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FLUTTER ANALYSIS OF WING/STORE CONFIGURATIONS WITH 

APPLICATIONS TO ROBUST AEROELASTIC OPTIMIZATION 

SUMMARY 

The main scope and aim of the present work are to develop a parametric solution 

methodology to reach the best design for a wing/store configuration subjected to 

flutter phenomenon and form a basis for robust aeroelastic optimization. Proved 

solution is forced to be applicable for any wing/store configuration in accordance 

with requirements. The best design defines a configuration with store loads in 

optimum positions along wing span to provide maximum flutter speed however 

uncertainties can significantly affect the design and they have to be considered for a 

realistic application. Thus, the present work which deals with the problem in a highly 

broad sense involves deterministic and probabilistic flutter analyses and flutter based 

deterministic and robust aeroelastic optimization applications. The first part of the 

work involves flutter analysis of 2 and 3-dimensional wing models. Then, 

deterministic aeroelastic design optimization studies are carried out for these 

structures. After that, uncertainty based flutter analyses with structural and 

aerodynamic random parameters are applied to the wings of interest. Flutter analysis 

and flutter based design optimization of a 3-dimensional wing/store configuration 

form the next section. Uncertainty based flutter solution for the wing/store 

configuration is stated. Finally, robust optimization studies based on flutter criteria 

are carried out for 2 and 3-dimensional wing models and wing/store configuration. 

Firstly, a simple aeroelastic system with  2-degrees of freedom is analyzed with 

respect to aeroelastic instability criteria via a developed MATLAB code. The 

aeroelastic instabilities consist of divergence, control reversal and flutter phenomena. 

A solution methodology based on stability analysis of a dynamic system in quasi-

steady flow is proven. After that, 3-dimensional linear flutter analysis methodology 

with unsteady aerodynamic effects is developed, integrated in a computational code, 

validated and applied to Goland and AGARD  (Advisory Group for Aerospace 

Research and Development) 445.6 wings.  

As a second work, deterministic design optimization studies are accomplished for 

both 2 and 3-dimensional wing cases. 3-dimensional case involves flutter based 

optimization of AGARD 445.6 wing. Objectives are maximizing the speeds of 

aeroelastic instabilities in 2-dimensional case while maximizing flutter speed is the 

only objective in the design optimization of AGARD 445.6. Design variables in 2-

dimensional case are static offset, linear and torsional spring coefficients, moment of 

inertia and mass of airfoil while constraints are specified for natural limits of radius 

of gyration and ratio of frequency terms and boundaries of aeroelastic instabilities. 

Optimization of AGARD 445.6 wing does not involve any constraints while defined 

design variables are taper ratio, sweep angle, elasticity and shear modulus along the 

spanwise direction. The developed MATLAB codes, which are coupled with the 
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optimization software, modeFRONTIER, are fully-parametric in terms of design 

variables. In both cases, Non-Dominated Sorting Genetic Algorithm (NSGA-II) is 

preferred as the optimization algorithm while Multi-Objective Genetic Algorithm 

(MOGA-II) is used as the second algorithm for 2-dimensional airfoil case.  

Next, uncertainty based flutter analyses are applied to 2 and 3-dimensional wing 

models via extended computational codes. Random parameters are selected through 

structural, geometric and aerodynamic variables and modeled with Gaussian 

distribution. Monte Carlo Simulation (MCS) is employed to generate random 

samples. Each analysis involves the use of 10
5
 samples so as to enhance the accuracy 

of MCS. The amount of uncertainties is determined by using Coefficient of Variation 

(COV) approach with 1%COV   and 5%COV  cases. Minimum available speeds 

are sought after for aeroelastic instabilities by considering reliability. 

Flutter analysis methodology of a wing/store configuration is presented and validated 

with a benchmark problem involving Goland wing/store models. The solution, which 

is developed in a MATLAB code, contains the structural effects such as masses and 

inertias of store loads while flutter speed can be obtained for various positions of 

stores along the wing span. The presented metholodgy forms a basis for aeroelastic 

analysis of more complex wing/store configurations. The stores can be considered 

such as missiles, tanks, etc. in a more realistic manner. Structural and inertial effects 

of store loads are taken into account for Goland wing case however the stores are 

modeled as point masses for AGARD 445.6 wing application due to lack of 

information. The present study is the first attempt which developes an analytical 

flutter analysis methodology for AGARD 445.6 clean wing and wing/store 

configurations to the best of author’s knowledge. 

Aeroelastic optimization studies for AGARD 445.6 wing/store configurations are 

performed in order to determine the best locations for external stores to reach the 

maximum flutter speeds. The MATLAB code of previous section is coupled with the 

optimization software. NSGA-II is again preferred as the optimization algorithm. 

The configurations are divided into three categories involving 3-stations, 4-stations 

and 5-stations placements of stores along wing span. Total masses of store loads are 

the same for each configuration. By considering reality, constraints defining 

distances between successive two stations are specified even though the stores are 

modeled as point masses. Flutter based optimization studies are carried out and 

optimum positions are determined for each wing/store model. The aeroelastic 

optimization study does not involve the effects of uncertainties. After three 

optimization applications, the best configuration with maximum flutter speed is 

found as 3-stations case. 

The next step is to apply uncertainty based flutter analysis to AGARD 445.6 

wing/store configuration. The related computational code is extended to include 

uncertainties with 1%COV  and 5%COV   approaches however locations of store 

loads are modeled with respect to 0.25%COV  approach due to physical limitations 

of their positions. The considered configuration is the 3-stations case of previous 

section as the best design. Random parameters are defined as the locations and 

masses of store loads and material properties as elasticity and shear modulus along 

spanwise direction. Uncertainties are modeled with Gaussian distribution by 

generating 10
5
 samples with MCS. Minimum flutter speed is taken into for 

reliability. 
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Final step of the present work is robust aeroelastic optimization applications which 

combine the uncertainty based flutter analyses with aeroelastic design optimization. 

Robust optimization studies are performed in modeFRONTIER by coupling the 

deterministic flutter solution codes since random parameters can be defined and 

distributed via optimization software. 2-dimensional airfoil, AGARD 445.6 clean 

wing and the best wing/store configuration are considered. In all cases, NSGA-II is 

used as the optimization algorithm. In 2-dimensional case, deterministic design 

variables are selected as static offset term, linear and torsional spring coefficients 

while moment of inertia and mass of the airfoil are probabilistic optimization 

parameters. In AGARD 445.6 clean wing case, probabilistic variables are defined as 

elasticity and shear modulus while taper ratio and sweep angle are deterministic 

design parameters. For AGARD 445.6 wing/store configuration, taper ratio and 

sweep angle are defined as deterministic parameters while elasticity and shear 

modulus, locations of store loads are defined as probabilistic optimization variables. 

In all cases, random variables are distributed by using 10
5
 samples with respect to 

MCS. 2
nd

 order Polynomial Chaos Expansion (PCE) is used through MCS in order to 

reduce the computational time. The objective of the robust optimization process is to 

maximize the flutter speed while previously defined constraints of deterministic 

optimization applications are considered. Optimum robust flutter speed is the 

minimum flutter speed value of the optimum robust design. In other words, optimum 

robust flutter speed is the maximum of minimum flutter speeds in robust designs. 

Choice of minimum flutter speed guarantees withstanding of the worst case scenerio 

by force of robustness. Robust optimization study under the scope of the present 

work provides the most efficient and reliable aeroelastic design based on flutter 

criteria even in the presence of structural, geometric and aeodynamic uncertainties.  

As a consequence, the present work proves deterministic and probabilistic flutter 

analysis methodologies for wing structures from simple designs to more complicated 

3-dimensional models and wing/store configurations with applications to 

deterministic and robust aeroelastic optimization. The metholodgy forms a basis for 

flutter analysis and flutter based optimization of more complex wing structures and 

can be extended through the use of military and civilian purposes and requirements. 
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KANAT/DIŞ YÜK KONFİGÜRASYONLARININ KARARLI AEROELASTİK 

OPTİMİZASYON UYGULAMALARI İÇİN FLUTTER ANALİZİ 

ÖZET 

Bu çalışmanın temel amacı ve kapsamı, kanat/dış yük konfigürasyonları için flutter 

açısından en iyi tasarıma ulaşmayı sağlayacak analitik bir çözüm yöntemi 

geliştirmektir. Elde edilen çözüm yönteminin kararlı (robust) aeroelastik 

optimizasyon uygulaması için de temel oluşturması hedeflenmiştir. Ortaya konan 

çözüm adımlarının, herhangi bir kanat/dış yük konfigürasyonu ile uyumlu olacak 

şekilde genel bir parametrik çözümü içermesi sağlanmıştır. Bu doğrultuda, kanat/dış 

yük konfigürasyonları için en iyi tasarımın bulunması uygulamasına gidilmiştir. Sözü 

edilen en iyi tasarım, flutter hızının en yüksek değere ulaşmasını sağlayacak olan 

açıklık boyunca dış yüklerin optimum yerleşim pozisyonlarından oluşan yapıdır. 

Aeroelastik sistemlerde görülen belirsizlikler, hedeflenen flutter hızına ulaşılmasını 

engelleyebilirler. Bu nedenle, güvenilir bir tasarım elde edebilmek için 

belirsizliklerin uygun şekilde hesaba katılması gerekmektedir. Bu durum, yalnızca 

deterministik flutter analizi yapmanın yeterli olmayacağını göstermektedir. Bu 

nedenle, olasılıksal (probabilistik) flutter analizleri de gerçekleştirilmiştir. Bu 

çalışmanın temel konusu olan problem, çok geniş bir bakış açısıyla ele alınmış ve 

kolaydan zora uzanacak şekilde farklı model ve konfigürasyonlar üzerinde flutter 

çözüm yöntemi geliştirilmiş ve aeroelastik optimizasyon uygulamaları 

gerçekleştirilmiştir. Bu doğrultuda öncelikli olarak 2-boyutlu kanat modelleri için 

aeroelastik kararsızlıkların çözümüne yönelik bir yönteme yer verilmiş ve ardından 

3-boyutlu gerçekçi kanat yapıları için flutter çözüm yöntemi geliştirilmiştir. Sözü 

edilen 2 ve 3-boyutlu modeller için deterministik aeroelastik optimizasyon 

çalışmaları uygulanarak en yüksek flutter hızını sağlayan en iyi tasarım 

parametrelerine ulaşılmıştır. Diğer bölümde, belirsizliklerin yer aldığı olasılıksal 

flutter analizleri gerçekleştirilmiş ve elde edilen en küçük flutter hızları, kararlı bir 

analizin gereği olarak belirsizliklerin varlığı durumundaki flutter hızı olarak dikkate 

alınmıştır. Ardından, gerçekleştirilen flutter çözümü, 3-boyutlu kanat/dış yük 

konfigürasyonlarının analizini de kapsayacak şekilde genişletilmiştir. Bu sayede 

flutter tabanlı aeroelastik optimizasyon yapılarak dış yüklerin kanat açıklığı boyunca 

yerleşmeleri gereken optimum pozisyonlar bulunmuştur. Son aşamada ise; flutter 

kriterine dayalı kararlı aeroelastik optimizasyon çalışması, 2 ve 3-boyutlu kanat 

modellerine ve 3-boyutlu kanat/dış yük konfigürasyonuna uygulanmıştır. 

Çalışmanın ilk aşamasında; 2-serbestlik derecesine sahip olan, sanki-daimi akışa 

maruz basit bir kanat profili modeline aeroelastik analiz uygulanarak aeroelastik 

kararsızlıkların görüldüğü hızlar elde edilmiştir. Yapılan aeroelastik analiz, dinamik 

sistemler için uygulanan kararlılık analizi temeline dayanmaktadır. Kararlılığı ihlal 

eden noktalar, aeroelastik kararsızlıkların hızları olarak belirlenmiştir. Analizin 

kapsamındaki aeroelastik kararsızlıklar; flutter, diverjans ve kontrol tersliğidir. 2-

boyutlu sistemlerde yapılan aeroelastik analizin ardından, 3-boyutlu sistemlerde 
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flutter hızı çözümünü sağlayacak olan bir yöntem geliştirilmiştir. Bu yöntem, enerji 

prensibine dayanmakla birlikte lineer flutter için çözüm geliştirmiştir. Aerodinamik 

modellemede ise; daimi olmayan aerodinamik etkiler hesaba katılmış ve Theodorsen 

fonksiyonundan yararlanılmıştır. Geliştirilen 3-boyutlu lineer flutter çözümü, 

literatürden alınan örnek problemlere uygulanmış ve çözümler doğrulanmıştır. Aynı 

çözüm yönteminden yararlanılarak Goland ve AGARD 445.6 kanatlarının flutter 

hızları hesaplanmıştır. Gerek 2-boyutlu ve gerekse 3-boyutlu sistemlerin aeroelastik 

analizlerini içeren MATLAB kodları ile çözümler sağlanmıştır. 

Çalışmanın bir sonraki bölümünde ise; 2 ve 3-boyutlu kanat modelleri için 

deterministik tasarım optimizasyonu uygulamaları gerçekleştirilmiştir. 2-boyutlu 

kanat profili için gerçekleştirilen optimizasyonda tasarım değişkenleri; statik denge 

terimi, lineer ve burulma yayları katsayıları, profilin atalet momenti ve kütlesi olarak 

tanımlanırken; kısıtlamalar ise; jirasyon yarıçapı ve doğal frekans oranı için gerekli 

olan doğal sınırlara ve aeroelastik kararsızlık hızlarının yükseltilmek istendiği 

minimum mertebelere bağlı olarak belirlenmiştir. Amaç fonksiyonlarının flutter, 

diverjans ve kontrol tersliği hızlarının maksimize edilmesi olarak tanımlandığı 

optimizasyonda, yazılım olarak modeFRONTIER kullanılırken; ilgili kanat yapıları 

için geliştirilen MATLAB kodlarından parametrik bir çözümü ifade edecek şekilde 

yararlanılmıştır. 3-boyutlu model olarak AGARD 445.6 kanadının seçildiği 

optimizasyonun amacını flutter hızını maksimize etmek oluştururken; tasarım 

değişkenleri sivrilik oranı, ok açısı, açıklık doğrultusundaki elastisite ve kayma 

modülleri olarak belirlenmiştir, herhangi bir kısıtlama tanımlanmamıştır. AGARD 

445.6 kanadı için uygulanan optimizasyonda da bu kanadın flutter çözümünü 

sağlayan hesaplamalı koddan ve modeFRONTIER yazılımından yararlanılmıştır. 

Gerek 2-boyutlu kanat profili ve gerekse AGARD 445.6 kanadı için yapılan tasarım 

optimizasyonu çalışmalarında NSGA-II optimizasyon algoritması olarak tercih 

edilmiştir. MOGA-II algoritması ise; 2-boyutlu çalışma için ikinci yöntem olarak 

kullanılmıştır. 

Deterministik aeroelastik analizler için oluşturulan MATLAB kodlarının yapısal, 

geometrik ve aerodinamik parametrelerdeki belirsizlikleri içerecek şekilde 

genişletilmesi ile olasılıksal analizler gerçekleştirilmiştir. Tüm rastgele değişkenler, 

Gauss dağılımına uygun olacak şekilde Monte Carlo simülasyonu yöntemi ile 10
5
 

örnekleme kullanılarak modellenmiştir. Belirsizliklerin miktarları, varyans katsayısı 

yaklaşımı ile belirlenmiş olup varyans katsayısının 0.01 ve 0.05 değerleri için 

analizler gerçekleştirilmiştir. 2-boyutlu kanat profili için yapılan belirsizlik tabanlı 

aeroelastik kararsızlık analizinde; rastgele değişkenler, profilin atalet momenti ve 

kütlesi ile aerodinamik parametreler olarak tanımlanmıştır. 3-boyutlu flutter analizi, 

bu bölümde de AGARD 445.6 kanadına uygulanırken; belirsizlik içeren parametreler 

kanat açıklığı doğrultusundaki elastisite ve kayma modülleri olarak belirlenmiştir. 

Kararlı analizin gereği olarak elde edilen minimum hızlar dikkate alınmıştır. 

Çalışmanın bir sonraki bölümünde, kanat/dış yük konfigürasyonlarında flutter 

çözümünü sağlayacak olan bir metodoloji geliştirilmiştir. 3-boyutlu kanat yapıları 

için flutter hızının bulunmasını sağlayan hesaplamalı kod, dış yüklerin yapısal ve 

ataletsel etkilerini içerecek şekilde genişletilmiş ve ardından oluşturulan çözüm 

yöntemi, literatürde Goland kanadı için uygulanan bir çalışma ile kıyaslanarak 

doğrulanmıştır. Kıyaslama probleminde açıklık boyunca farklı pozisyonlarda yer 

alan tek bir dış yükün kütlesel ve ataletsel etkileri hesaba katılarak çözüm 

yapılmıştır. Geliştirilen çözüm yöntemi, daha gerçekçi kanat/dış yük 

konfigürasyonlarının aeroelastik açıdan analiz edilmesi konusunda bir temel 
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oluşturmaktadır. Bu konfigürasyonlarda yer alan dış yükler; mühimmat, tank,vs. 

olabilirler. Askeri ve sivil ihtiyaçları göz önünde bulundurarak daha karmaşık yapılı 

ve daha gerçekçi konfigürasyonların flutter analizlerinin yapılması, bu çalışmada 

ortaya konulan flutter çözüm yöntemi temeline dayandırabilir. Geliştirilen çözüm 

yöntemi, deterministik flutter çözümünü sağlayan MATLAB kodunun revize 

edilmesi ile AGARD 445.6 kanat/dış yük konfigürasyonuna da uygulanmıştır. 

AGARD 445.6 kanat/dış yük konfigürasyonu için varsayılan dış yüklerin geometri 

ve ataletine dair herhangi bir veri bulunmaması nedeniyle, bu yükler birer noktasal 

kütle olarak modellenmişlerdir. Bu çalışma, 3-boyutlu AGARD 445.6 kanadı ve 

kanat/dış yük konfigürasyonu için analitik bir flutter çözümü sunan literatürdeki ilk 

ve  tek girişimdir. 

AGARD 445.6 kanat/dış yük konfigürasyonu için gerçekleştirilen aeroelastik 

optimizasyon ile dış yüklerin ayrı ayrı 3, 4 ve 5 istasyonda konumlandırıldığı 

modeller için flutter hızını maksimize eden tasarımların bulunması amaçlanmıştır. 

Böylece dış yüklerin kanat açıklığı boyunca hangi pozisyona yerleştirilmeleri ile 

flutter hızının maksimize edilebileceği bulunmuştur. Dış yükler noktasal kütleler 

olarak modellenmelerine rağmen; aeroelastik optimizasyon uygulamasında, gerçekçi 

bir tasarım varsayılarak bu kütlelerin pozisyonları arasında aynı noktada 

konumlanmayı önleyecek küçük mesafeler kısıtlama olarak tanımlanmıştır. İstasyon 

sayıları birbirinden farklı olmasına rağmen, dış yüklerin toplam kütlesi tüm 

durumlarda birbirine eşittir. Böylece seçilen istasyon sayıları arasından en iyi 

tasarıma ulaşmayı sağlayan istasyon sayısı da elde edilmiştir. 3, 4 ve 5 istasyon 

halleri için ayrı olarak gerçekleştirilen optimizasyonlar sonunda, flutter açısından en 

verimli tasarımın dış kütlelerin kanat açıklığı boyunca 3 istasyona konumlandırıldığı 

durum olduğuna ulaşılmıştır. 

