A Model Based Flight Control System Design Approach For Micro Aerial Vehicles Using Integrated Flight Testing And Hil Simulations

thumbnail.default.alt
Tarih
2019
Yazarlar
Yüksek, Burak
Süreli Yayın başlığı
Süreli Yayın ISSN
Cilt Başlığı
Yayınevi
Fen Bilimleri Enstitüsü
Institute of Science and Technology
Özet
İnsansız hava araçları, uzun yıllardır askeri amaçlı operasyonlarda oldukça yoğun olarak kullanılmaktadırlar ve gelecekte de bu uygulamaların hızlı bir şekilde artması beklenmektedir. Operasyonel riskleri ve maliyetleri oldukça düşük seviyelere çektikleri için son yıllarda sivil alanlarda da kullanımları oldukça yaygınlaşmıştır. Hatta, hava trafik yönetimi çalışmalarındaki hızlı gelişmelere paralel olarak, insansız hava araçlarının şehir hava sahasına entegrasyonu çalışmaları da başlamış, birçok teknoloji firması yatırımlarını bu yönde yoğunlaştırma kararı almışlardır. Günümüzde kargo ve yolcu taşımacılığı için geliştirilen çok başarılı konseptleri görmek mümkündür. Hava araçlarının özellikle şehir içi taşıma uygulamalarında kullanılması ile birlikte bu sistemlerin uçuş güvenliğinin sağlanması daha da kritik bir konu haline gelmiştir. Şehir hava sahasını yöneten hava trafik yönetimi sistemini ve araç üzerinde bulunan güdüm ve kontrol sistemlerini hiyerarşik bir yapıda incelemek, genel sistemi daha anlaşılır bir hale getirecektir. Hiyerarşik olarak en üst kademede bulunan hava trafik yönetimi sistemi, hava araçlarının koordinasyonunu sağlayarak havada oluşabilecek bir çarpışmayı veya hava araçlarının şehirde bulunan sabit engellere (binalar, yer şekilleri, vs.) çarpmasını engellemektedir. Ancak, hava trafik yönetim sistemi ne kadar uygulanabilir ve etkin uçuş yörüngeleri üretirse üretsin, araç üzerindeki güdüm ve kontrol sistemleri bu komutları istenen başarım ile takip edemezse bu durum bütün sistemin güvenilirliğini oldukça yüksek seviyede tehlikeye sokacaktır. Bu nedenle, orta ve alt seviye sistemler olan güdüm ve kontrol sistemlerinin, belirli kararlılık ve performans gereksinimlerine göre tasarımı ve doğrulanması oldukça önem arz etmektedir. Bu tez kapsamında, sivil hava sahası içerisinde farklı amaçlar için kullanılabilecek olan sabit kanatlı dikey iniş ve kalkış yapabilen, sabit kanatlı ve döner kanatlı insansız hava araçlarının matematiksel modelleme ve kontrol sistem tasarımı çalışmaları yapılmıştır. Tezin ilk bölümünde, sabit kanatlı ve tilt-rotor konseptine sahip bir insansız hava aracı olan Turaç'ın altı serbestlik dereceli doğrusal olmayan matematiksel modeli oluşturulmuştur. Buradaki temel amaç, askı uçuşundan yatay uçuşa ve yatay uçuştan askı uçuşuna geçiş için uygun bir senaryo geliştirmektir. Elde edilen matematiksel model pervane tarafından hızlandırılan hava akımının gövde üzerindeki etkilerini de içermektedir. Bu etkiler seyir hızının, rotor tilt açısının ve hücum açısının bir fonksiyonudur. Pervane tarafından hızlandırılan hava akımının, pervane çıkışındaki kesit alanı ve akış hızı momentum teorisi kullanılarak elde edilmiştir. Gövde ve kanat üzerinde pervane hava akımı tarafından etkilenen alan üzerinde iki boyutlu aerodinamik analizler yapılmış ve pervane hava akımının etkileri modellenmiş, elde edilen aerodinamik katsayılar tablolar içerisine entegre edilip benzetim ortamına aktarılmıştır. İnsansız hava aracının gövde ve kanatlarının aerodinamik analizi hesaplamalı akışkanlar dinamiği araçları ile analiz edilmiş ve bu katsayılar da tablolar ile benzetim ortamına aktarılmıştır. Fazlar arası geçiş durumlarında (askı uçuşundan yatay uçuşa veya yatay