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Rt : Hyperbolic model parameter

r : Pile radius
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t : Time

T : Period

Vs : Shear wave velocity

Vs 30 : Average shear wave velocity in 30 m depth
y - Pile deflection
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nn : Soil modulus constant
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DEVELOPMENT of LATERAL LOAD RESISTANCE-DEFLECTION
CURVES for PILES in COHESIONLESS SOILS UNDER EARTHQUAKE
EXCITATION

SUMMARY

Pile foundations must be designed safely to withstand the lateral loads such as wave
loads and seismic loads in offshore/onshore structures, seismic loads in bridges,
buildings, port structures etc. The most common analysis method for the design is the
Winkler spring approach. Researchers have suggested nonlinear formulations for the
lateral load resistance-deflection (p-y) curves, but the contribution of the degree of soil
nonlinearity was not studied thoroughly. The main drawback of the current approach
is the use of a single stiffness in considering the soil nonlinearity. This study
investigates the laterally loaded pile problem using the pressure-dependent hardening
soil model with small-strain stiffness (HS-Small Model), where the degree of soil
nonlinearity is better integrated. The numerical model was created, and parametric
analyses were carried out on the verified model for various pile and soil properties. A
modified hyperbolic model was proposed for static p-y relation, including the initial
stiffness, ultimate soil resistance, and degree of nonlinearity parameters based on the
numerical analysis results. The validity of the model was shown by simulating the field
and centrifuge tests from the literature. The proposed model agrees with the test results
in the variation of bending moment along the pile. Besides, a significant enhancement
was provided in the estimation of pile deflections. Therefore, the proposed model with
four parameters can more precisely consider the soil nonlinearity from very small to
large displacements. The proposed p-y curves can be utilized in the design of piles

subject to static lateral loading.

The analysis of dynamic soil-pile interaction problems requires the relation of soil
resistance to lateral loading that is represented by nonlinear p-y curves in the beam on
the nonlinear Winkler foundation (BNWF) approach. Current methods for p-y curves
are either based on static load tests or cannot accurately consider the dynamic soil

nonlinearity. This study investigates the dynamic soil-pile interaction in cohesionless
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soils by numerical analyses to better characterize the p-y curves considering the
nonlinear soil behavior under dynamic loading. A numerical pile-soil-structure model
was created in FLAC®P and verified by two centrifuge tests published in the literature.
The parametric analyses were performed to obtain the p-y curves for various pile
diameters, soil relative densities, and degrees of nonlinearities. Based on the
parametric analyses, a mathematical model was proposed for the dynamic p-y curves
for cohesionless soils. The proposed model characterizes the backbone of dynamic p-
y curves based on the three leading parameters (initial stiffness Kpy, ultimate resistance
pu, and degree of nonlinearity n). The numerical analyses showed that the p-y curve
nonlinearity mainly depends on the employed modulus reduction curves of soils. In
the model, the degree of nonlinearity parameter (n) was directly related to the soil
parameter "reference strain" (yr), which solely represents the modulus reduction curve
of soils. In this regard, the dependence on various dynamic soil parameters was
diminished by correlating the dynamic p-y curves to the reference strain. The
validation analyses performed in structural analysis software demonstrated that the
proposed dynamic p-y model could accurately estimate the pile and structure response
under earthquake loading by incorporating the hysteretic nonlinear soil behavior.
Superstructure accelerations and bending moments along the single pile obtained using
the proposed model under different earthquake records were closer to the 3-
dimensional numerical analysis results when compared with the results calculated by
API. Finally, the proposed static and dynamic p-y models will contribute to the design
of piles by improving the initial stiffness, ultimate resistance and nonlinearity of the
static load-displacement behavior and by integrating the dynamic soil nonlinearity and

hysteretic behavior under directly applied seismic loads.
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KOHEZYONSUZ ZEMINLERDE GOMULU KAZIKLAR ICIN DEPREM
YUKLERI ALTINDA YATAY YUK-YERDEGISTIRME BAGINTILARININ
GELISTIRILMESI

OZET

Kazikli temellerin 6n tasarimi statik yiikler kullanilarak yapilabilir, ancak sismik
olarak aktif bolgelerdeki kaziklarin nihai tasarimi dinamik yukleri de icermelidir.
Kaziklarin deprem yiiklemesi altindaki davranisi, yanal yiiklemeli bir kazik problemi
olarak kabul edilebilir. Yanal yikli kazik problemlerinde yaygin olarak iki yontem
kullanilmaktadir: Stirekli ortam yaklagimi ve Winkler yay yaklagimi. Her iki yontemde
de kazik yapisal bir kiris elemani olarak diistiniilebilir ancak temel fark zeminin
modellenmesidir. Surekli ortam yaklasiminda zemin ortamu iki veya ¢ boyutlu sonlu
elemanlar kullanilarak modellenebilirken, yay yonteminde zeminin yanal yiklemeye
direnci kazik boyunca yerlestirilen bir dizi yay ile ideallestirilmektedir. Yay yontemi,
lineer olmayan Winkler yontemi olarak adlandirilmakta ve zemin-kazik sisteminin
yanal yuke tepkisi, yanal yik-yer degistirme (p-y) egrileri ile dikkate alinmaktadr.
Tarihsel olarak kazik ve iist yapi, dogrusal davranisa uygun modellenmis ve dogrusal
zemin-kazik-yap1 etkilesimi bir¢ok aragtirmaci tarafindan yeterince galisilmistir.
Ancak zeminler, diisiik deformasyonlar altinda bile yiiksek oranda dogrusal olmayan
davranis sergilemektedir ve analizlerdeki temel zorluk, bu dogrusal olmama durumunu

hesaba katan modelleme yaklasimindan kaynaklanmaktadir.

Kazikli temeller, agik deniz veya karada bulunan yapilarda yanal yiklere dayanacak
sekilde tasarlanmalidir. En yaygin analiz yontemi bir dnceki paragrafta ¢zetlenen
Winkler yay yaklasimidir. Arastirmacilar, Winkler yay yonteminde kullanilmak tizere
yanal yik direnci-deformasyon (p-y) egrileri i¢in dogrusal olmayan formiilasyonlar
Onermisler, ancak zemin nonlineeritesinin etkisi tam olarak incelenmemistir.
bircok aragtirmaci tarafindan vurgulanmistir. Son zamanlarda yapilan bazi

calismalarda, hiperbolik modelin kullanilmasi Onerilmistir. Bununla birlikte,
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hiperbolik modelin dezavantaji, p-y egrilerinin dogrusal olmama durumunu temsil
etmek igin tek bir rijitlik parametresini kullanmasidir. Buna goére kullanilan rijitlik
parametresi, ¢ogu durumda p-y egrilerini tanimlamak i¢in yetersizdir. Bu nedenle,
kazik yer degistirmelerini ve i¢ kuvvetleri dogru bir sekilde tahmin etmek i¢in analiz

oncesi secilecek rijitlik parametresi cok énemli olabilmektedir.

Bu tezde yanal yiiklii kaziklarin davranigi 3-boyutlu sonlu farklar analizleri ile
incelenmistir. Analizlerde statik ve dinamik yiikleme durumu ayri olarak dikkate
almmistir. Statik analizlerde HS-Small zemin modeli kullanilmigtir ve zeminin
nonlineeritesi uygun bir sekilde tanimlanarak analizlere entegre edilmistir. 3-boyutlu
analizlerin dogrulanmasi amacuyla literatiirde detaylar1 bulunan gergek 6lgekli bir saha
deneyi secilerek sayisal modeli olusturulmustur. Olusturulan modelde kazik ve zemin
parametreleri belirlenerek yanal yiik kazik baslhigindan uygulanmistir. Kazik-zemin
sistemi yanal yiik altinda analiz edilerek yanal ylik-yerdegistirme iliskisi elde
edilmistir. Ayrica belirli derinliklerde yanal yiik-yerdegistirme egrileri bulunmustur.
Elde edilen bu egriler literatiirde verilen saha deneyi sonuglariyla karsilagtirilarak

olusturuan sayisal modelin dogrulugu irdelenmistir.

Sayisal modelin gecerliligi bir saha deneyi ile gdsterildikten sonra parametrik analizler
icin ayrica bir model kurulmustur. Belirli kazik ve zemin ozellikleri segilerek bu
parametrelerin yanal yiuk-yer degistirme egrilerine olan etkileri sayisal analizler ile

incelenmistir. Statik p-y iligkisi i¢in, sayisal analiz sonuglarina dayali olarak baslangig

......

baslangi¢ modiiliine, kazik ¢apina ve derinlige bagl olarak verilmistir. Nihai zemin
direnci ise; kazik gapina, diisey efektif gerilmeye, yanal zemin basinci katsayisina ve
derinlige bagli olarak verilmistir. p-y egrilerinin nonlineeritesi zemin nonlineer
davranigina bagl olarak sunulmustur. Zemin nonlineeritesi ise baslangi¢ modiiliiniin
sekant moduline orani olarak tanimlanmustir. Bu oran biiyiidiik¢e (sekant modiilii
kiiciildiik¢e) nonlineerite artmaktadir. Onerilen p-y egrilerinin 3-boyutlu sayisal analiz
sonuglara yakinligi gosterilmistir. Daha sonra modelin gegerliligi literatiirden bir
saha deneyi ve ve santrifiij testi simiile edilerek gosterilmistir. Buna gore 6nerilen
model, kazik boyunca egilme momentinin degisimi konusunda test sonuclariyla
uyumludur. Ayrica kazik yerdegistirme tahmininde Onemli bir iyilestirme

saglanmigtir. Bu nedenle, onerilen model dort parametreli, gok kiglkten blyuk yer
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degistirme seviyeleri ic¢in, zeminin nonlineeritesini daha iyi bir sekilde dikkate
alabilmektedir. Onerilen p-y egrileri, statik yanal yiiklemeye maruz kalan kaziklarin
tasariminda kullanilabilir. Ayrica deprem yiikii altinda dstyapir ivmelenmesi
yonetmeliklerde verilen tasarim spektrumlar1 ile tahmin edilebilir. Ustyapi
ivmelenmesinden kaynaklanan yanal yiik kaziklara statik olarak uygulanarak analiz
edilebilir. Onerilen statik p-y egrileri, deprem yiiklemesini artimsal itme yontemiyle

dikkate alan bu yaklasimlarda da kullanilabilir.

Deprem yiliklemesine maruz kalan kazikli temellerde dinamik zemin-kazik-yap1
etkilesimi analizleri gerceklestirilmelidir. Winkler yay yaklasimi ile yapilan dinamik
analizlerde zemin davranis1 dogrusal olmayan p-y egrileri ile temsil edilmektedir. p-y
egrileri i¢in mevcut yontemler ya statik yiikleme testlerine dayalidir ya da dinamik yuk
altindaki zeminin nonlineeritesi dogru bir sekilde dikkate alinamamaktadir. Bu tezin
amaci, kohezyonsuz zeminlerde bulunan kaziklarin dinamik zemin-kazik-yap1
etkilesimi analizlerinde davranisinin daha dogru temsil edilebilmesi igin sayisal
analizler ile dinamik yiikleme altindaki nonlineer zemin davranisini goz Oniinde
bulundurabilen p-y egrilerini gelistirmektir. Bu amagla kazik-zemin-yap1 etkilesimi
analizleri FLAC®P programinda 3-boyutlu olarak yapilmistir. Oncelikle literatiirde
sunulan iki santrifiij deneyi modellenmis ve sayisal model sonuglari ile test sonuglari
karsilagtirilarak olusturulan sayisal model dogrulanmistir. Analizlerde zeminin
nonlineer davranist modiil azalim egrileri ile dikkate alinmistir. Bu egriler zeminin
dinamik 6zelligi olup referans birim sekil degistirme (reference strain) parametresi ile
olusturulmaktadir. Dogrulama analizleri sonrasinda, parametrik analizler igin bir
sayisal model olusturulmustur. Farkli kazik caplari, zemin rolatif sikiliklar: ve
nonlineer zemin davranisi igin referans birim sekil degistirme parametreleri igin p-y
egrileri sayisal analizler sonucunda elde edilmistir. Parametrik analizlere dayanarak,
kohezyonsuz zeminlerdeki kaziklarin dinamik p-y egrileri i¢cin Bouc-Wen modeli
ve nonlineerite) dayali olarak dinamik p-y egrilerinin omurga egrisini karakterize
etmektedir. Sayisal analizler, nonlineer p-y egrilerinin esas olarak zeminlerin
nonlineer davranisina ve kullanilan modil azalim egrilerine bagli oldugunu

gostermistir.

XXiX



Onerilen modelde p-y egrileri icin nonlineer davranis parametresi, zeminlerin modl
azalim egrisini temsil eden ve zemin davranisina bagli olan referans birim sekil

degistirme parametresi ile dogrudan iligkilendirilmistir.

Onerilen dinamik p-y egrilerinin gegerliligi literatiirde yayinlanan santrifiij testleri
kullanilarak gosterilmistir. Buna gore dnerilen model ile elde edilen iistyap1 ivmeleri
ve kazik egilme momentleri santrifiij deneyi sonuglarina yakin bulunmustur. Santrifij
testlerinde kullanilan deprem kayitlarmin sayist smrli oldugu igin, FLAC®P
programinda yeni bir sayisal model olusturulmus ve ilave olarak segilen deprem
kayitlar1 ile ek analizler yapilmustir. 3-boyutlu analiz ile énerilen model sonuglari
karsilagtirilmistir. Zemin-kazik-yapi etkilesim analizi sonuglari, deprem kayitlarinin
seciminin ¢iktilarda anahtar rol oynadigimi ortaya koymustur. Dogrulama analizi
sonuclari, 6nerilen dinamik p-y egrilerinin kazik ve yapi tepkisini dogru bir sekilde
tahmin edebildigini  gostermistir. Zemin-kazik-yap1 etkilesimi  probleminin
karmasiklig1 gbz oniine alindiginda, 6nerilen modelin bu analizler igin oldukca pratik

oldugu soylenebilir.

Onerilen dinamik p-y modelinin en 6nemli avantaji, zeminin nonlineer davranisim
dikkate alabilen histeretik p-y egrilerini olusturabilmesidir. Dogrusal olmayan zemin
davranisi, referans birim sekildegistirme parametresi ile temsil edilebilmektedir. Bu
parametrenin laboratuvar testleri ile belirlenerek dinamik p-y egrilerine dahil edilmesi,
dinamik yiikleme altinda gercek zemin-kazik etkilesim davranmigmin dikkate
alinabilmesine olanak tanimaktadir. Ayrica, modil azalim egrileri kullanilarak
kohezyonsuz zeminler igin bu model Onerilmis olmasina ragmen, referans sekil
degistirmenin dogru olarak belirlenmesi sartiyla herhangi bir zemine uygulanabilir.
Genel olarak, dinamik p-y egrileri igin Onerilen model, dogrusal olmayan p-y
davranisin1 onemli dlglide etkileyen dinamik zemin ozelliklerini dikkate alabilmekte

ve kazik-zemin-yapi etkilesimlerinde kullanilabilmektedir.

Onerilen model kullanilarak farkli deprem kayitlar1 altinda, tek kazik boyunca elde
edilen tist yap1 ivmeleri ve kazik egilme momentleri, API ile hesaplanan sonugclarla
karsilastirildiginda 3 boyutlu sayisal analiz sonuglarina daha yakin ¢ikmistir. Son
olarak, onerilen statik ve dinamik p-y modelleri, statik yik-yer degistirme davranisini
tahmin etmekte ve dogrudan uygulanan sismik yiikler altinda dinamik davranigi

dikkate alabilmekte tasarima katkida bulunacaktir.
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1. INTRODUCTION

Pile foundations are the structural elements embedded in the ground to transmit the
superstructure loads to the suitable soil. The preliminary analysis in pile foundations
is often performed considering the vertical loading. However, the piles are subject to
lateral loading in most cases. Hence, the final design must also include lateral loading.
Soil behavior under lateral loading affects the pile and the structure response, and the
structure/pile movement varies the soil behavior simultaneously. Therefore, this
phenomenon is defined as the soil-pile-structure interaction problem. Commonly

encountered soil-pile-structure interaction problems are shown in Figure 1.1.

The initial design of the pile foundations presented in Figure 1.1 should be performed
using the static loads, but the final design must also include the dynamic loads in the
earthquake-prone regions. The behavior of piles under earthquake loading can be
regarded as a laterally loaded pile problem (Reese & Van Impe, 2000). Two methods
have been used widely for the laterally loaded pile problems: The continuum approach
and the spring approach. In both approaches, the pile can be considered as a structural
beam element, but the main difference is the modeling of the soil. In the continuum
approach, the soil domain is discretized by solid elements, while in the spring method,
it is idealized either by a single (lumped) spring and dashpot system at the pile head or
a set of springs through the pile. The latter is called the beam on nonlinear Winkler
foundation (BNWF) approach, and the reaction of the soil-pile system to the lateral
load is taken into account by the lateral load-displacement (p-y) curves. Historically,
the assumption of linear behavior for the pile and the superstructure is valid in most
cases, and various researchers have well studied the linear soil-pile-structure
interaction. However, soils exhibit highly nonlinear behavior even under low strains,
and the main uncertainty in the analyses arises from the modeling approach taking this

nonlinearity into account.
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Figure 1.1 : Examples of pile foundations in geotechnical engineering.
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The behavior of piles under lateral loads has been studied in the literature extensively.
Analytical solutions (Kuhlemeyer, 1979; Poulos, 1971) or finite element analyses
(Baguelin et al., 1977; Banerjee & Davies, 1978; Randolph, 1981) were presented
using the elastic theory. The early studies were limited to linear analysis, whereas the
soil behavior is highly non-linear. Therefore, the 3-dimensional finite element
approach has been extended to consider soil nonlinearity (Brown & Shie, 1991), but
no proposals have been made for practical design purposes (Reese & Van Impe, 2000).
The subgrade reaction method is the more straightforward approach to the laterally
loaded pile problem, where the soil is represented by discrete Winkler springs.
Although the continuity of the soil is disregarded in this approach, the non-linear
behavior can be taken into account by lateral load resistance-deflection (p-y) curves.
While the continuum approach is superior, soil modeling using discrete Winkler
springs is advantageous, especially for geotechnical/structural engineers dealing with
complex soil-pile-structure interaction problems. Although the use of the current
approach has been questioned by some researchers for monopiles (rigid) piles (Burd
et al., 2020; Murphy et al., 2018; Taborda et al., 2020), a more recent study (Wang et
al., 2022) has shown that p-y curves can be employed for rigid piles as well. Therefore,

the p-y curve method is widely used in soil-pile-structure interaction analyses.

Several researchers have suggested direct correlations for piles in clays using the rigid
disc analogy (Bransby, 1999; Randolph & Houlsby, 1984; Zhang & Andersen, 2017).
However, the problem has not been clearly understood for piles in cohesionless soils
since the shear strength of sands is not constant but depends upon the effective
confining stress, which increases with depth. Several researchers studied the lateral
load-displacement behavior of piles in cohesionless soils. The simplest relation was
the linear equation suggested by Terzaghi (1955), in which the subgrade reaction
modulus depends on the relative density of the soil. Nonlinear p-y curves based on the
full-scale field tests were presented by Reese et al. (1974). API (2007) proposed a
hyperbolic tangent function based on the mentioned field test results. Georgiadis
(1992) implemented the hyperbolic model into p-y curve relation based on the
centrifuge test results. Pender (1993) developed a new form using the finite element
analysis results from back-analyzed full-scale field tests. Thieken et al. (2015)
developed new equations for p-y curves in sands based on the finite element analysis

results.



On the one hand, the studies mentioned so far have focused on static p-y curves. On
the other hand, soil-pile interaction under dynamic loads has been investigated by
many researchers (Allotey & EI Naggar, 2008; ElI Naggar & Novak, 1996; Gazetas &
Dobry, 1984; Makris & Gazetas, 1992; Nogami et al., 1992; Wang et al., 1998). The
lateral load-deflection behavior under dynamic loads was studied by Kagawa and Kraft
(1980), and a procedure was proposed based on the free-field site response analysis
results. Gohl (1991) adopted the Ramberg and Osgood (1943) model to represent the
p-y curves under cyclic (dynamic) loading based on the centrifuge test results. Brown
etal. Brownetal. (2001) proposed a dynamic p-y curve relation based on the statnamic
field tests. Lim and Jeong (2018) improve the original hyperbolic function of Kondner
(1963) by suggesting initial modulus relations using the shake table test results.
Several other experimental studies have been conducted on the dynamic soil-pile
structure interaction (Nguyen et al., 2018; Rovithis et al., 2009). However, no practical
relation was suggested for dynamic p-y curves. Many researchers have studied the
topic through numerical analyses (Gerolymos et al., 2009; Gerolymos & Gazetas,
2005; Giannakos et al., 2012; Varun, 2010), and they have suggested the Bouc-Wen
model to represent the dynamic p-y curves. Choi et al. (2016) have studied the problem
using the plasticity theory. However, the effect of the degree of soil nonlinearity on

the dynamic p-y curves has not been studied thoroughly.

Georgiadis et al. (1992) employed the suggestion of Terzaghi (1955) for the subgrade
reaction modulus, although it was 2-3 times lower than the value suggested by Reese
et al. (1974). The most commonly used relation for p-y curves, APl (2007), has also
proposed high values for initial stiffness, as in Reese et al. (1974). Many researchers
have indicated the problem of the high initial modulus of API (Choi et al., 2016; Finn,
2005; Murchison & O'Neill, 1984; Rahmani et al., 2018). Several recent studies have
employed the hyperbolic model to overcome the mentioned problem (Bouzid, 2021;
Lim & Jeong, 2018; Lu et al., 2021; Papadopoulou & Comodromos, 2014; Zhou et al.,
2020). However, the drawback of the hyperbolic model is that a single stiffness
parameter is required to represent the nonlinearity of p-y curves, which is insufficient
to describe the curves from very small to large displacements. Therefore, selecting this
stiffness parameter is crucial to predict the pile displacements and internal forces
accurately. Moreover, another drawback of the API (2007) is the low ultimate

resistances anticipated at shallow depths (Rahmani et al., 2018; L. Zhang et al., 2005).