Çalışmanın bir diğer aşamasında; AGARD 445.6 kanat/dış yük konfigürasyonuna 

belirsizlik tabanlı flutter analizi uygulanmıştır. Bu amaçla, aynı konfigürasyonun 

deterministik flutter çözümünü sağlayan MATLAB kodu, yapısal ve geometrik 

parametrelerdeki belirsizlikleri kapsayacak şekilde genişletilmiştir. Geometrik 

rastgele değişkenler, dış yüklerin pozisyonları olarak belirlenirken; dış yüklerin 

kütleleri ile kanadın elastisite ve kayma modülleri yapısal belirsizlikleri 

oluşturmuştur. Belirsizlikler, temel olarak varyans katsayısının 0.01 ve 0.05 

değerlerine eşit olduğu iki durum için gerçekleştirilirken; dış yüklerin pozisyonlarına 

ilişkin belirsizliklerde, yükler arası mesafelerin getirdiği fiziksel kısıtlamalar 

nedeniyle varyans katsayısı 0.0025 olarak alınmıştır. Tüm rastgele değişkenler, 

Gauss dağılımına uygun olacak şekilde modellenmiştir. Her bir değişken için Monte 

Carlo yöntemine uygun 10
5 

örnekleme kullanılarak modelleme yapılmıştır. AGARD 

445.6 kanat/dış yük konfigürasyonu için yapılan flutter analizlerinde güvenilirlik göz 

önüne alınarak en küçük flutter hızları dikkate alınmıştır. 

Çalışmanın son aşamasını, belirsizlik tabanlı flutter analizi ile aeroelastik 

optimizasyon uygulamalarının birleşimi olarak değerlendirilebilecek kararlı 

aeroelastik optimizasyon oluşturmaktadır. Kararlı optimizasyon, 2-boyutlu kanat 

profili modeline, AGARD 445.6 kanat ve 3 istasyona sahip kanat/dış yük 

modellerine uygulanmıştır. Temel olarak, deterministik flutter çözümlerinde 

kullanılan hesaplamalı kodlar modeFRONTIER optimizasyon yazılımı ile 

birleştirilmiştir. Kararlı optimizasyon uygulamalarında, önceki bölümlerde belirsizlik 

içerdiği varsayılan parametreler bir kez daha rastgele değişken olarak tanımlanmış, 

kalan deterministik optimizasyon değişkenleri de yine deterministik olarak 

atanmıştır. Belirsizlikler, optimizasyon yazılımı yardımıyla Gauss dağılımına uygun 
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olacak şekilde Monte Carlo örneklemesi kullanılarak modellenmiştir. Hesaplama 

zamanını azaltmak amacıyla 2. mertebeden PCE yönteminden yararlanılmıştır. 2-

boyutlu kanat profili için yapılan kararlı optimizasyon uygulamasında; profilin atalet 

momenti ve kütlesi olasılıksal optimizasyon değişkeni olarak atanırken; deterministik 

değişken olarak statik offset terimi, lineer ve burulma yay katsayılarına yer 

verilmiştir. Optimizasyonun amaç ve kısıtlamaları, aynı model için yapılan 

deterministik optimizasyon uygulaması ile aynıdır. AGARD 445.6 kanadının flutter 

hızını maksimize etmek için gerçekleştirilen kararlı optimizasyonda; elastisite ve 

kayma modülleri olasılıksal değişken olarak alınırken sivrilik oranı ve ok açısı 

deterministik parametreler olmuştur. AGARD 445.6 kanat/dış yük konfigürasyonuna 

uygulanan kararlı optimizasyon uygulamasında; dış yüklerin kütleleri ve 

pozisyonları, elastisite ve kayma modüllerinin belirsizlik içerdiği varsayılırken; 

sivrilik oranı ve ok açısı bir kez daha deterministik optimizasyon değişkenleri olarak 

atanmıştır. Optimizasyonun kısıtlamalarını, dış yükler arasında olması gereken 

minimum açıklık boyu uzaklıklar oluşturmaktadır. Sözü edilen optimizasyon 

uygulamalarında elde edilen kararlı tasarımlardan, en yüksek minimum flutter hızı 

değerine sahip olan tasarım göz önüne alınmıştır. Minimum flutter hızına bağlı bir 

seçimin yapılması, ilgili aeroelastik sistemde görülebilecek en kötü senaryonun bile 

kabul edilebilir olmasını garanti ederek kararlı bir tasarım elde edilmesini 

sağlamaktadır. Kararlı optimizasyon çalışması ile flutter kriteri göz önünde 

bulundurularak; yapısal, geometrik ve aerodinamik belirsizliklerin görülmesi halinde 

dahi en etkin ve güvenilir aeroelastik tasarımların elde edilmesi sağlanmıştır. 

Bu çalışma, basit tasarımlardan 3-boyutlu kanat ve kanat/dış yük modelleri gibi daha 

karmaşık kanat yapılarına kadar giden tasarımlar için deterministik ve olasılıksal 

yöntemlerle flutter analizi yapılmasını sağladığı gibi deterministik ve kararlı 

aeroelastik optimizasyon uygulamalarına da yer vermektedir. 3-boyutlu AGARD 

445.6 kanat modeli için ortaya konulan flutter analizi metodolojisi ve flutter tabanlı 

optimizasyon uygulamaları, daha karmaşık yapılara sahip kanat modelleri için 

yapılabilecek çalışmalara bir temel oluşturmaktadır. Geliştirilen 3-boyutlu flutter 

çözümü yöntemi, parametrik olarak ifade edildiğinden başka modellere de 

uygulanmaya açıktır. Örneğin bu çalışma içerisinde de hem Goland hem de AGARD 

445.6 kanatlarına uygulanmıştır. Benzeri şekilde,  dış yüklerin yapısal etkisini göz 

önünde bulundurarak genişletilen flutter çözüm yöntemi ile daha karmaşık kanat/dış 

yük konfigürasyonları için de temel olacak bir çözüm ortaya konmuştur. Askeri ve 

sivil ihtiyaç ve talepler doğrultusunda ortaya çıkabilecek karmaşık 

konfigürasyonların flutter analizi için temel bir yöntem ifade edilmekle birlikte, bu 

yapılar için aeroelastik anlamda daha kararlı ve güvenilir tasarımların geliştirilmesi 

için de yol gösterilmiştir. 
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1.  INTRODUCTION 

The scope of the present work involves a parametric solution methodology to reach 

the optimum design for a wing/store configuration subjected to flutter phenomenon 

with application to robust aeroelastic optimization. Firstly, deterministic flutter 

analyses and aeroelastic design optimization are performed. Next, probabilistic 

flutter analyses are applied to 2 and 3-dimensional wing structures. Then, 3-

dimensional aeroelastic analysis is extended to flutter determination of wing/store 

configurations and flutter based optimization of store locations by changing number 

of stations. Uncertainty based flutter analysis is applied to optimum design of 

wing/store configuration. Finally, robust optimization studies are carried out for 2 

and 3-dimensional clean wing cases and wing/store configuration of the previous 

step. 

2-dimensional aeroelastic analysis constitutes the basis of realistic flutter 

calculations. In this work, a 2-dimensional stability analysis is performed via a 

MATLAB code to compute the speeds of aeroelastic instabilities in a quasi-steady, 

incompressible flow. The stability analysis determines the critical points where an 

aeroelastic instability can occur. By considering the geometrical features of the 

airfoil of interest, it is possible to find the speeds at which flutter, control reversal 

and divergence can be seen. 

The methods in 2-dimensional analysis are not totally compatible with 3-dimensional 

flutter analysis since the wing span effects have to be considered in 3-dimensional 

modeling. An analytical solution based on assumed mode technique is developed by 

using energy principle of Lagrange equations in 3-dimensional linear flutter analysis. 

Aerodynamic modeling involves the use of Theodorsen Function. Sweep angle 

effects in aerodynamic forces are considered in order to represent an accurate 

aerodynamic model. A methodology for determination of bending and torsional 

natural frequencies is also presented. Three dimensional flutter analysis is 

implemented in a computational code, then validated by benchmark problems from 

literature and finally applied to Goland and AGARD 445.6 wings. 
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The next step of the present work includes design optimization studies based on 

aeroelastic instability criteria for 2 and 3-dimensional wing models. Firstly, the 2-

dimensional solution code is implemented into the optimization software, 

modeFRONTIER, for the multi-objective aeroelastic optimization in order to provide 

an automatic solution in terms of input variables. The objectives of the optimization 

problem are maximizing the speeds of aeroelastic instabilities as flutter, divergence 

and control reversal while the optimization variables are linear and torsional spring 

coefficients, mass of the airfoil, moment of inertia and static offset term. Constraints 

are defined for natural boundaries of reduced coefficients and specified minimum 

boundaries of aeroelastic instabilities. Optimum solutions are obtained with MOGA-

II and NSGA-II algorithms. As a second application, the MATLAB code developed 

for the flutter solution of AGARD 445.6 is coupled with the optimization software. 

The developed code for the calculation of flutter speed is employed as a tool in 

deterministic optimization loop while modeFRONTIER is used as optimization 

software. The objective in this optimization problem is maximizing flutter speed 

while the optimization variables are taper ratio, sweep angle, elasticity and shear 

modulus. NSGA-II is preferred as the optimization algorithm. 

In the next step of the present work, uncertainty based flutter analyses are applied to 

2 and 3-dimensional wing structures. 3-dimensional case involves probabilistic 

flutter analysis of AGARD 445.6 wing. Random parameters are defined as moment 

of inertia and mass of the airfoil and aerodynamic parameters in 2-dimensional case 

while elasticity and shear modulus along spanwise direction in 3-dimensional 

analysis. The computational codes are extended to contain uncertainty effects in 

aeroelastic analyses. The uncertainties are included with MCS method by distributing 

the variables randomly with Gaussian distribution. By considering reliability, 

minimum available instability speeds are taken into account.  

The following steps of the present work concentrate on the flutter analysis and flutter 

based design optimization of AGARD 445.6 wing/store configurations. Firstly, a 

flutter analysis in the presence of external masses is performed in Goland wing/store 

configurations example from literature for validation purpose with a revised 

computational code and then applied to AGARD 445.6 wing/store configurations 

whose stores are placed in 3, 4 and 5 stations respectively along the wing span. The 

total masses of store loads are the same for each case. The code which includes the 
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structural effects of store loads is then implemented into the optimization software 

with the objective as maximization of flutter speed. The optimization variables in this 

case are defined as locations of stations for 3, 4 and 5-stations cases respectively 

while NSGA-II is again preferred as optimization algorithm. The constraints define 

minimum distances between locations of successive stations for enabling a realistic 

wing configuration in the presence of store loads. The optimum design with 

maximum flutter speed value is found as 3-stations model. 

The next section involves flutter analysis of optimum AGARD 445.6 wing/store 

configuration of previous section by considering the effects of structural and 

geometric uncertainties. The computational code involving deterministic flutter 

analysis of a wing/store configuration is extended by the way of including 

uncertainty effects while again MCS is used to generate random samples. The 

structural uncertainties involve masses of store loads and material properties while 

the station locations are defined as geometric uncertainties. Minimum flutter speed is 

taken into account as the worst case scenerio. 

Finally, flutter based robust optimization is accomplished for 2 and 3-dimensional 

clean wing models and optimum wing/store configuration of the previous sections. 

Robust optimization involves the use of deterministic and probabilistic variables of 

previous sections all together. Constraints remain the same with the previous 

deterministic optimization studies. MCS provides random distributions of 

probabilistic variables while 2
nd

 order PCE is used through MCS to reduce the 

computational time. Optimum wing designs are obtained through minimum flutter 

speeds based on robustness criterion. Optimum robust flutter speed is the maximum 

of minimum flutter speeds in robust designs. Choice of minimum flutter speed 

guarantees withstanding of the worst case scenerio by force of robustness.  Robust 

optimization study under the scope of the present work provides the most efficient 

and reliable aeroelastic design based on flutter criteria even in the presence of 

structural, geometric and aerodynamic uncertainties. 

1.1 Purpose of Thesis 

The main purpose of the present work is to represent an efficient parametric solution 

metholodogy for uncertainty based flutter analysis and flutter based deterministic and 

robust aeroelastic optimization of realistic wing structures. The parametric solution is 
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expected to provide a guideline for analysis and optimization of various types of 

clean wings and wing/store configurations from the simplest models to designs with 

high complexity levels. Flutter analysis and design optimization studies under the 

scope of the present work are vital in order to attain robust structures. Wing/store 

configurations with efficient aeroelastic designs can fulfill the needs of military and 

civilian purposes which forms one of the basic expectations from the present work. 

The present work provides robust aeroelastic design by considering the placement of 

external stores and structural properties of wing/store configurations. A mathematical 

model to the solution of both deterministic and probabilistic flutter analysis is 

developed and applied successfully. Moreover, the solution methods form a basis for 

the optimization applications leading to designs with further aeroelastic capabilities. 

Since, to the best of author’s knowledge, this study is the first attempt for analytical 

deterministic and probabilistic flutter solutions of AGARD 445.6 clean wing and 

wing/store configurations and robust aeroelastic design application, it has a leading 

role for the further aeroelastic analyses and optimization studies in various complex 

geometries due to its innovational approach. The stated robust optimization study in 

the present work provides the most efficient and reliable aeroelastic designs based on 

flutter criteria. 

1.2 Literature Review 

Aeroelasticity, as a multidisciplinary research field, investigates the behavior of an 

elastic structure in airstream and interaction of inertial, aerodynamic and structural 

forces. Aeroelastic effects must be considered in the design of aircrafts, helicopters, 

bridges, etc. Although elastic structures in aviation sector are useful since they 

provide comfortable flights for passengers even in the existence of gust loads, 

application of these structures is limited due to aeroelastic phenomena. 

Aeroelasticity deals with the effects of aerodynamic forces that can cause harmful 

oscillations with increasing magnitudes. Aeroelasticity is basically interested in 

stability and control, static and dynamic phenomena, structural loadings with respect 

to atmospheric turbulence and maneuvers. 

The most dramatic physical phenomenon in the field of aeroelasticity is flutter, a 

dynamic instability which often leads to catastrophic structural failure [1]. It happens 

when the structure extracts energy from the air stream. Flutter can affect an aircraft 
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in various ways so that it must be taken into account in order to prevent possible 

harms. Therefore, determination of flutter speed according to related flight 

conditions is an indispensable process for aeroelasticians. 

Researches in the topic of flutter are extensive including various mathematical 

models and physical knowledge. Calculation of flutter region includes several 

methods under the topics of analytical, experimental and numerical approaches.  

Analytical solutions are the bases of modern numerical calculations and they help to 

understand the physical background of a dynamic aeroelastic system. Shubov [2] 

states that the physical meaning of flutter cannot be completely understood unless an 

analytical solution procedure is applied. Both experimental and numerical studies do 

not provide sufficient knowledge to understand the full physical meaning. An aircraft 

wing can be modeled by considering 2 or 3-dimensional cases in order to calculate 

the flutter boundaries while different fidelity levels of aerodynamic solutions can be 

applied to flow regimes.  

Flutter speed can be calculated by considering subsonic, supersonic and transonic 

flight regimes. In transonic solution, nonlinear aerodynamic expressions are used and 

can be linearized to represent the general characteristics of transonic regime. 

Although aerodynamic expressions are different for each of various flight regimes, 

transonic regime is considered as the most critical case for flutter due to its nonlinear 

features.  

Analytical solutions produced for transonic regime should be verified by experiments 

in order to prove accuracy and validity of nonlinear models. Matsushita [3] used 

nonlinear mathematical model including all features of transonic regime and 

presented this type of an experimental work. 

Analytical flutter solution is basically based on three approaches. 

 Frequency Based Flutter Calculations 

 Time Based Flutter Calculations 

 Laplace Domain Based Flutter Calculations 

These methods employ different solution steps and approaches, however frequency 

based calculations are traditionally preferred. Time based approaches are known as 

"Time Marching Methods" and based on a coupled analysis including correct 

estimations in both aerodynamics and structural displacements [4]. These methods 
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are based on a coupled approach since they provide the correct estimations for 

aerodynamics of rigid wing geometries compatible with computational fluid 

dynamics and convenient finite element models with structural deformations [4]. 

Frequency based approaches contain methods as well-known p-k and V-g solutions. 

A flutter problem with the characteristics of decreasing speed is solved in transonic 

regime with p-k and V-g methods [5]. A more reliable flutter solution is applied and 

Laplace transformation feature is used in the aeroelastic method called as “The New 

g-Method” [6].  

µ-method is a frequently preferred solution method for robust flutter analysis. A 

match-point solution based on µ-method is constructed with uncertainties and noises 

affecting the equations of motion for the worst flight conditions [7]. 

Another flutter solution method contains low pressure values and determination of 

coefficients of equations of motion related to these pressure values [8]. 

Robust µ-k method is generalized based on Laplace domain and the new solution 

model is called as robust µ-p method (p shows Laplace variable in this work) [9]. 

The method obtained after generalization provides the distinction of valid 

eigenvalues in imaginary plane which is the flutter solution area. The objective is to 

find the eigenvalues at tip points since these eigenvalues construct the boundaries of 

flutter area and provide initial estimation for flutter speed.  

Solution method for a flutter problem contains an iterative process based on an 

eigenvalue problem. A method called “Complex Velocity Solution” for the 

determination of flutter speed in 2-dimensional and incompressible flow employs the 

solution of imaginary component of the speed for the eigenvalue set corresponding to 

each reduced flutter frequency values [10]. Since the eigenvalues are imaginary 

numbers, the corresponding speeds are imaginary, too. 

Laplace domain based studies provide a solution independent from time terms such 

that algebraic equations are adequate to find flutter speed [11]. Laplace 

transformation method employs an initial value problem starting from present time to 

positive infinity compatible with flutter motion in aircraft wings. An aeroelastic 

system can be modeled and solved without an iterative process by using the algebraic 

methods and control approaches that can be provided by Laplace transformation 

[12]. Algebraic approaches based on Laplace domain can produce an eigenvalue 
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problem similar to frequency based solutions. A nonlinear flutter problem based on 

Laplace variable for NACA64A006 airfoil is solved as an eigenvalue problem and 

validated [13]. Eller [14] employs a flutter analysis methodology based on 

linearization of nonlinear terms and use of aerodynamic expressions in terms of 

Laplace variable.  

Use of control approach for the stability of a system in flutter condition is another 

research topic as an extension of Laplace domain based calculations [12, 15, 16]. 

Routh-Hurwitz Control Criterion can be used to determine the stability of an 

aeroelastic system composed of coupled form of fluid and structure [15]. Another 

method for stability analysis is root locus method which is a graphical technique and 

provides correct expressions for system roots in terms of varying parameters in s-

plane and contains an approximate plot for system stability [15]. 

Root locus method has another application area based on equations of motion in 2-

dimensional flow case and starts from matrix equations in terms of Laplace variable. 