uçuştan askı uçuşuna) insansız hava aracı üzerindeki aerodinamik ve itki kuvvet ve momentleri, hava aracı tilt mekanizmasına sahip olduğundan dolayı çok daha karmaşık bir şekilde etki etmektedirler ve aracın dinamiği oldukça karmaşık hale gelmektedir. Bu nedenle geçiş fazlarındaki uçuş güvenliğini sağlamak ve performansı belirli bir seviyede korumak için etkili bir faz geçiş metodunun tanımlanması gerekmektedir. Bu amaçla, uçuş hızı, tilt açısı, hücum açısı ve itki seviyesi için, dinamik sistemin durum değişkenlerine bağlı olarak, denge uçuşunu sağlayacak şekilde uçuş fazları arasında geçiş senaryoları oluşturulmuştur. Bu senaryolar uçuş kontrol sistemine bir komut olarak beslenebilmekte veya pilota uçuş sırasında kullanabileceği bir tablo olarak verilebilmektedir. Oluşturulan senaryolar kullanılarak geçiş fazı üzerinde benzetim çalışmaları yapılmış ve uçuş testleri gerçekleştirilmiştir. Tezin ikinci bölümünde, sabit kanatlı bir insansız hava aracı için, döngüde donanımsal benzetim (hardware-in-the-loop) ve uçuş testlerini içeren, model tabanlı uçuş kontrol sistem tasarımı gerçekleştirilmiştir. Bu uygulamada, insanlı hava araçları için geliştirilen sistem tanılama ve uçuş kontrol sistem tasarımı metodolojisi, sabit kanatlı insansız bir hava platformuna uyarlanmıştır. Kullanılan insansız hava aracı platformu, hareketli kara ve deniz araçlarını, belirli bir irtifadan, gövdeye sabit ve aşağı bakan bir kamera ile, otonom bir şekilde takip etmek için geliştirilmiştir. Hava aracının boylamasına ve yanlamasına doğrusal matematiksel modelleri, frekans bölgesinde açık-çevrim sistem tanılama metodolojisi ile elde edilmiş ve zaman bölgesinde doğrulanmışlardır. Tanılanan doğrusal modeller, yüksek hedef takip başarımı için gerekli olan uçuş kontrol sistemlerinin, birden fazla amaç fonksiyonlu parametre optimizasyonu metodu ile geliştirilmesi amacıyla kullanılmışlardır. Ayrıca, bu süreçte kestirimi yapılan aerodinamik katsayılar, altı serbestlik dereceli doğrusal olmayan modelin oluşturulmasında da kullanılmıştır. Oluşturulan doğrusal olmayan model, döngüde donanımsal benzetim sisteminin ana bileşenini oluşturmaktadır. Test süreci maliyetlerini ve kaza/kırım riskini en aza indirmek için, tasarlanan kontrol sistemleri gerçek uçuş testlerinden önce, döngüde donanımsal benzetim ortamında test edilmişlerdir. Donanım içerisine gömülen kontrol sistemi algoritmalarında herhangi bir mantıksal ve algoritmik hata olup olmadığı incelenmiştir. Tasarlanan ve donanım içerisinde hazır olarak gelen uçuş kontrol sistemlerinin başarım testleri de gerçekleştirilmiş ve karşılaştırmaları yapılmıştır. Yapılan uçuş testleri, tasarlanan kontrol sisteminin, rüzgar ve türbülanslı uçuş şartlarında, referans takip ve bozucu sönümleme performansının, hazır kontrol sisteminden çok daha iyi olduğunu göstermiştir. Tezin üçüncü bölümünde, sistem tanılama, model birleştirme (stitching) ve model tabanlı uçuş kontrol sistem tasarımı çalışmaları, agresif manevra kabiliyetine sahip, insansız, dört rotorlu hava aracı üzerinde uygulanmıştır. Üzerinde çalışılan insansız hava aracı, askı uçuşuna yakın şartlarda ve sistem dinamiğinin oldukça değiştiği hızlı ileri uçuş şartlarında agresif manevra kabiliyetine sahip olması için tasarlanmıştır. Bu tür bir sistem üzerinde klasik bir denetleyici tasarım süreci, referans takibinde performans kaybına ve hataların artmasına neden olacaktır. İnsansız hava aracının askı ve hızlı ileri uçuş dinamikleri arasındaki farkı yakalayabilmek için, insanlı hava araçları için geliştirilen uygulamalar