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DEVELOPMENT of LATERAL LOAD RESISTANCE-DEFLECTION 

CURVES for PILES in COHESIONLESS SOILS UNDER EARTHQUAKE 

EXCITATION 

SUMMARY 

 

Pile foundations must be designed safely to withstand the lateral loads such as wave 

loads and seismic loads in offshore/onshore structures, seismic loads in bridges, 

buildings, port structures etc. The most common analysis method for the design is the 

Winkler spring approach. Researchers have suggested nonlinear formulations for the 

lateral load resistance-deflection (p-y) curves, but the contribution of the degree of soil 

nonlinearity was not studied thoroughly. The main drawback of the current approach 

is the use of a single stiffness in considering the soil nonlinearity. This study 

investigates the laterally loaded pile problem using the pressure-dependent hardening 

soil model with small-strain stiffness (HS-Small Model), where the degree of soil 

nonlinearity is better integrated. The numerical model was created, and parametric 

analyses were carried out on the verified model for various pile and soil properties. A 

modified hyperbolic model was proposed for static p-y relation, including the initial 

stiffness, ultimate soil resistance, and degree of nonlinearity parameters based on the 

numerical analysis results. The validity of the model was shown by simulating the field 

and centrifuge tests from the literature. The proposed model agrees with the test results 

in the variation of bending moment along the pile. Besides, a significant enhancement 

was provided in the estimation of pile deflections. Therefore, the proposed model with 

four parameters can more precisely consider the soil nonlinearity from very small to 

large displacements. The proposed p-y curves can be utilized in the design of piles 

subject to static lateral loading. 

The analysis of dynamic soil-pile interaction problems requires the relation of soil 

resistance to lateral loading that is represented by nonlinear p-y curves in the beam on 

the nonlinear Winkler foundation (BNWF) approach. Current methods for p-y curves 

are either based on static load tests or cannot accurately consider the dynamic soil 

nonlinearity. This study investigates the dynamic soil-pile interaction in cohesionless 
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soils by numerical analyses to better characterize the p-y curves considering the 

nonlinear soil behavior under dynamic loading. A numerical pile-soil-structure model 

was created in FLAC3D and verified by two centrifuge tests published in the literature. 

The parametric analyses were performed to obtain the p-y curves for various pile 

diameters, soil relative densities, and degrees of nonlinearities. Based on the 

parametric analyses, a mathematical model was proposed for the dynamic p-y curves 

for cohesionless soils. The proposed model characterizes the backbone of dynamic p-

y curves based on the three leading parameters (initial stiffness Kpy, ultimate resistance 

pu, and degree of nonlinearity n). The numerical analyses showed that the p-y curve 

nonlinearity mainly depends on the employed modulus reduction curves of soils. In 

the model, the degree of nonlinearity parameter (n) was directly related to the soil 

parameter "reference strain" (r), which solely represents the modulus reduction curve 

of soils. In this regard, the dependence on various dynamic soil parameters was 

diminished by correlating the dynamic p-y curves to the reference strain. The 

validation analyses performed in structural analysis software demonstrated that the 

proposed dynamic p-y model could accurately estimate the pile and structure response 

under earthquake loading by incorporating the hysteretic nonlinear soil behavior. 

Superstructure accelerations and bending moments along the single pile obtained using 

the proposed model under different earthquake records were closer to the 3-

dimensional numerical analysis results when compared with the results calculated by 

API. Finally, the proposed static and dynamic p-y models will contribute to the design 

of piles by improving the initial stiffness, ultimate resistance and nonlinearity of the 

static load-displacement behavior and by integrating the dynamic soil nonlinearity and 

hysteretic behavior under directly applied seismic loads. 
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KOHEZYONSUZ ZEMİNLERDE GÖMÜLÜ KAZIKLAR İÇİN DEPREM 

YÜKLERİ ALTINDA YATAY YÜK-YERDEĞİŞTİRME BAĞINTILARININ 

GELİŞTİRİLMESİ 

ÖZET 

 

Kazıklı temellerin ön tasarımı statik yükler kullanılarak yapılabilir, ancak sismik 

olarak aktif bölgelerdeki kazıkların nihai tasarımı dinamik yükleri de içermelidir. 

Kazıkların deprem yüklemesi altındaki davranışı, yanal yüklemeli bir kazık problemi 

olarak kabul edilebilir. Yanal yüklü kazık problemlerinde yaygın olarak iki yöntem 

kullanılmaktadır: Sürekli ortam yaklaşımı ve Winkler yay yaklaşımı. Her iki yöntemde 

de kazık yapısal bir kiriş elemanı olarak düşünülebilir ancak temel fark zeminin 

modellenmesidir. Sürekli ortam yaklaşımında zemin ortamı iki veya üç boyutlu sonlu 

elemanlar kullanılarak modellenebilirken, yay yönteminde zeminin yanal yüklemeye 

direnci kazık boyunca yerleştirilen bir dizi yay ile idealleştirilmektedir. Yay yöntemi, 

lineer olmayan Winkler yöntemi olarak adlandırılmakta ve zemin-kazık sisteminin 

yanal yüke tepkisi, yanal yük-yer değiştirme (p-y) eğrileri ile dikkate alınmaktadır. 

Tarihsel olarak kazık ve üst yapı, doğrusal davranışa uygun modellenmiş ve doğrusal 

zemin-kazık-yapı etkileşimi birçok araştırmacı tarafından yeterince çalışılmıştır. 

Ancak zeminler, düşük deformasyonlar altında bile yüksek oranda doğrusal olmayan 

davranış sergilemektedir ve analizlerdeki temel zorluk, bu doğrusal olmama durumunu 

hesaba katan modelleme yaklaşımından kaynaklanmaktadır. 

Kazıklı temeller, açık deniz veya karada bulunan yapılarda yanal yüklere dayanacak 

şekilde tasarlanmalıdır. En yaygın analiz yöntemi bir önceki paragrafta özetlenen 

Winkler yay yaklaşımıdır. Araştırmacılar, Winkler yay yönteminde kullanılmak üzere 

yanal yük direnci-deformasyon (p-y) eğrileri için doğrusal olmayan formülasyonlar 

önermişler, ancak zemin nonlineeritesinin etkisi tam olarak incelenmemiştir. 

Literatürde en yaygın kullanılan yaklaşımın yüksek başlangıç rijitliğe sahip olduğu 

birçok araştırmacı tarafından vurgulanmıştır. Son zamanlarda yapılan bazı 

çalışmalarda, hiperbolik modelin kullanılması önerilmiştir. Bununla birlikte, 
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hiperbolik modelin dezavantajı, p-y eğrilerinin doğrusal olmama durumunu temsil 

etmek için tek bir rijitlik parametresini kullanmasıdır. Buna göre kullanılan rijitlik 

parametresi, çoğu durumda p-y eğrilerini tanımlamak için yetersizdir. Bu nedenle, 

kazık yer değiştirmelerini ve iç kuvvetleri doğru bir şekilde tahmin etmek için analiz 

öncesi seçilecek rijitlik parametresi çok önemli olabilmektedir.  

Bu tezde yanal yüklü kazıkların davranışı 3-boyutlu sonlu farklar analizleri ile 

incelenmiştir. Analizlerde statik ve dinamik yükleme durumu ayrı olarak dikkate 

alınmıştır. Statik analizlerde HS-Small zemin modeli kullanılmıştır ve zeminin 

nonlineeritesi uygun bir şekilde tanımlanarak analizlere entegre edilmiştir. 3-boyutlu 

analizlerin doğrulanması amacıyla literatürde detayları bulunan gerçek ölçekli bir saha 

deneyi seçilerek sayısal modeli oluşturulmuştur. Oluşturulan modelde kazık ve zemin 

parametreleri belirlenerek yanal yük kazık başlığından uygulanmıştır. Kazık-zemin 

sistemi yanal yük altında analiz edilerek yanal yük-yerdeğiştirme ilişkisi elde 

edilmiştir. Ayrıca belirli derinliklerde yanal yük-yerdeğiştirme eğrileri bulunmuştur. 

Elde edilen bu eğriler literatürde verilen saha deneyi sonuçlarıyla karşılaştırılarak 

oluşturuan sayısal modelin doğruluğu irdelenmiştir. 

Sayısal modelin geçerliliği bir saha deneyi ile gösterildikten sonra parametrik analizler 

için ayrıca bir model kurulmuştur. Belirli kazık ve zemin özellikleri seçilerek bu 

parametrelerin yanal yük-yer değiştirme eğrilerine olan etkileri sayısal analizler ile 

incelenmiştir. Statik p-y ilişkisi için, sayısal analiz sonuçlarına dayalı olarak başlangıç 

rijitliği, nihai zemin direnci ve nonlineerite parametrelerini içeren dört parametreli 

modifiye hiperbolik model önerilmiştir. p-y eğrisinin başlangıç rijitliği zeminin 

başlangıç modülüne, kazık çapına ve derinliğe bağlı olarak verilmiştir. Nihai zemin 

direnci ise; kazık çapına, düşey efektif gerilmeye, yanal zemin basıncı katsayısına ve 

derinliğe bağlı olarak verilmiştir. p-y eğrilerinin nonlineeritesi zemin nonlineer 

davranışına bağlı olarak sunulmuştur. Zemin nonlineeritesi ise başlangıç modülünün 

sekant modülüne oranı olarak tanımlanmıştır. Bu oran büyüdükçe (sekant modülü 

küçüldükçe) nonlineerite artmaktadır. Önerilen p-y eğrilerinin 3-boyutlu sayısal analiz 

sonuçlarına yakınlığı gösterilmiştir. Daha sonra modelin geçerliliği literatürden bir 

saha deneyi ve ve santrifüj testi simüle edilerek gösterilmiştir. Buna göre önerilen 

model, kazık boyunca eğilme momentinin değişimi konusunda test sonuçlarıyla 

uyumludur. Ayrıca kazık yerdeğiştirme tahmininde önemli bir iyileştirme 

sağlanmıştır. Bu nedenle, önerilen model dört parametreli, çok küçükten büyük yer 



xxix 

değiştirme seviyeleri için, zeminin nonlineeritesini daha iyi bir şekilde dikkate 

alabilmektedir. Önerilen p-y eğrileri, statik yanal yüklemeye maruz kalan kazıkların 

tasarımında kullanılabilir. Ayrıca deprem yükü altında üstyapı ivmelenmesi 

yönetmeliklerde verilen tasarım spektrumları ile tahmin edilebilir. Üstyapı 

ivmelenmesinden kaynaklanan yanal yük kazıklara statik olarak uygulanarak analiz 

edilebilir. Önerilen statik p-y eğrileri, deprem yüklemesini artımsal itme yöntemiyle 

dikkate alan bu yaklaşımlarda da kullanılabilir. 

Deprem yüklemesine maruz kalan kazıklı temellerde dinamik zemin-kazık-yapı 

etkileşimi analizleri gerçekleştirilmelidir. Winkler yay yaklaşımı ile yapılan dinamik 

analizlerde zemin davranışı doğrusal olmayan p-y eğrileri ile temsil edilmektedir. p-y 

eğrileri için mevcut yöntemler ya statik yükleme testlerine dayalıdır ya da dinamik yük 

altındaki zeminin nonlineeritesi doğru bir şekilde dikkate alınamamaktadır. Bu tezin 

amacı, kohezyonsuz zeminlerde bulunan kazıkların dinamik zemin-kazık-yapı 

etkileşimi analizlerinde davranışının daha doğru temsil edilebilmesi için sayısal 

analizler ile dinamik yükleme altındaki nonlineer zemin davranışını göz önünde 

bulundurabilen p-y eğrilerini geliştirmektir. Bu amaçla kazık-zemin-yapı etkileşimi 

analizleri FLAC3D programında 3-boyutlu olarak yapılmıştır. Öncelikle literatürde 

sunulan iki santrifüj deneyi modellenmiş ve sayısal model sonuçları ile test sonuçları 

karşılaştırılarak oluşturulan sayısal model doğrulanmıştır. Analizlerde zeminin 

nonlineer davranışı modül azalım eğrileri ile dikkate alınmıştır. Bu eğriler zeminin 

dinamik özelliği olup referans birim şekil değiştirme (reference strain) parametresi ile 

oluşturulmaktadır. Doğrulama analizleri sonrasında, parametrik analizler için bir 

sayısal model oluşturulmuştur. Farklı kazık çapları, zemin rölatif sıkılıkları ve 

nonlineer zemin davranışı için referans birim şekil değiştirme parametreleri için p-y 

eğrileri sayısal analizler sonucunda elde edilmiştir. Parametrik analizlere dayanarak, 

kohezyonsuz zeminlerdeki kazıkların dinamik p-y eğrileri için Bouc-Wen modeli 

önerilmiştir. Önerilen model, üç parametreye (başlangıç rijitliği, nihai zemin direnci 

ve nonlineerite) dayalı olarak dinamik p-y eğrilerinin omurga eğrisini karakterize 

etmektedir. Sayısal analizler, nonlineer p-y eğrilerinin esas olarak zeminlerin 

nonlineer davranışına ve kullanılan modül azalım eğrilerine bağlı olduğunu 

göstermiştir. 
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Önerilen modelde p-y eğrileri için nonlineer davranış parametresi, zeminlerin modül 

azalım eğrisini temsil eden ve zemin davranışına bağlı olan referans birim şekil 

değiştirme parametresi ile doğrudan ilişkilendirilmiştir.  

Önerilen dinamik p-y eğrilerinin geçerliliği literatürde yayınlanan santrifüj testleri 

kullanılarak gösterilmiştir. Buna göre önerilen model ile elde edilen üstyapı ivmeleri 

ve kazık eğilme momentleri santrifüj deneyi sonuçlarına yakın bulunmuştur. Santrifüj 

testlerinde kullanılan deprem kayıtlarının sayısı sınırlı olduğu için, FLAC3D 

programında yeni bir sayısal model oluşturulmuş ve ilave olarak seçilen deprem 

kayıtları ile ek analizler yapılmıştır. 3-boyutlu analiz ile önerilen model sonuçları 

karşılaştırılmıştır. Zemin-kazık-yapı etkileşim analizi sonuçları, deprem kayıtlarının 

seçiminin çıktılarda anahtar rol oynadığını ortaya koymuştur. Doğrulama analizi 

sonuçları, önerilen dinamik p-y eğrilerinin kazık ve yapı tepkisini doğru bir şekilde 

tahmin edebildiğini göstermiştir. Zemin-kazık-yapı etkileşimi probleminin 

karmaşıklığı göz önüne alındığında, önerilen modelin bu analizler için oldukça pratik 

olduğu söylenebilir. 

Önerilen dinamik p-y modelinin en önemli avantajı, zeminin nonlineer davranışını 

dikkate alabilen histeretik p-y eğrilerini oluşturabilmesidir. Doğrusal olmayan zemin 

davranışı, referans birim şekildeğiştirme parametresi ile temsil edilebilmektedir. Bu 

parametrenin laboratuvar testleri ile belirlenerek dinamik p-y eğrilerine dahil edilmesi, 

dinamik yükleme altında gerçek zemin-kazık etkileşim davranışının dikkate 

alınabilmesine olanak tanımaktadır. Ayrıca, modül azalım eğrileri kullanılarak 

kohezyonsuz zeminler için bu model önerilmiş olmasına rağmen, referans şekil 

değiştirmenin doğru olarak belirlenmesi şartıyla herhangi bir zemine uygulanabilir. 

Genel olarak, dinamik p-y eğrileri için önerilen model, doğrusal olmayan p-y 

davranışını önemli ölçüde etkileyen dinamik zemin özelliklerini dikkate alabilmekte 

ve kazık-zemin-yapı etkileşimlerinde kullanılabilmektedir. 

Önerilen model kullanılarak farklı deprem kayıtları altında, tek kazık boyunca elde 

edilen üst yapı ivmeleri ve kazık eğilme momentleri, API ile hesaplanan sonuçlarla 

karşılaştırıldığında 3 boyutlu sayısal analiz sonuçlarına daha yakın çıkmıştır. Son 

olarak, önerilen statik ve dinamik p-y modelleri, statik yük-yer değiştirme davranışını 

tahmin etmekte ve doğrudan uygulanan sismik yükler altında dinamik davranışı 

dikkate alabilmekte tasarıma katkıda bulunacaktır. 
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1. INTRODUCTION 

Pile foundations are the structural elements embedded in the ground to transmit the 

superstructure loads to the suitable soil. The preliminary analysis in pile foundations 

is often performed considering the vertical loading. However, the piles are subject to 

lateral loading in most cases. Hence, the final design must also include lateral loading. 

Soil behavior under lateral loading affects the pile and the structure response, and the 

structure/pile movement varies the soil behavior simultaneously. Therefore, this 

phenomenon is defined as the soil-pile-structure interaction problem. Commonly 

encountered soil-pile-structure interaction problems are shown in Figure 1.1.  

The initial design of the pile foundations presented in Figure 1.1 should be performed 

using the static loads, but the final design must also include the dynamic loads in the 

earthquake-prone regions. The behavior of piles under earthquake loading can be 

regarded as a laterally loaded pile problem (Reese & Van Impe, 2000). Two methods 

have been used widely for the laterally loaded pile problems: The continuum approach 

and the spring approach. In both approaches, the pile can be considered as a structural 

beam element, but the main difference is the modeling of the soil. In the continuum 

approach, the soil domain is discretized by solid elements, while in the spring method, 

it is idealized either by a single (lumped) spring and dashpot system at the pile head or 

a set of springs through the pile. The latter is called the beam on nonlinear Winkler 

foundation (BNWF) approach, and the reaction of the soil-pile system to the lateral 

load is taken into account by the lateral load-displacement (p-y) curves. Historically, 

the assumption of linear behavior for the pile and the superstructure is valid in most 

cases, and various researchers have well studied the linear soil-pile-structure 

interaction. However, soils exhibit highly nonlinear behavior even under low strains, 

and the main uncertainty in the analyses arises from the modeling approach taking this 

nonlinearity into account.
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Figure 1.1 : Examples of pile foundations in geotechnical engineering.
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The behavior of piles under lateral loads has been studied in the literature extensively. 

Analytical solutions (Kuhlemeyer, 1979; Poulos, 1971) or finite element analyses  

(Baguelin et al., 1977; Banerjee & Davies, 1978; Randolph, 1981) were presented 

using the elastic theory. The early studies were limited to linear analysis, whereas the 

soil behavior is highly non-linear. Therefore, the 3-dimensional finite element 

approach has been extended to consider soil nonlinearity (Brown & Shie, 1991), but 

no proposals have been made for practical design purposes (Reese & Van Impe, 2000). 

The subgrade reaction method is the more straightforward approach to the laterally 

loaded pile problem, where the soil is represented by discrete Winkler springs. 

Although the continuity of the soil is disregarded in this approach, the non-linear 

behavior can be taken into account by lateral load resistance-deflection (p-y) curves. 

While the continuum approach is superior, soil modeling using discrete Winkler 

springs is advantageous, especially for geotechnical/structural engineers dealing with 

complex soil-pile-structure interaction problems. Although the use of the current 

approach has been questioned by some researchers for monopiles (rigid) piles (Burd 

et al., 2020; Murphy et al., 2018; Taborda et al., 2020), a more recent study (Wang et 

al., 2022) has shown that p-y curves can be employed for rigid piles as well. Therefore, 

the p-y curve method is widely used in soil-pile-structure interaction analyses.  

Several researchers have suggested direct correlations for piles in clays using the rigid 

disc analogy (Bransby, 1999; Randolph & Houlsby, 1984; Zhang & Andersen, 2017). 

However, the problem has not been clearly understood for piles in cohesionless soils 

since the shear strength of sands is not constant but depends upon the effective 

confining stress, which increases with depth. Several researchers studied the lateral 

load-displacement behavior of piles in cohesionless soils. The simplest relation was 

the linear equation suggested by Terzaghi (1955), in which the subgrade reaction 

modulus depends on the relative density of the soil. Nonlinear p-y curves based on the 

full-scale field tests were presented by Reese et al. (1974). API (2007) proposed a 

hyperbolic tangent function based on the mentioned field test results. Georgiadis 

(1992) implemented the hyperbolic model into p-y curve relation based on the 

centrifuge test results. Pender (1993) developed a new form using the finite element 

analysis results from back-analyzed full-scale field tests. Thieken et al. (2015) 

developed new equations for p-y curves in sands based on the finite element analysis 

results.  
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On the one hand, the studies mentioned so far have focused on static p-y curves. On 

the other hand, soil-pile interaction under dynamic loads has been investigated by 

many researchers (Allotey & El Naggar, 2008; El Naggar & Novak, 1996; Gazetas & 

Dobry, 1984; Makris & Gazetas, 1992; Nogami et al., 1992; Wang et al., 1998). The 

lateral load-deflection behavior under dynamic loads was studied by Kagawa and Kraft 

(1980), and a procedure was proposed based on the free-field site response analysis 

results. Gohl (1991) adopted the Ramberg and Osgood (1943) model to represent the 

p-y curves under cyclic (dynamic) loading based on the centrifuge test results. Brown 

et al.  Brown et al. (2001) proposed a dynamic p-y curve relation based on the statnamic 

field tests. Lim and Jeong (2018) improve the original hyperbolic function of Kondner 

(1963) by suggesting initial modulus relations using the shake table test results. 

Several other experimental studies have been conducted on the dynamic soil-pile 

structure interaction (Nguyen et al., 2018; Rovithis et al., 2009). However, no practical 

relation was suggested for dynamic p-y curves. Many researchers have studied the 

topic through numerical analyses (Gerolymos et al., 2009; Gerolymos & Gazetas, 

2005; Giannakos et al., 2012; Varun, 2010), and they have suggested the Bouc-Wen 

model to represent the dynamic p-y curves. Choi et al. (2016) have studied the problem 

using the plasticity theory. However, the effect of the degree of soil nonlinearity on 

the dynamic p-y curves has not been studied thoroughly. 

Georgiadis et al. (1992) employed the suggestion of Terzaghi (1955) for the subgrade 

reaction modulus, although it was 2-3 times lower than the value suggested by Reese 

et al. (1974). The most commonly used relation for p-y curves, API (2007), has also 

proposed high values for initial stiffness, as in  Reese et al. (1974). Many researchers 

have indicated the problem of the high initial modulus of API (Choi et al., 2016; Finn, 

2005; Murchison & O'Neill, 1984; Rahmani et al., 2018). Several recent studies have 

employed the hyperbolic model to overcome the mentioned problem (Bouzid, 2021; 

Lim & Jeong, 2018; Lu et al., 2021; Papadopoulou & Comodromos, 2014; Zhou et al., 

2020). However, the drawback of the hyperbolic model is that a single stiffness 

parameter is required to represent the nonlinearity of p-y curves, which is insufficient 

to describe the curves from very small to large displacements. Therefore, selecting this 

stiffness parameter is crucial to predict the pile displacements and internal forces 

accurately. Moreover, another drawback of the API (2007) is the low ultimate 

resistances anticipated at shallow depths (Rahmani et al., 2018; L. Zhang et al., 2005).  
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The most widely used p-y relation is the one suggested by API (2007), which can be 

employed as the backbone for static and dynamic analyses for simplicity. However, 

Boulanger (1999), Finn et al. (2002), Finn (2005), Allotey and El Naggar (2008), 

Thavaraj and Finn (2010), Choi et al. (2016), and Rahmani et al. (2018) stated that the 

main drawback of API (2007) is the high initial modulus which linearly increases with 

depth. Another drawback of the current relations is that the soil nonlinearity under 

dynamic loading is disregarded. According to Nist (2012) even the elastodynamic 

solution methods, in which the pile-soil system is modeled as a single lumped mass, 

may be superior to the p-y curve approach (Correia & Pecker, 2021). They emphasize 

the need for new-generation curves due to the infinite initial modulus and the inability 

of API (2007) to consider the degraded soil stiffness under dynamic loading. Although 

the reliability of the discrete element approach (using p-y curves) is questioned 

(Rahmani et al., 2018), the method is still in practice due to its simplicity since 

modeling and analyzing particularly complex soil-pile-structure systems in the 

continuum approach is cumbersome. Therefore, the existing p-y curve approach needs 

to be improved to capture the soil nonlinearity under cyclic loading. Hence, the current 

p-y curve approach must be improved considering the stiffness degradation for very 

small to large displacements in the soil-pile system. 

