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FLUTTER ANALYSIS OF WING/STORE CONFIGURATIONS WITH
APPLICATIONS TO ROBUST AEROELASTIC OPTIMIZATION

SUMMARY

The main scope and aim of the present work are to develop a parametric solution
methodology to reach the best design for a wing/store configuration subjected to
flutter phenomenon and form a basis for robust aeroelastic optimization. Proved
solution is forced to be applicable for any wing/store configuration in accordance
with requirements. The best design defines a configuration with store loads in
optimum positions along wing span to provide maximum flutter speed however
uncertainties can significantly affect the design and they have to be considered for a
realistic application. Thus, the present work which deals with the problem in a highly
broad sense involves deterministic and probabilistic flutter analyses and flutter based
deterministic and robust aeroelastic optimization applications. The first part of the
work involves flutter analysis of 2 and 3-dimensional wing models. Then,
deterministic aeroelastic design optimization studies are carried out for these
structures. After that, uncertainty based flutter analyses with structural and
aerodynamic random parameters are applied to the wings of interest. Flutter analysis
and flutter based design optimization of a 3-dimensional wing/store configuration
form the next section. Uncertainty based flutter solution for the wing/store
configuration is stated. Finally, robust optimization studies based on flutter criteria
are carried out for 2 and 3-dimensional wing models and wing/store configuration.

Firstly, a simple aeroelastic system with 2-degrees of freedom is analyzed with
respect to aeroelastic instability criteria via a developed MATLAB code. The
aeroelastic instabilities consist of divergence, control reversal and flutter phenomena.
A solution methodology based on stability analysis of a dynamic system in quasi-
steady flow is proven. After that, 3-dimensional linear flutter analysis methodology
with unsteady aerodynamic effects is developed, integrated in a computational code,
validated and applied to Goland and AGARD (Advisory Group for Aerospace
Research and Development) 445.6 wings.

As a second work, deterministic design optimization studies are accomplished for
both 2 and 3-dimensional wing cases. 3-dimensional case involves flutter based
optimization of AGARD 445.6 wing. Objectives are maximizing the speeds of
aeroelastic instabilities in 2-dimensional case while maximizing flutter speed is the
only objective in the design optimization of AGARD 445.6. Design variables in 2-
dimensional case are static offset, linear and torsional spring coefficients, moment of
inertia and mass of airfoil while constraints are specified for natural limits of radius
of gyration and ratio of frequency terms and boundaries of aeroelastic instabilities.
Optimization of AGARD 445.6 wing does not involve any constraints while defined
design variables are taper ratio, sweep angle, elasticity and shear modulus along the
spanwise direction. The developed MATLAB codes, which are coupled with the
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optimization software, modeFRONTIER, are fully-parametric in terms of design
variables. In both cases, Non-Dominated Sorting Genetic Algorithm (NSGA-II) is
preferred as the optimization algorithm while Multi-Objective Genetic Algorithm
(MOGA-I1) is used as the second algorithm for 2-dimensional airfoil case.

Next, uncertainty based flutter analyses are applied to 2 and 3-dimensional wing
models via extended computational codes. Random parameters are selected through
structural, geometric and aerodynamic variables and modeled with Gaussian
distribution. Monte Carlo Simulation (MCS) is employed to generate random
samples. Each analysis involves the use of 10° samples so as to enhance the accuracy
of MCS. The amount of uncertainties is determined by using Coefficient of Variation
(COV) approach with COV =1% and COV =5%cases. Minimum available speeds
are sought after for aeroelastic instabilities by considering reliability.

Flutter analysis methodology of a wing/store configuration is presented and validated
with a benchmark problem involving Goland wing/store models. The solution, which
is developed in a MATLAB code, contains the structural effects such as masses and
inertias of store loads while flutter speed can be obtained for various positions of
stores along the wing span. The presented metholodgy forms a basis for aeroelastic
analysis of more complex wing/store configurations. The stores can be considered
such as missiles, tanks, etc. in a more realistic manner. Structural and inertial effects
of store loads are taken into account for Goland wing case however the stores are
modeled as point masses for AGARD 445.6 wing application due to lack of
information. The present study is the first attempt which developes an analytical
flutter analysis methodology for AGARD 445.6 clean wing and wing/store
configurations to the best of author’s knowledge.

Aeroelastic optimization studies for AGARD 445.6 wing/store configurations are
performed in order to determine the best locations for external stores to reach the
maximum flutter speeds. The MATLAB code of previous section is coupled with the
optimization software. NSGA-II is again preferred as the optimization algorithm.
The configurations are divided into three categories involving 3-stations, 4-stations
and 5-stations placements of stores along wing span. Total masses of store loads are
the same for each configuration. By considering reality, constraints defining
distances between successive two stations are specified even though the stores are
modeled as point masses. Flutter based optimization studies are carried out and
optimum positions are determined for each wing/store model. The aeroelastic
optimization study does not involve the effects of uncertainties. After three
optimization applications, the best configuration with maximum flutter speed is
found as 3-stations case.

The next step is to apply uncertainty based flutter analysis to AGARD 445.6
wing/store configuration. The related computational code is extended to include
uncertainties with COV =1%and COV =5% approaches however locations of store
loads are modeled with respect to COV = 0.25% approach due to physical limitations
of their positions. The considered configuration is the 3-stations case of previous
section as the best design. Random parameters are defined as the locations and
masses of store loads and material properties as elasticity and shear modulus along
spanwise direction. Uncertainties are modeled with Gaussian distribution by
generating 10° samples with MCS. Minimum flutter speed is taken into for
reliability.
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Final step of the present work is robust aeroelastic optimization applications which
combine the uncertainty based flutter analyses with aeroelastic design optimization.
Robust optimization studies are performed in modeFRONTIER by coupling the
deterministic flutter solution codes since random parameters can be defined and
distributed via optimization software. 2-dimensional airfoil, AGARD 445.6 clean
wing and the best wing/store configuration are considered. In all cases, NSGA-II is
used as the optimization algorithm. In 2-dimensional case, deterministic design
variables are selected as static offset term, linear and torsional spring coefficients
while moment of inertia and mass of the airfoil are probabilistic optimization
parameters. In AGARD 445.6 clean wing case, probabilistic variables are defined as
elasticity and shear modulus while taper ratio and sweep angle are deterministic
design parameters. For AGARD 445.6 wing/store configuration, taper ratio and
sweep angle are defined as deterministic parameters while elasticity and shear
modulus, locations of store loads are defined as probabilistic optimization variables.
In all cases, random variables are distributed by using 10° samples with respect to
MCS. 2" order Polynomial Chaos Expansion (PCE) is used through MCS in order to
reduce the computational time. The objective of the robust optimization process is to
maximize the flutter speed while previously defined constraints of deterministic
optimization applications are considered. Optimum robust flutter speed is the
minimum flutter speed value of the optimum robust design. In other words, optimum
robust flutter speed is the maximum of minimum flutter speeds in robust designs.
Choice of minimum flutter speed guarantees withstanding of the worst case scenerio
by force of robustness. Robust optimization study under the scope of the present
work provides the most efficient and reliable aeroelastic design based on flutter
criteria even in the presence of structural, geometric and aeodynamic uncertainties.

As a consequence, the present work proves deterministic and probabilistic flutter
analysis methodologies for wing structures from simple designs to more complicated
3-dimensional models and wing/store configurations with applications to
deterministic and robust aeroelastic optimization. The metholodgy forms a basis for
flutter analysis and flutter based optimization of more complex wing structures and
can be extended through the use of military and civilian purposes and requirements.
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KANAT/DIS YUK KONFIGURASYONLARININ KARARLI AEROELASTIK
OPTIMiZASYON UYGULAMALARI ICiN FLUTTER ANALIZi

OZET

Bu calismanin temel amac1 ve kapsami, kanat/dis yiik konfigiirasyonlar1 i¢in flutter
acisindan en 1yi tasarima ulasmayi saglayacak analitik bir ¢6ziim yontemi
gelistirmektir. Elde edilen ¢6zim yonteminin kararli (robust) aeroelastik
optimizasyon uygulamasi i¢in de temel olusturmasi hedeflenmistir. Ortaya konan
¢oziim adimlarinin, herhangi bir kanat/dig yiik konfigiirasyonu ile uyumlu olacak
sekilde genel bir parametrik ¢oziimii icermesi saglanmistir. Bu dogrultuda, kanat/dis
yiik konfigiirasyonlar1 i¢in en iyi tasarimin bulunmasi uygulamasina gidilmistir. S6zii
edilen en 1iyi tasarim, flutter hizinin en yiiksek degere ulagsmasini saglayacak olan
aciklik boyunca dig yiiklerin optimum yerlesim pozisyonlarindan olusan yapidir.
Aeroelastik sistemlerde goriilen belirsizlikler, hedeflenen flutter hizina ulagilmasini
engelleyebilirler. Bu nedenle, giivenilir bir tasarim elde edebilmek igin
belirsizliklerin uygun sekilde hesaba katilmasi gerekmektedir. Bu durum, yalnizca
deterministik flutter analizi yapmanin yeterli olmayacagini gostermektedir. Bu
nedenle, olasiliksal (probabilistik) flutter analizleri de gergeklestirilmistir. Bu
caligmanin temel konusu olan problem, ¢ok genis bir bakis agisiyla ele alinmis ve
kolaydan zora uzanacak sekilde farkli model ve konfigiirasyonlar tizerinde flutter
¢oziim yontemi gelistirilmis ve aeroelastik optimizasyon uygulamalari
gergeklestirilmistir. Bu dogrultuda oncelikli olarak 2-boyutlu kanat modelleri i¢in
aeroelastik kararsizliklarin ¢oziimiine yonelik bir yonteme yer verilmis ve ardindan
3-boyutlu gergekgi kanat yapilari igin flutter ¢oziim yontemi gelistirilmistir. Sz
edilen 2 ve 3-boyutlu modeller igin deterministik aeroelastik optimizasyon
calismalar1 uygulanarak en yiiksek flutter hizin1 saglayan en iyi tasarim
parametrelerine ulasilmistir. Diger boliimde, belirsizliklerin yer aldigi olasiliksal
flutter analizleri gerceklestirilmis ve elde edilen en kiigiik flutter hizlari, kararl bir
analizin geregi olarak belirsizliklerin varligi durumundaki flutter hizi olarak dikkate
almmistir. Ardindan, gergeklestirilen flutter ¢oziimii, 3-boyutlu kanat/dis yiik
konfiglirasyonlarmin analizini de kapsayacak sekilde genisletilmistir. Bu sayede
flutter tabanl aeroelastik optimizasyon yapilarak dis yliklerin kanat a¢iklig1 boyunca
yerlesmeleri gereken optimum pozisyonlar bulunmustur. Son asamada ise; flutter
kriterine dayali kararli aeroelastik optimizasyon caligmasi, 2 ve 3-boyutlu kanat
modellerine ve 3-boyutlu kanat/dis yiik konfigiirasyonuna uygulanmistir.

Calsmanm ilk asamasinda; 2-serbestlik derecesine sahip olan, sanki-daimi akisa
maruz basit bir kanat profili modeline aeroelastik analiz uygulanarak aeroelastik
kararsizliklarin goriildiigli hizlar elde edilmistir. Yapilan aeroelastik analiz, dinamik
sistemler i¢in uygulanan kararlilik analizi temeline dayanmaktadir. Kararlilig1 ihlal
eden noktalar, aeroelastik kararsizliklarin hizlar1 olarak belirlenmistir. Analizin
kapsamindaki aeroelastik kararsizliklar; flutter, diverjans ve kontrol tersligidir. 2-
boyutlu sistemlerde yapilan aeroelastik analizin ardindan, 3-boyutlu sistemlerde
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flutter hiz1 ¢oziimiinii saglayacak olan bir yontem gelistirilmistir. Bu yontem, enerji
prensibine dayanmakla birlikte lineer flutter i¢in ¢oziim gelistirmistir. Aerodinamik
modellemede ise; daimi olmayan aerodinamik etkiler hesaba katilmis ve Theodorsen
fonksiyonundan yararlanilmistir. Gelistirilen 3-boyutlu lineer flutter ¢oziimii,
literatiirden alinan 6rnek problemlere uygulanmis ve ¢éziimler dogrulanmistir. Ayni
¢oziim yonteminden yararlanilarak Goland ve AGARD 445.6 kanatlarinin flutter
hizlar1 hesaplanmustir. Gerek 2-boyutlu ve gerekse 3-boyutlu sistemlerin aeroelastik
analizlerini igeren MATLAB kodlar1 ile ¢oziimler saglanmustir.

Calismanin bir sonraki bolimiinde ise; 2 ve 3-boyutlu kanat modelleri igin
deterministik tasarim optimizasyonu uygulamalar1 gergeklestirilmistir. 2-boyutlu
kanat profili i¢in gergeklestirilen optimizasyonda tasarim degiskenleri; statik denge
terimi, lineer ve burulma yaylar1 katsayilari, profilin atalet momenti ve kiitlesi olarak
tanimlanirken; kisitlamalar ise; jirasyon yaricap: ve dogal frekans orani i¢in gerekli
olan dogal smirlara ve aeroelastik kararsizlik hizlarmin yiikseltilmek istendigi
minimum mertebelere bagli olarak belirlenmistir. Amag¢ fonksiyonlarinin flutter,
diverjans ve kontrol tersligi hizlarinin maksimize edilmesi olarak tanimlandigi
optimizasyonda, yazilim olarak modeFRONTIER kullanilirken; ilgili kanat yapilar1
icin gelistirilen MATLAB kodlarindan parametrik bir ¢6ziimii ifade edecek sekilde
yararlanilmigtir.  3-boyutlu model olarak AGARD 445.6 kanadinin segildigi
optimizasyonun amacimni flutter hizini maksimize etmek olustururken; tasarim
degiskenleri sivrilik orani, ok acisi, agiklik dogrultusundaki elastisite ve kayma
modiilleri olarak belirlenmistir, herhangi bir kisitlama tanimlanmamistir. AGARD
445.6 kanadi icin uygulanan optimizasyonda da bu kanadin flutter ¢oziimiinii
saglayan hesaplamali koddan ve modeFRONTIER yazilimindan yararlanilmistir.
Gerek 2-boyutlu kanat profili ve gerekse AGARD 445.6 kanadi i¢in yapilan tasarim
optimizasyonu ¢alismalarinda NSGA-II optimizasyon algoritmas:1 olarak tercih
edilmistir. MOGA-II algoritmasi ise; 2-boyutlu calisma i¢in ikinci yontem olarak
kullanilmstir.

Deterministik aeroelastik analizler i¢in olusturulan MATLAB kodlarmim yapisal,
geometrik ve aerodinamik parametrelerdeki belirsizlikleri igerecek sekilde
genigletilmesi ile olasiliksal analizler gerceklestirilmistir. Tiim rastgele degiskenler,
Gauss dagilimma uygun olacak sekilde Monte Carlo simiilasyonu yontemi ile 10°
ornekleme kullanilarak modellenmistir. Belirsizliklerin miktarlari, varyans katsayisi
yaklasimi ile belirlenmis olup varyans katsayisinin 0.01 ve 0.05 degerleri igin
analizler gerceklestirilmistir. 2-boyutlu kanat profili i¢in yapilan belirsizlik tabanli
aeroclastik kararsizlik analizinde; rastgele degiskenler, profilin atalet momenti ve
kiitlesi ile aerodinamik parametreler olarak tamimlanmustir. 3-boyutlu flutter analizi,
bu boliimde de AGARD 445.6 kanadma uygulanirken; belirsizlik iceren parametreler
kanat aciklig1 dogrultusundaki elastisite ve kayma modiilleri olarak belirlenmistir.
Kararli analizin geregi olarak elde edilen minimum hizlar dikkate alinmistur.

Calismanin bir sonraki bdliimiinde, kanat/dis yiik konfigiirasyonlarinda flutter
¢cOziimiinii saglayacak olan bir metodoloji gelistirilmistir. 3-boyutlu kanat yapilari
icin flutter hizinin bulunmasini saglayan hesaplamali kod, dis yiiklerin yapisal ve
ataletsel etkilerini igerecek sekilde genisletilmis ve ardindan olusturulan ¢6ziim
yontemi, literatiirde Goland kanadi i¢in uygulanan bir ¢aligma ile kiyaslanarak
dogrulanmistir. Kiyaslama probleminde agiklik boyunca farkli pozisyonlarda yer
alan tek bir dis ylikiin kiitlesel ve ataletsel etkileri hesaba katilarak ¢6ziim
yaptlmigtir.  Gelistirilen ¢oziim yOntemi, daha gercek¢i kanat/dis yiik
konfigiirasyonlarinin aeroelastik a¢idan analiz edilmesi konusunda bir temel
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olusturmaktadir. Bu konfigiirasyonlarda yer alan dig yiikler; mithimmat, tank,vs.
olabilirler. Askeri ve sivil ihtiyaglar1 géz o6niinde bulundurarak daha karmasik yapili
ve daha gergek¢i konfigilirasyonlarin flutter analizlerinin yapilmasi, bu calismada
ortaya konulan flutter ¢oziim yontemi temeline dayandirabilir. Gelistirilen ¢6ziim
yontemi, deterministik flutter ¢oziimiinii saglayan MATLAB kodunun revize
edilmesi ile AGARD 445.6 kanat/dis yiikk konfiglirasyonuna da uygulanmistir.
AGARD 445.6 kanat/dis yiik konfiglirasyonu i¢in varsayilan dis yiiklerin geometri
ve ataletine dair herhangi bir veri bulunmamasi nedeniyle, bu yiikler birer noktasal
kiitle olarak modellenmislerdir. Bu ¢alisma, 3-boyutlu AGARD 445.6 kanadi ve
kanat/dis yiik konfigiirasyonu i¢in analitik bir flutter ¢6zliimii sunan literatiirdeki ilk
ve tek girisimdir.

