LEE Uçak ve Uzay Mühendisliği Lisansüstü Programı
Bu topluluk için Kalıcı Uri
Gözat
Yazar "Aeronautics and Astronautics Engineering" ile LEE Uçak ve Uzay Mühendisliği Lisansüstü Programı'a göz atma
Sayfa başına sonuç
Sıralama Seçenekleri

ÖgeA study on optimization of a wing with fuel sloshing effects(Graduate School, 20220124) Vergün, Tolga ; Doğan, Vedat Ziya ; 511181206 ; Aeronautics and Astronautics Engineering ; Uçak ve Uzay MühendisliğiIn general, sloshing is defined as a phenomenon that corresponds to the free surface elevation in multiphase flows. It is a movement of liquid inside another object. Sloshing has been studied for centuries. The earliest work [48] was carried out in the literature by Euler in 1761 [17]. Lamb [32] theoretically examined sloshing in 1879. Especially with the development of technology, it has become more important. It appears in many different fields such as aviation, automotive, naval, etc. In the aviation industry, it is considered in fuel tanks. Since outcomes of sloshing may cause instability or damage to the structure, it is one of the concerns about aircraft design. To prevent its adverse effect, one of the most popular solutions is adding baffles into the fuel tank. Still, this solution also comes with a disadvantage: an increase in weight. To minimize the effects of added weight, designers optimize the structure by changing its shape, thickness, material, etc. In this study, a NACA 4412 airfoilshaped composite wing is used and optimized in terms of safety factor and weight. To do so, an initial composite layup is determined from current designs and advice from literature. When the design of the initial system is completed, the system is imported into a transient solver in the Ansys Workbench environment to perform numerical analysis on the time domain. To achieve more realistic cases, the wing with different fuel tank fill levels (25%, 50%, and 75%) is exposed to aerodynamic loads while the aircraft is rolling, yawing, and dutch rolling. The aircraft is assumed to fly with a constant speed of 60 m/s (~120 knots) to apply aerodynamic loads. Resultant force for 60 m/s airspeed is applied onto the wing surface by 1Way FluidStructure Interaction (1Way FSI) as a distributed pressure. Using this method, only fluid loads are transferred to the structural system, and the effect of wing deformation on the fluid flow field is neglected. Once gravity effects and aerodynamic loads are applied to the wing structure, displacement is defined as the wing is moving 20 deg/s for 3 seconds for all types of movements. On the other hand, fluid properties are described in the Ansys Fluent environment. Fluent defines the fuel level, fluid properties, computational fluid dynamics (CFD) solver, etc. Once both structural and fluid systems are ready, system coupling can perform 2Way FluidStructure Interaction (2Way FSI). Using this method, fluid loads and structural deformations are transferred simultaneously at each step. In this method, the structural system transfers displacement to the fluid system while the fluid system transfers pressure to the structural system. After nine analyses, the critical case is determined regarding the safety factor. Critical case, in which system has the lowest minimum safety factor, is found as 75% filled fuel tank while aircraft dutch rolling. After the determination of the critical case, the optimization process is started. During the optimization process, 1Way FSI is used since the computational cost of the 2Way FSI method is approximately 35 times that of 1Way FSI. However, taking less time should not be enough to accept 1Way FSI as a solution method; the deviation of two methods with each other is also investigated. After this investigation, it was found that the variation between the two methods is about 1% in terms of safety factors for our problem. In the light of this information, 1Way FSI is preferred to apply both sloshing and aerodynamic loads onto the structure to reduce computational time. After method selection, thickness optimization is started. Ansys Workbench creates a design of experiments (DOE) to examine response surface points. Latin Hypercube Sampling Design (LHSD) is preferred as a DOE method since it generates noncollapsing and spacefilling points to create a better response surface. After creating the initial response surface using Genetic Aggregation, the optimization process is started using the MultiObjective Genetic Algorithm (MOGA). Then, optimum values are verified by analyzing the optimum results in Ansys Workbench. When the optimum results are verified, it is realized that there is a notable deviation in results between optimized and verified results. To minimize the variation, refinement points are added to the response surface. This process is kept going until variation comes under 1%. After finding the optimum results, it is noticed that its precision is too high to maintain manufacturability so that it is rounded into 1% of a millimeter. In the end, final thickness values are verified. As a result, optimum values are found. It is found that weight is decreased from 100.64 kg to 94.35 kg, which means a 6.3% gain in terms of weight, while the minimum safety factor of the system is only reduced from 1.56 to 1.54. At the end of the study, it is concluded that a 6.3% reduction in weight would reflect energy saving.

