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İSTANBUL TECHNICAL UNIVERSITY F INFORMATICS INSTITUTE

A PARALLEL IMPLEMENTATION

OF REAL-SPACE GREEN’S FUNCTION

METHOD FOR CALCULATION OF

VIBRATIONAL DENSITY OF STATES

Ms. of S. Thesis

Berk ONAT

702031016

Date of Submission : 17 February 2006

Date of Defence Examination : 30 January 2006

Supervisor (Chairman) : Assoc. Prof. Dr. Sondan DURUKANOĞLU FEYİZ
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ÖZET

Bu tez çalışmasında yerel titreşim durum yoğunlukları hesaplamalarında

kullanılan, gerçek uzayda Green fonksiyonları (RSGF) metodu için MPI tabanlı

paralel hesaplama yöntemi geliştirilmiştir, böylece kusur ve kirlilik barındıran

gerçekçi sistemler için daha çok araştırma yapılabilecektir. Paralel hesaplamada

mükemmel paralellik (embarrassingly parallel) sağlayacak olan, farklı frekanslar

için gerekli hesaplamaların işlemcilere dağılımı yöntemi kullanılmıştır. Parallel

RSGF yöntemini test etmek için Cu kristalinin (100) düz yüzeyi prototip sistem

olarak seçilmiştir. Örnek katıyı oluşturan atomların etkileşimlerini tanımlayan

Hamiltonyen, Gömülü Atom Yöntemi (EAM) ile elde edilmiştir. Yapılan bir

çok küçük ve büyük etkileşim matrisi barındıran testler sonucunda, paralel

uygulamanın, hesaplamaları dikkate değer şekilde hızlandırdığı görülmüştür.

Tezde, geliştirilen paralel hesaplama yönteminin detayları aktarılmış ve test

sonuçları irdelenmiştir.
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ABSTRACT

In this Thesis, an MPI based parallel algorithm is developed to implement

the real space Green’s function method for calculating the vibrational density

of states corresponding to a solid so that one can conduct more studies for

realistic systems involving defects and impurities. The parallel implementation

is carried out through embarrassingly parallel algorithm by simply distributing

the frequencies to processors for a range of spectrum. The (100) flat surface of

Cu crystal is chosen as the prototype system to test the parallel version of RSGF

technique. The Hamiltonian describing the interactions between the atoms of

Cu(100) within the system is obtained from the embedded atom method. From

the investigation of various test runs, involving smaller and larger interaction

matrices, it is found that the parallel implementation speeds up the calculations,

on the average, by an order of magnitude. The parallel implementation details

and results are presented in the Thesis.
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CHAPTER 1

INTRODUCTION

Investigating vibrational or electronic states of a solid involve calculations

of the eigenvalue problem, Hu = Eu, or equivalently the Green’s functions

corresponding to the Hamiltonian, H. In the case of vibrational density of

states of a solid, one may directly diagonalize the dynamical matrix portraying

the interactions between the atoms in N layers of slab instead of finding the

Green’s function corresponding to the Hamiltonian. This approach is called the

slab method and is the most commonly used technique to obtain the frequency

spectrum for a solid with or without surface in k-space. In many cases the

calculations are easily be carried out for systems with high symmetries such as

bulk systems with no defects. On the other hand, for systems with reduced

symmetries which require large computational cells, slab method calculations

become costly. If ones interest lies in calculating vibrational spectrum for a

local region of interest in real space, then one has to obtain the Green’s function

corresponding to the Hamiltonian. However, for large systems, systems with

atoms of the order of thousands, obtaining the Green’s function is a formidable

task, as the interaction matrix H is order of 3Nx3N , where N is the number

of atoms in the system and the Green’s function associated with it is defined as

G = (zI −H)−1. The continued fraction method proposed by Haydock [1] is the

pioneering recursive method to circumvent such problems for complex systems

requiring big interaction matrix H. Although the continued fraction method is

a local approach in real space, it is not an efficient technique to follow, as the

Green’s function corresponding to predefined locality is written in a continued

fraction form and one has to enforce a truncation for the level of coefficients of

the continued fraction which in turn leads to the inaccuracies in the calculations.

Another local approach in real space is the real space Green’s function

(RSGF) method.[2] In this method one can focus on any ’local’ region according

to his/her need and analyze the effect of the rest of the system on that

particular region. Also there is no need for the system to be periodic and it

is, thus, particularly suitable for studying local vibrational density of states



in complex systems with defects, disorder, and reduced symmetry. The only

prerequisite is that the interatomic potential between the atoms in the system

be of finite range, as it is then possible to write the force constant matrix in

a block-tridiagonal form in which the sub-matrices along the diagonal represent

interactions between atoms within a chosen local region and the sub-matrices

in the ’off-diagonal’ corresponds to interactions between neighboring localities.

Thus, the method allows one to work with much smaller matrices, whose

dimensions are defined by the subsystems, rather than the interaction matrices for

entire system. Since an infinite/semi-infinite system is converted quite naturally

into an infinite/semi-infinite set of local regions, there is no a priori truncation on

the system size, as would be the case for matrix diagonalization methods based on

k-space. The RSGF method also has an advantage over the continued fraction

method as it does not involve truncation schemes to determine the recursion

coefficients, rather a more general and simpler recursive scheme is applied.

However, for systems with lack of spacial periodicity, such as quasi-crystals

[3], systems with defects [4], the calculations are hampered by the need of large

sub-matrices to describe the complexity of the structure. This, in turn, leads to

costly calculations. One way to reduce the time wise cost might be to develop a

parallel program for the implementation of RSGF method. It is therefore the aim

of this Thesis to improve a parallel implementation of RSGF technique so that

one can computationally mimic more realistic systems with defects and reduced

symmetry rather than studying more idealistic systems.