AGARD 445.6 kanat/dis yiik konfigiirasyonu i¢in gerceklestirilen aeroelastik
optimizasyon ile dis yiiklerin ayr1 ayr1 3, 4 ve 5 istasyonda konumlandirildig:
modeller i¢in flutter hizin1 maksimize eden tasarimlarmn bulunmasi amaglanmustir.
Boylece dig yiiklerin kanat agikligi boyunca hangi pozisyona yerlestirilmeleri ile
flutter hizinin maksimize edilebilecegi bulunmustur. Dis yiikler noktasal kiitleler
olarak modellenmelerine ragmen; aeroelastik optimizasyon uygulamasinda, gergekgi
bir tasarim varsayilarak bu kiitlelerin pozisyonlar1 arasinda ayni noktada
konumlanmay1 énleyecek kiiciik mesafeler kisitlama olarak tanimlanmistir. Istasyon
sayilar1 birbirinden farkli olmasmna ragmen, dis yiiklerin toplam kiitlesi tiim
durumlarda birbirine esittir. Bdylece segilen istasyon sayilari arasindan en iyi
tasarima ulagmay1 saglayan istasyon sayisi da elde edilmistir. 3, 4 ve 5 istasyon
halleri i¢in ayr1 olarak gerceklestirilen optimizasyonlar sonunda, flutter agisindan en
verimli tasarimin dis kiitlelerin kanat agiklig1 boyunca 3 istasyona konumlandirildigi
durum olduguna ulasilmistir.

Calismanin bir diger asamasinda; AGARD 445.6 kanat/dis ylik konfiglirasyonuna
belirsizlik tabanli flutter analizi uygulanmistir. Bu amagla, ayni konfigiirasyonun
deterministik flutter ¢oziimiinii saglayan MATLAB kodu, yapisal ve geometrik
parametrelerdeki belirsizlikleri kapsayacak sekilde genisletilmistir. Geometrik
rastgele degiskenler, dis yiiklerin pozisyonlar1 olarak belirlenirken; dis yiiklerin
kiitleleri ile kanadin elastisite ve kayma modilleri yapisal belirsizlikleri
olusturmustur. Belirsizlikler, temel olarak varyans katsayisinin 0.01 ve 0.05
degerlerine esit oldugu iki durum ic¢in gergeklestirilirken; dis yiiklerin pozisyonlarina
iligkin belirsizliklerde, yiikler arasi1 mesafelerin getirdigi fiziksel kisitlamalar
nedeniyle varyans katsayisi 0.0025 olarak almmustir. Tim rastgele degiskenler,
Gauss dagilimina uygun olacak sekilde modellenmistir. Her bir degisken i¢in Monte
Carlo yontemine uygun 10° 6rnekleme kullamlarak modelleme yapilmistir. AGARD
445.6 kanat/dis yiik konfigiirasyonu i¢in yapilan flutter analizlerinde giivenilirlik g6z
Oniine alinarak en kiigiik flutter hizlar1 dikkate alinmistir.

Calismanin son asamasini, belirsizlik tabanli flutter analizi ile aeroelastik
optimizasyon uygulamalarinin birlesimi olarak degerlendirilebilecek kararli
aeroelastik optimizasyon olusturmaktadir. Kararli optimizasyon, 2-boyutlu kanat
profili modeline, AGARD 445.6 kanat ve 3 istasyona sahip kanat/dis yiik
modellerine uygulanmistir. Temel olarak, deterministik flutter c¢o6ziimlerinde
kullanilan hesaplamali kodlar modeFRONTIER optimizasyon yazilimi ile
birlestirilmistir. Kararli optimizasyon uygulamalarinda, dnceki bdliimlerde belirsizlik
icerdigi varsayilan parametreler bir kez daha rastgele degisken olarak tanimlanmus,
kalan deterministik optimizasyon degiskenleri de yine deterministik olarak
atanmustir. Belirsizlikler, optimizasyon yazilimi yardimiyla Gauss dagilimma uygun
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olacak sekilde Monte Carlo 6rneklemesi kullanilarak modellenmistir. Hesaplama
zamanini azaltmak amaciyla 2. mertebeden PCE yonteminden yararlanilmistir. 2-
boyutlu kanat profili i¢in yapilan kararli optimizasyon uygulamasinda; profilin atalet
momenti ve kiitlesi olasiliksal optimizasyon degiskeni olarak atanirken; deterministik
degisken olarak statik offset terimi, lineer ve burulma yay katsayilarina yer
verilmigtir. Optimizasyonun amag¢ ve kisitlamalari, aynt model i¢in yapilan
deterministik optimizasyon uygulamasi ile aynidir. AGARD 445.6 kanadmin flutter
hizin1 maksimize etmek igin gergeklestirilen kararli optimizasyonda; elastisite ve
kayma modiilleri olasiliksal degisken olarak alinirken sivrilik oram1 ve ok agisi
deterministik parametreler olmustur. AGARD 445.6 kanat/dis yiik konfiglirasyonuna
uygulanan kararli optimizasyon uygulamasinda; dis yiklerin kiitleleri ve
pozisyonlari, elastisite ve kayma modiillerinin belirsizlik icerdigi varsayilirken;
stvrilik oran1 ve ok acis1 bir kez daha deterministik optimizasyon degiskenleri olarak
atanmistir. Optimizasyonun kisitlamalarini, dis yiikler arasinda olmasi gereken
minimum agiklik boyu uzakliklar olusturmaktadir. S6zii edilen optimizasyon
uygulamalarinda elde edilen kararh tasarimlardan, en yiiksek minimum flutter hizi
degerine sahip olan tasarim goz oniine alinmistir. Minimum flutter hizina baglh bir
se¢imin yapilmasi, ilgili acroelastik sistemde goriilebilecek en kotii senaryonun bile
kabul edilebilir olmasmni garanti ederek kararli bir tasarim elde edilmesini
saglamaktadir. Kararli optimizasyon c¢alismasi ile flutter kriteri g6z Oniinde
bulundurularak; yapisal, geometrik ve aerodinamik belirsizliklerin goriilmesi halinde
dahi en etkin ve giivenilir acroelastik tasarimlarin elde edilmesi saglanmistir.

Bu ¢aligma, basit tasarimlardan 3-boyutlu kanat ve kanat/dis yiik modelleri gibi daha
karmasik kanat yapilarmma kadar giden tasarimlar i¢in deterministik ve olasiliksal
yontemlerle flutter analizi yapilmasmi sagladigi gibi deterministik ve kararl
aeroelastik optimizasyon uygulamalarina da yer vermektedir. 3-boyutlu AGARD
445.6 kanat modeli i¢in ortaya konulan flutter analizi metodolojisi ve flutter tabanli
optimizasyon uygulamalari, daha karmasik yapilara sahip kanat modelleri igin
yapilabilecek calismalara bir temel olusturmaktadir. Gelistirilen 3-boyutlu flutter
¢cOziimii yOntemi, parametrik olarak ifade edildiginden baska modellere de
uygulanmaya aciktir. Ornegin bu ¢alisma igerisinde de hem Goland hem de AGARD
445.6 kanatlarina uygulanmistir. Benzeri sekilde, dis yiiklerin yapisal etkisini goz
oniinde bulundurarak genisletilen flutter ¢6ziim yontemi ile daha karmasik kanat/dis
yiik konfigiirasyonlar1 i¢in de temel olacak bir ¢6ziim ortaya konmustur. Askeri ve
sivil  ihtiyag ve talepler dogrultusunda ortaya c¢ikabilecek karmasik
konfigiirasyonlarin flutter analizi i¢in temel bir yontem ifade edilmekle birlikte, bu
yapilar i¢in aeroelastik anlamda daha kararli ve giivenilir tasarimlarin gelistirilmesi
icin de yol gosterilmistir.

XXIV



1. INTRODUCTION

The scope of the present work involves a parametric solution methodology to reach
the optimum design for a wing/store configuration subjected to flutter phenomenon
with application to robust aeroelastic optimization. Firstly, deterministic flutter
analyses and aeroelastic design optimization are performed. Next, probabilistic
flutter analyses are applied to 2 and 3-dimensional wing structures. Then, 3-
dimensional aeroelastic analysis is extended to flutter determination of wing/store
configurations and flutter based optimization of store locations by changing number
of stations. Uncertainty based flutter analysis is applied to optimum design of
wing/store configuration. Finally, robust optimization studies are carried out for 2
and 3-dimensional clean wing cases and wing/store configuration of the previous

step.

2-dimensional aeroelastic analysis constitutes the basis of realistic flutter
calculations. In this work, a 2-dimensional stability analysis is performed via a
MATLAB code to compute the speeds of aeroelastic instabilities in a quasi-steady,
incompressible flow. The stability analysis determines the critical points where an
aeroelastic instability can occur. By considering the geometrical features of the
airfoil of interest, it is possible to find the speeds at which flutter, control reversal

and divergence can be seen.

The methods in 2-dimensional analysis are not totally compatible with 3-dimensional
flutter analysis since the wing span effects have to be considered in 3-dimensional
modeling. An analytical solution based on assumed mode technique is developed by
using energy principle of Lagrange equations in 3-dimensional linear flutter analysis.
Aerodynamic modeling involves the use of Theodorsen Function. Sweep angle
effects in aerodynamic forces are considered in order to represent an accurate
aerodynamic model. A methodology for determination of bending and torsional
natural frequencies is also presented. Three dimensional flutter analysis is
implemented in a computational code, then validated by benchmark problems from
literature and finally applied to Goland and AGARD 445.6 wings.



The next step of the present work includes design optimization studies based on
aeroelastic instability criteria for 2 and 3-dimensional wing models. Firstly, the 2-
dimensional solution code is implemented into the optimization software,
modeFRONTIER, for the multi-objective aeroelastic optimization in order to provide
an automatic solution in terms of input variables. The objectives of the optimization
problem are maximizing the speeds of aeroelastic instabilities as flutter, divergence
and control reversal while the optimization variables are linear and torsional spring
coefficients, mass of the airfoil, moment of inertia and static offset term. Constraints
are defined for natural boundaries of reduced coefficients and specified minimum
boundaries of aeroelastic instabilities. Optimum solutions are obtained with MOGA-
Il and NSGA-II algorithms. As a second application, the MATLAB code developed
for the flutter solution of AGARD 445.6 is coupled with the optimization software.
The developed code for the calculation of flutter speed is employed as a tool in
deterministic optimization loop while modeFRONTIER is used as optimization
software. The objective in this optimization problem is maximizing flutter speed
while the optimization variables are taper ratio, sweep angle, elasticity and shear

modulus. NSGA-I1 is preferred as the optimization algorithm.

In the next step of the present work, uncertainty based flutter analyses are applied to
2 and 3-dimensional wing structures. 3-dimensional case involves probabilistic
flutter analysis of AGARD 445.6 wing. Random parameters are defined as moment
of inertia and mass of the airfoil and aerodynamic parameters in 2-dimensional case
while elasticity and shear modulus along spanwise direction in 3-dimensional
analysis. The computational codes are extended to contain uncertainty effects in
aeroelastic analyses. The uncertainties are included with MCS method by distributing
the variables randomly with Gaussian distribution. By considering reliability,

minimum available instability speeds are taken into account.

The following steps of the present work concentrate on the flutter analysis and flutter
based design optimization of AGARD 445.6 wing/store configurations. Firstly, a
flutter analysis in the presence of external masses is performed in Goland wing/store
configurations example from literature for validation purpose with a revised
computational code and then applied to AGARD 445.6 wing/store configurations
whose stores are placed in 3, 4 and 5 stations respectively along the wing span. The

total masses of store loads are the same for each case. The code which includes the



structural effects of store loads is then implemented into the optimization software
with the objective as maximization of flutter speed. The optimization variables in this
case are defined as locations of stations for 3, 4 and 5-stations cases respectively
while NSGA-II is again preferred as optimization algorithm. The constraints define
minimum distances between locations of successive stations for enabling a realistic
wing configuration in the presence of store loads. The optimum design with

maximum flutter speed value is found as 3-stations model.

The next section involves flutter analysis of optimum AGARD 445.6 wing/store
configuration of previous section by considering the effects of structural and
geometric uncertainties. The computational code involving deterministic flutter
analysis of a wing/store configuration is extended by the way of including
uncertainty effects while again MCS is used to generate random samples. The
structural uncertainties involve masses of store loads and material properties while
the station locations are defined as geometric uncertainties. Minimum flutter speed is

taken into account as the worst case scenerio.

Finally, flutter based robust optimization is accomplished for 2 and 3-dimensional
clean wing models and optimum wing/store configuration of the previous sections.
Robust optimization involves the use of deterministic and probabilistic variables of
previous sections all together. Constraints remain the same with the previous
deterministic optimization studies. MCS provides random distributions of
probabilistic variables while 2" order PCE is used through MCS to reduce the
computational time. Optimum wing designs are obtained through minimum flutter
speeds based on robustness criterion. Optimum robust flutter speed is the maximum
of minimum flutter speeds in robust designs. Choice of minimum flutter speed
guarantees withstanding of the worst case scenerio by force of robustness. Robust
optimization study under the scope of the present work provides the most efficient
and reliable aeroelastic design based on flutter criteria even in the presence of

structural, geometric and aerodynamic uncertainties.

1.1 Purpose of Thesis

The main purpose of the present work is to represent an efficient parametric solution
metholodogy for uncertainty based flutter analysis and flutter based deterministic and

robust aeroelastic optimization of realistic wing structures. The parametric solution is



expected to provide a guideline for analysis and optimization of various types of
clean wings and wing/store configurations from the simplest models to designs with
high complexity levels. Flutter analysis and design optimization studies under the
scope of the present work are vital in order to attain robust structures. Wing/store
configurations with efficient aeroelastic designs can fulfill the needs of military and
civilian purposes which forms one of the basic expectations from the present work.
The present work provides robust aeroelastic design by considering the placement of
external stores and structural properties of wing/store configurations. A mathematical
model to the solution of both deterministic and probabilistic flutter analysis is
developed and applied successfully. Moreover, the solution methods form a basis for
the optimization applications leading to designs with further aeroelastic capabilities.
Since, to the best of author’s knowledge, this study is the first attempt for analytical
deterministic and probabilistic flutter solutions of AGARD 445.6 clean wing and
wing/store configurations and robust aeroelastic design application, it has a leading
role for the further aeroelastic analyses and optimization studies in various complex
geometries due to its innovational approach. The stated robust optimization study in
the present work provides the most efficient and reliable aeroelastic designs based on

flutter criteria.

1.2 Literature Review

Aeroelasticity, as a multidisciplinary research field, investigates the behavior of an
elastic structure in airstream and interaction of inertial, aerodynamic and structural
forces. Aeroelastic effects must be considered in the design of aircrafts, helicopters,
bridges, etc. Although elastic structures in aviation sector are useful since they
provide comfortable flights for passengers even in the existence of gust loads,

application of these structures is limited due to aeroelastic phenomena.

Aeroelasticity deals with the effects of aerodynamic forces that can cause harmful
oscillations with increasing magnitudes. Aeroelasticity is basically interested in
stability and control, static and dynamic phenomena, structural loadings with respect

to atmospheric turbulence and maneuvers.

The most dramatic physical phenomenon in the field of aeroelasticity is flutter, a
dynamic instability which often leads to catastrophic structural failure [1]. It happens

when the structure extracts energy from the air stream. Flutter can affect an aircraft



in various ways so that it must be taken into account in order to prevent possible
harms. Therefore, determination of flutter speed according to related flight

conditions is an indispensable process for aeroelasticians.

Researches in the topic of flutter are extensive including various mathematical
models and physical knowledge. Calculation of flutter region includes several

methods under the topics of analytical, experimental and numerical approaches.

Analytical solutions are the bases of modern numerical calculations and they help to
understand the physical background of a dynamic aeroelastic system. Shubov [2]
states that the physical meaning of flutter cannot be completely understood unless an
analytical solution procedure is applied. Both experimental and numerical studies do
not provide sufficient knowledge to understand the full physical meaning. An aircraft
wing can be modeled by considering 2 or 3-dimensional cases in order to calculate
the flutter boundaries while different fidelity levels of aerodynamic solutions can be

applied to flow regimes.

Flutter speed can be calculated by considering subsonic, supersonic and transonic
flight regimes. In transonic solution, nonlinear aerodynamic expressions are used and
can be linearized to represent the general characteristics of transonic regime.
Although aerodynamic expressions are different for each of various flight regimes,
transonic regime is considered as the most critical case for flutter due to its nonlinear

features.

Analytical solutions produced for transonic regime should be verified by experiments
in order to prove accuracy and validity of nonlinear models. Matsushita [3] used
nonlinear mathematical model including all features of transonic regime and

presented this type of an experimental work.
Analytical flutter solution is basically based on three approaches.

e Frequency Based Flutter Calculations
e Time Based Flutter Calculations

e Laplace Domain Based Flutter Calculations

These methods employ different solution steps and approaches, however frequency
based calculations are traditionally preferred. Time based approaches are known as
"Time Marching Methods" and based on a coupled analysis including correct

estimations in both aerodynamics and structural displacements [4]. These methods



are based on a coupled approach since they provide the correct estimations for
aerodynamics of rigid wing geometries compatible with computational fluid

dynamics and convenient finite element models with structural deformations [4].

Frequency based approaches contain methods as well-known p-k and V-g solutions.
A flutter problem with the characteristics of decreasing speed is solved in transonic
regime with p-k and V-g methods [5]. A more reliable flutter solution is applied and
Laplace transformation feature is used in the aeroelastic method called as “The New

g-Method” [6].

u-method is a frequently preferred solution method for robust flutter analysis. A
match-point solution based on p-method is constructed with uncertainties and noises

affecting the equations of motion for the worst flight conditions [7].

Another flutter solution method contains low pressure values and determination of

coefficients of equations of motion related to these pressure values [8].

Robust p-k method is generalized based on Laplace domain and the new solution
model is called as robust u-p method (p shows Laplace variable in this work) [9].
The method obtained after generalization provides the distinction of valid
eigenvalues in imaginary plane which is the flutter solution area. The objective is to
find the eigenvalues at tip points since these eigenvalues construct the boundaries of

flutter area and provide initial estimation for flutter speed.

Solution method for a flutter problem contains an iterative process based on an
eigenvalue problem. A method called “Complex Velocity Solution” for the
determination of flutter speed in 2-dimensional and incompressible flow employs the
solution of imaginary component of the speed for the eigenvalue set corresponding to
each reduced flutter frequency values [10]. Since the eigenvalues are imaginary

numbers, the corresponding speeds are imaginary, too.