ÖgeA study on static and dynamic buckling analysis of thin walled composite cylindrical shells(Graduate School, 20220124) Özgen, Cansu ; Doğan, Vedat Ziya ; 511171148 ; Aeronautics and Astronautics Engineering ; Uçak ve Uzay MühendisliğiThinwalled structures have many useage in many industries. Examples of these fields include: aircraft, spacecraft and rockets can be given. The reason for the use of thinwalled structures is that they have a high strength weight ratio. In order to define a cylinder as thinwalled, the ratio of radius to thickness must be more than 20, and one of the problems encountered in the use of such structures is the problem of buckling. It is possible to define the buckling as a state of instability in the structure under compressive loads. This state of instability can be seen in the load displacement graph as the curve follows two different paths. The possible behaviors; snap through or bifurcation behavior. Compressive loading that cause buckling; there may be an axial load, torsional load, bending load, external pressure. In addition to these loads, buckling may occur due to temperature change. Within the scope of this thesis, the buckling behavior of thinwalled cylinders under axial compression was examined. The cylinder under the axial load indicates some displacement. When the amount of load applied reaches critical level, the structure moves from one state of equilibrium to another. After some point, the structure shows high displacement behavior and loses stiffness. The amount of load that the structure will carry decreases considerably, but the structure continues to carry loads. The behavior of the structure after this point is called postbuckling behavior. The critical load level for the structure can be determined by using finite elements method. Linear eigenvalue analysis can be performed to determine the static buckling load. However, it should be noted here that eigenvalueeigenvector analysis can only be used to make an approximate estimate of the buckling load and input the resulting buckling shape into nonlinear analyses as a form of imperfection. In addition, it can be preferred to change parameters and compare them, since they are cheaper than other types of analysis. Since the buckling load is highly affected by the imperfection, nonlinear methods with geometric imperfection should be used to estimate a more precise buckling load. It is not possible to identify geometric imperfection in linear eigenvalue analysis. Therefore, a different type of analysis should be selected in order to add imperfection. For example, an analysis model which includes imperfection can be established with the Riks method as a nonlinear static analysis type. Unlike the NewtonRapson method, the Riks method is capable of backtracking in curves. Thus, it is suitable for use in buckling analysis. In Riks analysis, it is recommended to add imperfection in contrast to linear eigenvalue analysis. Because if the imperfection is added, the problem will be bifurcation problem instead of limit load problem and sharp turns in the graph can cause divergence in analysis. Another nonlinear method of static phenomena is called quasistatic analysis which is used dynamic solver. The important thing to note here is that the inertial effects should be too small to be neglected in the analysis. For this purpose, kinetic energy and internal energy should be compared at the end of the analysis and kinetic energy should be ensured to be negligible levels besides internal energy. Also, if the event is solved in the actual time length, this analysis will be quite expensive. Therefore, the time must be scaled. In order to scale the time correctly, frequency analysis can be performed first and the analysis time can be determined longer than the period corresponding to the first natural frequency. For three analysis methods mentioned within this study, validation studies were carried out with the examples in the literature. As a result of each type of analysis giving consistent results, the effect of parameters on static buckling load was examined, while linear eigenvalue analysis method was used because it was also sufficient for cheaper analysis method and comparison studies. While displacementcontrolled analyses were carried out in the static buckling analyses mentioned, loadcontrolled analyses were performed