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CONGESTION AND PACKET CLASSIFICATION BASED FLOW
MANAGEMENT FOR SOFTWARE-DEFINED NETWORKS

SUMMARY

In this thesis, we focus on problems in the control plane and problems in the data plane
of SDN separaterly. In the control plane, we specifically try to increase the response
time of the SDN controller in ultra-dense scenarios. In the data plane, we aim to
construct an efficient data structure to achieve both fast rule update and fast packet
classification.

In the SDN, the control plane is responsible for deciding route and operations for flows
that coming to the data plane. To do so, the SDN controller in the control plane has a
central view and controls all switches in the data plane. But, this can cause an increase
in both e2e latencies of packets and drop rate in the controller if there is a high spiky
demand of incoming heterogeneous flows. Because, switches in data plane have to ask
what to do to the controller if there is a new incoming flow to them. When newly
coming flows increase, communication traffic between the controller and data plane
increase. As a result, this can cause congestion in the SDN controller, and e2e latency
and drop rate in the controller increase because of this congestion. To solve these
problems, we propose a management engine to implement in the SDN controller in
ultra-dense SDN scenarios. In this engine, we propose two steps: admission and
prioritization steps. We also create different queues for different types of 5G flows
(URLLC, eMBB, mMTC) in each step. In the admission, we modify Loss Ratio-Based
Random Early Detection (LRED) Algorithm. In prioritization, we propose a tree-based
prioritization that considers the priority needs of different flow types and near future
states of different queues. According to simulation results, our response time of the
SDN controller, e2e latency of packets and dropped rate in the controller are better up
to 53%, 58%, and 36%, respectively.

Packet classification is a key factor for choosing proper action for incoming packet
and has to be done fast, especially in OpenFlow. But OpenFlow vSwitch technology
doesn’t allow to use some fast hardware technology for packet classification like
TCAM. Decision tree methods are preferred solutions for fast classification in
OpenFlow vSwitch in the literature. But most of these methods can cause the rule
replication problem. As a result, while the duration of packet classification decreases,
rule update duration increases. There are also rule partitioning methods in the literature
to solve this problem, but the running time of these methods mostly depends on the
number of rule fields. Also, some of these solutions don’t overcome the rule replication
problem. At that point, the main question is that how can we make the rule partitioning
fast by both preventing the rule replication and allowing fast packet classification and
rule update in OpenFlow vSwitch? To solve the rule partitioning problem, we convert
this problem to the interval partitioning and propose a classic Greedy Algorithm. As a
result, the running time of the partitioning algorithm only depends on the rule number.
After partitioning, we propose to use HyperCuts to construct decision trees for fast
packet classification and rule update. According to performance evaluation results, we
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do the rule partitioning and rule updates faster than the PartitionSort method with the
percentage of 88, 15, respectively. We also classify packets faster than the TupleMerge
method with the percentage of 40 for online and 50 for offline scenarios.
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YAZILIM TANIMLI AGLARDA TIKANIKLIK VE PAKET
SINIFLANDIRMA ODAKLI AKIS YONETIMI

OZET

Yazilim Tanimhi Aglar, klasik aglardan farkli olarak kontrol diizlemi ve veri diizlemi
olarak iki katmana ayrilmistir. Kontrol diizlemi aga gelen akislara hangi islemlerin
uygulanacagi, hangi yollardan gonderilmesi gerektigi kararlarini verip veri diizlemine
iletmekle yiikiimlidiir. Veri diizlemi ise gelen akislarin paketlerini, icerisinde var olan
kurallar ile karsilastirip uygun kurali bulduktan sonra pakete ilgili islemi uygulamakla
yiikkiimliidiir. Kendi igerisinde uygun kurali bulamaz ise ilgili akis i¢in hangi kurallarin
uygulanmas1 gerektigini kontrol diizlemine sormaktadir. Iki diizlem de kendi
icerisinde ayr1 ayr1 ve birbirinin igleyisini etkileyen sorunlara sahiptir. Bu tezde hem
kontrol diizlemindeki hem de veri diizlemindeki sorunlara odaklanilmistir.