Laplace domain based studies provide a solution independent from time terms such
that algebraic equations are adequate to find flutter speed [11]. Laplace
transformation method employs an initial value problem starting from present time to
positive infinity compatible with flutter motion in aircraft wings. An aeroelastic
system can be modeled and solved without an iterative process by using the algebraic
methods and control approaches that can be provided by Laplace transformation

[12]. Algebraic approaches based on Laplace domain can produce an eigenvalue



problem similar to frequency based solutions. A nonlinear flutter problem based on
Laplace variable for NACAG64A006 airfoil is solved as an eigenvalue problem and
validated [13]. Eller [14] employs a flutter analysis methodology based on
linearization of nonlinear terms and use of aerodynamic expressions in terms of

Laplace variable.

Use of control approach for the stability of a system in flutter condition is another
research topic as an extension of Laplace domain based calculations [12, 15, 16].
Routh-Hurwitz Control Criterion can be used to determine the stability of an
aeroelastic system composed of coupled form of fluid and structure [15]. Another
method for stability analysis is root locus method which is a graphical technique and
provides correct expressions for system roots in terms of varying parameters in s-

plane and contains an approximate plot for system stability [15].

Root locus method has another application area based on equations of motion in 2-
dimensional flow case and starts from matrix equations in terms of Laplace variable.
Variation of flutter speed values of an aeroelastic system with respect to variation of
system roots can be observed graphically. Thus, root locus method is direct solution

among analytical flutter calculation approaches [12].

Flutter analysis in 3-dimensional cases involves use of energy principle and assumed
mode technique in addition to the explained methods above. Assumed mode
technique, which contains the use of shape functions and time dependent generalized
coordinates, is also compatible with aeroservoelastic analyses. Heeg [17] uses
assumed mode technique for aeroservoelastic modeling in a flutter suppression

problem.

Aerodynamic force and moment terms need to be approximated for 2 and 3-
dimensional wing cases by using several approaches. These approaches should adapt
to the solution method (frequency based, time based, Laplace domain based) and
flight regime (steady flow, unsteady flow). A realistic flutter solution method must
contain unsteady aerodynamics effects. Aerodynamic models used in unsteady flight

regime solutions can be categorized as below.

e Aerodynamic Model with Theodorsen Function
e Aerodynamic Model with Wagner Function

¢ Rational Function Approximation



e Indicial Function Approach

Theodorsen Function, which is derived for thin airfoil in oscillations with small
amplitudes in unsteady and incompressible flight regime, is frequently used in
frequency based flutter calculations [18].

Wagner Function is used to determine magnitude of lift and circulation around a
wing with constant small angle of attack value and a speed value increasing
impulsively from the beginning [19]. Aerodynamic lift and moment expressions in
equations of motion for 2 and 3-dimensional wing cases can be defined in terms of
Wagner Function [20] for both open and close loop aeroelastic systems [21].
Moreover, aerodynamic expressions in terms of Wagner Function can be derived in
supersonic regimes [21]. Wagner Function has two approaches depending on the
principle that instantaneous lift at the beginning is the half of steady lift value.
Although mathematical expressions are different from each other, both of them
accept that instantaneous lift value is theoretically equal to steady lift value at
infinity. These approaches are known as Garrick and Jones Approximations. Jones
Approximation provides more efficient aerodynamic models and more accurate
results for aeroelastic response and flutter problems since the mathematical

formulation is more complex with higher order terms [22].

Rational Function Approximation represents generalized aerodynamic forces by
using undetermined coefficients with mathematical series approach and
mathematical expressions in terms of Laplace variable [23]. Parameter optimization
method which is frequently used in the solution of aeroelastic systems is based on
optimization of undetermined coefficients in order to employ the most efficient

aerodynamic model [16].

Marzocca [24] calculated flutter for incompressible, subsonic and incompressible,
supersonic flight regimes by using Indicial Function Approach with both
computational fluid dynamics analysis and analytical modeling [24]. Indicial
Function Approach can involve both a linear expression in terms of downwash speed
and a mathematical formulation depending on nonlinear characteristics of transonic

regime.

Uncertainties are unpreventable randomness in systems and their models. The

parameters including uncertainties can be distributed by using the information



coming from the manufacturer. Uncertainties in modeling can be divided into two
categories as dynamic and parametric uncertainties. Dynamic uncertainties are arised
from nonlinearities and unmodeled features while the sources of parametric

uncertainties are related to mass, damping and aerodynamics [25].

The sources of uncertainties can be various while the most common ones seen in
aeroelastic systems are in structural and aerodynamic models [25]. Uncertainties
such as in structural damping, mass distribution, flow boundary conditions, geometry
and material properties and flight conditions have been studied in prior works in
literature [26]. The appropriate definitions of aerodynamic uncertainties are stated in
[27] and [28]. As stated by Danowski [26], further investigations of uncertainty
analysis with respect to flutter problems are desired. The uncertainty in flutter speed
is also rather sensitive to structural dynamics [29]. As an example, in the work of

Poirion [30], uncertainties in stiffness matrix elements are included.

Traditional flutter analysis methods are based on deterministic aeroelastic simulation
models but nothing is exactly as designed [26]. Robust flutter analysis is based on
calculation of flutter speed in both cases with uncertainties and large variations [31].
Critical flutter speed is the available lowest flutter speed. Flutter speed also becomes
a random variable when random parameters are defined and have properties such as
mean value and standard deviation [32]. Robust flutter analysis has great importance
in terms of flight safety [29]. Therefore, robustness analyses with respect to
uncertainties form a research topic with growing interest. Flutter speed can be
obtained with a linear stability analysis for an accurate model of vehicle dynamics. It

is also severe to determine the distributions of parameters with uncertainties [29].

A linear flutter analysis by considering the uncertainties in various parameters is
performed by Potter [29] and the worst case flutter speed is taken into account within
the context of robust analysis while parameters including uncertainties are selected as

natural frequencies and modal parameters of damping terms.

Borglund [33] performs a robust flutter analysis by considering the uncertainties in
aerodynamics and mass properties. The analysis makes use of p-k method
eigenvalues sets. u-p analysis is used to directly calculate the boundaries of the same
eigenvalues sets. p-p and p-k methods produce similar results in the presence of

various uncertainties.



The new development in the aeroelastic analysis considering model uncertainty is
stated p-p method. The basic principle of this method is to obtain the uncertainties
with a singular value (p) if flutter determinant for any flutter eigenvalue p can be
zero in the presence of these uncertainties. Therefore, the eigenvalue in complex
plane and the boundaries of damping can be computed to perform a robust flutter
analysis. This method makes use of a standard linear flutter analysis in order to
obtain deterministic values and variations. Perturbations in only complex valued
aerodynamics are included in [27, 34, 35]. Both real and complex uncertainties in
structural and aerodynamic properties are included in the work of Borglund [33].

p-method in the work of Lind [25] provides accurate information about robustness as
long as an appropriate mathematical model can be set up. The difficulty in this
method is to determine the uncertainty operators. An approach to overcome this
difficulty is to validate the model by using transfer function data in frequency
domain. p-method holds importance for both control and aeroelasticity. It is a severe
tool for flutter analysis since it provides the determination of flutter margines similar
with p-k method and definitions of robust flutter margines in the presence of

modeling errors. The margines calculated for flutter are the worst case scenerios.

Prazenica [36] gives information about flutterometer which is a tool used during
flight tests. It is based on linear flutter analysis procedure by using a model with
uncertainty definitions. Uncertainty information is useful since it comes from flight

tests.

Flutterometer contributes to the test by obtaining flutter speed [25]. Methods using

analytical predictions try to form a computational model without flight data.
Analytical prediction methods can be summarized as following.

1) 1% order perturbation analysis

2) Stochastic robustness

Monte Carlo (MC) methods from stochastic robustness class make use of repeated
random sampling for random variables to reach the results. They basically contain

simulation of a physical system while randomly changing the parameters [26].

MCS provides the most inexpensive solution to obtain the probabilistic flutter speed

[30]. MCS is the most reliable method in stochastic analysis. It provides accurate
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solution for a system with a deterministic solution. MCS is rather a lot appropriate
for modeling random uncertain parameters [30]. MCS can include many types of
random variations. The general flowchart for MCS [37] is shown in Figure 1.1.

Generate realizations
for each random
variable according to
its distribution

Compute histograms, CDF
of response function and

Define Random
Variables Using random the failure probability
variable values, — .
avalilite the — # failed samples

performance of the total # of samples
system

Set # samples

Start sampling

Examine system

performance
Fail or not Fail?

/
i

Figure 1.1 : General flowchart of MCS

Results obtained from MC methods can be analyzed statistically. Danowski [26]
states that “The optimal number of runs is that which is a minimum number but
produces relatively identical statistical results if more runs are made”. Statistical

results of MCS are used when deterministic solution is impossible or infeasible [26].

MCS is a frequently used method in uncertainty quantification in a stochastic
framework however it becomes nonconvergent in computationally expensive
problems. Polynomial Chaos Expansion (PCE) is preferred or reduced order models
can be used in more complex systems [30]. PCE defines the uncertainties as
orthogonal polynomials while giving optimal exponential convergence for Gaussian
inputs [38]. The resulting deterministic systems are solved with known methods. [32]
As an example, Poirion [30] states a work based on MCS by making use of chaos

expansion of random matrices.

Marques [39] considers MCS, perturbation and interval analyses in stability
calculation of Goland wing based on eigenvalues containing Euler aerodynamics
effects. Kurdi [40] determines flutter boundaries of heavy version of Goland™ wing
and wing/store configuration with uncertainties in structural dimensions. Random
variables are distributed with MCS while flutter speed is calculated by using the

linear aerodynamic theory of ZONAG code.
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In recent years, extensive reseach has been done in the robust analysis of aeroelastic
systems. Limit Cycle Oscillation (LCO) and flutter characteristics of a wing modeled
as a cantilever beam are investigated in transonic regime with time domain
simulations and bifurcation analysis for various positions and numbers of store loads
[41]. Robust LCO and flutter analyses are also accomplished with computational
codes such as MSC/NASTRAN, ANSYS, ZONA Software, etc. [42, 43, 44, 45,
46,47, 48]. Graham [49] determines flutter boundaries of an aeroservoelastic system
with robust analyses based on p-method.

Robust design optimization in aeroelastic systems is an ongoing research topic in the
field of aeroelasticity and robust optimization. There are several considerable works
in robust aeroelastic design optimization [50, 51, 52, 53, 54], however structural
uncertainties are not considered in many of the works. A robust design optimization
of a backswept wing considering structural uncertainties such as the thicknesses of
upper and lower skins, trailing edge, lugs, stringers and webs so as to minimize the

structural weight is represented by Wan [55].

The main principle of a robust analysis is to determine the worst condition for the
current design. Kim [56] performs a gradient-based robust nonlinear aeroelastic
optimization for NACAO0012 airfoil in order to investigate the system performance in
the worst-case scenario. Witteveen [57] performs a robust design optimization by
using Simplex Elements Stochastic Collocation (SESC) method matching with MC

sampling in order to distribute the uncertainties.

The present work involves robust optimization of 2 and 3-dimensional structures by
employing MCS. Three dimensional clean wing and wing/store configurations
consist of AGARD 445.6 model. This work is the first attempt for robust aeroelastic
design optimization of AGARD 445.6 wing to the best of author’s knowledge.
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2. TWO DIMENSIONAL AEROELASTIC ANALYSIS

This section involves development of an aeroelastic analysis methodology for a 2-
dimensional airfoil to obtain the boundaries of static and dynamic instabilities. The
considered instabilities are flutter, divergence and control reversal. The solution
procedure is based on a primary approach since it makes use of simple aerodynamic
theory in quasi-steady, incompressible and inviscid flow. The main purpose is to
form an aeroelastic solution which can be extended to use in more realistic wing
structures and flow conditions. Proposed solution method is implemented into a
computational code and validated with benchmark problems from literature.

2.1 Development of Aeroelastic Solution Methodology

Formulation of an aeroelastic problem in 2-dimensional case requires convenient use
of Lagrange and energy equations in order to obtain equations of motion. The basic
approach involves the use of open loop dynamics and stability analysis procedure.
The derived formulation can be used for divergence, control reversal and flutter
instabilities since it is based on control theory. A suppressing control approach for
aeroelastic effects contains two main phases as determination of open loop dynamic
characteristics and design of compensator. Determination of open loop dynamic
characteristics step is based on obtaining the region or speed in which an instability
happens and it is compatible with the content of the present work since it can provide

a solution for divergence, control reversal and flutter as aeroelastic instabilities.

The airfoil is modeled by using linear and torsional springs as shown in Figure 2.1.
Equations of motion which describe both plunging and pitching motions are derived
from Lagrange equations. Lagrange equations can be written in a form as shown in
(2.1) where t is time variable, T and V are kinetic and potential energies respectively.

Q and g show generalized forces and coordinates.
dfar) (e (av)_q
at{ag ) (og ) \ag) 21)
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Generalized forces in Lagrange equations include aerodynamic terms that can vary
according to the flight regime at interest. In this work, to simplify the assuming
control approach, aerodynamic forces for lift and pitching moment are computed for
inviscid, incompressible and quasi-steady case.

e
\

LI

Figure 2.1 : Typical section geometry.
Kinetic and potential energy equations can be written for the reference geometry.

_ 1 2

1 1
\Y :Ekhh2+5kaa2 (2.3)

where U represents free-stream velocity while m is total mass, k, and k. are linear
and torsional spring coefficients for plunging and pitching motions respectively.
Plunging and pitchnig deflections are defined by h and « while ¢, shows the initial
pitching deflection.

Convenient energy terms for Lagrange equations can be extended by using
geometrical relations and a matrix system that describes the reference model. The
equations of motion for a reference aeroelastic system are defined as in (2.4) and
(2.5). In (2.4) and (2.5), h and « define plunging and pitching motions respectively
while b is half chord distance, x, =(S,/mb) is static offset term, S_is static
moment and I, is moment of inertia. L and My show aerodynamic lift force and

pitching moment.

mh +mbx_d +k,h = L(t) 2.4)
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mbx,h+1,é+k,a =M, (t) (2.5)

This section is based on open loop characteristics of 2-dimensional dynamic systems.
Therefore, it will be more practical to define the system of equations with Laplace
variable, s. Time related terms can be transformed into Laplace domain to obtain

algebraic equations. Equations of motion in time domain can be constituted in matrix

form.
1% _
A AR LIGN rﬁz qc., {h(t)}_ L(t)
% g [le®) |, 1 qc a(t)) M, (2.6)

where is radius of gyration and @ is the ratio of natural frequencies. C. . and Cu.are
aerodynamic lift and moment coefficients for pitching deflection while @ is
normalized dynamic pressure. Definitions of reduced coefficients are given in (2.7),
(2.8), (2.9) and (2.10).

ra = ng (27)
o=t (2.8)
, )
k
@, =, (2.9)
m
ka
P N7 (2.10)

Time dependent matrix equations are transformed into Laplace domain so that
necessary algebraic equations can be constructed for an aeroelastic system.
Application of Laplace transformation includes the use of displacement terms h and
a in Laplace domain. By using Laplace transformation procedure, related equations

for time dependent terms can be obtained.
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a(t) > a(s) (2.12)
h(t) — sh(s) —sh(0) —h(0) (2.13)

&(t) — s’a(s) - sa(0) ~&(0) (2.14)

By assuming that all displacements and their derivatives in initial case are zero, the

following definitions must be used.

h(t) — s°h(s) (2.15)

a(t) = s’a(s) (2.16)

Then, the equations of motion in Laplace domain can be defined.

1 X _
oo |[shes)] r—“j ac,. {h(s)}_ { L(S)}
% |lsa®] | g 1_qc, )@ ~ M, (s) (2.17)

where reduced dynamic pressure, reduced speed and airfoil mass ratio can be defined

as follows. In (2.20), p is density of airfoil.

UZ
= (2.18)
U
U,=—o
“~ b (2.19)
. m
— (2.20)

In the presence of control surfaces in both trailing and leading edge of the airfoil, the
aerodynamic terms must be obtained by considering their effects. In (2.21) and

(222), C, and C . are aerodynamic lift coefficients and, C,, and C,, are

aerodynamic moment coefficients for the control surfaces in trailing and leading

edges respectively. £ and & define the deflections of control surfaces in trailing and

leading edges while ¢, shows the initial pitch deflection.
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L=-pUC, f~pJ*DC &~ pUC, (o +at) (2.21)

M, = pUh’C,, S+ pU%’C, &+ pUb’C,, (a+ap) (2.22)

Obtaining control reversal speed value requires the use of control surfaces actively.
Thus, the effects of control surfaces in both trailing and leading edges must be
considered. General definition for the aeroelastic system is given in (2.23).

1 _

- 5 — [0 _ — _ _

rj rj s?h + ? qCLa h _ 10 _qCL/J _qCL§
Xy 1 s*a 8 1-qc a 01 qCMﬂ qCsz
ra2 Ma

Such control approach requires a state-space representation of the system of

_qCLa
* ac,., % (223)

™ R T

equations. General form of a state-space representation is given in (2.24).
y=ay-+bx (2.24)
If the following equality is assumed:
=Y (2.25)
Then:
=% =Y (2.26)
Another type of state-space form is:
Y, =8,y +b,X (2.27)

General system can be derived by using the following equation.

Y, =ay+bx (2.28)

System of equations for the airfoil model can be re-written in terms of second
derivatives after obtaining the equations in a simplified form in time domain by

making use of some matrix operations and mathematical calculations.

h

RO W 22
4
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2-degrees of freedom are used in flutter and divergence calculations for simplicity,
however control reversal analysis has to include 4-degrees of freedom.
Displacements of control surfaces do not have a considerable effect on both flutter
and divergence speed although control reversal is directly related to control surfaces
of an airfoil.

System of equations in Laplace domain can be determined for flutter and divergence
as follows:

i(s2 +@°) X—‘;sz +qC,

r I “ {h(s)}_{o}
Za g2 s +(1-qC,, ) a(s) o (2.30)

r2

a

The stability analysis can be applied for flutter and divergence cases by obtaining the
characteristic equation of the system. Characteristic equation of the system is
determined in (2.31).