The rest of the Thesis is organized as follows: Chapter 2 gives a brief

summary for crystal structures. Chapter 3 presents the technical specifications

of RSGF method and EAM potentials. The parallel computation methods

are narrated in chapter 4. Followed by the simulation model and the parallel

implementation details for the application in chapter 5. The results and

discussions are summarized in chapter 6. The conclusions are presented in chapter

7.
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CHAPTER 2

CRYSTAL STRUCTURE

2.1 Classification of crystal systems

The physical structure of a solid is essentially described by the way that

the atoms, ions, or molecules are arranged within the solid. If atoms of a solid

are arranged in a periodically repeating cell in three dimensions on a lattice,

they form a crystalline solid. The repeating cell which tiles with suitable crystal

translational operations and spans the crystal is said to be the unit cell of the

crystal. According to the structure of unit cells, the crystals are classified into

7 systems based on their lattice constants and interaxial angles.[5],[6] If the unit

cell is a parallelopiped with sides a, b, and c and if α, β, and γ are, respectively,

the angles between b and c, a and c, and a and b, as shown in Fig. 2.1, the

systems may be classified as in Table 2.1.

Most element metals crystallize into three closely packed crystal structures,

body-centered cubic (bcc) (Fig. 2.2b), face-centered cubic (fcc) (Fig. 2.2c), and

hexagonal close pack (hcp) (Fig. 2.2d). Here we only consider Cu which is

crystallized into fcc crystal structure. In an fcc crystal structure, atoms or ions

of a solid are placed on each corner, as well as on the center of each face of the

unit cubic cell as shown in Fig. 2.2c.



αβ

γ

a b

c

Figure 2.1: A Parallelopiped with sides a, b, c.

Table 2.1: Classification of crystal systems

Crystal system Unit cell lengths Lattice unit cell

and interaxial angles

Cubic a = b = c, α = β = γ = 900 Simple cubic

Body-centered cubic

Face-centered cubic

Tetragonal a = b 6= c, α = β = γ = 900 Simple tetragonal

Body-centered tetragonal

Simple orthorhombic

Body-centered orthorhombic

Orthorhombic a 6= b 6= c, α = β = γ = 900 Base-centered orthorhombic

Face-centered orthorhombic

Trigonal a = b = c, α = β = γ 6= 900 Simple trigonal

Hexagonal a = b 6= c, α = β = 900, γ = 1200 Simple hexagonal

Monoclinic a 6= b 6= c, α = γ = 900 6= β Simple monoclinic

Base-centered monoclinic

Triclinic a 6= b 6= c, α 6= β 6= γ 6= 900 Simple triclinic

4



(a) (b) (c)

Figure 2.2: Crystal structures: (a) simple cubic, (b) body-centered cubic, (c)
face-centered cubic, (d) hexagonal close-packed.

2.2 Indices for crystal planes in a cubic unit cell

Since some crystallized solids have orientation dependent properties, it is

necessary to specify the orientation of planes in crystal lattices. The orientation

of a lattice plane is usually identified by its Miller indices in parenthesis. The

Miller indices of a crystal plane are defined as the reciprocals of the intercepts

(with fractions cleared) which the plane makes with the axis of the cubic unit cell.

Thus, a cubic crystal plane with intercepts (1, 1
4
, 0) is called (410) plane. Since

fractional intercepts are not allowed, the fractional intercepts are multiplied by

4 to clear the 1
4

fraction. Some cubic lattice planes with corresponding Miller

indices are presented in Fig. 2.4. There is also a notation to identify a family

of lattice planes. Crystallographicaly equivalent planes form a family of lattice

planes. For example, the (100),(010), and (001) are equivalent in a cubic crystal

under the symmetry of the crystal and are collectively specified as the {100}

planes.

5
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Figure 2.3: Miller indices of some lattice planes in a cubic crystal.
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CHAPTER 3

TECHNICAL SPECIFICATIONS OF REAL-SPACE GREEN’S
FUNCTION METHOD

3.1 Interaction Potentials

Atoms in model systems are allowed to interact via embedded atom

potential (EAM) developed by Foiles, Baskes, and Daw. This is of many-body

and has been proven to be reliable for many of the characteristics of the bulk

and surface systems for the six fcc metals Ag, Au, Cu, Ni, Pd, and Pt, and their

alloys. [7]

The idea of EAM is that the energy of each atom is given by the energy

needed to embed the atom in the local-electron density as provided by the other

atoms of the metal. The electron density in the vicinity of each atom can be

expressed as a sum of the density contributed by the ith atom plus the electron

density from all the surrounding atoms. Thus, the energy of atomic site i is given

by

Ei = Fi(ρh, i) +
1

2

∑

j

φij(Rij) (3.1)

where ρh,i is the host electron density at atomic site i and defined as a

superposition of ρa
j , the electron density contributed by the atom j to the lattice

site i as a function of distance from its center

ρh,i =
∑

j(6=i)

ρa
j (Rij). (3.2)

In this expression, Rij is the distance between the atoms and ρij(Rij) is the

core-core pair repulsion of i and j atoms. Fi in Eqn. 3.1 represents the energy to

embed atom i in electron density ρh,j. Then the total energy of a solid is simply

the sum over all atom’s energies.

Etot =
∑

i

Fi(ρh,i) +
1

2

∑

i

∑

j(6=i)

φij(Rij) (3.3)



3.2 Method for Calculation of Vibrational Density of States in
Real-Space

3.2.1 Continued Fraction Method

The continued fraction method using real-space Green’s function is

proposed by Haydock et al. [1] In this method the surface matrix is treated

as a perturbation to bulk and then the surface Green’s function is obtained by

projecting the bulk Green’s function into the subspace defined by the perturbation

matrix. The method proposes the Green’s function representation associated with

the Eqn. 3.4 (the equation of motion for an atom at lattice site n with an atomic

displacement uα(α = x, y, z) from its equilibrium position).

w2Uα(n; k) =
∑

n′β

Dαβ(n;n′; k)Uβ(n
′; k) (3.4)

Considering a quantum system and a number N of orthonormal basis states

|φi〉(i = 1, 2, . . . , N). Starting from any given state |f0〉 belonging to the

space spanned by |φi〉 , and operating with H, the recursion method provides a

one-dimensional chain representation of the original quantum system. When the

operator H is applied to the initial state and subtract from H|f0〉 its projection

on the initial state, new state |F1〉 orthogonal to |f0〉 is obtained. In the method,

diagonal elements of the Green’s function 〈f0|H|f0〉 are expressed in terms of a

continuous fraction whose coefficients are calculated from a chain of orthonormal

states recursively generated from |f0〉, [21]

|Fn+1〉 = H|fn〉 − an|fn〉 − bn|fn−1〉 (3.5)

where

an+1 = 〈fn+1|fn+1〉, b2n+1 = 〈Fn+1|Fn+1〉. (3.6)

Then G00(w
2) of the Green’s function is then given by the continuous fraction

expansion,

G00(nz, nz′, w) = 〈f0|
1

w2 −H
|f0〉 =

1

w2 − a0 −
b21

w2 − a1 −
b22

w2 − a2 − . . .

