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QUANTUM PHENOMENON IN ANISOTROPIC XXZ HEISENBERG SPIN 
CHAINS WITH FERROMAGNETIC AND ANTIFERROMAGNETIC 
INTERACTIONS: RENORMALIZATION-GROUP CALCULATION 

 
SUMMARY 

 
The statistical mechanics of anisotropic XXZ Heisenberg spin chains is solved for both 
ferromagnetic and antiferromagnetic interactions, thoughout the entire temperature and 
anisotropy ranges, via the renormalization-group method developed for electronic 
system calculations. Spin-spin correlations and specific heats are calculated in detail. 
The spin-wave stiffness constant, excitation spectrum gap, and spin-wave to spinon 
crossever are obtained. From these solutions, completely quantum mechanical 
phenomenon are obtained: The XY interaction induces antiferromagnetic sz spin 
correlations, while on the other hand, antiferromagnetic sz interaction induces XY spin 
correlations. The specific heat maxima values and temperatures respond to anisotropy in 
a completely different way for ferromagnetic and antiferromagnetic systems. One can 
see this fact as a harbinger of the quantum phenomenon of different ferromagnetic and 
antiferromagnetic phase transition temperatures for higher dimensions. The 3-
dimensional global phase diagram is calculated, showing that ferromagnetic and 
antiferromagnetic regions indeed do not map onto each other. In addition, in this global 
phase diagram, one can see the expected order of the critical temperatures, namely the 
Ising model critical temperature being the highest, and the Heisenberg model critical 
temperature being the lowest, and the XY model critical temperature being in between. 
This effect is due to order of degree of freedom of each spin in the models, i.e. 1 for 
Ising model, 2 for XY model, and 3 for Heisenberg model. 
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FERROMANYETİK VE ANTİFERROMANYETİK ETKİLEŞMELİ 
ANİZOTROPİK XXZ HEISENBERG SPİN ZİNCİRLERİNDE KUANTUM 
OLGULARI: RENORMALİZASYON GRUBU ÇÖZÜMÜ 

 
ÖZET 

 
Anizotropik XXZ Heisenberg spin zincirlerinin istatistik mekaniği, elektronik sistem 
çözümleri için geliştirilen kuantum renormalizasyon grubu yöntemi kullanılarak, hem 
ferromanyetik hem antiferromanyetik etkileşmeler için, bütün sıcaklıklar ve bütün spin 
anizotropi değerleri için çözülmüştür. Spin-spin bağlantıları ve özgül ısılar ayrıntılarıyla 
hesaplanmıştır. Spin dalgası katılıkları, uyarılma spektrum ayrılıkları ve spin 
dalgasından spinona öte geçiş elde edilmiştir. Bu çözümlerden, tümüyle kuantum 
mekaniksel olan olgular bulunmuştur: XY spin etkileşmeleri, antiferromanyetik sz spin 
bağlantıları oluşturmaktadır. Buna karşılık da, antiferromanyetik sz etkileşmeleri, XY 
spin bağlantıları oluşturmaktadır. Özgül ısının pik değerlerinin ve sıcaklıklarının 
anizotropiye bağlantısı, ferromanyetik ve antiferromanyetik sistemlerde tamamen 
değişiktir. Bu, üst boyutlarda, antiferromanyetik ve ferromanyetik faz geçiş 
sıcaklıklarının değişik olması kuantum olgusunun habercisi olarak görülebilir. 3-boyutta 
global faz diyagramı elde edilmis ve gerçekten de ferromanyetik ve antiferromanyetik 
bölgelerin üstüste çakışmadıkları bulunmuştur. Buna ek olarak, global faz diyagramında, 
Ising modeli kritik sıcaklığının en yüksek, Heisenberg modeli kritik sıcaklığının en 
düşük, XY modeli kritik sıcaklığının da ikisinin arasında olduğu haliyle, beklenen kritik 
sıcaklık sıralaması görülebilir. Bu etkinin sebebi, modellerdeki her spinin serbestlik 
derecesinin sıralanışıdır. Serbestlik dereceleri Ising modeli için 1, XY modeli için 2, 
Heisenberg modeli için ise 3 şeklindedir. 
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1. INTRODUCTION 

The quantum Heisenberg chain, including the possibility of spin-space anisotropy, is 

the simplest nontrivial quantum spin system and has thus been widely studied since 

the very beginning of the spin concept in quantum mechanics [1-3]. Interest in this 

model continued [4-10] and redoubled with the exposition of its richly varied low-

temperature behavior [11-13] and of its relevance to high-temperature 

superconductivity [14-18]. It has become clear that antiferromagnetism and 

superconductivity are firmly related to, adjoining and overlapping each other. 

A large variety of theoretical tools have been employed in the study of the various 

isotropic and anisotropic regimes of the quantum Heisenberg chain, including finite-

systems extrapolation [6, 19], linked-cluster [7] and dimer-cluster [20] expansions, 

quantum decimation [21], decoupled Green’s functions [22], quantum transfer matrix 

[23, 24], high-temperature series expansion [25], and numerical evaluation of 

multiple integrals [26]. 

In the present study, a position-space renormalization-group method introduced by 

Suzuki and Takano [27, 28] for d = 2 dimensions and already applied to a number of 

d > 1 systems [27-33] is used to compute the spin-spin correlations and the specific 

heat of the anisotropic quantum Heisenberg chain, resulting in a global description 

and detailed information for the entire temperature and anisotropy ranges. By 

comparing with other works done in the various regimes of the model, we see that 

the method is overall quantitatively successful. A number of characteristics of the 

quantum nature of the system are seen: The interaction si
x sj

x + si
y sj

y induces an 

antiferromagnetic correlation in the si
z component, not only in the XY subcase, but 

for a range of anisotropies and temperatures, competing with the si
z sj

z interaction 

when the latter is ferromagnetic. We find that the converse effect also occurs: an 

antiferromagnetic si
z sj

z interaction induces a correlation in the si
xy component. The 

specific heat maxima and their response to anisotropy are distinctly opposite in the 

antiferromagnetic and ferromagnetic cases, again a purely quantum effect and 

precursor to different phase transition temperatures in three dimensions [29,33-35]. 