2

C(s) = {1—’:—;}4 +[(@ +1)-a(CLx, +Cy,) |5 + @ A-TC,,) =0 (2.31)
Roots of a characteristic equation are known as system poles in stability analysis.
The case which roots place in imaginary axis is the critical transition between stable
and unstable states. In aeroelastic stability analysis, the point that indicates this
transition is known as critical speed value. Critical flutter and divergence speeds can
be obtained via the roots of related characteristic equation. The imaginary
components of the roots give the critical speeds. Flutter and divergence speed values
differ from each other due to the geometrical features of the airfoil. Flutter is seen

before divergence in most cases but this is not necessary.

In order to find the value of control reversal speed, the system can be written in state-

space form by using the characteristic equation with the effects of control surfaces.

s*h _ raz (Tll T, T T14j
sa) CONTn T, Ty Ty (2.32)

v R T
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where T; (i=1to2and j=1to4) shows the transfer functions related to

aeroelastic phenomena. T;is a transfer function including effects of ith terms as

output and jth terms as input.

By considering the stability of each transfer function, both divergence and control
reversal speeds can be obtained via root locus plots. The root locus plots are
compatible with stability analysis of the dynamic systems since a pole in the

imaginary axis shows the critical point between stable and unstable plants.

Transfer functions which can be obtained from the system of equations for
aeroelastic instabilities are known as transfer functions of SISO (Single-Input Single-
Output) systems and can be used for further applications of control analysis in the

field of aeroelastic control. The transfer functions are listed as below [58].

1 T,=T,=s"+1-0C,_

X S
5. Tyu=T,=- az
ra
2 2
S ),
6. T22:Taa —2+—2
ra rO!

The reduced speed value can be obtained by using T,, for control reversal since T, ,

indicates the stability of h displacement that is related to lift force effected by control
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surface displacement in trailing edge, . Control reversal speed can be determined

by solving for the roots of this transfer function.

2.2 Validation of 2D Aeroelastic Analysis

The presented 2D aeroelastic solution technique is implemented in a in-house
MATLAB code and applied to benchmark problems chosen from literature as

follows.

Parameters of the 1% benchmark problem are given by Dowell et al. [58] in Table
2.1. Here, a shows the distance between center of gravity and elastic axis of the

airfoil.

Table 2.1 : Design parameters of 2D benchmark problem-1.

Parameter Value
a -0.2
X, 0.2
r? 0.25
Yz 20
@ 0.2

t/2b 0.51%
/b 3.92
CLa 27
CMH 1.885
CL[, 2.487
CM/} -0.334
o -0.087
Cu -0.146

The wing mass is assumed to be evenly distributed so that the center of mass lies at
the midchord. In order to assure that flutter occurs before divergence, the elastic axis
location is shifted ten percent forward of the midchord, which is representative of a
4.5 degree forward fiber sweep if constructed of common graphite epoxy materials in

a unidirectional laminate. The flaps are both 10% of the chord [58].

The reduced speeds of flutter, divergence and control reversal are calculated by using

the developed in-house code and are presented in Table 2.2.
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Table 2.2 : Validation of 2D aeroelastic solution-I.

Flutter Divergence Control Reversal
Reference Speed™ 1.90 2.47 2.40
Calculated Speed 1.9638 2.4779 2.3992
Relative Error 3.36% 0.32% 0.03%

The problem in the work of Munteanu [59] is used as the 2™ benchmark problem for

2-dimensional aeroelastic analyses. The design parameters are defined in Table 2.3:

Table 2.3 : Design parameters of 2D benchmark problem-II.

Parameter Value
a -0.6
X, 0.2466
K, 2844.4 N/m
K, 3.525 Nm/rad
m 12.3870
[, 0.065
b 0.135m
CLa 6.28
CMa -0.635
CLﬁ 3.358
Cu, 12.39

By using the same Matlab code, the speed values of aeroelastic instabilities can be
calculated as shown in Table 2.4. Calculations for 2 benchmark problems give
satisfactory results with small relative errors for static and dynamic aeroelastic

instabilities, then the presented methodology for a 2-dimensional model is validated.

Table 2.4 : Validation of 2D aeroelastic solution-I1.

Flutter Divergence Control Reversal
Reference Speed™ 11.243 m/s - -
Calculated Speed 11.3612 m/s 57.6617 m/s -
Relative Error 1.0513% - -
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3. THREE DIMENSIONAL FLUTTER ANALYSIS

This section presents development and validation of a methodology for flutter
solution of 3-dimensional wing structures. The methodology basically incorporates
effects of wing span and variations in design parameters such as taper ratio and
sweep angle of the wing. The solution methodology also includes determination of
bending and torsional natural frequencies since they are dependent on the variations
of wing parameters. Finally, a solution procedure to obtain natural frequencies and
flutter speeds of 3-dimensional wings is developed, then validated by using two
examples from literature and finally applied to well-known aeroelastic benchmark
configurations, Goland and AGARD 445.6 wings so as to further carry out a realistic

flutter analysis.

3.1 Flutter Solution Methodology

An analytical solution based on assumed mode technique for determination of flutter
speed of a 3-dimensional wing is presented in the current work. Assumed mode
technique basically involves the correct representation for replacing displacements
with mode shapes and generalized coordinates. Equations of motion can be derived
with Lagrange equations including energy equalities and convenient aerodynamic
expressions for the flight regime. Flutter boundary is calculated by introducing V-g
solution based on artificial damping term. Displacement of a wing is expressed by
product of assumed modes and generalized coordinates. Convenient equations for
bending and torsional displacements can be obtained in series forms. General

representation of a 3-dimensional aeroelastic model is shown in Figure 3.1 [60].

Several assumptions are made to construct a 3-dimensional linear flutter analysis by

considering sweep angle effects and their details are given as follows.

1) The first bending and the first torsional modes are assumed for flutter calculations

since they have the major effects on flutter boundary. Their effects will also be
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examined in Goland and AGARD 445.6 wing applications. Existence of flutter

motion due to the first modes will be justified.

2) The design parameters which depend on cross-sectional geometry are assumed to
be constant in order to prevent to solve nonlinear differential equations. Average

values are used for all of them in calculations.

3) Euler-Bernoulli beam equations are used to calculate natural frequencies. Their
feasibility in AGARD 445.6 will be justified by the example studies from literature
and calculated results of the present work.

4) Theodorsen aerodynamics is considered for aerodynamic load calculation since
both Goland and AGARD 445.6 wings are sufficiently thin.

5) One pole approach is used for Theodorsen function since it gives accurate results
between a specific reduced frequency range where flutter typically occurs.

/x

1\ A
| - Approximate

location of
x fuselage

Figure 3.1 : General representation of 3D aeroelastic model.

Equations of motion in assumed mode flutter analysis are given in (3.1) and (3.2).

mW(y,t)—Syé(y,t)+ El % =L(y,t) (3.1)
,0r-8,(y,9-63 20D =M, (.1 2)

where S, is static moment and I, is moment of inertia of the wing structure while El

and GJ define bending and torsional rigidities.

24



The displacement terms can be treated as separable variables where
F(x,y)=f(x)-g(y) is general definition for a separable variable which is only
function of x and y. Similarly, the displacements of a cantilever beam can be defined

as follows.

WX, Y.1) = W, (1) - 4%, ) (3.5)

O(x,y,t) = 6:(t)- (. y) (3.6)
where ¢(x,y)and ¢(x,y)are mode shapes for bending and torsional motions

respectively while W and @ show bending and torsional deflections depending on x
and y-coordinates and time. These displacement terms can be obtained by using
series approach. The design parameters which are depending on cross-sectional
geometry are assumed to have constant values. Average values are calculated and
used in flutter equations. Thus, variations of bending and torsional deflections with

respect to time and distance along spanwise direction are only investigated.

.0 = 4 () w0 (37)
(y.9=3 0000 (39
w=W-—x0 (3.9)

w(y,t) =§¢.(y)-wi(t) —gwi(y)-é’i(t) (3.10)

where w and & indicate bending and torsional displacements respectively while m
and n-m total number of assumed modes for bending and torsional modes. The first
bending and the first torsional modes are assumed in the present work since the
major effects on flutter boundary come from the first modes. This case will be
justified by Goland and AGARD 445.6 wings flutter problems.

Three dimensional aeroelastic modeling requires the use of Lagrange equations.
Kinetic and potential energy equations must be defined by considering 3-dimensional

effects. Kinetic energy can be written as in (3.11).
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T =1mV2 =1mv'v2
2 2

For a 3-dimensional structure, kinetic energy equation becomes:

=% [ e, y,ty)*dm

Differential mass elements can be defined as follows:

dm = pdA
dA = dxdy

dm = pdxdy

Kinetic energy equation can now be defined with a more simplified form.

:% jj W(x,y, )] p(x, y)dxdy

Same assumption involving the use of average values is considered.

1e(1 = 1 5
T ==|] = pdxi® — pxdxwé + = x*pdx6? |d
2“2’0 P 277 )y

0

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

By using the definitions along the span of the wing and about the elastic axis of the

profile, the energy equation can be simplified by using below definitions:

» Mass: m= pdx

> Static unbalance: S, = pxdXx

> Moment of inertia: I, = px*dx

Now, the obtained 3 equations become:

Wy.) =2 A) WD)

0(y.9 =2 A()-00)
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1 l =2 ;; l ;2
T=Ej(§mw =S, W0 +1,0 jdy (3.20)
Related terms placed in kinetic energy equation can be shown as follows:

L0 = AW
i G(yD=2ema0

i W= A () (W O, ()

i=1 j=1

n—mn—m

iv. 2y, => a (e, (616,t)

i=1 j=1

If these terms are used in Kinetic energy equation, then (3.21) can be obtained.

T=23 S W Ow O] [ (60— 3 3 06, 0] [543,y
n-mn-m . lc (321)
2 2400,0][La ey

This energy equation can now be used for a reference station of the wing. Reference
station involves the cross-section whose properties are considered to determine
flutter speed. Reference station provides minimum flutter speed among all stations
along wing span and it is 75% of span distance away from the wing root [58, 60].
The computational code of the present work involves a station-based flutter analysis.
The analysis contains flutter calculations in 10° stations along wing span while the
station with minimum flutter speed is selected as reference station. The addressed
reference station is the same place stated by Dowell et. al [58] and Bisplinghoff et. al
[60]. Thus, the reference station will be considered to be 75% span distance away
from wing span for flutter calculations of wing/store configurations to reduce the
computational time instead of using a station-based analysis. The definitions below
show the transformations of general displacement expressions to displacements in
reference station.

» W— W, : Bending displacement with respect to reference station

» 0 — 0, Torsion displacement with respect to reference station
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In terms of the displacements of reference station and by using orthogonality, Kinetic

energy equation can be finally written as in (3.22).
1o o vy I
T =5 Wa ] o (1)ay —we6: 5,610y +2 63 [ 10" () (3.22)

General formulation of strain (potential) energy along wing span is defined in (3.23).

1 34y, 1) 09 (y,t) Y
U= 2![5( ¥ j GJ(TJ de (3.23)

In (3.23), the related derivations can be written as:

o*W(y,t)  0° ¢(y)

P(y)W(t) | = W(t) ——=—=
PY Y all ]= (3.24)
00(y,t) d
oy
For the reference station of the wing:
> W W,
> 00,
The new form of the strain energy becomes:
Loobe (9200 4o L e[ o))
—_ w2 i AP Vs - pn? YN
U—2WR.!.E|£ dy’? de+26R£GJ£ dy jdy (3.26)

By using the definitions of free vibration frequencies for bending and torsional
modes, final form of the strain energy equation can be obtained by using below
definitions [60]:

] IEI(d ﬂy)j dy—> o jm¢ dy
i %E[GJ [mj dy—>%w§1£IY¢2dy

dy

1, 5 1 50
U =S v [mg*(y)ay +3 4 [ 1,07 (1) (3.27)
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where o, and o, are the first bending and torsional natural frequencies.
General form of Lagrange equation is summarized again in (3.28).

dfaor) ot ar v ou 0
dtlog ) éq oq (3.28)

The generalized coordinates and forces can be classified as follows:

1)  Bending Motion: g, =wzand Q, =Q,

2)  Torsion Motion: g, =6;and Q, =Q,

Final form of kinetic energy equation is again given in (3.29).
1 | | 1 |
_ T2 2 Y Y 2
=] e 1)y —we0n S, 6oy +2 63 [ 10" () (3.29)

Then, the necessary derivative terms for Lagrange equation are determined by using

the final kinetic energy definition:

.or_ T _
oq, 8WR

i or_ar
- oq, o6,

aq aw =i, [ s (y)dy — i [ S, #(y)(y)dly

0

or or

| |
v. —=——=2W.lS dv+4. |1 o*(y)d
Ty J H)p(y)dy j L0 (y)dy

Final form of strain energy equation is again given in (3.30).

1, L o]
U =2 e g [mg? (y)dy + 2 06 [ 1,0° (y)dly
0 0

(3.30)
where:

] Z—izngzwjﬁwRimqﬁz(y)dy

i 2; aag Zejlyqo (y)dy

Now, Lagrange equations can be applied for bending and torsional motions.
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1) (WRJ mg* (y)dy -6 j S ¢(y>¢(y)dyj+w W, j mg” (y)dy =Q,
W, [ Mg (y)dy =6 [ S, 8(y)e(y)dy + @, [ Mg (y)dy = Q,

2) EK_WRI S, 6(y)p(y)dy + 6 [ 'ywz(y)dy]“’éﬁaf Lo (Ndy=Q,

dt

| | |
i [S,8(y)p(y)dy + 065 [ 1,0 (Y)dy + @} 6, [ 1,07 (y)dy =Q,
0 0 0
The equations of motion for the wing model are described in (3.31) and (3.32).

i, [ mg? (y)dy — G [ S, (Y )p(y)dy + @l w, [ g (y)dy =Q, (3.31)

| | |
Vi, [ S,8(y)p(y)dy + 6 [ 1,0 (Y)dy + @} 6, [ 1,07 (y)dy =Q, (3.32)
0 0 0
Generalized aerodynamic forces are defined in (3.33) and (3.34).

Q. = [L(y,(y)dy (3.33)

= [M(y.)g(y)dy (3.34)

Generalized aerodynamic forces are related to aerodynamic lift and pitching moment.
Theodorsen aerodynamics is considered in the present work for unsteady flow
regime. Definitions presented by Theodorsen for lift and pitching moment terms are
given in (3.35) and (3.36) [60] while final lift and moment equations are obtained as

in (3.37) and (3.38). L,, L,, M,and M, are aerodynamic functions and can be

defined in terms of reduced frequency, k, and Theodorsen function, C(k) where i

indicates the complex variable.

. - . = (1 =
L(y,t) = b’ | -0*W, +Viwé, - w™bad, |+ 2 bC(k)[la)V_v +U6 +|a)b(——aj€]
P [ R R R] pJ R R > R (3.35)
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M (y,t) = mpb? {—wzbav‘vR - icoUb(%— a)éR +o’d’ [%-}' az)e_R } + 27Z'IOUbC(k)(%+ aj

{ia)\TvR UG, +ia)b[%—aj§R} (3.36)
s | We(t) 1

M (y,t) = zpb’w? {—WRT(t)ﬂy)(Mh -L, G+ am

) (3.38)
+mpb* {HR (t)go(y)[Mg —(M, + Lh)(%+aj+ L, (%+aj H
=1 2iC ¢
Ly=1-1- (k) (3.39)
1 i 2i 2
Ly =5 G- 5CK) (3.40)
1 .
M, = > (for subsonic cases) (3.41)
3 i
Ma=§—g (3.42)

C(k) can approximately be taken as in (3.43) with one pole approach [58]. This
approach gives accurate results between k=0 and k=0.5 which defines the range
flutter typically occurs [61].

—0,4544ik

Ck) =1+ "8
ik +0.1902

(3.43)

3.1.1 Determination of bending and torsional natural frequencies

System of flutter equations requires use of the first bending and torsional natural
frequencies since the first bending and the first torsional modes are assumed for
flutter calculation. Natural frequencies in bending and torsional motions have to be

solved distinctly since the related equations have different physical meanings and
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mathematical expressions. In the present work, a metholodogy based on Euler-
Bernoulli beam equations are presented and considered for AGARD 445.6 wing
since next sections involve deterministic and robust aeroelastic design optimization
applications. Any variation in design parameters can severely affect natural
frequencies as well as flutter boundary. The natural frequency calculations involve

the effects of design variables.

Bending and torsional natural frequencies can be obtained by using bending and
torsional motion equations for a cantilever beam. The considered equations are

Euler-Bernoulli beam formulas.

Use of Euler-Bernoulli beam equations define a general case for the present work,
however feasibility of beam formulas is examined for Goland and AGARD 445.6
wing applications since they involve calculation of natural frequencies as well as

flutter boundaries.

Equation of motion for bending is defined in (3.44).

o*w

where A is cross-sectional area of the beam while g shows the external force.

In free vibration case, external forces must be equal to zero, then: q(y,t) =0
o'w o o°w

By using separation of variables approach in partial differential equations, the

bending displacement term can be divided into two discrete functions.
w(y,t) =Y (y)-Z(t) (3.46)

These function can be used in equation of bending motion.

PAY (Y)Z(t)+EIY"Z(t)=0 (3.47)

. : : L El
If avariable is defined for simplicity as: o* =
Yo,

Then, the equation becomes:
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" (YZR)+Y (Y)Z (1) =0 (3.48)

YY) IO
“Yw z0” " (3.49)

where A is an arbitrary constant, the use of —£is because of satisfying the related
boundary conditions.

Y VW g

Y(y)
Y (y) = Asin(1y) + A, cos(1y) + A;sinh(2y) + A, cosh(1y) (3.50)
where:
At = g—i (3.51)
T (t) =B, sin(ft) + B, cos(t) (3.52)

Boundary conditions in bending motion for a cantilever beam which has its clamped
endat y=0:
i.  w(0,t)=0 = (Deflection)
ii.  w,/(0,t)=0 = (Slope)
. w,(L,t)=0 = (Bending moment)

iv. w,(Lt)=0 = (Shear)

where L indicates total span distance of the wing.

After applying the boundary conditions and solving the characteristic equation for A
constant, the definition of the first bending natural frequency can be shown as in
(3.53).