The most widely used p-y relation is the one suggested by API (2007), which can be
employed as the backbone for static and dynamic analyses for simplicity. However,
Boulanger (1999), Finn et al. (2002), Finn (2005), Allotey and EI Naggar (2008),
Thavaraj and Finn (2010), Choi et al. (2016), and Rahmani et al. (2018) stated that the
main drawback of API (2007) is the high initial modulus which linearly increases with
depth. Another drawback of the current relations is that the soil nonlinearity under
dynamic loading is disregarded. According to Nist (2012) even the elastodynamic
solution methods, in which the pile-soil system is modeled as a single lumped mass,
may be superior to the p-y curve approach (Correia & Pecker, 2021). They emphasize
the need for new-generation curves due to the infinite initial modulus and the inability
of API (2007) to consider the degraded soil stiffness under dynamic loading. Although
the reliability of the discrete element approach (using p-y curves) is questioned
(Rahmani et al., 2018), the method is still in practice due to its simplicity since
modeling and analyzing particularly complex soil-pile-structure systems in the
continuum approach is cumbersome. Therefore, the existing p-y curve approach needs
to be improved to capture the soil nonlinearity under cyclic loading. Hence, the current
p-y curve approach must be improved considering the stiffness degradation for very

small to large displacements in the soil-pile system.

This thesis investigates the laterally loaded pile problem in FLACS3P numerically
(Itasca Consulting Group, 2019). The parametric analyses were performed on the
verified numerical models to show the effect of soil and pile properties on the static
and dynamic p-y curves. The hardening model with small-strain stiffness (HS-Small
Model) was used for the static analyses. The Mohr-Coulomb model with the hysteretic
damping approach was employed for dynamic analyses. The selected parameters were
the pile diameter, the relative density of soil, and the degree of soil nonlinearity. The
modified hyperbolic model was proposed to characterize the static p-y curves. The
proposed model includes the initial stiffness, the ultimate soil resistance, and two
additional parameters for the degree of nonlinearity, the last of which allows the p-y
curves to be efficient from very small to large displacement ranges. The initial stiffness
of the p-y curves was estimated using the small-strain modulus of soil, which can be

determined precisely by seismic methods.



In addition to the static p-y curves, this thesis suggested a practical approach to
dynamic p-y curves using the Bouc-Wen model, which includes the initial stiffness,
the ultimate soil resistance, and the nonlinearity parameter. Two centrifuge tests from
the literature were simulated numerically by the 3-dimensional analyses performed in
FLAC?P, and the results of the verification analysis were presented. The parametric
studies were carried out to show the effect of soil and pile properties on the cyclic p-y
curves. The total-stress approach considered the soil nonlinearity using the small-strain
shear modulus and modulus degradation curves. The Bouc-Wen model equations were
proposed to represent the p-y curves obtained. The validity of the proposed model was

shown by implementing the proposed curves in structural analysis software.

The main aim of this thesis is to improve the load-deflection curves of piles under
lateral loading to be used in earthquake excitation. The thesis includes the following

chapters:

Chapter 2: Literature Review: The developments of the current practice for lateral
load-deflection relationships are summarized. Past studies on the subject are given,

and crucial conclusions are presented.

Chapter 3: Methods for Dynamic Soil-Pile-Structure Interaction Analyses: The
analysis methods are outlined in this chapter. Modeling the soil behavior and analyzing

the system under the seismic loading are given.

Chapter 4: Numerical Modelling of Laterally Loaded Pile Problem: Static Pile Head
Loading: The numerical analysis results for the laterally loaded pile problem are given

for the static loading conditions.

Chapter 5: Numerical Modelling of Laterally Loaded Pile Problem: Dynamic Loading:
The numerical analysis results for the laterally loaded pile problem are given for the

dynamic loading conditions.

Chapter 6: Proposed Models for Static and Dynamic p-y Curves: The mathematical
models to represent the numerically derived p-y curves were presented separately for
static and dynamic loading.

Chapter 7: Conclusions and Recommendations: The main outputs of the thesis are

summarized, and recommendations for future works are given.



2. LITERATURE REVIEW

In this chapter, past studies related to the lateral load resistance-deflection (p-y)
relations for piles in cohesionless soils were presented. First, a brief introduction to the
laterally loaded pile problem and the suggestions made by the researchers for
constructing p-y relations are given. Then, the studies are summarized related to the
parameters required for creating p-y curves, such as the initial stiffness and the ultimate
soil resistance. Finally, the drawbacks of the current approaches for p-y curves are
highlighted with an emphasis on the literature studies.

2.1 Laterally Loaded Pile Problem

Reese and Van Impe (2000) explain the pile behavior under lateral load as in Figure
2.1. The initial state of the pile and deflection pattern after horizontal loading is applied
from the top is shown in Figure 2.1a. Figure 2.1b and 2.1c show the uniform confining
pressure distribution at rest and the pressure after the horizontal deflection takes place,

respectively.

Figure 2.1 : Increasing the horizontal stresses in the soil due to pile movement.



The behavior of piles under lateral loading consists of three stages: The elastic
response of the soil and the pile material, the plastic behavior of the soil, and finally,
the plastic response of the pile. The governing behavior in the design is not the soil
failure but the bending moment capacity of the pile (Scott, 1981). However, in recent
years, the design concept has shifted from capacity-based to performance-based, in
which the main concern is internal forces and displacements. As the lateral load
increases, the soil behavior becomes highly nonlinear. Soil reaction depends on pile
displacement, and soil behavior affects pile motion (Pile-Soil-Structure Interaction).
Therefore, the pile foundation analysis aims to determine the internal forces (shear
force and bending moment) along the pile and the displacement response of the soil-
pile-structure system.

The response of piles under lateral loading can be expressed with a differential
equation (Equation 2.1) by assuming the pile as a beam resting on nonlinear Winkler

springs.

E,l, % +E,y=0 (2.1)
The analytical solution of equation 2.1 is limited, and the solution highly depends on
the boundary conditions. Therefore, the solution is obtained mostly using the p-y curve
approach. Epyy=p is the soil resistance, and y is pile deflection in the equation. Ep, Ip,
and Epy represent the elastic modulus of pile material, the moment of inertia of the
cross-section, and soil modulus, respectively. The lateral soil resistance vs. pile
deflection relation (p-y) is not linear, and the soil modulus (Epy) decreases as the pile

deflection increases. The relation is given by (Reese & Van Impe, 2000) in Figure 2.2.
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Figure 2.2 : A typical p-y curve and reduction of soil modulus with pile deflection.



2.2 Construction of Lateral Load Resistance-Deflection (p-y) Relations

In this section, the past studies on the construction of lateral load resistance-deflection

relations are summarized.

Terzaghi (1955)

Terzaghi (1955) presented the first suggestion for the lateral load resistance-deflection
relation for piles in cohesionless soils. The suggested linear relation is given as

follows:
p = kny (2.2)

where ki is the lateral subgrade reaction modulus, and the following equation was

given for kn:

4 2.3)
kp = np— (
h=Th D
where nn was the constant depending on the relative density, z was the depth, and D
was the pile diameter. The values in Table 2.1 was suggested for nn values. According
to Finn (2005), the suggestions of Terzaghi (1955) for horizontal subgrade reaction

correspond to a lateral displacement of 25 mm.

Table 2.1 : Values of the constant of horizontal subgrade reaction nn (Terzaghi,

1955).
Relative Density of Sand Loose | Medium | Dense
Dry or moist sand (MN/mq) | 2.2 6.6 17.6
Submerged sand (MN/m®) | 1.25 |4.4 10.7

Reese et al. (1974)

The first thorough study based on full-scale experiments for the development of p-y
curves was presented by Reese et al. (1974). The field tests were performed at a site
on Mustang Island in Texas. The study aimed to measure the bending moments along
the pile to obtain the pile displacement, y, and the soil resistance, p, obtained by double

integration and second-order derivative with respect to depth, x, respectively.

M(x) d?
y=ff I andszM(x) (2.4)



A nonlinear relation was suggested by Reese et al. (1974) for the p-y curves in

cohesionless soils. The initial part of the relation is a straight line representing the

elastic region. Next, a parabolic curve was suggested to limit displacement beyond the

elastic region. The final part of the p-y relation consists of a straight line with the

ultimate soil resistance. A typical curve showing the construction of p-y curves is

shown in Figure 2.3.
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Figure 2.3 : Definition of a typical p-y curve suggested by Reese et al. (1974).

The procedure of constructing the p-y curves for sands, according to Reese et al.

(1974), is summarized as follows:

1.

The ultimate soil resistance, pu, is determined. The ultimate soil resistance near

the ground surface, pct, can be calculated as follows:

K Ky H tang sinf N tanp b+Ht tand)
Pet =¥ tan(B — @) cosa  tan(f — ¢) anf tana
(2.5)
+ K, H tanp (tan¢ sinfy — tana) — Kb
The ultimate soil resistance at a depth is given as follows:
Pea = Ko by H (tan®B — 1) + Ky by H tang tan*p (2.6)

The following values were suggested for computing the ultimate soil

resistance:
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p =45 +% ; Ko =0.4; K, = tan®(45 — %) (2.7)

where a=¢/3 for static loading, and a. =3¢/4 for cyclic loading.

3. Xt is the depth at which the ultimate lateral soil resistance near the ground
surface and at a depth are equal. pct and ped are used when the p-y curve is
constructed above and below X, respectively.

4. Compute the threshold displacements yu=3b/80, ym=b/60, and resistance values
Pu=Apc, pm=Bpc.

5. The initial slope of the p-y curve is determined using kpy (Table 2.2).

6. The equation of parabola between the points k and m is given as

1

7. The parameters for the parabola are given below:

Pu — Pm Pm Pm

m:yu_ym ,n:mym ¢ :yml/n (2l9)
and the point k is determined as:
n
Yo = ( é )m (2.10)

Table 2.2 : Reese et al. (1974) recommendations for initial stiffness for p-y curves in
cohesionless soils.

Relative Density of Sand Loose Medium Dense

Dry or moist sand (MN/m?) 6.8 24.4 61
Submerged sand (MN/m®) 5.4 16.3 34

The construction of the p-y curves is completed by finding the point k. The procedure
summarized above can be applied to any depth of interest. However, the suggested
curves were based on the field test results performed in dense sand. As a result, the
initial stiffness values (Table 2.2) were far greater than the suggestion of Terzaghi
(1955). Besides, there is no single function to construct the suggested curves, but it

consists of three parts.
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Desai and Kupsusamy (1980)

The modified Ramberg & Osgood method was suggested by Desai and Kuppusamy
(1980) for the construction of p-y curves. They performed finite element analyses for
laterally loaded piles and sheet pile problems. The following form was employed in

the analyses based on the curves suggested by Reese et al. (1974).

p _ (ko - kf)y l + kfy
Il + {(ko ; kf)Y} lm (2.11)

where ko and kr represent the initial and final stiffness, pu is the ultimate lateral soil
resistance, and m is the nonlinearity parameter. For m=1 and k=0, the equation reduces

to a hyperbola.

API (2007)

American Petroleum Institute (API, 2007) suggested the following form of hyperbolic

function for p-y curves in cohesionless soils:

kxH
p = A x p,x tanh L X y] (2.12)
X Pu

where pu is the ultimate soil resistance, k is the initial stiffness, and A is the factor for
the loading condition. The parameter A is constant (0.9) for cyclic loading, but it
depends on the depth for static loading, as shown in equation 2.14.

A =09 for cyclic loading (2.13)
H
A= (3 - 0.8 5) > 0.9 for static loading (2.14)

The following equations were suggested for the ultimate soil resistance under lateral

loading at shallow and deep depths:
Pus =(C;xH+CoxD)xyxH (2.15)

Pua =CixDxyxH (2.16)
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where yis the effective unit weight, H is the depth, D is the pile diameter, and Cs, C,
and Cs are the coefficients that can be determined using Figure 2.4. The initial stiffness

in API can be determined using Figure 2.5.
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Figure 2.4 : The coefficients required for the ultimate resistance in API.
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Figure 2.5 : Subgrade reaction modulus for sands in API.

Gohl (1991)

The centrifuge tests were performed by Gohl (1991) in dry sand for steel pipe piles.
Harmonic input motion was applied at the base of the shake table, and cyclic p-y loops
were obtained. The study showed that the subsequent loading/unloading hysteresis

could be represented using the Masing (1926) rule. However, the agreement was poor

13



in the API (2007) for the backbone curves of the pile response. Gohl (1991) suggested
the modified form of the Ramberg & Osgood equation for the p-y curves.

kny
ﬁpﬁ)r—l (2.17)

u

p:

The above form of the Ramberg & Osgood equation was first proposed by Ishihara
(2021) for the stress-strain response of soils subject to cyclic loads. Gohl (1991)
modified the equation to model the experimentally derived p-y curves. In the equation,
kn and pu were the initial stiffness and the ultimate soil resistance, respectively. The «
and r were the curve fitting parameters. Equation 2.18 was suggested by Gohl (1991)

for the parameter r:

1+ (n/z)Dmax
1- (H/Z)Dmax

IR

r (2.18)

where Dmax IS the maximum damping ratio mobilizing at large displacements, the
damping ratio value must be lower for small displacements at which the soil strains
are lower. However, the study did not suggest a damping ratio considering the
displacement level; instead, Gohl (1991) suggested the maximum damping ratio (Dmax)

to estimate the parameter r. Therefore, equation 2.19 is suggested for the parameter «:

Yuit
a =

-1 2.19
Yr (2.19)

where yuit was the displacement at which the ultimate soil resistance was mobilized,
and Gohl (1991) proposed to set yurt as 5% of the pile diameter (yut=0.05D). The

parameter yr was the reference deflection which was given as:

— Puit
yT kh

(2.20)

Gohl (1991) suggested the Barton et al. (1983) equation for the ultimate soil resistance,

puit as follows:

Puie = B K, o'y D (2.21)
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where Kpis the passive earth pressure coefficient, ov vertical effective stress, D is the
pile diameter, and g is a coefficient. The g values in Gohl (1991) varied from 1.75 to
3.5. In addition, Gohl (1991) employed larger values for S near the ground surface,
which decreased as the depth increased, contradicting the findings of Barton (1982),
who suggested increasing the gwith depth. Lastly, the horizontal stiffness kn was

calculated based on Kagawa and Kraft (1980) as follows:
kp = 6Emax (2.22)

where Emax can be estimated using the low strain shear modulus (Gmax). The parameter
5 in Kagawa and Kraft (1980) depends on pile flexibility; however, a constant value
of 1.9 was adopted by Gohl (1991).

Georgiadis et al. (1992)

Centrifuge tests were performed by Georgiadis et al. (1992) for piles embedded in dry
sand. The tests were carried out by applying the lateral load at the pile head level. The
hyperbolic function of Kondner (1963) was employed to fit the p-y curves obtained in
the tests. The p-y curve relation was written in the following form of the hyperbolic

function:

P= N (2.23)

Kini ' Du

where the kini is the initial stiffness and pu is the ultimate soil resistance. The study
adopted the Reese et al. (1974) equations for ultimate soil resistance (pu), and the
suggestion of Terzaghi (1955) was implemented for initial stiffness (kini) since a better
agreement with the centrifuge test results was observed. The equation was highly
efficient compared to Reese et al. (1974). However, the study showed that the selection
of initial stiffness is vital. The authors stated that the suggestion of Reese et al. (1974)
for initial stiffness was too high, yielding significantly different responses than the test
results. Therefore, the main drawback of the hyperbolic function is the sensitivity of

the p-y response to the selection of initial stiffness.
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Pender (1993)

Pender (1993) suggested equation 2.24 for the nonlinear equation of the p-y curves.
The equation includes the initial stiffness (kini), the ultimate soil resistance to the lateral

loading (pu), and the parameter n for the extent of nonlinearity.

p ( Pu )"
= 2.24
Y kini Pu—PD ( )

Pender (1993) proposed the Broms (1964) equation for the ultimate soil resistance (pu),

which is given as follows:
Py =3 Kpo-,vD (2.25)

The equation of Vesi¢ (1961) was proposed by Pender (1993) for the initial stiffness,

I = 0.65 E; 12 ESD4 (2.26)
(1—1v,2) Eplp

According to Pender (1993), small-strain stiffness of the soil could be employed for Es

which is given as follows:

in Vesic's equation. Therefore, the nonlinearity parameter, n, could be taken as 1 for

sands.

Brown et al. (2000)

Brown et al. (2001) suggested equation 2.27 for p-y curves under dynamic loading

based on the static p-y curves:

wy\"
Pa = Ps <(a + Bay® + Ka, (7) >,pd <py (2.27)

where ps is the resistance under static loading, ao frequency of loading (ac=wro/Vs), @
angular frequency of loading, ro is the pile radius, y lateral displacement, D is the pile

diameter, «, S, k and n are the constants from curve fitting.

The ps in equation 2.27 is the static loading resistance that APl was adopted in Brown
et al. (2000). Table 2.3 shows the constants in equation 2.27 for the dynamic multiplier

parameters.
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Table 2.3 : Dynamic p-y parameter constants according to Brown et al. (2001).

Soil Type Description o B K n

0,<0.025 0o>0.025

cu< 50 kPa
Soft clay V<125 mfs 1 -180 -200 80 0.18
50<cu< 100 kPa
Medium clay 125<Vs<175 1 -120 -360 84 0.19
m/s
. cu>100 kPa
Stiff clay Vs>175 m/s 1 -2900 -828 100 0.19
. 50<Dr< 85
Medium-dense sand - j5c\/c175 1 3320 1640  -100 01
(saturated)
m/s
. 50<Dr< 85
Medium-dense sand 50 \/c 175 1 1960 960 20 01
(unsaturated)
m/s
Dense sand Dr> 85
(saturated) Vs>175 m/s 6000 1876 -100 0.15

Varun (2010)

Varun (2010) created a 3-dimensional (3D), finite element model to develop a
macroelement for piles in liquefiable soils. Multi-yield constitutive soil model with a
kinematic hardening rule was employed based on the plasticity theory. Parametric soil-
pile interaction analyses were performed, and the Bouc-Wen model was suggested for

the p-y formulation. The soil resistance p can be written as:
P =DpyS (2.28)

where py is the ultimate soil resistance, and ¢ is a hysteretic parameter controlling the

curve nonlinearity. The last parameter could be calculated in an incremental form as:

du
dg = {A~f;1B + sign (du.q]} — (2.29)
y

where A is the parameter generally taken as 1, uy=py/K is the yield displacement, K is
the initial stiffness, du is the incremental relative displacement, f=1-y are parameters
controlling the unloading and reloading behavior, f- is the monotonically increasing

function of ¢.
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Varun (2010) suggested an initial stiffness for the p-y curve formulation:
K =125E (2.30)

The ultimate resistance of soil to the lateral loading pu:
py = 3.25K, + 0.3K,? (2.31)

The last parameter for the nonlinear backbone of the dynamic p-y curves was the
function of the f ({) parameter, which was equal to " in the original Bouc-Wen model,

however, Varun (2010) suggested the following form for the nonlinearity parameter:

tanh(a()

fo= tanh(a)

(2.32)

The parameter « in the above equation was suggested as 2.7 for dense sand, 2.8 for

medium-dense sand, and 2.9 for loose sands.

Yang et al. (2011)

A series of 1g shaking table tests were performed by Yang et al. (2011) in cohesionless
soils to obtain the dynamic p-y curves. The tests were conducted in dense sand with a
relative density of Dr=80 %. An aluminum alloy pipe was used to simulate piles, and
strain gages were placed along the pile to measure the bending strain. Several loading
schemes were applied to the test setup. The dynamic p-y curves were determined using

the bending moments as follows:

2

p ="M@ (2.33)
Ypite = f f M;IZ) dz (2.34)

where p is the lateral soil resistance, ypile is pile displacement, M(z) is the bending
moment along the pile, El is the flexural stiffness of the pile, and z is the depth below
the ground surface. The bending moments in the above equations were calculated

using the measured bending strains as follows:
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M= (2.35)

The experimental results obtained by the shake table tests were best fitted by the

hyperbolic function of Kondner (1963), expressed in equation 2.21.

The study suggested lower bound and upper bound equations for the ultimate

resistance of dynamic p-y curves:

%t = 6.32K,y'z"*? (N/cm?) for lower limit backbone (2.36)

%u = 11.83K,y'z"'* (N/cm?) for upper limit backbone (2.37)
The study suggested lower bound and upper bound equations for the initial stiffness
of dynamic p-y curves:

!

0.5
K = 208.31p, <Z—> for lower limit backbone (2.38)

a

!

0.5
o
K = 333.48p, <p_> for upper limit backbone (2.39)

a

Yoo et al. (2013)

Dynamic centrifuge tests were performed by Yoo et al. (2013) for a pile in dry sand.
Pile diameter, the relative density of soil, loading amplitude, and frequency were the
variables. Based on the test results, the hyperbolic model was suggested to represent
the backbone of p-y curves. The initial stiffness parameter was recommended for loose

and dense sand as follows:

!

05
K = 4.26Dp, (Z—) for loose sand (2.40)

a

!

