LEE- Deprem Mühendisliği-Yüksek Lisans
Bu koleksiyon için kalıcı URI
Gözat
Konu "coupling beams" ile LEE- Deprem Mühendisliği-Yüksek Lisans'a göz atma
Sayfa başına sonuç
Sıralama Seçenekleri
-
ÖgeReinforced concrete coupling beams and viscoelastic coupling dampers (VCD) in high-rise buildings(Graduate School, 2022-08-03) Birşen, Yaren ; Fahjan, yasin ; 802201241 ; Earthquake EngineeringThe rapidly increasing world population in the 20th century and the developments in building manufacturing technology accelerated the design and manufacture of high rise buildings all over the world. High-rise buildings are structures that must have special design principles due to the complexity of their dynamic behavior. Conventional strength design methods are not sufficient to determine the performance of high rise buildings under seismic forces. In national and almost all international codes, along with the design of high rise buildings according to their strength, the displacement based design should also be done. The carrier systems of high rise buildings can be formed using very different systems. However, the carrier systems of high rise buildings generally have a core formed by the shear wall arms around the stairs, elevators and technical areas, and the coupling beams connecting these shear wall arms. The location and length of the shear walls constituting this core and the depth of the coupling beam change according to the limitation of the relative storey drift of the building and the comfort conditions under wind loads. In high rise structural systems formed by shear walls and coupling beams, the coupling beams can be subjected to large non-linear deformations under earthquake loads. Generally, non-linear strains are concentrated in these elements. Therefore, the performance of high-rise buildings with this type of load-bearing system under seismic loads generally depends on the behavior of the coupling beams. In addition, the coupling beams located between the rigid shear wall arms can crack even under wind loads. Many details have been studied in order to increase the performance of the coupling beams under lateral loads. The most common detail in practice is the diagonal reinforcement configuration in reinforced concrete deep coupling beams. In addition, the steel coupling beam detail formed between the reinforced concrete shear wall arms is frequently used in practice. However, it is difficult to manufacture these details in the field and prolongs the production times. The cost of constructing high rise buildings is considerably higher than the cost of a typical building structure. The fact that the nonlinear deformations of the coupling beams are high under earthquake loads, the damage is concentrated in these regions, the manufacturing of conventional coupling beams is difficult and time-consuming brings up the improvement of the design and performance of the coupling beams in high-rise structural systems formed by coupled wall. In recent studies, instead of reinforced concrete rigid coupling beams, the design of more flexible energy absorbing coupling beams has been discussed. In this thesis, it is suggested to use dampers instead of reinforced concrete coupling beams connecting the shear wall arms. A new viscoelastic damping (VCD) device developed for high rise buildings at the University of Toronto was used in this thesis. The first model is a high ductility shear wall system, in which 46 story reinforced concrete shear wall arms are combined with deep coupling beams, located in an area with high seismicity. In the second model, VCDs were used instead of the deep reinforced concrete coupling beams in the first model. In order to compare the performance of these two systems and to optimize the location and number of VCDs, nonlinear time history analyzes were performed. Analysis results of high rise buildings with two different systems were compared and examined.