~ , [ El
C()W1 =1.875 pAL4 (353)
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Equation of motion for torsion is defined in (3.54).

a &

ay p p 2

In (3.54), T indicates torsion while I, is polar moment of inertia.
Equation of torsion is given in (3.55).

roer
oy

If we combine above equations:

o°6(y,t) _ Pl, °0(y,1)
2 Gl ot

Under these definitions, the new equation of torsional motion becomes:

P NTE) =Y T )

Yy _To_
YO T®)

where 7 is an arbitrary constant similar with bending solution.

Y'(Y)
1) V4 W— T
Y(y):Clsin(zy]+C2cos(zyj
Y v
2) mz—fz
T(1)

T(t) = D;sin(zt)+ D, cos(zt)

(3.54)

(3.55)

(3.56)

(3.57)

(3.58)

(3.59)

(3.60)

(3.61)

Boundary conditions in torsion for a cantilever beam which has its clamped end at

y=0:
1) 6(0,t)=0 = (Twist Angle)
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2) T(L,t)=0 =(Torsion)

After applying the boundary conditions and solving the characteristic equation, the

definition of the first torsional natural frequency is determined in (3.62).

o == |G
6 L P|p (362)

3.1.2 Determination of final form of flutter solution

After obtaining aerodynamic and structural terms, they can be combined in order to
construct a set of equations to calculate flutter speed.

The solution procedure is based on damping term effect for various reduced
frequencies. In flutter analysis, an artificial damping term can be added to the natural
frequencies so that the flutter speed in related reduced frequency value can be
determined. While iterating the solution for various reduced frequency values, there
is a region that we have zero damping which indicates the flutter motion. The region
where we obtain no damping determines flutter velocity. Bending and torsional

natural frequencies have to be re-written with respect to artificial damping terms.

o, — o, (1+ig,,) (3.63)
v, > o, (1+9,) (3.64)

where g, and g, indicate artificial damping terms for bending and torsional motions

respectively.

For simplicity, the following assumption for artificial damping term, g, can be used.

09vw=9,=9 (3.65)

Now, a variable, Z, whose complex component is composed of damping term can be

defined for the solution of the system.

Z= [&] (1+ig) (3.66)

(0]
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_imz)
- Re(Z) (3.67)

In flutter condition, the system frequency is equal to flutter frequency:

W= O (3.68)

9=0 (3.69)

In order to obtain the final flutter equations, the displacement terms have to be
defined by using harmonic motion assumption which is the boundary of flutter

region:

ot

We () = Wee (3.70)

éR (t)= éReiwt (3.71)

Then, the new form of the flutter equations is given in (3.73) and (3.74) by defining a
reduced parameter for the distance along wing span. In (3.74) and (3.75), br defines

semi chord distance of reference station.

g
y=1 (3.72)

1 o (373
—0, [ OlobS £5y¢(pd)7 1(@} (Lg -L, (% + aD ¢(od)~/} =0
w,| 1 % Lip Y 1
_b_{ b !Sy¢¢dy+£(aj (Mh - L, [E"‘ a]j ¢§0dY}
+9~R L 4 {1— 1+ |g)[a)01 ) jj |y¢2dy]
7P, Or @ 0
- (3.74)

b 1 1Y
(Ej (MB —(M, + Le)(§+aj+ L. (§+aj Jqfdy} =0
There can be some simplifications in natural frequency terms.
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<1+ig)[%“’lj =(1+ig)[Z—MJ (“’—j} = 0’2 (3.75)

. a)g ?
(1+Ig)( J =Z (3.76)

(0]

New system of equations becomes:

Ny | 1 b (DY o
‘é"—i (1-’Z) [mgid +£[b—] W dy]

y
ﬂ-poob; 0 R

T RY ) (3.77)
0. —[sody+ | 2| L-L[Z+a]|dody|=0

- ”pwbgg b0 y+£(bR] ( , h(2+ DWV

w.| 1 Lp Y 1
el 2 (s godi+ (|| M, —L|=+a]|dody

s ][ (- 5 oo

L 1

i -
+0, b (1-2) ! Lo dy} (378)

+0, _i(éI[MH -(M, + LB)(%+aJ+ L, (%+aj2Jgozd}7]—O

Sweep angle, A, basically affects the aerodynamic loads. Aerodynamic terms under

sweep angle effect can be defined as in (3.79) and (3.80).

L(y,t) = zpb’w? cosA[WRT(t) d(Y)L, — by (t)co(y)[Lg -L (%Hﬂm (3.79)

M (y,t) = zob*@® cosA{—WRT(t)gé(y)(M =L (%+ a)ﬂ
(3.80)

+pb* 0? CosA{HR (t)go(y){Mg —(M, + Lh)(%+aj+ L, (%JraJ }}

Then, by using the definitions above, a final system of equations for flutter motion

can be determined.
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ol el

Flutter determinant is given in (3.82).

A B
=0
C D
where:
1 2 i 2 ; b ’ 2
A= 1-w°Z )| mg°dy +cos A E—] L ¢°dy
ﬁpwbé( )l ! b )

1 1 ~ 1 b 8 1 -
B= _W‘!SdeWCOSA![El [Lg - L (§+3D¢§0dy

j EMh -L, (%+aD¢(pd§/

|o

1 1 1
C=——"—|S ¢pdy+cosA
. bg! A ![

™R

o

1 1
D= 1-7)[1 02y
ﬂpwbé( )! A

1 b 4 1 1 2
+cosAJ[b—] [Mg—(Mh+Lg)(§+a]+ Lh(§+aj J(pzdy
0 R

3.2 Validation of Flutter Analysis

(3.81)

(3.82)

(3.83)

(3.84)

(3.85)

(3.86)

The derived flutter solution methodology is validated by using two benchmark

problems from literature [60].

The design parameters of two wings are given as in Table 3.1 [60].

The given properties are used in flutter equations in order to calculate the flutter

boundary. By using the computational code prepared for 3-dimensional flutter

analysis, the flutter speed is calculated as compatible with the given procedure.

Flutter speeds and relative errors of each of two models are shown and compared to

Bishiplinghoff et. al [60] in Table 3.2.
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Table 3.1 : Design parameters of benchmark wings.

Parameter Wing-1 Wing-2
A 30° 45°
m 0.0161 slugs/ft  0.0138 slugs/ft
m/ zp,b? 6.19 5.50
|, /mbj 0.23 0.23
S, / mb, -0.004 -0.224
b =Dy, 0.333 0.333
a -0.02 0.20
@,, 66T 447
@y 1867 184~

Table 3.2 : Flutter speeds and relative errors of benchmark wings.

Wing Reference [60] Calculated Error
Wing-1 277 ftls 279 ft/s 0.8%
Wing-2 270 ft/s 268 ft/s 0.7%

3.3 Flutter Analysis of Goland Wing

The developed methodology is applied to calculate flutter boundaries of a well-
known aeroelastic benchmark problem using Goland wing. The wing, which is
treated as a cantilever beam, is first introduced in the work of Goland and Buffalo
[62]. Solid model of Goland wing, whose aspect ratio is 3.3, is considered in the
present work. Extensive research has been carried out to solve the flutter problem of
Goland wing with various methods such as Rayleigh-Ritz analysis, Galerkin solution

as analytical techniques beside computational approaches [40, 64].

In the present work, natural frequencies and the flutter speed of Goland wing are
calculated by using the reference values of design parameters in Table 3.3 [61]. In
Table 3.3, mass and moment of inertia of store loads are given in terms of their unit
span distance. Computed results for flutter speed, flutter frequency and relative error

with respect to the reference work [62] are given in Table 3.4.

The geometry of Goland wing is shown in Figure 3.2 [63] while the variation of

flutter frequency with respect to damping term is shown in Figure 3.2.
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Root: 4% Thick Circular Arc

Chord: &6ft

Span: 20f

Tip: 4% Thick Circular Arc

Figure 3.2 : Geometry of Goland wing.

Table 3.3 : Design parameters of Goland wing.

Parameter Value

L 20 ft
b 31t

El /m 31.7x10° Ibft’slug

GJ/I, 1.23x10° Ibft®
m 0.746 slug / ft
I, 1.943 slugft? / ft
S, 0.447 slugft/ft
p 0.0001 slugs / ft®

Table 3.4 : Flutter solution results for Goland wing.

Parameter Present Work Goland [62] Relative Error
U, 374.7543 mph 385 mph 2.6612 %
Wy 65.5484 rad/s 67.4 rad/s 2.7471 %

The current result is satisfactory with respect to the work of Goland [62]. Both flutter
speed and flutter frequency calculations agree well with the reference values. Thus,
the solution methodology is again validated by a well-known aeroelastic benchmark
problem and can be applied to a more realistic wing configuration as in the next part.
The next section is flutter analysis of AGARD 445.6 wing. Flutter analysis of
wing/store configurations in Section 6 will be also based on the presented flutter

solution technique.
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Flutter Frequency-Damping Term Relation for Goland Wing

0.15 ! | ‘ ,
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:
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Flutter Frequency (rad/s)

Figure 3.3 : Flutter frequency-damping term relation for Goland wing.
3.4 Flutter Analysis of AGARD 445.6 Wing

The wing structure in the next analysis is AGARD 445.6 which is the first aeroelastic
configuration tested by Yates in the Transonic Dynamics Tunnel at NASA Langley
Research Center [65]. AGARD 445.6, which is made of laminated mahogany, is a
swept-back wing with a sweep angle of 45 degrees, taper and aspect ratios of 0.66
and 1.65 respectively. The airfoil used in this wing is symmetrical NACA65A004
profile [65]. The wing consists of two models as solid and weakened models. Wall-

mounted weakened model is considered in this work.

Studies in dynamic aeroelastic analysis and flutter calculations of AGARD 445.6
wing are extensive. Several methods have been used to investigate the flutter
boundaries. In the work of Beaubien [66], computational fluid dynamics is coupled
with computational structural dynamics and time marching simulations are
performed by using Euler and Reynolds Averaged Navier Stokes equations to
calculate flutter speed. Lee-Rausch [67] performed linear stability analysis by
calculating generalized aerodynamic forces for various values of reduced
frequencies. Flutter characteristics are obtained by using V-g analysis which is a
similar approach with the present work. Allen [68] shows that the flutter calculation
of AGARD 445.6 with linear methods provides reasonable results since the design

and aerodynamics of the wing are simple.
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(a) Wing geometry (lengths in inches) (b) The finite element model of the wing

Figure 3.4 : Geometry and solid model of AGARD 445.6.

Flutter analysis for AGARD 445.6 wing is performed by using the pre-determined
natural frequencies and flutter equations. In flutter calculation procedure, the
necessary design parameters for reference station of the wing are taken from CAD
model constructed in CATIA V5 by Nikbay et. al [69] and determined from the
known geometrical properties of the standard configuration. The basic properties
taken into account for solution are summarized in Table 3.5.

Euler-Bernoulli beam equations are considered for natural frequency determination.
Euler-Bernoulli solution was previously investigated in AGARD 445.6 case by
Kamakoti [70], Kamakoti and Shyy [71], Kamakoti et. al [72]. The modeling can be
based on use of plate/shell elements, however bending and torsional natural
frequencies calculated with beam assumption agree well with the results calculated
by considering plate elements [70]. Beam elements are chosen since they provide an
advantegous solution by involving a simplified procedure [71] while still providing
rather accurate results. The results provided by Kamakoti [70] with 10 beam
elements for the first bending and the first torsion modes are almost equivalent to the
results in the work of Yates [73] which employs 120 plate elements. Therefore,
Euler-Bernoulli equations are used to calculate natural frequencies of AGARD 445.6

in the present work.

Material properties of weakened model for natural frequency determination are

determined from the experimental work of Yates [65].

The results of the flutter analysis for Mach number of 0.9011 are summarized in
Table 3.6 and 3.7. Firstly, natural frequencies and relative errors with respect to the

related experimental work are calculated.
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Table 3.5 : Design properties of AGARD 445.6 wing .

Property Value
A 45°
m 1.693 kg
A 0.66
m/ zp, b? 9.4104
|, / mbg 0.3336
S, /' mb 0.3229
E, 3671 MPa
G, 409 MPa

where A indicate taper ratio of the wing. Ey and G, are elasticity and shear modulus

values along spanwise direction.

Table 3.6 : Natural frequency solution for AGARD 445.6 wing.

Parameter Calculated (Hz) Experimental (Hz) Relative Error
® 9.5409 9.5992 0.61%
o, 38.4975 38.1650 0.87%

1

Natural frequency values well agree with experimental results [65]. Then, the next
step is flutter analysis. AGARD 445.6 has a sweep angle as 45° that has to be

considered in the related equations of motion derived before.

Solutions for flutter calculation and percentage error with respect to experimental
results are in Table 3.7. Also, the flutter solutions performed by Kolonay [74] have

been listed for comparison.

Table 3.7 : Flutter solution results for AGARD 445.6 wing.

Parameter Calculated Experimental [65] Kolonay [74] Relative Error
U, 308.4513 m/s 296.7 m/s 299.97 m/s 3.96%

@, 104.2489 rad/s 101.1 rad/s 99.0 rad/s 3.11%

Variation of flutter frequency with respect to damping term is shown in Figure 3.4.
The calculated flutter boundaries for the flight regime with Mach number of 0.9011

well-agree with the experimental result.
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Damping Term

Flutter Frequency-Damping Term Relation for AGARD 445.6
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Figure 3.5 : Flutter frequency-damping term relation for AGARD 445.6.
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4. AEROELASTIC DESIGN OPTIMIZATION

This section presents design optimization of 2 and 3-dimensional wing structures in
order to delay aeroelastic instabilities. Firstly, a 2-dimensional airfoil model is
optimized in order to maximize the speeds of aeroelastic instabilities while the
second work involves flutter based design optimization of a 3-dimensional wing
structure. Solution procedure is developed in MATLAB codes and then implemented
into modeFRONTIER software so as to enable an automatic optimization procedure
for both cases. MOGA-II and NSGA-II are used in 2-dimensional case while NSGA-
Il is preferred for flutter speed maximization of 3-dimensional wing structure,
AGARD 445.6.

4.1 Multi-Objective Design Optimization of Two Dimensional Aeroelastic

Systems

One of the main interests in the present work is to enhance the design quality of 2-
dimensional models by maximizing the speeds of aeroelastic instabilities. Aeroelastic
design optimization is applied to the first benchmark problem of Section 2 in order to

achieve a more efficient design.

Design parameters of the considered benchmark problem [58] are given in Table 2.1.
Optimization problem includes 3 objective functions, 5 optimization variables and 5
constraints. Objectives are maximizing the speeds of flutter, divergence and control
reversal phenomena while optimization variables are defined as linear and torsional

spring coefficients, static offset, moment of inertia and mass of the airfoil.

The optimization problem can be described as in (4.1) to (4.8).

max{V, |, max{V,}, max{U,} 4.1)

9.(s) = r,—1<0, 0.(s) e (4.2)
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g,(s)=@—-1<0, g,(s)eR (4.3)

U

s)=1-————F <0, S)eR
%) =1 o aseax11) < %) 49

g(S):l—V—f<0 g(S)Ein
. (1.9638x1.15) = (45)

(S)—l—v—d<0 (S)EER
9 24779x1.15) (4.6)
S={seR, s <s<s} (4.7)
S:(khika’xa’ Ia,m) (4.8)

where g,(s), 9,(s), 9:(s), 9,(s) and g.(s) are inequality constraints while Vs, Vq
and U, are the speeds of flutter, divergence and control reversal respectively. g,(s)
and g,(s)indicate the natural boundaries for reduced parameters because of physical
limitations of the aeroelastic problem while g,(s), g,(s) and g.(s)describe a level
of speeds that satisfy the safety requirements for a selected safety factor as 1.15.

s, and s, indicate the lower and upper limits of optimization variables that are

chosen depending on given reference wing design values. Lower and upper limits for

optimization variables are determined as stated in the Table 4.1.

Table 4.1 : Values of optimization variables in 2-dimensional case.

Variable Lower Limit (s,)  Upper Limit (s,)  Reference Study

K, 1.0 r* 50r -

k, 1.0r 7.0r -

X, 0.1 0.3 0.2

|, 1 kgm? 3 kgm? 1.2037 kgm?
m 7.5 kg 12.5 kg 19.2580 kg

* indicates that r can be an arbitrary real number since the exact value of k, and K,

cannot be determined by using reference parameters. These variables are related to

the frequencies w,and @,. The significant part for aeroelastic instability
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determination is the ratio of these frequencies. Their distinct values are not used to

obtain reduced speeds. Thus, the distinct values for k, and k, are not obtained. The
lower and upper limits are taken as 1.0 and 5.0 for k, and 1.0 and 7.0 for k,in
optimization software. In order to provide reasonable frequency ratios, g,(s)

constraint is defined in the optimization problem.

For optimization process, the computational code that is used to find flutter,
divergence and control reversal speeds is modified is adopted to the optimization
problem. In the second step, this code is coupled with the optimization software,
modeFRONTIER. The optimization software provides automatic iterations with
respect to design parameters. MOGA-II and NSGA-II are used as optimization
algorithms. The results obtained from both of the optimization algorithms are
compared to each other in order to determine the differences between them.

The optimization flow-chart for the multi-objective task is shown in Figure 4.1. The
flow-chart actually contains optimization variables, constraints, optimization

algorithm and objective functions.

m x_alpha k h k_alpha | _alpha
W W W W W
(@) (0] o] T C
DOE MOGA-II Matlab Exit
v =0
8] i) VI
oo >dho >
1 V. f V.d
¢ ‘v s ¢ b
v 1 |
Ly 2 = =y
P 0 0
kS
Control_reversal ‘L Flutter J7 :
r_alpha_constraint omega_constraint Divergence
A A
A ¥
N N &
g3 g4 g5
v v v

Figure 4.1 : Workflow of 2-dimensional aeroelastic optimization problem.

In the first optimization process, MOGA-II is used as optimization algorithm with

1000 Design of Experiments (DoE). There are 100000 total number of designs with

47



95483 feasible designs and 4517 infeasible designs. The solution took about 12 hours
23 minutes on a platform as Intel(R) Core(TM) 2 CPU 6400@2.13GHz processor
and 2GB of RAM on Microsoft Windows 7 64-bit operating system.Set of optimum
solutions is defined with respect to each objective of the problem. Designs that
maximize each objective respectively are considered in the optimum solutions set.