This thesis investigates the laterally loaded pile problem in FLAC3D numerically 

(Itasca Consulting Group, 2019). The parametric analyses were performed on the 

verified numerical models to show the effect of soil and pile properties on the static 

and dynamic p-y curves. The hardening model with small-strain stiffness (HS-Small 

Model) was used for the static analyses. The Mohr-Coulomb model with the hysteretic 

damping approach was employed for dynamic analyses. The selected parameters were 

the pile diameter, the relative density of soil, and the degree of soil nonlinearity. The 

modified hyperbolic model was proposed to characterize the static p-y curves. The 

proposed model includes the initial stiffness, the ultimate soil resistance, and two 

additional parameters for the degree of nonlinearity, the last of which allows the p-y 

curves to be efficient from very small to large displacement ranges. The initial stiffness 

of the p-y curves was estimated using the small-strain modulus of soil, which can be 

determined precisely by seismic methods.  

 

 



6 

In addition to the static p-y curves, this thesis suggested a practical approach to 

dynamic p-y curves using the Bouc-Wen model, which includes the initial stiffness, 

the ultimate soil resistance, and the nonlinearity parameter. Two centrifuge tests from 

the literature were simulated numerically by the 3-dimensional analyses performed in 

FLAC3D, and the results of the verification analysis were presented. The parametric 

studies were carried out to show the effect of soil and pile properties on the cyclic p-y 

curves. The total-stress approach considered the soil nonlinearity using the small-strain 

shear modulus and modulus degradation curves. The Bouc-Wen model equations were 

proposed to represent the p-y curves obtained. The validity of the proposed model was 

shown by implementing the proposed curves in structural analysis software. 

The main aim of this thesis is to improve the load-deflection curves of piles under 

lateral loading to be used in earthquake excitation. The thesis includes the following 

chapters:  

Chapter 2: Literature Review: The developments of the current practice for lateral 

load-deflection relationships are summarized. Past studies on the subject are given, 

and crucial conclusions are presented. 

Chapter 3: Methods for Dynamic Soil-Pile-Structure Interaction Analyses: The 

analysis methods are outlined in this chapter. Modeling the soil behavior and analyzing 

the system under the seismic loading are given. 

Chapter 4: Numerical Modelling of Laterally Loaded Pile Problem: Static Pile Head 

Loading: The numerical analysis results for the laterally loaded pile problem are given 

for the static loading conditions. 

Chapter 5: Numerical Modelling of Laterally Loaded Pile Problem: Dynamic Loading: 

The numerical analysis results for the laterally loaded pile problem are given for the 

dynamic loading conditions. 

Chapter 6: Proposed Models for Static and Dynamic p-y Curves: The mathematical 

models to represent the numerically derived p-y curves were presented separately for 

static and dynamic loading.  

Chapter 7: Conclusions and Recommendations: The main outputs of the thesis are 

summarized, and recommendations for future works are given.
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2. LITERATURE REVIEW 

In this chapter, past studies related to the lateral load resistance-deflection (p-y) 

relations for piles in cohesionless soils were presented. First, a brief introduction to the 

laterally loaded pile problem and the suggestions made by the researchers for 

constructing p-y relations are given. Then, the studies are summarized related to the 

parameters required for creating p-y curves, such as the initial stiffness and the ultimate 

soil resistance. Finally, the drawbacks of the current approaches for p-y curves are 

highlighted with an emphasis on the literature studies.  

2.1 Laterally Loaded Pile Problem 

Reese and Van Impe (2000) explain the pile behavior under lateral load as in Figure 

2.1. The initial state of the pile and deflection pattern after horizontal loading is applied 

from the top is shown in Figure 2.1a. Figure 2.1b and 2.1c show the uniform confining 

pressure distribution at rest and the pressure after the horizontal deflection takes place, 

respectively. 

 

Figure 2.1 : Increasing the horizontal stresses in the soil due to pile movement. 
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The behavior of piles under lateral loading consists of three stages: The elastic 

response of the soil and the pile material, the plastic behavior of the soil, and finally, 

the plastic response of the pile. The governing behavior in the design is not the soil 

failure but the bending moment capacity of the pile (Scott, 1981). However, in recent 

years, the design concept has shifted from capacity-based to performance-based, in 

which the main concern is internal forces and displacements. As the lateral load 

increases, the soil behavior becomes highly nonlinear. Soil reaction depends on pile 

displacement, and soil behavior affects pile motion (Pile-Soil-Structure Interaction). 

Therefore, the pile foundation analysis aims to determine the internal forces (shear 

force and bending moment) along the pile and the displacement response of the soil-

pile-structure system.  

The response of piles under lateral loading can be expressed with a differential 

equation (Equation 2.1) by assuming the pile as a beam resting on nonlinear Winkler 

springs. 

 
𝐸𝑝𝐼𝑝

𝑑4𝑦

𝑑𝑥4
+ 𝐸𝑝𝑦𝑦 = 0 (2.1) 

The analytical solution of equation 2.1 is limited, and the solution highly depends on 

the boundary conditions. Therefore, the solution is obtained mostly using the p-y curve 

approach. Epyy=p is the soil resistance, and y is pile deflection in the equation. Ep, Ip, 

and Epy represent the elastic modulus of pile material, the moment of inertia of the 

cross-section, and soil modulus, respectively. The lateral soil resistance vs. pile 

deflection relation (p-y) is not linear, and the soil modulus (Epy) decreases as the pile 

deflection increases. The relation is given by (Reese & Van Impe, 2000) in Figure 2.2. 

 

Figure 2.2 : A typical p-y curve and reduction of soil modulus with pile deflection.  
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2.2 Construction of Lateral Load Resistance-Deflection (p-y) Relations 

In this section, the past studies on the construction of lateral load resistance-deflection 

relations are summarized.  

Terzaghi (1955) 

Terzaghi (1955) presented the first suggestion for the lateral load resistance-deflection 

relation for piles in cohesionless soils. The suggested linear relation is given as 

follows: 

 𝑝 = 𝑘ℎ𝑦 (2.2) 

where kh is the lateral subgrade reaction modulus, and the following equation was 

given for kh: 

 𝑘ℎ = 𝜂ℎ
𝑧

𝐷
 (2.3) 

where h was the constant depending on the relative density, z was the depth, and D 

was the pile diameter. The values in Table 2.1 was suggested for h values. According 

to Finn (2005), the suggestions of Terzaghi (1955) for horizontal subgrade reaction 

correspond to a lateral displacement of 25 mm.  

 Values of the constant of horizontal subgrade reaction h (Terzaghi, 

1955). 

Relative Density of Sand Loose Medium Dense 

Dry or moist sand (MN/m3) 2.2 6.6 17.6 

Submerged sand (MN/m3) 1.25 4.4 10.7 

Reese et al. (1974) 

The first thorough study based on full-scale experiments for the development of p-y 

curves was presented by Reese et al. (1974). The field tests were performed at a site 

on Mustang Island in Texas. The study aimed to measure the bending moments along 

the pile to obtain the pile displacement, y, and the soil resistance, p, obtained by double 

integration and second-order derivative with respect to depth, x, respectively. 

 
𝑦 =∬

𝑀(𝑥)

𝐸𝐼
 𝑎𝑛𝑑 𝑝 =

𝑑2

𝑑𝑥2
𝑀(𝑥) (2.4) 
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A nonlinear relation was suggested by Reese et al. (1974) for the p-y curves in 

cohesionless soils. The initial part of the relation is a straight line representing the 

elastic region. Next, a parabolic curve was suggested to limit displacement beyond the 

elastic region. The final part of the p-y relation consists of a straight line with the 

ultimate soil resistance. A typical curve showing the construction of p-y curves is 

shown in Figure 2.3.  

 

Figure 2.3 : Definition of a typical p-y curve suggested by Reese et al. (1974). 

The procedure of constructing the p-y curves for sands, according to Reese et al. 

(1974), is summarized as follows: 

1. The ultimate soil resistance, pu, is determined. The ultimate soil resistance near 

the ground surface, pct, can be calculated as follows: 

 
𝑝𝑐𝑡 = 𝛾𝐻 [

𝐾0 𝐻 𝑡𝑎𝑛𝜙 𝑠𝑖𝑛𝛽

tan(𝛽 −𝜙) 𝑐𝑜𝑠𝛼
+

𝑡𝑎𝑛𝛽

tan (𝛽 − 𝜙)
(𝑏 + 𝐻 𝑡𝑎𝑛𝛽 𝑡𝑎𝑛𝛼)

+ 𝐾0 𝐻 𝑡𝑎𝑛𝛽 (𝑡𝑎𝑛𝜙 𝑠𝑖𝑛𝛽 − 𝑡𝑎𝑛𝛼) − 𝐾𝑎𝑏] 

(2.5) 

The ultimate soil resistance at a depth is given as follows: 

 𝑝𝑐𝑑 = 𝐾𝑎 𝑏 𝛾 𝐻 (𝑡𝑎𝑛
8𝛽 − 1) + 𝐾0 𝑏 𝛾 𝐻 𝑡𝑎𝑛𝜙 𝑡𝑎𝑛

4𝛽 (2.6) 

2. The following values were suggested for computing the ultimate soil 

resistance: 
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𝛽 = 45 +

𝜙

2
 ;  𝐾0 = 0.4 ;  𝐾𝑎 = 𝑡𝑎𝑛

2(45 −
𝜙

2
) (2.7) 

where =/3 for static loading, and  =3/4 for cyclic loading. 

3. Xt is the depth at which the ultimate lateral soil resistance near the ground 

surface and at a depth are equal. pct and pcd are used when the p-y curve is 

constructed above and below Xt, respectively. 

4. Compute the threshold displacements yu=3b/80, ym=b/60, and resistance values 

pu=Apc, pm=Bpc.  

5. The initial slope of the p-y curve is determined using kpy (Table 2.2). 

6. The equation of parabola between the points k and m is given as 

 
𝑝 = 𝐶 𝑦

1
𝑛 (2.8) 

7. The parameters for the parabola are given below: 

 𝑚 =
𝑝𝑢 − 𝑝𝑚
𝑦𝑢 − 𝑦𝑚

 , 𝑛 =
𝑝𝑚
𝑚𝑦𝑚

 , 𝐶 =
𝑝𝑚
𝑦𝑚

1/𝑛
 (2.9) 

and the point k is determined as: 

 

𝑦𝑘 = (
𝐶

𝑘𝑥
)

𝑛
𝑛−1

 (2.10) 

 Reese et al. (1974) recommendations for initial stiffness for p-y curves in 

cohesionless soils. 

Relative Density of Sand Loose  Medium Dense 

Dry or moist sand (MN/m3) 6.8  24.4 61 

Submerged sand (MN/m3) 5.4  16.3 34 

The construction of the p-y curves is completed by finding the point k. The procedure 

summarized above can be applied to any depth of interest. However, the suggested 

curves were based on the field test results performed in dense sand. As a result, the 

initial stiffness values (Table 2.2) were far greater than the suggestion of Terzaghi 

(1955). Besides, there is no single function to construct the suggested curves, but it 

consists of three parts.  
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Desai and Kupsusamy (1980) 

The modified Ramberg & Osgood method was suggested by Desai and Kuppusamy 

(1980) for the construction of p-y curves. They performed finite element analyses for 

laterally loaded piles and sheet pile problems. The following form was employed in 

the analyses based on the curves suggested by Reese et al. (1974).  

 
𝑝 =

(𝑘0 − 𝑘𝑓)𝑦

[1 + {
(𝑘0 − 𝑘𝑓)𝑦

𝑝𝑢
}

𝑚

]

1
𝑚

+ 𝑘𝑓𝑦 
(2.11) 

where k0 and kf represent the initial and final stiffness, pu is the ultimate lateral soil 

resistance, and m is the nonlinearity parameter. For m=1 and kf=0, the equation reduces 

to a hyperbola. 

API (2007) 

American Petroleum Institute (API, 2007) suggested the following form of hyperbolic 

function for p-y curves in cohesionless soils: 

 
𝑝 = 𝐴 𝑥 𝑝𝑢𝑥 tanh [

𝑘 𝑥 𝐻

𝐴 𝑥 𝑝𝑢
𝑥 𝑦] (2.12) 

where pu is the ultimate soil resistance, k is the initial stiffness, and A is the factor for 

the loading condition. The parameter A is constant (0.9) for cyclic loading, but it 

depends on the depth for static loading, as shown in equation 2.14. 

 𝐴 = 0.9  𝑓𝑜𝑟 𝑐𝑦𝑐𝑙𝑖𝑐 𝑙𝑜𝑎𝑑𝑖𝑛𝑔 (2.13) 

 
𝐴 = (3 − 0.8

𝐻

𝐷
) ≥ 0.9  𝑓𝑜𝑟 𝑠𝑡𝑎𝑡𝑖𝑐 𝑙𝑜𝑎𝑑𝑖𝑛𝑔 (2.14) 

The following equations were suggested for the ultimate soil resistance under lateral 

loading at shallow and deep depths: 

 𝑝𝑢𝑠 = (𝐶1 𝑥 𝐻 + 𝐶2𝑥 𝐷) 𝑥 𝛾 𝑥 𝐻 (2.15) 

 𝑝𝑢𝑑 = 𝐶1 𝑥 𝐷 𝑥 𝛾 𝑥 𝐻 (2.16) 



13 

where  is the effective unit weight, H is the depth, D is the pile diameter, and C1, C2, 

and C3 are the coefficients that can be determined using Figure 2.4. The initial stiffness 

in API can be determined using Figure 2.5. 

 

Figure 2.4 : The coefficients required for the ultimate resistance in API.  

 

Figure 2.5 : Subgrade reaction modulus for sands in API. 

Gohl (1991) 

The centrifuge tests were performed by Gohl (1991) in dry sand for steel pipe piles. 

Harmonic input motion was applied at the base of the shake table, and cyclic p-y loops 

were obtained. The study showed that the subsequent loading/unloading hysteresis 

could be represented using the Masing (1926) rule. However, the agreement was poor 
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in the API (2007) for the backbone curves of the pile response. Gohl (1991) suggested 

the modified form of the Ramberg & Osgood equation for the p-y curves.  

 
𝑝 =

𝑘ℎ 𝑦

1 + 𝑎 (
𝑝
𝑝𝑢
)
𝑟−1 

(2.17) 

The above form of the Ramberg & Osgood equation was first proposed by Ishihara 

(2021) for the stress-strain response of soils subject to cyclic loads. Gohl (1991) 

modified the equation to model the experimentally derived p-y curves. In the equation, 

kh and pu were the initial stiffness and the ultimate soil resistance, respectively. The  

and r were the curve fitting parameters. Equation 2.18 was suggested by Gohl (1991) 

for the parameter r: 

 
𝑟 ≅

1 + (𝜋 2⁄ )𝐷𝑚𝑎𝑥
1 − (𝜋 2⁄ )𝐷𝑚𝑎𝑥

 (2.18) 

where Dmax is the maximum damping ratio mobilizing at large displacements, the 

damping ratio value must be lower for small displacements at which the soil strains 

are lower. However, the study did not suggest a damping ratio considering the 

displacement level; instead, Gohl (1991) suggested the maximum damping ratio (Dmax) 

to estimate the parameter r. Therefore, equation 2.19 is suggested for the parameter : 

 𝛼 =
𝑦𝑢𝑙𝑡 

𝑦𝑟
− 1 (2.19) 

where yult was the displacement at which the ultimate soil resistance was mobilized, 

and Gohl (1991) proposed to set yult as 5% of the pile diameter (yult=0.05D). The 

parameter yr was the reference deflection which was given as: 

 𝑦𝑟 =
𝑝𝑢𝑙𝑡 

𝑘ℎ
 (2.20) 

Gohl (1991) suggested the Barton et al. (1983) equation for the ultimate soil resistance, 

pult as follows: 

 𝑝𝑢𝑙𝑡 = 𝛽 𝐾𝑝 𝜎
′
𝑣 𝐷 (2.21) 
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where Kp is the passive earth pressure coefficient, '
v vertical effective stress, D is the 

pile diameter, and  is a coefficient. The  values in Gohl (1991) varied from 1.75 to 

3.5. In addition, Gohl (1991) employed larger values for   near the ground surface, 

which decreased as the depth increased, contradicting the findings of Barton (1982), 

who suggested increasing the with depth. Lastly, the horizontal stiffness kh was 

calculated based on Kagawa and Kraft (1980) as follows: 

 𝑘ℎ = 𝛿̅𝐸𝑚𝑎𝑥 (2.22) 

where Emax can be estimated using the low strain shear modulus (Gmax). The parameter 

𝛿̅ in Kagawa and Kraft (1980) depends on pile flexibility; however, a constant value 

of 1.9 was adopted by Gohl (1991). 

Georgiadis et al. (1992) 

Centrifuge tests were performed by Georgiadis et al. (1992) for piles embedded in dry 

sand. The tests were carried out by applying the lateral load at the pile head level. The 

hyperbolic function of Kondner (1963) was employed to fit the p-y curves obtained in 

the tests. The p-y curve relation was written in the following form of the hyperbolic 

function: 

 𝑝 =
𝑦

1
𝑘𝑖𝑛𝑖

+
𝑦
𝑝𝑢

 
(2.23) 

where the kini is the initial stiffness and pu is the ultimate soil resistance. The study 

adopted the Reese et al. (1974) equations for ultimate soil resistance (pu), and the 

suggestion of Terzaghi (1955) was implemented for initial stiffness (kini) since a better 

agreement with the centrifuge test results was observed. The equation was highly 

efficient compared to Reese et al. (1974). However, the study showed that the selection 

of initial stiffness is vital. The authors stated that the suggestion of Reese et al. (1974) 

for initial stiffness was too high, yielding significantly different responses than the test 

results. Therefore, the main drawback of the hyperbolic function is the sensitivity of 

the p-y response to the selection of initial stiffness.   
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Pender (1993) 

Pender (1993) suggested equation 2.24 for the nonlinear equation of the p-y curves. 

The equation includes the initial stiffness (kini), the ultimate soil resistance to the lateral 

loading (pu), and the parameter n for the extent of nonlinearity.  

 
𝑦 =

𝑝

𝑘𝑖𝑛𝑖
(

𝑝𝑢
𝑝𝑢 − 𝑝

)
𝑛

 (2.24) 

Pender (1993) proposed the Broms (1964) equation for the ultimate soil resistance (pu), 

which is given as follows: 

 𝑝𝑢 = 3 𝐾𝑝𝜎
′
𝑣𝐷 (2.25) 

The equation of Vesić (1961) was proposed by Pender (1993) for the initial stiffness, 

which is given as follows: 

 

𝑘 =
0.65 𝐸𝑠
(1 − 𝑣𝑠

2)
√
𝐸𝑠𝐷

4

𝐸𝑝𝐼𝑝

12

 (2.26) 

According to Pender (1993), small-strain stiffness of the soil could be employed for Es 

in Vesic's equation. Therefore, the nonlinearity parameter, n, could be taken as 1 for 

sands. 

Brown et al. (2000)  

Brown et al. (2001) suggested equation 2.27 for p-y curves under dynamic loading 

based on the static p-y curves: 

 
𝑝𝑑 = 𝑝𝑠 ((𝛼 + 𝛽𝑎0

2 + Κ𝑎0 (
𝑤̅𝑦

𝐷
)
𝑛

) , 𝑝𝑑 < 𝑝𝑢 (2.27) 

where ps is the resistance under static loading, ao frequency of loading (ao=ro/Vs),  

angular frequency of loading, ro is the pile radius, y lateral displacement, D is the pile 

diameter, and n are the constants from curve fitting.  

The ps in equation 2.27 is the static loading resistance that API was adopted in Brown 

et al. (2000). Table 2.3 shows the constants in equation 2.27 for the dynamic multiplier 

parameters. 
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 Dynamic p-y parameter constants according to Brown et al. (2001). 

Soil Type Description    n 

       

Soft clay 
cu< 50 kPa 

Vs<125 m/s 
1 -180 -200 80 0.18 

Medium clay 

50<cu< 100 kPa 

125<Vs<175 

m/s 

1 -120 -360 84 0.19 

Stiff clay 
cu>100 kPa 

Vs>175 m/s 
1 -2900 -828 100 0.19 

Medium-dense sand 

(saturated) 

50<Dr< 85 

125<Vs<175 

m/s 

1 3320 1640 -100 0.1 

Medium-dense sand 

(unsaturated) 

50<Dr< 85 

125<Vs<175 

m/s 

1 1960 960 -20 0.1 

Dense sand 

(saturated) 

Dr> 85 

Vs>175 m/s 
1 6000 1876 -100 0.15 

Varun (2010) 

Varun (2010) created a 3-dimensional (3D), finite element model to develop a 

macroelement for piles in liquefiable soils. Multi-yield constitutive soil model with a 

kinematic hardening rule was employed based on the plasticity theory. Parametric soil-

pile interaction analyses were performed, and the Bouc-Wen model was suggested for 

the p-y formulation. The soil resistance p can be written as: 

 𝑝 = 𝑝𝑦𝜁 (2.28) 

where py is the ultimate soil resistance, and 𝜁 is a hysteretic parameter controlling the 

curve nonlinearity. The last parameter could be calculated in an incremental form as: 

 
𝑑𝜁 = {𝐴 − 𝑓𝜁[𝛽 + 𝛾 𝑠𝑖𝑔𝑛 (𝑑𝑢. 𝜁]}

𝑑𝑢

𝑢𝑦
 (2.29) 

where A is the parameter generally taken as 1, uy=py/K is the yield displacement, K is 

the initial stiffness, du is the incremental relative displacement, =1- are parameters 

controlling the unloading and reloading behavior, f is the monotonically increasing 

function of 𝜁. 
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Varun (2010) suggested an initial stiffness for the p-y curve formulation: 

 𝐾 = 1.25 𝐸𝑠 (2.30) 

The ultimate resistance of soil to the lateral loading pu: 

 𝑝𝑢 = 3.25𝐾𝑝 + 0.3𝐾𝑝
2  (2.31) 

The last parameter for the nonlinear backbone of the dynamic p-y curves was the 

function of the f () parameter, which was equal to n in the original Bouc-Wen model; 

however, Varun (2010) suggested the following form for the nonlinearity parameter: 

 
𝑓(𝜁) =

tanh(𝛼𝜁)

tanh(𝛼)
 (2.32) 

The parameter  in the above equation was suggested as 2.7 for dense sand, 2.8 for 

medium-dense sand, and 2.9 for loose sands. 

Yang et al. (2011) 

A series of 1g shaking table tests were performed by Yang et al. (2011) in cohesionless 

soils to obtain the dynamic p-y curves. The tests were conducted in dense sand with a 

relative density of DR=80 %. An aluminum alloy pipe was used to simulate piles, and 

strain gages were placed along the pile to measure the bending strain. Several loading 

schemes were applied to the test setup. The dynamic p-y curves were determined using 

the bending moments as follows: 

 
𝑝 =

𝑑2

𝑑𝑧2
𝑀(𝑧) (2.33) 

 
𝑦𝑝𝑖𝑙𝑒 =∬

𝑀(𝑧)

𝐸𝐼
𝑑𝑧 (2.34) 

where p is the lateral soil resistance, ypile is pile displacement, M(z) is the bending 

moment along the pile, EI is the flexural stiffness of the pile, and z is the depth below 

the ground surface. The bending moments in the above equations were calculated 

using the measured bending strains as follows: 
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𝑀 =

𝐸 𝜀 𝐼

𝑦
 (2.35) 

The experimental results obtained by the shake table tests were best fitted by the 

hyperbolic function of Kondner (1963), expressed in equation 2.21. 

The study suggested lower bound and upper bound equations for the ultimate 

resistance of dynamic p-y curves: 

 𝑝𝑢
𝐷
= 6.32𝐾𝑝𝛾

′𝑧1.22 (𝑁 𝑐𝑚2)  𝑓𝑜𝑟 𝑙𝑜𝑤𝑒𝑟 𝑙𝑖𝑚𝑖𝑡 𝑏𝑎𝑐𝑘𝑏𝑜𝑛𝑒⁄  (2.36) 

 𝑝𝑢
𝐷
= 11.83𝐾𝑝𝛾

′𝑧1.11 (𝑁 𝑐𝑚2)  𝑓𝑜𝑟 𝑢𝑝𝑝𝑒𝑟 𝑙𝑖𝑚𝑖𝑡 𝑏𝑎𝑐𝑘𝑏𝑜𝑛𝑒⁄  (2.37) 

The study suggested lower bound and upper bound equations for the initial stiffness 

of dynamic p-y curves: 

 
𝐾 = 208.31𝑝𝑎 (

𝜎′

𝑝𝑎
)

0.5

 𝑓𝑜𝑟 𝑙𝑜𝑤𝑒𝑟 𝑙𝑖𝑚𝑖𝑡 𝑏𝑎𝑐𝑘𝑏𝑜𝑛𝑒 (2.38) 

 
𝐾 = 333.48𝑝𝑎 (

𝜎′

𝑝𝑎
)

0.5

 𝑓𝑜𝑟 𝑢𝑝𝑝𝑒𝑟 𝑙𝑖𝑚𝑖𝑡 𝑏𝑎𝑐𝑘𝑏𝑜𝑛𝑒 (2.39) 

Yoo et al. (2013) 

Dynamic centrifuge tests were performed by Yoo et al. (2013) for a pile in dry sand. 