Variation of flutter speed values of an aeroelastic system with respect to variation of 

system roots can be observed graphically. Thus, root locus method is direct solution 

among analytical flutter calculation approaches [12].  

Flutter analysis in 3-dimensional cases involves use of energy principle and assumed 

mode technique in addition to the explained methods above. Assumed mode 

technique, which contains the use of shape functions and time dependent generalized 

coordinates, is also compatible with aeroservoelastic analyses. Heeg [17] uses 

assumed mode technique for aeroservoelastic modeling in a flutter suppression 

problem.     

Aerodynamic force and moment terms need to be approximated for 2 and 3-

dimensional wing cases by using several approaches. These approaches should adapt 

to the solution method (frequency based, time based, Laplace domain based) and 

flight regime (steady flow, unsteady flow). A realistic flutter solution method must 

contain unsteady aerodynamics effects. Aerodynamic models used in unsteady flight 

regime solutions can be categorized as below. 

 Aerodynamic Model with Theodorsen Function 

 Aerodynamic Model with Wagner Function 

 Rational Function Approximation 
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 Indicial Function Approach 

Theodorsen Function, which is derived for thin airfoil in oscillations with small 

amplitudes in unsteady and incompressible flight regime, is frequently used in 

frequency based flutter calculations [18]. 

Wagner Function is used to determine magnitude of lift and circulation around a 

wing with constant small angle of attack value and a speed value increasing 

impulsively from the beginning [19]. Aerodynamic lift and moment expressions in 

equations of motion for 2 and 3-dimensional wing cases can be defined in terms of 

Wagner Function [20] for both open and close loop aeroelastic systems [21]. 

Moreover, aerodynamic expressions in terms of Wagner Function can be derived in 

supersonic regimes [21]. Wagner Function has two approaches depending on the 

principle that instantaneous lift at the beginning is the half of steady lift value. 

Although mathematical expressions are different from each other, both of them 

accept that instantaneous lift value is theoretically equal to steady lift value at 

infinity. These approaches are known as Garrick and Jones Approximations. Jones 

Approximation provides more efficient aerodynamic models and more accurate 

results for aeroelastic response and flutter problems since the mathematical 

formulation is more complex with higher order terms [22]. 

Rational Function Approximation represents generalized aerodynamic forces by 

using undetermined coefficients with mathematical series approach and 

mathematical expressions in terms of Laplace variable [23]. Parameter optimization 

method which is frequently used in the solution of aeroelastic systems is based on 

optimization of undetermined coefficients in order to employ the most efficient 

aerodynamic model [16]. 

Marzocca [24] calculated flutter for incompressible, subsonic and incompressible, 

supersonic flight regimes by using Indicial Function Approach with both 

computational fluid dynamics analysis and analytical modeling [24]. Indicial 

Function Approach can involve both a linear expression in terms of downwash speed 

and a mathematical formulation depending on nonlinear characteristics of transonic 

regime.    

Uncertainties are unpreventable randomness in systems and their models. The 

parameters including uncertainties can be distributed by using the information 
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coming from the manufacturer. Uncertainties in modeling can be divided into two 

categories as dynamic and parametric uncertainties. Dynamic uncertainties are arised 

from nonlinearities and unmodeled features while the sources of parametric 

uncertainties are related to mass, damping and aerodynamics [25]. 

The sources of uncertainties can be various while the most common ones seen in 

aeroelastic systems are in structural and aerodynamic models [25]. Uncertainties 

such as in structural damping, mass distribution, flow boundary conditions, geometry 

and material properties and flight conditions have been studied in prior works in 

literature [26]. The appropriate definitions of aerodynamic uncertainties are stated in 

[27] and [28]. As stated by Danowski [26], further investigations of uncertainty 

analysis with respect to flutter problems are desired. The uncertainty in flutter speed 

is also rather sensitive to structural dynamics [29]. As an example, in the work of 

Poirion [30], uncertainties in stiffness matrix elements are included.  

Traditional flutter analysis methods are based on deterministic aeroelastic simulation 

models but nothing is exactly as designed [26]. Robust flutter analysis is based on 

calculation of flutter speed in both cases with uncertainties and large variations [31]. 

Critical flutter speed is the available lowest flutter speed. Flutter speed also becomes 

a random variable when random parameters are defined and have properties such as 

mean value and standard deviation [32]. Robust flutter analysis has great importance 

in terms of flight safety [29]. Therefore, robustness analyses with respect to 

uncertainties form a research topic with growing interest. Flutter speed can be 

obtained with a linear stability analysis for an accurate model of vehicle dynamics. It 

is also severe to determine the distributions of parameters with uncertainties [29]. 

A linear flutter analysis by considering the uncertainties in various parameters is 

performed by Potter [29] and the worst case flutter speed is taken into account within 

the context of robust analysis while parameters including uncertainties are selected as 

natural frequencies and modal parameters of damping terms.  

Borglund [33] performs a robust flutter analysis by considering the uncertainties in 

aerodynamics and mass properties. The analysis makes use of p-k method 

eigenvalues sets. μ-p analysis is used to directly calculate the boundaries of the same 

eigenvalues sets. μ-p and p-k methods produce similar results in the presence of 

various uncertainties. 
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The new development in the aeroelastic analysis considering model uncertainty is 

stated μ-p method. The basic principle of this method is to obtain the uncertainties 

with a singular value (μ) if flutter determinant for any flutter eigenvalue p can be 

zero in the presence of these uncertainties. Therefore, the eigenvalue in complex 

plane and the boundaries of damping can be computed to perform a robust flutter 

analysis. This method makes use of a standard linear flutter analysis in order to 

obtain deterministic values and variations. Perturbations in only complex valued 

aerodynamics are included in [27, 34, 35]. Both real and complex uncertainties in 

structural and aerodynamic properties are included in the work of Borglund [33]. 

μ-method in the work of Lind [25] provides accurate information about robustness as 

long as an appropriate mathematical model can be set up. The difficulty in this 

method is to determine the uncertainty operators. An approach to overcome this 

difficulty is to validate the model by using transfer function data in frequency 

domain. μ-method holds importance for both control and aeroelasticity. It is a severe 

tool for flutter analysis since it provides the determination of flutter margines similar 

with p-k method and definitions of robust flutter margines in the presence of 

modeling errors. The margines calculated for flutter are the worst case scenerios. 

Prazenica [36] gives information about flutterometer which is a tool used during 

flight tests. It is based on linear flutter analysis procedure by using a model with 

uncertainty definitions. Uncertainty information is useful since it comes from flight 

tests. 

Flutterometer contributes to the test by obtaining flutter speed [25]. Methods using 

analytical predictions try to form a computational model without flight data.  

Analytical prediction methods can be summarized as following. 

1) 1
st
 order perturbation analysis 

2) Stochastic robustness 

Monte Carlo (MC) methods from stochastic robustness class make use of repeated 

random sampling for random variables to reach the results. They basically contain 

simulation of a physical system while randomly changing the parameters [26].  

MCS provides the most inexpensive solution to obtain the probabilistic flutter speed 

[30]. MCS is the most reliable method in stochastic analysis. It provides accurate 
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solution for a system with a deterministic solution. MCS is rather a lot appropriate 

for modeling random uncertain parameters [30]. MCS can include many types of 

random variations. The general flowchart for MCS [37] is shown in Figure 1.1. 

  

Figure 1.1 : General flowchart of MCS 

Results obtained from MC methods can be analyzed statistically. Danowski [26] 

states that “The optimal number of runs is that which is a minimum number but 

produces relatively identical statistical results if more runs are made”. Statistical 

results of MCS are used when deterministic solution is impossible or infeasible [26]. 

MCS is a frequently used method in uncertainty quantification in a stochastic 

framework however it becomes nonconvergent in computationally expensive 

problems. Polynomial Chaos Expansion (PCE) is preferred or reduced order models 

can be used in more complex systems [30]. PCE defines the uncertainties as 

orthogonal polynomials while giving optimal exponential convergence for Gaussian 

inputs [38]. The resulting deterministic systems are solved with known methods. [32] 

As an example, Poirion [30] states a work based on MCS by making use of chaos 

expansion of random matrices. 

Marques [39] considers MCS, perturbation and interval analyses in stability 

calculation of Goland wing based on eigenvalues containing Euler aerodynamics 

effects. Kurdi [40] determines flutter boundaries of heavy version of Goland
+
 wing 

and wing/store configuration with uncertainties in structural dimensions. Random 

variables are distributed with MCS while flutter speed is calculated by using the 

linear aerodynamic theory of ZONA6 code. 
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In recent years, extensive reseach has been done in the robust analysis of aeroelastic 

systems. Limit Cycle Oscillation (LCO) and flutter characteristics of a wing modeled 

as a cantilever beam are investigated in transonic regime with time domain 

simulations and bifurcation analysis for various positions and numbers of store loads 

[41]. Robust LCO and flutter analyses are also accomplished with computational 

codes such as MSC/NASTRAN, ANSYS, ZONA Software, etc. [42, 43, 44, 45, 

46,47, 48]. Graham [49] determines flutter boundaries of an aeroservoelastic system 

with robust analyses based on μ-method.  

Robust design optimization in aeroelastic systems is an ongoing research topic in the 

field of aeroelasticity and robust optimization. There are several considerable works 

in robust aeroelastic design optimization [50, 51, 52, 53, 54], however structural 

uncertainties are not considered in many of the works.  A robust design optimization 

of a backswept wing considering structural uncertainties such as the thicknesses of 

upper and lower skins, trailing edge, lugs, stringers and webs so as to minimize the 

structural weight is represented by Wan [55]. 

The main principle of a robust analysis is to determine the worst condition for the 

current design. Kim [56] performs a gradient-based robust nonlinear aeroelastic 

optimization for NACA0012 airfoil in order to investigate the system performance in 

the worst-case scenario. Witteveen [57] performs a robust design optimization by 

using Simplex Elements Stochastic Collocation (SESC) method matching with MC 

sampling in order to distribute the uncertainties.  

The present work involves robust optimization of 2 and 3-dimensional structures by 

employing MCS. Three dimensional clean wing and wing/store configurations 

consist of AGARD 445.6 model. This work is the first attempt for robust aeroelastic 

design optimization of AGARD 445.6 wing to the best of author’s knowledge.  
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2.  TWO DIMENSIONAL AEROELASTIC ANALYSIS 

This section involves development of an aeroelastic analysis methodology for a 2-

dimensional airfoil to obtain the boundaries of static and dynamic instabilities. The 

considered instabilities are flutter, divergence and control reversal. The solution 

procedure is based on a primary approach since it makes use of simple aerodynamic 

theory in quasi-steady, incompressible and inviscid flow. The main purpose is to 

form an aeroelastic solution which can be extended to use in more realistic wing 

structures and flow conditions. Proposed solution method is implemented into a 

computational code and validated with benchmark problems from literature. 

2.1 Development of Aeroelastic Solution Methodology 

Formulation of an aeroelastic problem in 2-dimensional case requires convenient use 

of Lagrange and energy equations in order to obtain equations of motion. The basic 

approach involves the use of open loop dynamics and stability analysis procedure. 

The derived formulation can be used for divergence, control reversal and flutter 

instabilities since it is based on control theory. A suppressing control approach for 

aeroelastic effects contains two main phases as determination of open loop dynamic 

characteristics and design of compensator. Determination of open loop dynamic 

characteristics step is based on obtaining the region or speed in which an instability 

happens and it is compatible with the content of the present work since it can provide 

a solution for divergence, control reversal and flutter as aeroelastic instabilities.  

The airfoil is modeled by using linear and torsional springs as shown in Figure 2.1. 

Equations of motion which describe both plunging and pitching motions are derived 

from Lagrange equations. Lagrange equations can be written in a form as shown in 

(2.1) where t is time variable, T and V are kinetic and potential energies respectively. 

Q and q show generalized forces and coordinates.  

i

i i i

d T T V
Q

dt q q q

       
       

       
 (2.1) 
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Generalized forces in Lagrange equations include aerodynamic terms that can vary 

according to the flight regime at interest. In this work, to simplify the assuming 

control approach, aerodynamic forces for lift and pitching moment are computed for 

inviscid, incompressible and quasi-steady case.  

 

Figure 2.1 : Typical section geometry. 

Kinetic and potential energy equations can be written for the reference geometry. 

21

2
T mU  (2.2) 

2 21 1

2 2
hV k h k   (2.3) 

where U represents free-stream velocity while m is total mass, kh and k  are linear 

and torsional spring coefficients for plunging and pitching motions respectively. 

Plunging and pitchnig deflections are defined by h and  while 0 shows the initial 

pitching deflection. 

Convenient energy terms for Lagrange equations can be extended by using 

geometrical relations and a matrix system that describes the reference model. The 

equations of motion for a reference aeroelastic system are defined as in (2.4) and 

(2.5). In (2.4) and (2.5), h and   define plunging and pitching motions respectively 

while b is half chord distance, ( / )x S mb 
 

is static offset term, S is static 

moment and I  is moment of inertia. L and My  show aerodynamic lift force and 

pitching moment. 

( )hmh mbx k h L t    (2.4) 
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( )ymbx h I k M t       (2.5) 

This section is based on open loop characteristics of 2-dimensional dynamic systems. 

Therefore, it will be more practical to define the system of equations with Laplace 

variable, s . Time related terms can be transformed into Laplace domain to obtain 

algebraic equations. Equations of motion in time domain can be constituted in matrix 

form. 

2 2

2

2

1

  ( )( )( )

( )( )( )
1 0 1

L

y

M

x

qC L tr r h th t
r

M tx tt
qC

r



 













 
  

                         
 

 (2.6) 

where  is radius of gyration and   is the ratio of natural frequencies. CL  and CM  are 

aerodynamic lift and moment coefficients for pitching deflection while q  is 

normalized dynamic pressure. Definitions of reduced coefficients are given in (2.7), 

(2.8), (2.9) and (2.10). 

2

I
r

mb


   (2.7) 

h







  

(2.8) 

h
h

k

m
   (2.9) 

k

I






   (2.10) 

Time dependent matrix equations are transformed into Laplace domain so that 

necessary algebraic equations can be constructed for an aeroelastic system. 

Application of Laplace transformation includes the use of displacement terms h  and 

 in Laplace domain. By using Laplace transformation procedure, related equations 

for time dependent terms can be obtained. 

( ) ( )h t h s  (2.11) 
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( ) ( )t s   (2.12) 

2( ) ( ) (0) (0)h t s h s sh h    (2.13) 

2( ) ( ) (0) (0)t s s s       (2.14) 

By assuming that all displacements and their derivatives in initial case are zero, the 

following definitions must be used. 

2( ) ( )h t s h s  (2.15) 

2( ) ( )t s s   (2.16) 

Then, the equations of motion in Laplace domain can be defined. 

2 2 2

2

2

2

1

  ( )( ) ( )

( )( )( )
1 0 1

L

y

M

x

qC L sr r s h s h s
r

M sx ss s
qC

r



 













 
                              

 

 (2.17) 

where reduced dynamic pressure, reduced speed and airfoil mass ratio can be defined 

as follows. In (2.20),  is density of airfoil. 

2

2

U
q

r




  (2.18) 

U
U

b



  

(2.19) 

2

m

b



  (2.20) 

In the presence of control surfaces in both trailing and leading edge of the airfoil, the 

aerodynamic terms must be obtained by considering their effects. In (2.21) and 

(2.22), LC   
and LC  are aerodynamic lift coefficients and, MC   

and MC  are 

aerodynamic moment coefficients for the control surfaces in trailing and leading 

edges respectively.   and  define the deflections of control surfaces in trailing and 

leading edges while 0 shows the initial pitch deflection. 
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2 2 2

0( )L L LL U bC U bC U bC
  

            (2.21) 

2 2 2 2 2 2

0( )y M M MM U b C U b C U b C
  

           (2.22) 

Obtaining control reversal speed value requires the use of control surfaces actively. 

Thus, the effects of control surfaces in both trailing and leading edges must be 

considered. General definition for the aeroelastic system is given in (2.23). 

2 2 2

2

02

2

1

1 0

0 1    
1 0 1

L LL L

M M M

M

x h

qC qCqCr r qCs h h
r

x qC qC qCs
qC

r



   



   









 



  
                                                 

 
(2.23) 

Such control approach requires a state-space representation of the system of 

equations. General form of a state-space representation is given in (2.24). 

1 1y a y b x   (2.24) 

If the following equality is assumed:  

1y y  (2.25) 

Then: 

2 1y y y   (2.26) 

Another type of state-space form is: 

2 2 2y a y b x   (2.27) 

General system can be derived by using the following equation. 

2 1 1y a y b x   (2.28) 

System of equations for the airfoil model can be re-written in terms of second 

derivatives after obtaining the equations in a simplified form in time domain by 

making use of some matrix operations and mathematical calculations. 

   
2 2 2 4x x

h

hh
A B







 
 

     
      

    
  

 (2.29) 
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2-degrees of freedom are used in flutter and divergence calculations for simplicity, 

however control reversal analysis has to include 4-degrees of freedom. 

Displacements of control surfaces do not have a considerable effect on both flutter 

and divergence speed although control reversal is directly related to control surfaces 

of an airfoil.  

System of equations in Laplace domain can be determined for flutter and divergence 

as follows: 

2 2 2

2 2

2 2

2

1
( )

( ) 0

( ) 0
(1 )

L

M

x
s s qC

r r h s

x s
s s qC

r







 









 
  

        
      
 

 (2.30) 

The stability analysis can be applied for flutter and divergence cases by obtaining the 

characteristic equation of the system. Characteristic equation of the system is 

determined in (2.31). 

 
2

4 2 2 2

2
( ) 1 1 ( ) (1 ) 0L M M

x
C s s q C x C s qC

r


   



 
 

            
 

 (2.31) 

Roots of a characteristic equation are known as system poles in stability analysis. 

The case which roots place in imaginary axis is the critical transition between stable 

and unstable states. In aeroelastic stability analysis, the point that indicates this 

transition is known as critical speed value. Critical flutter and divergence speeds can 

be obtained via the roots of related characteristic equation. The imaginary 

components of the roots give the critical speeds. Flutter and divergence speed values 

differ from each other due to the geometrical features of the airfoil. Flutter is seen 

before divergence in most cases but this is not necessary. 

In order to find the value of control reversal speed, the system can be written in state-

space form by using the characteristic equation with the effects of control surfaces. 

2 2
11 12 13 14

2
21 22 23 24( )

h

T T T Ts h r

T T T TC ss








 
 

      
    

      
 
 

 (2.32) 
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where    ( 1 to 2 and  1 to 4)ijT i j   shows the transfer functions related to 

aeroelastic phenomena. ijT is a transfer function including effects of ith terms as 

output and jth terms as input. 

By considering the stability of each transfer function, both divergence and control 

reversal speeds can be obtained via root locus plots. The root locus plots are 

compatible with stability analysis of the dynamic systems since a pole in the 

imaginary axis shows the critical point between stable and unstable plants. 

Transfer functions which can be obtained from the system of equations for 

aeroelastic instabilities are known as transfer functions of SISO (Single-Input Single-

Output) systems and can be used for further applications of control analysis in the 

field of aeroelastic control. The transfer functions are listed as below [58]. 

