Taşıyıcı duvar panoları ile yapılan prefabrike konut yapısı

thumbnail.default.alt
Tarih
1996
Yazarlar
Yıldırım, Emre
Süreli Yayın başlığı
Süreli Yayın ISSN
Cilt Başlığı
Yayınevi
Fen Bilimleri Enstitüsü
Özet
Yüksek lisans tezi olacak sunulan bu çalışmada 6 katlı taşıyıcı duvar panolarından oluşan prefabrike bir yapı projelendirilmiştir. Yapı Şekil 1.1. 'de görüldüğü gibi, plandaki boyutları 16.15x19.75 m ve temelden yüksekliği 16.20 m'dir. Ele alınan yapı 2. derece deprem bölgesindedir. Duvar panolarının taşıyıcı tabaka kalınlığı 16 cm'dir. Dış duvar panolarında ve cephe panolarında ayrıca 4 cm kalınlığında taşıyıcı olmayan betonarme kısım vardır. Yapının boyutlandınlmasında yatay yükler esas alınmış ve yatay yükler altındaki hesabı kaynak [4]'e ve [5]'e göre yapılmıştır. Yapı belirlenen deprem yüklerine göre birbirine dik iki doğrultuda bağlantı kirişlerinin çatlamış olması ve çatlamamış olması durumları için ayrı ayrı hesaplanmıştır. Bağlantı IrmşflftrinjTi çatlamış olması durumunda kiriş atalet momenti olarak, homojen kesit atalet momentinin %40'ı, çatlamamış olması durumunda ise kendi atalet momenti alınmıştır. Yapının prefabrike duvar panolar ile teşkil edilmiş olması sebebiyle doğan ek kesit tesirleri hesabı kaynak [l]*e göre yapılmıştır. Döşeme panolarının statik hesaplan, döşeme panolarının mesnetlenme durumlarına bağlı olarak kaynak [ 10]'a ve betonarme hesaplanda kaynak [öj'ya göre yapılmıştır. Temel sistemi olarak radye temel seçilmiş ve döşeme hesaplarına benzetilerek boyutlandınlrmştır.
The design project of a prefabricated reinforced concrete building system with large panels is presented here in as a master thesis. The building as shown in figure 1.1. which will be used as a residence, is 16.20 meter high from the foundation level and is 19.75*16.15 meter planewise. It has 6 floors. The load carrying system consist of load bearing wall. The effective thickness of the carrying panels are 16 cm. The thickness of the slabs are 13 cm. Design loads were taken from Turkish Standart 498 reference [3] fin: live loads, as well as dead loads. The building is in the second degree at eartquake region. The foundation soil is mainly composed of dense sand and gravel. The rigidity calculation of wall panels for horizontal loads, walls in perpendicalor direction and rigid against shear forces can be assamed to act as flanges. The flange width shall not be greater than the smallest value of the following items : -0.2 H (H being the height of wall above foundation -widht of wall -16 times the thickness of the flange wall -4.00 m -sum of half distances between adjacent panels -sum of distances from the shear wall to any significant opening in the flange wall. Panels with perpendicular panel in one direction only, 1/2 the values stated in the first four items can be used. In this working used effective flange thickness of both sides 16*0* Calculating of lateral loads First of all, the total weight of the building is calculated WrGr+n'Qi xrv GHdead load, Qruve load n is taken 0.30 because the purpose of usage is as a residence W=Wi (The weight of building) If the structure is of regular structure type and the height is less than 75 m. the seismic effects in the structure can be obtainned through a statical solution under the statical equivalent forces. According to this method every structures shall be designed and constructed to resist minimum total lateral seismic force assumed to act nonconcurrently in the direction of each of the main axes of the structure in accordance with the following formula: F=C*W where C=Co*K*S*I Co is a actor which accounts for the seismic intensity of site and the seismic hazard exposure K is structural type factor I the coefficient of structure importance S is structural spectrum factor, which depends on the period of the first made of the structure and the main period of the ground soil. 1 0.80+T-T0 S<1 T=0.09*JL T=(0.07«0.10)*N To ^Predominant period of underliying soil stratum,sec. N=Number of stories Total lateral force: F=C*W F.WLhi Forces influencing to each floor: 'Pf^r--- Z^Wi-hi Design for horizantal loads are made seperately in two main directions to find the maximum reaction and stresses on each member.joint and section. In lateral load analysis eartquaks loads were considered as main loads. The building was analysed according to the established earthquake loads in two direction, according to the lintels (coupling beams) were in tile case of cracked or uncracked separately. In cracked srtateoftbe lintels u»inertial moments of the cross section were taken into account 0.40 times of the inertial moment of the homogenous cross section. But in uncracked state this ratio was taken into account as 1.00. The internal forces of the shear walls and frames are laken from the first solution ard the internal forces of the lintels are taken from the second. As a result of the case that rigidity of the shear walls, colums and lintels are constant or may vary with the same law, all the carrying system of the structure may be idealized as defined in [5] to the following fictive system. Where Ip is the total inertia xv moments that parallel to the earthquake direction in ore storey and k is the spring rotational rigidity in that storey. W:
Açıklama
Tez (Yüksek Lisans) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 1996
Anahtar kelimeler
Duvar panosu, Prefabrikasyon, Taşıyıcı sistemler, Wallboard, Prefabrication, Supporting systems
Alıntı