(3.7)

where w is the frequency of the normal mode of the system and nz is the

layer number. Since the number of atoms increases very rapidly as the level

of coefficients increases, one has to make a truncation for the level of coefficients

of continued fraction which in turn leads to the inaccuracies in the calculations.

Moreover, one has to use some method to extrapolate the coefficients for n� N ,

where n is the level of coefficient of continued fraction and N is the number of

atoms in the crystal.

8



3.2.2 Real-Space Green’s Function Method

In 1979 Dy et al. developed a technique, resolvent matrix method, to

determine the Green’s function for a block-tridiagonal matrix.[8] Wu et al. showed

that the method of resolvent matrix provides a competent approach to simplify

the calculation of the Green’s function for large systems.[9] In a separate study,

Wu et al. developed a convergence procedure to calculate the local Green’s

function associated with any specified locality in the system without any size

affect related to the arbitrary truncation of the system.[10] However the efficiency

of the convergence scheme was dependent on the existence of the recursive relation

which links the calculations at a given step to those at previous step. To address

this problem, a general recursive relation for the calculation of the local Green’s

function in the resolvent-matrix approach [11] was developed in the subsequent

study by Wu et al. In this method the system under construction is basically

divided into several subsystems as then it is possible to write the matrix describing

the interactions in the system in block-tridiagonal form. Therefore the method

allows one to work with much smaller matrices, whose dimensions are defined by

the subsystems, than the interaction matrices for entire system.

3.2.2.1 A Brief Summary of the Resolvent Matrix Method

Consider a block-tridiagonal matrix as following,

H =















. . .

vi,i−1 hi vi,i+1

vi+1,i hi+1 vi+1,i+2

. . .















, (3.8)

where the sub-matrices hi along the diagonals are (ni×ni) square matrices and the

sub-matrices vi,i+1 along the ”off-diagonals” are matrices of dimension 3ni×3ni+1

with n being the number of particles in the locality . The Green’s function

associated with the matrix H is given by

G(z) = (zI −H)−1 (3.9)

where z = w2 + iε, ε being the width of the Lorentzian representing the delta

function at w2 and I is a unit matrix of the same size as that of H.

The diagonal elements of the Green’s function matrix which lead to the

local Green’s function matrix corresponding to any chosen locality is given by

[2],

Gii = [(zI − hi) − vi,i+1∆
+
i+1vi+1,i − vi,i−1∆

−
i−1vi−1,i]

−1. (3.10)

9



(∆+
i ) and (∆−

i ) are defined as forward and backward partial Green’s functions

and described by

∆+
i = (zI − hi − vi,i+1∆

+
i+1vi+1,i)

−1, (3.11)

∆−
i = (zI − hi − vi,i−1∆

−
i−1vi−1,i)

−1. (3.12)

The relation between the diagonal elements of the Green’s function matrix G is

[2]

Gii = ∆±
i + ∆±

i vi,i∓1Gi∓1,i∓1vi∓1,i∆
±
i . (3.13)

As seen in the above equations, in the method of resolvent matrix, the calculation

of Green’s functions is reduced to the series of inversion and multiplication of

matrices whose dimensions are usually much smaller than the total degree of

the system under consideration. Another feature of the method is that one can

focus on any specified locality in the system and calculate the corresponding

Green’s function, a diagonal element of the Green’s function representing the

entire system. This can be achieved through the forward and backward partial

Green’s functions matrix ∆±
i as in (3.13).

3.2.2.2 Convergence Procedure

The convergence scheme to be outlined below is for the calculation of the

diagonal elements of the Green’s function which lead to the local vibrational

density of states.

If the locality of interest is denoted by zeroth locality, then, from (3.10),

the corresponding Green’s function is

G00 = {(zI0 − h0) − v0,1∆
+
i v1,0 − v0,1∆

−
1 v−1,0}

−1, (3.14)

where h0 is the force constant matrix for the zeroth locality while v0±1 is

the interaction matrix between the zeroth and (±1) localities. From recursive

relations in (3.11),

∆1 = {(zI0 − h0) − v0,1[. . . [. . .− vm−1,m

(zIm − hm)−1vm,m−1]
−1 . . .]−1v1,0}

−1
(3.15)

where m goes to infinity. One can get a similar expression for ∆−
1 using (3.12).

From (3.15) it is clear that for an infinite system the calculation of ∆±
1

involves infinite series of matrix inversions and multiplications. To circumvent

the infinite series, the following convergence procedure was introduced.

∆+
1 = lim

m→∞
∆

(+m)
1 (z), (3.16)

10



where
∆

+(m)
1 = {(zI0 − h0) − v0,1[. . . [. . .− vm−1,m

(zIm − hm)−1vm,m−1]
−1 . . .]−1v1,0}

−1.
(3.17)

For a given ε at a certain w2, a series of ∆
+(m)
1 (z) are calculated until {∆

+(m)
1 }

approaches its limit within a preset tolerance. The process is then repeated

for a series of decreasing ε until a final limit, imposed by predefined criterion, is

reached. One must, however, remember that there is no artificial boundary effects

such as truncation of the system imposed from the beginning, since the accuracy

of the results from the convergence procedure is dictated by preset convergence

criterion rather than truncation of the system as it is in the method of continued

fraction, another technique to determine local Green’s functions.

As seen from the convergence procedure outlined in (3.16) and (3.17), the

calculation of ∆
+(m)
1 at present step is independent of ∆

+(m−1)
1 at the previous

step. Thus ∆+
1 at each step must be calculated separately which in turn results

in excessive computing time. To eliminate the redundancy in the computation of

{∆
+(m)
1 }, a general recursive relation to link the calculation of ∆

+(m)
1 to that of

∆
+(m−1)
1 was introduced by Wu et al [2]. The recursive relation is general as it

is applicable to all situations regardless whether the dimensions of the diagonal

blocks forming the block-tridiagonal matrix are the same or different. A brief

summary of the recursive relation will be summarized in the next section.