 2 

 

2. RENORMALIZATION-GROUP TRANSFORMATION FOR                         

    ONE-DIMENSIONAL CLASSICAL SYSTEMS 

Ising model, a well-known classical model, is defined by the dimensionless 

Hamiltonian 

( )i j
ij ij

βH J s s + G βH i,j − = ≡ − ∑ ∑ ,                (2.1) 

where β = B1 k T , ij  denotes summation over nearest-neighbor pairs of sites and si , 

for every site i, can take values ±½. The additive constant G is generated by the 

renormalization-group transformation and is used in the calculation of 

thermodynamic functions. –βH(i,j) ≡ J si sj + G is the Hamiltonian involving the 

bond between sites i and j. The partition function for the system is 

{ }( )

{ }

( ) ( ) ( ) ( ) ( )

1 2 3 i j k N

βH s βH 1,2 βH 2,3 βH i,j βH j,k βH N,1

s s s s s s s s

Z ee
− − − − − −

= =∑ ∑∑∑ ∑∑∑ ∑ � �
� � ,        (2.2) 

where i, j, k are three successive lattice sites. Performing this infinite series of sums 

and obtaining Z (and thus obtaining the thermodynamics) may be seen as impossible, 

however renormalization-group transformation opens up the possibility. 

First of all, we will perform the summation over one variable, i.e., sj . The only part 

of the exponentiated Hamiltonian including sj is exp[–βH(i,j) –βH(j,k)], and the rest 

is constant with respect to sj . Therefore, performing the sum over sj yields 

( ) ( )

( )

( ) ( )( )
( )

i j j k

1 1
j j2 2

j i k

1
j 2

1 1
i k i k2 2

i j

J s s + G + J s s + GβH i,j βH j,k

s s

J s s s 2G

s

J s +s J s +s2G

J  s s + G β H j,k

e e

e

e e e

e e  ,

− −

=± =±

+ +

=±

−

′ ′ ′ ′−

=

=

= +

≡ =

∑ ∑

∑
                (2.3) 
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where we have redefined the result of the sum as a transformed dimensionless 

Hamiltonian. Here and throughout this paper, the primes are used for the 

renormalized system. From Eq.(2.3), one can derive the renormalized interaction 

constants with respect to unrenormalized ones as 

( ) ( )J J1
2 2 2

J 2 ln cosh   ,  G 2G ln 4cosh′ ′   = = +    .               (2.4) 

Two of the properties of the above recursion relations are general for 

renormalization-group transformation: Firstly, the derivative ∂G G′ = 2 = bd, where   

b = 2 is the rescaling factor and d = 1 is the dimensionality of the lattice. Secondly J′ 

is independent of the additive constant G. 

After applying the same procedure for every even lattice site, the partition function 

from Eq.(2.2) takes the renormalized form 

( ) ( ) ( )

1 3 i k N 1

β H 1,3 β H i,k β H N 1,1

s s s s s

Z e Z
−

′ ′ ′ ′ ′ ′− − − − ′= ≡∑∑ ∑∑ ∑ � �
� � .              (3.4) 

This form of the partition function is identical with the unrenormalized one, although 

we have eliminated half of the degrees of freedom. One can exploit this identity in 

order to derive the thermodynamics as will be seen in the Sec.3.3. 
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3. THE ANISOTROPIC QUANTUM HEISENBERG MODEL AND 

    THE RENORMALIZATION-GROUP METHOD 

3.1. The Anisotropic Quantum Heisenberg Model 

The spin-½ anisotropic Heisenberg model (XXZ model) is defined by the 

dimensionless Hamiltonian 

( ){ }x x y y z z
xy i j i j z i j

ij

βH J s s +s s +J s s +G − =  ∑ .                                                          (3.1) 

Here the si
m are the quantum mechanical Pauli spin operators at site i, unlike the 

scalar ±½ values for the classical Ising model. The anisotropy coefficient is defined 

as R = Jz /Jxy . The model reduces to the isotropic Heisenberg model (XXX model) 

for |R| = 1, to the XY model for R = 0, and to the Ising model for |R| → ∞. 

 

3.2 Renormalization-Group Recursion Relations 

The Hamiltonian in Eq.(3.1) can be rewritten as 

{ }
i

βH βH(i,i +1)− = −∑ ,                  (3.2) 

where βH(i,i+1) is a Hamiltonian involving sites i and i+1 only. The renormalization-

group procedure, which eliminates half of the degrees of freedom and keeps the 

partition function unchanged, is done approximately [27, 28]: 
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( ){ }

( ) ( ){ }

( ) ( ){ }

( )

( ){ }

i

odd

i

odd

i

βH i,i+1βH
odd odd

βH i-1,i βH i,i+1

odd

odd
βH i-1,i βH i,i+1

i
i

odd
β H i-1,i+1

i

β H i-1,i+1

β H

Tr e Tr e

Tr e

Tr e

e

e

e .

−−

− −

− −

′ ′−

′ ′−

′ ′−

∑=

∑=

=

∑

=

∏

∏

�

�

                (3.3) 

Thus, at each successive length scale, we ignore the non-commutativity of the 

operators beyond three consecutive sites, in the two steps indicated by �  in the 

above equation. Since the approximations are applied in opposite directions, one can 

expect some mutual compensation. Earlier studies [27, 28, 30-32] have been 

successful in obtaining finite-temperature behavior on a variety of quantum systems. 