Pile diameter, the relative density of soil, loading amplitude, and frequency were the 

variables. Based on the test results, the hyperbolic model was suggested to represent 

the backbone of p-y curves. The initial stiffness parameter was recommended for loose 

and dense sand as follows: 

 
𝐾 = 4.26𝐷𝑝𝑎 (

𝜎′

𝑝𝑎
)

0.5

 𝑓𝑜𝑟 𝑙𝑜𝑜𝑠𝑒 𝑠𝑎𝑛𝑑  (2.40) 

 
𝐾 = 7.29𝐷𝑝𝑎 (

𝜎′

𝑝𝑎
)

0.5

 𝑓𝑜𝑟 𝑑𝑒𝑛𝑠𝑒 𝑠𝑎𝑛𝑑 (2.41) 

The ultimate soil resistance to lateral loading equations was given for loose and dense 

sand as follows: 
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 𝑝𝑢
𝐷
= 12.5𝐷𝐾𝑝𝛾

′𝑧0.90 𝑓𝑜𝑟 𝑙𝑜𝑜𝑠𝑒 𝑠𝑎𝑛𝑑 (2.42) 

 𝑝𝑢
𝐷
= 13.3𝐷𝐾𝑝𝛾

′𝑧1.02 𝑓𝑜𝑟 𝑑𝑒𝑛𝑠𝑒 𝑠𝑎𝑛𝑑 (2.43) 

Thieken et al. (2015) 

Thieken et al. (2015) investigated the large-diameter monopile behavior under lateral 

loading using the finite element method. They stated that the conventional p-y curves 

do not accurately represent the foundation stiffness which was overestimated at large 

loads and underestimated at small loads. Therefore, they created a numerical model in 

PLAXIS3D using the HSsmall model for constitutive soil behavior. Based on the 

comprehensive parametric study, they suggested a set of equations for p-y curves in 

cohesionless soils. The following equations for the resistance values for displacement 

intervals were given, and the definitions were plotted in detail in Figure 2.6 and Figure 

2.7.  

 
𝑝 = 𝑝𝐵 (

𝑦

𝑦𝐵
)
1/𝑛

 𝑓𝑜𝑟 𝑝 < 𝑝𝐵 (2.44) 

 𝑝 = 𝑝𝐵 + (
𝑝𝐶 − 𝑝𝐵
𝑦𝐶 − 𝑦𝐵

) (𝑦 − 𝑦𝐵) 𝑓𝑜𝑟 𝑝𝐵 < 𝑝 < 𝑝𝐶 (2.45) 

 

Figure 2.6 : Construction of p-y curves in Thieken et al. (2015). 
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Figure 2.7 : Reduction of secant stiffness with the horizontal displacement in 

Thieken et al. (2015). 

Lim and Jeong (2018) 

Shake table tests were performed by Lim and Jeong (2018) for piles in dry sand under 

dynamic loading. The pile behavior was investigated similarly to the study presented 

by Yang et al. (2011). The hyperbolic function was suggested for p-y curve 

formulation. In addition, the initial stiffness and ultimate soil resistance values were 

presented for the p-y behavior. The proposed p-y curves were employed in pseudo-

static analyses, and the results were compared with Reese et al. (1974) and the API 

results. The authors stated that the proposed curves lead to better agreement with the 

test results.  

Lu et al. (2020) 

The centrifuge tests by Lu et al. (2021) showed that the hyperbolic function could 

represent the p-y curves under static loading. The initial stiffness in the p-y relation is 

calculated using equation 2.49.  

 𝑘𝑖𝑛𝑖 = 𝜂ℎ𝑍
𝛼 (2.49) 

The experimental study showed that the h can be taken as 2000 kN/m3 and  is taken 

as 0.5. Therefore, the ultimate soil resistance to lateral loading pu can be calculated 

using the API equation of pu at depth: 

 𝑝𝑢𝑑 = 𝐶3𝐷𝛾𝑍 (2.50) 

where C3=100. The suggestions for the p-y curves are summarized in Table 2.4. 
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 Summary of the p-y curve suggestions in the literature. 

Reference p-y relation Explanation 

Terzaghi, 1955 

p=khy 

𝑘ℎ = 𝑛ℎ
𝑧

𝐵
 𝑣𝑒 𝑛ℎ =

𝐴𝛾

1.35
 

 is the unit weight of soil, and A is a factor 

A linear relation is 

suggested based on 

elasticity theory 

Reese et al., 1974 

𝑝𝑎 = 𝑘ℎ𝑦𝑎
𝑧

𝐷
  𝑣𝑒 𝑝𝑏 = 𝑝𝑢

𝐵

𝐴
 

A and B are empirical factors; 

 ya =D(pb/zkn)n/m-1(D/yb)1/m-1; 

yb=D/60; yu=3D/80; 

The relation is based on 

full-scale static and cyclic 

field tests  

Desai and Kupsusamy, 

1980 

𝑝 =
(𝑘0 − 𝑘𝑓)𝑦

[1 + {
(𝑘0 − 𝑘𝑓)𝑦

𝑝𝑢
}

𝑚

]

1
𝑚

+ 𝑘𝑓𝑦 A modified form of the 

Ramberg-Osgood model is 

suggested  

API, 2007 𝑝 = 𝐴𝑝𝑢tanh (
𝑘𝑧

𝐴𝑝𝑢
𝑦) 

Back calculated relation 

from the full-scale field test 

is suggested 

Gohl, 1991 
𝑝 =

𝑘ℎ 𝑦

1 + 𝑎 (
𝑝
𝑝𝑢
)
𝑟−1 

A modified form of the 

Ramberg-Osgood model is 

suggested for the dynamic 

backbone based on the 

centrifuge test results 

Georgiadis et al. 

(1992), Yang et al. 

(2011), Yoo et al. 

(2013) Lim and Jeong 

(2018), Lu et al. 

(2020) 

𝑝 =
𝑦

1
𝑘𝑖𝑛𝑖

+
𝑦
𝑝𝑢

 
The hyperbolic model of 

Kondner (1963) was 

suggested based on shake 

table experiments.  

Pender, 1993 𝑦 =
𝑝

𝐸𝑝𝑦−𝑚𝑎𝑥
(

𝑝𝑢

𝑝𝑢−𝑝
)
𝑛

  

Developed by finite 

element model from back-

analyzed full-scale field 

tests 

NCHRP, 2001 𝑝𝑑 = 𝑝𝑠 ((𝛼 + 𝛽𝑎0
2 + Κ𝑎0 (

𝑤̅𝑦

𝑑
)
𝑛

) , 𝑝𝑑 
Based on the statnamic, 

field tests 

Varun, 2010 

𝑝 = 𝑝𝑦𝜁 

𝑑𝜁 = {1 − 𝑓𝜁[𝑏 + 𝑔 𝑠𝑖𝑔𝑛 (𝑑𝑢. 𝜁]}
𝑑𝑢

𝑢𝑦
 

𝑓(𝜁) =
tanh(𝛼𝜁)

tanh(𝛼)
 

 

The Bouc-Wen model was 

proposed based on the finite 

element analyses results 

Thieken et al., 2015 

𝑝 = 𝑝𝐵 (
𝑦

𝑦𝐵
)
1/𝑛

 𝑓𝑜𝑟 𝑝 < 𝑝𝐵 

𝑝 = 𝑝𝐵 + (
𝑝𝐶 − 𝑝𝐵
𝑦𝐶 − 𝑦𝐵

) (𝑦 − 𝑦𝐵) 𝑓𝑜𝑟 𝑝𝐵 < 𝑝

< 𝑝𝐶 

The suggested curve has 

three parts based on the 

finite element analysis 

results 
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2.3 Initial Stiffness of the p-y Curve 

The formulations for the construction of p-y curves presented in the previous section 

showed that the relations require the initial stiffness of the pile under lateral loading. 

There have been several studies on the stiffness of piles subject to lateral loads, and 

some of the suggestions, including Broms (1964); Kagawa and Kraft (1980); Poulos 

(1971); Vesić (1961); Scott (1980); Gerolymos and Gazetas (2006), Augustesen et al. 

(2009); Sørensen (2012)  were presented in this section.  

Terzaghi (1955) 

The first suggestion for the initial stiffness of piles subject to lateral loading was made 

by Terzaghi (1955). Then, the following form of the p-y relation was suggested based 

on the theory of elasticity: 

 
𝑘ℎ =

0.74𝐸𝑠
𝐷

 (2.51) 

where Es is the soil modulus and D is the pile diameter. 

Vesic (1961) 

Vesić (1961) proposed an equation for the spring stiffness of piles resting on the elastic 

foundation: 

 

𝑘𝑠 =
0.65𝐸𝑠
1 − 𝜐2

√
𝐸𝑠𝐷

4

𝐸𝑝𝐼𝑝

12

 (2.52) 

Poulos (1971) 

The pile response under lateral loading was investigated by Poulos (1971), and a 

relation was suggested for initial stiffness: 

 
𝑘ℎ =

0.82𝐸𝑠
𝐷

 (2.53) 

Kagawa and Kraft (1980) 

Kagawa and Kraft (1980) have studied the dynamic lateral load-deflection relationship 

for piles subject to lateral pile head and seismic loading. The study suggested a 

simplified approach to dynamic p-y curves by estimating the degraded soil modulus 
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under dynamic loading conditions, which requires site response analyses in the first 

step of the method. The p-y response was written in the nondimensional form as 

follows: 

 𝑝

𝐸𝑠𝑦
= 𝛿1 + 𝑖𝛿2 = 𝛿 (2.54) 

The  parameter in the above equation represents the true spring stiffness and  

energy dissipation due to material and radiation dampings. 

Several suggestions were made for the real part of the spring stiffness (. Kagawa 

and Kraft (1980) presented these suggestions in a plot as given in Figure 2.8. The 

values depend on the relative pile stiffness Kr which is defined as follows: 

 
𝐾𝑟 =

𝐸𝐼

𝐸𝑠𝐻
4
 (2.55) 

 

Figure 2.8 : Real part of the initial stiffness parameter in Kagawa and Kraft (1980). 

Scott (1980) 

Scott (1981)suggested the bilinear function for the p-y relation, stating that using the 

method proposed by Reese et al. (1974) is too complicated. Instead, he proposed the 

initial stiffness to be equal to the soil modulus for the sake of simplicity.  

Augustensen (2009) 

Augustesen et al. (2009) compared the FLAC3D analysis with the Winkler approach 

results for an offshore monopile subjected to extreme lateral loads. They employed the 

API approach for the p-y curves, and the following expression was proposed for the 

initial stiffness to fit the suggestion of API best:   
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𝑘𝑠𝑎𝑛𝑑 = 0.008085 𝜙

2.45 − 26.09  (
𝑀𝑃𝑎

𝑚
) (2.56) 

Gerolymos and Gazetas (2006) 

The distributed stiffness of a cylindrical-shaped caisson foundation was suggested by 

Gerolymos and Gazetas (2006): 

 
𝑘𝑥 = 1.60 (

𝑧

𝐷
)
−0.13

𝐸𝑠 (2.57) 

Sorensen (2012) 

Sørensen (2012) performed several numerical analyses in FLAC3D for large-diameter 

monopiles and concluded the following form for the initial stiffness of p-y curves: 

 
𝐸𝑝𝑦 = 𝑎 (

𝑥

𝑥𝑟𝑒𝑓
)

𝑏

(
𝐷

𝐷𝑟𝑒𝑓
)

𝑐

(
𝐸𝑠
𝐸𝑠,𝑟𝑒𝑓

)

𝑑

 (2.58) 

where a=1 MPa, b=0.3, c=0.5, and d=0.8 

The studies related to the initial stiffness of p-y curves are summarized in Table 2.5. 

 Suggestions in the literature for the initial stiffness of the p-y curve. 

Reference p-y relation 

Terzaghi, 1955 𝑘ℎ =
𝐸𝑠

1.35 𝐵
 

Vesic, 1961 𝑘𝑠 =
0.65𝐸𝑠
1 − 𝜐2

√
𝐸𝑠𝐵

4

𝐸𝑝𝐼𝑝

12

 

Poulos, 1971 𝑘ℎ =
0.82𝐸𝑠
𝐵

 

Kagawa and Kraft (1980) 

𝑝

𝐸𝑠𝑦
= 𝛿1 + 𝑖𝛿2 = 𝛿 

𝛿1 𝑑𝑒𝑝𝑒𝑛𝑑𝑠 𝑜𝑛 𝑡ℎ𝑒 𝑝𝑖𝑙𝑒 𝑓𝑙𝑒𝑥𝑢𝑟𝑎𝑙 𝑠𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑠 
𝛿2 𝑑𝑒𝑝𝑒𝑛𝑑𝑠 𝑜𝑛 𝑡ℎ𝑒 𝑙𝑜𝑎𝑑𝑖𝑛𝑔 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 

Scott (1980) 𝑘ℎ =
𝐸𝑠
 𝐵

 

Gerolymos (2006) 𝑘𝑥 = 1.60 (
𝑧

 𝐷
)
−0.13

𝐸𝑠 

Sorensen (2012) 𝐸𝑝𝑦 = 𝑎 (
𝑥

𝑥𝑟𝑒𝑓
)

𝑏

(
𝐷

𝐷𝑟𝑒𝑓
)

𝑐

(
𝐸𝑠
𝐸𝑠,𝑟𝑒𝑓

)

𝑑
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2.4 Ultimate Soil Resistance to Lateral Loading 

All the p-y curve formulations require the ultimate soil resistance to lateral loading. 

The studies on the ultimate soil resistance in cohesionless soils are summarized below. 

Broms (1964) 

Broms (1964) suggested equation 2.59 for the soil reaction to lateral loading per unit 

length of the pile: 

 𝑝𝑢 = 3𝐾𝑝𝐷𝜎
′
𝑣𝑜 (2.59) 

where D is the pile diameter, '
v0 is the vertical effective stress, and Kp is the lateral 

earth pressure coefficient which can be calculated as: 

 
𝐾𝑝 = 𝑡𝑎𝑛

2(45 +
𝜙

2
) (2.60) 

Broms (1964) stated that the lateral earth pressure was independent of the shape of the 

pile cross-section. 

Zhang et al. (2005) 

L. Zhang et al. (2005) proposed a method for predicting the ultimate soil resistance to 

lateral loading. They suggested equation 2.61, which includes the normal frontal 

reaction and the side friction reaction: 

 𝑝𝑢 = (𝜂𝑝𝑚𝑎𝑥 + 𝜉𝜏𝑚𝑎𝑥)𝐷 (2.61) 

In equation 2.61, D is the pile diameter,  and the parameters depend on the pile 

shape in Table 2.6. 

 Parameters required for the ultimate soil resistance of L. Zhang et al. 

(2005). 

Pile shape   

Circular 0.8 1.0 

Square 1.0 2.0 

The frontal soil resistance to lateral loading is defined as follows: 

 𝑝𝑚𝑎𝑥 = 𝐾𝑝
2𝜎𝑣0

′ (2.62) 

The shear drag resistance to lateral loading is defined as follows: 



27 

 𝜏𝑚𝑎𝑥 = 𝐾𝜎𝑣0
′ tan 𝛿 (2.63) 

Fleming (2008) 

The centrifuge tests performed by Barton et al. (1983) have shown that the ultimate 

soil resistance to lateral loading estimated by Broms (1964) was underestimated. 

Therefore, the equation was modified by Fleming et al. (2008) as follows:  

 𝑝𝑢 = 𝐾𝑝
2𝐷𝜎𝑣0

′ (2.64) 

The modified form of the equation allows greater pu values than Broms' equation since 

the constant multiplication three was replaced by Kp, which is higher than 3 for the 

angle of friction values larger than 30o.  

 

Thieken et al. (2015) 

Thieken et al. (2015) performed finite element analyses to develop a new static p-y 

curve approach for piles in cohesionless soils. They concluded that the ultimate soil 

resistance can be represented by the DIN 4085 approach, for which the following 

equation is proposed: 

 
𝑝𝑢 =

11

16
𝛾𝑧1.5𝐾𝑝𝑔ℎ(1 + 2 𝑡𝑎𝑛𝜙

′)√𝐷 (2.65) 

The passive earth pressure coefficient Kpgh in the above equation depends on the 

internal angle of friction ' and the passive wall friction; the latter was assumed to be 

p=-2/3'. Therefore, the Kpgh equation is given as follows: 

 

𝐾𝑝𝑔ℎ = √
𝐾𝑝(1 − 0.53

−2𝜙′

3 )0.26+5.96𝜙
′

1 + (𝑡𝑎𝑛
−2𝜙′

3
)
2  (2.66) 

The ultimate soil resistance equations to lateral loading for piles in cohesionless soils 

given in the literature are summarized in Table 2.7. 
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 Suggestions in the literature for the ultimate soil resistance. 

Reference pu 

Broms, 1964 𝑝𝑢 = 3𝐾𝑝𝐵𝜎
′
𝑣𝑜 

Reese et al., 1974 
𝑝𝑢 = 𝑝𝑠𝑡𝐴 

At greater depths A=3-0.8(z/D) 

Zhang, 2005 𝑝𝑢 = (𝜂𝑝𝑚𝑎𝑥 + 𝜉𝜏𝑚𝑎𝑥)𝐵 

Fleming et al., 2008 𝑝𝑢 = 𝐾𝑝
2𝐵𝜎𝑣0

′ 

Varun, 2010 𝑝𝑢 = (3.25𝐾𝑝 + 0.25𝐾𝑝
2)𝐵𝜎𝑣0

′ 

Thieken et al. (2015) 

(DIN 4085) 

𝑝𝑢 =
11

16
𝛾𝑧1.5𝐾𝑝𝑔ℎ(1 + 2 𝑡𝑎𝑛𝜙

′)√𝐷 

𝑤ℎ𝑒𝑟𝑒 𝐾𝑝𝑔ℎ = √
𝐾𝑝(1 − 0.53

−2𝜙′

3 )0.26+5.96𝜙
′

1 + (𝑡𝑎𝑛
−2𝜙′

3
)
2  

2.5 Limitations of the Current Practice 

The first attempt for lateral load-deflection relations was made by Terzaghi (1955) 

using the theory of elasticity. However, the given relation was linear, and the 

coefficient of subgrade reaction modulus (k) corresponding to 25 mm lateral 

displacement was suggested. The nonlinear p-y curve formulation for piles in sands 

was recommended by Reese et al. (1974). The suggestion was based on the full-scale 

field tests performed in Mustang Island (Texas). First, bending moments were obtained 

using the strain gages placed along the pile. The second-order integration of the 

bending moments gives the pile deflection, y, and the second-order differentiation 

provides the soil with resistance, p. Then, the soil resistance-pile deflection relations 

(p-y curves) were obtained for each depth, and the pile deflection was normalized by 

the pile diameter. However, the relation is not a continuous function but consists of 

three parts. Besides, the suggested initial stiffness is far greater than the one proposed 

by Terzaghi (1955). 

Murchison and O'Neill (1984) suggested a hyperbolic p-y relation for sand soils based 

on the field test results. The given relation was adopted by API (2007) and has been 

commonly used in the industry since then. The initial stiffness of Reese et al. (1974) 

was adopted by API (2007) depending on the relative density of sand.  
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The API (2007) relation is used in the offshore industry and is very common to analyze 

piles under seismic loading conditions. Although several researchers studied the p-y 

curve approach, the API (2007) is the most common method due to its simplicity. 

According to Finn (2005) and Rahmani et al. (2018), the suggestion of Terzaghi (1955) 

is too conservative, and the initial stiffness given by API (2007) is too high that it 

cannot capture the nonlinear behavior accurately. Moreover, the relation was obtained 

by applying the static load from the top of the pile for the dense sand and did not 

consider different soil nonlinearities. Especially the soil behavior under earthquake 

loading must be properly considered in the soil-pile-structure interaction analyses. For 

this purpose, researchers have conducted numerical and experimental studies (Allotey 

& El Naggar, 2008; Brown et al., 2001; Hussein & El Naggar, 2022; Lombardi et al., 

2017; Naggar & Bentley, 2000; Rahmani et al., 2018; Wilson, 1998).  

McGann et al. (2011) stated that API (2007) relation gives reasonable results at 

shallow depth, but the results are not realistic as the depth increases since the kinematic 

effect of seismic loading cannot be taken into account. They analyze the soil-pile 

interaction problem by modeling the piles as vertical beams. The soil was modeled as 

8-noded brick 3D solid elements in OpenSees. They used interface elements to obtain 

the load transferred from soil to pile. Drucker-Prager soil model considers the 

nonlinear behavior of soil by McGann et al. (2011). In the study, instead of finding the 

soil resistance and the pile deflection using the bending moments, they were obtained 

directly in the 3D model. The pile deflection was determined at the beam nodes, and 

the soil resistance was obtained at the pile-soil interface elements.  

The authors compared the obtained p-y curves with the API (2007) curves and 

concluded that API (2007) relation was not validated, especially at the deeper soil 

stratum. This result was presented in Figure 2.9: The p-y curves at 1.0 m and 2.4 m 

below the ground surface were compatible with the numerical results, but the results 

at 9.9 m and 14.7 m were significantly different for the two methods. Soil resistance 

at the deep obtained using the finite element solution is relatively low compared to the 

API (2007) suggestion. Therefore, the obtained internal forces (shear force and 

bending moment) and displacements using the API (2007) relation may cause the 

design to be unsafe. 
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Figure 2.9 : p-y curves for different depths obtained using API (2007) and finite 

element method McGann et al. (2011). 

Choi et al. (2016) stated that API (2007) relation has some drawbacks, such as 1) 

Ultimate lateral load capacity is low in API (2007) suggestion, 2) Elastic initial 

stiffness is used instead of compatible deformation modulus and 3) The slope of the 

curve at low deformations are too high. The authors used plasticity theory and offered 

a model that considers the mentioned drawbacks. The results of the suggested model 

was compared with the API (2007) and the centrifuge test results. The experimental p-

y backbone, API (2007) curve, and the curve obtained from the suggested model are 

presented in Figure 2.10. Besides, the dependency of the p-y relation on the earthquake 

acceleration is shown in Figure 2.10. According to the results, the slope of the p-y 

curves decreases as the maximum acceleration increase. As a result, the ultimate lateral 

load capacity was greater than the API (2007) relation. Although the suggested method 

fills the gap of the API (2007) relation, it is not practical to implement the model in 

design since it has many input parameters, and determining these parameters is not 

easy. The soil resistance-pile deflection relations (p-y curves) suggested so far are 

summarized in Table 2.8. 
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Figure 2.10 : The effect of dynamic load amplitude on p-y curves (Choi et al., 2016). 
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 Summary of the studies related to pile behavior under lateral loading. 