in the analyses for the determination of dynamic buckling force. As a result of these analyses, they were evaluated according to different dynamic buckling criteria. There are some of the dynamic buckling criteria; Volmir criterion, BudianskyRoth criterion, HoffBruce criterion, etc. When BudianskyRoth criterion is used, the first estimated buckling load is applied to the structure and displacement  time graph is drawn. If a major change in displacement is observed, it can be assumed that the structure is dynamically buckled. For HoffBruce criterion, the speed  displacement graph should be drawn. If this graph is not focused in a single area and is drawn in a scattered way, it is considered that the structure has moved to the unstable area. As in static buckling analyses, dynamic buckling analyses were primarily validated with a sample study in the literature. After the analysis methods, the numerical studies were carried out on the effect of some parameters on the buckling load. First, the effect of the stacking sequence of composite layers on the buckling load was examined. In this context, a comprehensive study was carried out, both from which layer has the greatest effect of changing the angle and which angle has the highest buckling load. In addition, the some angle combinations are obtained in accordance with the angle stacking rules found in the literature. For those stacking sequences, buckling forces are calculated with both finite element analyses and analytically. In addition, comparisons were made with different materials. Here, the buckling load is calculated both for cylinders with different masses of the same thickness and for cylinders with different thicknesses with the same mass. Here, the highest force value for cylinders with the same mass is obtained for a uniform composite. In addition, although the highest buckling force was obtained for steel material in the analysis of cylinders of the same thickness, when we look at the ratio of buckling load to mass, the highest value was obtained for composite material. In addition, the ratio of length to diameter and the effect of thickness were also examined. Here, as the length to diameter ratio increases, the buckling load decreases. As the thickness increases, the buckling load increases with the square of the thickness. In addition to the effect of the length to diameter ratio and the effect of thickness, the loading time and the shape of the loading profile are also known in dynamic buckling analysis. In addition, the critical buckling force is affected by imperfections in the structure, which usually occur during the production of the structure. How sensitive the structures are to the imperfection may vary depending on the different parameters. The imperfection can be divided into three different groups as geometric, material and loading. Cylinders under axial load are particularly affected by geometric imperfection. The geometric imperfection can be defined as how far the structure is from a perfect cylindrical structure. It is possible to determine the specified amount of deviation by different measurement methods. Although it is not possible to measure the amount of imperfection for all structures, an idea can be gained about how much imperfection is expected from the studies found in the literature. Both the change in the buckling load on the measured cylinders and the imperfection effect of the buckling load can be measured by adding the measured amount of imperfection to the buckling load calculations. In cases where the amount of imperfection cannot be measured, the finite element can be included in the analysis model as an eigenvector imperfection obtained from linear buckling analysis and the critical buckling load can be calculated for the imperfect structure using nonlinear analysis methods. In this study, studies were carried out on how imperfection sensitivity changes under both static and dynamic loading with different parameters. These parameters are the the lengthtodiameter ratio, the effect of the stacking sequence of the composite layers and the added imperfection shape. The most important result obtained in the study on imperfection sensitivity is that the effect of the imperfection on the buckling load is quite high. Even geometric imperfection equal to thickness can cause the buckling load to drop by up to half.