The transformation above is summarized by 

( ) ( ) ( ){ }βH i,j βH j,kβ H i,k

je Tr e
− −′ ′−

= ,                 (3.4) 

where i, j, k are three successive sites. The operator −βH(i,k) acts on two-site states, 

while the operator  −βH(i, j) −βH(j, k) acts on three-site states, so that we can rewrite 

Eq.(3.4) in the matrix form, 

 

( ) ( ) ( )

j

β H i,k βH i,j βH j,k

i k i k i j k i j k
w

u v e u v u w v e u w v
′ ′− − −

=∑ ,             (3.5) 

where state variables can take spin-up or spin-down values at each site. The 

unrenormalized 8×8 matrix on the right-hand side is contracted into the renormalized 

4×4 matrix on the left-hand side of Eq.(3.5). We use two-site basis states vectors 

{ }pφ  and three-site basis states vectors { }qψ  to diagonalize the matrices in 

Eq.(3.5). The states { }pφ , given in Table 3.1, are eigenstates of parity, total spin 
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magnitude, and total spin z-component. These { }pφ  diagonalize the renormalized 

matrix, with eigenvalues 

1 1 1 1 1
1 z 2 3 z xy 4 z xy4 4 2 4 2Λ J +G  ,   Λ Λ J + J +G  ,   Λ J J +G  .′ ′ ′ ′ ′ ′ ′ ′= = = − = − −             (3.6) 

The states { }qψ , given in Table 3.2, are eigenstates of parity and total spin z-

component. The { }qψ  diagonalize the unrenormalized matrix, with eigenvalues 

( )

( )

2 21 1
1 z 2 z xy z2 4

2 21
3 z xy z 44

λ J 2G ,      λ J 8J +J 2G ,

λ J 8J +J 2G ,      λ 2G .

= + = − + +

= − − + =

               (3.7) 

With these eigenstates, Eq.(3.5) is rewritten as 

( ) ( ) ( )β H i,k βH i,j βH j,k

p p p p i k i j k q q q
u,v,u,
v,w,q

q i j k i k p

γ e = u v u w v ψ ψ e ψ

ψ u w v u v .

′ ′− − −
≡ φ φ φ ⋅

φ

∑
      (3.8) 

Thus, there are three independent γp that determine the renormalized Hamiltonian 

and, therefore, three renormalized interactions in the Hamiltonian closed under 

renormalization-group transformation, Eq.(3.1). These γp are 

( )
( )

( )
( )

31 1
z z z4 4 4

1 1 1
xy z z2 4 4

1 1
xy z2 4

2 21
z xy z4J +G 2G J J 2 21

1 xy z4 2 2
xy z

2 21
z xy z4J J +G 2G J 2 21

2 xy z4 2 2
xy z

J J +G 2G
4

J sinh 8J J
γ e e e cosh 8J J ,

8J J

J sinh 8J J
γ e 2e cosh 8J J ,

8J J

γ e 2e  ,

′ ′ −

′ ′ ′− −

′ ′ ′− −

 +
 

= = + + − 
+  

 +
 

= = + + 
+  

= =

            (3.9) 

which yield the recursion relations 

( ) ( ) ( )
2

2 1

4 2 4

γ γ 21
xy z 1 2 4γ γ γ 4J ln  ,    J ln  ,   G ln γ γ γ  .′ ′ ′= = =              (3.10) 
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Table 3.1: The two-site basis eigenstates that appear in Eq.(3.8). These are the well-

known singlet and triplet states. The state  3φ  is obtained by spin reversal from 

 1φ , with the same eigenvalue. 

p S ms Two-site basis eigenstates 

1 
 1φ = ↑↑  

+ 1 

0 { }1

2 2φ = ↑↓ + ↓↑  

- 0 0 { }1

2 4φ = ↑↓ − ↓↑  

 

Table 3.2: The three-site basis eigenstates that appear in Eq.(3.8) with coefficients 

( )2 2
z xy z xyσ J 8J J 2J= − + + , ( )2 2

z xy z xyJ 8J J 2Jτ = − − +  and normalization factors 

µ, ν. The states ψ5−8  are obtained by spin reversal from ψ1−4 , with the same 

respective eigenvalues. 

p ms Three-site basis eigenstates 

3/2 ψ
1

= ↑↑↑  

{ }ψ µ σ2 = ↑↑↓ + ↑↓↑ + ↓↑↑  + 

1/2 

{ }ψ ν τ3 = ↑↑↓ + ↑↓↑ + ↓↑↑  

– 1/2 { }1

2
ψ4 = ↑↑↓ − ↓↑↑  

As expected, J′xy and J′z are independent of the additive constant G and the derivative 

∂GG′ = bd = 2. 

For Jxy = Jz, the recursion relations reduce to the spin-½ isotropic Heisenberg (XXX) 

model recursion relations, while for Jxy = 0 they reduce to spin-½ Ising model 

recursion relations. The Jz = 0 subspace (XY model) is not (and need not be) closed 
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under these recursion relations [27, 28]: The renormalization-group transformation 

induces a positive Jz value, but the spin-space easy-plane aspect is maintained. 

In addition, there exists a mirror symmetry along the Jz-axis, so that J′xy(−Jxy, Jz) = 

J′xy(Jxy, Jz)  and J′z(−Jxy, Jz) = J′z(Jxy, Jz). The thermodynamics of the system remains 

unchanged under flipping the interactions of the x and y spin components, since the 

renormalization-group trajectories do not change. In fact, this is part of a more 

general symmetry of the XYZ model, where flipping the signs of any two 

interactions leaves the spectrum unchanged [8]. Therefore, with no loss of generality, 

we take Jxy > 0. Independent of the sign of Jxy, Jz > 0 gives the ferromagnetic model 

and Jz < 0 gives the antiferromagnetic model. 

3.3. Calculation of Densities and Response Functions 

       by the Recursion-Matrix Method 

Just as the interaction constants of two consecutive points along the renormalization-

group trajectory are related by the recursion relations, the densities are connected by 

a recursion matrix �T , which is composed of derivatives of the recursion relations. 

For our Hamiltonian, the recursion matrix and density vector M
���

 are 

� ( )

xy z

xy xy xy xy xy z z
i j i j

xy z

z z z

xy z

G G G
2

G J J

J J J
T 0    ,      M 1 2 s s s s  .