 

Reference Soil Type Experimental Setup Numerical Analysis Method Loading Condition 
Suggested (or adopted) p-y 

Model 

Terzaghi, 1955 Sand - Elasticity theory Pile head Initial stiffness 

Reese et al., 1974 Sand Full-scale field test - Pile head Static and cyclic 

Gohl, 1991 Dry Sand 
1g-Shake Table and 

Centrifuge test 
1D Site response analysis Seismic loading Ramberg&Osgood 

Wilson, 1998 Liquefiable Sand Centrifuge Dynamic p-y Seismic loading - 

Brown et al., 

2000 
Sand - Dynamic  p-y Pile head-statnamic 

Dynamic (frequency 

dependent) 

Gerolymos, 2006 Sand - 3D-Finite element analysis Static  Initial stiffness 

API, 2007 Sand-Clay - - Pile head Hyperbolic relation 

Varun, 2010 Liqueafiable sand - 3D-Finite element analysis Cyclic loading Bouc-Wen model 

McGann et al., 

2011 
Liquefiable Sand - 

OpenSees (3D Finite element 

method) 

Seismic acceleration 

loading 
- 

Yang et al., 2011 
Dense Sand (non 

liquefied) 
1g-Shake Table Dynamic p-y Model base (Harmonic) Empirical (dynamic tests) 

Sorensen, 2012 Sand - 3D-Finite element analysis Pile head Initial stiffness 

Choi et al., 2015 Sand Centrifuge 
OpenSees (finite element 

using the p-y) 

Seismic displacement 

loading 
Based on plasticity theory 

Thieken et. al., 

2015 
Sand - Finite Element-OpenSees 

Seismic acceleration 

loading 
A new function is proposed  

Lim and Jeong, 

2018 
Sand 1g-Shake Table - Model base (harmonic) Hyperbolic model 
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3. METHODS for DYNAMIC SOIL-PILE-STRUCTURE INTERACTION 

ANALYSES 

Pile foundations are the structural elements embedded in the ground to transmit the 

external loads to the surrounding soil. The pile movement under horizontal loading 

affects the soil behavior, and increasing soil displacements alter the pile behavior. The 

pile-soil system behavior is affected by each component, and the resulting 

phenomenon is called as soil-pile interaction problem. Depending on the use of the 

piles, the problem includes the superstructure, which becomes the soil-pile-structure 

interaction problem. This problem is even more complex when the external loading is 

earthquake excitation. Two approaches exist for soil-structure interaction analyses: 

Direct analysis and substructure analysis. The direct analysis includes the soil and 

structure systems in a single model, whereas the superstructure and foundation systems 

are modeled separately in the substructure approach. In general, the analysis of any 

foundation includes the following stages, according to Scott (1981): 

1. To define the physical problem involving the size, nature, and magnitude of 

loading related to structure and soil. 

2. Idealization of the physical problem: Since the physics of an engineering 

problem is too complex to handle, the whole system must be idealized to make 

the problem more manageable. In addition, soil and structure properties must 

be defined for foundation analysis. Therefore, the most important stage in 

idealization is to ignore some of the available data for both soil and structure. 

3. To set the mathematical relations and define the boundary conditions. 

4. To solve the idealized model and obtain the stresses and displacements: The 

analysis aims to design the structures based on the internal forces (axial and 

shear force, bending moment) and check the performance in terms of the 

displacements. 

5. To compare the analysis with the full-scale tests in the field or scaled model 

test results in the lab. 
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This study focuses on the single pile behavior under earthquake excitation. The 

analysis of a soil-pile-structure system can be performed with several approaches. 

These are: (1) Fully nonlinear dynamic analysis in three-dimension (3D), (2) Fully 

nonlinear dynamic analysis with the beam on nonlinear Winkler foundation (BNWF) 

method, and (3) Nonlinear static (pushover) analysis with BNWF approach. The most 

commonly used methods are 3-dimensional (3D) finite element or finite difference 

methods. The 3D analysis is the most versatile idealization of the real (physical) 

problem. In this method, the soil domain is discretized with finite volumes. The piles 

are usually modeled with the beam element. However, analyzing the soil-pile-structure 

system together (direct approach in soil-structure interaction analysis) in 3D models is 

highly time-consuming, especially for complex structures. The second approach is the 

beam on nonlinear Winkler foundation (BNWF) method, where the continuum of the 

soil domain is disregarded, and nonlinear springs are used to simulate the soil behavior. 

The later approach takes more attention due to its simplicity. However, the springs 

used in the BNWF method must represent the true nonlinear behavior of soil. This 

study aims to enhance the nonlinear load-displacement relations using the 3-

dimensional analysis results so that the relations can be used in the BNWF method to 

better estimate the pile and structure response. Detailed explanations about these 

methods are given in this chapter. 

3.1 Fully Nonlinear 3-Dimensional (3D) Analysis 

The physical problem of a single pile-soil-structure system subjected to earthquake 

excitation is idealized, as shown in Figure 3.1a. The numerical model of the problem 

includes the beam elements for the pile and structure system. The linear material 

behavior is often adopted for the structural elements in soil-pile-structure interaction 

analyses. However, soils exhibit highly nonlinear behavior even under low strains, and 

the main uncertainty in the analyses arises from the modeling approach taking this 

nonlinearity into account. The 3D method discretizes the soil domain (Figure 3.1b).  

In the numerical model, finer elements are used in the vicinity of the pile, whereas the 

coarser mesh can be employed near the boundaries. The dynamic input motion is 

defined at the bottom boundary of the model. Since the major component of the 

earthquake is in the horizontal direction, the lateral boundaries should allow for 

absorption of the lateral movement to prevent the waves from reflecting into the model. 
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Figure 3.1 : The soil-pile-structure interaction problem: (a) Idealization of the problem, (b) Mathematical model with the boundary conditions.
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3.1.1 Numerical model 

In this study, the three-dimensional (3D) analyses were performed in FLAC3D, a 

numerical analysis program that solves the dynamic equation of motion using the finite 

difference method. The procedure to create a numerical model in the program includes 

the generation of the model geometry (grid generation), defining the initial and 

boundary conditions, assigning the constitutive material model to the elements, 

applying the input motion, and finally, analyzing the model. These steps of numerical 

model generation are explained below. 

The first step in the numerical model generation is to create the model geometry using 

suitable elements. Next, the structural elements can be modeled using the beam 

elements.  Beams are two noded elements, and each node has three translational and 

three rotational degrees of freedom, as shown in Figure 3.2. 

 

Figure 3.2 : Degrees of freedom of the beam elements in FLAC3D. 

The superstructure is modeled as a single-degree-of-freedom system (SDOF), which 

consists of a mass representing the structure connected to the soil utilizing a beam 

element representing the column of the SDOF system. The natural angular frequency 

of a single degree of freedom system is calculated using equation 3.1: 

 

𝜔 = √
𝑘

𝑚
 (3.1) 

where m is the structure's mass, and k is the stiffness of the single-column model.  
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The stiffness of a column is calculated by equation 3.2 if the bottom end is fixed and 

the top end is free: 

 
𝑘 =

3𝐸𝐼

ℎ3
 (3.2) 

where the EI is the flexural rigidity of the column and h is the column height.  

The soil domain in 3D analyses is created using the volume elements. The grid 

generation in FLAC3D is similar to the mesh generation in the finite element method. 

Several elements are available in FLAC3D for 3D solids. The most commonly used 

ones are brick, cylinder, and radial cylinder elements, which create the soil domain 

and the piles with circular cross-sections. The gridpoints (or nodal points in finite 

element terminology) for these elements are shown in Figure 3.3.  

 

 

Figure 3.3 : Solid elements used in FLAC3D: (a) Brick, (b) Cylinder, (c) Radial 

cylinder. 

The grid of the soil domain can be generated using the brick, cylinder, and radial 

cylinder elements for solid pile-soil interaction analyses. However, the size of these 

volume elements might affect the solution of the analysis. Therefore, finer grids allow 

higher sensitivity in the analysis, making the resulting solution more precise. 

Especially the high-stress regions must be modeled with finer zones to capture the 

response better. However, the solution time is higher as the number of elements used 

in the model increase.  

The pile-soil interaction problem consists of a cylinder (pile) and radially graded mesh 

(soil domain). The vicinity of the cylinder must be modeled with a finer grid than the 

soil domain since the stresses around the pile are higher. The zone size near the lateral 

boundaries could be increased to obtain an effective solution. The change of zone size 

(b) (a) (c) 
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of consecutive elements is controlled with the zone aspect ratio command. The 

accuracy of the analysis is better as the zone aspect ratio is close to unity. However, 

different zone sizes are inevitably used in pile-soil interaction problems. The change 

of zone size should be as gradual as possible for a better solution. Usually, a sensitivity 

analysis is required to determine the number of elements used in the numerical model.  

The wave transmission criteria determine the zone sizes in a model subjected to 

dynamic loading. The seismic excitation is applied to 3D models at the bottom 

boundary. The created grid must be fine enough to allow wave propagation through 

the soil domain accurately. According to Kuhlemeyer and Lysmer (1973), the 

minimum zone size in the direction of wave propagation should be equal to or less 

than one-tenth to one-eighth of the wavelength: 

 
Δ𝑙 =

𝜆

10
 

(3.3) 

The wavelength in equation 3.3 is calculated using the shear wave velocity of the soil 

and the highest frequency component of the input motion as follows:  

 
𝜆 =

𝑉𝑠
𝑓𝑚𝑎𝑥

 
(3.4) 

Equation 3.4 shows that as the soil modulus decreases or the frequency of the input 

motion increases, the associated wavelength will be smaller, thus the zone size. 

Therefore, finer zone sizes are required near the ground surface since the soil modulus 

is not significant under the low confining pressure.  

3.1.2 Soil constitutive model 

The soil-pile interaction analyses are carried out in this study to determine the 

relationship between pile displacements and soil resistance. The forces are related to 

the stresses in the discretized domain through the equation of motion by equilibrium. 

Compatibility provides the relation between the strains and displacements. The 

equilibrium and compatibility relations depend on the geometry of the problem, 

independent of the material's mechanical behavior. The mechanical behavior of a 

material is defined by the stress-strain relation, which is achieved thorough the 

constitutive models. Therefore, the second stage in generating a numerical model is to 

select a proper constitutive model for soil behavior. The schematic view of the 
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equations of a boundary value problem is shown in Figure 3.4, according to Puzrin 

(2012) 

 

Figure 3.4 : The relations in the boundary value problem (Puzrin, 2012). 

3.1.2.1 Hardin & Drnevich model 

Shear stress-strain relation is defined in the following form according to Hardin and 

Drnevich (1972): 

 
𝜏 =

𝐺𝑚𝑎𝑥𝛾

1 +
𝛾
𝛾𝑟𝑒𝑓

 
(3.5) 

Hardin and Drnevich (1972) model requires the initial soil modulus for small-strain 

behavior. Several suggestions or correlations are available for the initial shear modulus 

in the literature (Hardin & Black, 1966; Iyisan, 1996; Wair et al., 2012). In this study, 

the small strain shear moduli, Gmax equation suggested by Seed and Idriss (1970) was 

employed, which depends on the relative density of sand and the confining pressure:  

 
𝐺𝑚𝑎𝑥 = 21.7 (𝐾2)𝑚𝑎𝑥 𝑝𝑎  (

𝜎′𝑚
𝑝𝑎
)

0.5

 (3.6) 

where (K2)max is a modulus parameter that depends on the relative density of sand, pa 

is atmospheric pressure, '
m is the mean effective stress. 

 

The effective confining pressure can be calculated using equation 3.7. 

Forces 

Equilibrium 

Displacements 

Compatibility 

Stresses Strains 

Constitutive 

Relationships 



40 

 
𝜎′𝑚 =

𝜎′𝑣 + 2𝜎′ℎ
3

  (3.7) 

In the above equation, 'h is the horizontal effective stress, calculated by multiplying 

the vertical effective stress, 'v, with the lateral earth pressure coefficient, Ko. Seed and 

Idriss (1970) suggested the following equation to express the (K2)max as a function of 

relative density Dr: 

 (𝐾2)𝑚𝑎𝑥 = 3.5 (𝐷𝑅)
2/3 (3.8) 

where Dr is the relative density. 

The nonlinear behavior of soil is represented by equation 3.5, which is based on the 

hyperbolic model of Kondner (1963). The relation is linear for very small strain levels 

(≤). The shear stress-strain relation of cohesionless soils includes the initial 

modulus for the very small strain stages of loading and the modulus at large strain. 

The initial shear modulus can be calculated using equation 3.6. The nonlinear behavior 

is considered with the normalized modulus reduction (or degradation) curves. The 

reduction of initial shear modulus with increasing shear strain is formulized as follows: 

  𝐺

𝐺𝑚𝑎𝑥
=

1

1 + 𝛾𝑟𝑒𝑓
 (3.9) 

Many researchers have studied the nonlinear behavior of cohesionless soils under 

cyclic loads, and reduction curves have been suggested (Darendeli, 2001; Ishibashi & 

Zhang, 1993; Seed & Idriss, 1970). The curves suggested by Seed and Idriss (1970) 

have been implemented by several researchers (Boulanger et al., 1999; Finn, 2005; 

Kwon & Yoo, 2020; Thavaraj et al., 2010). In this study, effective stress-dependent 

curves of Darendeli (2001) were employed to consider the variation with depth better. 

The shear modulus reduction equation in Darendeli (2001) is given in equation 3.10.  

 𝐺

𝐺𝑚𝑎𝑥
=

1

1 + (
𝛾
𝛾𝑟𝑒𝑓

)
0.919 (3.10) 

The reference strain in equation 3.10 depends on the effective confining stress. 

Darendeli (2001) formulized the reference strain of cohesionless soils depending on 

the confining stress as: 
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𝛾𝑟 = 0.0352 [

𝜎′𝑚
𝑝𝑎
]

0.3483

 (3.11) 

Equation 3.11 yields the modulus reduction curves for various confining stress levels. 

Figure 3.5 shows the curves for 10 kPa, 25 kPa, and 100 kPa levels. These modulus 

reduction curves allow the model to consider the nonlinear soil behavior, but the 

ultimate strength is not defined explicitly.  

 

Figure 3.5 : Modulus reduction curves of Darendeli (2001).  

The initial modulus and the modulus reduction curves define the soil behavior under 

monotonic loading. However, the model should include the unloading/reloading rule 

for time-dependent dynamic (cyclic or transient) loading. Figure 3.6 depicts the soil 

behavior in the hyperbolic model for the initial loading-unloading-reloading cycle. The 

Masing (1926) rule is implemented for the unloading/reloading behavior, which 

assumes that the subsequent unloading/reloading behavior is enlarged by a factor of 2, 

as shown in Figure 3.6.  

 𝜏 − 𝜏𝑎
2

= 𝑓 (
𝛾 − 𝛾𝑎
2

) (3.12) 
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Figure 3.6 : Shear stress-strain relation with unloading/reloading rule according to 

Masing (1926). 

The definition of hysteretic damping is the ratio of the energy dissipated in one cycle 

to the maximum stored energy. The damping ratio for the stress-strain loops shown in 

Figure 2.6 can be calculated using equation 3.13 in the hyperbolic model. 

 

Dmasing =
2

𝜋

{
 
 

 
 

2

1 +
𝛾𝑐
𝛾𝑟𝑒𝑓

(
𝛾𝑐
𝛾𝑟𝑒𝑓

)
2 [

𝛾𝑐
𝛾𝑟𝑒𝑓

− ln (1 +
𝛾𝑐
𝛾𝑟𝑒𝑓

)] − 1

}
 
 

 
 

 (3.13) 

The hysteretic damping command in FLAC3D was utilized for the soil domain in the 

model. The reference strain values were assigned to each zone by considering the 

initial effective stress (total stress approach). However, the maximum shear strain was 

on the order of 0.1%-0.3% in the study performed by Darendeli (2001), which could 

not involve the large strain (>1%) behavior. In comparison, the study of Seed and Idriss 

(1970) showed that the G/Gmax value for modulus degradation curves at 3% shear strain 

varies between 0.03 and 0.05. Therefore, a cut-off for G/Gmax is required to represent 

the large strain behavior in the modulus degradation accurately. Since the experimental 

study presented by Darendeli (2001) does not include the large strain data (≥1%), 0.05 

was assumed for minimum G/Gmax considering the Seed and Idriss (1970) curves. 

Thus, a minimum cut-off value of 0.05 was applied in this thesis for the modulus 

reduction ratio to prevent further increase of damping beyond a certain shear strain.  

a 

a 

 

 

-a 

 𝜏 − 𝜏𝑎
2

= 𝑓 (
𝛾 + 𝛾𝑎
2

) 

Skeleton curve 

𝜏 − 𝜏𝑎
2

= 𝑓 (
𝛾 − 𝛾𝑎
2

) 
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3.1.2.2 Mohr-Coulomb model with hysteretic damping 

The most commonly used constitutive relationship in soil mechanics is the Mohr-

Coulomb, and the yield function in the model is defined as: 

 𝜏𝑓 = 𝑐 + 𝜎𝑛𝜙 (3.14) 

In plasticity theory, the total strain is decomposed into elastic and plastic components 

(=e+p). Therefore, the initial state of the numerical model must be in elastic 

equilibrium. The soil element is subjected to the stress increment, and the resulting 

strains are evaluated assuming the elastic behavior. Once the stress reaches the 

ultimate value in the stress space according to the yield criteria, the deformations are 

no longer elastic, and irreversible (plastic) deformations occur. The stresses cause 

reversible strains at the elastic region, but further stress increments cause plastic 

deformations. The flow rule controls the stress increment due to the plastic strain, and 

it is defined in Mohr-Coulomb as: 

 
𝑓𝑠 = −𝜎1 + 𝜎3𝑁𝜙 − 2𝑐√𝑁𝜙 (3.15) 

where N is given: 

 
𝑁𝜙 =

1 + 𝑠𝑖𝑛𝜙

1 − 𝑠𝑖𝑛𝜙
 (3.16) 

If the stress state yields fs=0 condition, the material is subjected to plastic 

deformations. The yield envelope of the Mohr-Coulomb model is shown in Figure 3.7 

in 3-dimensional stress space. 

 

Figure 3.7 : Mohr-Coulomb model in 3-dimensional stress space. 
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In the theory of plasticity, the strain is decomposed into elastic and plastic parts, as in 

equation 3.17: 

 𝑑𝜀 = 𝑑𝜀𝑒 + 𝑑𝜀𝑝 (3.17) 

The stress-stain equation is written as: 

 𝑑𝜎 = (𝑑𝜀 − 𝑑𝜀𝑝) (3.18) 

The plastic part of the strain is defined as: 

 
𝑑𝜀𝑝 = 𝑑𝜆

𝜕𝑔

𝜕𝜎
 (3.19) 

where dis a constant and g is the potential function. A constitutive model is 

associated if the potential function is equal to the flow rule (f=g case). Otherwise, the 

model is nonassociated for f≠g. The Mohr-Coulomb model in FLAC3D is 

nonassociated since the potential function is described as: 

 𝑔𝑠 = −𝜎1 + 𝜎3𝑁𝜓 (3.20) 

where 𝜓 is, the dilation angle and N is defined as: 

 
𝑁𝜓 =

1 + 𝑠𝑖𝑛𝜓

1 − 𝑠𝑖𝑛𝜓
 (3.21) 

In the classical theory of Mohr-Coulomb, the model is elastic-perfectly plastic, in 

which the behavior is linear in the elastic stage. However, the Mohr-Coulomb model 

in FLAC3D allows us to consider the nonlinearity in the small strain levels by including 

the hysteretic damping approach. Therefore, the model is called Mohr-Coulomb with 

the hysteretic damping approach. Furthermore, the model is an extension of the 

hyperbolic model of Hardin & Drnevich, which does not include a certain failure 

criterion.  

The nonlinear behavior of soil is considered through the modulus degradation curves 

in the Hardin&Drnevich model, and the ultimate strength is not defined explicitly. The 

Mohr-Coulomb model with the hysteretic damping approach overcomes the 

mentioned problem. The reference strain concept defines the nonlinear soil behavior, 

and the yield function limits the ultimate stress that can be sustained.  
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3.1.2.3 HS-Small model 

In this study, the HS-Small model was used for soil behavior in the static analysis of 

the soil-pile interaction problem, developed by Benz (2007), and verified using the 

laboratory test results and a case study. The HS-Small model includes the original 

features of the plastic hardening (PH) model, which can simulate shear and volumetric 

hardening. The PH model was introduced by Schanz et al. (2019) within the 

framework of hardening plasticity extending the original non-linear elastic model of 

Duncan and Chang (1970). Benz (2007) developed the original model to account for 

the very small strain stiffness. The original hyperbolic stress-strain relation in the 

Hardening model is shown in Figure 3.8. The HS-Small model adopts the failure 

hypothesis of Matsuoka&Nakai and Drucker-Prager's potential function for flow rule 

(Figure 3.9). The input parameters for the model include the friction angle () and the 

dilation angle (). The ratio of qf/qa is defined as Rf in the model and can generally be 

taken as 0.9 for cohesionless soils. 

The soil nonlinearity in the HS-Small model is achieved using the stiffness parameters; 

E0, Eur, and E50, for very small strain stiffness, unloading-reloading stiffness, and 

secant stiffness corresponding to 50% of the ultimate strength, respectively. The strain-

dependent behavior shown in Figure 3.8 can be constructed in q- space by equation 

3.22 using E50.  

 𝜀𝑖 =
𝑞𝑎𝑞

𝐸50(𝑞𝑎 − 𝑞)
 (3.22) 

 

Figure 3.8 : Hyperbolic stress-strain curve in q- space in HS-Small model. 
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Figure 3.9 : Yield surfaces of Matsuoka&Nakai in 3D stress space (Benz, 2007). 

Another essential feature of the HS-Small model is that it allows the stress-dependent 

soil moduli with the power law. Once the initial stress state is created, the soil stiffness 

is obtained by equation 3.23.

 
𝐸50 = 𝐸50

𝑟𝑒𝑓
(
𝑐 𝑐𝑜𝑡𝜙 − 𝜎3
𝑐 𝑐𝑜𝑡𝜙 + 𝑝𝑟𝑒𝑓

)

𝑚

 (3.23) 

The stress dependency "m" power is generally 0.5-0.7 for cohesionless soils. The 

parameter E50 can be either determined by a triaxial compression test in the laboratory 

or, in the lack of a laboratory test, it can be estimated by selecting a proper ratio for 

the Eur/E50 depending on the degree of nonlinearity. Compared to the plastic hardening 

model, the HS-Small includes two additional parameters: Small-strain modulus E0 and 

reference strain 0.7. In this study, the small strain stiffness (E0) was calculated using 

the maximum shear modulus equation suggested by Seed and Idriss (1970). 

The rough estimation for unloading/reloading stiffness is 1/3 of E0, while the E50 is 

about 1/3 to 1/4 of Eur. E0 can be estimated using the maximum shear modulus 

according to equation 3.24. 
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 𝐸0 = 𝐺𝑚𝑎𝑥 2 (1 + 𝑣) (3.24) 

0.7 is the reference strain, which can be written as: 

 𝛾0.7 = (1 − 0.722)
𝜏𝑓
𝐺0

 (3.25) 

where f  is the shear strength, and G0 is the small-strain shear modulus. The stiffness 

reduction curve is obtained using the reference strain HS-Small model. Figure 3.10 

shows a typical stiffness degradation curve and various strain levels for the 

geotechnical structures. 

 

Figure 3.10 : Stiffness modulus degradation curve and typical strain ranges 

(Modified from Atkinson and Sallfors 1991 and Ishihara 1996). 

3.1.3 Initial and boundary conditions 

The mathematical model of the soil-pile-structure interaction problem is defined with 

differential equations. The finite volumes discretize the domain, and the stress-strain 

behavior is assigned to the materials in the model. The solution of the differential 

equations requires the definition of boundary conditions.  
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A numerical model of a geotechnical engineering problem must include a stage to 

create the initial stress state for the geostatic conditions. First, the model must be in 

equilibrium statically under vertical and horizontal stresses. Next, the initial stress state 

should be created since the constitutive model includes stress-dependent soil 

properties. Finally, the bottom and the lateral boundaries should be fully fixed in this 

stage. The fixity condition is provided by predefining the velocities (or displacements) 

in the gridpoints at the boundaries. After the boundary conditions are defined for the 

initial stage, the model is solved to create the initial stress conditions. 

Seismic soil-structure interaction problems include the dynamic input motion mostly 

applied at the bottom boundary. However, the fixed boundaries do not allow the 

dynamic waves to travel outwards, and reflection takes place. Therefore, viscous 

boundaries should be used in the boundaries to absorb the waves. The viscous 

boundaries developed by Lysmer and Kuhlemeyer (1969) are employed in FLAC3D. 

The lateral boundaries of the model should also prevent wave reflection. The free-field 

option in the program absorbs the energy through the sides of the model to accurately 

represent the wave propagation. The viscous dashpots are placed between the main 

grid and the free-field boundaries to simulate the quiet boundary condition.  