1. 2

11 1hh MT T s qC


     

2. 
2

12 2h L

x s
T T qC

r 






     

3. 2

13 2
1 1 1

L M M

h L M

M L L

C C C x
T T qC qC s

C C C r

  

 

  







    
         

    
    

 

4. 2

14 2
1 1 1

L M M
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T T qC qC s
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 

  


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    
         

    
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5. 
2
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T T
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



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6. 
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T T
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8. 2 2
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1
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C x
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






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


  
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The reduced speed value can be obtained by using hT   for control reversal since hT 

indicates the stability of h displacement that is related to lift force effected by control 
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surface displacement in trailing edge,  . Control reversal speed can be determined 

by solving for the roots of this transfer function. 

2.2 Validation of 2D Aeroelastic Analysis 

The presented 2D aeroelastic solution technique is implemented in a in-house 

MATLAB code and applied to benchmark problems chosen from literature as 

follows. 

Parameters of the 1
st
 benchmark problem are given by Dowell et al. [58] in Table 

2.1. Here, a shows the distance between center of gravity and elastic axis of the 

airfoil. 

Table 2.1 : Design parameters of 2D benchmark problem-I. 

Parameter Value 

a  -0.2 

x  0.2 
2r  0.25 


 20 


 

0.2 

/ 2t b
 

0.51% 

/I b
 

3.92 

LC
  2  

MC
  1.885 

LC
  2.487 

MC
  -0.334 

LC
  -0.087 

MC
  -0.146 

 

The wing mass is assumed to be evenly distributed so that the center of mass lies at 

the midchord. In order to assure that flutter occurs before divergence, the elastic axis 

location is shifted ten percent forward of the midchord, which is representative of a 

4.5 degree forward fiber sweep if constructed of common graphite epoxy materials in 

a unidirectional laminate. The flaps are both 10% of the chord [58]. 

The reduced speeds of flutter, divergence and control reversal are calculated by using 

the developed in-house code and are presented in Table 2.2. 
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Table 2.2 : Validation of 2D aeroelastic solution-I. 

 Flutter Divergence Control Reversal 

Reference Speed
[58] 

1.90 2.47 2.40 

Calculated Speed 1.9638 2.4779 2.3992 

Relative Error
 

3.36% 0.32% 0.03% 

 

The problem in the work of Munteanu [59] is used as the 2
nd

 benchmark problem for 

2-dimensional aeroelastic analyses. The design parameters are defined in Table 2.3: 

Table 2.3 : Design parameters of 2D benchmark problem-II. 

Parameter Value 

a  -0.6 

x  0.2466 

hk  2844.4 N/m 

k  3.525 Nm/rad 

m
 

12.3870 

I  0.065 

b 0.135 m 

LC
  6.28 

MC
  -0.635 

LC
  3.358 

MC
  12.39 

 

By using the same Matlab code, the speed values of aeroelastic instabilities can be 

calculated as shown in Table 2.4. Calculations for 2 benchmark problems give 

satisfactory results with small relative errors for static and dynamic aeroelastic 

instabilities, then the presented methodology for a 2-dimensional model is validated. 

Table 2.4 : Validation of 2D aeroelastic solution-II. 

 Flutter Divergence Control Reversal 

Reference Speed
[59] 

11.243 m/s - - 

Calculated Speed 11.3612 m/s 57.6617 m/s - 

Relative Error
 

1.0513% - - 
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3.  THREE DIMENSIONAL FLUTTER ANALYSIS 

This section presents development and validation of a methodology for flutter 

solution of 3-dimensional wing structures. The methodology basically incorporates 

effects of wing span and variations in design parameters such as taper ratio and 

sweep angle of the wing. The solution methodology also includes determination of 

bending and torsional natural frequencies since they are dependent on the variations 

of wing parameters. Finally, a solution procedure to obtain natural frequencies and 

flutter speeds of 3-dimensional wings is developed, then validated by using two 

examples from literature and finally applied to well-known aeroelastic benchmark 

configurations, Goland and AGARD 445.6 wings so as to further carry out a realistic 

flutter analysis. 

3.1 Flutter Solution Methodology 

An analytical solution based on assumed mode technique for determination of flutter 

speed of a 3-dimensional wing is presented in the current work. Assumed mode 

technique basically involves the correct representation for replacing displacements 

with mode shapes and generalized coordinates. Equations of motion can be derived 

with Lagrange equations including energy equalities and convenient aerodynamic 

expressions for the flight regime. Flutter boundary is calculated by introducing V-g 

solution based on artificial damping term. Displacement of a wing is expressed by 

product of assumed modes and generalized coordinates. Convenient equations for 

bending and torsional displacements can be obtained in series forms. General 

representation of a 3-dimensional aeroelastic model is shown in Figure 3.1 [60]. 

Several assumptions are made to construct a 3-dimensional linear flutter analysis by 

considering sweep angle effects and their details are given as follows. 

1) The first bending and the first torsional modes are assumed for flutter calculations 

since they have the major effects on flutter boundary. Their effects will also be 
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examined in Goland and AGARD 445.6 wing applications. Existence of flutter 

motion due to the first modes will be justified. 

2) The design parameters which depend on cross-sectional geometry are assumed to 

be constant in order to prevent to solve nonlinear differential equations. Average 

values are used for all of them in calculations. 

3) Euler-Bernoulli beam equations are used to calculate natural frequencies. Their 

feasibility in AGARD 445.6 will be justified by the example studies from literature 

and calculated results of the present work. 

4) Theodorsen aerodynamics is considered for aerodynamic load calculation since 

both Goland and AGARD 445.6 wings are sufficiently thin. 

5) One pole approach is used for Theodorsen function since it gives accurate results 

between a specific reduced frequency range where flutter typically occurs. 

 

Figure 3.1 : General representation of 3D aeroelastic model. 

Equations of motion in assumed mode flutter analysis are given in (3.1) and (3.2). 

4

4

( , )
( , ) ( , ) ( , )y

w y t
mw y t S y t EI L y t

y



  


 (3.1) 

2

2

( , )
( , ) ( , ) ( , )y y y

y t
I y t S w y t GJ M y t

y





  


 (3.2) 

where Sy is static moment and Iy is moment of inertia of the wing structure while EI 

and GJ define bending and torsional rigidities. 
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The displacement terms can be treated as separable variables where

( , ) ( ) ( )F x y f x g y   is general definition for a separable variable which is only 

function of x and y. Similarly, the displacements of a cantilever beam can be defined 

as follows. 

( , , ) ( ) ( , )Rw x y t w t x y   (3.5) 

( , , ) ( ) ( , )Rx y t t x y     (3.6) 

where ( , )x y and ( , )x y are mode shapes for bending and torsional motions 

respectively while w
 
and 

 
show bending and torsional deflections depending on x 

and y-coordinates and time. These displacement terms can be obtained by using 

series approach. The design parameters which are depending on cross-sectional 

geometry are assumed to have constant values. Average values are calculated and 

used in flutter equations. Thus, variations of bending and torsional deflections with 

respect to time and distance along spanwise direction are only investigated.  

1

( , ) ( ) ( )
m

i i

i

w y t y w t


   (3.7) 

1

( , ) ( ) ( )
n m

i i

i

y t y t  




   (3.8) 

w w x   (3.9) 

1 1

( , ) ( ) ( ) ( ) ( )
m n m

i i i i

i i

w y t y w t x y t  


 

      (3.10) 

where w and   indicate bending and torsional displacements respectively while m 

and n-m total number of assumed modes for bending and torsional modes. The first 

bending and the first torsional modes are assumed in the present work since the 

major effects on flutter boundary come from the first modes. This case will be 

justified by Goland and AGARD 445.6 wings flutter problems. 

Three dimensional aeroelastic modeling requires the use of Lagrange equations. 

Kinetic and potential energy equations must be defined by considering 3-dimensional 

effects. Kinetic energy can be written as in (3.11). 
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2 21 1

2 2
T mV mw   (3.11) 

For a 3-dimensional structure, kinetic energy equation becomes: 

21
( ( , , ))

2
T w x y t dm   (3.12) 

Differential mass elements can be defined as follows: 

dm dA  (3.13) 

dA dxdy  (3.14) 

dm dxdy  (3.15) 

Kinetic energy equation can now be defined with a more simplified form. 

 
2

0 0

1
( , , ) ( , )

2

l c

T w x y t x y dxdy    (3.16) 

Same assumption involving the use of average values is considered.  

2 2 2

0

1 1 1

2 2 2

l

T dxw xdxw x dx dy    
 

   
 
  

(3.17) 

By using the definitions along the span of the wing and about the elastic axis of the 

profile, the energy equation can be simplified by using below definitions: 

 Mass: m dx  

 Static unbalance: yS xdx  

 Moment of inertia: 
2

yI x dx  

Now, the obtained 3 equations become: 

1

( , ) ( ) ( )
m

i i

i

w y t y w t


   (3.18) 

1

( , ) ( ) ( )
n m

i i

i

y t y t  




   (3.19) 
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2 2

0

1 1 1

2 2 2

l

y yT mw S w I dy 
 

   
 
  (3.20) 

Related terms placed in kinetic energy equation can be shown as follows: 

i. 
1

( , ) ( ) ( )
m

i

i

w y t y w t


  

ii. 
1

( , ) ( ) ( )
n m

i

i

y t y t  




  

iii. 2

1 1

( , ) ( ) ( ) ( ) ( )
m m

i j i j

i j

w y t y y w t w t 
 

  

iv. 2

1 1

( , ) ( ) ( ) ( ) ( )
n m n m

i j i j

i j

y t y y t t    
 

 

  

If these terms are used in kinetic energy equation, then (3.21) can be obtained. 

1 1 1 10 0 0 0

1 1 0 0

1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2

1
( ) ( ) ( ) ( )

2

l c l cm m m n m

i j i j i j y i j

i j i j

l cn m n m

i j y i j

i j

T w t w t m y y dy w t t S y y dy

t t I y y dy

    

   



   

 

 

 



   

  

 

(3.21) 

This energy equation can now be used for a reference station of the wing. Reference 

station involves the cross-section whose properties are considered to determine 

flutter speed. Reference station provides minimum flutter speed among all stations 

along wing span and it is 75% of span distance away from the wing root [58, 60]. 

The computational code of the present work involves a station-based flutter analysis. 

The analysis contains flutter calculations in 10
5
 stations along wing span while the 

station with minimum flutter speed is selected as reference station. The addressed 

reference station is the same place stated by Dowell et. al [58] and Bisplinghoff et. al 

[60]. Thus, the reference station will be considered to be 75% span distance away 

from wing span for flutter calculations of wing/store configurations to reduce the 

computational time instead of using a station-based analysis. The definitions below 

show the transformations of general displacement expressions to displacements in 

reference station. 

 Rw w : Bending displacement with respect to reference station 

 R  : Torsion displacement with respect to reference station 
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In terms of the displacements of reference station and by using orthogonality, kinetic 

energy equation can be finally written as in (3.22). 

2 2 2 2

0 0 0

1 1
( ) ( ) ( ) ( )

2 2

l l l

R R R y R yT w m y dy w S y y dy I y dy           (3.22) 

General formulation of strain (potential) energy along wing span is defined in (3.23). 

2 22

2

0

1 ( , ) ( , )

2

l
w y t y t

U EI GJ dy
y y

     
          
  (3.23) 

In (3.23), the related derivations can be written as: 

 
2 2 2

2 2 2

( , ) ( )
( ) ( ) ( )

w y t d y
y w t w t

y y dy




 
 

 
 (3.24) 

( , ) ( )
( ) ( ) ( )

y t d y
y t t

y y dy

 
  

 
    

 (3.25) 

For the reference station of the wing: 

 Rw w  

 R   

The new form of the strain energy becomes: 

2 22
2 2

2

0 0

1 ( ) 1 ( )

2 2

l l

R R

d y d y
U w EI dy GJ dy

dy dy

 


   
    

  
   (3.26) 

By using the definitions of free vibration frequencies for bending and torsional 

modes, final form of the strain energy equation can be obtained by using below 

definitions [60]: 

i. 
1

2
2

2 2

2

0 0

1 ( ) 1

2 2

l l

w

d y
EI dy m dy

dy


 

 
 

 
   

ii. 
1

2

2 2

0 0

1 ( ) 1

2 2

l l

y

d y
GJ dy I dy

dy



 

 
 

 
   

1 1

2 2 2 2 2 2

0 0

1 1
( ) ( )

2 2

l l

w R R yU w m y dy I y dy        (3.27) 
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where 
1w  and 

1
 are the first bending and torsional natural frequencies. 

General form of Lagrange equation is summarized again in (3.28). 

i

i i i

d T T U
Q

dt q q q

   
   

   
 (3.28) 

The generalized coordinates and forces can be classified as follows: 

1) Bending Motion: 1 Rq w and 1 wQ Q  

2)     Torsion Motion:  2 Rq  and 2Q Q  

Final form of kinetic energy equation is again given in (3.29). 

2 2 2 2

0 0 0

1 1
( ) ( ) ( ) ( )

2 2

l l l

R R R y R yT w m y dy w S y y dy I y dy           (3.29) 

Then, the necessary derivative terms for Lagrange equation are determined by using 

the final kinetic energy definition: 

i. 
1

0
R

T T

q w

 
 

 
 

ii. 
2

0
R

T T

q 

 
 

 
 

iii. 2

1 0 0

( ) ( ) ( )

l l

R R y

R

T T
w m y dy S y y dy

q w
   

 
  

     

iv. 2

2 0 0

( ) ( ) ( )

l l

R y R y

R

T T
w S y y dy I y dy

q
   



 
   

     

Final form of strain energy equation is again given in (3.30). 

1 1

2 2 2 2 2 2

0 0

1 1
( ) ( )

2 2

l l

w R R yU w m y dy I y dy        (3.30) 

where: 

i. 
1

2 2

1 0

( )

l

w R

R

U U
w m y dy

q w
 

 
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    

ii. 
1

2 2

2 0

( )

l

R y

R

U U
I y dy

q
  



 
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    

Now, Lagrange equations can be applied for bending and torsional motions. 
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1) 
1

2 2 2

0 0 0

( ) ( ) ( ) ( )

l l l

R R y w R w

d
w m y dy S y y dy w m y dy Q

dt
     

 
   

 
    

1

2 2 2

0 0 0

( ) ( ) ( ) ( )

l l l

R R y w R ww m y dy S y y dy w m y dy Q           

2) 
1

2 2 2

0 0 0

( ) ( ) ( ) ( )

l l l

R y R y R y

d
w S y y dy I y dy I y dy Q

dt
       

 
    
 

    

1

2 2 2

0 0 0

( ) ( ) ( ) ( )

l l l

R y R y R yw S y y dy I y dy I y dy Q              

The equations of motion for the wing model are described in (3.31) and (3.32). 

1

2 2 2

0 0 0

( ) ( ) ( ) ( )

l l l

R R y w R ww m y dy S y y dy w m y dy Q           (3.31) 

1

2 2 2

0 0 0

( ) ( ) ( ) ( )

l l l

R y R y R yw S y y dy I y dy I y dy Q              (3.32) 

Generalized aerodynamic forces are defined in (3.33) and (3.34). 

0

( , ) ( )

l

wQ L y t y dy   (3.33) 

0

( , ) ( )

l

Q M y t y dy    (3.34) 

Generalized aerodynamic forces are related to aerodynamic lift and pitching moment. 

Theodorsen aerodynamics is considered in the present work for unsteady flow 

regime. Definitions presented by Theodorsen for lift and pitching moment terms are 

given in (3.35) and (3.36) [60] while final lift and moment equations are obtained as 

in (3.37) and (3.38). wL , L , wM and M  are aerodynamic functions and can be 

defined in terms of reduced frequency, k, and Theodorsen function, C(k) where i 

indicates the complex variable. 

2 2 2 1
( , ) 2 ( )

2
R R R R R RL y t b w Ui ba UbC k i w U i b a         

  
           
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(3.35) 
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  
    
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(3.36) 
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 (3.37) 
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   
      

   

     
          
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 (3.38) 

2
1 ( )w

i
L C k

k
   (3.39) 

2

1 2 2
( ) ( )

2

i i
L C k C k

k k k
      (3.40) 

1

2
wM   (for subsonic cases) (3.41) 

3

8

i
M

k
    (3.42) 

( )C k  can approximately be taken as in (3.43) with one pole approach [58]. This 

approach gives accurate results between k=0 and k=0.5 which defines the range 

flutter typically occurs [61]. 

0,4544
( ) 1

0.1902

ik
C k

ik


 


 (3.43) 

3.1.1 Determination of bending and torsional natural frequencies 

System of flutter equations requires use of the first bending and torsional natural 

frequencies since the first bending and the first torsional modes are assumed for 

flutter calculation. Natural frequencies in bending and torsional motions have to be 

solved distinctly since the related equations have different physical meanings and 



32 

mathematical expressions. In the present work, a metholodogy based on Euler-

Bernoulli beam equations are presented and considered for AGARD 445.6 wing 

since next sections involve deterministic and robust aeroelastic design optimization 

applications. Any variation in design parameters can severely affect natural 

frequencies as well as flutter boundary. The natural frequency calculations involve 

the effects of design variables.  

Bending and torsional natural frequencies can be obtained by using bending and 

torsional motion equations for a cantilever beam. The considered equations are 

Euler-Bernoulli beam formulas.  

Use of Euler-Bernoulli beam equations define a general case for the present work, 

however feasibility of beam formulas is examined for Goland and AGARD 445.6 

wing applications since they involve calculation of natural frequencies as well as 

flutter boundaries.  

Equation of motion for bending is defined in (3.44).

 

2 2 2

2 2 2
( , )

w w
A EI q y t

t y y

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  

   
 (3.44) 

where A is cross-sectional area of the beam while q shows the external force. 

In free vibration case, external forces must be equal to zero, then: ( , ) 0q y t   

2 2 2

2 2 2
0

w w
A EI

t y y


   
  

   
 (3.45) 

By using separation of variables approach in partial differential equations, the 

bending displacement term can be divided into two discrete functions. 

( , ) ( ) ( )w y t Y y Z t   (3.46) 

These function can be used in equation of bending motion. 

( ) ( ) ( ) 0AY y Z t EIY Z t    (3.47) 

If  a variable is defined for simplicity as: 
4 EI

A



  

Then, the equation becomes: 
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4 ( ) ( ) ( ) ( ) 0Y y Z t Y y Z t     (3.48) 

4 2( ) ( )

( ) ( )

Y y Z t

Y y Z t
 


    (3.49) 

where   is an arbitrary constant, the use of 2 is because of satisfying the related 

boundary conditions. 

1) 
4 2( )

( )

Y y

Y y
 


   

1 2 3 4( ) sin( ) cos( ) sinh( ) cosh( )Y y A y A y A y A y        (3.50) 

where: 

2
4

4





  (3.51) 

2) 2( )

( )

T t

T t
   

1 2( ) sin( ) cos( )T t B t B t    (3.52) 

Boundary conditions in bending motion for a cantilever beam which has its clamped 

end at 0y  : 

i. (0, ) 0 w t    (Deflection) 

ii. (0, ) 0 yw t   (Slope) 

iii. ( , ) 0 yyw L t   (Bending moment) 

iv. ( , ) 0 yyyw L t   (Shear) 

where L indicates total span distance of the wing. 