G J J

J J J
0

G J J

 ′ ′ ′∂ ∂ ∂
= 

∂ ∂ ∂ 
 ′ ′ ′∂ ∂ ∂
 = = =

∂ ∂ ∂ 
 

′ ′ ′∂ ∂ ∂ =
 ∂ ∂ ∂ 

���
           (3.11) 

These are densities Mα associated with each interaction Kα , 

α

α α

1 ln Z
M

N K

∂
=

∂
 ,                 (3.12) 

where Nα is the number of α-type interactions and Z is the partition function for the 

system, which can be expressed both via the unrenormalized interaction constants as 

Z( K
��

) or via the renormalized interaction constants as Z( K′
���

). By using these two 

equivalent forms, one can formulate the density recursion relation [36] 
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β βd
α β βα βα

β α α

N K
M b M T   ,    T

N K
−

′∂
′= ≡

∂
∑  .              (3.13) 

Since the interaction constants, under renormalization-group transformation, stay the 

same at fixed points such as critical fixed points or sinks, the above Eq.(3.13) takes 

the form of a solvable eigenvalue equation, 

�
* *db M M T= ⋅
��� ���

,                 (3.14) 

at fixed points, where 
*

M M M′= =
��� ��� ���

. The fixed point densities are the components of 

the left eigenvector of the recursion matrix with left eigenvalue bd [36]. At ordinary 

points, Eq.(3.13) is iterated until a sink point is reached under successive 

renormalization-group transformations. In algebraic form, this means, 

� � �
(n) (n 1) (1)(0) (n)ndM b M T T T

−
−=

��� ���
� ,               (3.15) 

where the upper indices indicate the number of iteration (transformation),             

with 
(n) *

M M
��� ���
� . 

This method is applied on our model Hamiltonian. The sink of the system is at 

infinite temperature J*
xy = J*

z = 0 for all initial conditions (Jxy, Jz). One can see that, 

since reaching this sink needs less renormalization-group steps for high-temperature 

(low-J) than for low-temperature (high-J), our approximate renormalization-group 

method works better in high-temperature than in low-temperature. We already know 

that the method is exact in |R| → ∞ (Ising) limit, since the model is classical in this 

limit. With the additional information of the sink of the model (i.e. sink at infinite 

temperature), we also know that the method is exact in T → ∞ limit too. At the T ≈ 0 

regime, the method works at its worst, since in order to reach the sink from initial 

conditions in this regime, we need the most renormalization-group steps, which are 

approximate and summarized by Eq.(3.4). 

Response functions are calculated by differentiation of densities. For example, the 

internal  energy  is  xy xy z z
i j i jU 2 s s R s s= − − ,  employing  T = 1/Jxy ,  and 

xy xy z z
i j i jU 2 s s R s s= − − , employing T = 1/|Jz|. The specific heat C = ∂TU follows 

from the chain rule. 
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4. CORRELATIONS SCANNED WITH RESPECT TO ANISOTROPY  

The ground-state and excitation properties of the XXZ model offer a variety of 

behaviors [11, 12, 37, 38]: The antiferromagnetic model with R < −1 is Isinglike and 

the ground state has Néel long-range order along the z spin component with a gap in 

the excitation spectrum. For −1 ≤ R ≤ 1, the system is a “spin liquid”, with a gapless 

spectrum and power-law decay of correlations at zero temperature. The 

ferromagnetic model with R > 1 is also Isinglike, the ground state is ferromagnetic 

along the z spin component, with an excitation gap. 

Our calculated z z
i js s  and xy xy x x y y

i j i j i js s s s s s≡ =  nearest-neighbor spin-spin 

correlations for the whole range of the anisotropy coefficient R are shown in Fig.4.1, 

for various temperatures. 

The xy correlation is always non-negative. Recall that we use Jxy > 0 with no loss of 

generality. In the Isinglike antiferromagnetic (R < −1) region, the z correlation is 

expectedly antiferromagnetic. As the z z
i js s  correlation saturates for large |R|, the 

transverse xy xy
i js s  correlation is somewhat depleted. In the Isinglike ferromagnetic 

(R > 1) region, the z z
i js s  correlation is ferromagnetic, saturates quickly as the 

xy xy
i js s  correlation quickly goes to zero. In the spin-liquid (|R| < 1) region, the 

z z
i js s  correlation monotonically passes through zero in the feromagnetic side, while 

the xy xy
i js s  correlation is maximal. The remarkable quantum behavior of z z

i js s  

around R = 0 is discussed in Sec.6 below. It is seen in the figure that these 

changeovers are increasingly sharp as temperature is decreased and, at zero 

temperature, become discontinuous at R = 1. As seen in Fig.4.1(b), at zero 

temperature, our calculated z z
i js s  and xy xy

i js s  correlations show very good 

agreement with the known exact points [4, 39-41]. Also, our results for R > 1 fully 
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overlap the exact results of z z
i js s  = 0.25 and xy xy

i js s  = 0 [37]. We also note that 

zero-temperature is the limit in which our approximation is at its worst. 

 

Figure 4.1: (a) Calculated nearest-neighbor spin-spin correlations z z
i js s , (thick 

curves from lower left) and xy xy
i js s , (thin curves from upper left) as a function of 

anisotropy coefficient R for temperatures 1/Jxy = 0, 0.1, 0.2, 0.4, 0.8. (b) Calculated 
zero-temperature nearest-neighbor spin-spin correlations (thin and thick curves, as in 
the upper panel) compared with the exact points of Ref.[4, 37, 39-41] shown with 

filled and open symbols for z z
i js s , and xy xy

i js s , respectively. At R = 1, z z
i js s , 

discontinuously goes from antiferromagnetic to the exact result of 0.25 [37] of 

saturated ferromagnetism and xy xy
i js s , discontinuously goes from ferromagnetic to 

the exact result of constant zero [37]. 
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5. ANTIFERROMAGNETIC XXZ CHAIN 

 

Figure 5.1: Calculated nearest-neighbor spin-spin correlations z z
i js s  (lower thick 

curves in each panel) and xy xy
i js s  (upper thin curves in each panel) for the 

antiferromagnetic XXZ chain, as a function of temperature for anisotropy 

coefficients R = 0, −0.25, −0.50, −0.75, −1, −2, −4, −8, −∞ spanning the spin-liquid 

(upper panel) and Isinglike (lower panel) regions. 

