LEE- Matematik Mühendisliği Lisansüstü Programı
Bu topluluk için Kalıcı Uri
Gözat
Konu "Plates" ile LEE- Matematik Mühendisliği Lisansüstü Programı'a göz atma
Sayfa başına sonuç
Sıralama Seçenekleri
-
ÖgeKlasik ve mikrogermeli ortam teorisiyle modellenen plaklarin caputo kesirli türevi yardimiyla nonlokal titreşim analizi(Fen Bilimleri Enstitüsü, 2020) Aydınlık, Soner ; Kırış, Ahmet ; 638082 ; Matematik Mühendisliği Ana Bilim DalıBu çalışmada dikdörtgen plakların yerel olmayan üç boyutlu titreşim analizi Caputo kesirli türevi yardımıyla incelenmiştir. Kesirli türev son yıllarda mühendislik, fizik, finans, biyoloji gibi birçok alanda yaygın bir şekilde kullanılmaktadır. Kesirli türevin sürekli ortamlar mekaniğine uygulamaları ise, nonlokal problemlerin ve bellekli malzemelerin modellenmesinde literatürde var olan yöntemlere göre yeni bir bakış açısı getirmektedir. Klasik sürekli ortamlar mekaniğinin gelişmesine büyük katkı sağlayan gerilme tansörü kavramı 19. yy başlarında Cauchy tarafından ortaya konulmuş ve böylece lineer elastisite teorisi için hareket denklemi üç boyutlu duruma genelleştirilmiştir. Ancak bu modelde malzemenin iç karakteristik uzunluğu hesaba katılmadığı için 1960'larda yerel olmayan elastisite teorisi geliştirilmiştir. Son yıllarda kesirli analizin yaygınlaşmasıyla birlikte yerel olmayan yeni modeller geliştirilmiştir. Bu yeni modellerin temel avantajı, klasik sürekli ortamlar mekaniğinin genel yerel olmayan yapısına benzer olmasının yanı sıra, kesirli türevin tanımından kaynaklanan bazı eklemeler sayesinde fiziksel gerçeklere daha uygun olmasıdır. Ayrıca, kesirli türev kullanımı nedeniyle fiziksel büyüklüklerde meydana gelen birim uyuşmazlığı da birim uyum katsayısı tanımlanarak ortadan kaldırılabildiği için genelleştirilmiş kesirli yer değiştirme gradyanları ve kesirli gerilme büyüklükleri gibi büyüklükler, klasik olanlarla aynı fiziksel birimlere sahip olurlar. Mekanikte gerek uzaysal değişkenler ve gerekse de zaman değişkeni üzerinde kesirli analiz yapmak çok daha gerçekçi olduğundan, bu alandaki çalışmalar giderek yaygınlaşmaktadır . Bu tez çalışmasında nonlokal etkileri yansıtmak için klasik yer değiştirme gradyanları yerine, Caputo kesirli türevi yardımıyla tanımlanan kesirli yer değiştirme gradyanları kullanılmıştır. Burada kabul edilebilir fonksiyonlar olarak sınır fonksiyonlarıyla çarpılmış Chebyshev polinomları alınmıştır. Sınır fonksiyonları plağın temel geometrik sınır koşullarını sağlayacak şekilde seçilmiş, ancak gerilme sınır koşulları dikkate alınmamıştır. Kesirli türevlerin nonlokalite üzerindeki etkisini göstermek için, farklı sınır koşullarına sahip bazı dikdörtgen plakların titreşim analizi incelenmiştir. Sonuçlar, beklentilere uygun olarak kesirli türevin mertebesi klasik türevin mertebesine yaklaştıkça, nonlokal etkinin azalarak elde edilen frekans değerlerinin klasik durum için elde edilen frekans değerlerine yaklaştığını göstermektedir. Tez çalışmasında klasik titreşim probleminin Caputo kesirli türeviyle incelenmesinin yanı sıra mikrogermeli ortam teorisiyle modellenen dikdörtgen plakların titreşim analizi de Caputo kesirli türevi yardımıyla elde edilmiştir. Mikrogermeli ortam parçacağın klasik şekil değiştirmesinin yanı sıra, bu klasik şekil değiştirmeden bağımsız mikro hacimsel genleşme ve mikro dönme yapabildiği kabulüne dayanmaktadır. Kesirli türev yardımıyla mikrogermeli ortam teorisiyle modellenmiş plakların titreşim problemini nonlokal teoriyle incelemek hesapları basitleştirmesiyle beraber klasik teoriye göre daha iyi sonuçlar vermektedir.