Yazilim Tanimli Ag teknolojisinde, Kontrol diizlemi, aga gelen verilere uygulanacak
islemleri karar vermesinden dolayi, tiim agdan sorumludur. Kontrol diizleminde
gerekli kararlar1 alan cihaz kontrolor olarak isimlendirilmekte, kontrol diizleminin
yapmast gereken islemlerden dolayr tiim aga hakim olacak merkezi bir konuma
sahiptir. Ancak bu merkezi konum ve her seyden sorumlu olmak, veri diizleminde
trafik artis1 oldugunda isleyisini etkilemektedir. Ornegin veri yogunlugunun ani ve gok
yogun arttigr durumlarda, veri diizlemine gelecek olan yeni paketlerin sayisi da
artmaktadir. Bu durum ise veri diizleminin gelen akislara uygun kural bulamamasina
ve hangi kuralin uygulanacagina karar vermesi i¢in kontrolor ile iletisimi
siklagtirmasina neden olmaktadir. Boylece kontroloriin ¢alisma hizi, veri diizlemi ile
arasindaki iletisimin artis hizina yetisememekte ve tikanikliga sebep olmaktadir.

Kontrolor ile veri diizlemi arasinda yasanan tikaniklik, kontroldriin gelen isteklere
Cevap verme siiresini arttig1 gibi kontrolore gelen paketlerin diisiiriilme oranini da
arttirmaktadir. Bunun yaninda, artan cevap siiresi, uctan uca gecikmeyi (e2e latency)
de arttirmaktir. Bu sorunlar1 ¢6zmek icin, bu ¢alismada kontrol6re uygulanmak iizere
bir “Akis Yonetim Birimi” &nerilmistir. Onerilen bu birim kendi icerisinde Kabul ve
Oncelik Y&netim Birimi olmak iizere iki alt birime sahiptir. Her iki alt birimde ise yeni
nesil 5G aglardaki farkli tiplerdeki akislarin (URLLC, eMBB, mMTC) ihtiyaglar
distintilerek herbir akis igin kuyruk onerilmistir. Kabul Yo6netim Birimi’nde Lo0SS
Ratio-Based Random Early Detection (LRED) algoritmasi ¢oklu kuyruk yapisina ve
bir sonraki birim ile iletisime gegecek sekilde degistirilip kullanilmistir. Oncelik
Yonetim Birimi’nde ise éncelik ydnetimi icin agac yapisi dnerilmistir. Onerilen bu
agac yapisi ile hem farkli tipteki akislarin farkl hiz ihtiyaglarina gére oncelik degerleri
diisiiniilmiis hem de kuyruklarin yakin gelecekteki doluluk oranlar1 diisiiniilmiistir.
Ancak, oncelik yonetimi i¢in aga¢ yapisinin kurulmasi, uygun eyleme karar vermek
icin agac iizerinde gezileceginden zaman kaybina neden olabilmektedir. Bu zaman
kaybini &nlemek icin aga¢ yapisindaki her diigiim i¢in “Oncelik Degeri” tanimlanmis
ve bu degerlere bakarak agac¢ ilizerinde gezme isleminin siiresini kisaltmak i¢in bir
algoritma Onerilmistir.
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Oncelik Yonetim Birimi’nde kurulan aga¢ yapisinda, her bir katman, uygulanacak
islem sonucunda kuyruklarin gelecekte olusabilicek olasi durumlarimi tutmaktadir. Ug
farkl1 akis tipi i¢in olusturulmus {i¢ farkli kuyruktan hangisine oncelik verilecegi islemi
kuyruk sayisindan o6tiirii ii¢ farkli olasiliga sahiptir. Bu da, aga¢ {izerinde her bir
diiglimiin U¢ farkli ¢ocuk diiglimiine sahip olmasina neden olmaktadir. Her bir
diigiimiin sahip oldugu oncelik degeri, hem akis tiplerinin dncelik degerleri hem de
diiglimiin igerisinde kuyruklarin boylar1 ele alinarak hesaplanmaktadir. Fakat agac
tizerinde her bir diigiim icin bu degeri hesaplama ve gezme islemlerinin zaman
almamasi icin gelistirilen algoritma, bir sonraki katman i¢in hangi diiglimiin ¢ocuk
diigiimleri i¢in oncelik degeri hesab1 yapilacagina karar vermekte ve bu yolla agact
gezmektedir. Boylece uygun karar1 vermek i¢in hem tiim diigiimler i¢in dncelik degeri
hesaplanmamis hem de tiim aga¢ gezilmemis olmaktadir. Bir sonraki katmandaki
cocuk diiglimlerinin 6ncelik degerlerini hesaplamak i¢in ise, o anki katmanda hangi
diigiimiin oncelik degeri en biiylik ise o diigiim secilmektedir. Bu da bize hangi
kuyruktan paket alinip isleme sokulacagini gostermis olmaktadir.