0.5
o
K = 7.29Dp, <p_> for dense sand (2.41)

a

The ultimate soil resistance to lateral loading equations was given for loose and dense

sand as follows:

19



Pu

D= 12.5DK,y'z%%° for loose sand (2.42)
%u = 13.3DK,y'z"%* for dense sand (2.43)

Thieken et al. (2015)

Thieken et al. (2015) investigated the large-diameter monopile behavior under lateral
loading using the finite element method. They stated that the conventional p-y curves
do not accurately represent the foundation stiffness which was overestimated at large
loads and underestimated at small loads. Therefore, they created a numerical model in
PLAXIS3D using the HSsmall model for constitutive soil behavior. Based on the
comprehensive parametric study, they suggested a set of equations for p-y curves in
cohesionless soils. The following equations for the resistance values for displacement
intervals were given, and the definitions were plotted in detail in Figure 2.6 and Figure
2.7.

P =Ds (—) forp <pg (2.44)
VB
Pc — DB
p=p3+( )(y—ya)forp3<p<pc (2.45)
Yc—YB
Pof--—-——-=——=mmmmmmmmm e
0.5
a Rg = 0.63 (%) -0.332 0.35 :
8 ' i
s Ps= Pc* Rp :
k7 [
3 Pc - P !
o P f-------- p=pe+(yJC_—y§)-(v-yB) .
S | !
© 1 \
@ ' fy\h_ o :
p=per(y) " <En |
Pa | i
: i Horizontal displacement y :
! Pc’ 1 Pc 1
y Yg=&—* Yo = fo—t o —m—r
& IBTE, By c E; Shy

Figure 2.6 : Construction of p-y curves in Thieken et al. (2015).
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Thieken et al. (2015).

Lim and Jeong (2018)

Shake table tests were performed by Lim and Jeong (2018) for piles in dry sand under
dynamic loading. The pile behavior was investigated similarly to the study presented
by Yang et al. (2011). The hyperbolic function was suggested for p-y curve
formulation. In addition, the initial stiffness and ultimate soil resistance values were
presented for the p-y behavior. The proposed p-y curves were employed in pseudo-
static analyses, and the results were compared with Reese et al. (1974) and the API
results. The authors stated that the proposed curves lead to better agreement with the

test results.

Lu et al. (2020)

The centrifuge tests by Lu et al. (2021) showed that the hyperbolic function could
represent the p-y curves under static loading. The initial stiffness in the p-y relation is

calculated using equation 2.49.
Kini = NnZ“ (2.49)

The experimental study showed that the 7n can be taken as 2000 kN/m?® and « is taken
as 0.5. Therefore, the ultimate soil resistance to lateral loading pu can be calculated

using the API equation of pu at depth:
Pua = C3DyZ (2.50)

where C3=100. The suggestions for the p-y curves are summarized in Table 2.4.
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Table 2.4 : Summary of the p-y curve suggestions in the literature.

Reference p-y relation Explanation
Zp:khy Ay A linear relation is
Terzaghi, 1955 kyp = Mhg V€M =T3¢ suggested based on

v is the unit weight of soil, and A is a factor

elasticity theory

z B
Pa = khyaB vepy =Puy

A and B are empirical factors;
A :D(pb/Zkn)n/m—l(D/yb)llm-l;

Reese et al., 1974

The relation is based on
full-scale static and cyclic

field tests
yb:D/BO; yu:3D/80'
(ko — kf)}’ -
Desai and Kupsusamy, p= Tt key A modified form of the
1980 (k —k )y mim Ramberg-Osgood model is
[1 + {Op—f} ] suggested

kz Back calculated relation
API, 2007 p = Ap,tanh(—y) from the full-scale field test
Apy is suggested
A modified form of the
_ kny Ramberg-Osgood model is
Gohl, 1991 P= p\ 1 suggested for the dynamic
1o (_u) backbone based on the
centrifuge test results
Georgiadis et al.
(1992), Yang et al. y The hyperbolic model of
(2011), Yoo et al. p= 1y Kondner (1963) was
(2013) Lim and Jeong =t o suggested based on shake
(2018), Lu et al. me P table experiments.
(2020)

Pender, 1993

Developed by finite
element model from back-
analyzed full-scale field

tests
_ 5 ﬂ)n Based on the statnamic,
NCHRP, 2001 Pa = Ds ((a' + Bay® + Ka, ( P ,Pd field tests
P =pyS
) du
di ={1— f;[b + g sign (du.{]}— The Bouc-Wen model was
Varun, 2010 Uy proposed based on the finite
tanh(a{)
) =——= element analyses results
tanh(a)

y 1/n
p=p3(£) forp <pg
Thieken et al., 2015

The suggested curve has

Do Dy three parts based on the
p=pp+ ( ) (y—yp) forpg <p finite element analysis
Yc — VB results
< Pc
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2.3 Initial Stiffness of the p-y Curve

The formulations for the construction of p-y curves presented in the previous section
showed that the relations require the initial stiffness of the pile under lateral loading.
There have been several studies on the stiffness of piles subject to lateral loads, and
some of the suggestions, including Broms (1964); Kagawa and Kraft (1980); Poulos
(1971); Vesi¢ (1961); Scott (1980); Gerolymos and Gazetas (2006), Augustesen et al.
(2009); Sarensen (2012) were presented in this section.

Terzaghi (1955)

The first suggestion for the initial stiffness of piles subject to lateral loading was made
by Terzaghi (1955). Then, the following form of the p-y relation was suggested based

on the theory of elasticity:

_ 0.74E,

n=— (2.51)

where Es is the soil modulus and D is the pile diameter.

Vesic (1961)

Vesi¢ (1961) proposed an equation for the spring stiffness of piles resting on the elastic

0.65E. 1z |[E.D*
ky = 1—u25 /ESI (2.52)
p'p
Poulos (1971)

The pile response under lateral loading was investigated by Poulos (1971), and a

foundation:

relation was suggested for initial stiffness:

_ 0.82,

= (2.53)

Kagawa and Kraft (1980)

Kagawa and Kraft (1980) have studied the dynamic lateral load-deflection relationship
for piles subject to lateral pile head and seismic loading. The study suggested a

simplified approach to dynamic p-y curves by estimating the degraded soil modulus

23



under dynamic loading conditions, which requires site response analyses in the first
step of the method. The p-y response was written in the nondimensional form as
follows:

p
Esy

The &; parameter in the above equation represents the true spring stiffness and &,

energy dissipation due to material and radiation dampings.

Several suggestions were made for the real part of the spring stiffness (o,). Kagawa
and Kraft (1980) presented these suggestions in a plot as given in Figure 2.8. The

o;values depend on the relative pile stiffness Kr which is defined as follows:

L/2rg=67 |

K, =2 (2.55)
r = :
E.H*
AT T T T T T 3 T T T T y
L Pile-Head Loading Case | - \ - Seismic Excitation -
s L Present Study ] o [ \ ]
g i
w o F N\ H/2ro =20 - NPy N _ Frepent Sty -
= e > o 21 <~ T
5~ ] o [ \ Y /21 =20
o = 0 -
€ [/or,-10 4 R, - m\ S 67
g 2= Plane-Strain o Siraj ﬂ_
P = = Y e ~cL/2rg =1
< e &
o = = o e g 3
< i
o

. : Yoshida
o Liou & Penzien (1977) g Yoshinaka (1972) shida & <]
SRR Y S Y s i M - 197, |~ , Yoshinaka (1972)
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Figure 2.8 : Real part of the initial stiffness parameter in Kagawa and Kraft (1980).

Scott (1980)

Scott (1981)suggested the bilinear function for the p-y relation, stating that using the
method proposed by Reese et al. (1974) is too complicated. Instead, he proposed the

initial stiffness to be equal to the soil modulus for the sake of simplicity.

Augustensen (2009)

Augustesen et al. (2009) compared the FLAC®P analysis with the Winkler approach
results for an offshore monopile subjected to extreme lateral loads. They employed the
API approach for the p-y curves, and the following expression was proposed for the
initial stiffness to fit the suggestion of API best:

24



MPa
k¢ona = 0.008085 ¢2-45 — 26.09 (T) (2.56)

Gerolymos and Gazetas (2006)

The distributed stiffness of a cylindrical-shaped caisson foundation was suggested by

Gerolymos and Gazetas (2006):

7 —0.13

k, = 1.60 (5) E, (2.57)

Sorensen (2012)

Sgrensen (2012) performed several numerical analyses in FLAC?P for large-diameter

monopiles and concluded the following form for the initial stiffness of p-y curves:
E

b c d
x D E
xref Dref Es,ref

where a=1 MPa, b=0.3, ¢=0.5, and d=0.8

The studies related to the initial stiffness of p-y curves are summarized in Table 2.5.

Table 2.5 : Suggestions in the literature for the initial stiffness of the p-y curve.

Reference p-y relation
Terzaghi, 1955 k, = Es
Jnt "7 135B
. 0.65E E.B*
Vesic, 1961 ky = s |2s
1-v? |Epl,
Poulos, 1971 = 082
B
p .
Esy—51+162—6

Kagawa and Kraft (1380) 0, depends on the pile flexural stif fness

&, depends on the loading frequency

Scott (1980) ky, = E—g
7,—0.13
Gerolymos (2006) k, = 1.60 (3) E;
b c d
Sorensen (2012) E,, =a< ad > < b > < Es )
xref Dref Es,ref
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2.4 Ultimate Soil Resistance to Lateral Loading

All the p-y curve formulations require the ultimate soil resistance to lateral loading.

The studies on the ultimate soil resistance in cohesionless soils are summarized below.

Broms (1964)

Broms (1964) suggested equation 2.59 for the soil reaction to lateral loading per unit

length of the pile:
py = 3K,Dao’y, (2.59)

where D is the pile diameter, oo is the vertical effective stress, and Kp is the lateral

Broms (1964) stated that the lateral earth pressure was independent of the shape of the
pile cross-section.

Zhang et al. (2005)

L. Zhang et al. (2005) proposed a method for predicting the ultimate soil resistance to
lateral loading. They suggested equation 2.61, which includes the normal frontal
reaction and the side friction reaction:

Pu = (MPmax + $Tmax)D (2.61)

In equation 2.61, D is the pile diameter, 7 and £the parameters depend on the pile
shape in Table 2.6.

Table 2.6 : Parameters required for the ultimate soil resistance of L. Zhang et al.

(2005).
Pile shape n &
Circular 0.8 1.0
Square 1.0 2.0

The frontal soil resistance to lateral loading is defined as follows:
Pmax = szo-vol (2.62)
The shear drag resistance to lateral loading is defined as follows:
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Tmax = Koo' tand (2.63)

Fleming (2008)

The centrifuge tests performed by Barton et al. (1983) have shown that the ultimate
soil resistance to lateral loading estimated by Broms (1964) was underestimated.
Therefore, the equation was modified by Fleming et al. (2008) as follows:

py = K,?Doyg’ (2.64)

The modified form of the equation allows greater pu values than Broms' equation since
the constant multiplication three was replaced by Kp, which is higher than 3 for the

angle of friction values larger than 30°.

Thieken et al. (2015)

Thieken et al. (2015) performed finite element analyses to develop a new static p-y
curve approach for piles in cohesionless soils. They concluded that the ultimate soil
resistance can be represented by the DIN 4085 approach, for which the following
equation is proposed:

11

Py = Eyzl'sl(pgh(l + 2 tang" WD (2.65)

The passive earth pressure coefficient Kpgh in the above equation depends on the
internal angle of friction ¢ and the passive wall friction; the latter was assumed to be

»=-2/3 ¢. Therefore, the Kpgh equation is given as follows:

Kp(l —0.53 #)0.26+5.96¢)’
Kpgn = 24 5 (2.66)

1+(tan 23 )

The ultimate soil resistance equations to lateral loading for piles in cohesionless soils

given in the literature are summarized in Table 2.7.
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Table 2.7 : Suggestions in the literature for the ultimate soil resistance.

Reference Pu
Broms, 1964 Py = 3K,Ba'y,
= p A

Reese et al., 1974 Pu = Pst

At greater depths A=3-0.8(z/D)
Zhang, 2005 Pu = (MPmax + $Tmax)B
Fleming et al., 2008 py = K,’Boy,’
Varun, 2010 py = (3.25K, + 0.25K,*)Ba,’

11
Dy = 1—6)/21'5Kpgh(1 +2 tanqb’)\/ﬁ

Thieken et al. (2015) T
(DIN 4085) K,(1— 0'53T)0'26+5'%¢

where K =
pgh 1+ (t _2¢/)2
an—

2.5 Limitations of the Current Practice

The first attempt for lateral load-deflection relations was made by Terzaghi (1955)
using the theory of elasticity. However, the given relation was linear, and the
coefficient of subgrade reaction modulus (k) corresponding to 25 mm lateral
displacement was suggested. The nonlinear p-y curve formulation for piles in sands
was recommended by Reese et al. (1974). The suggestion was based on the full-scale
field tests performed in Mustang Island (Texas). First, bending moments were obtained
using the strain gages placed along the pile. The second-order integration of the
bending moments gives the pile deflection, y, and the second-order differentiation
provides the soil with resistance, p. Then, the soil resistance-pile deflection relations
(p-y curves) were obtained for each depth, and the pile deflection was normalized by
the pile diameter. However, the relation is not a continuous function but consists of
three parts. Besides, the suggested initial stiffness is far greater than the one proposed
by Terzaghi (1955).

Murchison and O'Neill (1984) suggested a hyperbolic p-y relation for sand soils based
on the field test results. The given relation was adopted by API (2007) and has been
commonly used in the industry since then. The initial stiffness of Reese et al. (1974)
was adopted by API (2007) depending on the relative density of sand.
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The API (2007) relation is used in the offshore industry and is very common to analyze
piles under seismic loading conditions. Although several researchers studied the p-y
curve approach, the API (2007) is the most common method due to its simplicity.
According to Finn (2005) and Rahmani et al. (2018), the suggestion of Terzaghi (1955)
Is too conservative, and the initial stiffness given by API (2007) is too high that it
cannot capture the nonlinear behavior accurately. Moreover, the relation was obtained
by applying the static load from the top of the pile for the dense sand and did not
consider different soil nonlinearities. Especially the soil behavior under earthquake
loading must be properly considered in the soil-pile-structure interaction analyses. For
this purpose, researchers have conducted numerical and experimental studies (Allotey
& EI Naggar, 2008; Brown et al., 2001; Hussein & EI Naggar, 2022; Lombardi et al.,
2017; Naggar & Bentley, 2000; Rahmani et al., 2018; Wilson, 1998).

McGann et al. (2011) stated that API (2007) relation gives reasonable results at
shallow depth, but the results are not realistic as the depth increases since the kinematic
effect of seismic loading cannot be taken into account. They analyze the soil-pile
interaction problem by modeling the piles as vertical beams. The soil was modeled as
8-noded brick 3D solid elements in OpenSees. They used interface elements to obtain
the load transferred from soil to pile. Drucker-Prager soil model considers the
nonlinear behavior of soil by McGann et al. (2011). In the study, instead of finding the
soil resistance and the pile deflection using the bending moments, they were obtained
directly in the 3D model. The pile deflection was determined at the beam nodes, and

the soil resistance was obtained at the pile-soil interface elements.

The authors compared the obtained p-y curves with the APl (2007) curves and
concluded that API (2007) relation was not validated, especially at the deeper soil
stratum. This result was presented in Figure 2.9: The p-y curves at 1.0 m and 2.4 m
below the ground surface were compatible with the numerical results, but the results
at 9.9 m and 14.7 m were significantly different for the two methods. Soil resistance
at the deep obtained using the finite element solution is relatively low compared to the
APl (2007) suggestion. Therefore, the obtained internal forces (shear force and
bending moment) and displacements using the API (2007) relation may cause the
design to be unsafe.
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Figure 2.9 : p-y curves for different depths obtained using API (2007) and finite
element method McGann et al. (2011).

Choi et al. (2016) stated that API (2007) relation has some drawbacks, such as 1)
Ultimate lateral load capacity is low in APl (2007) suggestion, 2) Elastic initial
stiffness is used instead of compatible deformation modulus and 3) The slope of the
curve at low deformations are too high. The authors used plasticity theory and offered
a model that considers the mentioned drawbacks. The results of the suggested model
was compared with the API (2007) and the centrifuge test results. The experimental p-
y backbone, API1 (2007) curve, and the curve obtained from the suggested model are
presented in Figure 2.10. Besides, the dependency of the p-y relation on the earthquake
acceleration is shown in Figure 2.10. According to the results, the slope of the p-y
curves decreases as the maximum acceleration increase. As a result, the ultimate lateral
load capacity was greater than the API (2007) relation. Although the suggested method
fills the gap of the API (2007) relation, it is not practical to implement the model in
design since it has many input parameters, and determining these parameters is not
easy. The soil resistance-pile deflection relations (p-y curves) suggested so far are

summarized in Table 2.8.
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Figure 2.10 : The effect of dynamic load amplitude on p-y curves (Choi et al., 2016).




Table 2.8 : Summary of the studies related to pile behavior under lateral loading.

Suggested (or adopted) p-y

Reference Soil Type Experimental Setup Numerical Analysis Method Loading Condition Model
Terzaghi, 1955 Sand - Elasticity theory Pile head Initial stiffness
Reese et al., 1974 Sand Full-scale field test - Pile head Static and cyclic
1g-Shake Table and . . _— .
Gohl, 1991 Dry Sand Centrifuge test 1D Site response analysis Seismic loading Ramberg&Osgood
Wilson, 1998 Liquefiable Sand Centrifuge Dynamic p-y Seismic loading -
Brown et al., i — . ) . Dynamic (frequency
2000 Sand Dynamic p-y Pile head-statnamic dependent)
Gerolymos, 2006 Sand - 3D-Finite element analysis Static Initial stiffness
API, 2007 Sand-Clay - - Pile head Hyperbolic relation
Varun, 2010 Liqueafiable sand - 3D-Finite element analysis Cyclic loading Bouc-Wen model
McGann et al., Liquefiable Sand i OpenSees (3D Finite element Seismic acceleration i
2011 g method) loading
Yang et al., 2011 Derﬁ:ii?g dgnon 1g-Shake Table Dynamic p-y Model base (Harmonic) Empirical (dynamic tests)
Sorensen, 2012 Sand - 3D-Finite element analysis Pile head Initial stiffness
Choi et al., 2015 Sand Centrifuge OpenSegs (finite element Seismic dlsplacement Based on plasticity theory
using the p-y) loading
Thieken et. al., - Seismic acceleration L
2015 Sand - Finite Element-OpenSees loading A new function is proposed
Lim "‘2”0"13390”9' sand 1g-Shake Table : Model base (harmonic) Hyperbolic model
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3. METHODS for DYNAMIC SOIL-PILE-STRUCTURE INTERACTION
ANALYSES

Pile foundations are the structural elements embedded in the ground to transmit the
external loads to the surrounding soil. The pile movement under horizontal loading
affects the soil behavior, and increasing soil displacements alter the pile behavior. The
pile-soil system behavior is affected by each component, and the resulting
phenomenon is called as soil-pile interaction problem. Depending on the use of the
piles, the problem includes the superstructure, which becomes the soil-pile-structure
interaction problem. This problem is even more complex when the external loading is
earthquake excitation. Two approaches exist for soil-structure interaction analyses:
Direct analysis and substructure analysis. The direct analysis includes the soil and
structure systems in a single model, whereas the superstructure and foundation systems
are modeled separately in the substructure approach. In general, the analysis of any

foundation includes the following stages, according to Scott (1981):

1. To define the physical problem involving the size, nature, and magnitude of
loading related to structure and soil.

2. ldealization of the physical problem: Since the physics of an engineering
problem is too complex to handle, the whole system must be idealized to make
the problem more manageable. In addition, soil and structure properties must
be defined for foundation analysis. Therefore, the most important stage in
idealization is to ignore some of the available data for both soil and structure.

3. To set the mathematical relations and define the boundary conditions.

4. To solve the idealized model and obtain the stresses and displacements: The
analysis aims to design the structures based on the internal forces (axial and
shear force, bending moment) and check the performance in terms of the
displacements.

5. To compare the analysis with the full-scale tests in the field or scaled model

test results in the lab.
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This study focuses on the single pile behavior under earthquake excitation. The
analysis of a soil-pile-structure system can be performed with several approaches.
These are: (1) Fully nonlinear dynamic analysis in three-dimension (3D), (2) Fully
nonlinear dynamic analysis with the beam on nonlinear Winkler foundation (BNWF)
method, and (3) Nonlinear static (pushover) analysis with BNWF approach. The most
commonly used methods are 3-dimensional (3D) finite element or finite difference
methods. The 3D analysis is the most versatile idealization of the real (physical)
problem. In this method, the soil domain is discretized with finite volumes. The piles
are usually modeled with the beam element. However, analyzing the soil-pile-structure
system together (direct approach in soil-structure interaction analysis) in 3D models is
highly time-consuming, especially for complex structures. The second approach is the
beam on nonlinear Winkler foundation (BNWF) method, where the continuum of the
soil domain is disregarded, and nonlinear springs are used to simulate the soil behavior.
The later approach takes more attention due to its simplicity. However, the springs
used in the BNWF method must represent the true nonlinear behavior of soil. This
study aims to enhance the nonlinear load-displacement relations using the 3-
dimensional analysis results so that the relations can be used in the BNWF method to
better estimate the pile and structure response. Detailed explanations about these

methods are given in this chapter.

