LEE- Matematik Mühendisliği-Doktora
Bu koleksiyon için kalıcı URI
Gözat
Yazar "Ilgaz, Ulviye" ile LEE- Matematik Mühendisliği-Doktora'a göz atma
Sayfa başına sonuç
Sıralama Seçenekleri
-
ÖgeFinite-time control of switched linear systems with time-delay(Fen Bilimleri Enstitüsü, 2020) Göksu, Gökhan ; Ilgaz, Ulviye ; 509132052 ; Matematik Mühendisliği ; Mathematics EngineeringDenetim kuramı dinamik sistemin girdisini, çıktısına göre ayarlamak suretiyle sistemin belirli bir davranışı sergilemesini inceleyen bir mühendislik ve matematik dalıdır. İncelenen sistemler zamana göre ayrık veya sürekli olabildiği gibi, bazı durumlarda dinamik sistemin davranışı sürekli ve ayrık olayların birleşiminden de oluşabilir. Bu tip sistemlere melez (hybrid) sistemler adı verilir. Melez sistemler konusunda sürekli sistemlerin ayrık ve anlık olaylarla değiştiği sistemler olan anahtarlamalı sistemler konusu yaygın olarak çalışılmaktadır. Anahtarlamalı sistemlerle ilgili çalışmalarda genellikle sistemin asimptotik kararlı olması durumu incelenmiştir. Halbuki bir çok pratik uygulamada sonlu zaman kararlı/sınırlı olması durumu, yani sistemin davranışının sonlu zamanda belli sınırlarda tutulması durumu önem arz etmektedir. Asimptotik olarak denge noktasına giden asimptotik kararlı sistemler, sonlu zaman kararlı/sınırlı olmayabilir; bazı sonlu zaman kararlı/sınırlı sistemler asimptotik kararlı olmayabilir. Anahtarlamalı sistemlerle ilgili ana çalışma alanı ise yaşam süresi veya ortalama yaşam süresidir. Yaşam süresi ardışık anahtarlama zamanlarının farkının belli bir yaşam süresinden fazla olması; ortalama yaşam süresi ise ardışık anahtarlama zamanlarının farkının ortalamasının belli bir ortalama yaşam süresinden fazla olmasıdır. Mühendislikte ve matematikte incelenen bazı dinamik sistemler; sistemin o andaki durumunun yanında, sistemin geçmişteki durumuna da bağlı olabilir. Bu tip sistemler zaman gecikmeli sistemler olarak adlandırılır ve zaman gecikmesi kötü performansa veya sistem kararsızlığına neden olabilir. Bu çalışmada, anahtarlamalı sistemlerin alt sistemlerinin kararsız ve karışık kararlı olması durumu ele alınmıştır. Anahtarlamalı ve aralık zaman gecikmeli sistemlerin bozucu etkisinde sonlu zaman kararlı/sınırlı ve H$_\infty$ sınırlı olma durumları incelenmiştir. Öncelikle, sonlu zaman kararlılığı ile asimptotik kararlılık arasındaki farklar örnekler üzerinde gösterilmiş, sistem matrisleri Hurwitz kararlı olmayan ve zamana bağlı olmayan doğrusal sistemlerin sonlu zaman kararlılığı için yeter koşul elde edilmiştir. Sonlu zaman sınırlılığı ve H$_\infty$ denetimi sağlayacak gözlemci tabanlı denetimcinin varlığı için Lyapunov-Krasovskii fonksiyoneli kullanılarak yeni yeter koşullar elde edilmiştir. Herhangi bir matris ayrıştırımına ihtiyaç olmadan gözlemci tabanlı denetimci tasarlanarak, alt sistemlerin kararsız ve karışık kararlı olduğu durumlar için ortalama yaşam süresi sınırları bulunmuştur. Bu sınırlarda doğrusal olmayan terimlere bağlı olan bazı sabitler içerdiğinden ve bu terimler de yeter koşullardaki matrislerden oluştuğundan dolayı; ortalama yaşam süresindeki bu sabitlerin çözümü için koni tamamlayıcı bir algoritma sunulmuştur. Tüm bu çalışmalar durum geri beslemesi için de uygulanmıştır. %Bu çalışmada anahtarlamalı ve zaman gecikmeli sistemler için durum geri beslemesi altında ve gözlemci tabanlı sonlu zaman kararlılık analizleri yapılmıştır. Anahtarlamalı ve zaman gecikmeli sistemlerin kararlılığı ile ilgili yapılan çalışmalarda genellikle durum geri beslemesi ele alınmıştır. Bu sistemlerin gözlemci tabanlı kontrolü ile ilgili çalışmalar kısıtlıdır. Bu çalışmalarda da belirli bir aralıktaki zaman gecikmesi göz önüne alınmamıştır. Ayrıca gözlemci kazanç matrisinin hesaplanması, yeter koşulda verilen doğrusal matris eşitsizliklerinden elde edilen matrislerin özel bir yapıda ayrışmasına bağlıdır. Ortalama yaşam süresi kısıtındaki özdeğerlerin hesaplamaları hakkında hiçbir detaylı açıklama da verilmemiştir. Bunun yanı sıra, durum vektörünün sistem matrisleri Hurwitz kararlı olarak seçilmiştir ve kararsız ve karışık kararlı