After applying the boundary conditions and solving the characteristic equation for 

constant, the definition of the first bending natural frequency can be shown as in 

(3.53). 

1

2

4
1.875w

EI

AL



  (3.53) 
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Equation of motion for torsion is defined in (3.54). 

2

2p

T
I

y t




 


 
 (3.54) 

In (3.54), T indicates torsion while Ip is polar moment of inertia. 

Equation of torsion is given in (3.55). 

T GJ
y





 (3.55) 

If we combine above equations: 

2 2

2 2

( , ) ( , )pIy t y t

y GJ t

  


 
 (3.56) 

2

1 pI

GJ




  (3.57) 

Under these definitions, the new equation of torsional motion becomes: 

2 ( ) ( ) ( ) ( )Y y T t Y y T t    (3.58) 

2 2( ) ( )

( ) ( )

Y y T t

Y y T t
 


    (3.59) 

where  is an arbitrary constant similar with bending solution. 

1) 
2 2( )

( )

Y y

Y y
 


   

1 2( ) sin cosY y C y C y
 

 

   
    

   
 (3.60) 

2) 2( )

( )

T t

T t
   

   1 2( ) sin cosT t D t D t    (3.61) 

Boundary conditions in torsion for a cantilever beam which has its clamped end at 

0y  : 

1) (0, ) 0 t   (Twist Angle) 
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2) ( , ) 0 T L t   (Torsion) 

After applying the boundary conditions and solving the characteristic equation, the 

definition of the first torsional natural frequency is determined in (3.62).  

1

p

GJ

L I






  

(3.62) 

3.1.2 Determination of final form of flutter solution 

After obtaining aerodynamic and structural terms, they can be combined in order to 

construct a set of equations to calculate flutter speed. 

The solution procedure is based on damping term effect for various reduced 

frequencies. In flutter analysis, an artificial damping term can be added to the natural 

frequencies so that the flutter speed in related reduced frequency value can be 

determined. While iterating the solution for various reduced frequency values, there 

is a region that we have zero damping which indicates the flutter motion. The region 

where we obtain no damping determines flutter velocity. Bending and torsional 

natural frequencies have to be re-written with respect to artificial damping terms. 

 
1 1

2 2 1w w ig    (3.63) 

 
1 1

2 2 1 g      (3.64) 

where g  and g indicate artificial damping terms for bending and torsional motions 

respectively. 

For simplicity, the following assumption for artificial damping term, g, can be used. 

wg g g   (3.65) 

Now, a variable, Z, whose complex component is composed of damping term can be 

defined for the solution of the system. 

 1

2

1Z ig




 
  
 

 (3.66) 
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Im( )

Re( )

Z
g

Z
  (3.67) 

In flutter condition, the system frequency is equal to flutter frequency: 

f   (3.68) 

0g   (3.69) 

In order to obtain the final flutter equations, the displacement terms have to be 

defined by using harmonic motion assumption which is the boundary of flutter 

region: 

( ) i t

R Rw t w e   (3.70) 

( ) i t

R Rt e    (3.71) 

Then, the new form of the flutter equations is given in (3.73) and (3.74) by defining a 

reduced parameter for the distance along wing span. In (3.74) and (3.75), bR  defines 

semi chord distance of reference station.  

y
y

L
  (3.72) 

1

2 21 1

2 2

2

0 0

31 1

3

0 0

1
1 (1 )

1 1
0

2

wR
h

R R R

R y h

R R

w b
ig m dy L dy

b b b

b
S dy L L a dy

b b



 

 

  






     
       

      

     
         

     

 

 

 (3.73) 

 
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3

0 0

2 1

2
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0

4 21

2
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1 1

2

1
1 (1 )

1 1
0

2 2

R
y h h

R R R

R y

R

R h h

R

w b
S dy M L a dy

b b b

ig I dy
b

b
M M L a L a dy

b



 

 



 

 

 





     
        

     

   
      

     

       
                       

 





  

There can be some simplifications in natural frequency terms. 

(3.74) 
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1 1 1

1

22 2

2(1 ) (1 )
w w

ig ig Z




  


  

    
        

    

 (3.75) 

1

2

(1 )ig Z




 
  

 
 (3.76) 

New system of equations becomes: 

 
21 1

2 2 2

2

0 0

31 1

3

0 0

1
1

1 1
0

2

R
h

R R R

R y h

R R

w b
Z m dy L dy

b b b

b
S dy L L a dy

b b


  


  






  
    
   

     
         

     

 

 

 (3.77) 

 

 

31 1

3

0 0

1

2

4

0

4 21

2

0

1 1

2

1
1

1 1
0

2 2

R
y h h

R R R

R y

R

R h h

R

w b
S dy M L a dy

b b b
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b
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 

 


 


 





     
        

     

 
  

 

       
                      

 





 (3.78) 

Sweep angle, Λ, basically affects the aerodynamic loads. Aerodynamic terms under 

sweep angle effect can be defined as in (3.79) and (3.80). 

3 2 ( ) 1
( , ) cos ( ) ( ) ( )

2

R
h R h

w t
L y t b y L t y L L a

b
    

   
       

   
 (3.79) 

 

4 2

2

4 2

( ) 1
( , ) cos ( )

2

1 1
cos ( ) ( )

2 2

R
h h

R h h h

w t
M y t b y M L a

b

b t y M M L a L a

  

   

   
       

   

      
           

       

 (3.80) 

Then, by using the definitions above, a final system of equations for flutter motion 

can be determined.
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0

0

Rw
A B

b
C D



 
    

    
    

 

 (3.81) 

Flutter determinant is given in (3.82). 

0
A B

C D
  (3.82) 

where: 

 
21 1

2 2 2

2

0 0

1
1 cos h

R R
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A Z m dy L dy

b b
  



 
     

 
   (3.83) 
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      
                   





 (3.86) 

3.2 Validation of Flutter Analysis 

The derived flutter solution methodology is validated by using two benchmark 

problems from literature [60]. 

The design parameters of two wings are given as in Table 3.1 [60].  

The given properties are used in flutter equations in order to calculate the flutter 

boundary. By using the computational code prepared for 3-dimensional flutter 

analysis, the flutter speed is calculated as compatible with the given procedure. 

Flutter speeds and relative errors of each of two models are shown and compared to 

Bishiplinghoff et. al [60] in Table 3.2. 
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Table 3.1 : Design parameters of benchmark wings. 

Parameter Wing-1 Wing-2 

  30
o 

45
o 

m  0.0161 slugs/ft
 

0.0138 slugs/ft
 

2/ Rm b  6.19
 5.50

 

2/y RI mb
 0.23

 0.23
 

/y RS mb
 -0.004

 -0.224
 

Rb b
 0.333

 0.333
 

a
 

-0.02
 

0.20
 

1w  66  44  

1


 186  184  

 

Table 3.2 : Flutter speeds and relative errors of benchmark wings. 

Wing Reference [60]
 

Calculated Error 

Wing-1 277 ft/s
 

279 ft/s
 

0.8% 

Wing-2 270 ft/s 268 ft/s 0.7% 

3.3 Flutter Analysis of Goland Wing 

The developed methodology is applied to calculate flutter boundaries of a well-

known aeroelastic benchmark problem using Goland wing. The wing, which is 

treated as a cantilever beam, is first introduced in the work of Goland and Buffalo 

[62]. Solid model of Goland wing, whose aspect ratio is 3.3, is considered in the 

present work. Extensive research has been carried out to solve the flutter problem of 

Goland wing with various methods such as Rayleigh-Ritz analysis, Galerkin solution 

as analytical techniques beside computational approaches [40, 64]. 

In the present work, natural frequencies and the flutter speed of Goland wing are 

calculated by using the reference values of design parameters in Table 3.3 [61]. In 

Table 3.3, mass and moment of inertia of store loads are given in terms of their unit 

span distance. Computed results for flutter speed, flutter frequency and relative error 

with respect to the reference work [62] are given in Table 3.4.  

The geometry of Goland wing is shown in Figure 3.2 [63] while the variation of 

flutter frequency with respect to damping term is shown in Figure 3.2. 
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Figure 3.2 : Geometry of Goland wing. 

Table 3.3 : Design parameters of Goland wing. 

Parameter Value
 

L  20 ft
 

b  3 ft
 

/EI m  
6 331.7 10  lbft slug  

/ yGJ I  
6 31.23 10  lbft  

m  0.746 slug / ft  

yI  
21.943 slugft / ft  

yS  0.447 slugft/ft  

  
30.0001 slugs / ft  

 

Table 3.4 : Flutter solution results for Goland wing. 

Parameter Present Work
 

Goland [62] Relative Error 

fU  374.7543 mph
 

385 mph 2.6612 % 

f  65.5484 rad/s
 67.4 rad/s 2.7471 % 

 

The current result is satisfactory with respect to the work of Goland [62]. Both flutter 

speed and flutter frequency calculations agree well with the reference values. Thus, 

the solution methodology is again validated by a well-known aeroelastic benchmark 

problem and can be applied to a more realistic wing configuration as in the next part. 

The next section is flutter analysis of AGARD 445.6 wing. Flutter analysis of 

wing/store configurations in Section 6 will be also based on the presented flutter 

solution technique.  
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Figure 3.3 : Flutter frequency-damping term relation for Goland wing. 

3.4 Flutter Analysis of AGARD 445.6 Wing 

The wing structure in the next analysis is AGARD 445.6 which is the first aeroelastic 

configuration tested by Yates in the Transonic Dynamics Tunnel at NASA Langley 

Research Center [65]. AGARD 445.6, which is made of laminated mahogany, is a 

swept-back wing with a sweep angle of 45 degrees, taper and aspect ratios of 0.66 

and 1.65 respectively. The airfoil used in this wing is symmetrical NACA65A004 

profile [65]. The wing consists of two models as solid and weakened models. Wall-

mounted weakened model is considered in this work. 

Studies in dynamic aeroelastic analysis and flutter calculations of AGARD 445.6 

wing are extensive. Several methods have been used to investigate the flutter 

boundaries. In the work of Beaubien [66], computational fluid dynamics is coupled 

with computational structural dynamics and time marching simulations are 

performed by using Euler and Reynolds Averaged Navier Stokes equations to 

calculate flutter speed. Lee-Rausch [67] performed linear stability analysis by 

calculating generalized aerodynamic forces for various values of reduced 

frequencies. Flutter characteristics are obtained by using V-g analysis which is a 

similar approach with the present work. Allen [68] shows that the flutter calculation 

of AGARD 445.6 with linear methods provides reasonable results since the design 

and aerodynamics of the wing are simple. 
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Figure 3.4 : Geometry and solid model of AGARD 445.6. 

Flutter analysis for AGARD 445.6 wing is performed by using the pre-determined 

natural frequencies and flutter equations. In flutter calculation procedure, the 

necessary design parameters for reference station of the wing are taken from CAD 

model constructed in CATIA V5 by Nikbay et. al [69] and determined from the 

known geometrical properties of the standard configuration. The basic properties 

taken into account for solution are summarized in Table 3.5. 

Euler-Bernoulli beam equations are considered for  natural frequency determination. 

Euler-Bernoulli solution was previously investigated in AGARD 445.6 case by 

Kamakoti [70], Kamakoti and Shyy [71], Kamakoti et. al [72]. The modeling can be 

based on use of plate/shell elements, however bending and torsional natural 

frequencies calculated with beam assumption agree well with the results calculated 

by considering plate elements [70]. Beam elements are chosen since they provide an 

advantegous solution by involving a simplified procedure [71] while still providing 

rather accurate results. The results provided by Kamakoti [70] with 10 beam 

elements for the first bending and the first torsion modes are almost equivalent to the 

results in the work of Yates [73] which employs 120 plate elements. Therefore, 

Euler-Bernoulli equations are used to calculate natural frequencies of AGARD 445.6 

in the present work.   

Material properties of weakened model for natural frequency determination are 

determined from the experimental work of Yates [65]. 

The results of the flutter analysis for Mach number of 0.9011 are summarized in 

Table 3.6 and 3.7. Firstly, natural frequencies and relative errors with respect to the 

related experimental work are calculated.
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Table 3.5 : Design properties of AGARD 445.6 wing . 

Property Value
 

  45
o

 

m  1.693 kg
 

  0.66
 

2/ Rm b  9.4104
 

2/y RI mb  0.3336
 

/y RS mb  0.3229
 

yE  3671 MPa
 

yG  409 MPa
 

 

where  indicate taper ratio of the wing. Ey and Gy are elasticity and shear modulus 

values along spanwise direction. 

Table 3.6 : Natural frequency solution for AGARD 445.6 wing. 

Parameter Calculated (Hz)
 

Experimental (Hz)
 

Relative Error 

1w
  9.5409

 
9.5992 0.61% 

1
  38.4975

 38.1650 0.87% 

 

Natural frequency values well agree with experimental results [65]. Then, the next 

step is flutter analysis. AGARD 445.6 has a sweep angle as 45
o
 that has to be 

considered in the related equations of motion derived before. 

Solutions for flutter calculation and percentage error with respect to experimental 

results are in Table 3.7. Also, the flutter solutions performed by Kolonay [74] have 

been listed for comparison. 

Table 3.7 : Flutter solution results for AGARD 445.6 wing. 

Parameter Calculated
 

Experimental [65] Kolonay [74] Relative Error 

fU  308.4513 m/s
 

296.7 m/s 299.97 m/s 3.96% 

f  104.2489 rad/s
 101.1 rad/s 99.0 rad/s 3.11% 

 

Variation of flutter frequency with respect to damping term is shown in Figure 3.4. 

The calculated flutter boundaries for the flight regime with Mach number of 0.9011 

well-agree with the experimental result. 

 

 

 



44 

 

Figure 3.5 : Flutter frequency-damping term relation for AGARD 445.6. 
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4.  AEROELASTIC DESIGN OPTIMIZATION 

This section presents design optimization of 2 and 3-dimensional wing structures in 

order to delay aeroelastic instabilities. Firstly, a 2-dimensional airfoil model is 

optimized in order to maximize the speeds of aeroelastic instabilities while the 

second work involves flutter based design optimization of a 3-dimensional wing 

structure. Solution procedure is developed in MATLAB codes and then implemented 

into modeFRONTIER software so as to enable an automatic optimization procedure 

for both cases. MOGA-II and NSGA-II are used in 2-dimensional case while NSGA-

II is preferred for flutter speed maximization of 3-dimensional wing structure, 

AGARD 445.6. 

4.1 Multi-Objective Design Optimization of  Two Dimensional Aeroelastic 

Systems  

One of the main interests in the present work is to enhance the design quality of 2-

dimensional models by maximizing the speeds of aeroelastic instabilities. Aeroelastic 

design optimization is applied to the first benchmark problem of Section 2 in order to 

achieve a more efficient design. 

Design parameters of the considered benchmark problem [58] are given in Table 2.1. 

Optimization problem includes 3 objective functions, 5 optimization variables and 5 

constraints. Objectives are maximizing the speeds of flutter, divergence and control 

reversal phenomena while optimization variables are defined as linear and torsional 

spring coefficients, static offset, moment of inertia and mass of the airfoil.  

The optimization problem can be described as in (4.1) to (4.8). 

     max ,    max ,    maxf d r
s S s S s S

V V U
  

 
(4.1) 

1 1( ) 1 0,         ( )g s r g s     
(4.2) 
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2 2( ) 1 0,         ( )g s g s     (4.3) 

3 3( ) 1 0,         ( )
(2.3992 1.15)

rU
g s g s   


 (4.4) 

4 4( )  1 0,        ( )
(1.9638 1.15)

fV
g s g s   


 (4.5) 

5 5( ) 1 0,         ( )
(2.4779 1.15)

dV
g s g s   


 (4.6) 

 ,     L uS s s s s  (4.7) 

 , , , ,hs k k x I m    (4.8) 

where 1( )g s , 2 ( )g s , 3( )g s , 4 ( )g s  and 5( )g s  are inequality constraints while Vf, Vd 

and Ur are the speeds of flutter, divergence and control reversal respectively. 1( )g s  

and 2 ( )g s indicate the natural boundaries for reduced parameters because of physical 

limitations of the aeroelastic problem while 3( )g s , 4 ( )g s  and 5( )g s describe a level 

of speeds that satisfy the safety requirements for a selected safety factor as 1.15. 

Ls  and Us  indicate the lower and upper limits of optimization variables that are 

chosen depending on given reference wing design values. Lower and upper limits for 

optimization variables are determined as stated in the Table 4.1. 

Table 4.1 : Values of optimization variables in 2-dimensional case. 

Variable Lower Limit ( Ls )
 

Upper Limit ( Us ) Reference Study 

hk  1.0 r*
 5.0 r

 
- 

k  1.0 r
 7.0 r - 

x  
0.1 0.3 0.2 

I  
1 kgm

2 3 kgm
2 

1.2037 kgm
2 

m
 

7.5 kg 12.5 kg 19.2580 kg 

 

* indicates that r can be an arbitrary real number since the exact value of k  and  hk  

cannot be determined by using reference parameters. These variables are related to 

the frequencies  and h . The significant part for aeroelastic instability 
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determination is the ratio of these frequencies. Their distinct values are not used to 

obtain reduced speeds. Thus, the distinct values for k  and  hk  are not obtained. The 

lower and upper limits are taken as 1.0 and 5.0 for hk  and 1.0 and 7.0 for k in 

optimization software. In order to provide reasonable frequency ratios, 2 ( )g s

constraint is defined in the optimization problem. 

For optimization process, the computational code that is used to find flutter, 

divergence and control reversal speeds is modified is adopted to the optimization 

problem. In the second step, this code is coupled with the optimization software, 

modeFRONTIER. The optimization software provides automatic iterations with 

respect to design parameters. MOGA-II and NSGA-II are used as optimization 

algorithms. The results obtained from both of the optimization algorithms are 

compared to each other in order to determine the differences between them. 

The optimization flow-chart for the multi-objective task is shown in Figure 4.1. The 

flow-chart actually contains optimization variables, constraints, optimization 

algorithm and objective functions.  

 

Figure 4.1 : Workflow of 2-dimensional aeroelastic optimization problem. 

In the first optimization process, MOGA-II is used as optimization algorithm with 

1000 Design of Experiments (DoE). There are 100000 total number of designs with 
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95483 feasible designs and 4517 infeasible designs. The solution took about 12 hours 

23 minutes on a platform as Intel(R) Core(TM) 2 CPU 6400@2.13GHz processor 

and 2GB of RAM on Microsoft Windows 7 64-bit operating system.Set of optimum 

solutions is defined with respect to each objective of the problem. Designs that 

maximize each objective respectively are considered in the optimum solutions set. 

Optimum designs are included in Table 4.2. 

Table 4.2 : Optimum designs with MOGA-II algorithm. 

Design No 
fV  

dV  rU  m  

1
 

3.5337
 

4.2603
 

3.7878
 

12.499 kg 

2
 

2.3146 4.5574 3.7878 12.494 kg 

3 1.7577 2.5772 2.1869 7.50 kg 

 

A final optimum design is selected by considering the failure point of the structure. 

