuous to discrete. The quantum wells represent an example of systems with reduced dimensionality. Systems with electron motion restricted in two direction are called quantum wires, and these confined in all three directions were given the name of quantum dots. For quantum confiniment to be observable, the size of a well must be less than the electron mean-free path. This requirement imposes constraints both on the geometric size of a well and on the quality of the sample and temparature determining the mean-free-path length. The purpose of this work to calculate the contribution to electron-phonon interaction coming from te perturbation of the interfaces in two dimensional superlatice. A Rayleigh wave travelling in the slab will deform the interface, thus it will change the electron interaction with its own image charge. We consider a thin sheet with thickness h, z axis is taken orthogonal to the slab. First of all, dispersion relation is found for a Rayleigh wave. Displacement vector is written to calculate the dispersion relation. The next step is calculation of strain tensor and its components. Strain tensor give the change in an element of length when the body is deformed. In a body that is not deformed, the arrangement of the molecules corresponds to a slate of thermal equilibrium. All parts of the body are in mechanical equilibrium.lf some portion of the body is considered, the resultant of the forces on that portion is zero. When a deformation occurs, the arrangement of the molecules is changed and the body ceases to be in its original state of equilibrium. Forces therefore arise which lend to return the body to eguilibrium. These internal forces occur when a body is deformed. We have to calculate stress tensor. To calculate the dispersion relation, one should consider the boundry conditions at the free surfaces of the slab. These surfaces must be free of stress. These imply thatg and 6 components must vanish. In order to satisfy these two conditions we consider a lineer combination of a transverse and a longitudional wave. Propagating along x axis with a wave vector k. These two waves have different kz in order to insure that frequency ü) coincide. The boundry conditions give two lineer relations between amplitudes of these waves. This system of homogeonous lineer equations has no trivial solutions if the determinanal vanishes. Taking in to account that determinant vanishes. One can than calculate kz and ü) as a funtion of k". This gives us dispersion relation. Next step is the second quantisation of these Rayleigh waves. To achieve this, we express, the energy of system per unit surface as a quadratic from of the amplitudes. We used this energy in Lagrangien. After ihese steps, we can than deduce I lamillonian of system. We used this Hamiltonian to calculate annihilation operator and creation operator. These operators vii_x000B_evidently annihilate and create phonons in the various lattice slates. Annihilation and creation operators are used to write momentum and location operators. We want to calculate the contribution to electron-phonon interaction coining from the perturbation of the interfaces in two dimensional superlattices. There will be a deformation of the surfaces. Phonons make this deformation. Deformation perturbs election energy. Our sheets dielectric constant is S\ and oustside of this sheet, dielectric constant is Sq ¦ We have calculated electrostatic field using the boundry conditions on the interfaces. These conditions are continuty of tangential component of the electric field and normal component of the displacement field. We than proceed to the first order perturbation is due to the deformation of the interface because of the phonons. Last step is calculation the contribution to energy of electron coming from the deformation. This step proved us elect ron-phonon interaction. en_US
dc.description.degree Yüksek Lisans tr_TR
dc.description.degree M.Sc. en_US
dc.identifier.uri http://hdl.handle.net/11527/16741
dc.language.iso tur tr_TR
dc.publisher Fen Bilimleri Enstitüsü tr_TR
dc.publisher Institute of Science and Technology en_US
dc.rights Kurumsal arşive yüklenen tüm eserler telif hakkı ile korunmaktadır. Bunlar, bu kaynak üzerinden herhangi bir amaçla görüntülenebilir, ancak yazılı izin alınmadan herhangi bir biçimde yeniden oluşturulması veya dağıtılması yasaklanmıştır. tr_TR
dc.rights All works uploaded to the institutional repository are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. en_US
dc.subject Akustik tr_TR
dc.subject Elektron tr_TR
dc.subject Süperlatisler tr_TR
dc.subject Acoustic en_US
dc.subject Electron en_US
dc.subject Superlattices en_US
dc.title Süperlatislerde Akustik Fononlarla Elektronların Etkileşmesi tr_TR
dc.title.alternative Electron-phonon İn Teraction İn Süperlat'i İces en_US
dc.type Thesis en_US
dc.type Tez tr_TR
Dosyalar
Orijinal seri
Şimdi gösteriliyor 1 - 1 / 1
thumbnail.default.alt
Ad:
75192.pdf
Boyut:
21.95 MB
Format:
Adobe Portable Document Format
Açıklama
Lisanslı seri
Şimdi gösteriliyor 1 - 1 / 1
thumbnail.default.placeholder
Ad:
license.txt
Boyut:
3.16 KB
Format:
Plain Text
Açıklama