3.1.4 Selection of input motion 

The input motions of the seismic soil-structure interaction analysis are the real 

earthquake records. In addition, the databases provide the acceleration time histories 

of the earthquake records. After initializing the model with the geostatic conditions, 

the dynamic input motion can be applied to the model's base. When the bottom 

boundary is fixed, the acceleration (or velocity) records can be directly applied as a 

prescribed displacement to the model. The incoming earthquake motion vertically 

propagates through the bedrock and reaches the surface, and the acceleration time 

histories are usually recorded at the rock outcrop. According to the site response 

analysis theory, the amplitude of the earthquake motion recorded on the rock outcrop 

is double the incoming motion, as shown in Figure 3.11 (Bardet et al., 2000). However, 

the recorded outcrop motion differs from the motion at the top of the rock. Therefore, 

the outcrop record should not be directly applied to the base of the 3D numerical 

models.  
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Figure 3.11 : Terminology for the motions in seismic site response analysis. 

The stiffness contrast between the bedrock and overlying soil affects the motion at the 

bottom of the soil profile. Suppose the stiffness of the soil just above the bedrock is 

significantly lower than the bedrock stiffness. In that case, the incoming motion is 

doubled in amplitude at the top of the rock (bedrock motion) and becomes similar to 

the rock outcrop motion. Therefore, the rock outcropping motion can only be used 

directly on the top of the rock if there is a high stiffness contrast between the soil and 

the bedrock. If the bottom of the soil profile includes a layer at which the shear wave 

velocity is close to the bedrock, then the bedrock motion becomes very similar to the 

incoming motion. 

A simple hypothetical problem is introduced in Figure 3.12 to compare input motions. 

Figure 3.12a shows a high stiffness contrast between the bedrock and the soil layer, 

whereas the contrast is low in Figure 3.12b. 

 

Figure 3.12 : Hypothetical example for the input motion: (a) High stiffness contrast, 

(b) Low stiffness contrast between the bedrock and the soil. 
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Two site response analyses were performed in Deepsoil to compare the top of rock 

motions. The target motion is the record of the Kocaeli earthquake (Figure 3.13). The 

shear wave velocity of the elastic halfspace is 760 m/s.  

 

Figure 3.13 : The Kocaeli earthquake record in Deepsoil. 

The input motion in Figure 3.13 is applied as outcrop motion, and the results at the top 

of the rock are compared with the input motion (Figure 3.14). The top of rock motion 

in the first profile (A) is very similar to the input (outcrop) motion. However, in the 

second profile, the top of rock motion (B) is approximately ½ of the input motion. 

 

Figure 3.14 : Comparison of the top of rock motions in the hypothetical problem. 

The above example concludes that two approaches can be followed to determine the 

motion used in 3D models. The first method is to create a 1D model and obtain the top 

of rock motion in the profile using the rock outcropping motion. The second approach 

is to extend the 3D model and define a bedrock layer beneath the soil profile to apply 

the incoming motion, which is ½ of the rock outcropping motion, to the bedrock base. 
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3.2 Beam on Nonlinear Winkler Foundation (BNWF) Method  

The soil-pile-structure interaction problem is mostly analyzed using the beam on 

nonlinear Winkler foundation (BNWF) method. In this method, the nonlinear soil 

behavior is represented by the springs attached to the pile at the specified depths. The 

lateral load-deflection relation represents the near-field behavior of the soil-pile 

interface. Fully dynamic (seismic) soil-pile-structure interaction analysis can be 

performed using the BNWF method in two steps. In the first step, the free-field site 

response analysis is performed to obtain the soil displacement-time histories at the 

selected depths. Then, a fully nonlinear analysis is performed by applying the soil 

displacements to the springs. The fully dynamic analysis method of BNWF for the 

soil-pile-structure interaction problem is summarized in Figure 3.15.  

3.2.1 Site response analysis  

The first step of the BNWF approach for dynamic soil-pile-structure interaction 

analysis is to determine the free-field soil displacement-time histories by site response 

analysis. In this first step, the nonlinear soil response analysis is performed either by 

equivalent linear or fully nonlinear analysis methods. Shear modulus reduction and 

damping curves are implemented in the equivalent linear method; however, the 

approach is unsuitable for seismic events resulting in large shear strains (for >0.2 %). 

Frequency domain analysis is preferred for equivalent linear analysis since the method 

is linear, and the nonlinearity is considered via an iterative approach. However, fully 

nonlinear analysis is required in the time domain to capture the true nonlinear soil 

behavior at large strains accurately. The main uncertainty in the nonlinear analysis is 

the soil model, which should properly consider the loading-unloading-reloading 

behavior.  

Hardin&Drnevich model can be used in the fully nonlinear analysis with the Masing 

rule for unloading/reloading behavior. However, as shown in Section 3.1.2, the main 

drawback of this model is the high damping ratio at large strains. Many researchers 

have investigated the high damping problem, and several suggestions are proposed to 

improve the model's performance. In this study, the method proposed by Groholski et 

al. (2016) was used in 1D site response analysis, which was implemented in Deepsoil.
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Figure 3.15 : Dynamic analysis with BNWF method: (a) Site response analysis, (b) Dynamic analysis.
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3.2.2 Fully dynamic analysis of the soil-pile-structure system 

In the second step of the dynamic BNWF method, the numerical model of the soil-

pile-structure system is created. The beam and the structure are modeled using the 

beam elements, and the soil reaction to the lateral load is represented by nonlinear 

springs. The nonlinear spring can reproduce the hysteretic damping through the 

unloading/reloading rule. The system should include a dashpot to simulate the 

radiation damping in the fully dynamic time-history analysis.  

The effect of several arrangements of the spring-dashpot systems on the soil-pile-

structure interaction analysis has been investigated by Nogami et al. (1992) and Wang 

et al. (1998). They concluded that the near-field element could represent the hysteretic 

behavior, and the linear far-field element should be placed in series to simulate the 

radiation damping. A similar approach was followed in this study. The far-field 

element represents the radiation damping with the dashpot coefficient suggested by 

Gazetas and Dobry (1984), which is given in equation 3.26. 

 𝑐𝑟
4𝑟𝜌𝑠𝑉𝑠

= {1 + [
3.4

𝜋(1 − 𝜐)
]
5/4

} 𝑎0
−1/4 (3.26) 

where Vs is the shear wave velocity, r is the radius of the pile, and a0 is the 

dimensionless frequency factor=2f.r/Vs where the parameter f can be taken as the 

dominant frequency of the earthquake record. The spring stiffness of the linear far-

field element can be estimated from the initial section of the p-y curve, according to 

Wang et al. (1998). However, in this study, a very high stiffness value was assigned to 

minimize the increase of flexibility due to the arrangement of the spring-dashpot 

system, placed in series with the near-field element. 

The p-y curves represent the nonlinear behavior in the near-field element. In the time-

domain analysis, hysteretic damping is considered by the unloading/reloading rule. 

Therefore, the soil behavior in BNWF is simulated using the near-field and far-field 

elements, which should represent the soil behavior under lateral loading. 

The BNWF model is analyzed by applying the displacement time histories obtained in 

the first step to the fixed end of the far-field elements, as shown in Figure 3.15. The 

Newmark method is used in the direct integration scheme for the time-domain 

analysis. In this approach, a direct analysis of the soil-pile-structure system can be 

performed. 
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3.2.3 Static nonlinear (pushover) analysis of the soil-pile-structure system 

The soil-pile-structure system response under dynamic loading can be predicted by the 

static nonlinear (pushover) analysis. In this approach, the model is reduced to 

substructures to analyze the kinematic and inertial interaction separately. The 

superposition is conducted to obtain the overall system response. 

The kinematic interaction analysis is performed to obtain the internal forces and pile 

displacements due to the soil displacement. Then, the maximum value of time histories 

of the free-field soil displacements is applied to the fixed end of the p-y curves. The 

maximum displacements are applied in a single step instead of using the dynamic time 

histories. The loading is static in this approach. However, nonlinear analysis is 

required as the soil springs (p-y curves) are not linear.  

The inertial interaction analysis is conducted to simulate the behavior under the 

loading caused by the acceleration of the superstructure. First, however, the 

superstructure acceleration should be estimated to calculate the inertial load. The code-

based spectrum, or the site-specific spectra, can predict the superstructure response 

based on the natural period. Then, the superstructure mass is multiplied by 

acceleration. Finally, the calculated load is applied to the piles in this approach. If the 

linear superstructure behavior is expected, the nonlinear p-y curves can be employed 

directly. The reduction coefficient ( R ) can be used to consider the nonlinear behavior 

of the superstructure. The response obtained by the linear analysis is reduced by 

applying the R parameter. However, only the initial stiffness of the p-y curves should 

be used in this case. The details of the method is given in Alver et al. (2021) 

Since linear analyses are carried out in the static nonlinear (pushover) approach, the 

superposition technique can obtain the total internal forces and the displacements. 

Therefore, the method is suitable for small to moderate shaking intensities. This 

approach cannot determine the superstructure response, but it is predicted using code-

based or site-specific spectra. Besides, the kinematic and inertial interaction analyses 

are carried out separately. The method is summarized in Figure 3.16. Although the 

method has some drawbacks, it is still employed by engineers in practice due to its 

simplicity. However, fully dynamic analysis (3.1.2) is required for systems subject to 

high nonlinearity under earthquake loading. In addition to the piles subject to dynamic 

loading, the method is widely used for onshore and offshore structures.
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Figure 3.16 : Nonlinear static (pushover) analysis in BNWF method: (a) Site response analysis, (b) Kinematic interaction analysis, (c) Inertial 

interaction analysis
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4. NUMERICAL MODELLING of LATERALLY LOADED PILE PROBLEM: 

STATIC PILE HEAD LOADING 

Historically, the load-displacement behavior of piles embedded in soils has been 

predicted by the stress-strain relation (Bouzid et al., 2013; Lombardi et al., 2017; Scott, 

1981; Terzaghi, 1955). Several researchers have suggested direct correlations 

(Bransby, 1999; Randolph & Houlsby, 1984; Zhang & Andersen, 2017) for piles in 

clays using the rigid disc analogy. However, the problem has not been clearly 

understood for piles in sands since the shear strength of sands is not constant but 

depends upon the effective confining stress, which increases with depth. The first 

suggestion for the p-y relation under static loads in sands was made by Terzaghi 

(1955). Based on the full-scale field test performed on Mustang Island (Cox et al., 

1974), a piecewise non-linear relation was proposed by Reese et al. (1974). Murchison 

and O'Neill (1984) suggested a hyperbolic tangent function, and API (2007) adopted 

this form. Pender (1993) proposed an equation based on the finite element analysis 

results. Thieken et al. (2015) developed new equations for p-y curves in sands based 

on the finite element analysis results. The hyperbolic stress-strain curve of Kondner 

(1963) was implemented by Georgiadis et al. (1992) for p-y curves to capture the 

experimentally obtained p-y curves.  

This thesis investigates the laterally loaded pile problem in FLAC3D numerically 

(Itasca Consulting Group, 2019) using the hardening model with small-strain stiffness 

(HS-Small Model). The parametric analyses were performed on the verified numerical 

model to show the effect of soil and pile properties on the static p-y curves. The 

selected parameters were the pile diameter and flexural stiffness, relative density of 

soil, and degree of soil nonlinearity. The modified hyperbolic model was proposed to 

characterize the p-y curves better. The proposed model includes the initial stiffness, 

the ultimate soil resistance, and two additional parameters for the degree of 

nonlinearity, the last of which allows the p-y curves to be efficient from very small to 

large displacement ranges.  
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4.1 Verification Analyses 

The full-scale field test, carried out on Mustang Island in Texas-Austin, was selected 

to verify the model created in FLAC3D (Itasca Consulting Group, 2019). The soil 

profile consists of a medium-dense sand layer from the ground surface down to 5 m 

depth, followed by a dense sand layer, as shown in Figure 4.1 (Dodds, 2005; Dodds & 

Martin, 2007).  

 

Figure 4.1 : Mustang Island Test details (Dodds & Martin, 2007). 

The groundwater table was on the surface, and the submerged unit weight of the sand 

was 10.4 kN/m3. The internal friction angle was determined as 39o by Reese et al. 

(1974). A steel pipe pile having 61 cm diameter and 21 m length was tested in the 
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field. The thickness of the pipe section was 9.35 mm, corresponding to the flexural 

stiffness of 163 MN.m2.  

The HS-Small model parameters selected for the verification problem are given in 

Table 4.1. The friction angle was taken as given (Reese et al., 1974), and the dilation 

angle was assumed zero, considering the existence of a medium-dense layer near the 

surface. Small-strain modulus was estimated by the elastic relation, E0=2G0 (1+v). The 

ratios E0/Eur and Eur/E50 were anticipated as 2.5 and 4, respectively. 

Table 4.1 : The selected soil parameters of the sand for Mustang Island in the HS-

Small Model. 

Parameter Value Parameter Value 

Friction angle, ' (o) 39 E0,ref (MPa) 387 

Dilation angle, (o) 0 Eur, ref (MPa) 155 

sat(kN/m3) 20.4 E50,ref =Eoed,ref (MPa) 39 

Pressure reference 

(kPa)
100 m 0.5 

Rf 0.9 
Reference strain, 0.7 

(%) 
(1 − 0.722)

𝜏𝑓

𝐺0
 

The 3-dimensional geometry of the numerical model was created in FLAC3D (Itasca 

Consulting Group, 2019). The pile geometry was generated with a cylinder, and 

radially graded brick elements were used for simulating the soil around the pile. The 

radial grid enables the finer elements to be placed near the pile, and gradually coarser 

mesh could be built as it approaches the model boundary. The model dimensions were 

24 m x 12 m x 21 m, making the distance from the pile center to the model boundary 

20 times the pile diameter (20D). The side and bottom boundaries were fixed in the 

normal and vertical directions. The created numerical model, including the pile, the 

soil, and the interface elements, is shown in Figure 4.2. 
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Figure 4.2 : The numerical model created for Mustang Island Field Test. 

The numerical analyses aimed to derive load-displacement (p-y) curves. An interface 

was inserted between the cylindrical pile and the surrounding soil to obtain the stresses 

on the interface. The equivalent stiffness parameter in the normal and shear direction 

(kn and ks) for an interface is given in equation 4.1: 

 

𝑘𝑛 = 𝑘𝑠 = 𝑚𝑎𝑥 [
(𝐾 +

4
3
𝐺)

∆𝑧𝑚𝑖𝑛
] (4.1) 

where K and G are the bulk and shear moduli, respectively, and zmin is the minimum 

width of the adjoining zone in the normal direction. The rule of thumb is to set the 

interface stiffness as ten times the equivalent stiffness according to the FLAC3D 

Manual (Itasca Consulting Group, 2019). Therefore, sensitivity analyses were 

conducted with ten times the equivalent stiffness, equivalent stiffness, and 10 % of the 

equivalent stiffness. Figure 4.3 shows the effect of interface stiffness on the p-y curves. 
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The results revealed that the obtained p-y curves did not differ significantly. 

Consequently, the depth-dependent stiffness was assigned ten times the equivalent 

stiffness for the interface as the soil modulus increased with depth.  

 

Figure 4.3 : The effect of interface stiffness on the p-y curves. 

Pile resistance to lateral loading was obtained using the normal and the shear stresses 

at the gridpoints of the pile-soil interface. The stresses were multiplied by the 

'gridpoints' characteristic area, and the total force was calculated via built-in code. 

Finally, the resulting force was divided by the tributary length, the distance between 

the nodes in the vertical direction, to find the load resistance (p) in force/distance units. 

Pile displacement was the lateral pile displacement of the center gridpoint. The Mohr-

Coulomb criterion was valid for the interface, which allows the slip and separation 

based on the applied shear stresses.   

A constant velocity of 4x10-8 m/s was given to the top of the pile in 107 steps, reaching 

the pile head displacement of about 400 mm. The program's pile-head load outputs 

were taken using the built-in fish function. The pile-head load vs. ground line 

displacement obtained from the 3D numerical analyses was compared with Reese et 

al. (1974). Figure 4.4 shows the comparison, and the close results, particularly at the 

small displacements, confirm that the selected soil parameters reflect the field 

conditions with reasonable accuracy.  

-250

-200

-150

-100

-50

0

0.00 0.02 0.04 0.06 0.08

p
 (

k
N

/m
)

y (m)

z=1 m

K=1K K=0.1K K=0.01K
-250

-200

-150

-100

-50

0

0.00 0.02 0.04 0.06 0.08

p
 (

k
N

/m
)

y (m)

z=2 m

K=1K K=0.1K K=0.01K

-250

-200

-150

-100

-50

0

0.00 0.01 0.01 0.02 0.02 0.03

p
 (

k
N

/m
)

y (m)

z=3 m

K=1K K=0.1K K=0.01K
-250

-200

-150

-100

-50

0

0.00 0.01 0.02 0.03 0.04

p
 (

k
N

/m
)

y (m)

z=4 m

K=1K K=0.1K K=0.01K



62 

 

Figure 4.4 : Applied lateral load vs. ground line deflection results: Mustang Island 

and numerical analysis results.  

The non-linear load resistance vs. deflection (p-y) curves at the selected depths were 

obtained numerically. The results of p-y curves were compared with the ones obtained 

using the equations by Reese et al. (1974) and API (2007), as shown in Figure 4.5 and 

Figure 4.6. The results showed that the ultimate resistance of soil (pu) at 0.5 m depth 

was quite close to those of Reese et al. (1974). However, pu values in the numerical 

analyses were higher at greater depths. 

 

Figure 4.5 : Comparison of p-y curves obtained through 3D numerical analyses with 

Reese et al. (1974). 
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Figure 4.6 : Comparison of p-y curves obtained through 3D numerical analyses with 

API. 

4.2 Parametric Analyses 

This study aims to characterize the p-y curves in small to large displacement ranges. 

For this purpose, a numerical model was created, similar to the verification model. The 

model consisted of the solid circular pile, the surrounding soil, and the interface to 

obtain the lateral resistance applied by the soil. Only half of the problem was modeled 

due to the symmetry, and the dimensions were 20D, 10D, and 2L in the x, y, and z 

directions, where D and L were the pile diameter and the pile length, respectively. A 

constant velocity was applied to the pile head so that the ultimate resistance could 

mobilize at depth. 

The parametric analyses were performed to show the effect of the relative density of 

soil, pile flexural rigidity, pile diameter, degree of nonlinearity (E0/E50) of soil, and 

power of stress dependency (m) on the p-y curves. The selected parameters are given 

in Table 4.2, where the bold values are the baseline analysis of a solid circular pile 

with D=0.65 m, EI=263 MN.m2, DR= 55%, E0/E50=10, and m=0.5. The young modulus 

of the pile material (E) was 30 GPa in the baseline analysis. The effect of flexural 

rigidity was investigated for three different moduli of elasticity of the pile material, 

keeping the pile diameter (D=0.65 m) and soil properties constant. In the analyses, the 
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with lengths of 8 m, 12 m, and 19 m for diameters of 0.65 m, 1.00 m, and 1.60 m, 

respectively (L/D=12). The effect of the slenderness ratio was beyond the scope of this 

thesis.  

Table 4.2 : The parameters used in the parametric static analysis of the single pile. 

 The Variables 

Flexural Rigidity, EI (MN.m2) 26.3 263 2630 

Pile Diameter, D (m) 0.65 1.0 1.60 

Relative Density, DR (%) 30 55 80 

Degree of Nonlinearity, E0/E50 5 10 20 

Power of stress dependency, m 0.5 0.7  

4.2.1 Effect of pile flexural stiffness 

The effect of flexural stiffness (EI) on the p-y curves has been investigated in the 

literature (Ashour & Norris, 2000; Fan & Long, 2005; Wang et al., 2020). In this study, 

three EI values were selected to study the EI effect on the p-y curves. In Figure 4.7, 

the p-y curves at four depths show a slight increase in the ultimate soil resistance as 

the pile modulus reduces. Figure 4.8 shows the p-y curves with the vertical axis 

normalized to the ultimate soil resistance at three depths. Apart from the pile 

flexibility, the normalized p-y curves reveal the depth effect. The ultimate 

displacement at the maximum soil resistance increases as the confining stress 

increases. This behavior is consistent with the soil behavior in that the increase in the 

confining stress causes the soil strength to be reached at relatively higher strains. 

Therefore, greater ultimate soil resistances obtained in the flexible pile can be 

attributed to the change in stress distribution around the pile. Figure 4.9 shows the 

comparison of the displacement fields for the flexible (E=3 GPa) and rigid (E =300 

GPa) piles, having the same length (L =12 m), where the rigid pile causes higher lateral 

displacements in deeper regions. It is noted in this study that the maximum lateral soil 

resistances are lower as the pile flexural stiffness increases. However, the difference 

is insignificant for elastic moduli greater than E=30 GPa, which corresponds to the 

flexural stiffness of concrete piles commonly used in practice. 
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Figure 4.7 : Effect of the pile flexural rigidity on the p-y curves. 

 

 

Figure 4.8 : Effect of the pile flexural rigidity on the normalized static p-y curves. 
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Figure 4.9 : Soil displacement contours under the laterally loaded: (a) flexible pile, 

(b) rigid pile. 

(a) 

(b) 
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4.2.2 Effect of pile diameter 

The effect of pile diameter on the p-y curves under static pile-head loading was 

investigated for various pile diameters: D=0.65 m, D=1.0 m, and D=1.6 m. The 

parametric analysis results shown in Figure 4.10 indicate the diameter's effect on the 

ultimate lateral resistance (pu). Besides, normalized p-y curves were plotted in Figure 

4.11, where the vertical axis is normalized by pu. Although the curves verify the slight 

influence of diameter on the initial stiffness, the ultimate resistance (pu) is more 

sensitive to the pile diameter.  

 

Figure 4.10 : Effect of pile diameter on the static p-y curves. 

 

Figure 4.11 : Effect of pile diameter on the normalized static p-y curves. 
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4.2.3 Effect of relative density of soil (DR) 

This study investigated the effect of relative density to characterize the p-y curves. The 

selected relative densities were 30%, 55%, and 80%, representing the loose, medium-

dense, and dense sand, respectively. Equations 4 and 5 were utilized for the small strain 

modulus, and the internal angle of friction values were 32o, 36o, and 40o. Figure 4.12 

and Figure 4.13 show the p-y and the normalized p-y curves (p/pu) for various relative 

densities at certain depths. According to the results, the effect of DR on the ultimate 

soil resistance is much more pronounced, while Figure 4.13 indicates the slight 

influence of the initial soil modulus. 

 

Figure 4.12 : Effect of soil relative density on the static p-y curves. 

 

Figure 4.13 : Effect of soil relative density on the normalized static p-y curves. 
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4.2.4 Effect of degree of soil nonlinearity (E0/E50) 

The effect of the degree of soil nonlinearity on the laterally loaded piles was 

investigated with three E0/Eur values of 1.25, 2.5, and 5, keeping the E0 constant. Since 

the selected unloading/reloading modulus ratio to the secant stiffness was assumed 

Eur/E50=4, E0/E50 equals 5, 10, and 20, respectively. The p-y curves for different soil 

nonlinearities are shown in Figure 4.14. As the ratio of initial stiffness to secant 

stiffness increases, the degree of soil nonlinearity also increases. As a result, the 

displacement at which the ultimate soil resistance is mobilized has increased 

significantly, as shown in Figure 4.15. 

 

Figure 4.14 : Effect of degree of soil nonlinearity on the p-y curves. 

 

Figure 4.15 : Effect of degree of soil nonlinearity on the normalized p-y curves. 
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4.2.5 Effect of power of stress dependency (m) 

The effect of the power of stress dependency (m) in equation 3.6 on the laterally loaded 

piles was investigated with the most common two values for cohesionless soils: 0.5 

and 0.7. Figure 4.16 and Figure 4.17 show the resulting p-y curves at the selected 

depths. The higher parameter "m" values cause the soil modulus to be lower at shallow 

depths. Therefore, the lower soil resistances in the case of m=0.7 is that the soil 

modulus is lower at shallow depths. 

 

Figure 4.16 : Effect of power of stress dependency on the p-y curves. 

 

Figure 4.17 : Effect of power of stress dependency on the normalized p-y curves. 
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4.3 Comparison of the Ultimate Soil Resistance with the Past Studies 

The parametric analysis results performed in this study have shown that the ultimate 

soil resistance does not linearly increase with diameter, which is consistent with the 

theory given by Reese et al. (1974). The theoretical value for the maximum soil 

resistance was multiplied by a coefficient (A) in Reese et al. (1974) since the field test 

measurements gave higher resistances at shallow depths. The numerical analysis 

results for the same field test showed that the ultimate soil resistances at shallow depths 

were very close, but for greater depths, the agreement was poor, and the ultimate 

resistances were higher in the analyses. The higher soil resistances at greater depths 

were observed in centrifuge tests by Barton et al. (1983), and the modified equation of 

Broms (1964) was suggested for greater depths by . Recent studies also confirm higher 

soil resistance at greater depths in the centrifuge tests (Lu et al., 2021). L. Zhang et al. 