alt sistemler arasında anahtarlama olması durumu incelenmemiştir. Çalışmanın birinci bölümü olan giriş bölümünde kontrol süreci gösterilmiştir. Melez sistemler ve anahtarlamalı sistemler konusundaki çalışmalar özetlenmiş, sonlu zaman kararlılığı konusunda yapılan çalışmalar ile ortalama yaşam süresi konusunda yapılan çalışmalardan bahsedilmiştir. Tezde ele alınan problemlerden anahtarlamalı ve zaman gecikmeli sistemlerde yapılan çalışmalarda eksik olan kısımlar özetlenerek literatür özeti tamamlanmıştır. İkinci bölümde, bu tezde kullanılan temel tanımlar ve bilgiler tanıtılmıştır. Öncelikle diferansiyel denklem sistemlerinin çözümlerinin varlığı ve tekliği için yeter koşullar verilmiştir. Melez sistemler, bir mühendislik örneği olan araçların vites dinamiği ile tanıtılarak, anahtarlamalı sistemlerin ne tarz durumlarda ortaya çıkabileceği gösterilmiş; duruma bağlı anahtarlama ve zamana bağlı anahtarlama durumları ayrıntılarıyla ele alınmıştır. Kısıtlamalı anahtarlama altında anahtarlama durumlarına bağlı yaşam süresi ve ortalama yaşam süresi kavramları tanıtılarak zaman gecikmeli sistemler ile ilgili temel bilgiler verilmiştir. Sonlu zaman kararlılığı ve sınırlılığı, Lyapunov kararlılık tanımları verilerek, bu iki kararlılık tanımları arasındaki kavram farkılıkları ortaya konmuş ve anahtarlamalı sistemler üzerinde örnek verilmiştir. Verilen örnekte kararlı iki alt sistemin periyodik anahtarlama altında periyoda bağlı kararlı veya kararsız olma durumlarının gözlemlendiği gösterilmiştir. Daha sonraki bölümlerde kullanılacak olan; vektör normu ve matris normu kavramları, Schur yardımcı teoremi, Grönwall yardımcı teoremi ve Jensen eşitsizliği sunulmuş ve tezde kullanılan notasyonlar belirtilmiştir. Üçüncü bölümde; kararlı, kararsız ve karışık kararlı alt sistemlere sahip doğrusal anahtarlamalı sistemlerin vektör ve matris normları kullanılarak sonlu zaman kararlılık analizi yapılmıştır. Alt sistem matrislerinin özdeğerleri ve koşullandırma sayılarına bağlı sonlu zaman kararlılık koşulları ve bu alt sistemlerin olası aktivasyon sayıları elde edilmiştir. Anahtarlamalı sistemin sonlu zaman kararlılığının sağlanması için yeni ortalama yaşam süresi önerilmiştir. Son olarak da sayısal örneklerle teorik sonuçlar açıklanmıştır. Dördüncü bölümde, anahtarlamalı ve aralık zaman gecikmeli sistemlerin durum geri beslemesi altındaki sonlu zaman sınırlılığı ele alınmıştır. Yeter koşullarla birlikte ortalama yaşam süresi elde edilmiştir. Bu koşullarda dışbükey olmayan terimler olduğu için bu terimleri doğrusal matris eşitsizliği koşullarına çeviren bir koni tamamlayıcı doğrusallaştırma yöntemi ve algoritması kullanılmıştır. Son olarak da sayısal bir örnek verilmiştir. Beşinci bölümde, anahtarlamalı ve aralık zaman gecikmeli sistemlerin gözlemci tabanlı sonlu zaman sınırlılığı durum vektörlerinin başındaki alt sistem matrislerinin tamamının kararsız ve karışık kararlı (yani bir kısmı kararlı bir kısmı kararsız) olması durumlarına göre incelenmiştir. Bu iki durumda da gözlemcinin varlığı için yeni yeter koşullar ve ortalama yaşam süresi tanıtılmıştır. Ortalama yaşam süresindeki parametrelerin hesabı için koni tamamlayıcı doğrusallaştırma yöntemi ve algoritması gösterilmiştir. Son olarak da literatürdeki durum vektörlerinin başındaki alt sistem matrislerinin tamamının kararsız olma durumunu inceleyen karşılaştırmalı bir örnek ile bu matrislerin karışık kararlı olma durumunu inceleyen sayısal örnekler verilmiştir. Altıncı bölümde, anahtarlamalı ve aralık zaman gecikmeli sistemlerin H$_{\infty}$ sonlu zaman sınırlılığı için bir gözlemci tabanlı denetimci tasarlanmıştır. H$_{\infty}$ sonlu zaman sınırlılığı incelenen sisteme bozucu etki etmesinden dolayı incelenmiştir. Bu bölümde durum vektörlerinin başındaki alt sistem matrislerinin karışık kararlı olması durumu için koşullar elde edilip, önerilen koşulların etkinliği ve geçerliliği sayısal bir örnek üzerinde gösterilmiştir. Gelecek çalışmalarda, moda bağımlı kararlılaştırma analizi ve gürbüz kararlılık ele alınarak şu ana kadar yapılan çalışmaların genişletilmesi düşünülmektedir.