ÖgeDevelopment of singleframe methods aided kalmantype filtering algorithms for attitude estimation of nanosatellites(Graduate School, 20210820) Çilden Güler, Demet ; Hacızade, Cengiz ; Kaymaz, Zerefşan ; 511162104 ; Aeronautics and Astronautics Engineering ; Uçak ve Uzay MühendisliğiThere is a growing demand for the development of highly accurate attitude estimation algorithms even for small satellite e.g. nanosatellites with attitude sensors that are typically cheap, simple, and light because, in order to control the orientation of a satellite or its instrument, it is important to estimate the attitude accurately. Here, the estimation is especially important in nanosatellites, whose sensors are usually lowcost and have higher noise levels than highend sensors. The algorithms should also be able to run on systems with very restricted computer power. One of the aims of the thesis is to develop attitude estimation filters that improve the estimation accuracy while not increasing the computational burden too much. For this purpose, Kalman filter extensions are examined for attitude estimation with a 3axis magnetometer and sun sensor measurements. In the first part of this research, the performance of the developed extensions for the state of art attitude estimation filters is evaluated by taking into consideration both accuracy and computational complexity. Here, singleframe methodaided attitude estimation algorithms are introduced. As the singleframe method, singular value decomposition (SVD) is used that aided extended Kalman filter (EKF) and unscented Kalman filter (UKF) for nanosatellite's attitude estimation. The development of the system model of the filter, and the measurement models of the sun sensors and the magnetometers, which are used to generate vector observations is presented. Vector observations are used in SVD for satellite attitude determination purposes. In the presented method, filtering stage inputs are coming from SVD as the linear measurements of attitude and their error covariance relations. In this step, UD is also introduced for EKF that factorizes the attitude angles error covariance with forming the measurements in order to obtain the appropriate inputs for the filtering stage. The necessity of the substep, called UD factorization on the measurement covariance is discussed. The accuracy of the estimation results of the SVDaided EKF with and without UD factorization is compared for the estimation performance. Then, a case including an eclipse period is considered and possible switching rules are discussed especially for the eclipse period, when the sun sensor measurements are not available. There are also other attitude estimation algorithms that have strengths in coping well with nonlinear problems or working well with heavytailed noise. Therefore, different types of filters are also tested to see what kind of filter provides the largest improvements in the estimation accuracy. Kalmantype filter extensions correspond to different ways of approximating the models. In that sense, a filter takes the nonGaussianity into account and updates the measurement noise covariance whereas another one minimizes the nonlinearity. Various other algorithms can be used for adapting the Kalman filter by scaling or updating the covariance of the filter. The filtering extensions are developed so that each of them is designed to mitigate different types of error sources for the Kalman filter that is used as the baseline. The distribution of the magnetometer noises for a better model is also investigated using sensor flight data. The filters are tested for the measurement noise with the best fitting distribution. The responses of the filters are performed under different operation modes such as nominal mode, recovery from incorrect initial state, short and longterm sensor faults. Another aspect of the thesis is to investigate two major environmental disturbances on the spacecraft close enough to a planet: the external magnetic field and the planet's albedo. As magnetometers and sun sensors are widely used attitude sensors, external magnetic field and albedo models have an important role in the accuracy of the attitude estimation. The magnetometers implemented on a spacecraft measure the internal geomagnetic field sources caused by the planet's dynamo and crust as well as the external sources such as solar wind and interplanetary magnetic field. However, the models that include only the internal field are frequently used, which might remain incapable when geomagnetic activities occur causing an error in the magnetic field model in comparison with the sensor measurements. Here, the external field variations caused by the solar wind, magnetic storms, and magnetospheric substorms are generally treated as bias on the measurements and removed from the measurements by estimating them in the augmented states. The measurement, in this case, diverges from the real case after the elimination. Another approach can be proposed to consider the external field in the model and not treat it as an error source. In this way, the model can represent the magnetic field closer to reality. If a magnetic field model used for the spacecraft attitude control does not consider the external fields, it can misevaluate that there is more noise on the sensor, while the variations are caused by a physical phenomenon (e.g. a magnetospheric substorm event), and not the sensor itself. Different geomagnetic field models are compared to study the errors resulting from the representation of magnetic fields that affect the satellite attitude determination system. For this purpose, we used magnetometer data from low Earthorbiting spacecraft and the geomagnetic models, IGRF and T89 to study the differences between the magnetic field components, strength, and the angle between the predicted and observed vector magnetic fields. The comparisons are made during geomagnetically active and quiet days to see the effects of the geomagnetic storms and substorms on the predicted and observed magnetic fields and angles. The angles, in turn, are used to estimate