3.2.2.3 Formalism for the Recursive Relation

Consider a block-tridiagonal matrix in the following form

H =













h1 v12

v12 h2 v23

v32 h3 v34

. . .













. (3.18)

The H matrix can be used to describe a spherically growing crystal or a solid

with a surface. In the first case the dimension of hi increases with increasing i.

Contrary to the case in a spherically growing crystal, the size of hi for a solid

with a surface does not change with increasing i, since the semi-infinite crystal

is divided into equally-sized localities. For a semi-infinite crystal, the matrix

h1 contains the top layers of the solid and describes the interactions between

the particles within the locality. The sub-matrices hi and vi,i±1 for (i > 1) are,

respectively, the interaction matrices within and between consecutive localities

(or layers) in the bulk.

From (3.10) - (3.12), the local Green’s function associated with hi is the

partial forward and backward Green’s functions ∆±
1 . (3.16) at stages from m = 1
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to m = m yields

∆+
1 (1) = (zI1 − h1)

−1 ≡ ∆−
1 ≡ G

(1)
11 , (3.19)

∆+
1 (2) ≡ G

(2)
11 , (3.20)

∆+
1 (3) ≡ G

(3)
11 , (3.21)

... (3.22)

∆+
1 (m) ≡ G

(m)
11 (3.23)

where G
(m)
11 is the first diagonal block matrix of the Green’s function

corresponding to the H (m) which is the matrix resulting from truncation of the

matrix H at mth step. The procedure to obtain a recursive relation linking ∆
(m)
1

to ∆
(m−1)
1 is as following.

Step 1: m = 1, the matrix H is truncated after first locality (i.e. there is

no other localities but locality 1),

H(1) = h1, (3.24)

then the corresponding Green’s function matrix at step 1 is

G(1) = G
(1)
11 . (3.25)

From (3.10)

G11 ≡ (zI − h1)
−1 ≡ ∆−

1 ≡ ∆+
1 ≡ ∆

+(1)
1 . (3.26)

Step 2: add the consecutive locality. Then the corresponding H and G

matrices are

H(2) =

(

h1 v12

v21 h2

)

, G(2) =

(

G
(2)
11 G

(2)
12

G
(2)
21 G

(2)
22

)

. (3.27)

Using (3.13), we have

∆
+(2)
1 ≡ G

(2)
11 = ∆−

1 + ∆+
1 v1,2G

(2)
22 v2,1∆

−
1 . (3.28)

From (3.10)

G
(2)
22 ≡ ∆−

2 = {(zI − h2) − v2,1∆
−
1 v1,2}

−1. (3.29)

Inserting (3.29) into (3.28) yields

∆
+(2)
1 ≡ ∆

+(1)
1 + ∆−

1 v1,2∆
−
1 v2,1∆

−
1 . (3.30)

Let

A1 = ∆−
1 v1,2 (3.31)

and

B1 = v2,1∆
−
1 . (3.32)

12



Then (3.30) takes following form

∆
+(2)
1 ≡ G

(2)
11 ≡ ∆

+(1)
1 + A1∆

−
2 B1. (3.33)

Step 3: add the succeeding locality. Then the matrix H truncated at step

3 and the Green’s function matrix associated with it are

H(3) =







h1 v1,2 0

v2,1 h2 v2,3

0 v3,2 h3






, (3.34)

G3 =







G
(3)
11 G

(3)
12 G

(3)
13

G
(3)
21 G

(3)
22 G

(3)
23

G
(3)
31 G

(3)
32 G

(3)
33






(3.35)

Using (3.13), we have ∆1 at this step as following

∆
+(3)
1 ≡ G

(3)
11 = ∆−

1 + ∆−
1 v1,2G

(3)
22 v2,1∆

−
1 . (3.36)

An expression for G
(3)
22 in the above equation can be obtained from (3.10). Thus,

G
(3)
22 = ∆−

2 + ∆2v2,3G
(3)
33 v3,2∆

−
2 . (3.37)

Substituting (3.37) into (3.36) gives

∆
+(3)
1 ≡ G

(3)
11 = ∆−

1 + ∆−
1 v1,2∆

−
2 v2,1

+∆−
1 v1,2∆

−
2 v2,3G

(3)
33 v3,2∆

−
2 v1,2∆

−
1 .

(3.38)

The first term in (3.38) is equivalent to ∆
+(2)
1 . Letting A2 = ∆−

1 v1,2∆
−
2 v2,3 and

B2 = v3,2∆
−
2 v1,2∆

−
1 leads to the next equation

∆
+(3)
1 ≡ G

(3)
11 = ∆

+(2)
1 + A2∆

−
3 B2 (3.39)

with

A2 = A1∆
−
2 v2,3, B2 = v2,3∆

−
2 B1.

By adding more localities, one eventually reaches the following recursive relation

∆
+(m)
1 = ∆

+(m+1)
1 + Am−1∆

−
mBm−1 (3.40)

where

Am−1 = Am−2∆
−
m−1vm−1,m (3.41)

and

Bm−1 = vm,m−1∆
−
m−1Bm−2. (3.42)

The steps to calculate the terms in the sequence {∆
(m)
1 } can be summarized

as following

13



(1) using (3.20) calculate ∆−
1

(2) from (3.31) and (3.32) evaluate A1 and B1

(3) from (3.11) and (3.12) calculate the subsequent ∆−
m

(4) using recursive relation (3.40) compute the successive terms ∆
(m)
1

(5) determine Am−1 and Bm−1 through (3.41) and (3.42). Thus, using the

results obtained in the previous step, one can evaluate the the terms in

the present step.

In short, once the force constant matrix is built in block-tridiagonal form,

the Green’s function matrix corresponding to the local region of interest is

constructed following the procedure described in the above section. Then using

the diagonal elements of the local Green’s function, one can determine the

normalized vibrational density of states associated with locality l as a function

of w2, where w is vibrational frequency and equal to 2πν.

3.2.3 A Brief Review of Density of States and Green’s Function

Once the normalized eigenfunctions ψm and eigenvalues Em ,are known

,corresponding to the system with Hamiltonian H, then total density of states of

the system is defined as following.