Kontrolére uygulanan “Akis Yonetim Birimi” sayesinde, yapilan performans
deneyleri ile kontrolor cevap siiresinde %53’e kadar iyilesme, ugtan uca gecikmede
%58’e kadar iyilesme ve paket diisme oraninda ise %36’ya kadar bir iyilesme
gOriilmiistiir.

Yazilim Tanimlt Ag teknolojisi, yukarida bahsedilen ve kontrol diizleminde yer alan
yogun ve ani trafik artisinda olusan sorundan baska veri diizleminde de soruna sahiptir.
Paket smiflandirma islemi, klasik aglarda da paketlere hangi islemlerin
uygulanacagina karar veren yonlendirici ve anahtarlarda uygulanmaktadir. Yazilim
Tanimlt Ag teknolojisinde her ne kadar paketlere hangi islemlerin uygulanacagina
karar verme islemi kontrol diizlemindeki kontrolore verilse de, veri diizlemindeki bu
cihazlar hala paket siniflandirma islemini yapmaktadir. Ciinkii, karar veremeselerde,
belleklerinde kontroldriin génderdigi kurallari tutmaktadirlar ve gelen paketlere hangi
islemin uygulanacagina karar vermek i¢in bu kurallara bakmaktadirlar. Boylece paket
siiflandirma islemi, yazilim tanimli aglar i¢in de gegerliligini korumaktadir. Fakat,
yazilim taniml ag teknolojisinin farkl trafik tiplerine hizmet veren servislerin ag
tizerinde yer alip kolay islem yapmasina olanak saglamasi, bu kurallarin hem sayisinin
hem de paketlerle karsilagtirma islemi sirasinda bakilan alan sayisinin artmasina neden
olmaktadir. Artan bu karmasiklik ise paket siniflandirma isleminin, yazilim tanimh
aglar i¢in onemini arttirmakta ve veri diizleminde soruna neden olmaktadir.

Paket siniflandirma iglemi, klasik aglardan beri var olan bir islem olmasindan dolayzi,
literatiirde paket siniflandirmanin hizli yapilabilmesi ¢ok¢a ¢alisma bulunmaktadir. Bu
calismalar donanim bazli ve yazilim bazli olmak iizere iki ana gruba ayrilabilir.
Donanim bazli ¢alismalarda Ternary Content Addressable Memory (TCAM) en ¢ok
kabul goren teknolojidir. Bu teknolojinin yanisira CAM temelli olarak Binary CAM
(BCAM), Field Programmable Gate Array (FPGA) ya da Graphics Processing Unit
(GPU) teknolojileri kullanilarak yeni yontemler gelistirilmektedir. Ancak donanim
bazli ¢oziimlerin artan kural sayist ve kural alan sayisi ile birlikte 6l¢ekledirilebilir
olmamasi ve dogasi geregi belirli bir donanimi1 gerektirmesi bu ¢ozlimleri her durumda
uygulanabilir olmaktan ¢ikarmaktadir. Ayrica en ¢ok kabul goren teknoloji olan
TCAM’in ¢ok fazla enerji tilkketmesi, enerjinin verimli kullanilmasi gereken durumlar
icin dezavantaj olarak goriinmektedir.

