LEE- Çevre Bilimleri Mühendisliği ve Yönetimi-Doktora
Bu koleksiyon için kalıcı URI
Gözat
Sustainable Development Goal "Goal 9: Industry, Innovation and Infrastructure" ile LEE- Çevre Bilimleri Mühendisliği ve Yönetimi-Doktora'a göz atma
Sayfa başına sonuç
Sıralama Seçenekleri
-
ÖgeRecovery of water and chemicals from textile wastewater with ceramic membranes(Graduate School, 2021-12-17) Ağtaş, Meltem ; Koyuncu, İsmail ; 501142702 ; Environmental Sciences Engineering and ManagementDecreased water resources in our world necessitate the treatment and reuse of polluted water. Water recovery is of vital importance, both in terms of sustainability and economy, especially in industries that consume large amounts of water. One of the industries that consume a high amount of water is the textile industry. In the textile industry, 0.06-0.40 m3 water/kg product is used according to literature. In parallel with the amount of water used in the processes in the textile industry, a high amount of wastewater is generated. These wastewaters are known to contain high COD, different dyes, heavy metals, etc. For this reason, it is not possible to discharge these wastewaters into the environment without proper treatment. Many traditional methods for the treatment of textile wastewater such as coagulation flocculation, activated carbon adsorption, ozonation and biological treatment are used. However, these methods cannot meet strict discharge limits or are not economically viable. Therefore, membrane processes come to the fore in textile wastewater treatment since they are recommended for textile wastewater treatment in the BAT (Best Available Techniques) reference document. As a result of textile wastewater treatment with membrane processes, high-efficiency treatment is provided and the treated wastewater can have the potential to be reused. Polymeric membranes are generally preferred in treatment processes. However, since textile wastewaters have high temperatures and extreme pH values, the use of polymeric membranes is not suitable. The textile industry produces wastewater with temperatures that can go up to 90-95 °C. Generally, wastewater must be cooled down before membrane treatment. For efficient treatment, membranes have to be thermally stable; most polymeric membranes tend to degrade at high temperatures and therefore, they are not suitable for hot wastewater treatment.Therefore, the use of ceramic membranes in the treatment of textile wastewater is a viable method. Besides, when ceramic and polymeric membranes are compared, it can be said that ceramic membranes are having more advantageous in terms of high thermal, mechanical, and chemical stability, well-defined pore size distribution, and high flux. In this thesis, a comprehensive study was carried out on the pilot-scale water and chemical recovery using ceramic membranes from real textile wastewater and the development of halloysite nanotube doped membranes for the treatment and recovery of real textile wastewater. First, a pilot-scale ceramic ultrafiltration/nanofiltration system was operated for hot water recovery by treating real textile wastewater in a selected textile factory. Later, in the same facility, real textile wastewater with caustic content was used in order to make chemical recovery. Based on the successful results of these studies, after it was proven that water and chemical recovery can be made with ceramic membranes, halloysite nanoclay added membranes were produced in order to make this process more economical, and treatment trials were carried out with real wastewater from the same facility and important results were obtained.