the spacecraft attitude, and hence, the differences between model and observations as well as between two models become important to determine and reduce the errors associated with the models under different space environment conditions. It is shown that the models differ from the observations even during the geomagnetically quiet times but the associated errors during the geomagnetically active times increase more. It is found that the T89 model gives closer predictions to the observations, especially during active times and the errors are smaller compared to the IGRF model. The magnitude of the error in the angle under both environmental conditions is found to be less than 1 degree. The effects of magnetic disturbances resulting from geospace storms on the satellite attitudes estimated by EKF are also examined. The increasing levels of geomagnetic activity affect geomagnetic field vectors predicted by IGRF and T89 models. Various sensor combinations including magnetometer, gyroscope, and sun sensor are evaluated for magnetically quiet and active times. Errors are calculated for estimated attitude angles and differences are discussed. This portion of the study emphasizes the importance of environmental factors on the satellite attitude determination systems. Since the sun sensors are frequently used in both planetorbiting satellites and interplanetary spacecraft missions in the solar system, a spacecraft close enough to the sun and a planet is also considered. The spacecraft receives electromagnetic radiation of direct solar flux, reflected radiation namely albedo, and emitted radiation of that planet. The albedo is the fraction of sunlight incident and reflected light from the planet. Spacecraft can be exposed to albedo when it sees the sunlit part of the planet. The albedo values vary depending on the seasonal, geographical, diurnal changes as well as the cloud coverage. The sun sensor not only measures the light from the sun but also the albedo of the planet. So, a planet's albedo interference can cause anomalous sun sensor readings. This can be eliminated by filtering the sun sensors to be insensitive to albedo. However, in most of the nanosatellites, coarse sun sensors are used and they are sensitive to albedo. Besides, some critical components and spacecraft systems e.g. optical sensors, thermal and power subsystems have to take the light reflectance into account. This makes the albedo estimations a significant factor in their analysis as well. Therefore, in this research, the purpose is to estimate the planet's albedo using a simple model with less parameter dependency than any albedo models and to estimate the attitude by comprising the corrected sun sensor measurements. A threeaxis attitude estimation scheme is presented using a set of Earth's albedo interfered coarse sun sensors (CSSs), which are inexpensive, small in size, and light in power consumption. For modeling the interference, a twostage albedo estimation algorithm based on an autoregressive (AR) model is proposed. The algorithm does not require any data such as albedo coefficients, spacecraft position, sky condition, or ground coverage, other than albedo measurements. The results are compared with different albedo models based on the reference conditions. The models are obtained using either a datadriven or estimated approach. The proposed estimated albedo is fed to the CSS measurements for correction. The corrected CSS measurements are processed under various estimation techniques with different sensor configurations. The relative performance of the attitude estimation schemes when using different albedo models is examined. In summary, the effects of two main space environment disturbances on the satellite's attitude estimation are studied with a comprehensive analysis with different types of spacecraft trajectories under various environmental conditions. The performance analyses are expected to be of interest to the aerospace community as they can be reproducible for the applications of spacecraft systems or aerial vehicles.

ÖgeImplementation of propulsion system integration losses to a supersonic military aircraft conceptual design( 20211007) Karaselvi, Emre ; Nikbay, Melike ; 511171151 ; Aeronautics and Astronautics Engineering ; Uçak ve Uzay MühendisliğiMilitary aircraft technologies play an essential role in ensuring combat superiority from the past to the present. That is why the air forces of many countries constantly require the development and procurement of advanced aircraft technologies. A fifthgeneration fighter aircraft is expected to have significant technologies such as stealth, lowprobability of radar interception, agility with supercruise performance, advanced avionics, and computer systems for command, control, and communications. As the propulsion system is a significant component of an aircraft platform, we focus on propulsion system and airframe integration concepts, especially in addressing integration losses during the early conceptual design phase. The approach is aimed to be appropriate for multidisciplinary design optimization practices. Aircraft with jet engines were first employed during the Second World War, and the technology made a significant change in aviation history. Jet engine aircraft, which replaced propeller aircraft, had better maneuverability and flight performance. However, substituting a propeller engine with a jet engine required a new design approach. At first, engineers suggested that removing the propellers could simplify the integration of the propulsion system. However, with jet engines for fighter aircraft, new problems arose due to the full integration of the propulsion system and the aircraft's fuselage. These problems can be divided into two parts: designing air inlet, air intake integration, nozzle/afterbody design, and jet interaction with the tail. The primary function of the air intake is to supply the necessary air to the engine with the least amount of loss. However, the vast flight envelope of the fighter jets complicates the air intake design. Spillage drag, boundary layer