Since flutter is seen at lowest speed values, a design that maximizes the flutter speed 

is desired. Thus, Design-1 is selected since it has the maximum flutter speed value. 

The optimum design provides gains in terms of all desired criteria as shown in Table 

4.3. 

Table 4.3 : Comparison of initial and optimum designs with MOGA-II algorithm. 

 
fV        dV       rU  m  

Initial Design
 

1.9638 2.4779 2.3992 19.258 kg 

Optimum Design
 

3.5337 4.2603 3.7878 12.499 kg 

Relative Change 79.94% 71.93% 57.88% -35.10% 

 

In the second optimization process, NSGA-II is used as optimization algorithm with 

1000 DoE. There are 100000 total number of designs with 95156 feasible designs 

and 4844 infeasible designs. The solution took about 11 hours 15 minutes on a 

platform as Intel(R) Core(TM) 2 CPU 6400@2.13GHz processor and 2GB of RAM 

on Microsoft Windows 7 64-bit operating system. The results of selected optimum 

designs for the second optimization process are completely same with the first case. 

Design-1 is selected since it has the maximum flutter speed value. The optimum 

design provides gains in terms of all desired criteria as defined in Table 4.5. After 

completing the optimization processes, the optimum results obtained from each of 

the optimization algorithms can be compared. 

 



49 

Table 4.4 : Comparison of initial and optimum designs with NSGA-II algorithm. 

 
fV        dV       rU  m  

Initial Design
 

1.9638 2.4779 2.3992 19.258 kg 

Optimum Design
 

3.5337 4.2603 3.7878 12.499 kg 

Relative Change 79.94% 71.93% 57.88% -35.10% 

 

Table 4.5 : Comparison of MOGA-II and NSGA-II algorithms. 

Optimization 

Algorithm 

Flutter Speed 

Increase (%)
 

Divergence 

Speed Increase 

(%) 

Control 

Reversal Speed 

Increase (%) 

Mass Decrease 

(%) 

MOGA-II
 

79.94 71.93 57.88 35.10 

NSGA-II
 

79.94 71.93 57.88 35.10 

 

The only comparison criterion between two optimization algorithms is their solution 

times since obtained optimum results are completely same. NSGA-II reduces the 

computational time while producing the same optimum results. Then, it is more 

advantageous to use NSGA-II algorithm in further optimization applications of the 

present work. 

The optimum design with NSGA-II has the following values in terms of optimization 

variables. 

Table 4.6 : Design variables of 2-dimensional optimum model. 

hk  k
 x  I  m

 
1.00 7.00 0.10 3.00 kgm

2
  12.499 kg 

4.2 Flutter Based Aeroelastic Design Optimization of AGARD 445.6 

Flutter based aeroelastic design optimization of AGARD 445.6 wing involves the 

variation of taper ratio, sweep angle and material properties along the spanwise 

direction in order to increase the flutter boundary. 

The MATLAB code developed for the flutter solution is embedded in 

modeFRONTIER optimization software. The objective in this optimization problem 

is maximizing flutter speed while the optimization variables are taper ratio, sweep 

angle, elasticity and shear modulus of the wing. Natural frequencies are also 

calculated with respect to optimization parameters since modal analysis is a part of 

flutter solution. The optimization problem is defined in (4.15) to (4.21). 
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max  ( )f
s S

U s


 
(4.15) 

 ,  L US s s s s     (4.16) 

 , , ,y ys E G   (4.17) 

0.65 1.0   (4.18) 

o o0 60    (4.19) 

2000MPa 3000MPayE   (4.20) 

200MPa 300MPayG   (4.21) 

NSGA-II is chosen as optimization algorithm with 1000 DoE. The optimization took 

about 50 minutes 43 seconds on a platform as Intel(R) Core(TM) 2 CPU 

6400@2.13GHz processor and 2GB of RAM on Microsoft Windows 7 64-bit 

operating system. 

A design with maximum flutter speed of 361.8843 m/s is given as optimum solution 

among 100000 feasible solutions. Design parameters in optimum structure and initial 

configuration and optimization workflow in modeFRONTIER are shown in Figure 

4.2 and Table 4.7. 

Table 4.7 : Design variables of initial and optimum  AGARD 445.6 models. 

Design 
 

  
yE  yG

 
Initial [63] 0.66 45

o 
3671 MPa 409 MPa 

Optimum 0.65 59.65
o 

2020.85 MPa 299.02 MPa 

 

Optimum design provides considerable improvement in flutter boundary of AGARD 

445.6 wing. Since flutter is a catastrophic aeroelastic phenomenon, any increase in its 

boundary provides a more reliable flight. The optimum flutter speed and 

improvement with respect to analytical solution are expressed in Table 4.9. The 

optimum result provides a more reliable design by producing approximately 17% of 

increase in flutter boundary. 
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Figure 4.2 : Optimization workflow for AGARD 445.6. 

Table 4.8 : Flutter results of initial and optimum AGARD 445.6 models. 

Design Calculated
 

Optimized 

Flutter Speed (m/s) 308.4513 361.8843 

Improvement (%) -   17.3230% 
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5.  UNCERTAINTY BASED AEROELASTIC ANALYSIS 

In this section, aeroelastic analyses are performed by considering uncertainties in 

structural, geometric and aerodynamic parameters for 2 and 3-dimensional wing 

structures. The first part includes 2-dimensional aeroelastic analyses with 

uncertainties in structural parameters and aerodynamics. 3-dimensional flutter 

analysis by considering the effects of structural and geometric uncertainties forms the 

second part. All random parameters are distributed with Gaussian distribution and 

modeled with 10
5
 samples by using MCS method. 

Traditional uncertainty quantification methods in aeroelastic analysis is based on 

choosing the best design among the model set by introducing the best distribution for 

random parameters. Sources of uncertainties are various [75]. 

 Initial and boundary conditions 

 Geometric features 

 Parametric variations in physical parameters 

 Modeling errors 

Deterministic methods can be adequate for small variations while increased amount 

of uncertainties must require probabilistic methods. Safety factor approach used in 

deterministic methods can cause design of heavy aircraft structures. Design 

requirements in a deterministic model are defined strictly and any variation in 

parameters can probably violate the constraints, however system reliability can be 

increased with probabilistic analyses.  

Many types of probability distributions can be used to model the random parameters. 

Gaussian distribution is preferred in this work within the context of MCS. Gaussian 

distribution is used when small variations in random parameters are considered [75]. 

A random variable with Gaussian distribution is given in (5.1) [75] where ( )Xf x is 

the probability density function of the random variable, x. x and x are mean value 
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and standard deviation of x. Gaussian distribution, also known as normal distribution, 

of x is shown as ( , )x xN   . 

2

1 1
( ) exp ,    

22

x
X

xx

x
f x x



 

  
       
   

 (5.1) 

 

Figure 5.1 : Properties of Gaussian distribution. 

MC methods make use of repeated random sampling for probabilistic variables to 

reach the random results. They basically contain simulation of a physical system 

while randomly changing the parameters [75]. Computational process of MC 

methods can be summarized as: 

 A distribution type for random variables is selected. 

 A sampling set is created from the distribution. 

 Simulations are generated by using the sampling set. 

The accuracy of MCS is directly related to number of samples as defined in (5.2) 

[75].  

1
 MCS Accuracy

n
  (5.2) 

In order to represent more accurate aeroelastic systems in the present work, 10
5
 

samples are used for each random variable in probabilistic analyses. The accuracy of 
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MCS is 0.3162% under these conditions. Variations are considered with respect to 

COV approach where: 

%x

x

COV



  

(5.3) 

In this thesis, COV is taken as either 1% or 5% in all uncertainty based aeroelastic 

analyses. The first uncertainty problem is applied for 2-dimensional aeroelastic case 

while initial design of AGARD 445.6 wing is the topic of  3-dimensional flutter 

analysis with uncertainties.  

5.1 Uncertainty Based 2-Dimensional Aeroelastic Analysis 

2-dimensional aeroelastic analysis with uncertainties in structural and aerodynamic 

parameters is carried out in order to obtain the robust speeds of flutter, divergence 

and control reversal phenomena. Random variables are defined as mass of the airfoil, 

moment of inertia and aerodynamic parameters. 1%COV   and 5%COV 

approaches are used to model uncertainties. Minimum, maximum and mean speed 

values are obtained while minimum speeds are taken into account by considering 

robustness. The robust speed values are compared to the deterministic values. The 

uncertainty analyses are applied to the first initial airfoil model of Section 2. 

5.1.1 COV=1% case 

Table 5.1 : Statistical information about 2-dimensional case with 1%COV  . 

Parameter Det. Value Min. Value Mean Value Max. Value 

Lc


 6.2832 6.0022 6.2834 6.5683 

Lc


 2.4870 2.3871 2.4868 2.5859 

Mc


 1.8850 1.8031 1.8850 1.9628 

Mc


 -0.3340 -0.3488 -0.3340 -0.3201 


 

1.2260 kg/m
3 

1.1754 kg/m
3
 1.2260 kg/m

3
 1.2854 kg/m

3
 

I  
1.2037 kgm

2
  1.1530 kgm

2
 1.2037 kgm

2
 1.2590 kgm

2
 

m 19.2580 kg 18.3229 kg 19.2584 kg 20.2208 kg 

fV  1.9638 1.9008 1.9639 2.0278 

dV  2.4780 2.3819 2.4781 2.5697 

rU  2.3993 2.3109 2.3993 2.4835 
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The minimum, mean and maximum values of random parameters as a result of 10
5
 

samples and deterministic results are summarized in Table 5.1.  

5.1.2 COV=5% case 

In the second case, COV is taken as 0.05 in order to model the random parameters. 

The minimum, mean and maximum values of random variables and deterministic 

values are summarized in Table 5.2. 

Table 5.2 : Statistical information about 2-dimensional case with 5%COV  . 

Parameter Det. Value Min. Value Mean Value Max. Value 

Lc


 6.2832 4.7878 6.2845 7.6069 

Lc


 2.4870 1.9414 2.4873 3.0367 

Mc


 1.8850 1.4806 1.8851 2.3126 

Mc


 -0.3340 -0.4071 -0.3340 -0.2519 


 

1.2260 kg/m
3 

0.9155 kg/m
3
  1.2258 kg/m

3
 1.4841 kg/m

3
 

I  
1.2037 kgm

2
 0.9593 kgm

2
 1.2037 kgm

2
 1.5004 kgm

2
 

m 19.2580 kg 15.0782 kg 19.2584 kg 24.0024 kg 

fV  1.9638 1.7035 1.9656 2.4249 

dV  2.4780 2.0526 2.4810 3.0895 

rU  2.3993 1.9894 2.4016 2.9743 

 

The resulting distributions for aeroelastic instabilities are shown in Figure 5.2, 5.3 

and 5.4 with comparisons of COV=1% and COV=5% cases. 

 

Figure 5.2 : Flutter speed histograms with COV=1% and COV=5%. 
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Figure 5.3 : Divergence speed histograms with COV=1% and COV=5%. 

 

Figure 5.4 : Control reversal speed histograms with COV=1% and COV=5%. 

The deterministic solutions do not seem to be reliable when compared to the results 

of uncertainty based aeroelastic analyses. The minimum speed values must be 

considered for reliability. The decreases in speeds of aeroelastic instabilities are 

shown in Table 5.3 for COV=1% and COV=5% cases. COV=1% approach is a more 

likely case since the variations of uncertainties are relatively small and appropriate to 
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the design of such a 2-dimensional simple aeroelastic configuration however 

COV=5% approach can represent a very uncertain case.   

Table 5.3 : Comparison of uncertainty based aeroelastic analyses. 

Case 
fV  

dV  rU  

Deterministic
 

1.9638 2.4779 2.3992 

COV=1%
 

1.9008 2.3819 2.3109 

COV=5%
 

1.6535 2.0526 1.9894 

5.2 Uncertainty Based 3-Dimensional Flutter Analysis 

This section addresses flutter analysis of a 3-dimensional wing structure by 

considering uncertainties in structural properties. Random parameters are defined as 

elasticity and shear modulus along spanwise direction. 1%COV   and 5%COV   

approaches are again used to model random variables. The robust flutter analysis is 

applied to initial reference design of AGARD 445.6 wing. As the principle of robust 

analysis, the minimum flutter speed is taken into consideration for the worst-case 

scenario. Robust flutter speed is compared to deterministic value.  

5.2.1 COV=1% case 

Uncertainties are included by using 1%COV  . Minimum, mean and maximum 

values of random parameters and deterministic result are summarized in Table 5.4. 

Table 5.4 : Statistical information about AGARD 445.6 case with 1%COV  . 

Parameter Det. Value Min. Value Mean Value Max. Value 

yE  3671 MPa 3520.20 MPa 3671 MPa 3834.0 MPa 

yG  409 MPa 390.98 MPa 409.01 MPa 428.46 MPa 

fU  308.4513 m/s 296.7518 m/s 308.4606 m/s 319.9008 m/s 

 

The distribution of flutter speed is so close to the normal distribution since small 

variations are considered in random parameters. 

5.2.2 COV=5% case 

COV=0.05 is used to generate random samples for uncertainty based flutter analysis. 

Minimum, mean and maximum values of random parameters and deterministic result 

are summarized in Table 5.5.  
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The distribution of flutter speeds for COV=1% and COV=5% cases is shown in 

Figure 5.5. 

 

 

Figure 5.5 : AGARD 445.6 flutter speed histograms. 

Table 5.5 : Statistical information about AGARD 445.6 case with 5%COV  . 

Parameter Det. Value Min. Value Mean Value Max. Value 

yE  3671 MPa 2871.80 MPa 3671 MPa 4512.80 MPa 

yG  409 MPa 315.24 MPa 408.99 MPa 504.80 MPa 

fU  308.4513 m/s 290.6844 m/s 308.4763 m/s 324.0019 m/s 

 

The deterministic flutter solution again does not seem to be reliable due to the results 

of uncertainty based analyses. The results of COV=1% approach as a more probable 

case and COV=5% approach as an extraordinary case due to possibilities of high 

quality manufacturing techniques of today’s world are considered and compared to 

deterministic result in Table 5.6. Flutter speed in COV=5% approach can be 

considered for high level of safety in structural design of AGARD 445.6 wing. 

Table 5.6 : Comparison of uncertainty based flutter analyses. 

Case 
fU  

Deterministic
 

308.4513 m/s 

COV=1%
 

296.7518 m/s 

COV=5%
 

290.6844 m/s 
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Producing a reliable design for both 2 and 3-dimensional wing structures subjected to 

structural, geometric and aerodynamic uncertainties requires robustness based 

analysis.  

Deterministic aeroelastic analyses and optimization applications can form a 

mathematical basis for further studies but they are not sufficient for a realistic and 

reliable design. Besides robust aeroelastic analysis, optimization studies must even 

be based on robustness criterion. Robust aeroelastic optimization is accomplished by 

considering 2 and 3-dimensional clean wing structures in Section 7. 
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6.  FLUTTER BASED OPTIMIZATION AND UNCERTAINTY BASED 

FLUTTER ANALYSIS OF WING/STORE CONFIGURATIONS 

The present work involves deterministic and probabilistic flutter analysis and flutter 

based design optimization of wing/store configurations with external loads placed in 

various stations along the wing span. One of the main purposes of the present section 

is to define a general solution metholodology for the flutter analysis of wing/store 

configurations where the store loads can be as missiles, launchers or fuel tanks. The 

parametric solution is expected to provide a guideline for further analyses and 

optimization studies in various types of wing/store configurations ranging from 

simplest models to designs with high complexity levels including fighter aircraft 

wings. Aeroelastic design optimization aims to reach the best configuration with 

optimum placement of stores along wing span while the aim of robust analysis is 

demonstration of the worst condition for the current design. An example 

representation of a wing/store configuration is given in Figure 6.1 [76]. 

 

Figure 6.1 : General representation of a wing/store configuration. 

The flutter solution involves structural effects as masses and inertias of store loads to 

determine the critical speed. The effects of pylon structure and store aerodynamics 

are neglected. The solution procedure is firstly validated by using Goland wing and 

an external store which is placed in different stations along wing span as in the work 
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of Fazelzadeh [77]. The validated solution is then used to analyze flutter for AGARD 

445.6 wing/store configurations. Analyses are applied to two different models 

composed of standard and previously optimized AGARD 445.6 clean wings with 

store loads. The objectives are to determine the best locations for the store loads in 

order to maximize the flutter speed of the wing. In flutter analysis of AGARD 445.6 

wing/store models, the store loads are modeled as point masses and their inertias are 

neglected due to lack of technical information. Structural effects of external stores 

are taken into account as point masses. The loading configurations are divided into 

three categories as 3, 4 and 5-stations cases. Total masses of store loads are kept the 

same in each configuration. Since the main purpose is to obtain the best wing/store 

configuration for a “given” clean wing model, initial and optimum designs of clean 

AGARD 445.6 wing are compared to each other in order to investigate if the 

optimum clean wing model is still the best design even with store loads. The best 

configuration based on flutter criterion with optimum station number and the type of 

wing are selected.  

Finally, an uncertainty based flutter analysis is performed for the best design in order 

to examine the available worst case scenerio by considering robustness. Uncertainties 

in locations and masses of store loads, material properties as elasticity and shear 

modulus values of the wing structure are considered before performing the flutter 

analyses. Analyses are performed for 1%COV   and 5%COV   cases respectively 

for variations in material properties and store masses and 0.25%COV   for 

variations in locations with 510  generated samples by MCS. Location parameters are 

given a different COV due to the physical properties of the AGARD 445.6 wing. A 

greater COV value as in other parameters causes infeasible designs such that the store 

locations exceed the wing span. Minimum available flutter speeds are taken into 

account for both cases due to the basic principle of robust design. Deterministic and 

probabilistic flutter speeds are compared to each other in order to examine the effects 

of structural and geometric uncertainties. 

6.1 Solution and Validation of Flutter Analysis of Wing/Store Configurations 

The flutter solution technique for 3-dimensional wings is extended so that the 

structural effects of store loads along the wing span could be examined. Structural 

properties of external loads such as the masses and inertias are considered as store 
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effects in the flutter methodology. The additional effects of store masses are added 

through mass density values and the location where the related masses place while 

inertia moments of the store loads are included by considering the span positions. 

The updated flutter coefficients of the solution determinant with store loads effects 

are summarized in (6.1) to (6.4). 

 
21 1

2 2 2

2

0 0

1
1 ( ) cosw s h

R R

b
A Z m m dy L dy

b b
  



 
      

 
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where mw and ms indicate total mass of wing and store load.  
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where Iwy and Isy are total moment of inertias of the wing and store 

load respectively. By using the definition for span distance of store 

load, Ls, (6.5) and (6.6) are obtained. 

 

s s sm m L   (6.5) 

sy sy sI I L   (6.6) 

 and  are mass and moment of inertia of store loads per their unit spans.s sym I

 

The remaining solution is the same with the presented procedure for flutter 

calculation of 3-dimensional clean wing models. 

The extended flutter solution methodology including the effects of external stores is 

applied to the aeroelastic benchmark problem of Goland wing. The work of 
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Fazelzadeh [77] including external store effects in flutter boundary of Goland wing is 

chosen as comparative study to validate the methodology.