Donanim bazli ¢alismalarin aksine, yazilim bazli ¢alismalar altta ¢alisan donanimdan
bagimsiz olarak uygulanabilmektedir. Yazilim tanimli ¢caligmalar ise kendi i¢lerinde
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alan uzay1 bazli (tuple space based) ve karar agaci bazli (decision tree based) olmak
tizere ikiye ayrilabilir. Karar agaci bazli ¢alismalar, aga¢ yapisini olusturabilmek i¢in
kurallarin alanlarinin olusturdugu uzay1 bolmektedir. Uzay1 bélme yontemlerine gore
kesme (cut) ve ayirma (split) olmak iizere ikiye ayrilabilir. Ancak, bu yontemleri
kullanan ¢alismalar karar agacini olustururken; her bir alanda farkli kurallar olacak
sekilde bolemedikleri i¢in kural tekrar1 sorunu olugsmaktadir. Bu sorunda, herhangi bir
kural, agacin birden fazla diigtimiinde yer alabilmektedir. Bu durum ise hizli bir paket
siiflandirmast sunan karar agaclarmin kural giincelleme siiresinde ayni basariy1
gosterememesine neden olmaktadir. Kural tekrari1 sorununu ortadan kaldirmak igin
gelistirilen kural boliitleme calismalart ise ¢alisma siiresi olarak kural alan sayisina
bagli olduklar i¢in karar agac¢lar1 kurulma siiresini yavaslatmakta, dolayisiyla da
siirekli degisen trafige sahip olan aglarda paket smiflandirma isglemi ile kural
giincellemesinin yavaslamasina neden olmaktadir. Kural boéliitleme sirasinda alan
sayisindan bagimsiz olan ¢alismalar ise bazi kural alanlarinin tamamini veya bir
kismimi1 yok saydiklarindan yanlis bir boéliitlemeye, dolayisiyla da yanlis bir
siiflandirmaya neden olmaktadir.

Alan uzay1 bazli ¢caligmalardan en eskisi ve OpenFlow vSwitch igerisinde uygulanani
ise Tuple Space Search (TSS) yontemidir. TSS’nin OpenFlow tarafindan kabul
gdrmesinin en biiylik nedeni saglamis oldugu hizli kural giincellemesidir. Ciinkii karar
mekanizmasinin kontrolérde oldugu yazilim tanimli ag teknolojisinde, anahtarlarda
yer alan kurallarin hizli bir sekilde giincellenmesi biiyiik 6nem tasimaktadir. Ancak
saglamig oldugu hizli gilincellemenin aksine, TSS gerektiginde kurallarin tim
alanlarmi karsilastirmak durumunda kalmasindan dolayr yeterince hizli paket
siiflandirmasi yapamamaktadir. TSS disindaki alan uzayir bazli ¢alismalar ise ya
birden fazla hash tablosu olusturma ya da ayr1 tablolarda olmasi gereken kurallar1 ayni
tablolalara koyma dezavantajlarina sahiptirler.