esas alınmıştır. Askı ve yüksek hızlı ileri uçuş fazlarındaki doğrusal matematiksel modeller frekans bölgesinde sistem tanılama çalışmaları ile elde edilmişlerdir. Elde edilen matematiksel modellerin doğrulaması zaman bölgesinde analizler yapılarak gerçekleştirilmiştir. Farklı uçuş hızları için elde edilen uçuş denge koşulları ve tanılanan doğrusal modeller kullanılarak sistemin yaklaşık doğrusal olmayan (quasi-nonlinear) matematiksel modeli elde edilmiştir. Kapsamlı benzetim çalışmaları oluşturulan doğrusal olmayan model üzerinde gerçekleştirilmiştir. Tanılaması yapılan doğrusal matematiksel modeller, farklı dinamik gereksinimleri kısıt olarak içeren, birden fazla amaç fonksiyonu bulunduran optimizasyon tabanlı uçuş kontrol sistem tasarımı sürecinde, en iyi kontrol parametrelerini elde etmek için kullanılacaktır. ADS-33E-PRF içerisinde yer alan ve tam ölçekli helikopterler için kullanılan yanlamasına yeniden konumlandırma ve boylamasına ileri yönde hızlanma ve durma manevraları, kinematik ölçekleme yöntemi ile insansız hava aracı için uygun hale getirilmişlerdir. Tasarlanan denetleyiciler kullanılarak pozisyon koruma, yörünge takibi ve agresif manevra kabiliyeti uçuş testleri yapılmıştır. Ardından, Monte-Carlo benzetim çalışmaları ve uçuş test sonuçları karşılaştırılarak sonuçların ne kadar yakın olduğu incelenmiştir. Test ve analiz sonuçları göstermiştir ki, uygulanan kontrol sistem tasarımı metodolojisi, klasik yöntemler ile karşılaştırıldığında, yüksek hassasiyette ve tahmin edilebilir manevra kontrol kabiliyeti sağlamaktadır. Tezin dördüncü bölümünde, model referans uyarlamalı kontrol sisteminin bir iyileştirmesi sayılabilecek olan ve kapalı çevrim referans model içeren uyarlamalı kontrol sistemi, takviyeli öğrenme (reinforcement learning) metodu ile geliştirilmiştir. Referans model ile sistemin verdiği cevap arasındaki hata kullanılarak, uygulayıcı-değerlendirici (actor-critic) yapısında ve yapay sinir ağı ile oluşturulan ajan (agent, öğrenen sistem) eğitilmiş, geçici hal cevabını iyileştirmek için kapalı çevrim referans model içerisinde bulunan geribesleme kazancını arttırıp azaltması sağlanmıştır. Sistemin benzetim çalışmaları, bir nakliye helikopterinin basitleştirilmiş ve doğrusal boylamasına modeli üzerinde yapılmıştır. Geliştirilen uyarlamalı kontrol sisteminin geçici hal cevabı başarımının, diğer uyarlamalı kontrol sistemlerinin başarımları ile nicel olarak karşılaştırılabilmesi için, sistemin geçici hal performansı ile doğrudan ilişkili olan sinyallerin L-2 ve L-sonsuz normları hesaplanmıştır. Monte-Carlo benzetim çalışmaları ile incelenen sistemlerin, aerodinamik parametrelerdeki belirsizliklere karşı ne kadar dayanıklı oldukları incelenmiş ve sonuçlar karşılaştırılmıştır. Bu analizler sonucunda, değişken geribesleme kazancına sahip kapalı çevrim referans model kullanan uyarlamalı kontrol sisteminin, açık çevrim referans modele sahip uyarlamalı kontrol sistemine ve sabit geribesleme kazançlı kapalı çevrim referans modele sahip uyarlamalı kontrol sistemine göre çok daha iyi bir geçici hal cevabı performansına sahip olduğu, salınımları önemli ölçüde bastırdığı gösterilmiştir. Ayrıca, geliştirilen sistem üzerinde farklı adaptasyon ve öğrenme stratejileri kullanılarak, geniş bir uçuş zarfı içerisinde sistemin adapte olma kabiliyetini arttırma olanağı da sağlanmaktadır. Bir diğer değişle, geliştirilen uyarlamalı kontrol sistemi daha kapsamlı bir şekilde eğitildiği takdirde, farklı uçuş şartlarında da sistemin geçici hal cevabının iyileştirilmesi mümkün olmaktadır.