3.1 Fully Nonlinear 3-Dimensional (3D) Analysis

The physical problem of a single pile-soil-structure system subjected to earthquake
excitation is idealized, as shown in Figure 3.1a. The numerical model of the problem
includes the beam elements for the pile and structure system. The linear material
behavior is often adopted for the structural elements in soil-pile-structure interaction
analyses. However, soils exhibit highly nonlinear behavior even under low strains, and
the main uncertainty in the analyses arises from the modeling approach taking this
nonlinearity into account. The 3D method discretizes the soil domain (Figure 3.1b).
In the numerical model, finer elements are used in the vicinity of the pile, whereas the
coarser mesh can be employed near the boundaries. The dynamic input motion is
defined at the bottom boundary of the model. Since the major component of the
earthquake is in the horizontal direction, the lateral boundaries should allow for

absorption of the lateral movement to prevent the waves from reflecting into the model.
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Figure 3.1 : The soil-pile-structure interaction problem: (a) Idealization of the problem, (b) Mathematical model with the boundary conditions.
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3.1.1 Numerical model

In this study, the three-dimensional (3D) analyses were performed in FLAC3D, a
numerical analysis program that solves the dynamic equation of motion using the finite
difference method. The procedure to create a numerical model in the program includes
the generation of the model geometry (grid generation), defining the initial and
boundary conditions, assigning the constitutive material model to the elements,
applying the input motion, and finally, analyzing the model. These steps of numerical

model generation are explained below.

The first step in the numerical model generation is to create the model geometry using
suitable elements. Next, the structural elements can be modeled using the beam
elements. Beams are two noded elements, and each node has three translational and
three rotational degrees of freedom, as shown in Figure 3.2.

Figure 3.2 : Degrees of freedom of the beam elements in FLAC®P.

The superstructure is modeled as a single-degree-of-freedom system (SDOF), which
consists of a mass representing the structure connected to the soil utilizing a beam
element representing the column of the SDOF system. The natural angular frequency

of a single degree of freedom system is calculated using equation 3.1:

w= |— 3.1)

where m is the structure's mass, and k is the stiffness of the single-column model.
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The stiffness of a column is calculated by equation 3.2 if the bottom end is fixed and

the top end is free:

_ 3EI

== (3.2)

where the El is the flexural rigidity of the column and h is the column height.

The soil domain in 3D analyses is created using the volume elements. The grid
generation in FLAC®P is similar to the mesh generation in the finite element method.
Several elements are available in FLAC®P for 3D solids. The most commonly used
ones are brick, cylinder, and radial cylinder elements, which create the soil domain
and the piles with circular cross-sections. The gridpoints (or nodal points in finite

element terminology) for these elements are shown in Figure 3.3.
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Figure 3.3 : Solid elements used in FLACSP: (a) Brick, (b) Cylinder, (c) Radial
cylinder.

The grid of the soil domain can be generated using the brick, cylinder, and radial
cylinder elements for solid pile-soil interaction analyses. However, the size of these
volume elements might affect the solution of the analysis. Therefore, finer grids allow
higher sensitivity in the analysis, making the resulting solution more precise.
Especially the high-stress regions must be modeled with finer zones to capture the
response better. However, the solution time is higher as the number of elements used

in the model increase.

The pile-soil interaction problem consists of a cylinder (pile) and radially graded mesh
(soil domain). The vicinity of the cylinder must be modeled with a finer grid than the
soil domain since the stresses around the pile are higher. The zone size near the lateral

boundaries could be increased to obtain an effective solution. The change of zone size
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of consecutive elements is controlled with the zone aspect ratio command. The
accuracy of the analysis is better as the zone aspect ratio is close to unity. However,
different zone sizes are inevitably used in pile-soil interaction problems. The change
of zone size should be as gradual as possible for a better solution. Usually, a sensitivity

analysis is required to determine the number of elements used in the numerical model.

The wave transmission criteria determine the zone sizes in a model subjected to
dynamic loading. The seismic excitation is applied to 3D models at the bottom
boundary. The created grid must be fine enough to allow wave propagation through
the soil domain accurately. According to Kuhlemeyer and Lysmer (1973), the
minimum zone size in the direction of wave propagation should be equal to or less
than one-tenth to one-eighth of the wavelength:

A (3.3)

Al =—
10

The wavelength in equation 3.3 is calculated using the shear wave velocity of the soil

and the highest frequency component of the input motion as follows:

[y Vs (3.4)

fmax

Equation 3.4 shows that as the soil modulus decreases or the frequency of the input
motion increases, the associated wavelength will be smaller, thus the zone size.
Therefore, finer zone sizes are required near the ground surface since the soil modulus

Is not significant under the low confining pressure.

3.1.2 Soil constitutive model

The soil-pile interaction analyses are carried out in this study to determine the
relationship between pile displacements and soil resistance. The forces are related to
the stresses in the discretized domain through the equation of motion by equilibrium.
Comepatibility provides the relation between the strains and displacements. The
equilibrium and compatibility relations depend on the geometry of the problem,
independent of the material's mechanical behavior. The mechanical behavior of a
material is defined by the stress-strain relation, which is achieved thorough the
constitutive models. Therefore, the second stage in generating a numerical model is to

select a proper constitutive model for soil behavior. The schematic view of the
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equations of a boundary value problem is shown in Figure 3.4, according to Puzrin
(2012)

Forces Displacements

Equilibrium Compatibility

Stresses  [<i—5—>1  Strains

Constitutive
Relationships

Figure 3.4 : The relations in the boundary value problem (Puzrin, 2012).
3.1.2.1 Hardin & Drnevich model

Shear stress-strain relation is defined in the following form according to Hardin and
Drnevich (1972):

_ GinaxY

T =
1+-L (3.5)
Vref

Hardin and Drnevich (1972) model requires the initial soil modulus for small-strain
behavior. Several suggestions or correlations are available for the initial shear modulus
in the literature (Hardin & Black, 1966; lyisan, 1996; Wair et al., 2012). In this study,
the small strain shear moduli, Gmax equation suggested by Seed and Idriss (1970) was

employed, which depends on the relative density of sand and the confining pressure:

, \05
o
Gmax = 21.7 (Kz)max Pa <pm> (3-6)
a

where (K2)max is @ modulus parameter that depends on the relative density of sand, pa

is atmospheric pressure, o mis the mean effective stress.

The effective confining pressure can be calculated using equation 3.7.

39



! !
, Oy, + 20,

o'm=—""—3 3.7)

In the above equation, c'n is the horizontal effective stress, calculated by multiplying
the vertical effective stress, c'v, with the lateral earth pressure coefficient, Ko. Seed and
Idriss (1970) suggested the following equation to express the (Kz2)max as a function of

relative density Dr:
(K2)max = 3.5 (DR)2/3 (3.8)

where Dr is the relative density.

The nonlinear behavior of soil is represented by equation 3.5, which is based on the
hyperbolic model of Kondner (1963). The relation is linear for very small strain levels
(y<107°%). The shear stress-strain relation of cohesionless soils includes the initial
modulus for the very small strain stages of loading and the modulus at large strain.
The initial shear modulus can be calculated using equation 3.6. The nonlinear behavior
is considered with the normalized modulus reduction (or degradation) curves. The

reduction of initial shear modulus with increasing shear strain is formulized as follows:

¢ 1
Gmax 1+yref

(3.9)

Many researchers have studied the nonlinear behavior of cohesionless soils under
cyclic loads, and reduction curves have been suggested (Darendeli, 2001; Ishibashi &
Zhang, 1993; Seed & Idriss, 1970). The curves suggested by Seed and Idriss (1970)
have been implemented by several researchers (Boulanger et al., 1999; Finn, 2005;
Kwon & Yoo, 2020; Thavaraj et al., 2010). In this study, effective stress-dependent
curves of Darendeli (2001) were employed to consider the variation with depth better.

The shear modulus reduction equation in Darendeli (2001) is given in equation 3.10.

G 1
G - 0.919 )
max 1 +( Y ) (3 10)
yref

The reference strain in equation 3.10 depends on the effective confining stress.
Darendeli (2001) formulized the reference strain of cohesionless soils depending on

the confining stress as:

40



(3.11)

0_, 0.3483
Ve = 0.0352[ ml

Pa
Equation 3.11 yields the modulus reduction curves for various confining stress levels.
Figure 3.5 shows the curves for 10 kPa, 25 kPa, and 100 kPa levels. These modulus
reduction curves allow the model to consider the nonlinear soil behavior, but the

ultimate strength is not defined explicitly.

—=—10 kPa —o—25 kPa —o—100 kPa

0.0 + EE—— EE—— EE— — =
0.0001 0.001 0.01 0.1 1 10

Shear strain (%)

Figure 3.5 : Modulus reduction curves of Darendeli (2001).

The initial modulus and the modulus reduction curves define the soil behavior under
monotonic loading. However, the model should include the unloading/reloading rule
for time-dependent dynamic (cyclic or transient) loading. Figure 3.6 depicts the soil
behavior in the hyperbolic model for the initial loading-unloading-reloading cycle. The
Masing (1926) rule is implemented for the unloading/reloading behavior, which
assumes that the subsequent unloading/reloading behavior is enlarged by a factor of 2,

as shown in Figure 3.6.

T —ZTa —f (V —2)/a) (3.12)
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Figure 3.6 : Shear stress-strain relation with unloading/reloading rule according to
Masing (1926).

The definition of hysteretic damping is the ratio of the energy dissipated in one cycle
to the maximum stored energy. The damping ratio for the stress-strain loops shown in

Figure 2.6 can be calculated using equation 3.13 in the hyperbolic model.

1+t
2 Vref Ye ] (1 Ye ) 1 (3 13)
Dimasing = — { 2 ———2 | = —In(1 + - _
masing T ( Yc )2 Vref Yref
Vref

The hysteretic damping command in FLAC®P was utilized for the soil domain in the
model. The reference strain values were assigned to each zone by considering the
initial effective stress (total stress approach). However, the maximum shear strain was
on the order of 0.1%-0.3% in the study performed by Darendeli (2001), which could
not involve the large strain (>1%) behavior. In comparison, the study of Seed and Idriss
(1970) showed that the G/Gmax value for modulus degradation curves at 3% shear strain
varies between 0.03 and 0.05. Therefore, a cut-off for G/Gmax is required to represent
the large strain behavior in the modulus degradation accurately. Since the experimental
study presented by Darendeli (2001) does not include the large strain data (>1%), 0.05
was assumed for minimum G/Gmax considering the Seed and Idriss (1970) curves.
Thus, a minimum cut-off value of 0.05 was applied in this thesis for the modulus

reduction ratio to prevent further increase of damping beyond a certain shear strain.
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3.1.2.2 Mohr-Coulomb model with hysteretic damping

The most commonly used constitutive relationship in soil mechanics is the Mohr-
Coulomb, and the yield function in the model is defined as:

Tr = C+ o0 (3.14)

In plasticity theory, the total strain is decomposed into elastic and plastic components
(e=€®+¢P). Therefore, the initial state of the numerical model must be in elastic
equilibrium. The soil element is subjected to the stress increment, and the resulting
strains are evaluated assuming the elastic behavior. Once the stress reaches the
ultimate value in the stress space according to the yield criteria, the deformations are
no longer elastic, and irreversible (plastic) deformations occur. The stresses cause
reversible strains at the elastic region, but further stress increments cause plastic
deformations. The flow rule controls the stress increment due to the plastic strain, and

it is defined in Mohr-Coulomb as:

where Ny is given:
1+ sing
Ny =——— 3.16
¢ sing (3.16)

If the stress state yields fs=0 condition, the material is subjected to plastic
deformations. The yield envelope of the Mohr-Coulomb model is shown in Figure 3.7

in 3-dimensional stress space.

-0 4
A

';-(52

Figure 3.7 : Mohr-Coulomb model in 3-dimensional stress space.
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In the theory of plasticity, the strain is decomposed into elastic and plastic parts, as in

equation 3.17:

de = de® + deP (3.17)
The stress-stain equation is written as:

do = (de — deP) (3.18)
The plastic part of the strain is defined as:

d
de? = d1 29 (3.19)
do
where dAis a constant and g is the potential function. A constitutive model is
associated if the potential function is equal to the flow rule (f=g case). Otherwise, the
model is nonassociated for f#g. The Mohr-Coulomb model in FLAC®P is

nonassociated since the potential function is described as:
gs = —01 + 03Ny, (3.20)
where y is, the dilation angle and N,, is defined as:

_1+siny

In the classical theory of Mohr-Coulomb, the model is elastic-perfectly plastic, in
which the behavior is linear in the elastic stage. However, the Mohr-Coulomb model
in FLAC?P allows us to consider the nonlinearity in the small strain levels by including
the hysteretic damping approach. Therefore, the model is called Mohr-Coulomb with
the hysteretic damping approach. Furthermore, the model is an extension of the
hyperbolic model of Hardin & Drnevich, which does not include a certain failure

criterion.

The nonlinear behavior of soil is considered through the modulus degradation curves
in the Hardin&Drnevich model, and the ultimate strength is not defined explicitly. The
Mohr-Coulomb model with the hysteretic damping approach overcomes the
mentioned problem. The reference strain concept defines the nonlinear soil behavior,

and the yield function limits the ultimate stress that can be sustained.
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3.1.2.3 HS-Small model

In this study, the HS-Small model was used for soil behavior in the static analysis of
the soil-pile interaction problem, developed by Benz (2007), and verified using the
laboratory test results and a case study. The HS-Small model includes the original
features of the plastic hardening (PH) model, which can simulate shear and volumetric
hardening. The PH model was introduced by Schanz et al. (2019) within the
framework of hardening plasticity extending the original non-linear elastic model of
Duncan and Chang (1970). Benz (2007) developed the original model to account for
the very small strain stiffness. The original hyperbolic stress-strain relation in the
Hardening model is shown in Figure 3.8. The HS-Small model adopts the failure
hypothesis of Matsuoka&Nakai and Drucker-Prager's potential function for flow rule
(Figure 3.9). The input parameters for the model include the friction angle (¢) and the
dilation angle (). The ratio of q+/ga is defined as Rrin the model and can generally be

taken as 0.9 for cohesionless soils.

The soil nonlinearity in the HS-Small model is achieved using the stiffness parameters;
Eo, Eur, and Eso, for very small strain stiffness, unloading-reloading stiffness, and
secant stiffness corresponding to 50% of the ultimate strength, respectively. The strain-
dependent behavior shown in Figure 3.8 can be constructed in g- space by equation

3.22 using Eso.

daq

g. = —_—
' Eso(9a — q)

(3.22)

asymptote

12q¢
F-U]

Figure 3.8 : Hyperbolic stress-strain curve in g-£ space in HS-Small model.
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Figure 3.9 : Yield surfaces of Matsuoka&Nakai in 3D stress space (Benz, 2007).

Another essential feature of the HS-Small model is that it allows the stress-dependent
soil moduli with the power law. Once the initial stress state is created, the soil stiffness

is obtained by equation 3.23.

c cotep — o "
- 3 3.23
50 ™ 750 <c COtQ + Drey (3.23)

The stress dependency "m" power is generally 0.5-0.7 for cohesionless soils. The
parameter Eso can be either determined by a triaxial compression test in the laboratory
or, in the lack of a laboratory test, it can be estimated by selecting a proper ratio for
the Eur/Eso depending on the degree of nonlinearity. Compared to the plastic hardening
model, the HS-Small includes two additional parameters: Small-strain modulus Eo and
reference strain yoz. In this study, the small strain stiffness (Eo) was calculated using

the maximum shear modulus equation suggested by Seed and Idriss (1970).

The rough estimation for unloading/reloading stiffness is 1/3 of Eo, while the Eso is
about 1/3 to 1/4 of Eur. Eo can be estimated using the maximum shear modulus

according to equation 3.24.
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Ey=Gnax 2 (1 +v) (3.24)

v0.7 is the reference strain, which can be written as:
i
Yor = (1 — 0'722)6'_ (3.25)
0

where tf is the shear strength, and Go is the small-strain shear modulus. The stiffness
reduction curve is obtained using the reference strain HS-Small model. Figure 3.10
shows a typical stiffness degradation curve and various strain levels for the
geotechnical structures.
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Figure 3.10 : Stiffness modulus degradation curve and typical strain ranges
(Modified from Atkinson and Sallfors 1991 and Ishihara 1996).

3.1.3 Initial and boundary conditions

The mathematical model of the soil-pile-structure interaction problem is defined with
differential equations. The finite volumes discretize the domain, and the stress-strain
behavior is assigned to the materials in the model. The solution of the differential

equations requires the definition of boundary conditions.
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A numerical model of a geotechnical engineering problem must include a stage to
create the initial stress state for the geostatic conditions. First, the model must be in
equilibrium statically under vertical and horizontal stresses. Next, the initial stress state
should be created since the constitutive model includes stress-dependent soil
properties. Finally, the bottom and the lateral boundaries should be fully fixed in this
stage. The fixity condition is provided by predefining the velocities (or displacements)
in the gridpoints at the boundaries. After the boundary conditions are defined for the
initial stage, the model is solved to create the initial stress conditions.

Seismic soil-structure interaction problems include the dynamic input motion mostly
applied at the bottom boundary. However, the fixed boundaries do not allow the
dynamic waves to travel outwards, and reflection takes place. Therefore, viscous
boundaries should be used in the boundaries to absorb the waves. The viscous
boundaries developed by Lysmer and Kuhlemeyer (1969) are employed in FLAC®P,
The lateral boundaries of the model should also prevent wave reflection. The free-field
option in the program absorbs the energy through the sides of the model to accurately
represent the wave propagation. The viscous dashpots are placed between the main

grid and the free-field boundaries to simulate the quiet boundary condition.

3.1.4 Selection of input motion

The input motions of the seismic soil-structure interaction analysis are the real
earthquake records. In addition, the databases provide the acceleration time histories
of the earthquake records. After initializing the model with the geostatic conditions,
the dynamic input motion can be applied to the model's base. When the bottom
boundary is fixed, the acceleration (or velocity) records can be directly applied as a
prescribed displacement to the model. The incoming earthquake motion vertically
propagates through the bedrock and reaches the surface, and the acceleration time
histories are usually recorded at the rock outcrop. According to the site response
analysis theory, the amplitude of the earthquake motion recorded on the rock outcrop
is double the incoming motion, as shown in Figure 3.11 (Bardet et al., 2000). However,
the recorded outcrop motion differs from the motion at the top of the rock. Therefore,
the outcrop record should not be directly applied to the base of the 3D numerical
models.
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Figure 3.11 : Terminology for the motions in seismic site response analysis.

The stiffness contrast between the bedrock and overlying soil affects the motion at the
bottom of the soil profile. Suppose the stiffness of the soil just above the bedrock is
significantly lower than the bedrock stiffness. In that case, the incoming motion is
doubled in amplitude at the top of the rock (bedrock motion) and becomes similar to
the rock outcrop motion. Therefore, the rock outcropping motion can only be used
directly on the top of the rock if there is a high stiffness contrast between the soil and
the bedrock. If the bottom of the soil profile includes a layer at which the shear wave
velocity is close to the bedrock, then the bedrock motion becomes very similar to the

incoming motion.

A simple hypothetical problem is introduced in Figure 3.12 to compare input motions.
Figure 3.12a shows a high stiffness contrast between the bedrock and the soil layer,

whereas the contrast is low in Figure 3.12b.

Outcrop Cvezsomis Outcrop
V=350 m/s
V250 mis “asoms
Vess0ms
V=650 mis 7
A (Top of rock) B (Top of rock)
V=760 m/s V=760 m/s
(@) (b)

Figure 3.12 : Hypothetical example for the input motion: (a) High stiffness contrast,
(b) Low stiffness contrast between the bedrock and the soil.
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Two site response analyses were performed in Deepsoil to compare the top of rock
motions. The target motion is the record of the Kocaeli earthquake (Figure 3.13). The

shear wave velocity of the elastic halfspace is 760 m/s.
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Figure 3.13 : The Kocaeli earthquake record in Deepsoil.

The input motion in Figure 3.13 is applied as outcrop motion, and the results at the top
of the rock are compared with the input motion (Figure 3.14). The top of rock motion
in the first profile (A) is very similar to the input (outcrop) motion. However, in the

second profile, the top of rock motion (B) is approximately %2 of the input motion.

—Outcrop —A —B

1.0

0.0

0.01 0.10 1.00 10.00
T, sec

Figure 3.14 : Comparison of the top of rock motions in the hypothetical problem.

The above example concludes that two approaches can be followed to determine the
motion used in 3D models. The first method is to create a 1D model and obtain the top
of rock motion in the profile using the rock outcropping motion. The second approach
is to extend the 3D model and define a bedrock layer beneath the soil profile to apply

the incoming motion, which is % of the rock outcropping motion, to the bedrock base.
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3.2 Beam on Nonlinear Winkler Foundation (BNWF) Method

The soil-pile-structure interaction problem is mostly analyzed using the beam on
nonlinear Winkler foundation (BNWF) method. In this method, the nonlinear soil
behavior is represented by the springs attached to the pile at the specified depths. The
lateral load-deflection relation represents the near-field behavior of the soil-pile
interface. Fully dynamic (seismic) soil-pile-structure interaction analysis can be
performed using the BNWF method in two steps. In the first step, the free-field site
response analysis is performed to obtain the soil displacement-time histories at the
selected depths. Then, a fully nonlinear analysis is performed by applying the soil
displacements to the springs. The fully dynamic analysis method of BNWF for the

soil-pile-structure interaction problem is summarized in Figure 3.15.

3.2.1 Site response analysis

The first step of the BNWF approach for dynamic soil-pile-structure interaction
analysis is to determine the free-field soil displacement-time histories by site response
analysis. In this first step, the nonlinear soil response analysis is performed either by
equivalent linear or fully nonlinear analysis methods. Shear modulus reduction and
damping curves are implemented in the equivalent linear method; however, the
approach is unsuitable for seismic events resulting in large shear strains (for y>0.2 %).
Frequency domain analysis is preferred for equivalent linear analysis since the method
is linear, and the nonlinearity is considered via an iterative approach. However, fully
nonlinear analysis is required in the time domain to capture the true nonlinear soil
behavior at large strains accurately. The main uncertainty in the nonlinear analysis is
the soil model, which should properly consider the loading-unloading-reloading

behavior.