N(E) =
∑

m

δ(E − Em). (3.43)

The projected density of states associated with the chosen state of interest on a

basis of local normalized orbital |f0〉 (normalized to unity) is defined as

n0(E) =
∑

m

|〈f0|ψm〉|
2δ(E − Em), (3.44)

where ψm and Em indicate normalized eigenfunctions and eigenvalues of

H.[21] The total density-of-states can be expressed as the sum of the local

density-of-states on any complete orthonormal set {fn}.

The Green function corresponding to the operator H is defined by

G(E + iε) =
1

E + iε−H
. (3.45)

The diagonal matrix element of the Green’s function is

G00(E + iε) = 〈f0|
1

E + iε−H
|f0〉. (3.46)

14



Then, inserting the unit operator 1 =
∑

|ψm〉〈ψm| into Eqn. 3.46 yield

G00(w
2 + iε) = 〈f0|

∑

m

|ψm〉〈ψm|
1

w2 + iε−H
|f0〉 (3.47)

=
∑

m

|〈f0|ψm〉|
2 1

w2 + iε− w2
m

=
∑

m

|〈f0|ψm〉|
2 w2 − w2

m − iε

(w2 − w2
m)2 + ε2

From Eq.3.47, for any ε > 0, G00(E + iε) is analytic and its imaginary part is

negative. On the real energy axis, the real part of G00(E) exhibits poles which

constitutes the discrete eigenvalues of H, while the imaginary part exhibits δ-like

singularities; this can be seen keeping the limit ε→ 0+ in Eq.3.47 and using the

result

lim
ε→0+

1

π

ε

(E − Em)2 + ε2
= δ(E − Em). (3.48)

Using Eq.3.44 and Eq.3.47, the standard spectral theorem can be obtained as

follows

n0(E) = −
1

π
lim

ε→0+

Im{G00(E + iε)}. (3.49)

Then the total density of states is

N(E) = −
1

π
lim

ε→0+
Im[Tr{Gii(E + iε)}]. (3.50)

Once the Green’s function corresponding to a locality of interest is

calculated, then the normalized total density of states is obtained through

Ni = 2wgi(w
2) (3.51)

where the function gi(w
2) satisfies the equation

gi(w
2) = −

1

3niπ
lim
ε→0+

{Im[Tr(Gii(w
2 + iε))]} (3.52)

In the above equations, Gii is the Green’s function sub-matrix associated with

locality ’i’ and ni is the number of atoms in this locality. [21]
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CHAPTER 4

PARALLEL COMPUTATION METHODS AND DETAILS

In an attempt to develop a parallel version of a code, one needs to first

optimize the serial code and than examine the runtime performance of the code.

Therefore, an analyzer is an inevitable tool in examining the optimizations

for program statements involving cache missing operations, time consuming

calculations such as input/output operations and matrix multiplications. Even

after the optimizations are carried out, there can still be a need for a parallel

version of the program to decrease the total computational time of the serial

program. At this stage, the programmer encounters with the choice of parallel

programming tools or environments.

Today, the commonly used parallel programming tools are divided into two

categories, depending upon the architecture of the computing systems. These

are the shared memory based parallel programming tools and the cluster based

parallel programming tools. In any of these categories the tools are composed of

parallel programming libraries or environments. Nowadays, the popular shared

memory parallel programming tool is OpenMP and the popular cluster based

parallel programming tool is Message Passing Interface (MPI). However, one has

to keep in mind that classifying MPI as a cluster based parallel programming

tool is not a restriction on running the programs, developed using MPI, on

the NUMA (Non-Uniform Memory Access) shared memory computing systems.

(further reading for details about NUMA systems; [12])

A thread is an execution stream in the context of a thread state. The

difference between processes and threads is that multiple threads share parts

of their state. Typically, multiple threads can read and write same memory,

however, processes can not directly access memory of another process. In

shared-memory programs the program begins execution as a single thread which

is called master thread. At the costly calculation code portions where parallel

operations are required, the master thread forks additional threads and at the

end of parallel code the created threads join to the single master thread.

In using OpenMP to parallelize a serial code, the most commonly



followed technique is just compute the costly calculation code portions with

parallel threads using OpenMP clauses called ’pragma’.In many cases, writing

an OpenMP specified parallelization clauses before a simple loop can handle

the calculations with parallel processes within the loop. However, OpenMP

can not handle the loop nests containing loop-break statements and pointer

operations which can generally be mishandled by OpenMP environment or

OpenMP threads.[22] Since RSGF algorithm contains several loop nests and the

main loop contains loop-break, MPI parallelization tool is chosen to achieve the

parallelism of RSGF method. In other words, OpenMP can only handle loops

or code portions that are specified in OpenMP environment. Although OpenMP

standardized loops are automatically parallelized, the manually parallelized code

portions have to be defined to OpenMP environment in ’pragma’ clauses with

special statements. These special statements must define the global variables

and thread dependent variables to acquire reliable results for calculations to

accomplish the parallel tasks. Another shortcoming of OpenMP is that the

threads’ initializations take some time in the operating system side, which may

increase the total calculation time. [13]

In MPI the performance of the parallel program is up to the programmer’s

skills as MPI is considered as a library rather than an environment like OpenMP.

Hence, every single step in parallel computation depends on the correct use of

MPI libraries. The right location of functions such as send and receive routines for

the distribution in the code can also optimize the parallel program.[14] However,

one has to keep in mind that it takes more time to initialize the parallel processes

in MPI than in OpenMP. The initializing time depends on the secure connection

times of cluster machines and the distribution time depends on the data size

transferred between processes. So, these time costs are musts in distributed

computations with cluster-based parallel programming tools.

Although MPI has a disadvantage in data retrieve, the super computer

architecture is heading towards to cluster systems, since nowadays the issue of the

ratio of performances to prices of super computers becomes a decisive factor more

than ever.[15] While shared memory systems cost more than million dollars, the

cluster based systems cost between thousands and hundred thousands of dollars.

In addition to this cost wise advantage of MPI, both shared-memory machines

and cluster machines can even have same performances for computations such as

thousands of floating point operations in a second.

Since RSGF algorithm contains several loop-nests and the main loop

contains loop-break statement, which are the major drawbacks of OpenMP, MPI

parallelization tool is chosen to achieve the parallelization of the RSGF method.
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CHAPTER 5

APPLICATION DETAILS

5.1 Simulation Model

Figure 5.1: The figure shows the Cu crystal formed in fcc structure. (a) the top view
of the simulation model (b) the side-view of the Cu crystal which the lighter atoms
are the surface atoms, the darker ones indicate the atoms at deeper layers towards the
bulk.