Optimum designs are included in Table 4.2.

Table 4.2 : Optimum designs with MOGA-I1 algorithm.

Design No V, V, U, m
1 3.5337 4.2603 3.7878 12.499 kg
2 2.3146 45574 3.7878 12.494 kg
3 1.7577 2.5772 2.1869 7.50 kg

A final optimum design is selected by considering the failure point of the structure.
Since flutter is seen at lowest speed values, a design that maximizes the flutter speed
is desired. Thus, Design-1 is selected since it has the maximum flutter speed value.
The optimum design provides gains in terms of all desired criteria as shown in Table
4.3.

Table 4.3 : Comparison of initial and optimum designs with MOGA-II algorithm.

Vv, V, U, m
Initial Design 1.9638 2.4779 2.3992 19.258 kg
Optimum Design 3.56337 4.2603 3.7878 12.499 kg
Relative Change 79.94% 71.93% 57.88% -35.10%

In the second optimization process, NSGA-II is used as optimization algorithm with
1000 DoE. There are 100000 total number of designs with 95156 feasible designs
and 4844 infeasible designs. The solution took about 11 hours 15 minutes on a
platform as Intel(R) Core(TM) 2 CPU 6400@2.13GHz processor and 2GB of RAM
on Microsoft Windows 7 64-bit operating system. The results of selected optimum

designs for the second optimization process are completely same with the first case.

Design-1 is selected since it has the maximum flutter speed value. The optimum
design provides gains in terms of all desired criteria as defined in Table 4.5. After
completing the optimization processes, the optimum results obtained from each of

the optimization algorithms can be compared.
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Table 4.4 : Comparison of initial and optimum designs with NSGA-II algorithm.

Vf Vd Ur m
Initial Design 1.9638 2.4779 2.3992 19.258 kg
Optimum Design 3.5337 4.2603 3.7878 12.499 kg
Relative Change 79.94% 71.93% 57.88% -35.10%

Table 4.5 : Comparison of MOGA-II and NSGA-I1 algorithms.

Optimization  Flutter Speed Divergence Control Mass Decrease
Algorithm Increase (%)  Speed Increase  Reversal Speed (%)
(%) Increase (%)
MOGA-II 79.94 71.93 57.88 35.10
NSGA-II 79.94 71.93 57.88 35.10

The only comparison criterion between two optimization algorithms is their solution
times since obtained optimum results are completely same. NSGA-II reduces the
computational time while producing the same optimum results. Then, it is more
advantageous to use NSGA-II algorithm in further optimization applications of the

present work.

The optimum design with NSGA-I1 has the following values in terms of optimization

variables.

Table 4.6 : Design variables of 2-dimensional optimum model.

K, k X I m

1.00 7.00 0.10 3.00 kgn?’ 12.499 kg

4.2 Flutter Based Aeroelastic Design Optimization of AGARD 445.6

Flutter based aeroelastic design optimization of AGARD 445.6 wing involves the
variation of taper ratio, sweep angle and material properties along the spanwise

direction in order to increase the flutter boundary.

The MATLAB code developed for the flutter solution is embedded in
modeFRONTIER optimization software. The objective in this optimization problem
is maximizing flutter speed while the optimization variables are taper ratio, sweep
angle, elasticity and shear modulus of the wing. Natural frequencies are also
calculated with respect to optimization parameters since modal analysis is a part of

flutter solution. The optimization problem is defined in (4.15) to (4.21).
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max U, (s)

(4.15)

S={se®, s <s<s,} (4.16)
s={1AE, G| (4.17)
0.65<1<1.0 (4.18)

0° < A <60° (4.19)
2000MPa < E, <3000MPa (4.20)
200MPa <G, <300MPa (4.21)

NSGA-II is chosen as optimization algorithm with 1000 DoE. The optimization took
about 50 minutes 43 seconds on a platform as Intel(R) Core(TM) 2 CPU
6400@2.13GHz processor and 2GB of RAM on Microsoft Windows 7 64-bit

operating system.

A design with maximum flutter speed of 361.8843 m/s is given as optimum solution
among 100000 feasible solutions. Design parameters in optimum structure and initial
configuration and optimization workflow in modeFRONTIER are shown in Figure
4.2 and Table 4.7.

Table 4.7 : Design variables of initial and optimum AGARD 445.6 models.

Design A A Ey Gy
Initial [63] 0.66 45° 3671 MPa 409 MPa
Optimum 0.65 59.65° 2020.85 MPa 299.02 MPa

Optimum design provides considerable improvement in flutter boundary of AGARD
445.6 wing. Since flutter is a catastrophic aeroelastic phenomenon, any increase in its
boundary provides a more reliable flight. The optimum flutter speed and
improvement with respect to analytical solution are expressed in Table 4.9. The
optimum result provides a more reliable design by producing approximately 17% of

increase in flutter boundary.
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Figure 4.2 : Optimization workflow for AGARD 445.6.

Table 4.8 : Flutter results of initial and optimum AGARD 445.6 models.

Design Calculated  Optimized
Flutter Speed (m/s)  308.4513 361.8843
Improvement (%) - 17.3230%
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5. UNCERTAINTY BASED AEROELASTIC ANALYSIS

In this section, aeroelastic analyses are performed by considering uncertainties in
structural, geometric and aerodynamic parameters for 2 and 3-dimensional wing
structures. The first part includes 2-dimensional aeroelastic analyses with
uncertainties in structural parameters and aerodynamics. 3-dimensional flutter
analysis by considering the effects of structural and geometric uncertainties forms the
second part. All random parameters are distributed with Gaussian distribution and

modeled with 10° samples by using MCS method.

Traditional uncertainty quantification methods in aeroelastic analysis is based on
choosing the best design among the model set by introducing the best distribution for

random parameters. Sources of uncertainties are various [75].

¢ Initial and boundary conditions
e Geometric features
e Parametric variations in physical parameters

e Modeling errors

Deterministic methods can be adequate for small variations while increased amount
of uncertainties must require probabilistic methods. Safety factor approach used in
deterministic methods can cause design of heavy aircraft structures. Design
requirements in a deterministic model are defined strictly and any variation in
parameters can probably violate the constraints, however system reliability can be

increased with probabilistic analyses.

Many types of probability distributions can be used to model the random parameters.
Gaussian distribution is preferred in this work within the context of MCS. Gaussian

distribution is used when small variations in random parameters are considered [75].

A random variable with Gaussian distribution is given in (5.1) [75] where f, (X)is

the probability density function of the random variable, X. o,and x, are mean value
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and standard deviation of x. Gaussian distribution, also known as normal distribution,

of xisshownas N(x,,o,).

2
1 1( X—u

f. (x)= exp| ——| —=| |, - X

x (X) oZe I{ 2[ >, ” %0 <X <400 (5.1)

A
‘\
=
NS

Hx
Ol

Figure 5.1 : Properties of Gaussian distribution.

MC methods make use of repeated random sampling for probabilistic variables to
reach the random results. They basically contain simulation of a physical system
while randomly changing the parameters [75]. Computational process of MC

methods can be summarized as:

e Adistribution type for random variables is selected.
e A sampling set is created from the distribution.

e Simulations are generated by using the sampling set.

The accuracy of MCS is directly related to number of samples as defined in (5.2)
[75].

MCS Accuracy = =3 (5.2)

in

In order to represent more accurate aeroelastic systems in the present work, 10°

samples are used for each random variable in probabilistic analyses. The accuracy of
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MCS is 0.3162% under these conditions. Variations are considered with respect to

COV approach where:

O-x

In this thesis, COV is taken as either 1% or 5% in all uncertainty based aeroelastic
analyses. The first uncertainty problem is applied for 2-dimensional aeroelastic case
while initial design of AGARD 445.6 wing is the topic of 3-dimensional flutter

analysis with uncertainties.

5.1 Uncertainty Based 2-Dimensional Aeroelastic Analysis

2-dimensional aeroelastic analysis with uncertainties in structural and aerodynamic
parameters is carried out in order to obtain the robust speeds of flutter, divergence
and control reversal phenomena. Random variables are defined as mass of the airfoil,
moment of inertia and aerodynamic parameters. COV =1% and COV =5%
approaches are used to model uncertainties. Minimum, maximum and mean speed
values are obtained while minimum speeds are taken into account by considering
robustness. The robust speed values are compared to the deterministic values. The

uncertainty analyses are applied to the first initial airfoil model of Section 2.
5.1.1 COV=1% case

Table 5.1 : Statistical information about 2-dimensional case with COV =1%.

Parameter Det. Value Min. Value Mean Value Max. Value
c, 6.2832 6.0022 6.2834 6.5683
c,, 2.4870 2.3871 2.4868 2.5859
Cy 1.8850 1.8031 1.8850 1.9628
Cu, -0.3340 -0.3488 -0.3340 -0.3201
p 1.2260 kg/m®> 11754 kg/m®  1.2260 kg/m®  1.2854 kg/m’

1, 1.2037 kgm* 1.1530 kgm* 1.2037 kgm* 1.2590 kgm?®
m 19.2580 kg 18.3229 kg 19.2584 kg 20.2208 kg
V, 1.9638 1.9008 1.9639 2.0278
V, 2.4780 2.3819 2.4781 2.5697
U 2.3993 2.3109 2.3993 2.4835
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The minimum, mean and maximum values of random parameters as a result of 10°
samples and deterministic results are summarized in Table 5.1.
5.1.2 COV=5% case

In the second case, COV is taken as 0.05 in order to model the random parameters.
The minimum, mean and maximum values of random variables and deterministic

values are summarized in Table 5.2.

Table 5.2 : Statistical information about 2-dimensional case with COV =5%.

Parameter Det. Value Min. Value Mean Value Max. Value
c, 6.2832 4.7878 6.2845 7.6069
., 2.4870 1.9414 2.4873 3.0367
Cy 1.8850 1.4806 1.8851 2.3126
Cu, -0.3340 -0.4071 -0.3340 -0.2519

P 1.2260 kg/m® 09155 kg/m®  1.2258 kg/m®  1.4841 kg/m’
|, 1.2037 kgm* 0.9593 kgm® 1.2037 kgm® 1.5004 kgm®
m 19.2580 kg 15.0782 kg 19.2584 kg 24.0024 kg

V, 1.9638 1.7035 1.9656 2.4249

V, 2.4780 2.0526 2.4810 3.0895

U 2.3993 1.9894 2.4016 2.9743

The resulting distributions for aeroelastic instabilities are shown in Figure 5.2, 5.3
and 5.4 with comparisons of COV=1% and COV=5% cases.
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Figure 5.2 : Flutter speed histograms with COV=1% and COV=5%.
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Figure 5.3 : Divergence speed histograms with COV=1% and COV=5%.
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Figure 5.4 : Control reversal speed histograms with COV=1% and COV=5%.

The deterministic solutions do not seem to be reliable when compared to the results
of uncertainty based aeroelastic analyses. The minimum speed values must be
considered for reliability. The decreases in speeds of aeroelastic instabilities are
shown in Table 5.3 for COV=1% and COV=5% cases. COV=1% approach is a more

likely case since the variations of uncertainties are relatively small and appropriate to
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the design of such a 2-dimensional simple aeroelastic configuration however

COV=5% approach can represent a very uncertain case.

Table 5.3 : Comparison of uncertainty based aeroelastic analyses.

Case V, V, U,
Deterministic 1.9638 2.4779 2.3992
COV=1% 1.9008 2.3819 2.3109
COV=5% 1.6535 2.0526 1.9894

5.2 Uncertainty Based 3-Dimensional Flutter Analysis

This section addresses flutter analysis of a 3-dimensional wing structure by
considering uncertainties in structural properties. Random parameters are defined as
elasticity and shear modulus along spanwise direction. COV =1% and COV =5%
approaches are again used to model random variables. The robust flutter analysis is
applied to initial reference design of AGARD 445.6 wing. As the principle of robust
analysis, the minimum flutter speed is taken into consideration for the worst-case

scenario. Robust flutter speed is compared to deterministic value.

5.2.1 COV=1% case

Uncertainties are included by using COV =1%. Minimum, mean and maximum

values of random parameters and deterministic result are summarized in Table 5.4.

Table 5.4 : Statistical information about AGARD 445.6 case with COV =1%.

Parameter Det. Value Min. Value Mean Value Max. Value
Ey 3671 MPa 3520.20 MPa 3671 MPa 3834.0 MPa
Gy 409 MPa 390.98 MPa 409.01 MPa 428.46 MPa
U, 308.4513 m/s 296.7518 m/s 308.4606 m/s 319.9008 m/s

The distribution of flutter speed is so close to the normal distribution since small
variations are considered in random parameters.
5.2.2 COV=5% case

COV=0.05 is used to generate random samples for uncertainty based flutter analysis.
Minimum, mean and maximum values of random parameters and deterministic result

are summarized in Table 5.5.
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The distribution of flutter speeds for COV=1% and COV=5% cases is shown in
Figure 5.5.
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Figure 5.5 : AGARD 445.6 flutter speed histograms.

Table 5.5 : Statistical information about AGARD 445.6 case with COV =5%.

Parameter Det. Value Min. Value Mean Value Max. Value
Ey 3671 MPa 2871.80 MPa 3671 MPa 4512.80 MPa
Gy 409 MPa 315.24 MPa 408.99 MPa 504.80 MPa
U, 308.4513 m/s 290.6844 m/s 308.4763 m/s 324.0019 m/s

The deterministic flutter solution again does not seem to be reliable due to the results
of uncertainty based analyses. The results of COV=1% approach as a more probable
case and COV=5% approach as an extraordinary case due to possibilities of high
quality manufacturing techniques of today’s world are considered and compared to
deterministic result in Table 5.6. Flutter speed in COV=5% approach can be

considered for high level of safety in structural design of AGARD 445.6 wing.

Table 5.6 : Comparison of uncertainty based flutter analyses.

Case U,

Deterministic  308.4513 m/s
COV=1% 296.7518 m/s
COV=5% 290.6844 m/s
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Producing a reliable design for both 2 and 3-dimensional wing structures subjected to
structural, geometric and aerodynamic uncertainties requires robustness based

analysis.

Deterministic aeroelastic analyses and optimization applications can form a
mathematical basis for further studies but they are not sufficient for a realistic and
reliable design. Besides robust aeroelastic analysis, optimization studies must even
be based on robustness criterion. Robust aeroelastic optimization is accomplished by

considering 2 and 3-dimensional clean wing structures in Section 7.
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6. FLUTTER BASED OPTIMIZATION AND UNCERTAINTY BASED
FLUTTER ANALYSIS OF WING/STORE CONFIGURATIONS

The present work involves deterministic and probabilistic flutter analysis and flutter
based design optimization of wing/store configurations with external loads placed in
various stations along the wing span. One of the main purposes of the present section
is to define a general solution metholodology for the flutter analysis of wing/store
configurations where the store loads can be as missiles, launchers or fuel tanks. The
parametric solution is expected to provide a guideline for further analyses and
optimization studies in various types of wing/store configurations ranging from
simplest models to designs with high complexity levels including fighter aircraft
wings. Aeroelastic design optimization aims to reach the best configuration with
optimum placement of stores along wing span while the aim of robust analysis is
demonstration of the worst condition for the current design. An example

representation of a wing/store configuration is given in Figure 6.1 [76].

Figure 6.1 : General representation of a wing/store configuration.

The flutter solution involves structural effects as masses and inertias of store loads to
determine the critical speed. The effects of pylon structure and store aerodynamics
are neglected. The solution procedure is firstly validated by using Goland wing and

an external store which is placed in different stations along wing span as in the work
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of Fazelzadeh [77]. The validated solution is then used to analyze flutter for AGARD
445.6 wing/store configurations. Analyses are applied to two different models
composed of standard and previously optimized AGARD 445.6 clean wings with
store loads. The objectives are to determine the best locations for the store loads in
order to maximize the flutter speed of the wing. In flutter analysis of AGARD 445.6
wing/store models, the store loads are modeled as point masses and their inertias are
neglected due to lack of technical information. Structural effects of external stores
are taken into account as point masses. The loading configurations are divided into
three categories as 3, 4 and 5-stations cases. Total masses of store loads are kept the
same in each configuration. Since the main purpose is to obtain the best wing/store
configuration for a “given” clean wing model, initial and optimum designs of clean
AGARD 445.6 wing are compared to each other in order to investigate if the
optimum clean wing model is still the best design even with store loads. The best
configuration based on flutter criterion with optimum station number and the type of
wing are selected.

Finally, an uncertainty based flutter analysis is performed for the best design in order
to examine the available worst case scenerio by considering robustness. Uncertainties
in locations and masses of store loads, material properties as elasticity and shear
modulus values of the wing structure are considered before performing the flutter
analyses. Analyses are performed for COV =1% and COV =5% cases respectively

for variations in material properties and store masses and COV =0.25% for

variations in locations with 10° generated samples by MCS. Location parameters are
given a different COV due to the physical properties of the AGARD 445.6 wing. A
greater COV value as in other parameters causes infeasible designs such that the store
locations exceed the wing span. Minimum available flutter speeds are taken into
account for both cases due to the basic principle of robust design. Deterministic and
probabilistic flutter speeds are compared to each other in order to examine the effects

of structural and geometric uncertainties.

6.1 Solution and Validation of Flutter Analysis of Wing/Store Configurations

The flutter solution technique for 3-dimensional wings is extended so that the
structural effects of store loads along the wing span could be examined. Structural

properties of external loads such as the masses and inertias are considered as store
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effects in the flutter methodology. The additional effects of store masses are added

through mass density values and the location where the related masses place while

inertia moments of the store loads are included by considering the span positions.

The updated flutter coefficients of the solution determinant with store loads effects

are summarized in (6.1) to (6.4).

A-—1 ——(1-0’2) j(m +m,)¢ dy+cosAI( thq/ﬁde/

7,0

where m,, and mg indicate total mass of wing and store load.
1 Lip Y 1
B=———|S ¢dpdj+cosA|| — || L,—L |=+a dy
mobél ,pdy ![bRJ ( ) h(z Dcfﬁ(p y

¢ b 1 N
C=- pwbs'[s ¢(pdy+cosA£[b—j£ —Lh(§+aD¢gody

0 0

1 Y 1 R
D= ﬁpbe(l z)j(l Sy)(pZdercosAj(a] [Ma—(Mh+L€)(E+a)+Lh(E+aj ](pzdy

where 1,y and lg are total moment of inertias of the wing and store
load respectively. By using the definition for span distance of store

load, Ls, (6.5) and (6.6) are obtained.