Hardin&Drnevich model can be used in the fully nonlinear analysis with the Masing
rule for unloading/reloading behavior. However, as shown in Section 3.1.2, the main
drawback of this model is the high damping ratio at large strains. Many researchers
have investigated the high damping problem, and several suggestions are proposed to
improve the model's performance. In this study, the method proposed by Groholski et

al. (2016) was used in 1D site response analysis, which was implemented in Deepsoil.
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Step 1: Free field soil displacements Step 2: Dynamic soil-pile-structure interaction analysis

Linear Nonlinear
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Figure 3.15 : Dynamic analysis with BNWF method: (a) Site response analysis, (b) Dynamic analysis.
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3.2.2 Fully dynamic analysis of the soil-pile-structure system

In the second step of the dynamic BNWF method, the numerical model of the soil-
pile-structure system is created. The beam and the structure are modeled using the
beam elements, and the soil reaction to the lateral load is represented by nonlinear
springs. The nonlinear spring can reproduce the hysteretic damping through the
unloading/reloading rule. The system should include a dashpot to simulate the
radiation damping in the fully dynamic time-history analysis.

The effect of several arrangements of the spring-dashpot systems on the soil-pile-
structure interaction analysis has been investigated by Nogami et al. (1992) and Wang
etal. (1998). They concluded that the near-field element could represent the hysteretic
behavior, and the linear far-field element should be placed in series to simulate the
radiation damping. A similar approach was followed in this study. The far-field
element represents the radiation damping with the dashpot coefficient suggested by

Gazetas and Dobry (1984), which is given in equation 3.26.

5/4
‘114 [L a1/ (3.26)
4rpsVs n(1l—-v)

where Vs is the shear wave velocity, r is the radius of the pile, and ao is the
dimensionless frequency factor=2x.f.r/\Vs where the parameter f can be taken as the
dominant frequency of the earthquake record. The spring stiffness of the linear far-
field element can be estimated from the initial section of the p-y curve, according to
Wang et al. (1998). However, in this study, a very high stiffness value was assigned to
minimize the increase of flexibility due to the arrangement of the spring-dashpot

system, placed in series with the near-field element.

The p-y curves represent the nonlinear behavior in the near-field element. In the time-
domain analysis, hysteretic damping is considered by the unloading/reloading rule.
Therefore, the soil behavior in BNWF is simulated using the near-field and far-field

elements, which should represent the soil behavior under lateral loading.

The BNWF model is analyzed by applying the displacement time histories obtained in
the first step to the fixed end of the far-field elements, as shown in Figure 3.15. The
Newmark method is used in the direct integration scheme for the time-domain
analysis. In this approach, a direct analysis of the soil-pile-structure system can be
performed.
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3.2.3 Static nonlinear (pushover) analysis of the soil-pile-structure system

The soil-pile-structure system response under dynamic loading can be predicted by the
static nonlinear (pushover) analysis. In this approach, the model is reduced to
substructures to analyze the kinematic and inertial interaction separately. The

superposition is conducted to obtain the overall system response.

The kinematic interaction analysis is performed to obtain the internal forces and pile
displacements due to the soil displacement. Then, the maximum value of time histories
of the free-field soil displacements is applied to the fixed end of the p-y curves. The
maximum displacements are applied in a single step instead of using the dynamic time
histories. The loading is static in this approach. However, nonlinear analysis is

required as the soil springs (p-y curves) are not linear.

The inertial interaction analysis is conducted to simulate the behavior under the
loading caused by the acceleration of the superstructure. First, however, the
superstructure acceleration should be estimated to calculate the inertial load. The code-
based spectrum, or the site-specific spectra, can predict the superstructure response
based on the natural period. Then, the superstructure mass is multiplied by
acceleration. Finally, the calculated load is applied to the piles in this approach. If the
linear superstructure behavior is expected, the nonlinear p-y curves can be employed
directly. The reduction coefficient ( R ) can be used to consider the nonlinear behavior
of the superstructure. The response obtained by the linear analysis is reduced by
applying the R parameter. However, only the initial stiffness of the p-y curves should

be used in this case. The details of the method is given in Alver et al. (2021)

Since linear analyses are carried out in the static nonlinear (pushover) approach, the
superposition technique can obtain the total internal forces and the displacements.
Therefore, the method is suitable for small to moderate shaking intensities. This
approach cannot determine the superstructure response, but it is predicted using code-
based or site-specific spectra. Besides, the kinematic and inertial interaction analyses
are carried out separately. The method is summarized in Figure 3.16. Although the
method has some drawbacks, it is still employed by engineers in practice due to its
simplicity. However, fully dynamic analysis (3.1.2) is required for systems subject to
high nonlinearity under earthquake loading. In addition to the piles subject to dynamic

loading, the method is widely used for onshore and offshore structures.
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Step 1: Free field soil displacements Step 2: Kinematic Interaction Analysis Step 3: Inertial Interaction Analysis
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Figure 3.16 : Nonlinear static (pushover) analysis in BNWF method: (a) Site response analysis, (b) Kinematic interaction analysis, (c) Inertial
interaction analysis
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4. NUMERICAL MODELLING of LATERALLY LOADED PILE PROBLEM:
STATIC PILE HEAD LOADING

Historically, the load-displacement behavior of piles embedded in soils has been
predicted by the stress-strain relation (Bouzid et al., 2013; Lombardi et al., 2017; Scott,
1981; Terzaghi, 1955). Several researchers have suggested direct correlations
(Bransby, 1999; Randolph & Houlsby, 1984; Zhang & Andersen, 2017) for piles in
clays using the rigid disc analogy. However, the problem has not been clearly
understood for piles in sands since the shear strength of sands is not constant but
depends upon the effective confining stress, which increases with depth. The first
suggestion for the p-y relation under static loads in sands was made by Terzaghi
(1955). Based on the full-scale field test performed on Mustang Island (Cox et al.,
1974), a piecewise non-linear relation was proposed by Reese et al. (1974). Murchison
and O'Neill (1984) suggested a hyperbolic tangent function, and API (2007) adopted
this form. Pender (1993) proposed an equation based on the finite element analysis
results. Thieken et al. (2015) developed new equations for p-y curves in sands based
on the finite element analysis results. The hyperbolic stress-strain curve of Kondner
(1963) was implemented by Georgiadis et al. (1992) for p-y curves to capture the

experimentally obtained p-y curves.

This thesis investigates the laterally loaded pile problem in FLACS®P numerically
(Itasca Consulting Group, 2019) using the hardening model with small-strain stiffness
(HS-Small Model). The parametric analyses were performed on the verified numerical
model to show the effect of soil and pile properties on the static p-y curves. The
selected parameters were the pile diameter and flexural stiffness, relative density of
soil, and degree of soil nonlinearity. The modified hyperbolic model was proposed to
characterize the p-y curves better. The proposed model includes the initial stiffness,
the ultimate soil resistance, and two additional parameters for the degree of
nonlinearity, the last of which allows the p-y curves to be efficient from very small to

large displacement ranges.
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4.1 Verification Analyses

The full-scale field test, carried out on Mustang Island in Texas-Austin, was selected
to verify the model created in FLAC®P (Itasca Consulting Group, 2019). The soil
profile consists of a medium-dense sand layer from the ground surface down to 5 m
depth, followed by a dense sand layer, as shown in Figure 4.1 (Dodds, 2005; Dodds &
Martin, 2007).
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Figure 4.1 : Mustang Island Test details (Dodds & Martin, 2007).

The groundwater table was on the surface, and the submerged unit weight of the sand
was 10.4 kN/m2. The internal friction angle was determined as 39° by Reese et al.

(1974). A steel pipe pile having 61 cm diameter and 21 m length was tested in the
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field. The thickness of the pipe section was 9.35 mm, corresponding to the flexural
stiffness of 163 MN.m?,

The HS-Small model parameters selected for the verification problem are given in
Table 4.1. The friction angle was taken as given (Reese et al., 1974), and the dilation
angle was assumed zero, considering the existence of a medium-dense layer near the
surface. Small-strain modulus was estimated by the elastic relation, Eo=2Go (1+V). The
ratios Eo/Eur and Eur/Eso were anticipated as 2.5 and 4, respectively.

Table 4.1 : The selected soil parameters of the sand for Mustang Island in the HS-

Small Model.

Parameter Value Parameter Value
Friction angle, ¢ (°) 39 Eo et (MPa) 387
Dilation angle, v (°) 0 Eur, ret (MPa) 155
Vsat (kN/m3) 204 E50’ref =E0ed’ref (M Pa) 39
Pressure reference

100 m 0.5
(kPa)

Reference strain, o, T
Ry 09 Tl 107 L
(%) Go

The 3-dimensional geometry of the numerical model was created in FLAC®P (ltasca
Consulting Group, 2019). The pile geometry was generated with a cylinder, and
radially graded brick elements were used for simulating the soil around the pile. The
radial grid enables the finer elements to be placed near the pile, and gradually coarser
mesh could be built as it approaches the model boundary. The model dimensions were
24 m x 12 m x 21 m, making the distance from the pile center to the model boundary
20 times the pile diameter (20D). The side and bottom boundaries were fixed in the
normal and vertical directions. The created numerical model, including the pile, the

soil, and the interface elements, is shown in Figure 4.2.
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Figure 4.2 : The numerical model created for Mustang Island Field Test.
The numerical analyses aimed to derive load-displacement (p-y) curves. An interface
was inserted between the cylindrical pile and the surrounding soil to obtain the stresses
on the interface. The equivalent stiffness parameter in the normal and shear direction
(kn and ks) for an interface is given in equation 4.1:

(x+40)

4.1)
AZmin

k, = ks = max

where K and G are the bulk and shear moduli, respectively, and Azmin is the minimum
width of the adjoining zone in the normal direction. The rule of thumb is to set the
interface stiffness as ten times the equivalent stiffness according to the FLACSP
Manual (Itasca Consulting Group, 2019). Therefore, sensitivity analyses were
conducted with ten times the equivalent stiffness, equivalent stiffness, and 10 % of the
equivalent stiffness. Figure 4.3 shows the effect of interface stiffness on the p-y curves.
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The results revealed that the obtained p-y curves did not differ significantly.
Consequently, the depth-dependent stiffness was assigned ten times the equivalent
stiffness for the interface as the soil modulus increased with depth.
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Figure 4.3 : The effect of interface stiffness on the p-y curves.

Pile resistance to lateral loading was obtained using the normal and the shear stresses
at the gridpoints of the pile-soil interface. The stresses were multiplied by the
‘gridpoints' characteristic area, and the total force was calculated via built-in code.
Finally, the resulting force was divided by the tributary length, the distance between
the nodes in the vertical direction, to find the load resistance (p) in force/distance units.
Pile displacement was the lateral pile displacement of the center gridpoint. The Mohr-
Coulomb criterion was valid for the interface, which allows the slip and separation
based on the applied shear stresses.

A constant velocity of 4x10® m/s was given to the top of the pile in 107 steps, reaching
the pile head displacement of about 400 mm. The program's pile-head load outputs
were taken using the built-in fish function. The pile-head load vs. ground line
displacement obtained from the 3D numerical analyses was compared with Reese et
al. (1974). Figure 4.4 shows the comparison, and the close results, particularly at the
small displacements, confirm that the selected soil parameters reflect the field

conditions with reasonable accuracy.
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Figure 4.4 : Applied lateral load vs. ground line deflection results: Mustang Island
and numerical analysis results.

The non-linear load resistance vs. deflection (p-y) curves at the selected depths were
obtained numerically. The results of p-y curves were compared with the ones obtained
using the equations by Reese et al. (1974) and API (2007), as shown in Figure 4.5 and
Figure 4.6. The results showed that the ultimate resistance of soil (pu) at 0.5 m depth
was quite close to those of Reese et al. (1974). However, pu values in the numerical

analyses were higher at greater depths.
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Figure 4.5 : Comparison of p-y curves obtained through 3D numerical analyses with
Reese et al. (1974).
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Figure 4.6 : Comparison of p-y curves obtained through 3D numerical analyses with
API.

4.2 Parametric Analyses

This study aims to characterize the p-y curves in small to large displacement ranges.
For this purpose, a numerical model was created, similar to the verification model. The
model consisted of the solid circular pile, the surrounding soil, and the interface to
obtain the lateral resistance applied by the soil. Only half of the problem was modeled
due to the symmetry, and the dimensions were 20D, 10D, and 2L in the x, y, and z
directions, where D and L were the pile diameter and the pile length, respectively. A
constant velocity was applied to the pile head so that the ultimate resistance could
mobilize at depth.

The parametric analyses were performed to show the effect of the relative density of
soil, pile flexural rigidity, pile diameter, degree of nonlinearity (Eo/Eso) of soil, and
power of stress dependency (m) on the p-y curves. The selected parameters are given
in Table 4.2, where the bold values are the baseline analysis of a solid circular pile
with D=0.65 m, EI=263 MN.m?, Dr= 55%, Eo/Es0=10, and m=0.5. The young modulus
of the pile material (E) was 30 GPa in the baseline analysis. The effect of flexural
rigidity was investigated for three different moduli of elasticity of the pile material,
keeping the pile diameter (D=0.65 m) and soil properties constant. In the analyses, the

ratio Eur/Eso=4 was kept constant. The analyses were performed for the flexible piles
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with lengths of 8 m, 12 m, and 19 m for diameters of 0.65 m, 1.00 m, and 1.60 m,
respectively (L/D=12). The effect of the slenderness ratio was beyond the scope of this

thesis.

Table 4.2 : The parameters used in the parametric static analysis of the single pile.

The Variables

Flexural Rigidity, EI (MN.m?) | 26.3 263 2630
Pile Diameter, D (m) 0.65 1.0 1.60
Relative Density, Dr (%) 30 55 80
Degree of Nonlinearity, Eo/Eso | 5 10 20
Power of stress dependency, m | 0.5 0.7

4.2.1 Effect of pile flexural stiffness

The effect of flexural stiffness (El) on the p-y curves has been investigated in the
literature (Ashour & Norris, 2000; Fan & Long, 2005; Wang et al., 2020). In this study,
three El values were selected to study the EI effect on the p-y curves. In Figure 4.7,
the p-y curves at four depths show a slight increase in the ultimate soil resistance as
the pile modulus reduces. Figure 4.8 shows the p-y curves with the vertical axis
normalized to the ultimate soil resistance at three depths. Apart from the pile
flexibility, the normalized p-y curves reveal the depth effect. The ultimate
displacement at the maximum soil resistance increases as the confining stress
increases. This behavior is consistent with the soil behavior in that the increase in the
confining stress causes the soil strength to be reached at relatively higher strains.
Therefore, greater ultimate soil resistances obtained in the flexible pile can be
attributed to the change in stress distribution around the pile. Figure 4.9 shows the
comparison of the displacement fields for the flexible (E=3 GPa) and rigid (E =300
GPa) piles, having the same length (L =12 m), where the rigid pile causes higher lateral
displacements in deeper regions. It is noted in this study that the maximum lateral soil
resistances are lower as the pile flexural stiffness increases. However, the difference
is insignificant for elastic moduli greater than E=30 GPa, which corresponds to the

flexural stiffness of concrete piles commonly used in practice.
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Figure 4.7 : Effect of the pile flexural rigidity on the p-y curves.
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Figure 4.8 : Effect of the pile flexural rigidity on the normalized static p-y curves.
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Figure 4.9 : Soil displacement contours under the laterally loaded: (a) flexible pile,
(b) rigid pile.
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4.2.2 Effect of pile diameter

The effect of pile diameter on the p-y curves under static pile-head loading was
investigated for various pile diameters: D=0.65 m, D=1.0 m, and D=1.6 m. The
parametric analysis results shown in Figure 4.10 indicate the diameter's effect on the
ultimate lateral resistance (pu). Besides, normalized p-y curves were plotted in Figure
4.11, where the vertical axis is normalized by pu. Although the curves verify the slight
influence of diameter on the initial stiffness, the ultimate resistance (pu) iS more
sensitive to the pile diameter.

—D=0.65m = ------- D=1.0m — ——-D=1.60m
1000

-——

750 4 - 7=2m
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Figure 4.10 : Effect of pile diameter on the static p-y curves.
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Figure 4.11 : Effect of pile diameter on the normalized static p-y curves.
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4.2.3 Effect of relative density of soil (Dr)

This study investigated the effect of relative density to characterize the p-y curves. The
selected relative densities were 30%, 55%, and 80%, representing the loose, medium-
dense, and dense sand, respectively. Equations 4 and 5 were utilized for the small strain
modulus, and the internal angle of friction values were 32°, 36° and 40°. Figure 4.12
and Figure 4.13 show the p-y and the normalized p-y curves (p/pu) for various relative
densities at certain depths. According to the results, the effect of Dr on the ultimate
soil resistance is much more pronounced, while Figure 4.13 indicates the slight

influence of the initial soil modulus.
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Figure 4.12 : Effect of soil relative density on the static p-y curves.
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Figure 4.13 : Effect of soil relative density on the normalized static p-y curves.
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4.2.4 Effect of degree of soil nonlinearity (Eo/Eso)

The effect of the degree of soil nonlinearity on the laterally loaded piles was
investigated with three Eo/Eur values of 1.25, 2.5, and 5, keeping the Eo constant. Since
the selected unloading/reloading modulus ratio to the secant stiffness was assumed
Eur/Eso=4, Eo/Eso equals 5, 10, and 20, respectively. The p-y curves for different soil
nonlinearities are shown in Figure 4.14. As the ratio of initial stiffness to secant
stiffness increases, the degree of soil nonlinearity also increases. As a result, the
displacement at which the ultimate soil resistance is mobilized has increased

significantly, as shown in Figure 4.15.

EfEsp=5 - Eo/E5p=10 - - - - Ej/Eg,=20
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Figure 4.14 : Effect of degree of soil nonlinearity on the p-y curves.
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Figure 4.15 : Effect of degree of soil nonlinearity on the normalized p-y curves.
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4.2.5 Effect of power of stress dependency (m)

The effect of the power of stress dependency (m) in equation 3.6 on the laterally loaded
piles was investigated with the most common two values for cohesionless soils: 0.5
and 0.7. Figure 4.16 and Figure 4.17 show the resulting p-y curves at the selected
depths. The higher parameter "m" values cause the soil modulus to be lower at shallow
depths. Therefore, the lower soil resistances in the case of m=0.7 is that the soil
modulus is lower at shallow depths.
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Figure 4.16 : Effect of power of stress dependency on the p-y curves.
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Figure 4.17 : Effect of power of stress dependency on the normalized p-y curves.
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4.3 Comparison of the Ultimate Soil Resistance with the Past Studies

The parametric analysis results performed in this study have shown that the ultimate
soil resistance does not linearly increase with diameter, which is consistent with the
theory given by Reese et al. (1974). The theoretical value for the maximum soil
resistance was multiplied by a coefficient (A) in Reese et al. (1974) since the field test
measurements gave higher resistances at shallow depths. The numerical analysis
results for the same field test showed that the ultimate soil resistances at shallow depths
were very close, but for greater depths, the agreement was poor, and the ultimate
resistances were higher in the analyses. The higher soil resistances at greater depths
were observed in centrifuge tests by Barton et al. (1983), and the modified equation of
Broms (1964) was suggested for greater depths by . Recent studies also confirm higher
soil resistance at greater depths in the centrifuge tests (Lu et al., 2021). L. Zhang et al.
(2005) proposed a relation for piles in cohesionless soils considering the side shear
friction and passive frontal resistance. Varun (2010) suggested further increasing the
ultimate lateral resistance based on finite element analyses. Thieken et al. (2015)
performed finite element analyses with the HS-Small model (in Plaxis 3D), and the

ultimate resistance in DIN 4085 was adopted.

The ultimate soil resistance obtained in this study was higher at shallow depths when
compared with the DIN 4085 and Reese et al. (1974) estimations. However, the results
complied with DIN 4085 at greater depths where Reese et al. (1974) considerably

underestimated the pu.

The effect of relative density was investigated in this study to characterize the p-y
curves, which require the initial stiffness (Kpy) and ultimate soil resistance (pu). The
selected relative densities were 30%, 55%, and 80%, representing the loose, medium-
dense, and dense sand, respectively. The small strain modulus was assigned to the soil
domain based on equation 3.6, and the internal angle of friction values were 32°, 36°
and 40° for the relative densities of 30%, 55%, and 80%, respectively. The variation
of ultimate lateral resistances with depth obtained in the numerical analyses were
compared with those obtained using the pu relations in the literature in Figure 4.18.
The maximum depth in the figure is limited to 2.5D to capture better the small
variations at shallow depths where the pile response is mostly governed. The ultimate

soil resistances obtained in the numerical analyses were higher than those obtained
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using the literature, except the DIN 4085, which was relatively close to the values in
this study, especially for greater depths (for z>1D). A similar agreement was shown in
the finite element analysis results published by Thieken et al. (2015). However, DIN
4085 vyields lower ultimate lateral soil resistances (pu) at depths less than one pile
diameter (for z<1D) than those obtained in this study, while the pu at these shallow

depths is closer to the findings obtained using equations of Reese et al. (1974).
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Figure 4.18 : The variation of pu in this study compared with the literature's relations
for various friction angles.