The (100) flat surface of Cu crystal is chosen as a prototype system to

test the parallel version of the implementation of the real-space Green’s function

technique, developed in this Thesis. The Cu(100) surface is a flat surface created

by cutting the Cu crystal along one of the members of the family of <100>

directions. The surface atoms posses the same symmetry along the directions

parallel to the surface is given in Fig 5.1. However, the symmetry along the



direction normal to the surface is broken due to the existence of the surface. As

illustrated in Fig.5.1, while the x and y axes defines the surface plane, the z axis

is chosen to be along the surface normal.

In this Thesis, the RSGF method for calculating the local vibrational

density of states is implemented through layer-by-layer approach in which an

infinite system with some periodicities is viewed as two-dimensional atomic layers

stacked one upon the other along some crystal axis. The number of layers to

be included in a particular locality is dictated by the range of the interatomic

potential. For the EAM potential for Cu, atoms in layer 1 on Cu (100) have

negligible interaction with those in layer 4, hence the locality neighboring the

first one need only extend to the fourth layer. There are two prototype test

systems. The first prototype system is chosen relatively small to obtain faster

test results. In each layer there are 12 chains for the test system and each chain

contains 8 atoms as shown in Fig. 5.1, layer 1 and layer 2 is designated as the

first locality, layer 3 and layer 4 is designated as the second locality and following

layers are designated in same way. The second prototype test systems is chosen

relatively large to perform a test of complex simulation model. In this large test

system, there are also 12 chains however this time each one contains 12 atoms.

Instead of containing 2 layers, this model contains 6 layer in each locality and

it is also constructed with 4 localities. The aim to choose such a second test

system is that there is a necessity to test the performance of parallel algorithm

with bigger sized sub-matrices. On the other hand, for both test simulation

models the computational cell contains 20-layers of atoms, which is tick enough

to prevent the interaction of top and bottom surfaces’ atoms.

In the simulation, periodic boundary conditions are applied along the x

and y directions, while no such constraint is imposed along the z-direction.

Atoms are initially placed in the bulk-terminated positions. The 0K0 equilibrium

configuration is determined by minimizing the total energy of the system using

the conjugate gradient method. [20]

5.2 Test Environment Details

The test environment is made up of two cluster systems: one is a Solaris v9

cluster of SUN FIRE v210 systems with 48 UltraSPARC III processors grouped

into 24 nodes. In each node the system contains two processors communicating

over a faster bandwidth and each processors has 4MB cache. The traditional

libraries such as LAPACK, LINPACK, BLAS, and BLAS3 are available and

packed under SUN’s performance libraries and several parallel computation tools

like OpenMP and MPI are provided in SUN parallel computation tools.[17]
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The second cluster system is an HP supercomputer made up of 42 nodes,

of which 21 node contain two 3.4 GHz Intel Xeon with EM64T module and rest

of the nodes contain two 3 GHz Intel Xeon with EM64T module. The operation

system of these nodes is Red Hat Linux whose cluster development tools are

provided with PGI Cluster Development Kit(CDK).[18] In CDK, there are also

traditional libraries such as LAPACK, BLAS, SCALAPACK and all are optimized

for Intel Xeon processors. Nonetheless, there are parallel programming libraries

such as MPI in PGI CDK.

5.3 Parallel Implementation of RSGF Method

5.3.1 Pseudocode of the Algorithm

STEP 1: Read initial settings (iteration limit,

chain number, number of atoms)

STEP 2: Read H1, H2, H3, H4, V12, V23, V34 sub-matrices

STEP 3: Start the clock.

--PARALLEL COMPUTATION STEPS START HERE--

STEP 4: Do steps until step number 22 for frequencies (w)

STEP 5: Compute delta at stage 1 (Make all elements

of delta matrix zero. Fill the matrix with

complex h1. Inverse delta matrix)

STEP 6: Prepare the ingredients for computing delta

at stage 2. (Make all elements of v matrix

zero and Fill the matrix with complex v12.)

STEP 7: Compute A1 and B1.

Do matrix operation: Trans(v)*delta*v

STEP 8: Compute forward Green’s function at stage 1.

Make elements of delta matrix zero and fill

delta matrix with complex h2 minus temp.

Inverse delta. Do matrix operation:

A1∆A1t

STEP 9: Compute A2 and B2 for the next iteration.

A2: make all elements of v matrix zero and

fill the matrix with v23.

Do matrix operations:

A1∆V

STEP 10: Compute forward Green’s at stage 2.

Do matrix operations:

A1∆A1t
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STEP 11: Compute A3 and B3 for the next iteration.

A3: make all elements of V matrix zero and

fill the matrix with V34. Do operations:

A1∆V

STEP 12: Compute forward Green’s function at stage 3.

Make elements of delta matrix zero and fill

Delta matrix with H4. Do following operations:

∆ − V t∆V

∆′

STEP 13: Start the iteration for convergence.

Do until maximum iteration number reached.

STEP 14: Compute Delta at present stage.

STEP 15: If the ratio of

A1∆A1t

to Stage 3 Delta is equal to the

convergence limit then converged.

STEP 16: Compute the vibrational density of

states. Compute chain density of

states for each chain.

STEP 17: Write the results to the output file.

STEP 18: Else

STEP 19: Compute A and B for the next iteration.

A1∆V

STEP 20: Compute forward Green’s function at

present stage. Do operations:

(HBulk − V t∆V )′

STEP 21: Take action for the next iteration.

STEP 22: Take action for the next frequency calculations.

--PARALLEL COMPUTATION ENDS HERE--

STEP 23: Print out the calculation and total

time consumed by the program

STEP 24: End program

5.3.2 Implementation Details

The above pseudocode shows the steps taken in the serial code (when

”parallel starts here” and ”ends here” statements are removed) during a run.

The programming language of the serial and parallel versions of the code is

Fortran 77. Before attempting parallelization, the serial code is carefully studied
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for optimization purposes. The steps’ statements were investigated for cache

misses and unnecessary operations such as bad memory usages. The carried

out optimizations in the code are: (1) some of the loops used in IO operations

and matrix assignments containing cache misses are optimized for correct

cache usage regarding column-by-column storage of two-dimensional arrays in

Fortran. (2) matrix operation subroutines are replaced by LAPACK and BLAS3

routines or equivalently corresponding routines in SUN Performance Library

which are tested for several years and are known reliable with regarding to

the optimization purposes.[16],[17],[18] After the serial code optimizations,

Figure 5.2: A screen shot of the SUN’s Performance Analyzer.