(2005) proposed a relation for piles in cohesionless soils considering the side shear 

friction and passive frontal resistance. Varun (2010) suggested further increasing the 

ultimate lateral resistance based on finite element analyses. Thieken et al. (2015) 

performed finite element analyses with the HS-Small model (in Plaxis 3D), and the 

ultimate resistance in DIN 4085 was adopted.  

The ultimate soil resistance obtained in this study was higher at shallow depths when 

compared with the DIN 4085 and Reese et al. (1974) estimations. However, the results 

complied with DIN 4085 at greater depths where Reese et al. (1974) considerably 

underestimated the pu.  

The effect of relative density was investigated in this study to characterize the p-y 

curves, which require the initial stiffness (Kpy) and ultimate soil resistance (pu). The 

selected relative densities were 30%, 55%, and 80%, representing the loose, medium-

dense, and dense sand, respectively. The small strain modulus was assigned to the soil 

domain based on equation 3.6, and the internal angle of friction values were 32o, 36o, 

and 40o for the relative densities of 30%, 55%, and 80%, respectively. The variation 

of ultimate lateral resistances with depth obtained in the numerical analyses were 

compared with those obtained using the pu relations in the literature in Figure 4.18. 

The maximum depth in the figure is limited to 2.5D to capture better the small 

variations at shallow depths where the pile response is mostly governed. The ultimate 

soil resistances obtained in the numerical analyses were higher than those obtained 
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using the literature, except the DIN 4085, which was relatively close to the values in 

this study, especially for greater depths (for z>1D). A similar agreement was shown in 

the finite element analysis results published by Thieken et al. (2015). However, DIN 

4085 yields lower ultimate lateral soil resistances (pu) at depths less than one pile 

diameter (for z<1D) than those obtained in this study, while the pu at these shallow 

depths is closer to the findings obtained using equations of Reese et al. (1974). 

 

Figure 4.18 : The variation of pu in this study compared with the literature's relations 

for various friction angles. 

The verification analysis showed that the ultimate resistances obtained at the shallow 

depths in this study agreed well with the results published by Reese et al. (1974) for 

the field tests on Mustang Island. However, the maximum soil resistances at greater 

depths were higher in the numerical analysis results. The effect of pile diameter on the 

ultimate soil resistance and the shape of p-y curves under static pile-head loading was 

investigated for various pile diameters: D=0.65 m, D=1.0 m, and D=1.6 m. The 

parametric analysis showed that the pile diameter significantly affects the ultimate 

lateral resistance (pu). Although the curves verify the slight effect of diameter on the 

initial stiffness, the ultimate resistance (pu) is much more sensitive to the pile diameter. 

Besides, compared with the past studies, the variation of pu vs. depth for different pile 

diameters are presented in Figure 4.19. The numerical analysis results showed that the 

pu was close to Reese et al. (1974) at shallow depths (z<1D) and close to DIN 4085 at 

greater depths (z>1D). Besides, the variation of ultimate soil resistance does not 

linearly increase with the depth and the diameter. As a result, the effect of pile diameter 

on the obtained p-y curves have two aspects; the initial stiffness and the ultimate lateral 

resistance. 
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Figure 4.19 : The variation of pu in this study and the relations in the literature for 

various pile diameters. 
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5. NUMERICAL MODELLING of LATERALLY LOADED PILE PROBLEM: 

DYNAMIC LOADING 

This chapter presents the dynamic p-y curves obtained in the FLAC3D. Two centrifuge 

tests from the literature were simulated numerically by the 3-dimensional analyses, 

and the results of the verification analysis were presented. The parametric studies were 

carried out to show the effect of soil and pile properties on the cyclic p-y curves. The 

total-stress approach considered the soil nonlinearity using the small-strain shear 

modulus and modulus degradation curves.  

5.1 The Method 

The main purpose of this thesis is to investigate the pile-soil interaction considering 

the soil nonlinearity under cyclic loads. Numerical analyses were performed in 

FLAC3D using the Mohr-Coulomb model with the hysteretic damping approach, which 

allows adapting the nonlinear stress-strain relation based on the modulus degradation 

curves up to the failure stress. In addition, the nonassociated flow rule for shear failure 

was employed.  

In general, the nonlinear stress-strain behavior of soils under dynamic loading can be 

considered by shear modulus reduction (G/Gmax) curves. In this study, the small-strain 

shear modulus of soil (Gmax) was determined by Seed and Idriss (1970) using equation 

3.6. Then, the bulk modulus was calculated by elastic theory using the shear modulus 

and Poisson's ratio. The Poisson's ratio () was assumed to be 0.45 and 0.30 for 

saturated and dry sands, respectively. 

The hysteretic damping approach was utilized for the nonlinear behavior of soil. 

FLAC3D requires a functional form for the modulus degradation curves to ensure 

continuity. The program could invoke the curves using several functions, and the 

sigmoidal-3 model was preferred in this study. The function in the program is given in 

equation 5.1, and the parameters for Darendeli (2001) curves are shown in Table 5.1.  
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 𝑀𝑠 =
𝑎

1 + 𝑒𝑥𝑝 (−
𝐿 − 𝑥𝑜
𝑏

)
 

(5.1) 

Table 5.1 : The coefficients of the sigmoidal-3 function for Darendeli (2001) curves 

for sands. 

L a b xo 

Log() 1 -0.4726 −1.45 + 0.15 𝑙𝑛 (
𝜎′𝑚
𝑝𝑎
) 

The modulus degradation relations were invoked to represent the hysteretic damping 

behavior of soils. A very low value of Rayleigh damping (0.5 %) at the center 

frequency of 3 Hz was applied to remove the high-frequency component at very low 

strains. The small amount of Rayleigh damping applied to the soil domain prevents 

low-level noise without affecting the response. 

5.2 Verification Analyses 

Two well-known centrifuge tests (Gohl, 1991; Wilson, 1998) were used to verify the 

dynamic numerical analyses. The laminar soil container used in Wilson's study is 

shown in Figure 5.1. An aluminum pipe section was employed for the pile. The 

diameter and the length of the highly instrumented single pile were 0.67 m and 16.7 

m, respectively. A 49 Mg mass placed on the pile created a single-degree-of-freedom 

system. The free height of the single pile was 3.8 m. The soil in which the piles were 

embedded was the saturated Nevada sand placed at two different relative densities. 

The thicknesses of these layers were 9.4 m and 11.3 m, and the relative densities were 

55% and 80%, respectively.  

The soil container and the setup of the centrifuge test of Gohl (1991) are shown in 

Figure 5.2. The soil container was a rigid box filled with dry Nevada sand with a 

relative density of DR=40%. A steel pipe section was employed for the pile with a 

diameter of 0.57 m in the study of Gohl (1991). The single mass was placed on top of 

the pile extending to 2.0 m from the ground surface.  

The friction angles for medium-dense and dense sand were selected as 36o and 40o for 

soil layers in Wilson (1998). The friction angle was 34o for the sand in Gohl (1991). 

The soil parameters selected for the verification analyses are given in Table 5.2. 
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Figure 5.1 : Laminar soil container used in the centrifuge tests of Wilson (1998). 

 

Figure 5.2 : Rigid soil container used in the centrifuge tests of Gohl (1991). 
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Lysmer (1973). The wavelength is estimated by the shear wave velocity ratio to the 

records' maximum frequency component (Vs/fmax). A maximum frequency 
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verification analyses. Shear wave velocity varies with depth and has been as low as 95 

m/s near the ground surface. Therefore, the minimum wavelength was estimated as 

λ≅6.3 m. Although the minimum zone size of 0.8 m (Δl<λ/8) could be anticipated in 

the vertical direction to ensure the wave transmission, the finer mesh was employed 

near the ground surface (Δl=0.33 m in Wilson (1998) and Δl=0.25 m in Gohl (1991)) 

based on the suggestion of Di Laora and Rovithis (2015). The coarser mesh was used 

at greater depths (Δl=0.75 m in Wilson (1998) and Δl=0.5 m in Gohl (1991) for z>3 

m). The bottom boundary of the numerical models was fixed. The lateral boundaries 

in Gohl (1991) were also fixed as a rigid box was used in the test. In the case of Wilson 

(1998), free-field boundaries were employed to prevent the reflection of waves since 

the container in the tests was a flexible shear beam container. 

 

Figure 5.3 : The numerical model created for the verification analyses. 

The initial shear modulus and the reference strain values were applied to each zone by 

considering the initial effective stress level (total stress approach). The shear modulus 

reduction factor (G/Gmax) at the very large strain (>1%) might be very low. Besides, 

Masing's rule was employed for unloading/reloading behavior, which may cause the 

damping ratio to be unrealistically high. The free-field soil displacement might be 

overdamped due to the lower shear strength resulting from the low confining pressure, 

particularly at shallow depths.  
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Therefore, the minimum modulus reduction value was set to 0.05, and a small cohesion 

value (10 kPa) was assigned in the verification analyses to overcome the mentioned 

problem. The calibration process of the damping ratio was studied in detail by the 

author in separate papers (O. Alver & E. Eseller-Bayat, 2022; O. Alver & E. E. Eseller-

Bayat, 2022). 

Table 5.2 : The soil parameters used in the verification analyses. 

 Wilson, 1998 Gohl, 1991 

Layer Layer 1 Layer 2 Single Layer 

Effective unit weight, ' (kN/m3) 9.5 9.9 15.1 

Relative density (%) 55 80 40 

Friction angle, ' (o) 36 40 34 

Dilation angle  (o) 4 8 2 

Cohesion, c (kPa) 10 10 10 

Poisson's ratio,   0.45 0.45 0.30 

Although the piles and the structure are 3-dimensional, they were modeled with the 

beam elements for simplicity. The structural elements (beam) were connected to the 

surrounding soil rigidly, where the pile displacement is the same as the soil 

deformation. Several researchers adopted the rigid connection approach (Finn, 2005; 

Finn & Fujita, 2002; Rahmani et al., 2018). Since the problem is a laterally loaded pile 

model under dynamic loading, the key property affecting the response is the flexural 

stiffness of the pile and the superstructure. Therefore, the superstructure properties 

summarized in Table 5.3 were assigned to the beam elements used in the numerical 

analyses. 

Table 5.3 : The superstructure properties in the verification analyses. 

Structure (Wilson, 1998) Structure (Gohl, 1991) 

Flexural Stiffness, 

EI (MN.m2) 

Height 

(m) 

Mass 

(Mg) 

Tfixed 

(s) 

Flexural Stiffness, 

EI (MN.m2) 

Height 

(m) 

Mass 

(Mg) 

Tfixed 

(s) 

427 3.8 49 0.3 172 2.0 52.2 0.3 

5.2.2 Input motions 

Two earthquake records were used in Wilson (1998): 1989 Loma Prieta (Santa Cruz 

Station) Event K and Event N. The centrifuge laboratory of UC Davis provides the 

acceleration time history of the input motions for these records. The Santa Cruz records 

(Event K and Event N), in which the maximum acceleration (amax) scaled to 0.11 g, 

were used in this study. These motions were selected to eliminate the liquefaction 

behavior since the resulting pore water pressures in the medium-dense sand layer were 
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too low to consider. The motion used in the centrifuge test of Gohl (1991) was 

provided by Dr. Amin Rahmani and Dr. Mahdi Taiebat (personal communication). 

Baseline correction was applied to the records to remove the displacement offset. The 

acceleration-time histories of the input motions after the baseline corrections are 

shown in Figure 5.4.  

 

Figure 5.4 : Input motions used in the numerical analyses: a) Gohl (1991), b) Event 

K (Wilson, 1998), c) Event N (Wilson, 1998). 
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K (Wilson, 1998). However, the bending moments in the numerical analysis for Event 

N were lower than those in the centrifuge test. The lower response in the numerical 

analyses for Event N can be attributed to higher damping ratios due to Masing's rule 

for unloading/reloading behavior. However, the overall behavior was reasonably 

captured by the numerical analyses. 

 

Figure 5.5 : Acceleration response spectra of the superstructure in Gohl (1991). 

 

Figure 5.6 : Acceleration response spectra of the superstructure in Event K (Wilson, 

1998). 
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Figure 5.7 : Acceleration response spectra of the superstructure in Event N (Wilson, 

1998). 

 

Figure 5.8 : Maximum bending moment variations with depth in Gohl (1991). 
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Figure 5.9 : Maximum bending moment variations with depth in  Event K (Wilson, 

1998). 

 

Figure 5.10 : Maximum bending moment variations with depth in Event N (Wilson, 

1998). 
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5.3 Parametric Analyses 

Dynamic soil-pile interaction analyses were carried out to show the effect of soil and 

pile properties on the cyclic p-y curves, and the results were presented in this section. 

The numerical model includes the solid circular pile, the surrounding soil, and the 

interface. Only half of the problem was modeled due to symmetry. The model 

dimensions were 20D and 10D in the x and y directions, where D and L are the pile 

diameter and length, respectively. The vertical height of the model was 5 m longer 

than the pile length. The numerical model created for the parametric analyses is shown 

in Figure 5.11. 

Similar to the non-linear behavior of soils, non-linear p-y curves can be obtained 

depending on several parameters: The soil nonlinearity, the pile diameter, the small-

strain shear modulus, and the friction angle, which are the key parameters for the pile-

soil interaction behavior (Hussein & El Naggar, 2022). The pile diameter and the 

relative density of the soil govern the initial soil-pile modulus (Kpy) and ultimate soil 

resistance (pu), in which the very small displacement and the large displacement region 

of the p-y curves can be obtained. 

 

Figure 5.11 : The 3D single pile model created for parametric analyses. 

Various pile diameters and soil relative densities were used to investigate the effect on 

the Kpy and pu. The behavior under small to moderate displacement levels is controlled 

by the soil nonlinearity that mostly depends on the employed modulus degradation 



85 

curves. As the nonlinearity of soils is the function of effective confining stress in 

cohesionless soils, various curves for soil nonlinearity were implemented in the 

analyses. The parameters for the parametric analyses are shown in Table 5.4, where 

the bold ones represent the default values in the analysis. The pile lengths (L) were 8 

m, 12 m, and 19 m for pile diameters (D) of 0.65 m, 1.0 m, and 1.6 m, respectively, to 

keep the slenderness ratio constant (L=12D).  

Table 5.4 : The parameters used in the numerical analyses. 

 The Variables 

Unit weight of soil  (kN/m3) 18 18 18 

Friction angle, ' (o) 32 36 40 

Pile Diameter, D (m) 0.65 1.0 1.60 

Relative Density, DR (%) 30 55 80 

Degree of Nonlinearity (Darendeli (2001) curves 

for the given confining pressures, kPa) 
10 25 100 

Solid volumes modeled the soil and the pile in the parametric analyses. Elastic 

properties of concrete were assigned to the pile element. The cyclic lateral velocity 

was applied to the pile all along. The lateral displacement history was obtained directly 

at the center gridpoint of the pile. However, an interface must be placed between the 

pile and the surrounding soil to obtain lateral soil resistance. The interface allows 

deriving the stresses applied by the soil to the pile due to cyclic motion. The normal 

and the shear stresses occur at the gridpoints of the interface. The lateral force was 

calculated by multiplying the stresses with the characteristic area of each gridpoint. 

The sum of the forces at the gridpoints in a cross-section yields the total resistance at 

that depth. The soil resistance (p) was calculated in units of force/distance by dividing 

the force by the characteristic length. This procedure to obtain the lateral resistance (p 

axis of the p-y curves) was achieved using the built-in fish function in FLAC3D.  

The interface property for the normal and shear components (kn and ks) were 

determined based on the constraint modulus as in equation 4.1. The depth-dependent 

stiffness was assigned ten times the equivalent stiffness through the pile. The Mohr-

Coulomb criterion was valid for the interface, which allows the slip and separation 

based on the applied shear stresses.  
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5.3.1 Input motion 

The parametric analyses were conducted by applying the cyclic motion through the 

pile. The displacement history applied to the pile is shown in Figure 5.12. Gradually 

increasing amplitude allowed obtaining both small and large displacement behavior. 

The frequency of the input motion was 0.5 Hz which is low enough to minimize the 

effect of the radiation damping, which can be considered separately using the approach 

suggested by Gazetas and Dobry (1984).  

 

Figure 5.12 : The input motion applied to the pile in the parametric analyses. 

The parametric analyses' results, described earlier, were presented in this section. Time 

histories of the pile displacement and the ultimate soil resistance were obtained. The 

effect of pile diameter, the relative density of soil, and the degree of soil nonlinearity 

was discussed. 

5.3.2 Effect of pile diameter 

The effect of pile diameter on the cyclic p-y curves was investigated for three 

diameters: 0.65 m, 1.0 m, and 1.6 m. Soil resistance (p) and pile displacement (y) 

histories for D=0.65 m and DR=55% are given down to 4 m depth in Figure 5.13. The 

p-y curves obtained at 1 m and 2 m depths are shown in Figure 5.14 and Figure 5.15. 

According to the analysis results, the effect of pile diameter was observed on two 

important characteristics of dynamic p-y curve outputs: The initial soil-pile stiffness 

(Kpy) and ultimate soil resistance (pu). However, the impact on the ultimate soil 

resistance is much more significant than the effect on the initial modulus. Experimental 

(Lee et al., 2019; Rollins et al., 2005; Yoo et al., 2013) and numerical (Choi et al., 

2016; McGann et al., 2011) studies have shown that the API (2007) underestimates 

the ultimate soil resistance under cyclic loading. The numerical analysis results 

obtained in this thesis have also confirmed that the ultimate soil resistance was greater 

than the suggestions of past studies.  
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Figure 5.13 shows the variation of the pile displacement and soil resistance with time 

for D=0.65 m and DR=55 %. Pile displacement is the same for all depths for a given 

soil and pile properties. However, the soil resistance increases with depth. The results 

for various pile diameters, relative densities, and soil nonlinearities are presented in 

Appendix B. 

 

Figure 5.13 : The pile displacement and soil resistance time histories for D=0.65 m, 

DR=55 %. 
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Figure 5.14 : The dynamic p-y curves (hysteretic loops) for D=0.65 m, D=1.0 m, 

and D=1.6 m at z=1 m. 

 

Figure 5.15 : The dynamic p-y curves (hysteretic loops) for D=0.65 m, D=1.0 m, 

and D=1.6 m at z=2 m. 
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5.3.3 Effect of relative density 

Dynamic p-y curves under the cyclic lateral load were investigated for the selected 

relative densities of 30%, 55%, and 80%, representing the loose, medium-dense, and 

dense sand, respectively. The small strain shear modulus was calculated by equation 

3.6 according to the given relative densities. The internal angle of friction () was 

determined to be 32o, 36o, and 40o, with DR being 30%, 55%, and 80%, respectively. 

Figure 5.16 and Figure 5.17 show the p-y hysteretic curves at 1 m and 2 m depths for 

the given relative densities. According to the results, larger p-y curves were achieved 

as the relative density of soil increased. The main reason for having greater soil 

resistance is the increase in the internal angle of friction, which can be characterized 

by the ultimate soil resistance (pu). Another impact of the relative density on the 

dynamic p-y curves was the increase in the initial soil-pile stiffness (Kpy). These results 

confirm that the dynamic p-y curves can be characterized by the initial soil-pile 

stiffness (Kpy) and ultimate soil resistance (pu) at very small and large displacement 

levels.  

 

Figure 5.16 : The effect of relative density on the dynamic p-y curves at z= 1 m. 
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Figure 5.17 : The effect of relative density on the dynamic p-y curves at z=2 m. 

5.3.4 Effect of soil nonlinearity 

The soil behavior under cyclic loading has been investigated by many researchers so 

far. As was shown in the verification analyses, soil nonlinearity can be considered by 

modulus degradation curves. The most widely used relations for cohesionless soils 

were suggested by Seed and Idriss (1970). However, Ishibashi and Zhang (1993), 

Darendeli (2001), and J. Zhang et al. (2005) have shown that the nonlinear behavior 

of cohesionless soils has been mostly affected by confining pressure. In this study, the 

effect of soil nonlinearity on the cyclic p-y curves was investigated with three 

confining stress levels being 10 kPa, 25 kPa, and 100 kPa using the curves of Darendeli 

(2001), where the reference strains correspond to r=0.0158%,r=0.0217%, 

andr=0.0352%, respectively. The dynamic load (Figure 5.12) was applied through 

the pile, and the p-y curves were obtained at the selected depths, as shown in Figure 

5.18 and Figure 5.19. According to the results, as the confining stress reduces, the soil 

nonlinearity causes the backbone of the p-y curves to have smaller soil resistances at a 

specified displacement (increasing nonlinearity). This finding confirms the influence 

of confining stress on the soil nonlinearity, hence on the dynamic p-y curves.  
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Figure 5.18 : Effect of soil nonlinearity on the cyclic p-y curves at z= 1 m. 

 

Figure 5.19 : Effect of soil nonlinearity on the cyclic p-y curves at z=2 m.
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6. PROPOSED MODELS for STATIC and DYNAMIC p-y CURVES 

The main aim of this thesis is to characterize the static and dynamic p-y curves based 

on the validated numerical analyses. The numerically derived p-y curves under static 

loading have been presented in Chapter 4. Similarly, dynamic p-y curves were 

obtained based on the numerical analyses in Chapter 5. In this chapter, the 

mathematical models were proposed to represent the static and dynamic p-y curves. 

6.1 p-y Curves Under Static Loading 

Several researchers have used the hyperbolic model after Georgiadis et al. (Georgiadis 

et al., 1992) to construct the p-y curves. The original model has two parameters: 1) the 

initial modulus and 2) the ultimate resistance. A similar approach was used in this 

thesis, but the modified hyperbolic model of Matasovic and Vucetic (Matasović & 

Vucetic, 1993) was implemented with the two additional parameters. In this model, 

the curves were characterized by the initial stiffness (Kpy), the ultimate resistance (pu), 

and the degree of nonlinearity parameters ( and s), as shown in equation 6.1.  

 
𝑝 =

𝐾𝑝𝑦 𝑦

1 + 𝛽 (
𝑦
𝑦𝑟𝑒𝑓

)
𝑠 (6.1) 

In the above equation, Kpy represents the initial pile-soil stiffness, and yref is the 

threshold displacement at which the behavior is linear. The normalized p-y curves 

show the two sources of nonlinearity: 1) the soil modulus (E50) and 2) the confining 

stress (or depth). As the soil modulus (E50) reduces, the pile-soil stiffness decreases, 

and more non-linear behavior is observed. A similar effect was shown for the depth in 

Figure 4.8, Figure 4.11, Figure 4.13, and Figure 4.15. Lower normalized resistances at 

a constant displacement indicated that a larger displacement was required to reach the 

same ultimate resistance. This behavior can be considered using the concept of 

reference displacement, which is the ratio of ultimate resistance to initial pile-soil 

stiffness (yref=pu/Kpy). 
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6.1.1 Ultimate lateral resistance (pu) 

The parametric analysis results showed that the ultimate soil resistance does not 

linearly increase with diameter, which is consistent with the theory given by Reese et 

al.(Reese et al., 1974). The numerical analysis results at shallow depths were consistent 

with the mentioned study, but the agreement was poor for greater depths, and the 

ultimate resistances were higher in the analyses. The higher soil resistances at greater 

depths were observed in centrifuge tests (Barton et al., 1983; Lu et al., 2021), and 

modified equations have been suggested (Fleming et al., 2008; Thieken et al., 2015; 

Varun, 2010; L. Zhang et al., 2005). The ultimate soil resistances obtained in the 

numerical analyses were higher than those obtained using the literature (Broms, 1964; 

Fleming et al., 2008; Reese et al., 1974). In contrast, the DIN 4085 (DIN, 2011) was 

relatively close to the values in this thesis, especially for greater depths (for z>1D). A 

similar agreement was shown in the finite element analysis results published by 

Thieken et al. (2015). However, DIN 4085 (DIN, 2011) yields lower ultimate lateral 

soil resistances (pu) at depths less than one pile diameter (for z<1D) than those 

obtained in this study. The pu at these shallow depths is closer to the findings obtained 

using the equations of Reese et al. (Reese et al., 1974). Equation 6.2 was proposed for 

the ultimate lateral resistance pu based on the numerical analysis carried out in this 

thesis. The proposed equation is similar to Fleming et al. (2008), however, the z/D 

term is included in the equation so that the nonlinear variation with depth and diameter 

is provided.  