The verification analysis showed that the ultimate resistances obtained at the shallow
depths in this study agreed well with the results published by Reese et al. (1974) for
the field tests on Mustang Island. However, the maximum soil resistances at greater
depths were higher in the numerical analysis results. The effect of pile diameter on the
ultimate soil resistance and the shape of p-y curves under static pile-head loading was
investigated for various pile diameters: D=0.65 m, D=1.0 m, and D=1.6 m. The
parametric analysis showed that the pile diameter significantly affects the ultimate
lateral resistance (pu). Although the curves verify the slight effect of diameter on the
initial stiffness, the ultimate resistance (pu) is much more sensitive to the pile diameter.
Besides, compared with the past studies, the variation of pu vs. depth for different pile
diameters are presented in Figure 4.19. The numerical analysis results showed that the
pu was close to Reese et al. (1974) at shallow depths (z<1D) and close to DIN 4085 at
greater depths (z>1D). Besides, the variation of ultimate soil resistance does not
linearly increase with the depth and the diameter. As a result, the effect of pile diameter
on the obtained p-y curves have two aspects; the initial stiffness and the ultimate lateral

resistance.
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Figure 4.19 : The variation of pu in this study and the relations in the literature for
various pile diameters.
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5. NUMERICAL MODELLING of LATERALLY LOADED PILE PROBLEM:
DYNAMIC LOADING

This chapter presents the dynamic p-y curves obtained in the FLAC®P. Two centrifuge
tests from the literature were simulated numerically by the 3-dimensional analyses,
and the results of the verification analysis were presented. The parametric studies were
carried out to show the effect of soil and pile properties on the cyclic p-y curves. The
total-stress approach considered the soil nonlinearity using the small-strain shear

modulus and modulus degradation curves.

5.1 The Method

The main purpose of this thesis is to investigate the pile-soil interaction considering
the soil nonlinearity under cyclic loads. Numerical analyses were performed in
FLACSP using the Mohr-Coulomb model with the hysteretic damping approach, which
allows adapting the nonlinear stress-strain relation based on the modulus degradation
curves up to the failure stress. In addition, the nonassociated flow rule for shear failure

was employed.

In general, the nonlinear stress-strain behavior of soils under dynamic loading can be
considered by shear modulus reduction (G/Gmax) curves. In this study, the small-strain
shear modulus of soil (Gmax) was determined by Seed and Idriss (1970) using equation
3.6. Then, the bulk modulus was calculated by elastic theory using the shear modulus
and Poisson's ratio. The Poisson's ratio (v) was assumed to be 0.45 and 0.30 for

saturated and dry sands, respectively.

The hysteretic damping approach was utilized for the nonlinear behavior of soil.
FLAC®P requires a functional form for the modulus degradation curves to ensure
continuity. The program could invoke the curves using several functions, and the
sigmoidal-3 model was preferred in this study. The function in the program is given in

equation 5.1, and the parameters for Darendeli (2001) curves are shown in Table 5.1.
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Table 5.1 : The coefficients of the sigmoidal-3 function for Darendeli (2001) curves
for sands.

L a |b Xo
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a

The modulus degradation relations were invoked to represent the hysteretic damping
behavior of soils. A very low value of Rayleigh damping (0.5 %) at the center
frequency of 3 Hz was applied to remove the high-frequency component at very low
strains. The small amount of Rayleigh damping applied to the soil domain prevents

low-level noise without affecting the response.

5.2 Verification Analyses

Two well-known centrifuge tests (Gohl, 1991; Wilson, 1998) were used to verify the
dynamic numerical analyses. The laminar soil container used in Wilson's study is
shown in Figure 5.1. An aluminum pipe section was employed for the pile. The
diameter and the length of the highly instrumented single pile were 0.67 m and 16.7
m, respectively. A 49 Mg mass placed on the pile created a single-degree-of-freedom
system. The free height of the single pile was 3.8 m. The soil in which the piles were
embedded was the saturated Nevada sand placed at two different relative densities.
The thicknesses of these layers were 9.4 m and 11.3 m, and the relative densities were
55% and 80%, respectively.

The soil container and the setup of the centrifuge test of Gohl (1991) are shown in
Figure 5.2. The soil container was a rigid box filled with dry Nevada sand with a
relative density of Dr=40%. A steel pipe section was employed for the pile with a
diameter of 0.57 m in the study of Gohl (1991). The single mass was placed on top of

the pile extending to 2.0 m from the ground surface.

The friction angles for medium-dense and dense sand were selected as 36° and 40° for
soil layers in Wilson (1998). The friction angle was 34° for the sand in Gohl (1991).

The soil parameters selected for the verification analyses are given in Table 5.2.
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Figure 5.1 : Laminar soil container used in the centrifuge tests of Wilson (1998).
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Figure 5.2 : Rigid soil container used in the centrifuge tests of Gohl (1991).
5.2.1 Numerical model

The numerical model was created for the verification analyses (Figure 5.3). The
prototype dimensions were 20 m x 51 m x 20 m in Wilson (1998) and 16 m x 10 m x
12 m in Gohl (1991). The zones in the plan view were kept as uniform as possible. The
limit value for the zone size (Al) in the vertical direction is one-tenth to one-eighth of
the wavelength of the input wave motion (Al < A /8), as suggested by Kuhlemeyer and
Lysmer (1973). The wavelength is estimated by the shear wave velocity ratio to the
records’ maximum frequency component (A=Vs/fmax). A maximum frequency

component of 15 Hz was taken for fmax for the earthquake records used in the
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verification analyses. Shear wave velocity varies with depth and has been as low as 95
m/s near the ground surface. Therefore, the minimum wavelength was estimated as
A=6.3 m. Although the minimum zone size of 0.8 m (AI<A/8) could be anticipated in
the vertical direction to ensure the wave transmission, the finer mesh was employed
near the ground surface (Al=0.33 m in Wilson (1998) and Al=0.25 m in Gohl (1991))
based on the suggestion of Di Laora and Rovithis (2015). The coarser mesh was used
at greater depths (Al=0.75 m in Wilson (1998) and Al=0.5 m in Gohl (1991) for z>3
m). The bottom boundary of the numerical models was fixed. The lateral boundaries
in Gohl (1991) were also fixed as a rigid box was used in the test. In the case of Wilson
(1998), free-field boundaries were employed to prevent the reflection of waves since

the container in the tests was a flexible shear beam container.

Y\I/X

Figure 5.3 : The numerical model created for the verification analyses.

The initial shear modulus and the reference strain values were applied to each zone by
considering the initial effective stress level (total stress approach). The shear modulus
reduction factor (G/Gmax) at the very large strain (>1%) might be very low. Besides,
Masing's rule was employed for unloading/reloading behavior, which may cause the
damping ratio to be unrealistically high. The free-field soil displacement might be
overdamped due to the lower shear strength resulting from the low confining pressure,

particularly at shallow depths.
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Therefore, the minimum modulus reduction value was set to 0.05, and a small cohesion
value (10 kPa) was assigned in the verification analyses to overcome the mentioned
problem. The calibration process of the damping ratio was studied in detail by the
author in separate papers (O. Alver & E. Eseller-Bayat, 2022; O. Alver & E. E. Eseller-
Bayat, 2022).

Table 5.2 : The soil parameters used in the verification analyses.

Wilson, 1998 Gohl, 1991
Layer Layer 1 Layer 2 Single Layer
Effective unit weight, ¥ (kN/m3) 9.5 9.9 15.1
Relative density (%) 55 80 40
Friction angle, ¢ (°) 36 40 34
Dilation angle  (°) 4 8 2
Cohesion, ¢ (kPa) 10 10 10
Poisson's ratio, v 0.45 0.45 0.30

Although the piles and the structure are 3-dimensional, they were modeled with the
beam elements for simplicity. The structural elements (beam) were connected to the
surrounding soil rigidly, where the pile displacement is the same as the soil
deformation. Several researchers adopted the rigid connection approach (Finn, 2005;
Finn & Fujita, 2002; Rahmani et al., 2018). Since the problem is a laterally loaded pile
model under dynamic loading, the key property affecting the response is the flexural
stiffness of the pile and the superstructure. Therefore, the superstructure properties
summarized in Table 5.3 were assigned to the beam elements used in the numerical

analyses.

Table 5.3 : The superstructure properties in the verification analyses.

Structure (Wilson, 1998) Structure (Gohl, 1991)

Flexural Stiffness, | Height | Mass | Trixea | Flexural Stiffness, | Height | Mass | Trixed
El (MN.m?) (m) (Mg) | () | EI (MN.m%) (m) (Mg) | (s)
427 3.8 49 03 |172 2.0 52.2 0.3

5.2.2 Input motions

Two earthquake records were used in Wilson (1998): 1989 Loma Prieta (Santa Cruz
Station) Event K and Event N. The centrifuge laboratory of UC Davis provides the
acceleration time history of the input motions for these records. The Santa Cruz records
(Event K and Event N), in which the maximum acceleration (amax) scaled to 0.11 g,
were used in this study. These motions were selected to eliminate the liquefaction

behavior since the resulting pore water pressures in the medium-dense sand layer were
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too low to consider. The motion used in the centrifuge test of Gohl (1991) was
provided by Dr. Amin Rahmani and Dr. Mahdi Taiebat (personal communication).
Baseline correction was applied to the records to remove the displacement offset. The
acceleration-time histories of the input motions after the baseline corrections are

shown in Figure 5.4.
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Figure 5.4 : Input motions used in the numerical analyses: a) Gohl (1991), b) Event
K (Wilson, 1998), c) Event N (Wilson, 1998).

5.2.3 Verification analyses results

The results obtained from the numerical verification analyses were compared with the
centrifuge test results. Figure 5.5 compares acceleration response spectra for the
superstructure in Gohl (1991). Figure 5.6 and Figure 5.7 show the acceleration
response spectra of the superstructure for Event K and Event N, respectively (Wilson,
1998). According to the comparisons, the spectral accelerations of the superstructure
response were slightly higher at low periods (T<0.8-1.0 s) and reasonably close to the
measurements by Gohl (1991) and Event K (Wilson, 1998) at higher periods. In
contrast, the spectral accelerations in the numerical analysis for Event N were lower

than those in the centrifuge test.

The maximum bending moments obtained from the numerical analyses are compared
with the centrifuge test results in Figure 5.8, Figure 5.9, and Figure 5.10. The bending
moment outputs agreed well with the centrifuge test results by Gohl (1991) and Event
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K (Wilson, 1998). However, the bending moments in the numerical analysis for Event
N were lower than those in the centrifuge test. The lower response in the numerical
analyses for Event N can be attributed to higher damping ratios due to Masing's rule
for unloading/reloading behavior. However, the overall behavior was reasonably

captured by the numerical analyses.

——————— Centrifuge —— 3D Analysis
2.5

o (1991)
2.0 A
15 +

=
o

Spectral acceleration, S, (9)

o
3

0.10 1.00 10.00
Period (T), sec

Figure 5.5 : Acceleration response spectra of the superstructure in Gohl (1991).
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Figure 5.6 : Acceleration response spectra of the superstructure in Event K (Wilson,
1998).
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Figure 5.7 : Acceleration response spectra of the superstructure in Event N (Wilson,
1998).
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Figure 5.8 : Maximum bending moment variations with depth in Gohl (1991).
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Figure 5.9 : Maximum bending moment variations with depth in Event K (Wilson,
1998).
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Figure 5.10 : Maximum bending moment variations with depth in Event N (Wilson,
1998).

83



5.3 Parametric Analyses

Dynamic soil-pile interaction analyses were carried out to show the effect of soil and
pile properties on the cyclic p-y curves, and the results were presented in this section.
The numerical model includes the solid circular pile, the surrounding soil, and the
interface. Only half of the problem was modeled due to symmetry. The model
dimensions were 20D and 10D in the x and y directions, where D and L are the pile
diameter and length, respectively. The vertical height of the model was 5 m longer
than the pile length. The numerical model created for the parametric analyses is shown
in Figure 5.11.

Similar to the non-linear behavior of soils, non-linear p-y curves can be obtained
depending on several parameters: The soil nonlinearity, the pile diameter, the small-
strain shear modulus, and the friction angle, which are the key parameters for the pile-
soil interaction behavior (Hussein & EIl Naggar, 2022). The pile diameter and the
relative density of the soil govern the initial soil-pile modulus (Kpy) and ultimate soil
resistance (pu), in which the very small displacement and the large displacement region
of the p-y curves can be obtained.

/

10D

J
\

%
o
2

Y\IZ/X \/ /209

Figure 5.11 : The 3D single pile model created for parametric analyses.

/

Various pile diameters and soil relative densities were used to investigate the effect on
the Kpy and pu. The behavior under small to moderate displacement levels is controlled

by the soil nonlinearity that mostly depends on the employed modulus degradation
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curves. As the nonlinearity of soils is the function of effective confining stress in
cohesionless soils, various curves for soil nonlinearity were implemented in the
analyses. The parameters for the parametric analyses are shown in Table 5.4, where
the bold ones represent the default values in the analysis. The pile lengths (L) were 8
m, 12 m, and 19 m for pile diameters (D) of 0.65 m, 1.0 m, and 1.6 m, respectively, to

keep the slenderness ratio constant (L=12D).

Table 5.4 : The parameters used in the numerical analyses.

The Variables

Unit weight of soil y (kN/m®) 18 18 18
Friction angle, ¢ (°) 32 36 40
Pile Diameter, D (m) 0.65 1.0 1.60
Relative Density, Dr (%) 30 55 80
Degree of Nonlinearity (Darendeli (2001) curves

. - 10 25 100
for the given confining pressures, kPa)

Solid volumes modeled the soil and the pile in the parametric analyses. Elastic
properties of concrete were assigned to the pile element. The cyclic lateral velocity
was applied to the pile all along. The lateral displacement history was obtained directly
at the center gridpoint of the pile. However, an interface must be placed between the
pile and the surrounding soil to obtain lateral soil resistance. The interface allows
deriving the stresses applied by the soil to the pile due to cyclic motion. The normal
and the shear stresses occur at the gridpoints of the interface. The lateral force was
calculated by multiplying the stresses with the characteristic area of each gridpoint.
The sum of the forces at the gridpoints in a cross-section yields the total resistance at
that depth. The soil resistance (p) was calculated in units of force/distance by dividing
the force by the characteristic length. This procedure to obtain the lateral resistance (p

axis of the p-y curves) was achieved using the built-in fish function in FLAC®P,

The interface property for the normal and shear components (kn and ks) were
determined based on the constraint modulus as in equation 4.1. The depth-dependent
stiffness was assigned ten times the equivalent stiffness through the pile. The Mohr-
Coulomb criterion was valid for the interface, which allows the slip and separation

based on the applied shear stresses.
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5.3.1 Input motion

The parametric analyses were conducted by applying the cyclic motion through the
pile. The displacement history applied to the pile is shown in Figure 5.12. Gradually
increasing amplitude allowed obtaining both small and large displacement behavior.
The frequency of the input motion was 0.5 Hz which is low enough to minimize the
effect of the radiation damping, which can be considered separately using the approach
suggested by Gazetas and Dobry (1984).

0.05

Figure 5.12 : The input motion applied to the pile in the parametric analyses.

The parametric analyses' results, described earlier, were presented in this section. Time
histories of the pile displacement and the ultimate soil resistance were obtained. The
effect of pile diameter, the relative density of soil, and the degree of soil nonlinearity

was discussed.

5.3.2 Effect of pile diameter

The effect of pile diameter on the cyclic p-y curves was investigated for three
diameters: 0.65 m, 1.0 m, and 1.6 m. Soil resistance (p) and pile displacement (y)
histories for D=0.65 m and Dr=55% are given down to 4 m depth in Figure 5.13. The
p-y curves obtained at 1 m and 2 m depths are shown in Figure 5.14 and Figure 5.15.
According to the analysis results, the effect of pile diameter was observed on two
important characteristics of dynamic p-y curve outputs: The initial soil-pile stiffness
(Kpy) and ultimate soil resistance (pu). However, the impact on the ultimate soil
resistance is much more significant than the effect on the initial modulus. Experimental
(Lee et al., 2019; Rollins et al., 2005; Yoo et al., 2013) and numerical (Choi et al.,
2016; McGann et al., 2011) studies have shown that the API (2007) underestimates
the ultimate soil resistance under cyclic loading. The numerical analysis results
obtained in this thesis have also confirmed that the ultimate soil resistance was greater

than the suggestions of past studies.
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Figure 5.13 shows the variation of the pile displacement and soil resistance with time
for D=0.65 m and Dr=55 %. Pile displacement is the same for all depths for a given
soil and pile properties. However, the soil resistance increases with depth. The results

for various pile diameters, relative densities, and soil nonlinearities are presented in

Appendix B.
Displacement,y =~ — — — Soil resistance, p
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Figure 5.13 : The pile displacement and soil resistance time histories for D=0.65 m,
Dr=55 %.
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Figure 5.14 : The dynamic p-y curves (hysteretic loops) for D=0.65 m, D=1.0 m,
and D=1.6 m at z=1 m.
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Figure 5.15 : The dynamic p-y curves (hysteretic loops) for D=0.65 m, D=1.0 m,
and D=1.6 m at z=2 m.
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5.3.3 Effect of relative density

Dynamic p-y curves under the cyclic lateral load were investigated for the selected
relative densities of 30%, 55%, and 80%, representing the loose, medium-dense, and
dense sand, respectively. The small strain shear modulus was calculated by equation
3.6 according to the given relative densities. The internal angle of friction (¢) was
determined to be 32° 36°, and 40°, with Dr being 30%, 55%, and 80%, respectively.
Figure 5.16 and Figure 5.17 show the p-y hysteretic curves at 1 m and 2 m depths for
the given relative densities. According to the results, larger p-y curves were achieved
as the relative density of soil increased. The main reason for having greater soil
resistance is the increase in the internal angle of friction, which can be characterized
by the ultimate soil resistance (pu). Another impact of the relative density on the
dynamic p-y curves was the increase in the initial soil-pile stiffness (Kpy). These results
confirm that the dynamic p-y curves can be characterized by the initial soil-pile
stiffness (Kpy) and ultimate soil resistance (pu) at very small and large displacement

levels.
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Figure 5.16 : The effect of relative density on the dynamic p-y curves at z= 1 m.
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Figure 5.17 : The effect of relative density on the dynamic p-y curves at z=2 m.
5.3.4 Effect of soil nonlinearity

The soil behavior under cyclic loading has been investigated by many researchers so
far. As was shown in the verification analyses, soil nonlinearity can be considered by
modulus degradation curves. The most widely used relations for cohesionless soils
were suggested by Seed and Idriss (1970). However, Ishibashi and Zhang (1993),
Darendeli (2001), and J. Zhang et al. (2005) have shown that the nonlinear behavior
of cohesionless soils has been mostly affected by confining pressure. In this study, the
effect of soil nonlinearity on the cyclic p-y curves was investigated with three
confining stress levels being 10 kPa, 25 kPa, and 100 kPa using the curves of Darendeli
(2001), where the reference strains correspond to #=0.0158%, %#=0.0217%,
and »%=0.0352%, respectively. The dynamic load (Figure 5.12) was applied through
the pile, and the p-y curves were obtained at the selected depths, as shown in Figure
5.18 and Figure 5.19. According to the results, as the confining stress reduces, the soil
nonlinearity causes the backbone of the p-y curves to have smaller soil resistances at a
specified displacement (increasing nonlinearity). This finding confirms the influence

of confining stress on the soil nonlinearity, hence on the dynamic p-y curves.
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Figure 5.18 : Effect of soil nonlinearity on the cyclic p-y curves at z=1 m.
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Figure 5.19 : Effect of soil nonlinearity on the cyclic p-y curves at z=2 m.
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6. PROPOSED MODELS for STATIC and DYNAMIC p-y CURVES

The main aim of this thesis is to characterize the static and dynamic p-y curves based
on the validated numerical analyses. The numerically derived p-y curves under static
loading have been presented in Chapter 4. Similarly, dynamic p-y curves were
obtained based on the numerical analyses in Chapter 5. In this chapter, the

mathematical models were proposed to represent the static and dynamic p-y curves.

6.1 p-y Curves Under Static Loading

Several researchers have used the hyperbolic model after Georgiadis et al. (Georgiadis
et al., 1992) to construct the p-y curves. The original model has two parameters: 1) the
initial modulus and 2) the ultimate resistance. A similar approach was used in this
thesis, but the modified hyperbolic model of Matasovic and Vucetic (Matasovi¢ &
Vucetic, 1993) was implemented with the two additional parameters. In this model,
the curves were characterized by the initial stiffness (Kpy), the ultimate resistance (pu),

and the degree of nonlinearity parameters (f#and s), as shown in equation 6.1.

Kpy y

1+5 ()’if)s ©

p:

In the above equation, Kpy represents the initial pile-soil stiffness, and yrer is the
threshold displacement at which the behavior is linear. The normalized p-y curves
show the two sources of nonlinearity: 1) the soil modulus (Eso) and 2) the confining
stress (or depth). As the soil modulus (Eso) reduces, the pile-soil stiffness decreases,
and more non-linear behavior is observed. A similar effect was shown for the depth in
Figure 4.8, Figure 4.11, Figure 4.13, and Figure 4.15. Lower normalized resistances at
a constant displacement indicated that a larger displacement was required to reach the
same ultimate resistance. This behavior can be considered using the concept of
reference displacement, which is the ratio of ultimate resistance to initial pile-soil
stiffness (yrer=pu/Kpy).
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6.1.1 Ultimate lateral resistance (pu)

The parametric analysis results showed that the ultimate soil resistance does not
linearly increase with diameter, which is consistent with the theory given by Reese et
al.(Reese et al., 1974). The numerical analysis results at shallow depths were consistent
with the mentioned study, but the agreement was poor for greater depths, and the
ultimate resistances were higher in the analyses. The higher soil resistances at greater
depths were observed in centrifuge tests (Barton et al., 1983; Lu et al., 2021), and
modified equations have been suggested (Fleming et al., 2008; Thieken et al., 2015;
Varun, 2010; L. Zhang et al., 2005). The ultimate soil resistances obtained in the
numerical analyses were higher than those obtained using the literature (Broms, 1964,
Fleming et al., 2008; Reese et al., 1974). In contrast, the DIN 4085 (DIN, 2011) was
relatively close to the values in this thesis, especially for greater depths (for z>1D). A
similar agreement was shown in the finite element analysis results published by
Thieken et al. (2015). However, DIN 4085 (DIN, 2011) yields lower ultimate lateral
soil resistances (pu) at depths less than one pile diameter (for z<1D) than those
obtained in this study. The pu at these shallow depths is closer to the findings obtained
using the equations of Reese et al. (Reese et al., 1974). Equation 6.2 was proposed for
the ultimate lateral resistance pu based on the numerical analysis carried out in this
thesis. The proposed equation is similar to Fleming et al. (2008), however, the z/D
term is included in the equation so that the nonlinear variation with depth and diameter

is provided.

c

ot 205 62
The Matlab curve fitting tool was used to determine the parameters of equation 6.2.
The nonlinear least squares method was selected for the fitting procedure. For this
purpose, the variation of normalized soil ultimate resistance with normalized depth
(z/D) was plotted as shown in Figure 6.1. The model parameters were determined as;
a=0.591, b=0.449, and c¢=0.824 based on the fitting process.
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r =——Proposed function
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Figure 6.1 : The variation of ultimate soil resistance with normalized depth under
lateral load (pile head loading).