Bu ¢alismada ayrica, hizli bir paket siniflandirmasi ve kural giincellemesi igin karar
agaci temelli bir yontem sunulmustur. Ancak yukarida bahsedildigi tizere hizli bir
paket siniflandirmasinin yaninda hizli bir kural giincellemesinin gerceklestirilmesi i¢in
karar agac1 yontemlerindeki kural tekrar1 sorununun ¢oziilmesi gerekmektedir. Fakat
¢oziilmesi icin Onerilecek kural boliitleme yonteminin ise kural tekrar1 sorununa yol
acmayacak olmasinin yaninda c¢alisma siliresini hizlandirmasi i¢in kural alan
sayisindan bagimsiz olmasi1 gerekmektedir. Bu bagimsizlig1 saglarken ise yanlis bir
paket smiflandirmasina yol agmamasi ic¢in boliitleme sirasinda kural alan sayisindan
bagimsiz olmasmma ragmen kural alanlarinin karakteristiklerini  yansitmasi
gerekmektedir. Bu baglamda, bu tezde sunulan kural béliitleme yontemi kural tekrari
sorununu ortadan kaldirirmakta ve c¢alisma siiresi olarak kural alan sayisindan
bagimsizlik saglarken kural alanlarinin tiimiiniin karakteristik 6zelliklerini goz oniine
almaktadir.

Karar agaglart olusturmak i¢in kullanilan kural boliitleme yontemleri, kurallari
birbirlerinden ayirirken kurallarin Kartezyen Koordinat diizleminde kaplamis
olduklar1 alan karsiliklarin1 kullanmaktadir. Bu baglamda, kural alanlari, koordinat
diizleminin eksenlerini temsil ederken kurallarin bu uzayda kapladiklar1 alanlar ise
aslinda eslebilecek olasi tiim paketleri temsil etmektedir. Ciinkii kurallar koordinat
diizlemi gosteriminde bir alani temsil etmekte iken gelen paketler ise bu uzaydaki
noktalar1 temsil etmektedir. Bu durumda, paket siiflandirmasi, paketlerin, kurallarin
koordinat diizlemindeki alanlarinin igerisinde olup olmadiginin cevabi olmaktadir.
Kural tekrar1 sorunu ise koordinat diizleminde alanlar1 kesisen kurallarin birbirlerinden
alanlar1 kesismeyecek sekilde ayrilamamasindan kaynaklanmaktadir.
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Tezde sunulan kural boliitme yontemi de kurallarin ve paket siniflandirmasinin
yukarida anlatilmis olan koordinat diizlemindeki karsiligindan faydalanmaktadir.
Paket simiflandirmasinin koordinat diizlemindeki karsiliginin anlatimindan da
goriilecegi iizere paketin herhangi bir kuralla eslesmesi icin paketin koordinat
diizlemindeki her bir eksendeki degerinin, kurallarin ilgili eksene karsilik gelen her bir
bolgesinin koordinat diizlemindeki baslangi¢ ve bitis degerlerinin arasinda olmasi
gerekmektedir. Tezde sunulan kural boliitme yonteminde ise bu Ozellikten
faydalanilarak bahsi gecen esitsizlikler her bir kural alani veya eksen i¢in alt alta
yazildiktan sonra toplanmistir. Elde edilen yeni ve tek esitsizlik ise bize paket
siiflandirmasiin ve kurallarin tiim alanlarini1 géz 6niine alarak tek bir diizlemdeki
karsiligim1 vermektedir. Tek bir diizlemde elde edilen bu karsilik ise kural boliitleme
sorununu, kolayca alan béliitleme (interval partitioning) sorununa donlismiistiir. Bu
nedenle, kural boliitleme i¢in alan boliitleme yonteminde kullanilan klasik Greedy
algoritmasi sunulmustur. Burada amag ise kurallarin tek boyuttaki karsiliklarindan
yararlanarak en az sayida boliit olusacak sekilde kurallar1 birbirlerinden ayirmaktadir.
Elden edilen kural boliitleri igerisindeki kurallar ise, alan boliitleme isleminin dogasi
geregi birbirleri ile kesismemekte ve dolayisiyla da her bir boliit i¢in olusturulan karar
agaclarinda kural tekrar1 sorunu ortadan kaldirilmis olmaktadir. Bunun yaninda ise,
kurallarin tek boyuttaki bu karsiliklar1 kullanirak yapilan béliitleme islemi, tiim kural
alanlarinin karakteristik 6zelliklerini yansitirken, ¢alisma stiresi olarak da kural alan
sayisindan bagimsiz halde getirilmis olmaktadir.