For the antiferromagnetic XXZ chain, our calculated z z
i js s and xy xy

i js s  nearest-

neighbor spin-spin correlations as a function of temperature are shown in Fig.5.1 for 
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various anisotropy coefficients R. We find that when Jxy is the dominant interaction 

(spin liquid), the xy xy
i js s  correlation is weakly dependent on anisotropy R. 

Conversely, when Jz is the dominant interaction (Isinglike), the z z
i js s  correlation is 

weakly dependent on anisotropy R, but only at the higher temperatures. Our results 

are compared with multiple-integral results [26] in Fig.5.2. 

 

Figure 5.2: Comparison of our results (thick lines) for the correlation functions of 
the antiferromagnetic XXZ chain, with the multiple-integral results of Ref.[26] (thin 
lines), for various anisotropy coefficients R spanning the spin-liquid and Isinglike 
regions. 

The calculated antiferromagnetic specific heats are shown in Fig.5.3 for various 

anisotropy coefficients and compared, in Fig.5.4 and Fig.5.5, with finite-lattice 

expansion [6, 19], quantum decimation [21], transfer matrix [24], high-temperature 

series expansion [25] results and, for the R = 0 case, namely the XY model, with the 

exact result ( )
2π

1 cosω
2T4πT 0

cosω cosh dω  ∫  [5]. The maximum C(T) temperature is 

highest for the isotropic case (Heisenberg) and decreases with anisotropy increasing 

in either direction (towards Ising or XY). The maximum value of C(T) is only 

weakly dependent on anisotropy, especially for the Isinglike systems. 
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Figure 5.3: Calculated specific heats C of the antiferromagnetic XXZ chain, as 
functions of temperature for anisotropy coefficients R = 0, −0.25, −0.50, −0.75, −1, 
−2, −4, −8, −∞ spanning the spin-liquid (upper panel) and Isinglike (lower panel) 
regions. 

 

Figure 5.4: Comparison of our antiferromagnetic specific heat results (thick lines) 
with the results of Refs.[5] (open circles), [6] (dotted), [19] (thin lines), [21] (dash-
dotted), and [23, 24] (dashed), for anisotropy coefficients R = 0, −0.5, −1, −2 
spanning the spin-liquid and Isinglike regions. 
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Figure 5.5: Comparison of our antiferromagnetic specific heat results (thick lines) 
with the high-temperature J → 0 behaviors (thin lines) obtained from series 
expansion in Ref.[25], for anisotropy coefficients R = 0, −0.50, −0.75, −1, −2, −∞ 
spanning the spin-liquid and Isinglike regions. 

The linearity, at low temperatures, of the spin liquid (|R| ≤ 1) specific heat with 

respect to temperature is expected on the basis of spin-wave calculations for the 

antiferromagnetic XXZ model [42, 43]. This linear form of C(T) reflects the linear 

energy-momentum dispersion of the low-lying excitations, the magnons. The low-

temperature magnon dispersion relation is ħω = ckn, where c is the spin-wave 

stiffness and n = 1 for the antiferromagnetic XXZ model in d = 1 [37]. The internal 

energy, given by ( ) ( )( )β ω k1
2π 0

U ω k e 1 dk
∞  = −
 ∫

�
� , is dominated by the magnons at 

low temperatures, yielding  U ~ T2  and  C ~ T  for  n = 1  in the dispersion relation. 

From this relation, our calculated spin-wave stiffness c as a function of anisotropy R 

is given in Fig.5.6. The exactly known value of  c = 2π  at  R = −1  [42, 43] is also 

shown in Fig.5.6. Our calculated value of  c = 6.78620 is only in 8% error with 

respect to this exact value of  c = 2π = 6.28319. Our simultaneous fit to the 

dispersion relation exponent n, expected to be 1, yields 1±0.02. However, for the 

Isinglike |R| > 1, the unexpected linearity instead of an exponential form caused by a 

gap in the excitation spectrum, points to the approximate nature of our 

renormalization-group calculation. The correct exponential form is obtained in the 

large R limit, where the renormalization-group calculation becomes exact. 
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Figure 5.6: Our calculated antiferromagnetic spin-wave stiffness c versus the 
anisotropy coefficient R. The single point shows the exact result of  c = 2π  at           
R = −1 [42, 43]. The lower line is the fit to the dispersion relation exponent n, 
expected to be 1 [37]. 

Rojas et al. [25] have obtained the high-temperature expansion of the free energy of 

the XXZ chain to order β3, where β is the inverse temperature. The specific heat from 

this expansion is 

2 2 4
2 3 42 R 3R 6 8R R

C β β β
16 32 256

+ − −
= − + .                (5.1) 

This high-temperature specific heat result is also compared with our results, in 

Fig.5.5, and very good agreement is seen. In fact, when in the high-temperature 

region of  0 < β < 0.1, we fit our numerical results for C(β) to the fourth degree 

polynomial 
4 i

i i 1
C A β

=
=∑ , and we do find (1) the vanishing A0 < 10−5 and A1 < 10−7 

for all R and (2) the comparison in Fig.5.7 between our results for A2 and A3 and 

those of Eq.(5.1) from Ref.[25], thus obtaining excellent agreement for all regions of 

the model. 