𝑝𝑢

𝐷𝜎𝑣0
′𝐾𝑝

2 = a + b ∗ (
𝑧

𝐷
)
𝑐

 (6.2) 

The Matlab curve fitting tool was used to determine the parameters of equation 6.2. 

The nonlinear least squares method was selected for the fitting procedure. For this 

purpose, the variation of normalized soil ultimate resistance with normalized depth 

(z/D) was plotted as shown in Figure 6.1. The model parameters were determined as; 

a=0.591, b=0.449, and c=0.824 based on the fitting process.  
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Figure 6.1 : The variation of ultimate soil resistance with normalized depth under 

lateral load (pile head loading). 

6.1.2 Initial pile-soil stiffness (Kpy) 

The suggestions made by several researchers for initial pile-soil modulus vary from  

0.48E0/D to 2.3E0/D (Medjitna & Amar Bouzid, 2019; Scott, 1981; Sørensen et al., 

2010), which linearly proportional to soil modulus. The numerical analysis results 

obtained in this thesis have revealed that the soil-pile stiffness is not linearly varying 

with depth and pile diameter. Figure 6.2 shows the normalized p-y curves for different 

pile diameters when Kpy=E0. According to Figure 6.2, the pile-soil stiffness should be 

greater as the diameter increases. This result indicates that the pile diameter should be 

included in the soil-pile stiffness equation.  

Apart from the pile diameter effect, the results have shown that Kpy is greater than E0 

at shallow depths and less than E0 at greater depths. Normalized p-y curves were 

plotted in Figure 6.3 to show the effect of depth (z) for a given pile diameter (D=1.0 

m). Therefore, a non-linear increase in soil-pile stiffness should be provided to 

accurately reflect the depth effect and pile diameter. 
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Figure 6.2 : Normalized p-y curves at z=1 m for different pile diameters when 

Kpy=E0. 

 

Figure 6.3 : Normalized p-y curves for D=1 m at different depths when Kpy=E0. 

In this thesis, equation 6.3 is proposed for pile-soil stiffness, Kpy: 

 
𝐾𝑝𝑦 = 𝐸0 ∗ (

𝐷

𝑧
)
𝛼

 (6.3) 

where E0 is the small strain soil modulus, D is the pile diameter, z is the depth,and 

the parameter represents the nonlinear variation with the depth and pile diameter.  
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The effect of  values on the normalized p-y curves has been investigated. The best fit 

is obtained when  =0.4. This value provides almost identical normalized p-y curves 

for different pile diameters and depths. Figure 6.4 and Figure 6.5 show the normalized 

p-y curves using the proposed equation of pile-soil stiffness for various pile diameters 

and depths, respectively. 

 

Figure 6.4 : Normalized p-y curves at z=1 m for different pile diameters using the 

proposed soil-pile stiffness equation.  

 

 

Figure 6.5 : Normalized p-y curves for D=1 m at different depths using the proposed 

soil-pile stiffness equation. 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 5 10 15 20

p
 /

p
u

y/yref

D=0.65 m D=1.0 m D=1.6 m

z=1 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 5 10 15 20

p
 /

p
u

y/yref

z=1 m z=2 m z=3 m

D=1 m



98 

Equation 6.3 allows Kpy to vary with depth not as sharply as in E0. This fact ensures 

that the nonlinearity of p-y curves is greater than the soil nonlinearity. D/z term causes 

the Kpy to increase to a certain extent as the depth increases. The power  in the 

equation limits the increase of Kpy with depth and prevents the sharp increase. A similar 

result was presented by Gerolymos and Gazetas (2006) for the translational stiffness 

of caisson foundations. Therefore, Equation 6.3 provides the Kpy increase slightly with 

depth, causing the reference displacement (yref) to be mainly controlled by the ultimate 

soil resistance.  

6.1.3 Degree of nonlinearity ( and s) 

Atkinson (2000) stated that the peak stress and degree of nonlinearity, including the 

initial stiffness and stiffness degradation, should characterize soil behavior. A similar 

concern can be followed for the characterization of the p-y curves. The proposed 

equations for ultimate lateral resistance (pu) and initial stiffness (Kpy) predict the 

response of the piles at large and very small displacements. Furthermore, the piles' 

small to moderate displacement behavior can be controlled by the nonlinearity 

parameters:  and s. The power s controls the slope after the first yield, and a constant 

value of 0.7 is proposed in this study to fit the analysis results. Table 6.1 shows the 

values for the parameters analyzed in this study. The variation of  with the degree 

of nonlinearity value (E0/E50) is given in Figure 6.6. 

Table 6.1 : Degree of nonlinearity parameters. 

E0/E50 5 10 20 

 1.8 2.3 2.85 

s 0.7 0.7 0.7 

Equation 6.4 is proposed in this thesis for the degree of nonlinearity of depending 

on the E0/E50. 

 
𝛽 = (

𝐸0
𝐸50

)
0.35

 (6.4) 
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Figure 6.6 : Variation of  parameter with E0/E50. 

The proposed model for the static p-y curves is summarized in Figure 6.7. The model's 

main advantage is the ability to consider the degree of soil nonlinearity. Besides, 

simple yet efficient equations were suggested for the ultimate soil resistance (pu), and 

the pile-soil modulus (Kpy). The model parameters represent the soil resistances from 

very small to large displacements. The proposed equations can be used to analyze the 

piles subject to static lateral loads. Even the pseudo-static (or nonlinear static-

pushover) earthquake analysis can be performed. 

 

Figure 6.7 : The proposed model for static p-y curves in sands. 
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6.1.4 Accuracy of the proposed model 

The accuracy of the proposed static p-y curves can be shown by comparing the 1D 

model outputs with the 3D numerical analysis results. To better quantify the difference, 

the accuracy metric concept was used, which was defined by Burd et al. (2020) and 

Taborda et al. (2020) as in Equation 6.5. 

 
𝜂 =

𝐴𝑟𝑒𝑓 − 𝐴𝑑𝑖𝑓𝑓
𝐴𝑟𝑒𝑓

 (6.5) 

where the Aref is the area below the reference curve, the curve obtained from the 

numerical analyses, and Adiff is the dashed area bounded by the difference between the 

reference curve (numerical analysis results here) and the model curve (predicted values 

by the proposed static p-y model). The definition of the areas is shown in Figure 6.8. 

The metric was used separately for small and large displacement ranges to assess the 

predictions more accurately. 

 

Figure 6.8 : Graphical definition of the accuracy metric: (a) large displacement; (b) 

small displacement range. 

Figure 6.9, Figure 6.10, and Figure 6.11 compare the 3D analysis and the proposed 

static p-y models up to 10 cm (large displacement range). The vertical axis is 

normalized by pu so that the curves are independent of the pile diameters and soil 

relative densities.  
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Figure 6.9 : Comparison of the p-y obtained in 3D analysis with the proposed model 

outputs for large displacement range (at z=1 m depth). 

 

Figure 6.10 : Comparison of the p-y obtained in 3D analysis with the proposed 

model outputs for large displacement range (at z=2 m depth). 

 

Figure 6.11 : Comparison of the p-y obtained in 3D analysis with the proposed 

model outputs for large displacement range (at z=3 m depth). 
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The accuracy metric ( concept (Eq. 6.6) was used to show the difference between 

the 3D numerical analysis and the proposed model. Figure 6.12, Figure 6.13, and 

Figure 6.14 present the  values down to 3 m depth for the full displacement range for 

various soil nonlinearities. Accordingly, the  value is approximately 0.94-0.98, 

concluding a good agreement between the proposed p-y model outputs and those in 

3D analysis results.  

 

Figure 6.12 : Accuracy metric for large displacement range for E0/E50=5. 

 

Figure 6.13 : Accuracy metric for large displacement range for E0/E50=10. 

 

Figure 6.14 : Accuracy metric for large displacement range for E0/E50=20. 

Figure 6.15, Figure 6.16, and Figure 6.17 compare the 3D analysis and the proposed 

static p-y models up to 1 cm (small displacement range). Again, the vertical axis is 

normalized by pu so that the curves are independent of the pile diameters and soil 

relative densities.  
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Figure 6.15 : 3D analysis results with the proposed 1D model for small displacement 

range (at z=1 m depth). 

 

Figure 6.16 : 3D analysis results with the proposed 1D model for small displacement 

range (at z=2 m depth). 

 

Figure 6.17 : 3D analysis results with the proposed 1D model for small displacement 

range (at z=3 m depth). 
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The accuracy metric ( was applied to show the difference for the small displacement 

range. Figure 6.18, Figure 6.19, and Figure 6.20 present the  values down to 3 m 

depth for the small displacement range. The  value is around 0.72-0.80 for E0/E50=5 

(low soil nonlinearity), while it is as low as 0.65 at 3 m depth for E0/E50=20.  

In general, the predicted values by the proposed model agreed well with the p-y values 

obtained through 3D numerical analysis results. However, the proposed model is not 

as close to 3D analysis in the small displacement range as in the large displacement 

range. Especially the difference becomes more pronounced for greater depths, and 

future studies must focus on improving the behavior for small displacement ranges. 

 

Figure 6.18 : Accuracy metric for small displacement range for E0/E50=5. 

 

Figure 6.19 : Accuracy metric for small displacement range for E0/E50=10. 

 

Figure 6.20 : Accuracy metric for small displacement range for E0/E50=20. 
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6.1.5 Validation of the proposed model 

A validation study was performed by comparing the results obtained using the 

proposed p-y curves with the field and laboratory measurements for the laterally loaded 

pile tests in the literature (Georgiadis et al., 1992; Reese et al., 1974). The sketch of a 

typical laterally loaded pile problem is shown in Figure 6.21a, together with the finite 

element model created in structural analysis software (Figure 6.21b).  

 

Figure 6.21 : (a) Sketch of a typical laterally loaded pile problem (b) Finite element 

model. 

A beam element was used for the pile, and the soil reaction was represented by 

nonlinear links (p-y curves) placed at 0.5 m intervals along the pile. In the p-y curve 

formulation, equation 3.6 were used for the small strain modulus of soil. Equation 6.2 

and Equation 6.3 have been implemented for pu and Kpy, while the nonlinearity 

parameter s=0.7. Although the degree of nonlinearity depends on the relative density 

of cohesionless soils, a constant value was adopted for the nonlinearity parameter 

(=2.3). Table 6.2 presents the soil and pile properties with the loading condition.  
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Table 6.2 : The pile load tests used for the validation of the proposed model.  

  Soil Properties Pile Properties Load 

Reference Test 
' 

(kN/m3) 

DR 

(%) 



 

D 

(m) 

L 

(m) 

EI 

(MN.m2) 



kN

e  

(m) 

Reese et al. 

(1974) 
Field 10.4 90 39 0.61 21 163 210 0.305 

Georgiadis 

et al. (1992) 
Centrifuge 16.3 60 36 1.224 9 2495 1304 1.25 

The differential equation for the laterally loaded pile problem is given in the equation. 

6.6. 

 𝑑2

𝑑𝑧2
(𝐸𝑝𝐼𝑝

𝑑2𝑦

𝑑𝑧2
) − 𝑘ℎ𝑦 −𝑊 = 0 (6.6) 

where EI is the flexural stiffness, z is the depth along the pile axis, W is the lateral load 

distributed along the pile, kh is the secant stiffness, and y is the pile deflection.  

The geometry of the soil-pile interaction problem was created, and the pile and soil (p-

y curve) properties were assigned accordingly based on the data in Table 6.2. Link 

elements were used for the interface with the multilinear plastic option. The lateral 

load was applied to the pile head, and the analyses were performed in SAP2000 (CSI, 

2016) to solve equation 6.7. As the soil resistance-pile displacement relation is 

achieved using p-y curves, a nonlinear analysis is required for the solution. The 

Newton-Raphson method was used in SAP2000 for the iteration in nonlinear analysis. 

The maximum iteration in each step was 40, and the convergence tolerance was set to 

1e-4. 

The bending moments obtained along the pile were compared with the measurements 

from the tests in Figure 6.22. According to the results, the bending moments along the 

pile were reasonably close to the measured bending moments. The bending moments 

were also computed using the p-y curves by API (2007) and presented in Figure 6.22 

for comparison. The maximum bending moments (Mmax) predicted by the proposed 

model and API (2007) were similar. However, bending moments along the pile at 

deeper levels estimated by API (2007) were generally underpredicted compared to the 

test results and those estimated by the proposed model. Hence, the proposed model 

better represents the response at deeper levels. 
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Figure 6.22 : Bending moment variation in the validation analyses with the field 

tests. 

Furthermore, the pile head load-deflection curves obtained by the numerical analyses 

were compared with the test results (Figure 6.23 and Figure 6.24). In general, the load-

deflection curves predicted by the proposed model agreed with the test results. 

However, the deflections obtained by API (2007) curves were significantly 

underpredicted, especially when compared with the measurements of centrifuge tests 

by Georgiadis et al. (1992), where the applied load was relatively higher. The stated 

result confirms the shortcoming of the high initial stiffness of API (2007), which was 

already stated in past studies. The proposed static p-y curves significantly improve the 

predicted deflections, particularly at larger loads.  

Although the pile displacements were not predicted accurately by API in Georgiadis 

et al. (1992), a reasonably close result was obtained for the maximum bending 

moment. The selected p-y curves influence the displacements directly, but the bending 

moments may not be sensitive to the pile displacements for pile head loading. 

However, a performance-based design methodology has been adopted recently, which 

requires the assessment of the pile and the structural displacements. The proposed 

model better predicts the displacements that might be important, especially for piles 

subjected to high lateral loads and/or embedded in loose to medium-dense 

cohesionless soils. 
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Figure 6.23 : Lateral load-deflection curves obtained through the 1D analyses and 

test results for the field test given Reese et al. (1992). 

 

 

Figure 6.24 : Lateral load-deflection curves obtained through the 1D analyses and 

test results for the centrifuge test given in Georgiadis et al. (1992). 
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6.2 p-y Curves Under Dynamic Loading 

The numerical analysis have shown that the dynamic p-y curves in cohesionless soils 

have three significant characteristics: Initial stiffness, ultimate lateral resistance, and 

degree of nonlinearity. The backbone curve and the unloading/reloading rule represent 

the behavior of soils under dynamic loading. A similar approach can be applied to 

dynamic p-y curves. The backbone curve formulation was proposed in this thesis, and 

Masing's rule was adopted for unloading/reloading behavior. 

Three models have been widely used for nonlinear soil behavior: Ramberg&Osgood, 

Hyperbolic, and Bouc-Wen model. Researchers have used Ramberg&Osgood (1943) 

model for modeling the soil behavior under dynamic loads. However, since the stress-

based approach is adopted, the model is not sensitive to the initial modulus (Gohl, 

1991). The most used method in soil dynamics for nonlinear soil behavior is the 

Hardin-Drnevich (1972) model, extending Kondner's (1963) model to the dynamic 

loading case. It requires two parameters: Initial stiffness and ultimate resistance. The 

model was further developed to consider the soil nonlinearity more realistically, and 

the modified Kondner&Zelasko (MKZ) model was proposed by Matasovic (1993) by 

including two additional curve fitting parameters (β and s). More recently, Bouc-Wen 

(Bouc, 1971; Wen, 1976) model has been used to characterize the soil behavior under 

dynamic loading (Gerolymos & Gazetas, 2005). Several researchers adopted the 

approaches mentioned above for nonlinear soil behavior to dynamic p-y curves, which 

are summarized in Table 6.3. 

The Bouc-Wen model is used in this thesis to construct the backbone of dynamic p-y 

curves. The model requires the initial stiffness (Kpy), the ultimate resistance (pu), and 

the degree of nonlinearity parameter (n). The proposed equations for these parameters 

are given in the following sections.  

The accuracy of the proposed model is shown by comparing the results with the 3-

dimensional analysis outputs. Furthermore, the validity of the proposed model was 

demonstrated by implementing the proposed curves in the simulation of centrifuge 

tests. Besides, additional numerical analyses are carried out in FLAC3D with the 

selected earthquake records, and the soil-pile-structure interaction analyses are 

compared with the proposed model and API results. 
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Table 6.3 : The models used in the literature for dynamic p-y curves. 

Model Ramberg&Osgood Hyperbolic model Bouc-Wen model 

p-y form 
𝑝 =

𝑘ℎ 𝑦

1 + 𝑎 (
𝑝
𝑝𝑢
)
𝑟−1 𝑝 =

𝑦

1
𝑘𝑖𝑛𝑖

+
𝑦
𝑝𝑢

 

𝑝 = 𝛼𝐾𝑝𝑦𝑦 + (1 − 𝛼)𝑝𝑢𝜉 

𝑑𝜉 = (𝐴 − |𝜉|𝑛(𝑏 + 𝑔 𝑠𝑔𝑛 (𝑑𝑦 𝜉)))
𝑑𝑦

𝑦𝑟𝑒𝑓
 

𝑑𝜉

= (𝐴 − |𝜉|𝑛)
𝑑𝑦

𝑦𝑟𝑒𝑓
 𝑓𝑜𝑟 𝑚𝑜𝑛𝑜𝑡𝑜𝑛𝑖𝑐 𝑙𝑜𝑎𝑑𝑖𝑛𝑔 

Definitions 
α and r are the 

constants 

kini= initial 

stiffness 

pu: lateral load 

capacity 

kini= initial stiffness 

pu: lateral load capacity 

𝜉: degradation function 

Used by 

Desai and 

Kuppusamy (1980); 

Gohl, (1991) 

Georgiadis,(1992); 

Lim and Jeong, 

(2018) 

Gerolymos,(2006); Varun,(2010); Varun et al. 

(2013) 

6.2.1 Initial pile-soil stiffness 

The initial pile-soil stiffness represents the small displacement behavior of the soil-

pile interface. Since the HS-Small model is used for the static p-y curves, which 

employs the small-strain stiffness, the equation proposed for the static p-y curves can 

also be used for initial pile-soil stiffness for dynamic p-y curves.  

6.2.2 Ultimate soil resistance 

Most of the studies about dynamic p-y curves have adopted the API relation for 

ultimate soil resistance (pu). Fleming et al. (2008) proposed a simple equation (higher 

at shallow depths), where Dσ 'v0 normalized the ultimate resistance. However, pu was 

linearly dependent on the depth in Fleming et al. (2008), contradicting the findings in 

this study. Furthermore, it was recognized in this thesis that the pu is not linearly 

dependent on the pile diameter (D) as well. The nonlinear variation complies with the 

theoretical results given by Reese et al. (1974). Therefore, Fleming's (2008) suggestion 

is modified in this study, and equation 6.7 is proposed to consider the depth and pile 

diameter better.  

𝑝𝑢

𝐷𝜎𝑣0
′𝐾𝑝

1.5 = a + b ∗ (
𝑧

𝐷
)
𝑐

 (6.7) 
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Equation 6.8 includes the normalized depth (z/D) in the power of passive earth pressure 

coefficient Kp, which provides the nonlinear variation with depth and diameter. The 

Matlab Curve fitting tool was employed to determine the model parameters and fitting 

procedure yields: a=1, b=0.639, and c=0.815. The comparison of the data obtained 

through 3D analysis with the proposed equation is given in Figure 6.25. It should be 

stated that the loading condition is a key factor affecting the ultimate resistance. The 

proposed equation was derived from the numerical analyses where the pile was 

subjected to rigid lateral movement. However, pile head loading might provide higher 

resistances than the rigid pile movement since the passive resistance is generated at 

the back of the pile in the pile head loading. Furthermore, as the dynamic (earthquake) 

loadings cause both inertial and kinematic effects on the pile, the pu values obtained 

by the rigid pile movement could be more accurate than the ones obtained from pile 

head loading. 

 

Figure 6.25 : The variation of ultimate soil resistance with normalized depth under 

lateral load (dynamic pile loading). 
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6.2.3 Degree of nonlinearity  

Dynamic p-y curves can be defined with the backbone curve and loading/unloading 

rule. The initial pile-soil stiffness (Kpy) and the ultimate soil resistance (pu) are the key 

parameters to represent the very small and the large displacement behavior, 

respectively. Besides, the backbone curve formulation should include the degree of 

nonlinearity for moderate displacement levels.  

This study used Wen (1976) model to describe the nonlinear dynamic p-y curves. 

Equation 6.8 defines the nonlinear relation as follows: 

 𝑝 = 𝛼𝐾𝑝𝑦𝑦 + (1 − 𝛼)𝑝𝑢𝜁 (6.8) 

where the parameter α is the post-yielding ratio. 

The degradation parameter 𝜁 in equation 6.8 describes the nonlinear relation, and 

Equation 6.9 is suggested by Wen (1976) for 𝜁 in a differential form. The parameter n 

in the equation controls the degree of nonlinearity. The parameters  and  govern the 

unloading/reloading behavior, where ==0.5 corresponds to the Masing (1926) 

criteria.   

 
𝑑𝜁 = (𝐴 − |𝜁|𝑛(𝛽 + 𝛾 𝑠𝑔𝑛 (𝑑𝑦 𝜁)))

𝑑𝑦

𝑦𝑟𝑒𝑓
 (6.9) 

In this study, the best fit to the numerical analysis results is obtained with α=0, while 

the parameter n depends on the confining stress (Equation 6.10). 

 
𝑛 = 0.12(

𝜎′𝑚
𝑝𝑎
)

0.34

 (6.10) 

Equation 6.11 can be rewritten using the relation between the confining stress and 

reference strain (using equation 3.11). Therefore, the degree of nonlinearity parameter 

can be written in terms of the reference strain of soil (Equation 6.11). The schematic 

view of the proposed model is given in Figure 6.26. 

 𝑛 = 3.14𝛾𝑟
0.97 (6.11) 
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Figure 6.26 : The proposed model for dynamic p-y curves in cohesionless soils. 

6.2.4 Accuracy of the proposed model 

The backbone curves of the proposed model for D=0.65 m DR=55% were given in 

Figure 6.27, Figure 6.28, and Figure 6.29, together with the p-y curves obtained in the 

3D numerical analyses. According to the figures, the backbone curves are quite close 

to the dynamic p-y curves obtained by the 3D numerical models. 

 

Figure 6.27 : Comparison of the proposed p-y curves and 3D numerical analyses 

results for D=0.65 m, DR=55 %, and r=0.0158 %. 
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Figure 6.28 : Comparison of the proposed p-y curves and 3D numerical analyses 

results for D=0.65 m, DR=55 %, and r=0.0217 %. 

 

Figure 6.29 : Comparison of the proposed p-y curves and 3D numerical analyses 

results for D=0.65 m, DR=55 %, and r=0.0352 %. 
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The curves obtained with the proposed model are plotted in Figure 6.30 together with 

the API (n=2) for comparison. The curves in Figure 6.27, Figure 6.28, Figure 6.29 

were obtained using the fourth-order Runge-Kutta approach since a numerical method 

is required for the solution. 

 

Figure 6.30 : The proposed p-y curves (p/pu vs. y/yref) for various confining stresses 

compared to API.  

6.2.5 Validation of the proposed model 

The validation analyses for the proposed model were performed using the BNWF 

method (Boulanger et al., 1999). The first validation includes comparing the analysis 

with the centrifuge test results in the verification analyses. Besides, a new soil-single 

pile-structure model was created in FLAC3D, and the dynamic analyses were 

performed under six different earthquake records.  

6.2.5.1 Comparison with the centrifuge tests 

The single pile models presented by Gohl (1991) and Wilson (1998) were created in 

the structural analysis software SAP2000 (2016). The dynamic loading in the BNWF 

method is the time histories of soil displacements obtained through 1D site response 

analyses (Step 1). First, a structural beam element was used for the single pile. Next, 

the soil pile interface, including the far-field and near-field elements, was created. 

Then, the near-field part of the interface was modeled using the nonlinear link elements 

with the hysteretic Wen model. Next, the far-field elements were modeled using a 

linear spring-dashpot link. Finally, a fully dynamic analysis was performed by 

applying the free field displacements to the interface elements. The schematic view of 

the BNWF method is shown in Figure 6.31.  
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Figure 6.31 : The schematic view of the beam on nonlinear Winkler foundation 

method (BNWF) for pile analysis. 