Kurallarin ve paket smiflandirma isleminin ¢ok boyutlu koordinat diizlemindeki
karsiliginin tek boyuta indirilmesi ve bu tek boyut iizerinden kural boliitleme isleminin
alan boliitleme islemine donistiiriilmesi sayesinde elde edilen kazanimlar, bize karar
agaclarin daha hizli kurulmasi, paket siniflandirmasinin daha hizli yapilmasi ve kural
tekrar tekrar1 sorunun ortadan kalkmasi nedeniyle de daha hizli kural giincellemesinin
yapilmasi olanagini sunmaktadir. Yapilan simiilasyon neticeleri ile de bu kazanimlar
dogrulanmis ve literatiirde yer alan en hizli iki yontemden daha i1yi sonug edildigi
goriilmiistiir. Yapilan simiilasyon sonucunda, kural boliitleme siiresi ve kural
giincelleme siiresi olarak PartitionSort yonteminden sirasiyla %88 ve yiizde %15’e
kadar iyilesme elde edildigi; paket siniflandirma siiresi olarak da %50’ye kadar
tyilesme elde edildigi goriilmiistiir.
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1. INTRODUCTION

1.1 Software-Defined Networking

Software-Define Networking (SDN) is a network management approach that has
emerged to dynamize the network management and make it programmable[1].
However, this approach changes the existing traditional network architecture.
Processes to be made to the incoming packets or routes of them are decided by the
network elements (routers or switches) which these packets reach in traditional
network architecture. SDN takes this decision authority from these network elements
and creates two different planes: the data plane and the control plane. It gives the
decision authority to the controller device in the control plane. The controller is in a
central position to dominate the entire data plane. While communicating with the data
plane, the controller sends information for controlling the data plane and the decisions
about the packets which are coming to the data plane. Also, it receives information
such as rule requests when the new packets come to the network, traffic information,
the topology of the network. On the data plane, there are switches and routers with no
decision authorities. These elements apply the instructions which are coming from the

control plane.

There were attempts to make the networks more programmable in the past. Because
of these attempts, the historical road for SDN starts from the early-to mids 1990s. And
we can separate this road three parts: (1) the emergence of programmable functions
(to the 2000s); (2) decoupling the control plane from the data plane (to 2007); (3)
development of OpenFlow API and network operation system (to present) [2]. Among
these improvements, OpenFlow API [3] is a milestone for SDN. It plays a critical role
in SDN, even if it was first created for campus networks [3]. Because it enables the
communication between the control plane and data plane. After its first appearance in
2008, the first specification came up on December 31, 2009 thanks to Internet
organization openflow.org. After this specification, other specifications have released
by the Open Networking Foundation (ONF) [4]. The last specification for OpenFlow



is the OpenFlow Switch Specification Version 1.5.1 [5]. The birth of OpenFlow
brought along with it the acceleration in developing network operating systems for
SDN. Among these operating systems, NOX (the first one) [6], POX (python version
of NOX) [7], the Beacon [8], Floodlight [9], RYU [10], OpenDaylight [11] and Open
Network Operating System (ONOS) [12] are the most accepted and used ones.