 
Reference values of the example model are shown in Table 6.1 while the locations of 

external stores and the experimental [78] and numerical flutter speed results [77] are 

shown and compared with the calculated results in Table 6.2.  

Table 6.1 : Reference values of example Goland wing/store model. 

Parameter Value 

L
 

1.2192 m 

b
 

0.1016 m 

wyEI
 

2403.76 Nm
 

/ wyGJ I
 

2198.58 Nm
 

wm
 

11.2942 kgm

 

wyI
 

0.0036 kgm
 

. .e a
 

43.7%
 

. .c g
 45.4%

 


 
31.224 kgm

 

sm
 

1.578 kg
 

syI
 

20.0185 kgm
 

 

Flutter speed-damping term plots are shown in Figure 6.2 to 6.5. 

 

Figure 6.2 : Flutter speed-damping term relation for ys=0.2794 m. 
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Figure 6.3 : Flutter speed-damping term relation for ys=0.4318 m. 

The obtained results are satisfactory with respect to relative error values for each 

configuration when compared to both numerical [77] and experimental [78] 

solutions. 

 

Figure 6.4 : Flutter speed-damping term relation for ys=1.1684 m. 
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Figure 6.5 : Flutter speed-damping term relation for ys=1.2192 m.  

Table 6.2 : Flutter results for example wing/store configuration. 

 

Store 

Location 

 

Numerical 

Result [77] 

 

Experimental 

Result [78] 

 

Calculated 

Solution 

 

 

Relative Error 

wrt Experiment 

0.2794 m 100.89 m/s 98.75 m/s 96.0679 m/s 2.7160 % 

0.4318 m 124.05 m/s 116.43 m/s 113.1926 m/s 2.7806 % 

1.1684 m 112.17 m/s 112.17 m/s 121.7199 m/s 8.5138 % 

1.2192 m 91.44 m/s 97.54 m/s 94.3449 m/s 3.2757 % 

6.2 Flutter Based Optimization of Initial AGARD 445.6 Wing/Store 

Configuration 

Three flutter based design optimization works are performed by considering 3, 4 and 

5 stations respectively along the wing span. The objectives are both to maximize the 

flutter speeds while the distances along span measured from the root of the wing for 

each station are defined as optimization variables. Optimum distances of the stations 

that maximize the flutter speed of the wing are obtained by considering equal mass 

for each of them.  

The design parameters for AGARD 445.6 initial wing model are given in Table 3.5. 
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6.2.1 Flutter based optimization for 3-stations case 

An optimization problem is constructed by considering 3-stations carrying equal 

masses. The total store mass is 1.25 kg (1.25 kg / 3 for each station) while the mass 

of the wing is 1.693 kg.  

The optimization objective is maximizing the flutter speed while design parameters 

are selected as the distances of the stations from the root of the wing for 3 stations. 

Although the masses are considered as point masses for a preliminary application, 

this approach is not realistic. Constraints are determined for distances between 

stations in order to place the related masses in a more realistic manner.   

max  ( )f
s S

U s


 
(6.7) 

 ,  L US s s s s     (6.8) 

 1 2 3, ,s y y y  (6.9) 

10 0.762 my   (6.10) 

20 0.762 my   (6.11) 

30 0.762 my   (6.12) 

1 1 2 0.04x y y     (6.13) 

2 2 3 0.04x y y     (6.14) 

where 1 2 3, ,y y y are the distances for each station measured from the root of the wing 

while 1 2,x x are the constraints for the locations of stations. The optimization 

workflow is shown in Figure 6.6. 

NSGA-II is used as optimization algorithm with 1000 DoE in order to obtain 

considerable amount of feasible designs since the constraints of the problem are 

rather strict. 100000 total designs are generated with 70451 feasible and 29549 

infeasible designs. The solution took about 10 hours 58 minutes on a platform which 

has Intel(R) Core(TM) 2 CPU 6400@2.13GHz processor and 2GB of RAM on 

Microsoft Windows 7 64-bit operating system.  
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Figure 6.6 : Optimization workflow for 3-stations case. 

Optimum design with maximum flutter speed is given in Table 6.3. 

Table 6.3 : Optimum design parameters for 3-stations case. 

Parameter Value 

1y  0.68113 m 

2y  0.72122 m 

3y  0.76196 m 

fU  232.04 m/s 

6.2.2 Flutter based optimization for 4-stations case 

Firstly, an optimization problem is constructed by considering 4-stations carrying 

equal masses. The total store mass is 1.25 kg (1.25 kg / 4 for each station). 

Optimization is performed by considering the same objective while constraints and 

variables are considered for 4-stations case as follows. 

max  ( )f
s S

U s


 
(6.15) 

 ,  L US s s s s     (6.16) 

 1 2 3 4, , ,s y y y y  (6.17) 
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10 0.762 my   (6.18) 

20 0.762 my   (6.19) 

30 0.762 my   (6.20) 

40 0.762 my   (6.21) 

1 1 2 0.04x y y     (6.22) 

2 2 3 0.04x y y     (6.23) 

3 3 4 0.04x y y     (6.24) 

where 1 2 3 4, , ,y y y y
 
are the distances for each station measured from the root of the 

wing while 1 2 3, ,x x x are the constraints for the locations of stations.  

 

Figure 6.7 : Optimization workflow for 4-stations case. 

NSGA-II is used as optimization algorithm with 1000 DoE. 100000 total designs are 

produced with 64189 feasible and 35811 infeasible designs. The solution took about 

10 hours 56 minutes on a platform as Intel(R) Core(TM) 2 CPU 6400@2.13GHz 

processor and 2GB of RAM on Microsoft Windows 7 64-bit operating system. 

Optimum design with maximum flutter speed is given in Table 6.4. 
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Table 6.4 : Optimum design parameters for 4-stations case. 

Parameter Value 

1y  0.63283 m 

2y  0.67948 m 

3y  0.72057 m 

4y
 

0.76200 m 

fU  221.43 m/s 

6.2.3 Flutter based optimization for 5-stations case 

An optimization problem is constructed by considering 5-stations with equal masses. 

The store total mass is 1.25 kg (1.25 kg / 5 for each station). 

Optimization is performed by considering the same objective while constraints and 

variables are considered for 5-stations case. 

max  ( )f
s S

U s


 
(6.25) 

 ,  L US s s s s     (6.26) 

 1 2 3 4 5, , , ,s y y y y y  (6.27) 

10 0.762 my   (6.28) 

20 0.762 my   (6.29) 

30 0.762 my   (6.30) 

40 0.762 my   (6.31) 

50 0.762 my   (6.32) 

1 1 2 0.04x y y     (6.33) 

2 2 3 0.04x y y     (6.34) 

3 3 4 0.04x y y     (6.35) 
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4 4 5 0.04x y y     (6.36) 

where 1 2 3 4 5, , , ,y y y y y
 
are the distances for each station measured from the root of 

the wing while 1 2 3 4, , ,x x x x
 
are the constraints for the locations of stations. 

The optimization workflow is shown in Figure 6.8. 

NSGA-II is again used as optimization algorithm with 1000 DoE. 100000 total 

designs are obtained with 59587 feasible and 40413 infeasible designs. The solution 

took about 11 hours 20 minutes on a platform as Intel(R) Core(TM) 2 CPU 

6400@2.13GHz processor and 2GB of RAM on Microsoft Windows 7 64-bit 

operating system.  

Optimum design with maximum flutter speed is given in Table 6.5. 

 

Figure 6.8 : Optimization workflow for 5-stations case. 

Table 6.5 : Optimum design parameters for 5-stations case. 

Parameter Value 

1y  0.5771 m 

2y  0.61801 m 

3y  0.65928 m 

4y
 

0.71182 m 

5y
 

0.76200 m 

fU  212.32 m/s 
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6.2.4 Comparison of flutter results for different configurations of stations 

Flutter speeds of AGARD 445.6 initial configurations with respect to the number of 

stations along the wing span are compared in Table 6.6. 

Table 6.6 : Comparison of flutter speeds with respect to station numbers. 

Number of 

Stations 
fU
 

 (m/s) 

Decrease 

 (%) 

3 232.04 24.77 

4 221.43 28.21 

5 212.32 31.17 

Clean Wing 308.4513 - 

 

The results indicate that the flutter speed increases as the total number of stations 

decreases for the initial AGARD 445.6 wing/store configurations. 

Comparison of optimum locations for related stations along the wing span of the 

initial wing configuration is shown in Table 6.7. 

Table 6.7 : Optimum locations with respect to station numbers. 

Number of 

Stations 

1
st
 Station 

(m) 

2
nd

 Station 

(m) 

3
rd

 Station 

(m) 

4
th
 Station 

(m) 

5
th
 Station 

(m) 

3 0.68113 0.72122 0.76196 - - 

4 0.63283 0.67948 0.72057 0.76200 - 

5 0.57710 0.61801 0.65928 0.71182 0.76200 

6.3 Flutter Based Optimization of Optimum AGARD 445.6 Wing/Store 

Configuration 

Three flutter based design optimization works are performed by considering 3, 4 and 

5 stations respectively along the span of optimum AGARD 445.6 wing/store 

configurations. The objectives are both to maximize the flutter speed while the 

distances from the root of the wing for each station are defined as optimization 

variables. Optimum distances of the stations that maximize the flutter speed of the 

wing are obtained by considering equal mass effects for each of them. 

The design parameters for optimum AGARD 445.6 wing model are given in Table 

6.8. 
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Table 6.8 : Initial design parameters of optimum AGARD 445.6. 

Parameter Value 

yE  2020.85 MPa 

yG  299.02 MPa 

  0.65 

  59.65
o 

6.3.1 Flutter based optimization for 3-stations case 

The same optimization problem in Section 6.2.1 is considered. As in the initial 

configuration case, the optimization problem is consisted of an objective as 

maximizing the flutter speed while design parameters are selected as the distances of 

the stations from the root of the wing. Constraints are determined for distances 

between stations in order to place the related masses in a more realistic manner.   

NSGA-II is used as optimization algorithm with 1000 DoE. 100000 total designs are 

produced with 70451 feasible and 29549 infeasible designs. The solution took about 

10 hours 58 minutes on a platform as Intel(R) Core(TM) 2 CPU 6400@2.13GHz 

processor and 2GB of RAM on Microsoft Windows 7 64-bit operating system.  

Table 6.9 : Optimum design parameters for 3-stations case. 

Parameter Value 

1y  0.68113 m 

2y  0.72122 m 

3y  0.76196 m 

fU  314.46 m/s 

6.3.2 Flutter based optimization for 4-stations case 

Optimization is performed by considering the same objective while constraints and 

variables are considered for 4-stations case. 

NSGA-II is used as optimization algorithm with 1000 DoE. 100000 total designs are 

generated with 64189 feasible and 35811 infeasible designs. The solution took about 

10 hours 56 minutes on a platform which has Intel(R) Core(TM) 2 CPU 

6400@2.13GHz processor and 2GB of RAM on Microsoft Windows 7 64-bit 

operating system.  

Optimum design with maximum flutter speed is given in Table 6.10 with optimum 

store locations. 
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Table 6.10 : Optimum design parameters for 4-stations case. 

Parameter Value 

1y  0.63283 m 

2y  0.67948 m 

3y  0.72057 m 

4y
 

0.76200 m 

fU  288.89 m/s 

6.3.3 Flutter based optimization for 5-stations case 

Optimization is performed for 5-stations case by considering the same design 

optimization problem. 

NSGA-II is again used as optimization algorithm with 1000 DoE. 100000 total 

designs are produced with 59587 feasible and 40413 infeasible designs. The solution 

took about 9 hours 24 minutes 43 seconds on a platform as Intel(R) Core(TM) 2 CPU 

6400@2.13GHz processor and 2GB of RAM on Microsoft Windows 7 64-bit 

operating system.  

Optimum design with maximum flutter speed is given in Table 6.11. 

Table 6.11 : Optimum design parameters for 5-stations case. 

Parameter Value 

1y  0.57710 m 

2y  0.61801 m 

3y  0.65928 m 

4y
 

0.71182 m 

5y
 

0.76200 m 

fU  265.11 m/s 

6.3.4 Comparison of flutter results for different configurations of stations 

The flutter speeds of optimum AGARD 445.6 configurations with respect to the 

number of stations along the wing span are compared in Table 6.12.  

It is seen that distributing the external stores into more stations decreases the flutter 

boundary, even though the total mass of stores is kept constant.  

Comparison of optimum locations of the stations along the wing span is given in 

Table 6.13.  
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Table 6.12 : Comparison of flutter speeds with respect to station numbers. 

Number of 

Stations 
fU
 

 (m/s) 

Decrease 

 (%) 

3 314.46 13.10 

4 288.89 20.17 

5 265.11 26.74 

Clean Wing 361.8843
 

- 

 

The results again indicate that the flutter speed increases with decreasing number of 

stations. 

Table 6.13 : Optimum locations with respect to station numbers. 

Number of 

Stations 

1
st
 Station 

(m) 

2
nd

 Station 

(m) 

3
rd

 Station 

(m) 

4
th
 Station 

(m) 

5
th
 Station 

(m) 

3 0.68113 0.72122 0.76196 - - 

4 0.63283 0.67948 0.72057 0.76200 - 

5 0.57710 0.61801 0.65928 0.71182 0.76200 

6.4 Comparison of Flutter Results for Initial and Optimum AGARD 445.6 

Wing/Store Configuration 

Flutter based optimizations are further performed by considering 3,4 and 5 store 

locations for both initial and previously optimized designs of AGARD 445.6 

wing/store configurations. The flutter speed is greater when the number of stations 

decreases, as seen previously.  

Flutter speed variations of initial and optimum wing structures with respect to 

various numbers of stations is shown in Figure 6.9. 

Optimum wing is more sensitive to the variations with respect to increasing number 

of store locations, however in all considered cases, optimum models have greater 

flutter speeds. Figure 6.9 indicates that optimum wing with store masses in 3 stations 

case provides the most efficient design. Despite carrying 1.25 kg additional masses 

as store loads, the flutter boundary of the best design is even greater than the flutter 

speed value of initial clean wing model. After specifying the best wing/store 

configuration involving optimized clean wing model with store loads in 3 stations, 

the flutter boundaries now have to be determined in the presence of uncertainties in 
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structural and geometric parameters. Then, the final robust design is provided by the 

robust design optimization application in Section 7. 

 

Figure 6.9 : Flutter speed variation with respect to station number. 

6.5 Uncertainty Based Flutter Analysis of AGARD 445.6 Wing/Store 

Configuration 

This section involves uncertainty based flutter analysis of the best AGARD 445.6 

wing/store configuration determined in previous section. The considered design is 

optimum AGARD 445.6 clean wing with external stores placing in 3 stations.  

Table 6.14 : Deterministic values of random variables in wing/store model. 

Variable Value 

1y  0.68113 m 

2y  0.72122 m 

3y  0.76196 m 

1m  0.4167 kg 

2m  0.4167 kg 

3m  0.4167 kg 

yE  2020.85 MPa 

yG  299.02 MPa 
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Structural and geometric uncertainties are assumed to affect the wing/store model. 

Structural uncertainties involve the store masses and material properties while 

positions of store loads along wing span form the geometric uncertainties. 

Random parameters are defined as masses and locations of store loads, elasticity and 

shear modulus with COV=1% and COV=5% and locations of store loads with 

COV=0.25% approach. In Table 6.14, m1, m2 and m3 are masses of store loads. 

6.5.1 COV=1% case  

Masses of store loads, elasticity and shear modulus are distributed with respect to 

COV=1% approach while COV is taken as 0.0025 for the distances of stations. The 

maximum value for the distance of the 3
rd

 station can not exceed the total span 

distance.  

The difference between theoretical and minimum flutter speeds is calculated as 

1.7224% by considering reliability. 

Table 6.15 : Statistical results of 3-stations case with COV=1%. 

Parameter Det. Value Min. Value Mean Value Max. Value 

1y  0.68113 m 0.6742 m 0.6811 m 0.6890 m 

2y  0.72122 m 0.7125 m 0.7212 m 0.7291 m 

3y  0.76196 m 0.7618 m 0.7619 m 0.7620 m 

1m  0.4167 kg 0.3982 kg 0.4167 kg 0.4342 kg 

2m  0.4167 kg 0.3994 kg 0.4167 kg 0.4338 kg 

3m  0.4167 kg 0.3990 kg 0.4166 kg 0.4339 kg 

       yE   2020.85 MPa 1926.1 MPa 2020.8 MPa 2105.1 MPa 

yG  299.02 MPa 286.59 MPa 299.01 MPa 314.41 MPa 

fU  314.46 m/s 309.0437 m/s 314.4534 m/s 319.7874 m/s 

 

6.5.2 COV=5% case  

Masses of store loads, elasticity and shear modulus are distributed with respect to 

COV=5% approach while COV is taken as 0.0025 for the distances of stations. The 

statistical results are shown in Table 6.16 while flutter speed histograms for 

COV=1% and COV=5% cases are shown in Figure 6.10. 
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Figure 6.10 : Flutter speed histograms for COV=1% and COV=5%. 

Table 6.16 : Statistical results of 3-stations case with COV=5%. 

Parameter Det. Value Min. Value Mean Value Max. Value 

1y  0.68113 m 0.6734 m 0.6811 m 0.6888 m 

2y  0.72122 m 0.7135 m 0.7212 m 0.7293 m 

3y  0.76196 m 0.7618 m 0.7619 m 0.7620 m 

1m  0.4167 kg 0.3301 kg 0.4166 kg 0.5091 kg 

2m  0.4167 kg 0.3310 kg 0.4167 kg 0.5016 kg 

3m  0.4167 kg 0.3125 kg 0.4166 kg 0.5053 kg 

    yE   2020.85 MPa 1535.9 MPa 2021.2 MPa 2427.5 MPa 

yG  299.02 MPa 237.48 MPa 298.95 MPa 362.40 MPa 

fU  314.46 m/s 300.4018 m/s 314.4313 m/s 328.8310 m/s 

 

The difference between theoretical and minimum flutter speeds is calculated as 

4.4706% by considering for reliability. 

The design properties of final optimum robust wing/store configuration with 

deterministic and minimum flutter speed values are given in Table 6.17. 

By considering the technological possibilities of today’s world conditions, it is more 

likely to distribute the uncertainties with COV=1%, however the aim of the present 

work is to determine strictly reliable wing configurations. Thus, COV=5% case is 
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determined as the comparative study for deterministic analyses and deterministic and 

robust design optimization works while uncertainty based analyses with COV=1% 

approach even provides realistic flutter results.  

Table 6.17: Design properties and flutter results of optimum wing/store model. 

Variable Value 


 

0.65 


 

59.65
o 

yE
 

2020.85 MPa 

yG
 

299.02 MPa 

1y
 

0.68113 m 

2y
 

0.72122 m 

3y
 

0.75404 m 

sm
 

0.76196 kg 

det

fU
 

314.46 m/s 

min

fU
 

300.4018 m/s 
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7.  ROBUST AEROELASTIC DESIGN OPTIMIZATION OF WING/STORE 

CONFIGURATIONS BASED ON FLUTTER CRITERIA 

The present work finally involves robust optimization of wing/store configurations 

based on flutter criteria in order to design the most efficient and reliable structures in 

terms of aeroelastic instabilities.  