6.1.2 Initial pile-soil stiffness (Kpy)

The suggestions made by several researchers for initial pile-soil modulus vary from
0.48E0/D to 2.3Eo/D (Medjitna & Amar Bouzid, 2019; Scott, 1981; Serensen et al.,
2010), which linearly proportional to soil modulus. The numerical analysis results
obtained in this thesis have revealed that the soil-pile stiffness is not linearly varying
with depth and pile diameter. Figure 6.2 shows the normalized p-y curves for different
pile diameters when Kpy=Eo. According to Figure 6.2, the pile-soil stiffness should be
greater as the diameter increases. This result indicates that the pile diameter should be

included in the soil-pile stiffness equation.

Apart from the pile diameter effect, the results have shown that Kpy is greater than Eo
at shallow depths and less than Eo at greater depths. Normalized p-y curves were
plotted in Figure 6.3 to show the effect of depth (z) for a given pile diameter (D=1.0
m). Therefore, a non-linear increase in soil-pile stiffness should be provided to

accurately reflect the depth effect and pile diameter.
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Figure 6.2 : Normalized p-y curves at z=1 m for different pile diameters when
pr:EO.

y/ yref

Figure 6.3 : Normalized p-y curves for D=1 m at different depths when Kpy=Eo.

In this thesis, equation 6.3 is proposed for pile-soil stiffness, Kpy:

a

K,y = Eq * (g) (6.3)

where Eois the small strain soil modulus, D is the pile diameter, z is the depth, and «

the parameter represents the nonlinear variation with the depth and pile diameter.
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The effect of « values on the normalized p-y curves has been investigated. The best fit
is obtained when « =0.4. This value provides almost identical normalized p-y curves
for different pile diameters and depths. Figure 6.4 and Figure 6.5 show the normalized
p-y curves using the proposed equation of pile-soil stiffness for various pile diameters

and depths, respectively.
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Figure 6.4 : Normalized p-y curves at z=1 m for different pile diameters using the
proposed soil-pile stiffness equation.
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Figure 6.5 : Normalized p-y curves for D=1 m at different depths using the proposed
soil-pile stiffness equation.
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Equation 6.3 allows Kpy to vary with depth not as sharply as in Eo. This fact ensures
that the nonlinearity of p-y curves is greater than the soil nonlinearity. D/z term causes
the Kpy to increase to a certain extent as the depth increases. The power « in the
equation limits the increase of Kpy with depth and prevents the sharp increase. A similar
result was presented by Gerolymos and Gazetas (2006) for the translational stiffness
of caisson foundations. Therefore, Equation 6.3 provides the Kpy increase slightly with
depth, causing the reference displacement (yrer) to be mainly controlled by the ultimate

soil resistance.

6.1.3 Degree of nonlinearity (B and s)

Atkinson (2000) stated that the peak stress and degree of nonlinearity, including the
initial stiffness and stiffness degradation, should characterize soil behavior. A similar
concern can be followed for the characterization of the p-y curves. The proposed
equations for ultimate lateral resistance (pu) and initial stiffness (Kpy) predict the
response of the piles at large and very small displacements. Furthermore, the piles’
small to moderate displacement behavior can be controlled by the nonlinearity
parameters: fand s. The power s controls the slope after the first yield, and a constant
value of 0.7 is proposed in this study to fit the analysis results. Table 6.1 shows the
S values for the parameters analyzed in this study. The variation of 3 with the degree

of nonlinearity value (Eo/Eso) is given in Figure 6.6.

Table 6.1 : Degree of nonlinearity parameters.

Eo/Eso 5 10 20
B 1.8 2.3 2.85
S 0.7 0.7 0.7

Equation 6.4 is proposed in this thesis for the degree of nonlinearity of £ depending
on the Eo/Eso.

5 <ﬂ)0.35 (6.4)
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Figure 6.6 : Variation of 3 parameter with Eo/Eso.

The proposed model for the static p-y curves is summarized in Figure 6.7. The model's
main advantage is the ability to consider the degree of soil nonlinearity. Besides,
simple yet efficient equations were suggested for the ultimate soil resistance (pu), and
the pile-soil modulus (Kpy). The model parameters represent the soil resistances from
very small to large displacements. The proposed equations can be used to analyze the
piles subject to static lateral loads. Even the pseudo-static (or nonlinear static-

pushover) earthquake analysis can be performed.
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Figure 6.7 : The proposed model for static p-y curves in sands.
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6.1.4 Accuracy of the proposed model

The accuracy of the proposed static p-y curves can be shown by comparing the 1D
model outputs with the 3D numerical analysis results. To better quantify the difference,
the accuracy metric concept was used, which was defined by Burd et al. (2020) and
Taborda et al. (2020) as in Equation 6.5.
n= w 65)
ref

where the Arer is the area below the reference curve, the curve obtained from the
numerical analyses, and Adif is the dashed area bounded by the difference between the
reference curve (numerical analysis results here) and the model curve (predicted values
by the proposed static p-y model). The definition of the areas is shown in Figure 6.8.
The metric was used separately for small and large displacement ranges to assess the
predictions more accurately.

p p
A A
Avet 3D Numerical At proposed p-y model
At : ﬂosed p-y Aot g
-~ fiogel D
Numerical
Analysis
01D >y 0.001D Y
(a) (b)

Figure 6.8 : Graphical definition of the accuracy metric: (a) large displacement; (b)
small displacement range.

Figure 6.9, Figure 6.10, and Figure 6.11 compare the 3D analysis and the proposed
static p-y models up to 10 cm (large displacement range). The vertical axis is
normalized by pu so that the curves are independent of the pile diameters and soil

relative densities.
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Figure 6.9 : Comparison of the p-y obtained in 3D analysis with the proposed model
outputs for large displacement range (at z=1 m depth).
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Figure 6.10 : Comparison of the p-y obtained in 3D analysis with the proposed
model outputs for large displacement range (at z=2 m depth).
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Figure 6.11 : Comparison of the p-y obtained in 3D analysis with the proposed
model outputs for large displacement range (at z=3 m depth).
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The accuracy metric (7) concept (Eq. 6.6) was used to show the difference between
the 3D numerical analysis and the proposed model. Figure 6.12, Figure 6.13, and
Figure 6.14 present the 7 values down to 3 m depth for the full displacement range for
various soil nonlinearities. Accordingly, the » value is approximately 0.94-0.98,
concluding a good agreement between the proposed p-y model outputs and those in

3D analysis results.

Depth, m

Figure 6.12 : Accuracy metric for large displacement range for Eo/Eso=5.

Depth, m

Figure 6.13 : Accuracy metric for large displacement range for Eo/Es0=10.

Depth, m

Figure 6.14 : Accuracy metric for large displacement range for Eo/Es0=20.

Figure 6.15, Figure 6.16, and Figure 6.17 compare the 3D analysis and the proposed
static p-y models up to 1 cm (small displacement range). Again, the vertical axis is

normalized by pu so that the curves are independent of the pile diameters and soil

relative densities.
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Figure 6.15 : 3D analysis results with the proposed 1D model for small displacement
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Figure 6.16 : 3D analysis results with the proposed 1D model for small displacement
range (at z=2 m depth).
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Figure 6.17 : 3D analysis results with the proposed 1D model for small displacement
range (at z=3 m depth).
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The accuracy metric (77) was applied to show the difference for the small displacement
range. Figure 6.18, Figure 6.19, and Figure 6.20 present the 7 values down to 3 m
depth for the small displacement range. The 7 value is around 0.72-0.80 for Eo/Es0=5

(low soil nonlinearity), while it is as low as 0.65 at 3 m depth for Eo/Es0=20.

In general, the predicted values by the proposed model agreed well with the p-y values
obtained through 3D numerical analysis results. However, the proposed model is not
as close to 3D analysis in the small displacement range as in the large displacement
range. Especially the difference becomes more pronounced for greater depths, and

future studies must focus on improving the behavior for small displacement ranges.

MNo.oo1D

Depth, m

Figure 6.18 : Accuracy metric for small displacement range for Eo/Es0=5.

Depth, m

Figure 6.19 : Accuracy metric for small displacement range for Eo/Es0=10.

MNo.001D

Depth, m

Figure 6.20 : Accuracy metric for small displacement range for Eo/Es0=20.
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6.1.5 Validation of the proposed model

A validation study was performed by comparing the results obtained using the
proposed p-y curves with the field and laboratory measurements for the laterally loaded
pile tests in the literature (Georgiadis et al., 1992; Reese et al., 1974). The sketch of a
typical laterally loaded pile problem is shown in Figure 6.21a, together with the finite

element model created in structural analysis software (Figure 6.21Db).

H __Hy
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Cross section
Sand: DAkt p
y =Effective unit LAAAA
weight
¢=Friction angle D: Pile %%
Dr=Relative density e mcter y
AN
L=Pile length
El=Flexural AV
stiffness AAAA
AN
9%
(a) (b)

Figure 6.21 : (a) Sketch of a typical laterally loaded pile problem (b) Finite element
model.

A beam element was used for the pile, and the soil reaction was represented by
nonlinear links (p-y curves) placed at 0.5 m intervals along the pile. In the p-y curve
formulation, equation 3.6 were used for the small strain modulus of soil. Equation 6.2
and Equation 6.3 have been implemented for pu and Kpy, while the nonlinearity
parameter s=0.7. Although the degree of nonlinearity depends on the relative density
of cohesionless soils, a constant value was adopted for the nonlinearity parameter

(/=2.3). Table 6.2 presents the soil and pile properties with the loading condition.
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Table 6.2 : The pile load tests used for the validation of the proposed model.

Soil Properties Pile Properties Load
Reference | Test }/kN/m3) (ljoz) ((1)0) (Dm) ?m) (EI\I/IN.mz) g(N) <(9m)
o) 2| Fied 104 90 139|061 21 163  |210 0.305
(e;tzcir%llas:)ds;;) Centrifuge | 16.3 60 36 |1.224 9 2495 1304 1.25

The differential equation for the laterally loaded pile problem is given in the equation.
6.6.

d? d?y
E EPIPE - khy —W=0 (66)
where El is the flexural stiffness, z is the depth along the pile axis, W is the lateral load
distributed along the pile, kn is the secant stiffness, and y is the pile deflection.

The geometry of the soil-pile interaction problem was created, and the pile and soil (p-
y curve) properties were assigned accordingly based on the data in Table 6.2. Link
elements were used for the interface with the multilinear plastic option. The lateral
load was applied to the pile head, and the analyses were performed in SAP2000 (CSl,
2016) to solve equation 6.7. As the soil resistance-pile displacement relation is
achieved using p-y curves, a nonlinear analysis is required for the solution. The
Newton-Raphson method was used in SAP2000 for the iteration in nonlinear analysis.
The maximum iteration in each step was 40, and the convergence tolerance was set to
le-4.

The bending moments obtained along the pile were compared with the measurements
from the tests in Figure 6.22. According to the results, the bending moments along the
pile were reasonably close to the measured bending moments. The bending moments
were also computed using the p-y curves by API (2007) and presented in Figure 6.22
for comparison. The maximum bending moments (Mmax) predicted by the proposed
model and API (2007) were similar. However, bending moments along the pile at
deeper levels estimated by API (2007) were generally underpredicted compared to the
test results and those estimated by the proposed model. Hence, the proposed model

better represents the response at deeper levels.
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Figure 6.22 : Bending moment variation in the validation analyses with the field
tests.

Furthermore, the pile head load-deflection curves obtained by the numerical analyses
were compared with the test results (Figure 6.23 and Figure 6.24). In general, the load-
deflection curves predicted by the proposed model agreed with the test results.
However, the deflections obtained by API (2007) curves were significantly
underpredicted, especially when compared with the measurements of centrifuge tests
by Georgiadis et al. (1992), where the applied load was relatively higher. The stated
result confirms the shortcoming of the high initial stiffness of API (2007), which was
already stated in past studies. The proposed static p-y curves significantly improve the

predicted deflections, particularly at larger loads.

Although the pile displacements were not predicted accurately by API in Georgiadis
et al. (1992), a reasonably close result was obtained for the maximum bending
moment. The selected p-y curves influence the displacements directly, but the bending
moments may not be sensitive to the pile displacements for pile head loading.
However, a performance-based design methodology has been adopted recently, which
requires the assessment of the pile and the structural displacements. The proposed
model better predicts the displacements that might be important, especially for piles
subjected to high lateral loads and/or embedded in loose to medium-dense

cohesionless soils.
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Figure 6.23 : Lateral load-deflection curves obtained through the 1D analyses and
test results for the field test given Reese et al. (1992).
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Figure 6.24 : Lateral load-deflection curves obtained through the 1D analyses and
test results for the centrifuge test given in Georgiadis et al. (1992).
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6.2 p-y Curves Under Dynamic Loading

The numerical analysis have shown that the dynamic p-y curves in cohesionless soils
have three significant characteristics: Initial stiffness, ultimate lateral resistance, and
degree of nonlinearity. The backbone curve and the unloading/reloading rule represent
the behavior of soils under dynamic loading. A similar approach can be applied to
dynamic p-y curves. The backbone curve formulation was proposed in this thesis, and
Masing's rule was adopted for unloading/reloading behavior.

Three models have been widely used for nonlinear soil behavior: Ramberg&Osgood,
Hyperbolic, and Bouc-Wen model. Researchers have used Ramberg&0Osgood (1943)
model for modeling the soil behavior under dynamic loads. However, since the stress-
based approach is adopted, the model is not sensitive to the initial modulus (Gohl,
1991). The most used method in soil dynamics for nonlinear soil behavior is the
Hardin-Drnevich (1972) model, extending Kondner's (1963) model to the dynamic
loading case. It requires two parameters: Initial stiffness and ultimate resistance. The
model was further developed to consider the soil nonlinearity more realistically, and
the modified Kondner&Zelasko (MKZ) model was proposed by Matasovic (1993) by
including two additional curve fitting parameters (5 and s). More recently, Bouc-Wen
(Bouc, 1971; Wen, 1976) model has been used to characterize the soil behavior under
dynamic loading (Gerolymos & Gazetas, 2005). Several researchers adopted the
approaches mentioned above for nonlinear soil behavior to dynamic p-y curves, which

are summarized in Table 6.3.

The Bouc-Wen model is used in this thesis to construct the backbone of dynamic p-y
curves. The model requires the initial stiffness (Kpy), the ultimate resistance (pu), and
the degree of nonlinearity parameter (n). The proposed equations for these parameters

are given in the following sections.

The accuracy of the proposed model is shown by comparing the results with the 3-
dimensional analysis outputs. Furthermore, the validity of the proposed model was
demonstrated by implementing the proposed curves in the simulation of centrifuge
tests. Besides, additional numerical analyses are carried out in FLACSP with the
selected earthquake records, and the soil-pile-structure interaction analyses are
compared with the proposed model and API results.
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Table 6.3 : The models used in the literature for dynamic p-y curves.

Model Ramberg&Osgood  Hyperbolic model ~ Bouc-Wen model

p= apry + (1 - a)pu‘f

dy
 kny y ¢ = (A—E"(b + g sgn (dy f)))yref
p-y form p_l p\! P=7 2
ta (ﬁ) kini * Du ag
dy . ,
=(A- &™) for monotonic loading
yref
kini= initial o
) kini= initial stiffness
L a and r are the stiffness .
Definitions pu: lateral load capacity
constants pu: lateral load ) .
) &: degradation function
capacity
Desai and Georgiadis,(1992);
. Gerolymos,(2006); Varun,(2010); Varun et al.
Used by Kuppusamy (1980); Lim and Jeong, (2013)
Gohl, (1991) (2018)

6.2.1 Initial pile-soil stiffness

The initial pile-soil stiffness represents the small displacement behavior of the soil-
pile interface. Since the HS-Small model is used for the static p-y curves, which
employs the small-strain stiffness, the equation proposed for the static p-y curves can

also be used for initial pile-soil stiffness for dynamic p-y curves.

6.2.2 Ultimate soil resistance

Most of the studies about dynamic p-y curves have adopted the API relation for
ultimate soil resistance (pu). Fleming et al. (2008) proposed a simple equation (higher
at shallow depths), where Do 'vo normalized the ultimate resistance. However, pu was
linearly dependent on the depth in Fleming et al. (2008), contradicting the findings in
this study. Furthermore, it was recognized in this thesis that the pu is not linearly
dependent on the pile diameter (D) as well. The nonlinear variation complies with the
theoretical results given by Reese et al. (1974). Therefore, Fleming's (2008) suggestion
is modified in this study, and equation 6.7 is proposed to consider the depth and pile

diameter better.

Cc

Pu Z
Tt _a4bx(=
Do.volel.S (D) (67)
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Equation 6.8 includes the normalized depth (z/D) in the power of passive earth pressure
coefficient Kp, which provides the nonlinear variation with depth and diameter. The
Matlab Curve fitting tool was employed to determine the model parameters and fitting
procedure yields: a=1, b=0.639, and ¢=0.815. The comparison of the data obtained
through 3D analysis with the proposed equation is given in Figure 6.25. It should be
stated that the loading condition is a key factor affecting the ultimate resistance. The
proposed equation was derived from the numerical analyses where the pile was
subjected to rigid lateral movement. However, pile head loading might provide higher
resistances than the rigid pile movement since the passive resistance is generated at
the back of the pile in the pile head loading. Furthermore, as the dynamic (earthquake)
loadings cause both inertial and kinematic effects on the pile, the pu values obtained
by the rigid pile movement could be more accurate than the ones obtained from pile

head loading.

pu/(le D Kpl's)

z/ID
w

6 O 3D Analysis Result

|—— Proposed function

Figure 6.25 : The variation of ultimate soil resistance with normalized depth under
lateral load (dynamic pile loading).
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6.2.3 Degree of nonlinearity

Dynamic p-y curves can be defined with the backbone curve and loading/unloading
rule. The initial pile-soil stiffness (Kpy) and the ultimate soil resistance (pu) are the key
parameters to represent the very small and the large displacement behavior,
respectively. Besides, the backbone curve formulation should include the degree of

nonlinearity for moderate displacement levels.

This study used Wen (1976) model to describe the nonlinear dynamic p-y curves.
Equation 6.8 defines the nonlinear relation as follows:

b= apry + (1 - a)Puf (68)

where the parameter a is the post-yielding ratio.

The degradation parameter ¢ in equation 6.8 describes the nonlinear relation, and
Equation 6.9 is suggested by Wen (1976) for ¢ in a differential form. The parameter n
in the equation controls the degree of nonlinearity. The parameters fand y govern the
unloading/reloading behavior, where S=y=0.5 corresponds to the Masing (1926)

criteria.

d¢ = (A—121"( (6.9)

In this study, the best fit to the numerical analysis results is obtained with «=0, while

the parameter n depends on the confining stress (Equation 6.10).

o\ 034
n=0.12 <—m> (6.10)
Pa

Equation 6.11 can be rewritten using the relation between the confining stress and
reference strain (using equation 3.11). Therefore, the degree of nonlinearity parameter
can be written in terms of the reference strain of soil (Equation 6.11). The schematic

view of the proposed model is given in Figure 6.26.

n = 3.14y,.%97 (6.11)
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Figure 6.26 : The proposed model for dynamic p-y curves in cohesionless soils.

6.2.4 Accuracy of the proposed model

The backbone curves of the proposed model for D=0.65 m Dr=55% were given in

Figure 6.27, Figure 6.28, and Figure 6.29, together with the p-y curves obtained in the

3D numerical analyses. According to the figures, the backbone curves are quite close

to the dynamic p-y curves obtained by the 3D numerical models.
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Figure 6.27 : Comparison of the proposed p-y curves and 3D numerical analyses
results for D=0.65 m, Dr=55 %, and y:=0.0158 %.
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Proposed Backbone ————— 3D Numerical
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Figure 6.28 : Comparison of the proposed p-y curves and 3D numerical analyses
results for D=0.65 m, Dr=55 %, and y:=0.0217 %.
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Figure 6.29 : Comparison of the proposed p-y curves and 3D numerical analyses
results for D=0.65 m, Dr=55 %, and yr=0.0352 %.
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The curves obtained with the proposed model are plotted in Figure 6.30 together with
the API (n=2) for comparison. The curves in Figure 6.27, Figure 6.28, Figure 6.29
were obtained using the fourth-order Runge-Kutta approach since a numerical method

is required for the solution.