 

Figure 5.7: Comparison of our results with the high-temperature expansion of 
Ref.[25] for all regions: antiferromagnetic (outer panels) and ferromagnetic (inner 
panels), spin-liquid (left panels) and Isinglike (right panels). Triangles and circles 
denote our results, while solid and dashed lines denote the results of Ref.[25] for A2 
and A3, respectively. The error bars, due to the statistical fitting procedure of the 
coefficients A2 and A3, have half-heights of 1.7×10−4 and 2.6×10−3 respectively. 
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6. FERROMAGNETIC XXZ CHAIN 

For the ferromagnetic (i.e., R > 0) systems in Fig.4.1, the z z
i js s expectation value 

becomes rapidly negative at lower temperatures for R < 1, even though for R ≥ 0 all 

couplings in the Hamiltonian are ferromagnetic. This is actually a real physical 

effect, not a numerical anomaly. In fact, we know the spin-spin correlations for the 

ground state of the one-dimensional XY model (the R = 0 case of our Hamiltonian), 

and we can compare our low-temperature results with these exact values. The 

ground-state properties of the spin-½ XY model are studied by making a Jordan-

Wigner transformation, yielding a theory of non-interacting spinless fermions. 

Analysis of this theory yields the exact zero-temperature nearest-neighbor spin-spin 

correlations [4] shown in Table 6.1. Our renormalization-group results in the zero-

temperature limit, also shown in this table, compare quite well with the exact results, 

as with the other exact points in Fig.4.1(b), although in the worst region for our 

approximation. Finally, by continuity, it is reasonable that for a range of R positive 

but less than one, the z component correlation function is as we find, intriguingly but 

correctly negative at low temperatures. Thus, the interaction x x y y
i j i js s s s+  (irrespective 

of its sign, due to the symmetry mentioned at the end of Sec.3.2) induces an 

antiferromagnetic correlation in the z
is  component, competing with the z z

i js s  

interaction when the latter is ferromagnetic. 

Table 6.1: Zero-temperature nearest-neighbor correlations of the spin-½ XY chain. 

Zero-temperature correlations 

of the spin-½ XY chain 

Exact values 

from Ref.[4] 

Our RGT 

results 

xy xy
i js s  0.15915 0.17678 

z z
i js s  −0.10132 −0.12500 
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For finite temperatures, our calculated nearest-neighbor spin-spin correlations are 

shown in Fig.6.1, for different values of R. These results are compared with Green’s 

function calculations [22] in Fig.6.2. As expected from the discussion at the 

beginning of this section, in the spin-liquid region, the correlation z z
i js s  is negative 

at low temperatures. Thus, a competition occurs in the correlation z z
i js s  between  

the XY-induced antiferromagnetism and the ferromagnetism due to the direct 

coupling between the sz spin components. In fact, this effect is also seen in the 

antiferromagnetic model discussed in the previous section, as detected in the lower 

panel of Fig.5.1: For |Jz| <
�

 2.7, the antiferromagnetic correlations of z z
i js s  are 

increased by increasing Jxy. Moreover, we find that the converse effect also occurs, 

as seen in the upper panel of Fig.5.1: For Jxy <
�

 4.4, an increase in the 

antiferromagnetic coupling strength |Jz| increases the correlations of z z
i js s . 

 

Figure 6.1: Calculated nearest-neighbor spin-spin correlations z z
i js s  and xy xy

i js s , 

(thick and thin curves in each panel respectively) for the ferromagnetic XXZ chain, 
as functions of temperature, for anisotropy coefficients R = 0, 0.25, 0.50, 0.75, 1, 2, 
4, 8, ∞ spanning the spin-liquid (upper panel) and Isinglike (lower panel) regions. 
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Figure 6.2: Comparison of our ferromagnetic R = 1, 5/3 results with Green’s 
function calculations [22]. 

As a consequence of the competition mentioned above, a sign reversal in z z
i js s  

occurs from negative to positive correlation, at temperatures T0(R). At this 

temperature, by cancelation of the competing effects, the nearest-neighbor 

correlation z z
i js s  is zero. Our calculated T0(R) curve is shown in Fig.6.3, and has 

very good agreement with the exact result ( ) ( )0T 3 sin γ 2γ  tan π π γ 2γ = −  , 

where  γ ≡ cos−1(−R) [23]. 

 

Figure 6.3: The sign-reversal temperature T0 of the nearest-neighbor correlation 
z z
i js s : our results (full curve) and the analytical result from the quantum transfer 

matrix method (dashed) [23]. 

The calculated ferromagnetic specific heats are shown in Fig.6.4 for various 

anisotropy coefficients and compared, in Fig.6.5 and Fig.6.6, with finite-lattice 

expansion [6], quantum decimation [21], decoupled Green’s functions [22], transfer 
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matrix [23, 24], high-temperature series expansion [25] results and, for the R = 0 

case, namely the XY model, with the exact result  ( )
2π

1 cosω
2T4πT 0

cosω cosh dω  ∫  [5]. 

In sharp contrast to the antiferromagnetic case in Sec.5, the maximum C(T) 

temperature is highest for the most anisotropic cases (XY and Ising) and decreases 

with anisotropy decreasing from either direction (towards Heisenberg). In the same 

contrast, the maximum value of C(T) is dependent on anisotropy, decreasing, 

eventually to a flat curve, as anisotropy is decreased. This contrast between the 

ferromagnetic and antiferromagnetic systems is a purely quantum phenomenon. 

Specifically, the marked contrast between the specific heats of the isotropic 

antiferromagnetic and ferromagnetic systems, seen in the full curves of Fig.5.3 and 

Fig.6.4 respectively, translates into the different critical temperatures of the 

respective three-dimensional systems [29, 33-35]. Classical ferromagnetic and 

antiferromagnetic systems are, on the other hand, identically mapped onto each 

other. Three-dimensional model will be discussed in Sec.8. 

The low-temperature specifics heats are discussed in detail and compared to other 

results in Sec.7. 

 

Figure 6.4: Calculated specific heats C of the ferromagnetic XXZ chain, functions of 
temperature for anisotropy coefficients R = 0, 0.25, 0.50, 0.75, 1, 2, 4, 8, ∞ spanning 
the spin-liquid (upper panel) and Isinglike (lower panel) regions. 
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Figure 6.5: Comparison of our ferromagnetic specific heat results (thick lines) with 
the results of Refs.[5] (dash-double-dotted), [6] (dotted), [21] (dash-dotted), [22] 
(open circles), and [23, 24] (dashed), for anisotropy coefficients R = 0, 0.5, 1, 5/4, 
5/3, 2, 5 spanning the spin-liquid and Isinglike regions. 