SUN’s performance analyzer is used to examine the runtime performance.

In Fig. 5.2, a snapshot of the SUN’s Performance Analyzer is presented,

showing how much cpu time is used by different parts of the serial program.

Here, ’zgemm’ shows the matrix multiplication routine of Lapack 2.0 in the

SUN Performance Library, and ’inverse’ shows the optimized matrix inversion

routine. In fact, both are the most costly calculations in this algorithm.

Right-hand side of the snapshot shows the percentage of the time consumed

by ’zgemm’ sub-routine; %86.5 in user CPU time. The snapshots of the

analyzer showing the statistics and time-line of the serial code can be seen

in Fig. 5.3, 5.4 and 5.5. In general, for an optimized program code, most of

the time must be consumed in ’User CPU’ time. However, the analyzed code

shows that %12.8 of the time consumed with ’Other Wait’ (see Fig. 5.4). In

fact ’Other Wait’ shows the time consumed for the cpu of other system resources.
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Figure 5.3: A screen shot of the SUN’s Performance Analyzer showing the ’zgemm’
sub-routine caller and its callee ’zgemv’ matrix-vector multiplication. SUN Performance
Library matrix multiplication sub-routine uses ’zgemv’ matrix-vector multiplication for
an optimal calculation.

Figure 5.4: A screen shot of the SUN’s Performance Analyzer showing the process
time statistics for entire program in percentage with respect to the total consumed
time.
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Figure 5.5: A screen shot of the SUN’s Performance Analyzer showing how much cpu
time is used by the serial program with a time-line diagram. The percentage of the
’User CPU’ time (in green) is much more than the other process as expected for a well
written optimized code.

In the analyzer output of the algorithm, the results are written to a file

with NFS file system, which causes waiting times when NFS server is heavily

loaded with other jobs’ requests or the network to the NFS server is in a heavy

traffic. Even for the relatively small prototype system specified in the previous

chapter, the serial code runs consume over 10 hours on SUN test environment.

The snapshot reveals that the most time consuming parts for the serial run

are the matrix operations: matrix multiplication and inversion. One way to

reduce these timely costs is to directly parallelize the subroutines that perform

the matrix operations. However, in RSGF technique, the calculations of local

density of states (LDOS) for a single frequency with a single iteration for the

convergence requires 20 matrix multiplications. This yields at least 4000 matrix

multiplications to complete calculations for the whole frequency spectrum with

200 frequency points. If the program involve so many multiplications of small

matrices then it wouldn’t be wise to parallelize the matrix operations as the send

and receive routines for the distribution of matrix elements would slow down the

calculations. Another approach would be to distribute the computation of LDOS

for each frequency to the processors used since the calculations of density of

states for each frequency are independent of one another. Thus yielding no data

dependency between each process. Fig. 5.6 shows the flowchart of the program.

There one can see the flow independency for the frequency calculations. Since
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Read input

Begin Calculations
for Frequencies

Read Interaction
Matrices

If
Converged

Start Program

End Program

Write Calculation
Time for each

process

Start Timers

No

End Calculations
for Frequencies

Write Output

Yes

back to last step

Figure 5.6: The flowchart of the program showing the main operations taken by
each process. The parallel part is represented with several parallel arrows and the
convergence procedure is indicated with an ’if’ statement.

this type of parallel programming is called embarrassingly parallel programming,

the algorithm of RSGF calculation for frequency spectrum is an embarrassingly

parallel algorithm. The independent computations for each process are the steps

numbered between 3 and 22 in the pseudocode. Although in many cases the

flow of the parallel and serial codes are different, in this Thesis specific problem

the serial code becomes the same as the parallel one when parallel initialization

and distribution statements are removed. On the other hand, for this method

of parallelization there could be no need for send and receive routines for the

distribution of frequencies if several statements are written in the parallel code

to define the frequency range for each processes with an algorithm. However,

there are several ways to distribute the frequencies to the processes and but

some may cause unbalanced load distributions due to the convergence procedure

that may take more time or iteration for different frequencies. To circumvent

the unbalanced load distributions a random distribution approach could be

an innovative solution. However, with no knowledge of which frequencies take

more iteration and time, the distribution of frequencies with an interval can

also be a random distribution action. With this in mind, first in the frequency

range is divided into the number of processors and the resultant sub-ranges are

distributed to the processors as shown in Fig 5.7. This also causes an unbalanced
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load distribution. Secondly, the frequencies are distributed to the processors

with cyclic distribution by assigning each processor almost the same number

of frequencies to calculate. That is to say, if processor 0 gets first frequency,

processor 2 gets the second and this goes on with consecutive frequencies through

the frequency range. After these parallelization attempts, the final parallel

code is tested for the scalability, efficiency and speed-up with several simulation

models.

Figure 5.7: The two different distribution algorithms are tested in parallel runs (a) the
frequencies distributed with a range to the processors (b) the frequencies distributed
with a cyclic (interlived) distribution
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CHAPTER 6

RESULTS AND DISCUSSIONS

6.1 Vibrational Density of States for a Surface atom of Cu(100)
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Figure 6.1: The calculated local vibrational density of states (LDOS) for a surface
atom of Cu(100) along the x-, y-, and z- directions for the first test model whose locality
contains 24 chains.

The LDOS along the x-, y-, and z- direction for a surface atom of first

test model is presented in Fig. 6.1 using the parallel algorithm developed in this

Thesis. On the other hand, Fig. 6.2 shows the LDOS along the x-, y-, and z-

directions for a surface atom for the second test model. According to the figures
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Figure 6.2: The calculated local vibrational density of states (LDOS) for a surface
atom of Cu(100) along the x-, y-, and z- directions for the second test model whose
locality contains 72 chains.

6.1 and 6.2 the LDOS curves are the same for each x-, y-, and z- directions.