— . —n=005%5 ----- n=0.075  ------- n=0.12 n=2
1 F EET e iainiieieira e
o9/ - IT
08 £
07 £ 1=0.0158 (n=0.055)
06 / v,=0.0217 (n=0.075)
5059 1,=0.0352 (n=0.12)
0.4 1 API (n=2)
03 4/
02 4
01§
0 —_—t
0 10 20 30 40 50

y/ Yre

Figure 6.30 : The proposed p-y curves (p/pu Vs. y/yrer) for various confining stresses
compared to API.

6.2.5 Validation of the proposed model

The validation analyses for the proposed model were performed using the BNWF
method (Boulanger et al., 1999). The first validation includes comparing the analysis
with the centrifuge test results in the verification analyses. Besides, a new soil-single
pile-structure model was created in FLACS®P, and the dynamic analyses were
performed under six different earthquake records.

6.2.5.1 Comparison with the centrifuge tests

The single pile models presented by Gohl (1991) and Wilson (1998) were created in
the structural analysis software SAP2000 (2016). The dynamic loading in the BNWF
method is the time histories of soil displacements obtained through 1D site response
analyses (Step 1). First, a structural beam element was used for the single pile. Next,
the soil pile interface, including the far-field and near-field elements, was created.
Then, the near-field part of the interface was modeled using the nonlinear link elements
with the hysteretic Wen model. Next, the far-field elements were modeled using a
linear spring-dashpot link. Finally, a fully dynamic analysis was performed by
applying the free field displacements to the interface elements. The schematic view of
the BNWF method is shown in Figure 6.31.
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Figure 6.31 : The schematic view of the beam on nonlinear Winkler foundation
method (BNWF) for pile analysis.

The dynamic backbone of p-y curves obtained from the numerical analyses was
implemented for the near-field in validation analyses. The model has three parameters:
Initial stiffness (Kpy), ultimate resistance (pu), and degree of nonlinearity (n). The
default values for unloading/reloading parameters (#and ») were 0.5 in Wen's model,
which corresponds to Masing's criteria. API (2007) method was also employed for the
near-field elements for comparison. The radiation-damping model of Gazetas and
Dobry (1984) was adopted for the linear far-field element (Equation 6.12). A very high
stiffness value (10" kN/m) was assigned to the linear (far-field) element not to increase
the flexibility of the system since the radiation damping element was placed in series

with the near-field (p-y) element as suggested by Wang et al. (1998).

5/4
“ )14 [L a1/ (6.12)
4BpsVs (1 -v)

In equation 6.12, Vs is the shear wave velocity, B is the radius of the pile, and ao is the
dimensionless frequency factor=2xfB/Vs where f can be taken as the dominant

frequency of the earthquake record.

The General Quadratic/Hyperbolic (GQ/H) model (Groholski et al., 2016) was
employed in DeepSoil (2017) for free field soil displacements, as the displacement
time histories of centrifuge tests were accurately captured. Figure 6.32, Figure 6.33,
and Figure 6.34 show the acceleration response spectra of the motions at the ground
surface obtained by 1D analyses, comparing with those in the centrifuge tests of Gohl
(1991) and Wilson (1998).
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Figure 6.32 : Acceleration response spectra at the ground surface obtained from the
1D site response analyses for Gohl (1991).
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Figure 6.33 : Acceleration response spectra at the ground surface obtained from the
1D site response analyses for Event K (Wilson, 1998).
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Figure 6.34 : Acceleration response spectra at the ground surface obtained from the
1D site response analyses for Event N (Wilson, 1998).

Absolute displacements from the 1D analyses were applied to the fixed end of the
links, and nonlinear time history analyses were performed. The Newmark method was
used for the direct integration, and the time integration parameters were y=0.6 and
£=0.3025 to provide the numerical damping as suggested by Boulanger et al. (1999).
The result of the superstructure accelerations obtained in the numerical analysis was
compared with the centrifuge test results by the acceleration response spectrum (ARS)
in Figure 6.35, Figure 6.36, and Figure 6.37 for Gohl (1991), Event K and Event N,
respectively. The figures show that the peak superstructure accelerations were close to
the centrifuge test results. However, the spectral accelerations were somewnhat
overestimated at the low-period (T<0.8-1.0 s) region in Gohl (1991) and Event K
(Wilson, 1998).

On the other hand, the accuracy for spectral accelerations was high in Event N (Wilson,
1998) for both the API (2007) and the proposed model. In this stage, the major
component of the BNWF analyses was the free-field soil displacements obtained
through the 1D site response analyses. The accuracy in the superstructure accelerations
(especially for Event N) can be attributed to the well-estimated displacement time
histories obtained in the site response analyses. Therefore, the superstructure
acceleration results can be promising, especially given the complex loading sequence

in the centrifuge tests.
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Figure 6.35 : ARS of the superstructure obtained through the BNWF method and
centrifuge test results for Gohl (1991).
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Figure 6.36 : ARS of the superstructure obtained through the BNWF method and
centrifuge test results for Event K (Wilson, 1998).
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Figure 6.37 : ARS of the superstructure obtained through the BNWF method and
centrifuge test results for Event N (Wilson, 1998).

The results for the variation of the maximum bending moment with depth are given in
Figure 6.38. Since the maximum bending moments are directly related to the
superstructure acceleration, the numerical analysis results with the proposed model
were quite close to the centrifuge test results. The bending moments obtained from the
numerical analyses were slightly higher than the centrifuge test results both for the
proposed model and the API in Event K, where the demand was low. However, the
API (2007) overestimated the bending moments in Gohl (1991) and Event N (Wilson,
1998). To sum up, the suggestion of API (2007) yields higher bending moments than

the centrifuge tests for all records, particularly at higher demands.
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Figure 6.38 : Maximum bending moments obtained through the BNWF method and
centrifuge test results.
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Recent studies have shown that the Bouc-Wen model can be used effectively for
dynamic p-y curves. This study shows that the normalized backbone is not a unique
curve but varies with depth due to soil nonlinearity. The degree of nonlinearity
parameter n for the dynamic p-y curves was related to the soil nonlinearity by the
reference strain, and closer agreement to the centrifuge tests was achieved. However,
the model parameters should be improved in future studies, as the estimated curve with
the proposed parameters provides slightly lower responses than the numerical analysis

results in the small displacement region.

6.2.5.2 Comparison with the 3D analyses

A new single pile-soil-structure model was created and analyzed in FLAC®P using the
additional earthquake records. The numerical model consists of a single layer of dry
cohesionless soil where Dr=55%. The unit weight of the soil was 18 kN/m3. The
friction angle and dilation angle values were 36° and 4°, respectively. The model
dimensions were 20x20x30 in X, y, and z directions. The soil properties used in the
verification analyses are given in Table 6.4. The bottom boundary of the model was
fixed, and the lateral sides were free-field to prevent wave reflection from the model

boundaries to the model.

Table 6.4 : The soil properties used in the 3D model of validation analyses.

Parameter Value

Effective unit weight, y' (kN/m3) 18

Relative density (%) 55
Friction angle, ¢' (°) 36
Dilation angle v (°) 4
Poisson's ratio, v 0.30

The diameter of the single pile was 0.65 m in the analyses, and the elastic modulus of
concrete (E=30 GPa) was set to the pile. The pile length was 12 m, setting the
slenderness ratio L/D=18 (flexible pile). A single-degree-of-freedom system was
created with a column having the same properties as the pile. A 40-tonne mass was
placed at the top of the 5 m high column. The fixed base natural period of the single
degree of freedom system was approximately 0.5 s. The parameters for the pile and

the structure used in the numerical analyses are given Table 6.5.
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Table 6.5 : Pile and superstructure properties used in the numerical analyses.

Pile Structure

. Flexural _

Diameter | Length | E I Mass Stiffness H | Trixed
2 4 !

(m) (m) | (MNm) ) M) | g ey | )| ©)

0.65 16 30000 |0.00876 | 40 263 50 |05

The earthquake records were selected from the PEER (2005) and AFAD (2022)
databases, with corresponding parameters given in Table 6.6. The stations where the
average shear wave velocity (Vs3o) values were minimum of 650 m/s (almost
engineering bedrock) were selected so that the input motions could be directly applied
to the bottom of the model. The original records were linearly scaled by the given
factors (SF) such that the peak ground accelerations were around 0.15g without
changing the frequency content. The acceleration time histories of the selected motions

are shown in Figure 6.39.

Table 6.6 : The earthquake records used in the soil-pile-structure interaction

analyses.
PEER/ _ R (Vo)s Pga
Earthquake AEAD Year M, Station Fault up 0 SF
km) e @
Code (m/s)
EQ-1 Tabas, Iran RSN143 1978 7.35 Tabas Reverse 2 766 0.14 0.17
EQ-2  Irpinia ltaly-01 ~RSN285 1980 6.90 ﬁ;?:i‘;" Normal 8 650 013 1.0
Taiwan SMART1
EQ-3 SMART1(45) RSN572 1986  7.30 E02 Reverse 51 672 014 1.0
Gilroy Reverse

EQ-4 Loma Prieta RSN769 1989 6.93 183 663 013 10

Array #6 Oblique

EQ-5  Northridge-01  RSN1091 1994 6.69 Yasquez Reverse 24 996 015 1.0
Rocks Park
EQ-6  Kobe, Japan RSN1108 1995 69  (obe Strike 09 1043 015 056

University slip

EQ7  Kocaeli, Turkey RSN1161 1999 7.6  Gebze fltigke 109 792 015 058
EQs Lo RSN1206 1992 762 CHY042 QEYESZ 28 665 015 15
EQ-9  Duzce, Turkey ~ RSN1613 1999  7.14 kgg’g’”t g:lr;lke 26 782 016 3.0
EQ-10  Elazig, Turkey  A4404 2020 6.8 m”;g; gﬂg‘e 25 1380 0.5 0.625
EQ-11  Samos, Greece  A3514 2020 6.6 iargirf‘kh’ Normal 77 836 015 2.63
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Figure 6.39 : The input motions of the selected earthquakes for the validation
analyses.

Numerical analyses were performed with the earthquake records given in Figure 6.39
to validate the proposed 1D model by comparing the results with the 3D analyses. In
addition, the acceleration response spectra (ARS) for the superstructure and maximum
bending moments along the pile were compared. A comparison of the acceleration
response spectra, including the input motions (I.M.), is given in Figure 6.40. The
results of the suggested method are close to the 3D analysis except for the Kobe
Earthquake (EQ-6). However, the API vyields significantly higher acceleration

demands than the 3D analysis for all earthquake records.
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Figure 6.40 : Acceleration response spectra comparison of 3D analysis results with the proposed method and API.
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According to Figure 6.40, the superstructure acceleration is higher in EQ-6 and EQ-8.
Spectral acceleration of the superstructure reaches its maximum at T=1.0 sec, which
is the period of the soil-pile-structure system. The acceleration response spectra (ARS)
of the selected earthquake records (Figure 6.41) have shown that spectral accelerations
are maximum at T=1.0 sec in EQ-6 and EQ-8. The reason for obtaining greater
acceleration demand in these earthquakes is that the system period is close to the peak
spectral acceleration of the input motions (Soil-Structure interaction effect). The result
has shown that the structure response highly depends on the soil-pile-structure system

period and the frequency content of the input motion.

1.0

0.5 +

Spectral Acceleration, S, (9)

0.0

0.01 10.00

T, sec

Figure 6.41 : Acceleration response spectra of the selected earthquake records.

The bending moment comparison along the pile is given in Figure 6.42. Similar to the
acceleration response spectra, the suggested method results in considerably close
bending moments to the 3D analysis except for the EQ-6 (Kobe Earthquake). The
magnitude of the bending moments is directly related to the acceleration of the
superstructure. Therefore, the maximum bending moment of the selected earthquake
records occurred in EQ-6, where the superstructure acceleration is maximum. The API
results in significantly higher acceleration demands in the superstructure for all
records, hence higher bending moments in a pile. In conclusion, the suggested method
considerably increases the performance of the beam on the nonlinear Winkler

foundation method, giving closer responses to the 3D numerical analysis.
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Figure 6.42 : The bending moment comparison of 3D analysis results with the proposed method and API.
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7. CONCLUSIONS

In this thesis, 3-dimensional nonlinear analyses were carried out to investigate the load
resistance-deflection relationship for piles in cohesionless soils. The main contribution
of the study is the enhancement of the p-y curves used in static and dynamic soil-pile-
structure interaction analyses. For this purpose, 3D numerical models were created for
static and dynamic analyses and verified by the field and laboratory tests in the
literature. Parametrical analyses were performed, and the p-y curves were obtained
under static and cyclic (dynamic) loading. Mathematical models were proposed for

static and dynamic p-y curves.

7.1 Research Findings

The laterally loaded pile behavior under lateral loads was investigated by numerical
analyses in FLAC®P (Itasca Consulting Group, 2019). The pile was modeled as a linear
elastic material in the numerical analyses, and the HS-Small model represented the
soil nonlinearity. The numerical model was verified by a well-known field test (Reese
etal., 1974), and the parametric analyses were conducted to show the effect of the pile
flexural stiffness, the pile diameter, the relative density of soil, and the soil nonlinearity
on the static p-y curves. Based on the numerical analysis results and the measurements
from the field test data, an enhanced static lateral load-deflection (p-y) model was
proposed. According to the proposed model, the static p-y curves can be characterized
by the initial pile-soil stiffness (Kpy), ultimate lateral resistance (pu), and nonlinearity
parameters (£ and s). In addition, the small strain modulus of soil (Eo) was included in
the Kpy formulation so that the small displacement behavior was considered accurately.
The modified model overcomes the drawbacks of the single stiffness models by
incorporating the degree of nonlinearity parameters, which allows controlling the

stiffness reduction for small to moderate displacements.

The accuracy of the proposed static p-y model was shown by comparing the model
predictions with the 3D numerical analysis results. Besides, field and centrifuge tests

were selected from the literature (Georgiadis et al., 1992; Reese et al., 1974) for
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validation purposes. The laterally loaded pile problem was analyzed using the
proposed static p-y curves, and reasonably good agreement was obtained in the
bending moments along the pile. The proposed model better captured the bending
moments at deep levels than the APl (2007) method. In addition, the load-deflection

behavior predicted by the proposed model generally agreed with the test results.

On the other hand, the deflections obtained by API (2007) were significantly
underpredicted, especially at the larger lateral loads. Hence, the proposed static p-y
model better represents the response of the laterally loaded piles in cohesionless soils.
Overall, the proposed static p-y model has significantly enhanced the efficiency of the
Winkler spring approach by taking the soil nonlinearity and stiffness reduction into

account more elaborately.

A model for dynamic p-y curves was then proposed that considers the initial stiffness
(Kpy), ultimate resistance (pu), and degree of nonlinearity. First, a numerical pile-soil-
structure model was created in FLAC®P and verified by two centrifuge tests published
in the literature. Verification analyses have shown that soil nonlinearity can be
considered using the modulus degradation curves. The parametric analyses were then
conducted to investigate the effect of the pile diameter, the relative density of soil, and
the soil nonlinearity on the dynamic p-y curves. Based on the parametric analyses, a
mathematical model was proposed for the dynamic p-y curves for cohesionless soils.
The proposed model was validated through the beam on nonlinear Winkler foundation
(BNWF) approach, which is mostly used in analyzing and designing piles subject to
lateral loading. Based on the parametric analyses, pile diameter has a more dominant

effect on the ultimate resistance (pu).

In contrast, the relative density of soil governs both the initial stiffness (Kpy) and the
ultimate resistance (pu). The soil nonlinearity has a crucial effect on the degree of
nonlinearity of the dynamic p-y curves. All these parameter influences on the dynamic

p-y curves were carefully studied and integrated into a mathematical model.

The proposed model characterizes the backbone of dynamic p-y curves based on the
three leading parameters (initial stiffness Kpy, ultimate resistance pu, and degree of
nonlinearity n). The Bouc-Wen mathematical formulation best fitted the dynamic p-y
curves obtained through the parametric analyses. The initial pile-soil stiffness (Kpy)

and the ultimate resistance (pu) represent very small and large displacement behavior,
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respectively. Therefore, an equation was proposed for Kpy using the small-strain
stiffness of soil (Eo). A simple yet efficient equation was proposed for ultimate soil
resistance (pu), nonlinearly varying with depth and pile diameter. The numerical
analyses showed that the p-y curve nonlinearity depends on the modulus reduction
curves, which is the function of effective confining stress in cohesionless soils. In the
model, the degree of nonlinearity parameter (n) was directly related to the reference
strain , which is a soil parameter, and a function of effective stress. Therefore, the
degree of nonlinearity parameter n mostly governs the behavior for small to moderate

displacements.

The validation analyses were performed for the centrifuge tests published in the
literature. As the earthquake records used in the centrifuge tests were limited, a new
numerical model was created in FLAC®P, and additional analyses were carried out with
the selected records. The 3D analysis results were compared with the BNWF analyses.
The validation analysis results have demonstrated that the proposed dynamic p-y
curves could reasonably estimate the pile and structure response. The promising results
make the proposed equations highly practical, considering the complexity of modeling
the soil-pile interaction problem. The advantage of the proposed model is the ability
to create hysteretic p-y curves that could involve the soil nonlinearity effect. Since the
nonlinear soil behavior is represented by the reference strain (), which can be
determined by laboratory tests, the incorporation of the »# into dynamic p-y formulation
allows us to consider the true soil-pile interaction behavior under dynamic loading.
Although the model was proposed for cohesionless soils using the modulus
degradation curves, it can be extended to any soil provided that the reference strain is
accurately determined. Overall, the proposed model for dynamic p-y curves can
consider the dynamic soil properties (Gmax and yrer) that significantly affect the

nonlinear p-y behavior.

7.2 Recommendations for Future Studies

This thesis focused on the single pile behavior under lateral loading. However, piles
are constructed as a group in practice to withstand external loads. Therefore, the group

pile behavior must be considered in future research studies.
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The numerical analyses have shown that the pile and structure response highly depend
on the free-field soil displacements obtained by the site response analysis. This study
used the Mohr-Coulomb model with a hysteretic damping approach and General
Quadratic and Hyperbolic Model (GQ/H) for 3D and 1D analyses, respectively. In the
Mohr-Coulomb model, the Masing rule was employed for unloading/reloading
behavior which is known to cause overprediction in the damping ratios under large
strains. More elaborate 3D models are available in the literature, but the model
parameters are quite complex and require more effort for parameter calibration.
Therefore, future studies must be carried out to develop less complicated models for
engineers to be used in 3D analyses. On the other hand, soil response under earthquake
loading can be determined quite efficiently in free-field site response analyses with 1D
models. Besides, employing non-masing rules is relatively simple in 1D analyses.

This thesis investigated pile behavior under lateral load using the total stress approach
by modulus degradation curves. Therefore, the proposed methods could be applied to
dry and saturated soils. However, saturated sand might liquefy during a seismic event.
Thus, 3D and 1D soil models must be improved to capture the true behavior of
liquefied soils better. Besides, the cohesionless soils are usually partially saturated in
the field. Hence, the effect of saturation degree and liquefaction must be considered

separately.

In this study, the earthquake loading was given in the horizontal direction. However,
earthquakes induce the movement in 3-dimension simultaneously. Therefore, future
studies must consider the bi-directional movement and the vertical component of the

motion, which might significantly impact the regions where the fault is close.
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APPENDIX A: Acceleration-time histories obtained in the verification analyses
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Figure A.1 : Acceleration time history of the superstructure obtained in 3D
numerical analysis compared with the test results (Gohl, 1991).
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Figure A.2 : Acceleration time history of the superstructure obtained in 3D
numerical analysis compared with the test results (Event K).
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Figure A.3 : Acceleration time history of the superstructure obtained in 3D
numerical analysis compared with the test results (Event N).
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APPENDIX B: Soil resistance and pile displacement-time histories in the parametric

analysis
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Figure B.1 : The pile displacement and soil resistance time histories for D=0.65 m,
Dr=55 %.
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Displacement,y =~ — — — Soil resistance, p
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Figure B.2 : The pile displacement and soil resistance time histories for D=1.0 m,

Dr=55 %.
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Figure B.3 : The pile displacement and soil resistance time histories for D=1.6 m,
Dr=55 %.
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Figure B.4 : The pile displacement and soil resistance time histories for D=0.65 m,
Dr=30 %.
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Figure B.5 : The pile displacement and soil resistance time histories for D=0.65 m,
Dr=80 %.
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Figure B.6 : The pile displacement and soil resistance time histories for D=0.65 m,
Dr=55 %, yr=0.0158 %.
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Figure B.7 : The pile displacement and soil resistance time histories for D=0.65 m,
Dr=55 %, yr=0.0217 %.
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Figure B.8 : The pile displacement and soil resistance time histories for D=0.65 m,
Dr=55 %, yr=0.0352 %.
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APPENDIX C: Acceleration-time histories obtained in the validation analyses with

the centrifuge test results
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Figure C.1 : Comparison of the superstructure acceleration obtained in the
centrifuge test and API for Event Gohl.
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Figure C.2 : Comparison of the superstructure acceleration obtained in the
centrifuge test and API for Event K.
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Figure C.3 : Comparison of the superstructure acceleration obtained in the
centrifuge test and API for Event N.
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Figure C.4 : Comparison of the superstructure acceleration obtained in the
centrifuge test and suggested model for Event Gohl.
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Figure C.5 : Comparison of the superstructure acceleration obtained in the
centrifuge test and suggested model for Event K.
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Figure C.6 : Comparison of the superstructure acceleration obtained in the
centrifuge test and suggested model for Event N
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APPENDIX D: Pile head bending moment-time histories obtained in the validation
analyses with the selected earthquake test results
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Figure D.1 : Comparison of the 3-dimensional dynamic analysis with the proposed
method and API (Set-1).
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Figure D.2 : Comparison of the 3-dimensional dynamic analysis with the proposed
method and API (Set-2).
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