formation, bypass air drag, and air intake internal performance are primary considerations for intake system integration. The design and integration of the nozzle is a challenging engineering problem with the complex structure of the afterbody and the presence of jet and freeflow mix over control surfaces. The primary considerations for the nozzle system are afterbody integration, boattail drag, jet flow interaction, engine spacing for twinengine configuration, and nozzle base drag. Each new generation of aircraft design has become a more challenging engineering problem to meet increasing military performances and operational capabilities. This increase is due to higher Mach speeds without afterburner, increased acceleration capability, high maneuverability, and low visibility. Tradeoff analysis of numerous intake nozzle designs should be carried out to meet all these needs. It is essential to calculate the losses caused by different intakes and nozzles at the conceptual design of aircraft. Since the changes made after the design maturation delay the design calendar or changes needed in a matured design cause high costs, it is crucial to accurately present intake and nozzle losses while constructing the conceptual design of a fighter aircraft. This design exploration process needs to be automated using numerical tools to investigate all possible alternative design solutions simultaneously and efficiently. Therefore, spillage drag, bypass drag, boundary layer losses due to intake design, boattail drag, nozzle base drag, and engine spacing losses due to nozzle integration are examined within the scope of this thesis. This study is divided into four main titles. The first section, "Introduction", summarizes previous studies on this topic and presents the classification of aircraft engines. Then the problems encountered while integrating the selected aircraft engine into the fighter aircraft are described under the "Problem Statement". In addition, the difficulties encountered in engine integration are divided into two zones. Problem areas are examined as inlet system and afterbody system. The second main topic, "Background on Propulsion," provides basic information about the propulsion system. Hence, the Brayton cycle is used in aviation engines. The working principle of aircraft engines is described under the Brayton Cycle subtitle. For the design of engines, numbers are used to standardize engine zone naming to present a common understanding. That is why the engine station numbers and the regions are shown before developing the methodology. The critical parameters used in engine performance comparisons are thrust, specific thrust and specific fuel consumption, and they are mathematically described. The Aerodynamics subtitle outlines the essential mathematical formulas to understand the additional drag forces caused by propulsion system integration. During the thesis, ideal gas and isentropic flow assumptions are made for the calculations. Definition of drag encountered in aircraft and engine integration are given because accurate definitions prevent double accounting in the calculation. Calculation results with developed algorithms and assumptions are compared with the previous studies of Boeing company in the validation subtitle. For comparison, a model is created to represent the J79 engine with NPSS. The engine's performance on the aircraft is calculated, and given definitions and algorithms add drag forces to the model. The results are converged to Boeing's data with a 5% error margin. After validation, developed algorithms are tested with 5th generation fighter aircraft F22 Raptor to see how the validated approach would yield results in the design of nextgeneration fighter aircraft. Engine design parameters are selected, and the model is developed according to the intake, nozzle, and afterbody design of the F22 aircraft. A model equivalent to the F119PW100 turbofan engine is modeled with NPSS by using the design parameters of the engine. Additional drag forces calculated with the help of algorithms are included in the engine performance results because the model is produced uninstalled engine performance data. Thus, the net propulsive force is compared with the F22 Raptor drag force Brandtl for 40000 ft. The results show that the F22 can fly at an altitude of 40000 ft, with 1.6M, meeting the aircraft requirements. In the thesis, a 2D intake assumption is modeled for losses due to inlet geometry. The effects of the intake capture area, throat area, wedge angle, and duct losses on motor performance are included. However, the modeling does not include a bump intake structure similar to the intake of the F35 aircraft losses due to 3D effects. CFD can model losses related to the 3D intake structure, and test results and thesis studies can be developed. The circular nozzle, nozzle outlet area, nozzle throat area, and nozzle maximum area are used for modeling. The movement of the nozzle blades is included in the model depending on the boattail angle and base area. The works of McDonald & P. Hughest are used as a reference to represent the 2Dsized nozzle. The method described in this thesis is one way of accounting for installation effects in supersonic aircraft. Additionally, the concept works for aircraft with conventional shock inlets or oblique shock inlets flying at speeds up to 2.5 Mach. The equation implementation in NPSS enables aircraft manufacturers to calculate the influence of installation effects on engine performance. The study reveals the methodology for calculating additional drag caused by an engineaircraft integration in the conceptual design phase of nextgeneration fighter aircraft. In this way, the losses caused by the propulsion system can be calculated accurately by the developed approach in projects where aircraft and engine design have not yet matured. If presented, drag definitions are not included during conceptual design causing significant change needs at the design stage where aircraft design evolves. Making changes in the evolved design can bring enormous costs or extend the design calendar.