Results in a deterministic model can differ from the real world conditions since 

uncertainties in input parameters such as material, geometric properties and operating 

conditions can severely affect the system outputs. Deterministic methods can provide 

high performance designs however the randomness in uncertain parameters can 

cause reduction in the expected performance of the real system. In order to achieve 

both an efficient and a reliable design even under the worst case conditions of the 

design parameters, it is necessary to make use of robust optimization strategies. 

Robust optimization improves the given design in a way that it satisfies all scenerios 

about uncertain parameters by determining an expected minimum level for output 

variables. General formulation of a robust optimization problem is given in [79]. 

min    ( )F   (7.1) 

1( )
subject to   ( )

( )
F

F
g

F


 


   (7.2) 

1

( )
( ) 0;     1,...,

dn
j

j i c

i i

g
g j n


 




   


  (7.3) 

( ) ( ) ;      1,...i lower i i i upper i di n          (7.4) 

2

2

1

1

( )
( ) ( )

dn

i

i i

F
F


 



  
   

   
  (7.5) 
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where   specifies the design variables. 1( )F  points out the relative change of 

objective function due to variations and (7.2) behaves like an additional constraint 

that limits the relative change with a specified magnitude,  . (7.3) is related to the 

robust constraints and involves magnitude of changes and sensitivity of jth constraint 

with respect to ith design variable. Total number of constraints are denoted by cn  

and dn  shows total number of design variables. Upper and lower limits of 

optimization variables are specified in (7.4) while (7.5) shows the change of 

objective function by making use of Taylor expansion method. 

In the present work, robust optimization studies are considered to provide more 

reliable designs even under the worst case scenarios of the real world. The robust 

results are adequately satisfying under declared levels of uncertainty. Robust 

aeroelastic optimization work is divided into three categories by considering 2-

dimensional airfoil, 3-dimensional AGARD 445.6 clean wing and 3-dimensional 

AGARD 445.6 wing/store configuration. The objective is to maximize flutter speed 

in the presence of both deterministic and probabilistic optimization variables. 

Constraints are defined with the same manner in the previous optimization studies. 

Random variables in uncertainty based analyses are defined as probabilistic 

parameters while the other deterministic parameters of the previous aeroelastic 

optimization studies remain as deterministic optimization variables. COV=5% case is 

considered as the worst case uncertainty scenario in today’s world possibilities. The 

deterministic solution codes of previous sections are coupled with the optimization 

software. Random parameters are varied with given distributions via 

modeFRONTIER. The statistical properties as mean values and standard deviations 

of random variables are also defined in modeFRONTIER by considering COV=5%. 

MORDO (Multi-Objective Robust Design Optimization) module of 

modeFRONTIER is used to obtain robust results since MORDO searches for the 

optima of the mean and standard deviation of a stochastic response rather than the 

optima of the deterministic response [80]. MORDO can find the robust design under 

a given or assumed variation of design parameters [81].  

MCS method distributes the random optimization variables by using of 1000 DoE 

and 100 generations for each of DoE. The applied settings point out 10
5 

total design 

samples. The considered amount of samples increases the computational time 
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however the fast NSGA-II algorithm [82] and the 2
nd

 order PCE in MORDO are 

preferred in all robust optimization studies to reduce the computational time. 

 

Figure 7.1 : MORDO settings in modeFRONTIER.   

PCE has successfully been used in uncertainty analysis [69] since introduction of the 

homogeneous chaos by Wiener [83]. A 2
nd

 order PCE, which is used within the 

contex of robust optimization studies of the present work, is given in (7.6) [69]. 

2 2

0 1 1 2 2 3 1 4 1 2 5 2( ) ( ) ( ) ( ( ) 1) ( ) ( ) ( ( ) 1)u b b b b b b                   

 
(7.6) 

where ( )u   is Gaussian random response, bi (i=1 to 5) is generalized Fourier 

coefficient, 1  and 2  are two independent standard Gaussian random variables 

defined in (7.7). 

x

x

x 





  

(7.7) 

The definition of generalized Fourier coefficients is given in (7.8) [69]. 
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where E[.] and  denote expected value operation and orthogonal polynomials. They 

have to satisfy the condition defined in (7.9). 

  2

0

0

1,  0 and   for   ,

1,  0  for    odd

i i j i ij

k

E E E i j

E E k

    

 

        

        

 (7.9) 

7.1 Robust Aeroelastic Optimization of 2-Dimensional Airfoil 

Firstly, an optimization work is carried out so as to achieve a robust aeroelastic 

design for the first 2-dimensional airfoil model of Section 2. Random variables in 

uncertainty based analysis are assigned as probabilistic optimization variables while 
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the others in deterministic optimization case remain the same. The robust design is 

mainly based on flutter speed. The objectives are defined as maximizing flutter, 

divergence and control reversal speeds. Optimization problem can be defined as 

follows. 

     max ,    max ,    maxprob prob prob

f d r
s S s S s S

V V U
  

 
(7.10) 

1 1( , ) 1 0,         ( )prob prob

Rg X s r g s     (7.11) 

2 2( , ) 1 0,         ( )prob prob

Rg X s g s     (7.12) 

 ,     L uS s s s s  (7.13) 

 det , probs s s  (7.14) 

   det , ,   and  ,prob

hs k k x s m I     (7.15) 

 , , , , , ,R L L M MX m I c c c c
      (7.16) 

where s
det

 and s
prob

 indicate deterministic and probabilistic optimization variables 

respectively and RX denotes set of random parameters. Similarly, 1

probg and 2

probg are 

probabilistic constraint functions. The lower and upper bounds of optimization 

variables are specified in Table 4.1. 

The objectives and constraints are also probabilistic since they can be defined in 

terms of mass and moment of inertia as probabilistic variables. All probabilistic 

parameters have statistical features such as standard deviation, minimum, mean and 

maximum values, etc. Robust analysis and optimization require investigations of 

available minimum values as the worst case conditions. Thus, the minimum values of 

maximized objectives have to be considered and optimum design has to be selected 

among them. The minimum of maximized values is the desired objective for the 

robust optimization problem. Since flutter occurs before divergence and control 

reversal phenomena, the optimum design can be obtained by only considering flutter. 

The minimum of maximum flutter speeds among robust designs provides the 

optimum robust design based on aeroelastic instability criteria.  
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100000 total designs with 78325 feasible designs and 10000 robust designs with 

9241 feasible designs are obtained while the solution took about 40 hours 39 minutes 

on a platform as AMD Athlon (TM) 64 X2 Dual Core 4600+2.41GHz processor and 

2GB of RAM on Microsoft Windows XP operating system.  

The optimization workflow is shown in Figure 7.2. 

 

Figure 7.2 : Workflow of 2-dimensional robust aeroelastic optimization.   

The probability density distributions of the objective functions are given in Figure 

7.3, 7.4 and 7.5. 

The design variables of robust aeroelastic optimization work are summarized in 

Table 7.1 with optimum robust speeds of aeroelastic instabilities. The superscript 

“robust” indicates the parameters in optimum robust design while superscript “det” 

points out the deterministic design. 

The boundaries of aeroelastic instabilities in optimum robust design are lower than 

the values in optimum deterministic design since the robust design points out the 

worst case conditions. 
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Figure 7.3 : Probability density distribution of maximum flutter speed.  

 

Figure 7.4 : Probability density distribution of maximum divergence speed.  

 

Figure 7.5 : Probability density distribution of maximum control reversal speed.  
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Table 7.1: Optimum robust design properties of 2-dimensional airfoil model. 

Design 

Variable 

Optimum 

Value 

hk
 

1.0107 

k  
6.6962

 

x  
0.10031 

m
 

12.330 kg 

I  
2.9919 kgm

2 

robust

fV
 

3.3967 

det

fV
 

3.5337
 

robust

dV
 

4.0766 

det

dV
 

4.2603
 

robust

rU
 

3.6369 

det

rU
 

3.7878
 

 

Table 7.2 involves the comparison of design parameters in deterministic and robust 

aeroelastic models. 

Table 7.2: Comparison of deterministic and robust design parameters. 

Case 
hk
 

k  x
 

m
 I  

Deterministic 1.00 7.00 0.10 12.499 kg 3.00 kgm
2
  

Robust 1.0107
 

6.6962 0.10031 12.330 kg 2.9919 kgm
2
 

7.2 Robust Optimization of AGARD 445.6 Clean Wing 

This section involves robust optimization of AGARD 445.6 clean wing based on 

flutter criteria. Random parameters (elasticity and shear modulus along spanwise 

direction) in uncertainty based flutter analysis are defined as probabilistic 

optimization variables in robust optimization while taper ratio and sweep angle are 

again deterministic parameters. Optimization problem can be determined as follows. 

max  ( )prob

f
s S

U s


 
(7.17) 

 ,  L US s s s s     (7.18) 

 det , probs s s  (7.19) 
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det ( , )   and   ( , )prob

y ys s E G    (7.20) 

 ,R y yX E G  (7.21) 

o o0 60    (7.22) 

2000MPa 3000MPayE   (7.23) 

200MPa 300MPayG   (7.24) 

The robust optimization study is performed in modeFRONTIER coupled with the 

computational code for the deterministic solution. 100000 total designs and 10000 

robust designs are obtained while the solution took about 9 hours 18 minutes 10 

seconds on a platform as Intel(R) Core(TM) 2 CPU 6400@2.13GHz processor and 

2GB of RAM on Microsoft Windows 7 64-bit operating system. The workflow of the 

optimization problem is given in Figure 7.6. 

 

Figure 7.6 : Robust optimization workflow of clean AGARD 445.6 wing. 

The probability density distribution of the objective function is given in Figure 7.7. 

The optimum robust design is obtained by considering the maximum of minimum 

probabilistic flutter speeds among robust designs. The design properties of optimum 

robust design is shown in Table 7.3. Optimum robust and deterministic flutter speeds 
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are also given in Table 7.3 while comparison of deterministic and robust design 

variables are given in Table 7.4. 

 

Figure 7.7 : Probability density distribution of maximum flutter speed.  

Table 7.3: Optimum robust design properties of AGARD 445.6 clean wing. 

Design 

Variable 

Optimum 

Value 


 

0.65 


 

59
o 

yE
 

2001.96 MPa 

yG
 

298.34 MPa 

robust

fU
 

356.9322 m/s 

det

fU
 

361.8843 m/s
 

Table 7.4: Comparison of deterministic and robust design parameters. 

Case 
 

 
Ey  Gy  

Deterministic 0.65 59.65
o
 2020.85 MPa 299.02 MPa 

Robust 0.65
 

59
o
 2001.96 MPa 298.34 MPa 

 

The designs obtained by deterministic and robust optimization studies are similar 

with close flutter speed values. The robust design which represents the worst case 

conditions is in the vicinity of deterministic design since no constraints are defined 

for the optimization.  

7.3 Robust Optimization of AGARD 445.6 Wing/Store Configuration 

Final robust optimization work involves AGARD 445.6 wing/store configuration in 

which stores are placed 3-stations since this case is identified as the most efficient 
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way to distribute the external loads in flutter analysis in the previous scenario. 

Random parameters (locations of stations, masses of stores, elasticity and shear 

modulus along spanwise direction) in uncertainty based analysis are determined as 

probabilistic optimization parameters while taper ratio and sweep angle are again 

deterministic variables. Masses of stores were not design variables in deterministic 

optimization work. Thus, they are defined as probabilistic variables with constant 

mean values in robust optimization. Optimization problem can be set up as follows. 

max  ( )prob

f
s S

U s


 
(7.25) 

 ,  L US s s s s     (7.26) 

 det , probs s s  (7.27) 

det

1 2 3( , )   and   ( , , , , )prob

y ys s E G y y y    (7.27) 

 1 2 3 1 2 3, , , , , , ,R y yX m m m E G y y y  (7.28) 

0.65 1.0   (7.29) 

o o0 60    (7.30) 

2000MPa 3000MPayE   (7.31) 

200MPa 300MPayG   (7.32) 

10 0.762 my   (7.33) 

20 0.762 my   (7.34) 

30 0.762 my   (7.35) 

1 1 2 0.04probx y y     (7.36) 

2 2 3 0.04probx y y     (7.37) 
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The robust optimization study is performed in modeFRONTIER by coupling it with 

the computational code developed for the deterministic solution of wing/store 

configuration. Uncertainties are distributed with MCS and COV=5% estimation is 

used for each random parameter except for distance of stations where store loads 

place. Due to physical limitations for the placement, COV=0.25% estimation is used 

for 1y , 2y  and 3y . The constraints also become probabilistic since they are related to 

random parameters. 100000 total designs and 10000 robust designs are obtained 

while the number of feasible designs are 70917 in total designs and 7094 in robust 

designs. The solution took about 9 hours 14 minutes 55 seconds on a platform as 

Intel(R) Core(TM) 2 CPU 6400@2.13GHz processor and 2GB of RAM on Microsoft 

Windows 7 64-bit operating system. The workflow of the optimization problem is 

given in Figure 7.8. 

 

Figure 7.8 : Robust optimization workflow of AGARD 445.6 wing/store model. 

The probability density distribution of the objective function is given in Figure 7.9. 

The yellow samples in probability distribution of maximum flutter speed indicate the 

infeasible designs.  

The optimum robust design is obtained by considering the maximum of minimum 

probabilistic flutter speeds among robust designs. 
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Figure 7.9 : Probability density distribution of maximum flutter speed.  

The design properties of optimum robust design is shown in Table 7.5 with optimum 

robust and deterministic flutter speeds while comparison of deterministic and robust 

optimization studies are given in Table 7.6. 

Table 7.5: Optimum robust design of AGARD 445.6 wing/store model. 

Design 

Variable 

Optimum 

Value 


 

0.96 


 

59.83
o 

yE
 

2387.92 MPa 

yG
 

294.65 MPa 

y1 0.2392 m 

y2 0.4516 m 

y3 0.7286 m 
robust

fU
 

253.56 m/s 

det

fU
 

314.46 m/s
 

Table 7.6: Comparison of deterministic and robust design parameters. 

Case 
 

 
Ey  Gy  y1 y2 y3 

Det 0.65 59.65
o
 2020.85 

MPa 

299.02 

MPa 

0.6811 

m 

0.7212 

m 

0.7620 

m 

Robust 0.96
 

59.83
o
 2387.92 

MPa 
294.65 

MPa 

0.2392 

m 

0.4516 

m 

0.7286 

m 

 

The designs obtained by deterministic and robust optimization studies are rather 

different from each other. The robust design which represents the worst case 

conditions point out a quite different design of wing/store configuration especially in 



93 

terms of store locations and taper ratio. Since the optimum design variables of robust 

and deterministic optimization studies are almost the same in clean wing case, the 

difference in wing/store model is coming from the store loads and contraints defined 

for their locations. In the presence of strict constraints, robust designs can not be as 

flexible as deterministic models since they have to satisfy the worst case conditions 

under the effects of uncertainties. By considering uncertain parameters, robust design 

optimization is prerequisite for real and reliable designs of such wing/store 

configurations.  
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8.  CONCLUSIONS AND RECOMMENDATIONS  

In the present work, flutter analysis methods for 2 and 3-dimensional wings and 

wing/store models are developed while the designs are optimized based on 

aeroelastic instability criteria. The first and the basic approach involves the use of 

open loop dynamics and stability analysis procedure for a 2-dimensional airfoil 

model in order to obtain the critical speed values of flutter, divergence and control 

reversal as aeroelastic instabilities. The solution method is implemented in a 

MATLAB code and validated by using a benchmark problem from literature. A 

multi-objective optimization process using modeFRONTIER as an optimization 

software is applied to the benchmark airfoil model to delay the speeds of related 

instabilities by changing the design and model parameters. 

An analytical flutter analysis method for 3-dimensional wing structures using 

assumed mode technique is developed for the purpose of enabling aeroelastic 

optimization based on flutter criterion efficiently. The flutter solution employs 

Lagrange equations with energy terms and also Theodorsen function for 

aerodynamic load calculation. Free vibration analysis of aircraft wing is performed 

analytically since flutter solution requires determination of bending and torsional 

natural frequencies. Proposed flutter solution is validated by two benchmark 

problems from literature, and then applied to Goland and AGARD 445.6 models 

which are 3-dimensional aircraft wing structures. Flutter frequency and flutter speed 

computed for Goland and AGARD 445.6 wings agree well with the experimental 

results. The flutter solution code developed in MATLAB is fully automatic with 

input parameters of taper ratio, sweep angle, elasticity and shear modulus and is used 

to examine the sensitivity of flutter speed on these parameters. Next, flutter code is 

coupled with an optimization framework to perform flutter based aeroelastic 

optimization. The objective of the optimization problem is maximization of flutter 

speed while introducing taper ratio, sweep angle, elasticity and shear modulus as 

optimization variables. 
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The flutter solution methodology for 3-dimensional wing structures is extended to 

include wing/store configurations via revised MATLAB code. The new solution is 

validated by using a benchmark problem that involves a store mass placed at 

different positions along span of Goland wing. Then, the solution is applied to 

AGARD 445.6 wing/store configurations which consist of 3, 4 and 5-stations cases 

along the span. These cases indicate that the store loads are placed in 3, 4 and 5 

stations respectively while the total mass of external loads are kept constant for each 

configuration. The optimum distances of stations for each case are obtained by flutter 

based aeroelastic optimization studies. The optimum placement configuration in 

terms of flutter speed is found as 3-stations case. 

Uncertainty based aeroelastic analyses are applied to initial and optimized 2 and 3-

dimensional wing models and wing/store configuration in order to obtain minimum 

speeds. The uncertainties are modeled by using MCS with 10
5
 samples. COV=1% 

and COV=5% are used to include the effects of randomness. The available minimum 

speeds of aeroelastic instabilities are considered for reliability. Deterministic and 

probabilistic flutter results are compared to each other for both initial and optimum 

wing models.  

The final part of the present work involves robust optimization of 2 and 3-

dimensional clean wing models and 3-dimensional optimum wing/store 

configuration with external loads in 3 stations. Robust optimization provides the 

most realistic optimum case for the wing structures since the uncertainties are taken 

into consideration simultaneously during optimization process. MATLAB codes for 

deterministic flutter solutions of each case are coupled with the optimization 

software which provides random distributions with respect to MCS for probabilistic 

variables by using 10
5
 samples. Optimum flutter speeds are obtained through the 

minimum of maximized flutter speeds in optimum robust designs.  

As a consequence, the present work provides deterministic and probabilistic flutter 

solution methodology for wing structures ranging from simple designs to more 

complicated 3-dimensional models and wing/store configurations as well as 

applications of deterministic and robust aeroelastic optimization work. Developed 

flutter strategies form a basis for the flutter analysis and flutter based optimization of 

more complex structures and can be extended to the use of military and civilian 

purposes and requirements. Structural and aerodynamic nonlinearities must be 

considered for a more realistic application such as a fighter aircraft wing. In addition, 
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all structural and aerodynamic effects of store loads must be included in calculations. 

Nonlinear aerodynamic effects for wing/store configurations in transonic flow 

regime is critical in the design of fighter aircrafts.  
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