1
=i

m x L

S S

Ty, xL,

S

m, and I_Sy are mass and moment of inertia of store loads per their unit spans.

(6.1)

(6.2)

(6.3)

(6.4)

(6.5)

(6.6)

The remaining solution is the same with the presented procedure for flutter

calculation of 3-dimensional clean wing models.

The extended flutter solution methodology including the effects of external stores is

applied to the aeroelastic benchmark problem of Goland wing. The work of
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Fazelzadeh [77] including external store effects in flutter boundary of Goland wing is

chosen as comparative study to validate the methodology.

Reference values of the example model are shown in Table 6.1 while the locations of
external stores and the experimental [78] and numerical flutter speed results [77] are

shown and compared with the calculated results in Table 6.2.

Table 6.1 : Reference values of example Goland wing/store model.

Parameter Value
L 1.2192 m
b 0.1016 m
El,, 403.76 Nm’
GJ/1,, 198.58 Nm’
m,, 1.2942 kgm™
|‘Wy 0.0036 kgm
e.a. 43.7%
c.g. 45.4%
p 1.224 kgm
m, 1.578 kg
| 0.0185 kgm®

Flutter speed-damping term plots are shown in Figure 6.2 to 6.5.

Figure 6.2 : Flutter speed-damping term relation for y;=0.2794 m.
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Figure 6.3 : Flutter speed-damping term relation for ys=0.4318 m.

The obtained results are satisfactory with respect to relative error values for

configuration when compared to both numerical [77] and experimental

solutions.
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Figure 6.4 : Flutter speed-damping term relation for y;=1.1684 m.
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Figure 6.5 : Flutter speed-damping term relation for y;=1.2192 m.

Table 6.2 : Flutter results for example wing/store configuration.

Store Numerical Experimental Calculated Relative Error
Location Result [77] Result [78] Solution wrt Experiment
0.2794 m 100.89 m/s 98.75 m/s 96.0679 m/s 2.7160 %
0.4318 m 124.05 m/s 116.43 m/s 113.1926 m/s 2.7806 %
1.1684 m 112.17 m/s 112.17 m/s 121.7199 m/s 8.5138 %
1.2192 m 91.44 m/s 97.54 m/s 94.3449 m/s 3.2757 %

6.2 Flutter Based Optimization of Initial AGARD 445.6 Wing/Store

Configuration

Three flutter based design optimization works are performed by considering 3, 4 and
5 stations respectively along the wing span. The objectives are both to maximize the
flutter speeds while the distances along span measured from the root of the wing for
each station are defined as optimization variables. Optimum distances of the stations
that maximize the flutter speed of the wing are obtained by considering equal mass
for each of them.

The design parameters for AGARD 445.6 initial wing model are given in Table 3.5.
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6.2.1 Flutter based optimization for 3-stations case

An optimization problem is constructed by considering 3-stations carrying equal
masses. The total store mass is 1.25 kg (1.25 kg / 3 for each station) while the mass
of the wing is 1.693 kg.

The optimization objective is maximizing the flutter speed while design parameters
are selected as the distances of the stations from the root of the wing for 3 stations.
Although the masses are considered as point masses for a preliminary application,
this approach is not realistic. Constraints are determined for distances between

stations in order to place the related masses in a more realistic manner.

max U, (s)

(6.7)

S={se®R, s <s<s,} (6.8)
s={V1. ¥ Y5} (6.9)
0<y,<0.762m (6.10)
0<y,<0.762m (6.11)
0<y,<0.762m (6.12)

X, = Y, - Y, <—0.04 (6.13)
X, = ¥, — Y <—0.04 (6.14)

where y,,Y,, Y, are the distances for each station measured from the root of the wing

while x,, X,are the constraints for the locations of stations. The optimization

workflow is shown in Figure 6.6.

NSGA-II is used as optimization algorithm with 1000 DoE in order to obtain
considerable amount of feasible designs since the constraints of the problem are
rather strict. 100000 total designs are generated with 70451 feasible and 29549
infeasible designs. The solution took about 10 hours 58 minutes on a platform which
has Intel(R) Core(TM) 2 CPU 6400@2.13GHz processor and 2GB of RAM on
Microsoft Windows 7 64-bit operating system.
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Figure 6.6 : Optimization workflow for 3-stations case.

Optimum design with maximum flutter speed is given in Table 6.3.

Table 6.3 : Optimum design parameters for 3-stations case.

Parameter Value
Y, 0.68113 m
Y, 0.72122 m
Y 0.76196 m
U, 232.04 m/s

6.2.2 Flutter based optimization for 4-stations case

Firstly, an optimization problem is constructed by considering 4-stations carrying
equal masses. The total store mass is 1.25 kg (1.25 kg / 4 for each station).
Optimization is performed by considering the same objective while constraints and

variables are considered for 4-stations case as follows.

max U, (s)

(6.15)
S={seW, s <s<s,} (6.16)
S:{y11y21y3’y4} (6-17)
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0<y, <0.762m (6.18)

0<y,<0.762 m (6.19)
0<y,<0.762m (6.20)
0<y, <0.762 m (6.21)

X =Y, —Y,<-0.04 (6.22)

X, =Y, — Yy <—0.04 (6.23)

X, =Y, — Y, <—0.04 (6.24)

where v,,Y,,Ys;, Y, are the distances for each station measured from the root of the
wing while X, X,, X;are the constraints for the locations of stations.
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Figure 6.7 : Optimization workflow for 4-stations case.

NSGA-I11 is used as optimization algorithm with 1000 DoE. 100000 total designs are
produced with 64189 feasible and 35811 infeasible designs. The solution took about
10 hours 56 minutes on a platform as Intel(R) Core(TM) 2 CPU 6400@2.13GHz
processor and 2GB of RAM on Microsoft Windows 7 64-bit operating system.

Optimum design with maximum flutter speed is given in Table 6.4.
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Table 6.4 : Optimum design parameters for 4-stations case.

Parameter Value
Y, 0.63283 m
Y, 0.67948 m
Y 0.72057 m
Y, 0.76200 m
U, 221.43 m/s

6.2.3 Flutter based optimization for 5-stations case

An optimization problem is constructed by considering 5-stations with equal masses.

The store total mass is 1.25 kg (1.25 kg / 5 for each station).

Optimization is performed by considering the same objective while constraints and

variables are considered for 5-stations case.

e Ui ()
S={seM, s <s<s,}
S={V1, Y2, Yo Var Vs }
0<y,<0.762m
0<y,<0.762 m
0<y,<0.762 m
0<y,<0.762 m
0<y.<0.762m
X =Y, — Y, <-0.04
X, = Y, — Y, <—0.04

X =Y;—Y, <-0.04
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X, =Y, Y5 <-0.04 (6.36)

where y,,Y,,Ys Vs, Ys are the distances for each station measured from the root of
the wing while X, X,, X;, X, are the constraints for the locations of stations.

The optimization workflow is shown in Figure 6.8.

NSGA-II is again used as optimization algorithm with 1000 DoE. 100000 total
designs are obtained with 59587 feasible and 40413 infeasible designs. The solution
took about 11 hours 20 minutes on a platform as Intel(R) Core(TM) 2 CPU
6400@2.13GHz processor and 2GB of RAM on Microsoft Windows 7 64-bit
operating system.

Optimum design with maximum flutter speed is given in Table 6.5.
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Figure 6.8 : Optimization workflow for 5-stations case.

Table 6.5 : Optimum design parameters for 5-stations case.

Parameter Value
Y, 0.5771m
Y, 0.61801 m
A 0.65928 m
Y, 0.71182 m
Y 0.76200 m
U, 212.32 m/s
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6.2.4 Comparison of flutter results for different configurations of stations

Flutter speeds of AGARD 445.6 initial configurations with respect to the number of
stations along the wing span are compared in Table 6.6.

Table 6.6 : Comparison of flutter speeds with respect to station numbers.

Number of U, Decrease
Stations (m/s) (%)
3 232.04 24.77
4 221.43 28.21
5 212.32 31.17

Clean Wing 308.4513 -

The results indicate that the flutter speed increases as the total number of stations
decreases for the initial AGARD 445.6 wing/store configurations.
Comparison of optimum locations for related stations along the wing span of the

initial wing configuration is shown in Table 6.7.

Table 6.7 : Optimum locations with respect to station numbers.

Number of 1% Station 2™ Station 3 Station 4™ Station 5™ Station

Stations (m) (m) (m) (m) (m)
3 0.68113 0.72122 0.76196 - -
4 0.63283 0.67948 0.72057 0.76200 -
5 0.57710 0.61801 0.65928 0.71182 0.76200

6.3 Flutter Based Optimization of Optimum AGARD 445.6 Wing/Store

Configuration

Three flutter based design optimization works are performed by considering 3, 4 and
5 stations respectively along the span of optimum AGARD 445.6 wing/store
configurations. The objectives are both to maximize the flutter speed while the
distances from the root of the wing for each station are defined as optimization
variables. Optimum distances of the stations that maximize the flutter speed of the
wing are obtained by considering equal mass effects for each of them.

The design parameters for optimum AGARD 445.6 wing model are given in Table
6.8.
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Table 6.8 : Initial design parameters of optimum AGARD 445.6.

Parameter Value
Ey 2020.85 MPa
Gy 299.02 MPa
A 0.65
A 59.65°

6.3.1 Flutter based optimization for 3-stations case

The same optimization problem in Section 6.2.1 is considered. As in the initial
configuration case, the optimization problem is consisted of an objective as
maximizing the flutter speed while design parameters are selected as the distances of
the stations from the root of the wing. Constraints are determined for distances
between stations in order to place the related masses in a more realistic manner.

NSGA-I11 is used as optimization algorithm with 1000 DoE. 100000 total designs are
produced with 70451 feasible and 29549 infeasible designs. The solution took about
10 hours 58 minutes on a platform as Intel(R) Core(TM) 2 CPU 6400@2.13GHz
processor and 2GB of RAM on Microsoft Windows 7 64-bit operating system.

Table 6.9 : Optimum design parameters for 3-stations case.

Parameter Value
Y, 0.68113 m
Y, 0.72122 m
A 0.76196 m
U, 314.46 m/s

6.3.2 Flutter based optimization for 4-stations case

Optimization is performed by considering the same objective while constraints and
variables are considered for 4-stations case.

NSGA-I11 is used as optimization algorithm with 1000 DoE. 100000 total designs are
generated with 64189 feasible and 35811 infeasible designs. The solution took about
10 hours 56 minutes on a platform which has Intel(R) Core(TM) 2 CPU
6400@2.13GHz processor and 2GB of RAM on Microsoft Windows 7 64-bit
operating system.

Optimum design with maximum flutter speed is given in Table 6.10 with optimum

store locations.
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Table 6.10 : Optimum design parameters for 4-stations case.

Parameter Value
Y, 0.63283 m
Y, 0.67948 m
Y 0.72057 m
Y, 0.76200 m
U, 288.89 m/s

6.3.3 Flutter based optimization for 5-stations case

Optimization is performed for 5-stations case by considering the same design
optimization problem.

NSGA-II is again used as optimization algorithm with 1000 DoE. 100000 total
designs are produced with 59587 feasible and 40413 infeasible designs. The solution
took about 9 hours 24 minutes 43 seconds on a platform as Intel(R) Core(TM) 2 CPU
6400@2.13GHz processor and 2GB of RAM on Microsoft Windows 7 64-bit
operating system.

Optimum design with maximum flutter speed is given in Table 6.11.

Table 6.11 : Optimum design parameters for 5-stations case.

Parameter Value
Y, 0.57710 m
Y, 0.61801 m
Y, 0.65928 m
Y, 0.71182 m
Vs 0.76200 m
U, 265.11 m/s

6.3.4 Comparison of flutter results for different configurations of stations

The flutter speeds of optimum AGARD 445.6 configurations with respect to the
number of stations along the wing span are compared in Table 6.12.

It is seen that distributing the external stores into more stations decreases the flutter
boundary, even though the total mass of stores is kept constant.

Comparison of optimum locations of the stations along the wing span is given in
Table 6.13.
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Table 6.12 : Comparison of flutter speeds with respect to station numbers.

Number of U, Decrease
Stations (M/s) (%)
3 314.46 13.10
4 288.89 20.17
5) 265.11 26.74

Clean Wing 361.8843 -

The results again indicate that the flutter speed increases with decreasing number of

stations.

Table 6.13 : Optimum locations with respect to station numbers.

Number of 1% Station 2" Station 3" Station 4™ Station 51 Station

Stations (m) (m) (m) (m) (m)
3 0.68113 0.72122 0.76196 - -
4 0.63283 0.67948 0.72057 0.76200 -
5 0.57710 0.61801 0.65928 0.71182 0.76200

6.4 Comparison of Flutter Results for Initial and Optimum AGARD 445.6
Wing/Store Configuration

Flutter based optimizations are further performed by considering 3,4 and 5 store
locations for both initial and previously optimized designs of AGARD 445.6
wing/store configurations. The flutter speed is greater when the number of stations
decreases, as seen previously.

Flutter speed variations of initial and optimum wing structures with respect to
various numbers of stations is shown in Figure 6.9.

Optimum wing is more sensitive to the variations with respect to increasing number
of store locations, however in all considered cases, optimum models have greater
flutter speeds. Figure 6.9 indicates that optimum wing with store masses in 3 stations
case provides the most efficient design. Despite carrying 1.25 kg additional masses
as store loads, the flutter boundary of the best design is even greater than the flutter
speed value of initial clean wing model. After specifying the best wing/store
configuration involving optimized clean wing model with store loads in 3 stations,

the flutter boundaries now have to be determined in the presence of uncertainties in
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structural and geometric parameters. Then, the final robust design is provided by the

robust design optimization application in Section 7.

Flutter Speed Variation with respect to Station Number

350

e |njtial

e Optimum

Flutter Speed (m/S)

O T 1
3 4 5

Station Number

Figure 6.9 : Flutter speed variation with respect to station number.

6.5 Uncertainty Based Flutter Analysis of AGARD 445.6 Wing/Store

Configuration

This section involves uncertainty based flutter analysis of the best AGARD 445.6
wing/store configuration determined in previous section. The considered design is

optimum AGARD 445.6 clean wing with external stores placing in 3 stations.

Table 6.14 : Deterministic values of random variables in wing/store model.

Variable Value
Y, 0.68113 m
Y, 0.72122 m
Vs 0.76196 m
m, 0.4167 kg
m, 0.4167 kg
m, 0.4167 kg
E 2020.85 MPa
G 299.02 MPa
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Structural and geometric uncertainties are assumed to affect the wing/store model.
Structural uncertainties involve the store masses and material properties while

positions of store loads along wing span form the geometric uncertainties.

Random parameters are defined as masses and locations of store loads, elasticity and
shear modulus with COV=1% and COV=5% and locations of store loads with

COV=0.25% approach. In Table 6.14, m;, m, and ms are masses of store loads.

6.5.1 COV=19% case

Masses of store loads, elasticity and shear modulus are distributed with respect to
COV=1% approach while COV is taken as 0.0025 for the distances of stations. The
maximum value for the distance of the 3™ station can not exceed the total span
distance.

The difference between theoretical and minimum flutter speeds is calculated as

1.7224% by considering reliability.

Table 6.15 : Statistical results of 3-stations case with COV=1%.

Parameter Det. Value Min. Value Mean Value Max. Value
Y, 0.68113 m 0.6742 m 0.6811 m 0.6890 m
Y, 0.72122 m 0.7125m 0.7212 m 0.7291 m
Vs 0.76196 m 0.7618 m 0.7619 m 0.7620 m
m, 0.4167 kg 0.3982 kg 0.4167 kg 0.4342 kg
m, 0.4167 kg 0.3994 kg 0.4167 kg 0.4338 kg
m, 0.4167 kg 0.3990 kg 0.4166 kg 0.4339 kg
E, 2020.85 MPa 1926.1 MPa 2020.8 MPa 2105.1 MPa
G, 299.02 MPa 286.59 MPa 299.01 MPa 314.41 MPa
U 314.46 m/s 309.0437 m/s 314.4534 m/s  319.7874 m/s

f

6.5.2 COV=5% case

Masses of store loads, elasticity and shear modulus are distributed with respect to
COV=5% approach while COV is taken as 0.0025 for the distances of stations. The
statistical results are shown in Table 6.16 while flutter speed histograms for

COV=1% and COV=5% cases are shown in Figure 6.10.
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Figure 6.10 : Flutter speed histograms for COV=1% and COV=5%.

Table 6.16 : Statistical results of 3-stations case with COV=5%.

Parameter Det. Value Min. Value Mean Value Max. Value
Y, 0.68113 m 0.6734 m 0.6811 m 0.6888 m
Y, 0.72122 m 0.7135m 0.7212 m 0.7293 m
Vs 0.76196 m 0.7618 m 0.7619 m 0.7620 m
m, 0.4167 kg 0.3301 kg 0.4166 kg 0.5091 kg
m, 0.4167 kg 0.3310 kg 0.4167 kg 0.5016 kg
m, 0.4167 kg 0.3125 kg 0.4166 kg 0.5053 kg
E, 2020.85 MPa 1535.9 MPa 2021.2 MPa 2427.5 MPa
G 299.02 MPa 237.48 MPa 298.95 MPa 362.40 MPa
U 314.46 mls 300.4018 m/s 314.4313 m/s  328.8310 m/s

The difference between theoretical and minimum flutter speeds is calculated as

4.4706% by considering for reliability.

The design properties of final optimum robust wing/store configuration with

deterministic and minimum flutter speed values are given in Table 6.17.

By considering the technological possibilities of today’s world conditions, it is more
likely to distribute the uncertainties with COV=1%, however the aim of the present

work is to determine strictly reliable wing configurations. Thus, COV=5% case is
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determined as the comparative study for deterministic analyses and deterministic and
robust design optimization works while uncertainty based analyses with COV=1%

approach even provides realistic flutter results.

Table 6.17: Design properties and flutter results of optimum wing/store model.