ÖgeNumerical and experimental study of fluid structure interaction in a reciprocating piston compressor(Graduate School, 20220114) Coşkun, Umut Can ; Acar, Hayri ; Güneş, Hasan ; 511132113 ; Aeronautics and Astronautics EngineeringConsisting of household refrigerators, cold storages, cold chain logistics, industrial freezers, air conditioners, cryogenics and heat pumps, refrigeration industry are a vital part of many sectors such as food, health care, air conditioning, sports, leisure, production of plastics and chemicals along with electronic data processing centers and scientific research facilities, which can not operate without refrigeration. There are roughly 5 billion in operation refrigeration systems which consumes 20% of the electricity used worldwide, responsible of 7.8% of GHG emission of the world, 500 billion USD cost of annual equipment sale, 15 million of employed people. Around 37% of global warming impact caused by refrigeration is direct emission of fluorinated refrigerants (CFCs, HCFCs and HFCs), 63% is due to indirect emission caused by electricity generation required for refrigeration. Both economic goals of making refrigeration units cheaper, more durable, and environment concerns of making these units more efficient and less hazardous for the world, require meticulous research and study on these refrigeration units. Approximately 40% of refrigeration units consist of domestic refrigeration systems alone where mostly hermetic, reciprocating type compressors are used. Design and improvement of such compressors is a multidisciplinary subject and requires deep understanding of heat and momentum transfer between refrigerant and solid component of compressor which can only be done through scientific investigation, using experimental and numerical techniques. In this thesis study, concerning the advantages of numerical studies, a multiphysics numerical model of flow through the gas line of a household, hermetically sealed, reciprocating piston compressor and the fluid structure interaction around the valve reeds including the contact between deformable parts was developed. Concerning the complexity of the model, the problem divided into several steps and at each step, numerical results are validated with experiments. In the first chapter of this thesis, the motivation behind the thesis study is discussed along with a theoretical background about refrigeration, compressors, fluidstructure interaction and a comprehensive literature survey are summarized to express the position of the thesis study among academic literature and it's novelty. In the second chapter, experimental studies conducted throughout the thesis are presented. Experimental studies divided into two sections. In the first section, the valve reed dynamics are investigated experimentally outside the compressor in multiple test conditions. A test rig is built for this reason, and the displacement of valve reed under constant point load, free oscillation and the impact of valve reed to valve plate from a predeformed form are measured, in order to validate the numerical work. In the second section, the compressor specifications such as cooling capacity, compression work, average refrigerant mass flow rate, along with surface temperature and instantaneous pressure variation from several locations inside the compressor are measured inside a calorimeter setup, to provide boundary conditions and validation for numerical analyses. Numerical work of the thesis study is explained in the third chapter. Modelling the whole compressor gas line between compressor inlet and outlet, including the strong coupled interaction between the refrigerant and deformable solid parts such as valve reeds is too complex of an attempt to do in a single step. Therefore, the numerical problem divided into seven smaller numerical problems and investigated consecutively. At each consecutive steps, problems are isolated, identified, solved and results are validated. The similarity of each step to the final model is increased along with it's complexity as a natural consequence at each consecutive steps. The numerical studies also briefly cover the advantages and disadvantages of using an open source or a commercial multiphysics solver, where OpenFOAM and Ansys Workbench software are utilized for this purpose, respectively. After the simplified steps of the numerical model are completed, the whole gas line of a compressor produced by Arçelik is modelled. The numerical results compared against experimentally obtained data and a good agreement is achieved between them. The developed method is further used for parametric investigation on compressor design to show the capabilities and the benefits of the numerical model. Finally, results of whole thesis study, the experience gained throughout the thesis work and the planned future work are discussed in the final chapter.