These results are expected because both of the test models simulate the same

surface atoms of Cu(100) and both test models simulate the same bulk which is

constructed with Cu atoms. Let me remind that ε in Eqn. 3.52 is the width of the

Lorentzian representing the delta function at w2 and it determines the sharpness

of the peaks in LDOS. The smaller ε, the sharper the peaks are. Here ε is taken

to be 0.4 for the calculations of LDOS for both a surface atom and the bulk-like

atom. The curve for LDOS, therefore, are smoother. Note that the LDOS of

a surface atom shows completely different characteristics, reflecting the different

nature of the force fields between the atoms at the surface with respect to the

ones in the bulk. The LDOS’s along the x- and y- direction are strictly degenerate

for symmetry reasons shown in Fig. 6.1. While the major weight in LDOS along

these symmetry directions is in the low frequency region, it is in the relatively

higher frequency region along the z- direction. Also, the low frequency modes of

surface atom are shifted overall toward lower frequencies. These shifts are more

pronounced along the x and y directions than those along the z- direction.

6.2 Benchmark Results for Parallel Program

The aim of a parallel computation is to use p number of processors to

execute a sequential program p times faster than it executes on a single processor.

Such 100 percent speedups is a rare case in reality. In most cases benchmarking

a parallel program may not result as expected because of parallel overheads

(such as communication operations and redundant computations) and execution
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environment overheads (such as other running program’s overheads). Therefore,

in analyzing a parallel program one needs to examine the scalability, speedup,

and efficiency of a parallel program.[14]

Speedup is defined as the ratio of the sequential execution time to parallel

execution time. Efficiency of a parallel computation, on the other hand, is the

speedup divided by the number of processors used. The scalability of a parallel

program is a measure of its ability to increase performance as the number of

processors increases.
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Figure 6.3: The scalability graphic of first test model for the SUN cluster test
environment.

The serial version of the code runs more than 22 hours for the first prototype

model using the first test environment. These results are confirmed by several

runs. When the parallel version of code is run on parallel environment using

different number of processors, the computation time decreases remarkably. Fig

6.3 illustrates the scalability of the parallel implementation. As seen in the figure,

the initial drops in computation time are close to the ideal case. For example, the

computation time with six processors is 1
6

that of the serial code, indicating that

the problem at hand is close to an embarrassingly parallel algorithm as discussed

in previous chapter.

The second test environment results of the first test model for the
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Figure 6.4: The scalability graphic of first test model for the HP cluster test
environment.
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Figure 6.5: The scalability graphic of second test model for the HP cluster test
environment.

scalability
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is presented in Fig. 6.4. The serial version of the code runs more than

100 minutes, which is over 12 times faster than the run on the first test

environment. This is because, the CPUs of the two test environment are

different in speed and performance. The scalability of the parallel program

run on the SUN cluster system scales better than that on HP cluster system.

However, one may worry about the difference between the perfect scale

assumptions and the parallel run results on the HP cluster compared to the

SUN cluster scale results. SUN cluster results seem to scale almost perfectly for

parallel runs. To understand the difference between two test system runs, the

analysis of the speed-ups graphic for both systems could help. Fig. 6.5 shows the

speedup graphics for the two test systems. As seen in the Figure, the speedup

ratio of the SUN cluster appears to be better than that of HP cluster. The reason

that the SUN machines passes high speed-up ratios is the cache performance of

SUN CPUs. While HP Intel CPUs have a 2MB cache, SUN UltraSPARC III

CPUs have 8MB caches. That means, SUN CPU’s may not have cache misses

for matrix operations, thus resulting in faster calculations. The results confirms

that SUN CPUs have a better cache performance than the Intel CPUs.[17],[19]

The efficiency of two test system runs for parallel implementation is presented

in Fig. 6.6. The figure shows the efficiency of two test systems for the parallel

run on different number of processors. The efficiency of the HP cluster runs is

0.75 in average. In fact, the efficiency is almost 0.9 in average for SUN clusters.

However, the efficiency of the SUN cluster for lesser number of processors

decreases compared to higher number of processors, revealing that for these

particular runs the load on the processors were more than the usual. Because

the SUN test system is usually a heavily loaded environment, these test results

are the average cpu time consumed by each number of processors.

After first prototype tests, the second prototype model tests, involving

much larger matrices, are performed on HP cluster test system. The serial version

of the second prototype model simulation takes more than 5 days of run. Since it

is 12 times slower to perform a test on SUN test environment and there is limited

time to take test results for this Thesis, the second model is only tested on HP

test environment. For the second test simulation model the scalability of parallel

algorithm is presented in Fig. 6.7. According to the test results the parallel

algorithm seems to be scaled worse than the small matrix scale results for HP

cluster. Since HP cpus have 2MB caches, larger matrices don’t fit to the cache.

In fact, with larger matrices there are more cache misses than small matrices

cases. This can also be seen in speed-up and efficency graphics. However, there

might be another issue that the load on the processors for sequential run and the
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runs with lesser number of processors were more than the load of a system with

one user task. The runs with less than 10 CPUs take more than 3 days for this

test model, and in such a period of time overheads of an operating system and

other system based tasks (back-ups,file merging scripts) can take more time than

couple of hours. Therefore, one needs to perform more test runs to circumvent the

system load effects for both SUN test environment and for HP test environment.

Although the HP cluster machines are not heavily loaded systems, for long runs

the operating system load is expected to affect the runtime performance of the

code.
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Figure 6.6: The speedup graphic showing the speedups of the test machines or
environments
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CHAPTER 7

CONCLUSIONS

I have developed an MPI based parallel algorithm to implement the

RSGF technique calculating the vibrational density of states of a solid. The

(100) flat surface of Cu is chosen as the prototype system to test the parallel

implementation. The interactions between the atoms within the model system are

defined through the potentials derived from the Embedded Atom Method. Since

in RSGF calculation of LDOS for each frequency is sequential and independent

of one another, I follow an embarrassingly parallel implementation through

distributing the frequencies to the processors rather than parallelizing the matrix

operations involved in the technique. MPI is chosen as the cluster based parallel

computation tool. The parallel version of the code is tested on the SUN and

HP cluster machines and performance on both test environment is examined.

The results indicate that the parallel runs on large number of processors are at

least 10 times (an order of magnitude) faster than the optimized serial code. This,

thus, enables the user to work with much larger matrices representing much more

realistic systems with defects and reduced symmetries.
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Institute founded in the İstanbul Technical University.