 

Figure 6.6: Comparison of our ferromagnetic specific heat results (thick lines) with 
the high-temperature J → 0 behaviors (thin lines) obtained from series expansion 
[25], for anisotropy coefficients R = 0.25, 0.50, 0.75, 1, 2, ∞ spanning the spinliquid 
and Isinglike regions. 
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7. LOW-TEMPERATURE SPECIFIC HEATS 

Properties of the low-temperature specific heat of the ferromagnetic XXZ chain have 

been derived from the thermodynamic Bethe-ansatz equations [37]. For anisotropy 

coefficient |R| ≤ 1, the model is gapless [11, 12] and, except at R = 1, the specific 

heat is linear in T = 1/Jxy in the zero-temperature limit, C/T = 2γ/(3 sin γ), where 

again γ ≡ cos−1(−R). Note that this result contradicts the spin-wave theory prediction 

of C ~ T ½ for the ferromagnetic chain (n = 2 for the ferromagnetic magnon 

dispersion relation of the kind given above in Sec.5). The spin-wave result is valid 

only for R = 1, the isotropic Heisenberg case. From the expression given above, we 

see that C/T diverges as R → 1−, and at exactly R = 1 it has been shown that C ~ T ½ 

[37]. 

In the Isinglike region R > 1, the system exhibits a gap in its excitation spectrum and 

the specific heat behaves as C ~ T −3/2 exp(−∆ / T ), with ∆ being the excitation 

spectrum gap [11, 12, 37]. We can fit our calculated C(T) curves, which are shown in 

the lower panel of Fig.6.4, to this formula in order to obtain the excitation spectrum 

gap for various anisotropy coefficients (Fig.7.1). There exist two gaps for the energy, 

called the spinon gap and the spin-wave gap, given by 21
spinon 2 1 R −∆ = −  and     

∆spin-wave = 1 − R−1. These are the minimal energies of elementary excitations [10, 

37]. A crossover between them occurs at R = 5/3: below this value, the spinon gap is 

lower, while above this value the spin-wave gap is lower. As seen in Fig.7.1, as 

expected, our calculated gap ∆ behaves linearly in R−1 for R−1 close to 1, and crosses 

over to 1/2 at R−1 = 0. 
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Figure 7.1: Calculated excitation spectrum gap ∆ versus inverse anisotropy. 

We now turn to the discussion of our specific heat results for the entire ferromagnetic 

and antiferromagnetic ranges. Our calculated C/T curves are plotted as a function of 

anisotropy and temperature in Fig.7.2 and Fig.7.3 respectively. 

 

Figure 7.2: Calculated specific heat coefficients C/T as functions of anisotropy R, 
for T = 0.10, 0.05, 10−10. 
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Figure 7.3: Calculated specific heat coefficients C/T as functions of temperature for 
anisotropy coefficient R = −2 (thick grey), −1 (dotted), −0.5 (dash-dotted), 0.5 
(dashed), and 2 (thin black). 

We discuss each region of the anisotropy R separately: 

(i) R > 1 : The specific heat coefficient C/T vanishes in the T → 0 limit and 

has the expected exponential form as discussed above in this section. The 

spin-wave to spinon excitation gap crossover is obtained. 

(ii) R ≈ 1 : The double-peak structure of C/T in Fig.7.2 is centered at R = 1. 

As temperature goes to zero, the peaks narrow and diverge, and the value 

in-between them sharply dips, but reaches 0.86, not zero. Although we 

expect C ~ T ½ at this point, our approximation escapes linearity at R = 1+ 

(see end of next paragraph) instead of R = 1. 

(iii) −1 ≤ R < 1 : The specific heat coefficient is C/T = 2γ/(3 sin γ) in this 

region [11, 37], and our calculated specific heat is indeed linear at low 

temperatures. The C/T curves for R = −1, −0.5, 0.5 in Fig.7.3 all 

extrapolate to nonzero limits at T = 0. The spin-wave dispersion relation 

exponent and stiffness, for the antiferromagnetic system, is correctly 

obtained for the isotropic case and extended to all anisotropies, as seen in 

Fig.5.6. Fig.7.4 directly compares C/T = 2γ/(3 sin γ) with our results: The 

curves have the same basic form, gradually rising from R = −1, with a 

sharp divergence as R nears 1. At R = 1+, we expect C/T = 0. Our            
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T = 10−10 curve diverges at R = 1 and indeed returns to zero at                 

R = 1.0000001. 

(iv) R < −1 : We expect a vanishing C/T , which we do find as seen in Fig.7.2 

and in the inset of Fig.7.3. The exponential behavior of the specific heat is 

clearly seen in the Ising limit. 

 

Figure 7.4: Calculated specific heat coefficient C/T as a function of anisotropy 
coefficient R in the spin-liquid region, −1 ≤ R ≤ 1, at constant temperature T = 10−10. 
Our renormalization-group result (grey curve) is compared to the zero-temperature 
Bethe-Ansatz result (black curve). Inset: our calculation (grey curve) at constant       
T =10−2 is again compared to the zero-temperature Bethe-Ansatz result (black curve). 
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8. CALCULATION OF RECURSION RELATIONS  

    IN HIGHER DIMENSIONS 

Recursion relations for the d = 1 quantum XXZ model obtained in Sec.3.2 are in the 

form 

( ) ( )

( )

xy xy xy z z z xy z

d
G xy z

J R J , J    ,    J R J , J   ,

G R J , J     ,    G b G G   .