The dynamic backbone of p-y curves obtained from the numerical analyses was 

implemented for the near-field in validation analyses. The model has three parameters: 

Initial stiffness (Kpy), ultimate resistance (pu), and degree of nonlinearity (n). The 

default values for unloading/reloading parameters (and ) were 0.5 in Wen's model, 

which corresponds to Masing's criteria. API (2007) method was also employed for the 

near-field elements for comparison. The radiation-damping model of Gazetas and 

Dobry (1984) was adopted for the linear far-field element (Equation 6.12). A very high 

stiffness value (107 kN/m) was assigned to the linear (far-field) element not to increase 

the flexibility of the system since the radiation damping element was placed in series 

with the near-field (p-y) element as suggested by Wang et al. (1998). 

 𝑐𝑟
4𝐵𝜌𝑠𝑉𝑠

= {1 + [
3.4

𝜋(1 − 𝜐)
]
5/4

} 𝑎0
−1/4 (6.12) 

In equation 6.12, Vs is the shear wave velocity, B is the radius of the pile, and a0 is the 

dimensionless frequency factor=2fB/Vs, where f can be taken as the dominant 

frequency of the earthquake record. 

The General Quadratic/Hyperbolic (GQ/H) model (Groholski et al., 2016) was 

employed in DeepSoil (2017) for free field soil displacements, as the displacement 

time histories of centrifuge tests were accurately captured. Figure 6.32, Figure 6.33, 

and Figure 6.34 show the acceleration response spectra of the motions at the ground 

surface obtained by 1D analyses, comparing with those in the centrifuge tests of Gohl 

(1991) and Wilson (1998).  
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Figure 6.32 : Acceleration response spectra at the ground surface obtained from the 

1D site response analyses for Gohl (1991). 

 

 

Figure 6.33 : Acceleration response spectra at the ground surface obtained from the 

1D site response analyses for Event K (Wilson, 1998). 
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Figure 6.34 : Acceleration response spectra at the ground surface obtained from the 

1D site response analyses for Event N (Wilson, 1998). 

Absolute displacements from the 1D analyses were applied to the fixed end of the 

links, and nonlinear time history analyses were performed. The Newmark method was 

used for the direct integration, and the time integration parameters were γ=0.6 and 

β=0.3025 to provide the numerical damping as suggested by Boulanger et al. (1999). 

The result of the superstructure accelerations obtained in the numerical analysis was 

compared with the centrifuge test results by the acceleration response spectrum (ARS) 

in Figure 6.35, Figure 6.36, and Figure 6.37 for Gohl (1991), Event K and Event N, 

respectively. The figures show that the peak superstructure accelerations were close to 

the centrifuge test results. However, the spectral accelerations were somewhat 

overestimated at the low-period (T<0.8-1.0 s) region in Gohl (1991) and Event K 

(Wilson, 1998). 

On the other hand, the accuracy for spectral accelerations was high in Event N (Wilson, 

1998) for both the API (2007) and the proposed model. In this stage, the major 

component of the BNWF analyses was the free-field soil displacements obtained 

through the 1D site response analyses. The accuracy in the superstructure accelerations 

(especially for Event N) can be attributed to the well-estimated displacement time 

histories obtained in the site response analyses. Therefore, the superstructure 

acceleration results can be promising, especially given the complex loading sequence 

in the centrifuge tests. 
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Figure 6.35 : ARS of the superstructure obtained through the BNWF method and 

centrifuge test results for Gohl (1991). 

 

 

Figure 6.36 : ARS of the superstructure obtained through the BNWF method and 

centrifuge test results for Event K (Wilson, 1998). 
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Figure 6.37 : ARS of the superstructure obtained through the BNWF method and 

centrifuge test results for Event N (Wilson, 1998). 

The results for the variation of the maximum bending moment with depth are given in 

Figure 6.38. Since the maximum bending moments are directly related to the 

superstructure acceleration, the numerical analysis results with the proposed model 

were quite close to the centrifuge test results. The bending moments obtained from the 

numerical analyses were slightly higher than the centrifuge test results both for the 

proposed model and the API in Event K, where the demand was low. However, the 

API (2007) overestimated the bending moments in Gohl (1991) and Event N (Wilson, 

1998). To sum up, the suggestion of API (2007) yields higher bending moments than 

the centrifuge tests for all records, particularly at higher demands.  

 

Figure 6.38 : Maximum bending moments obtained through the BNWF method and 

centrifuge test results. 
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Recent studies have shown that the Bouc-Wen model can be used effectively for 

dynamic p-y curves. This study shows that the normalized backbone is not a unique 

curve but varies with depth due to soil nonlinearity. The degree of nonlinearity 

parameter n for the dynamic p-y curves was related to the soil nonlinearity by the 

reference strain, and closer agreement to the centrifuge tests was achieved. However, 

the model parameters should be improved in future studies, as the estimated curve with 

the proposed parameters provides slightly lower responses than the numerical analysis 

results in the small displacement region. 

6.2.5.2 Comparison with the 3D analyses 

A new single pile-soil-structure model was created and analyzed in FLAC3D using the 

additional earthquake records. The numerical model consists of a single layer of dry 

cohesionless soil where DR=55%. The unit weight of the soil was 18 kN/m3. The 

friction angle and dilation angle values were 36o and 4o, respectively. The model 

dimensions were 20x20x30 in x, y, and z directions. The soil properties used in the 

verification analyses are given in Table 6.4. The bottom boundary of the model was 

fixed, and the lateral sides were free-field to prevent wave reflection from the model 

boundaries to the model.  

Table 6.4 : The soil properties used in the 3D model of validation analyses. 

Parameter Value 

Effective unit weight, ' (kN/m3) 18 

Relative density (%) 55 

Friction angle, ' (o) 36 

Dilation angle  (o) 4 

Poisson's ratio,   0.30 

 

The diameter of the single pile was 0.65 m in the analyses, and the elastic modulus of 

concrete (E=30 GPa) was set to the pile. The pile length was 12 m, setting the 

slenderness ratio L/D=18 (flexible pile). A single-degree-of-freedom system was 

created with a column having the same properties as the pile. A 40-tonne mass was 

placed at the top of the 5 m high column. The fixed base natural period of the single 

degree of freedom system was approximately 0.5 s. The parameters for the pile and 

the structure used in the numerical analyses are given Table 6.5. 
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Table 6.5 : Pile and superstructure properties used in the numerical analyses. 

Pile Structure 

Diameter 

(m) 

Length 

(m) 

E 

(MN/m2) 

I 

(m4) 

Mass 

(Mg) 

Flexural 

Stiffness, 

EI (MN.m2) 

H 

(m) 

Tfixed 

(s) 

0.65 16 30 000 0.00876 40 263 5.0 0.5 

The earthquake records were selected from the PEER (2005) and AFAD (2022) 

databases, with corresponding parameters given in Table 6.6. The stations where the 

average shear wave velocity (Vs,30) values were minimum of 650 m/s (almost 

engineering bedrock) were selected so that the input motions could be directly applied 

to the bottom of the model. The original records were linearly scaled by the given 

factors (SF) such that the peak ground accelerations were around 0.15g without 

changing the frequency content. The acceleration time histories of the selected motions 

are shown in Figure 6.39.  

Table 6.6 : The earthquake records used in the soil-pile-structure interaction 

analyses. 

 Earthquake 

PEER/ 

AFAD 

Code 

Year Mw Station Fault 
Rrup 

(km) 

(Vs)3

0 

(m/s) 

Pga 

(g) 
SF 

EQ-1 Tabas, Iran RSN143 1978 7.35 Tabas Reverse 2 766 0.14 0.17 

EQ-2 Irpinia, Italy-01 RSN285 1980 6.90 
Bagnoli 

Irpinio 
Normal 8 650 0.13 1.0 

EQ-3 
Taiwan 

SMART1(45) 
RSN572 1986 7.30 

SMART1 

E02 
Reverse 51 672 0.14 1.0 

EQ-4 Loma Prieta RSN769 1989 6.93 
Gilroy 

Array #6 

Reverse 

Oblique 
18.3 663 0.13 1.0 

EQ-5 Northridge-01 RSN1091 1994 6.69 
Vasquez 

Rocks Park 
Reverse 24 996 0.15 1.0 

EQ-6 Kobe, Japan RSN1108 1995 6.9 
Kobe 

University 

Strike 

slip 
0.9 1043 0.15 0.56 

EQ-7 Kocaeli, Turkey RSN1161 1999 7.6 Gebze 
Strike 

slip 
10.9 792 0.15 0.58 

EQ-8 
Chi-Chi, 

Taiwan 
RSN1206 1992 7.62 CHY042 

Reverse 

Oblique 
28 665 0.15 1.5 

EQ-9 Duzce, Turkey RSN1613 1999 7.14 
Lamont 

1060 

Strike 

Slip 
26 782 0.16 3.0 

EQ-10 Elazig, Turkey A4404 2020 6.8 
Pütürge, 

Malatya 

Strike 

Slip 
25 1380 0.15 0.625 

EQ-11 Samos, Greece A3514 2020 6.6 
Bayraklı, 

İzmir 
Normal 77 836 0.15 2.63 
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Figure 6.39 : The input motions of the selected earthquakes for the validation 

analyses. 

Numerical analyses were performed with the earthquake records given in Figure 6.39 

to validate the proposed 1D model by comparing the results with the 3D analyses. In 

addition, the acceleration response spectra (ARS) for the superstructure and maximum 

bending moments along the pile were compared.  A comparison of the acceleration 

response spectra, including the input motions (I.M.), is given in Figure 6.40. The 

results of the suggested method are close to the 3D analysis except for the Kobe 

Earthquake (EQ-6). However, the API yields significantly higher acceleration 

demands than the 3D analysis for all earthquake records. 
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Figure 6.40 : Acceleration response spectra comparison of 3D analysis results with the proposed method and API.
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According to Figure 6.40, the superstructure acceleration is higher in EQ-6 and EQ-8. 

Spectral acceleration of the superstructure reaches its maximum at T≈1.0 sec, which 

is the period of the soil-pile-structure system. The acceleration response spectra (ARS) 

of the selected earthquake records (Figure 6.41) have shown that spectral accelerations 

are maximum at T≈1.0 sec in EQ-6 and EQ-8. The reason for obtaining greater 

acceleration demand in these earthquakes is that the system period is close to the peak 

spectral acceleration of the input motions (Soil-Structure interaction effect). The result 

has shown that the structure response highly depends on the soil-pile-structure system 

period and the frequency content of the input motion.  

 

Figure 6.41 : Acceleration response spectra of the selected earthquake records. 

The bending moment comparison along the pile is given in Figure 6.42. Similar to the 

acceleration response spectra, the suggested method results in considerably close 

bending moments to the 3D analysis except for the EQ-6 (Kobe Earthquake). The 

magnitude of the bending moments is directly related to the acceleration of the 

superstructure. Therefore, the maximum bending moment of the selected earthquake 

records occurred in EQ-6, where the superstructure acceleration is maximum. The API 

results in significantly higher acceleration demands in the superstructure for all 

records, hence higher bending moments in a pile. In conclusion, the suggested method 

considerably increases the performance of the beam on the nonlinear Winkler 

foundation method, giving closer responses to the 3D numerical analysis. 
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Figure 6.42 :  The bending moment comparison of 3D analysis results with the proposed method and API.
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7. CONCLUSIONS  

In this thesis, 3-dimensional nonlinear analyses were carried out to investigate the load 

resistance-deflection relationship for piles in cohesionless soils. The main contribution 

of the study is the enhancement of the p-y curves used in static and dynamic soil-pile-

structure interaction analyses. For this purpose, 3D numerical models were created for 

static and dynamic analyses and verified by the field and laboratory tests in the 

literature. Parametrical analyses were performed, and the p-y curves were obtained 

under static and cyclic (dynamic) loading. Mathematical models were proposed for 

static and dynamic p-y curves.  

7.1 Research Findings 

The laterally loaded pile behavior under lateral loads was investigated by numerical 

analyses in FLAC3D (Itasca Consulting Group, 2019). The pile was modeled as a linear 

elastic material in the numerical analyses, and the HS-Small model represented the 

soil nonlinearity. The numerical model was verified by a well-known field test (Reese 

et al., 1974), and the parametric analyses were conducted to show the effect of the pile 

flexural stiffness, the pile diameter, the relative density of soil, and the soil nonlinearity 

on the static p-y curves. Based on the numerical analysis results and the measurements 

from the field test data, an enhanced static lateral load-deflection (p-y) model was 

proposed. According to the proposed model, the static p-y curves can be characterized 

by the initial pile-soil stiffness (Kpy), ultimate lateral resistance (pu), and nonlinearity 

parameters ( and s). In addition, the small strain modulus of soil (E0) was included in 

the Kpy formulation so that the small displacement behavior was considered accurately. 

The modified model overcomes the drawbacks of the single stiffness models by 

incorporating the degree of nonlinearity parameters, which allows controlling the 

stiffness reduction for small to moderate displacements.   

The accuracy of the proposed static p-y model was shown by comparing the model 

predictions with the 3D numerical analysis results. Besides, field and centrifuge tests 

were selected from the literature (Georgiadis et al., 1992; Reese et al., 1974) for 
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validation purposes. The laterally loaded pile problem was analyzed using the 

proposed static p-y curves, and reasonably good agreement was obtained in the 

bending moments along the pile. The proposed model better captured the bending 

moments at deep levels than the API (2007) method. In addition, the load-deflection 

behavior predicted by the proposed model generally agreed with the test results. 

On the other hand, the deflections obtained by API (2007) were significantly 

underpredicted, especially at the larger lateral loads. Hence, the proposed static p-y 

model better represents the response of the laterally loaded piles in cohesionless soils. 

Overall, the proposed static p-y model has significantly enhanced the efficiency of the 

Winkler spring approach by taking the soil nonlinearity and stiffness reduction into 

account more elaborately. 

A model for dynamic p-y curves was then proposed that considers the initial stiffness 

(Kpy), ultimate resistance (pu), and degree of nonlinearity. First, a numerical pile-soil-

structure model was created in FLAC3D and verified by two centrifuge tests published 

in the literature. Verification analyses have shown that soil nonlinearity can be 

considered using the modulus degradation curves. The parametric analyses were then 

conducted to investigate the effect of the pile diameter, the relative density of soil, and 

the soil nonlinearity on the dynamic p-y curves. Based on the parametric analyses, a 

mathematical model was proposed for the dynamic p-y curves for cohesionless soils. 

The proposed model was validated through the beam on nonlinear Winkler foundation 

(BNWF) approach, which is mostly used in analyzing and designing piles subject to 

lateral loading. Based on the parametric analyses, pile diameter has a more dominant 

effect on the ultimate resistance (pu). 

In contrast, the relative density of soil governs both the initial stiffness (Kpy) and the 

ultimate resistance (pu). The soil nonlinearity has a crucial effect on the degree of 

nonlinearity of the dynamic p-y curves. All these parameter influences on the dynamic 

p-y curves were carefully studied and integrated into a mathematical model.  

The proposed model characterizes the backbone of dynamic p-y curves based on the 

three leading parameters (initial stiffness Kpy, ultimate resistance pu, and degree of 

nonlinearity n). The Bouc-Wen mathematical formulation best fitted the dynamic p-y 

curves obtained through the parametric analyses. The initial pile-soil stiffness (Kpy) 

and the ultimate resistance (pu) represent very small and large displacement behavior, 
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respectively. Therefore, an equation was proposed for Kpy using the small-strain 

stiffness of soil (E0). A simple yet efficient equation was proposed for ultimate soil 

resistance (pu), nonlinearly varying with depth and pile diameter. The numerical 

analyses showed that the p-y curve nonlinearity depends on the modulus reduction 

curves, which is the function of effective confining stress in cohesionless soils. In the 

model, the degree of nonlinearity parameter (n) was directly related to the reference 

strain r, which is a soil parameter, and a function of effective stress. Therefore, the 

degree of nonlinearity parameter n mostly governs the behavior for small to moderate 

displacements. 

The validation analyses were performed for the centrifuge tests published in the 

literature. As the earthquake records used in the centrifuge tests were limited, a new 

numerical model was created in FLAC3D, and additional analyses were carried out with 

the selected records. The 3D analysis results were compared with the BNWF analyses. 

The validation analysis results have demonstrated that the proposed dynamic p-y 

curves could reasonably estimate the pile and structure response. The promising results 

make the proposed equations highly practical, considering the complexity of modeling 

the soil-pile interaction problem. The advantage of the proposed model is the ability 

to create hysteretic p-y curves that could involve the soil nonlinearity effect. Since the 

nonlinear soil behavior is represented by the reference strain (r), which can be 

determined by laboratory tests, the incorporation of the r into dynamic p-y formulation 

allows us to consider the true soil-pile interaction behavior under dynamic loading. 

Although the model was proposed for cohesionless soils using the modulus 

degradation curves, it can be extended to any soil provided that the reference strain is 

accurately determined. Overall, the proposed model for dynamic p-y curves can 

consider the dynamic soil properties (Gmax and ref) that significantly affect the 

nonlinear p-y behavior. 

7.2 Recommendations for Future Studies 

This thesis focused on the single pile behavior under lateral loading. However, piles 

are constructed as a group in practice to withstand external loads. Therefore, the group 

pile behavior must be considered in future research studies.   
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The numerical analyses have shown that the pile and structure response highly depend 

on the free-field soil displacements obtained by the site response analysis. This study 

used the Mohr-Coulomb model with a hysteretic damping approach and General 

Quadratic and Hyperbolic Model (GQ/H) for 3D and 1D analyses, respectively. In the 

Mohr-Coulomb model, the Masing rule was employed for unloading/reloading 

behavior which is known to cause overprediction in the damping ratios under large 

strains. More elaborate 3D models are available in the literature, but the model 

parameters are quite complex and require more effort for parameter calibration. 

Therefore, future studies must be carried out to develop less complicated models for 

engineers to be used in 3D analyses. On the other hand, soil response under earthquake 

loading can be determined quite efficiently in free-field site response analyses with 1D 

models. Besides, employing non-masing rules is relatively simple in 1D analyses. 

This thesis investigated pile behavior under lateral load using the total stress approach 

by modulus degradation curves. Therefore, the proposed methods could be applied to 

dry and saturated soils. However, saturated sand might liquefy during a seismic event. 

Thus, 3D and 1D soil models must be improved to capture the true behavior of 

liquefied soils better. Besides, the cohesionless soils are usually partially saturated in 

the field. Hence, the effect of saturation degree and liquefaction must be considered 

separately.  

In this study, the earthquake loading was given in the horizontal direction. However, 

earthquakes induce the movement in 3-dimension simultaneously. Therefore, future 

studies must consider the bi-directional movement and the vertical component of the 

motion, which might significantly impact the regions where the fault is close.
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APPENDIX A: Acceleration-time histories obtained in the verification analyses 

 

Figure A.1 : Acceleration time history of the superstructure obtained in 3D 

numerical analysis compared with the test results (Gohl, 1991). 

 

Figure A.2 : Acceleration time history of the superstructure obtained in 3D 

numerical analysis compared with the test results (Event K). 

 

Figure A.3 : Acceleration time history of the superstructure obtained in 3D 

numerical analysis compared with the test results (Event N).
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APPENDIX B: Soil resistance and pile displacement-time histories in the parametric 

analysis 

 

Figure B.1 : The pile displacement and soil resistance time histories for D=0.65 m, 

DR=55 %. 
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Figure B.2 : The pile displacement and soil resistance time histories for D=1.0 m, 

DR=55 %. 
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Figure B.3 : The pile displacement and soil resistance time histories for D=1.6 m, 

DR=55 %. 

 

-400

-200

0

200

400

0 2 4 6 8 10

-0.06
-0.04
-0.02
0.00
0.02
0.04
0.06

p
 (

k
N

/m
)

Time, t (s)

y
 (

m
)

Displacement, y Soil resistance, p

z=1 m

-1,000

-500

0

500

1,000

0 2 4 6 8 10

-0.06
-0.04
-0.02
0.00
0.02
0.04
0.06

p
 (

k
N

/m
)

Time, t (s)

y
 (

m
)

Displacement, y Soil resistance, p

z=2 m

-600

-300

0

300

600

0 2 4 6 8 10

-0.06
-0.04
-0.02
0.00
0.02
0.04
0.06

p
 (

k
N

/m
)

Time, t (s)

y
 (

m
)

Displacement, y Soil resistance, p

z=3 m

-800

-400

0

400

800

0 2 4 6 8 10

-0.06
-0.04
-0.02
0.00
0.02
0.04
0.06

p
 (

k
N

/m
)

Time, t (s)

y
 (

m
)

Displacement, y Soil resistance, p

z=4 m



148 

 

Figure B.4 : The pile displacement and soil resistance time histories for D=0.65 m, 

DR=30 %. 
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Figure B.5 : The pile displacement and soil resistance time histories for D=0.65 m, 

DR=80 %. 

 

-300

-150

0

150

300

0 2 4 6 8 10

-0.06
-0.04
-0.02
0.00
0.02
0.04
0.06

p
 (

k
N

/m
)

Time, t (s)

y
 (

m
)

Displacement, y Soil resistance, p

z=1 m

-500

0

500

0 2 4 6 8 10

-0.06
-0.04
-0.02
0.00
0.02
0.04
0.06

p
 (

k
N

/m
)

Time, t (s)

y
 (

m
)

Displacement, y Soil resistance, p

z=2 m

-600

-300

0

300

600

0 2 4 6 8 10

-0.06
-0.04
-0.02
0.00
0.02
0.04
0.06

p
 (

k
N

/m
)

Time, t (s)

y
 (

m
)

Displacement, y Soil resistance, p

z=3 m

-800

-400

0

400

800

0 2 4 6 8 10

-0.06
-0.04
-0.02
0.00
0.02
0.04
0.06

p
 (

k
N

/m
)

Time, t (s)

y
 (

m
)

Displacement, y Soil resistance, p

z=4 m



150 

 

Figure B.6 : The pile displacement and soil resistance time histories for D=0.65 m, 

DR=55 %, r=0.0158 %. 
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Figure B.7 : The pile displacement and soil resistance time histories for D=0.65 m, 

DR=55 %, r=0.0217 %. 
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Figure B.8 : The pile displacement and soil resistance time histories for D=0.65 m, 

DR=55 %, r=0.0352 %.
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APPENDIX C: Acceleration-time histories obtained in the validation analyses with 

the centrifuge test results 

 

Figure C.1 : Comparison of the superstructure acceleration obtained in the 

centrifuge test and API for Event Gohl. 

 

Figure C.2 : Comparison of the superstructure acceleration obtained in the 

centrifuge test and API for Event K. 

 

Figure C.3 : Comparison of the superstructure acceleration obtained in the 

centrifuge test and API for Event N. 
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Figure C.4 : Comparison of the superstructure acceleration obtained in the 

centrifuge test and suggested model for Event Gohl. 

 

Figure C.5 : Comparison of the superstructure acceleration obtained in the 

centrifuge test and suggested model for Event K. 

 

Figure C.6 : Comparison of the superstructure acceleration obtained in the 

centrifuge test and suggested model for Event N
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APPENDIX D: Pile head bending moment-time histories obtained in the validation 

analyses with the selected earthquake test results 

 

Figure D.1 : Comparison of the 3-dimensional dynamic analysis with the proposed 

method and API (Set-1). 
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Figure D.2 : Comparison of the 3-dimensional dynamic analysis with the proposed 

method and API (Set-2).  

-900

-600

-300

0

300

600

900

0 5 10 15 20 25 30

B
en

d
in

g
 m

o
m

en
t,

 

k
N

.m

t, sec

FLAC3D API Suggested

Pile head moment EQ-5

-1600

-800

0

800

1600

0 5 10 15 20 25 30

B
en

d
in

g
 m

o
m

en
t,

 

k
N

.m

t, sec

FLAC3D API Suggested

Pile head moment EQ-6

-800

-400

0

400

800

0 5 10 15 20 25 30

B
en

d
in

g
 m

o
m

en
t,

 

k
N

.m

t, sec

FLAC3D API Suggested

Pile head moment EQ-7

-1500

-1000

-500

0

500

1000

1500

0 10 20 30 40 50 60 70 80 90

B
en

d
in

g
 m

o
m

en
t,

 

k
N

.m

t, sec

FLAC3D API Suggested

Pile head moment EQ-8



157 

 

Figure D.3 : Comparison of the 3-dimensional dynamic analysis with the proposed 

method and API (Set-3).  
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