In recent decade, urban air mobility has an increasing demand in passenger and cargo transportation in the urban airspace. One of the most critical factors in urban air mobility concept is operation safety which requires reliable flight control and guidance system and predictable mathematical model of the aerial platform. To provide these requirements, developing and using a verified design workflow becomes quite crucial. In this thesis, mathematical modeling, flight control system design and test workflow is applied on tilt-rotor, fixed-wing and rotary-wing aerial platforms. In the first part of this thesis, nonlinear mathematical model of a fixed-wing tilt-rotor unmanned aerial vehicle (UAV) is developed which covers hover, transition and forward flight phases. The model includes propeller-induced airstream effects on the UAV body which are directly related to flight speed, rotor nacelle angle and angle-of-attack. Momentum theory is used to calculate the propeller-induced airstream characteristics such as output cross-section area and velocity. 2D aerodynamic analysis is performed on the area that is affected by the propeller-induced airstream because of the lack of finite-wing effects on this region. The obtained aerodynamic parameters are embedded into look-up tables and used in the mathematical model. 3D aerodynamic analysis is also performed on the complete airframe geometry and calculated parameters are used in the nonlinear model. Especially in the transition flight phase, thrust and aerodynamic effects are acted together on the airframe and UAV dynamics become quite complex. To provide the flight safety in the transition phase, forward- and back-transition scenarios are developed by performing trim analysis for each flight condition and required airspeed, angle-of-attack, nacelle angle and thrust level are calculated. Then, a command-schedule is generated by using these vehicle states which can be utilized as a reference signal set for the flight control system or pilot cue. We evaluated the proposed closed-loop system in the developed nonlinear simulation environment and flight tests. In the second part of the thesis, system identification and model-based flight control system design approach, in which flight testing and hardware-in-the-loop (HIL) simulation are integrated into the design workflow, is applied on a fixed-wing micro aerial vehicle (MAV). This approach relies on adaptation of system identification and control system design methodologies from the manned aircraft domain. The MAV is specifically designed for a surveillance mission in which a moving ground or seaborne target, such as a track or a boat, is tracked fully autonomously from a specified altitude by using a downward-facing body-fixed camera. We utilize a design process in which the longitudinal and lateral mathematical models are identified through open-loop system identification flight testing. These models are later used in a multi-objective controller optimization scheme in which a control system is designed inline with the high performance tracking requirements. We have utilized a HIL simulation system allowing comprehensive simulation and testing of designed control and guidance algorithms before fully autonomous flight tests as to minimize cost and crash risk. Both the proposed and legacy flight control systems are evaluated in actual flight tests. The results demonstrate that the proposed design methodology and the resulting control system provides superior reference tracking performance and robust disturbance rejection in face of real-world conditions such as turbulence and winds. In the third part of the thesis, we utilize a system identification, model stitching and model-based flight control system design methodology for an agile maneuvering quadrotor MAV technology demonstrator platform. The proposed MAV is designed to perform agile maneuvers in hover/low-speed and fast forward flight conditions in which significant changes in system dynamics are observed. As such, these significant changes may result in considerable loss of performance in terms of reference signal tracking and disturbance rejection. To capture the changing dynamics, we consider an approach which is adapted from the full-scale manned aircraft and rotorcraft domain. Specifically, linear mathematical models of the MAV in hover and forward flight are obtained by using the frequency-domain system identification method and they are validated in time domain. These point models are stitched by utilizing the trim data and quasi-nonlinear mathematical model is generated for simulation purposes. Identified linear models are used in a multi-objective optimization based flight control system design approach in which several handling quality specifications are used to optimize the controller parameters. Lateral reposition and longitudinal depart/abort mission task elements from ADS-33E-PRF are scaled-down by using kinematic scaling to evaluate the proposed flight control systems. Position hold, trajectory tracking and aggressiveness analysis are performed, Monte-Carlo simulations and actual flight test results are compared. It is shown that the proposed methodology provides high precision and predictable maneuvering control capability over an extensive speed envelope in comparison to classical controller design techniques. In the fourth part of the thesis, closed-loop reference model (CRM) based adaptive control algorithm is improved by using reinforcement learning (RL) method. In the proposed system, an actor-critic agent is utilized to increase or decrease the observer gain scaling factor by using tracking error observations from the environment. Several simulation studies are performed on simplified longitudinal linear model of a transport helicopter. For a quantitative comparison of the transient response performance, key signal norms are calculated and results are evaluated. Monte-Carlo and the worst-case analyses are performed to compare the transient response performance of the adaptive systems in the presence of parametric uncertainties. It is shown that the proposed RL-CRM method has superior transient response performance when compared to the model reference adaptive control (MRAC) and optimized fixed-gain CRM-adaptive systems. In addition, the control structure provides the possibility to learn numerous adaptation strategies across various flight conditions rather this be driven by high-fidelity simulators or through flight testing.
Açıklama
Tez (Doktora) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2019
Thesis (Ph.D.) -- Istanbul Technical University, Institute of Science and Technology, 2019
Anahtar kelimeler
adaptif denetim, uçuş denetimi, adaptive control, flight control
Alıntı