′ ′= =

′ ′ ′= = +
                (8.1) 

The Migdal-Kadanoff approximation for d > 1 is described as [44, 45] 

( ) ( )d-1
xy zK R b K   ,   K G , J , J′ = =

� � �
.                (8.2) 

Recalling the d = 1 recursion relations from Eq.(3.10) and using these in Eq.(8.2) 

yield the b = 2 recursion relations for d > 1 quantum XXZ model. 

The spin-½ quantum Heisenberg system (Jxy = Jz = J, R = 1) does not provide any 

phase transition for d ≤ 2. That is to say, the lower critical dimension of the quantum 

Heisenberg model is l.c.
Heis.d 2= , which is an expected result [29, 33]. So, the 3-d 

Heisenberg model induces a finite temperature second-order phase transition. 

Another expected result is the ratio of antiferromagnetic transition temperature and 

the ferromagnetic one, which is found to be approximately 1.22, the same value as 

computed in [29, 33]. This value can also be compared with the series expansion 

result of 1.13 [34, 35]. This result of different critical temperatures of ferromagnetic 

and antiferromagnetic cases was also predicted in Sec.6. The ferromagnetic and 

antiferromagnetic Ising critical temperatures are found to be exactly the same. Ising 

and XY model lower critical dimensions are found to be 1 and 2 respectively, which 

are also expected results. In addition, algebraically ordered Kosterlitz-Thouless low-

temperature phase is obtained for the two-dimensional quantum XY model [27, 28]. 
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9. PHASE DIAGRAM OF THE THREE-DIMENSIONAL XXZ MODEL 

The flow chart of Fig.9.1 presented below is drawn via the recursion relations 

obtained from Eq.(8.2) for b = 2 recursion relations and with d = 3. The critical 

points (dots in Fig.9.1) obtained for 3-d ferromagnetic Ising (R → ∞), isotropic 

Heisenberg (R = 1), and XY (R = 0) models are C
I-FJ 0.261065= , C

H-FJ 0.343897=  and 

C
XYJ 0.268739=  respectively. These critical points are in an expected order of, 

C C C
H-F XY I-FJ J J> > , due to the decrease in critical temperature (1/Jc) with the increase in 

the spin dimension (so in disorder). Three sinks occur in the flow chart of Fig.9.1, 

namely (0,0), (0,1) and (1,1), which correspond to disordered, sz-ordered and         

sxy-ordered phases respectively. 

 

Figure 9.1: Flow chart of the 3-d XXZ model plotted as tanh(Jz) versus tanh(Jxy). 
Arrows indicate the orientation of flows, while dots indicate the spin-½ Ising, 
Heisenberg, and XY model critical points. 

One can deduce the phase diagram of the 3-d ferromagnetic anisotropic Heisenberg 

model from the flow chart of Fig.9.1 as in the Fig.9.2. 
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Figure 9.2: Phase diagram of ferromagnetic XXZ model plotted in the axes tanh(Jz) 
versus tanh(Jxy). Full and dashed lines represent second- and first-order phase 
transitions respectively. 

Renormalization-group transformation of a point in the R < 0 antiferromagnetic 

region maps it on the R > 0 ferromagnetic region, which results in similar phase 

diagram for antiferromagnetic case, but with numerical values slightly different than 

the numerical values of the ferromagnetic case. After this very first transformation, 

the point continues to flow in the R > 0 region. The 3-d antiferromagnetic Ising 

critical point is found to be C
I-AFJ 0.261065= − , while the antiferromagnetic isotropic 

Heisenberg critical point is C
H-AFJ 0.282388= − . Critical points for antiferromagnetic 

case are also in the expected order of  C C C
H-AF XY I-AFJ J J> > . 

Below in Fig.9.3 we represent the spin-½ antiferromagnetic anisotropic Heisenberg 

model phase diagram joined with the ferromagnetic model. The negative Jxy region is 

not shown due to above mentioned mirror symmetry along Jz-axis (see Sec.3.2). Note 

that the single thin horizontal line of R = 0 is not a phase boundary but just 

separating the ferromagnetic and the antiferromagnetic regions of the model. 

 

Figure 9.3: Phase diagram of antiferromagnetic XXZ model joined with the 
ferromagnetic one, plotted in the axes tanh(Jz) versus tanh(Jxy). Full and dashed lines 
represent second- and first-order phase transitions respectively. The Jxy < 0 region is 
not shown (see text). The thin horizontal line of R = 0, which separates the 
ferromagnetic (FM) and antiferromagnetic (AFM) regions, is not a phase boundary. 
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10. CONCLUSION 

A detailed global renormalization-group solution of the XXZ Heisenberg chain, for 

all temperatures and anisotropies, for both ferromagnetic and antiferromagnetic 

couplings, has been obtained. In the spin-liquid region, the linear low-temperature 

specific heat and, for the antiferromagnetic chain, the spin-wave dispersion relation 

exponent n and stiffness constant c have been obtained. In the Isinglike region, the 

spin-wave to spinon crossover of the excitation spectrum gap of the ferromagnetic 

chain has been obtained from the exponential specific heat. Purely quantum 

mechanical effects have been seen: We find that the xy correlations and the 

antiferromagnetic z correlations mutually reinforce each other, for a range of 

temperatures and anisotropies, in both the ferromagnetic and antiferromagnetic 

systems. The behaviors of the specific heat maximum values and locations with 

respect to anisotropy are opposite in the ferromagnetic and antiferromagnetic 

systems. The sharp contrast found in the specific heats of the isotropic ferromagnetic 

and antiferromagnetic systems is a harbinger of the different critical temperatures in 

the respective three-dimensional systems. When compared with existing calculations 

in the various regions of the global model, good quantitative agreement is seen. Even 

at zero temperature, where our approximation is at its worst, good quantitative 

agreement is seen with exact data points for the correlation functions (Fig.4.1(b)). 

The higher-dimensional analysis is also carried out, and the global phase diagram of 

the three-dimensional anisotropic quantum Heisenberg model is obtained with 

expeced critical temperature behaviors. Finally, the relative ease with which the 

Suzuki-Takano decimation procedure is globally and quantitatively implemented 

should be noted. 
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