SDN has its own problems like other network architectures. These problems can be
divided into two groups: problems in the control plane and problems in the data plane.
The most important problem in the control plane is the centrality of the SDN controller.
Because this causes scalability and resiliency issues. To solve this problem, multiple
controllers can be implemented in the control plane. But, this is also another research
area because there are specific problems about that how many controllers are enough
and how they are distributed and synchronized among themselves [20]. Also, because
of the centrality and openness criteria of SDN, security problems about the control
plane has been getting attention [21]. Lastly, this centrality problem is the reason for
congestion between the control plane and data plane, which eventually brings an
increase in latency and drop rate of packets in the data plane. Apart from control plane
problems, the data plane has its own problems too. The most important one is the
capacity of OpenFlow switches because there may be lots of users or devices in the
network thanks to the advantages of SDN. The capacity of OpenFlow switches isn’t
scalable with this increase in users or devices to hold enough rules. This problem
creates its own research area in the data plane, such as rules placement [22]. Also, e2e
latency in the data plane is a problem because of long lookup duration to find proper
action(s) for an incoming packet in OpenFlow switches [23]. This thesis focuses on

specific problems in the control plane and data plane.

1.2 Congestion Problem of SDN Controller Under Heavy Traffic

Applications or network services can use customized resources, thanks to SDN. This
leads to the usage of SDN in 5G to meet the requirements of different flow types in
5G. Apart from the expectation of 1~20 Gbps throughput and less than 1 ms latency
from 5G [24], heterogeneous flow types need different throughputs and latencies in
5G. For example, Enhanced Mobile Broad (eMBB), Massive Machine-Type
Communication (MMTC), and Ultra-Reliable and Low-Latency Communications

(URLLC) require 4 ms, 10 ms, and 0.5 ms latency, respectively [25]. However, these



requirements cannot be met when there are ultra-high demands in the SDN network
because the communication channel between the control plane and data plane congests

in ultra-dense scenarios.

In ultra-dense scenarios, newly incoming flows increase in the data plane. This causes
an increase in PACKET_IN messages that are sent from switches to the SDN
controller to ask an action for newly incoming flows. As a result, the response time of
the SDN controller increases and causes congestion between the data plane and the
control plane. This congestion also causes an increase in e2e latency and the number
of ignored PACKET_IN messages. We create a network described in Section 2.2 and
don’t implement any solution to examine the increase in the response time of the SDN
controller. As seen in Figure 1.1, when the number of hosts increases, that means an
increase in newly incoming flows, the response time of the SDN controller also
increases and surpasses a target value after a specific amount for the number of hosts.
The first aim of this thesis is to decrease the response time of the SDN controller for
different flow types of 5G to the target area in ultra-dense scenarios. We determine 10

ms for a target value because the highest latency requirement is 10 ms for mMTC flow

type.
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Figure 1.1: Controller Response Time vs Number of Hosts.
1.3 Packet Classification Problem in Data Plane

All packets in a network are not the same with each other; as a result, each different

packet requires the most proper action to be done for it. Packet classification is an



essential function to find the appropriate action in all networking paradigm. Also, more
diverse services can find a place for themselves in a network as new networking
technologies emerge. But more diverse services require more diverse actions. As a
new paradigm, SDN with the OpenFlow standard tries to meet this requirement by
increasing the number of supported fields up to 45 [26]. But, this improvement
increases the importance of packet classification for OpenFlow even more, because it
is more difficult to find a proper action/rule for a packet in this diversity. In addition
to this difficulty of classification in OpenFlow, incoming flows need fast processing
in an OpenFlow switch because of constrains of communication services in real-time
[27]. For example, URLLC service in 5G needs 0.5 ms latency at most [25]. Also, the
SDN controller can easily update a rule in a switch thanks to its centrality and
softwarization feature. But, rule updating also needs to be done quickly because of the

time constraints mentioned above.