Variable Value

A 0.65

A 59.65°

Ey 2020.85 MPa
Gy 299.02 MPa
Y, 0.68113 m
Y, 0.72122 m
Y 0.75404 m
m, 0.76196 kg
U 314.46 m/s

U ;"i" 300.4018 m/s
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7. ROBUST AEROELASTIC DESIGN OPTIMIZATION OF WING/STORE
CONFIGURATIONS BASED ON FLUTTER CRITERIA

The present work finally involves robust optimization of wing/store configurations
based on flutter criteria in order to design the most efficient and reliable structures in
terms of aeroelastic instabilities.

Results in a deterministic model can differ from the real world conditions since
uncertainties in input parameters such as material, geometric properties and operating
conditions can severely affect the system outputs. Deterministic methods can provide
high performance designs however the randomness in uncertain parameters can
cause reduction in the expected performance of the real system. In order to achieve
both an efficient and a reliable design even under the worst case conditions of the
design parameters, it is necessary to make use of robust optimization strategies.
Robust optimization improves the given design in a way that it satisfies all scenerios
about uncertain parameters by determining an expected minimum level for output

variables. General formulation of a robust optimization problem is given in [79].

min  F(v) (7.1)
subjectto g, (v) = ((”)) (7.2)

9 © )|A <0 j=1..n, (7.3)

(D) iower FAU, SU S (U)o —AU; =100, (7.4)

i=1 |

F ()= Z[[ag(l))j (Av )} (7.5)
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where o specifies the design variables. F, (v)points out the relative change of

objective function due to variations and (7.2) behaves like an additional constraint
that limits the relative change with a specified magnitude, ¢. (7.3) is related to the
robust constraints and involves magnitude of changes and sensitivity of jth constraint

with respect to ith design variable. Total number of constraints are denoted by n,

and n, shows total number of design variables. Upper and lower limits of

optimization variables are specified in (7.4) while (7.5) shows the change of
objective function by making use of Taylor expansion method.

In the present work, robust optimization studies are considered to provide more
reliable designs even under the worst case scenarios of the real world. The robust
results are adequately satisfying under declared levels of uncertainty. Robust
aeroelastic optimization work is divided into three categories by considering 2-
dimensional airfoil, 3-dimensional AGARD 445.6 clean wing and 3-dimensional
AGARD 445.6 wing/store configuration. The objective is to maximize flutter speed
in the presence of both deterministic and probabilistic optimization variables.
Constraints are defined with the same manner in the previous optimization studies.
Random variables in uncertainty based analyses are defined as probabilistic
parameters while the other deterministic parameters of the previous aeroelastic
optimization studies remain as deterministic optimization variables. COV=5% case is
considered as the worst case uncertainty scenario in today’s world possibilities. The
deterministic solution codes of previous sections are coupled with the optimization
software. Random parameters are varied with given distributions via
modeFRONTIER. The statistical properties as mean values and standard deviations
of random variables are also defined in modeFRONTIER by considering COV=5%.
MORDO  (Multi-Objective  Robust  Design ~ Optimization) module  of
modeFRONTIER is used to obtain robust results since MORDO searches for the
optima of the mean and standard deviation of a stochastic response rather than the
optima of the deterministic response [80]. MORDO can find the robust design under
a given or assumed variation of design parameters [81].

MCS method distributes the random optimization variables by using of 1000 DoE
and 100 generations for each of DoE. The applied settings point out 10° total design

samples. The considered amount of samples increases the computational time
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however the fast NSGA-11 algorithm [82] and the 2" order PCE in MORDO are

preferred in all robust optimization studies to reduce the computational time.

Run Options RSM Options | MORDO Options

T MOUNDO Upauns

Sampling Mode lMontecarlo Sampling =
| —
1

Seed

0

il

;

Figure 7.1 : MORDO settings in modeFRONTIER.

PCE has successfully been used in uncertainty analysis [69] since introduction of the
homogeneous chaos by Wiener [83]. A 2™ order PCE, which is used within the
contex of robust optimization studies of the present work, is given in (7.6) [69].

U(G) = bo + b151 (9) + b2§2 (‘9) + b3(§12 (‘9) _1) + b4§1 (9)52 (‘9) + b5(§22 (9) _1) (7 6)

where u(#) is Gaussian random response, b; (i=1 to 5) is generalized Fourier
coefficient, & and &, are two independent standard Gaussian random variables

defined in (7.7).

_ X'_'/lx
i (7.7)
The definition of generalized Fourier coefficients is given in (7.8) [69].
_ E[uowiEo)]
" E[nEOWwi(EO)] (7:8)

where E[.] and y denote expected value operation and orthogonal polynomials. They

have to satisfy the condition defined in (7.9).

wo=1 E[y,]=0and E[yy; |=E [y} |5; for Vi, ]

E[£°]=1 E[&]=0 for ¥k odd (7.9)

7.1 Robust Aeroelastic Optimization of 2-Dimensional Airfoil

Firstly, an optimization work is carried out so as to achieve a robust aeroelastic
design for the first 2-dimensional airfoil model of Section 2. Random variables in

uncertainty based analysis are assigned as probabilistic optimization variables while
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the others in deterministic optimization case remain the same. The robust design is
mainly based on flutter speed. The objectives are defined as maximizing flutter,
divergence and control reversal speeds. Optimization problem can be defined as
follows.

max {prrob} . max {Vdprob} . max {U rprob}

na na na. (7.10)
97 (Xg,5)=r,—-1<0, g ®(s)eR (7.11)
97 (X,8) =@—1<0, 9. (s) e R (7.12)
S={se®, s <s<s,} (7.13)
s={s™s") (7.14)

s*® =(k,,k,,x,) and s"®=(m,1) (7.15)
Xq :(m, Ia’p7CL{I’CLﬁ7CMa’CMﬂ) (7.16)

where s*' and s" indicate deterministic and probabilistic optimization variables
respectively and X, denotes set of random parameters. Similarly, g,”®and g are

probabilistic constraint functions. The lower and upper bounds of optimization

variables are specified in Table 4.1.

The objectives and constraints are also probabilistic since they can be defined in
terms of mass and moment of inertia as probabilistic variables. All probabilistic
parameters have statistical features such as standard deviation, minimum, mean and
maximum values, etc. Robust analysis and optimization require investigations of
available minimum values as the worst case conditions. Thus, the minimum values of
maximized objectives have to be considered and optimum design has to be selected
among them. The minimum of maximized values is the desired objective for the
robust optimization problem. Since flutter occurs before divergence and control
reversal phenomena, the optimum design can be obtained by only considering flutter.
The minimum of maximum flutter speeds among robust designs provides the

optimum robust design based on aeroelastic instability criteria.
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100000 total designs with 78325 feasible designs and 10000 robust designs with
9241 feasible designs are obtained while the solution took about 40 hours 39 minutes
on a platform as AMD Athlon (TM) 64 X2 Dual Core 4600+2.41GHz processor and
2GB of RAM on Microsoft Windows XP operating system.

The optimization workflow is shown in Figure 7.2.
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Figure 7.2 : Workflow of 2-dimensional robust aeroelastic optimization.

The probability density distributions of the objective functions are given in Figure
7.3,7.4and 7.5.

The design variables of robust aeroelastic optimization work are summarized in
Table 7.1 with optimum robust speeds of aeroelastic instabilities. The superscript
“robust” indicates the parameters in optimum robust design while superscript “det”

points out the deterministic design.

The boundaries of aeroelastic instabilities in optimum robust design are lower than
the values in optimum deterministic design since the robust design points out the

worst case conditions.
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Table 7.1: Optimum robust design properties of 2-dimensional airfoil model.

Design Optimum
Variable Value
K, 1.0107
k, 6.6962
X, 0.10031
m 12.330 kg
l, 2.9919 kgm®
\/ oot 3.3967
v 3.5337
Vot 4.0766
v 4.2603
U oot 3.6369
U 3.7878

Table 7.2 involves the comparison of design parameters in deterministic and robust

aeroelastic models.

Table 7.2: Comparison of deterministic and robust design parameters.

Case k, k, X, m I,
Deterministic 1.00 7.00 0.10 12.499 kg  3.00 kgm*
Robust 1.0107 6.6962 0.10031 12.330 kg 2.9919 kgm*

7.2 Robust Optimization of AGARD 445.6 Clean Wing

This section involves robust optimization of AGARD 445.6 clean wing based on
flutter criteria. Random parameters (elasticity and shear modulus along spanwise
direction) in uncertainty based flutter analysis are defined as probabilistic
optimization variables in robust optimization while taper ratio and sweep angle are

again deterministic parameters. Optimization problem can be determined as follows.

max U (s)
seS

(7.17)
S={seW, s <s<s,} (7.18)
s— {Sdet,sprob} (719)
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s*=(4,A) and " =(E,,G,) (7.20)

X, =(E,.G,) (7.21)

0° <A<60° (7.22)
2000MPa < E, <3000MPa (7.23)
200MPa <G, <300MPa (7.24)

The robust optimization study is performed in modeFRONTIER coupled with the
computational code for the deterministic solution. 100000 total designs and 10000
robust designs are obtained while the solution took about 9 hours 18 minutes 10
seconds on a platform as Intel(R) Core(TM) 2 CPU 6400@2.13GHz processor and
2GB of RAM on Microsoft Windows 7 64-bit operating system. The workflow of the

optimization problem is given in Figure 7.6.
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Figure 7.6 : Robust optimization workflow of clean AGARD 445.6 wing.

The probability density distribution of the objective function is given in Figure 7.7.
The optimum robust design is obtained by considering the maximum of minimum
probabilistic flutter speeds among robust designs. The design properties of optimum

robust design is shown in Table 7.3. Optimum robust and deterministic flutter speeds
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are also given in Table 7.3 while comparison of deterministic and robust design
variables are given in Table 7.4.
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Figure 7.7 : Probability density distribution of maximum flutter speed.

Table 7.3: Optimum robust design properties of AGARD 445.6 clean wing.

Design Optimum
Variable Value
A 0.65
A 59°
E, 2001.96 MPa
G, 298.34 MPa
U et 356.9322 m/s
U fet 361.8843 m/s

Table 7.4: Comparison of deterministic and robust design parameters.

Case A A Ey Gy
Deterministic 0.65 59.65° 2020.85 MPa  299.02 MPa
Robust 0.65 59° 2001.96 MPa  298.34 MPa

The designs obtained by deterministic and robust optimization studies are similar
with close flutter speed values. The robust design which represents the worst case
conditions is in the vicinity of deterministic design since no constraints are defined

for the optimization.

7.3 Robust Optimization of AGARD 445.6 Wing/Store Configuration

Final robust optimization work involves AGARD 445.6 wing/store configuration in

which stores are placed 3-stations since this case is identified as the most efficient
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way to distribute the external loads in flutter analysis in the previous scenario.
Random parameters (locations of stations, masses of stores, elasticity and shear
modulus along spanwise direction) in uncertainty based analysis are determined as
probabilistic optimization parameters while taper ratio and sweep angle are again
deterministic variables. Masses of stores were not design variables in deterministic
optimization work. Thus, they are defined as probabilistic variables with constant

mean values in robust optimization. Optimization problem can be set up as follows.

max U (s)
seS

(7.25)

S={seR, s <s<s,} (7.26)
s={s*,s"} (7.27)

s =(4,A) and s =(E,,G,, V.Y, Ys) (7.27)
X =(m,m, m, E,.G,. ¥, ¥, Ys) (7.28)
0.65<1<1.0 (7.29)
0°<A<60° (7.30)

2000MPa < E, <3000MPa (7.31)
200MPa <G, <300MPa (7.32)
0<y,<0.762m (7.33)
0<y,<0.762 m (7.34)
0<y,<0.762m (7.35)

X" =y, —y, <-0.04 (7.36)

X' =y, —y, <-0.04 (7.37)

90



The robust optimization study is performed in modeFRONTIER by coupling it with
the computational code developed for the deterministic solution of wing/store
configuration. Uncertainties are distributed with MCS and COV=5% estimation is
used for each random parameter except for distance of stations where store loads
place. Due to physical limitations for the placement, COV=0.25% estimation is used

for y,, y, and y,. The constraints also become probabilistic since they are related to

random parameters. 100000 total designs and 10000 robust designs are obtained
while the number of feasible designs are 70917 in total designs and 7094 in robust
designs. The solution took about 9 hours 14 minutes 55 seconds on a platform as
Intel(R) Core(TM) 2 CPU 6400@2.13GHz processor and 2GB of RAM on Microsoft
Windows 7 64-bit operating system. The workflow of the optimization problem is
given in Figure 7.8.
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Figure 7.8 : Robust optimization workflow of AGARD 445.6 wing/store model.

The probability density distribution of the objective function is given in Figure 7.9.
The yellow samples in probability distribution of maximum flutter speed indicate the
infeasible designs.

The optimum robust design is obtained by considering the maximum of minimum

probabilistic flutter speeds among robust designs.
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Figure 7.9 : Probability density distribution of maximum flutter speed.

The design properties of optimum robust design is shown in Table 7.5 with optimum

robust and dete

rministic flutter speeds while comparison of deterministic and robust

optimization studies are given in Table 7.6.

Table 7.5: Optimum robust design of AGARD 445.6 wing/store model.

Table 7

Design Optimum
Variable Value
A 0.96
A 59.83°
E, 2387.92 MPa
G, 294.65 MPa
Y1 0.2392 m
Y2 0.4516 m
Y3 0.7286 m
U et 253.56 m/s
U fet 314.46 m/s

.6: Comparison of deterministic and robust design parameters.

Case

A A Ey Gy Y1 Y2 Y3

Det 0.65 59.65° 2020.85 299.02 0.6811 0.7212 0.7620

MPa MPa m m m

Robust 0.96 59.83° 2387.92 294.65 0.2392 0.4516 0.7286

MPa MPa m m m

The designs obtained by deterministic and robust optimization studies are rather

different from

each other. The robust design which represents the worst case

conditions point out a quite different design of wing/store configuration especially in
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terms of store locations and taper ratio. Since the optimum design variables of robust
and deterministic optimization studies are almost the same in clean wing case, the
difference in wing/store model is coming from the store loads and contraints defined
for their locations. In the presence of strict constraints, robust designs can not be as
flexible as deterministic models since they have to satisfy the worst case conditions
under the effects of uncertainties. By considering uncertain parameters, robust design
optimization is prerequisite for real and reliable designs of such wing/store

configurations.
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8. CONCLUSIONS AND RECOMMENDATIONS

In the present work, flutter analysis methods for 2 and 3-dimensional wings and
wing/store models are developed while the designs are optimized based on
aeroelastic instability criteria. The first and the basic approach involves the use of
open loop dynamics and stability analysis procedure for a 2-dimensional airfoil
model in order to obtain the critical speed values of flutter, divergence and control
reversal as aeroelastic instabilities. The solution method is implemented in a
MATLAB code and validated by using a benchmark problem from literature. A
multi-objective optimization process using modeFRONTIER as an optimization
software is applied to the benchmark airfoil model to delay the speeds of related
instabilities by changing the design and model parameters.

An analytical flutter analysis method for 3-dimensional wing structures using
assumed mode technique is developed for the purpose of enabling aeroelastic
optimization based on flutter criterion efficiently. The flutter solution employs
Lagrange equations with energy terms and also Theodorsen function for
aerodynamic load calculation. Free vibration analysis of aircraft wing is performed
analytically since flutter solution requires determination of bending and torsional
natural frequencies. Proposed flutter solution is validated by two benchmark
problems from literature, and then applied to Goland and AGARD 445.6 models
which are 3-dimensional aircraft wing structures. Flutter frequency and flutter speed
computed for Goland and AGARD 445.6 wings agree well with the experimental
results. The flutter solution code developed in MATLAB is fully automatic with
input parameters of taper ratio, sweep angle, elasticity and shear modulus and is used
to examine the sensitivity of flutter speed on these parameters. Next, flutter code is
coupled with an optimization framework to perform flutter based aeroelastic
optimization. The objective of the optimization problem is maximization of flutter
speed while introducing taper ratio, sweep angle, elasticity and shear modulus as

optimization variables.
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The flutter solution methodology for 3-dimensional wing structures is extended to
include wing/store configurations via revised MATLAB code. The new solution is
validated by using a benchmark problem that involves a store mass placed at
different positions along span of Goland wing. Then, the solution is applied to
AGARD 445.6 wing/store configurations which consist of 3, 4 and 5-stations cases
along the span. These cases indicate that the store loads are placed in 3, 4 and 5
stations respectively while the total mass of external loads are kept constant for each
configuration. The optimum distances of stations for each case are obtained by flutter
based aeroelastic optimization studies. The optimum placement configuration in
terms of flutter speed is found as 3-stations case.

Uncertainty based aeroelastic analyses are applied to initial and optimized 2 and 3-
dimensional wing models and wing/store configuration in order to obtain minimum
speeds. The uncertainties are modeled by using MCS with 10° samples. COV=1%
and COV=5% are used to include the effects of randomness. The available minimum
speeds of aeroelastic instabilities are considered for reliability. Deterministic and
probabilistic flutter results are compared to each other for both initial and optimum
wing models.

The final part of the present work involves robust optimization of 2 and 3-
dimensional clean wing models and 3-dimensional optimum wing/store
configuration with external loads in 3 stations. Robust optimization provides the
most realistic optimum case for the wing structures since the uncertainties are taken
into consideration simultaneously during optimization process. MATLAB codes for
deterministic flutter solutions of each case are coupled with the optimization
software which provides random distributions with respect to MCS for probabilistic
variables by using 10° samples. Optimum flutter speeds are obtained through the
minimum of maximized flutter speeds in optimum robust designs.

As a consequence, the present work provides deterministic and probabilistic flutter
solution methodology for wing structures ranging from simple designs to more
complicated 3-dimensional models and wing/store configurations as well as
applications of deterministic and robust aeroelastic optimization work. Developed
flutter strategies form a basis for the flutter analysis and flutter based optimization of
more complex structures and can be extended to the use of military and civilian
purposes and requirements. Structural and aerodynamic nonlinearities must be

considered for a more realistic application such as a fighter aircraft wing. In addition,
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all structural and aerodynamic effects of store loads must be included in calculations.
Nonlinear aerodynamic effects for wing/store configurations in transonic flow

regime is critical in the design of fighter aircrafts.
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