Decision tree methods are the most preferred methods in the literature when we want
a fast packet classification. But, the rule updating time of these methods is very high
because most of these methods separate rules by cutting or splitting search spaces of
rules. As a result, some rules have one or more replica in leaf nodes of the decision
tree, known as ’rule replication problem. Rule partitioning methods combined with
decision tree methods, minimize the rule replication problem, or eliminate it. Thus,
they have fast classification and rule updating time. However, while partitioning rules,
they depend on the number of rule fields or ignore most rule fields for fast partitioning.
On the other hand, Open vSwitch [28] prefers to use the Tuple Space Search (TSS)
[29], which is the most popular tuple-space-based solution. TSS has a very fast rule
updating time, but it classifies packets slower than decision tree-based methods.
Because there are lots of hash tables as a result of ineffective rule partitioning [27]. To
solve these problems, we first aim to solve the rule partitioning problem in an effective
and fast way. Then, we use the HyperCuts method [30] to construct a decision tree for
each ruleset created by the proposed rule partitioning method for fast classification and

updating.



1.4 Contributions

1.4.1 Flow management engine for the sdn controller under ultra-dense demands

We first try to decrease the response time of the SDN controller in the thesis. By
decreasing response time, we aim to reduce e2e latency and the number of the ignored
PACKET _IN messages that will result a decrease in drop packet rate. To do these, we
propose a Management Engine, which has two modules in: Admission and
Prioritization modules. In the admission module, we use and change the Loss Ration-
Based RED (LRED) [31] method accordingly our need for multi-queue status. In the
prioritization module, we implement a tree structure that holds possible next states of
queues in each level and holds a priority value in each node, which is calculated using
priorities of each flow type and each queue lengths. To give priority to a queue/flow
type, we travel through the tree by looking at priority values of each node. So our

contributions include:

e To avoid congestion between the control plane and data plane, we implement and
change the LRED algorithm in the admission module in a way that it can consider
multiple queues in itself at the same time and states of queues in a different module.

e We propose a novel priority value in the prioritization module. Thanks to this
priority value, we can consider each delay requirement of flow types of 5G and
queue fullness of each flow in this module. As a result, we fairly give priority to

each flow type and achieve a decrease in e2e latency.

1.4.2 Interval Partitioning for Packet Classification in OpenFlow vSwitch

In this part of the thesis, we primarily focus on the rule partitioning, because it is a key
factor for fast packet classification and rule updating in both decision tree-based and
tuple-spacebased solutions. To solve the rule partitioning, we convert this problem to
an interval partitioning problem and propose a classic Greedy Algorithm. Thus, we
eliminate the rule replication problem. After partitioning, we construct decision trees
using the HyperCuts method [30] and order these trees according to the highest priority

values they have for fast classification. So, our contributions include:



e Running time of the proposed rule partitioning method is not dependent on the
number of rule fields while we consider the characteristics of each rule field. As a
result, we decrease construction time of decision trees.

e We eliminate the rule replication problem in each decision tree by converting the
rule partitioning problem to the interval partitioning problem. Consequently, we
decrease the rule updating time.

e We construct wider and shorter decision trees thanks to both the HyperCuts method
and our proposed partitioning method. Thus, we decrease the packet classification

time.

We organize the rest of the thesis as follows: We seperately give a literature surver
about the congestion problem and packet classification problem in Section 2. In
Section 3, we explain the proposed management engine for the congestion problem in
detail with the simulation results. Also, In Section 4, we explain the proposed rule
partitioning method for fast packet classification and rule update in OpenFlow vSwitch
with the performance evaulation of our method. We conclude the thesis in Section 5.



2. LITERATURE SURVEY

2.1 Current Solutions for Congestion Problem in SDN

Response time of the controller, e2e latency, and packet drop rate increase because of
ultra-high demand on the network and the controller's centrality feature. To solve this
problem, using multiple controllers in a way that they are distributed throughout the
network is the most implemented solution in the literature [32]. Authors in [32] try to
equilibrate loads of controllers among them using the response time of each as a
threshold in the distributed controller architecture. Authors in [33] aim to decrease the
response time of the controller by trying to reduce the load of it. They send and load
rules that contain wild-card bits to the switch(es) for some of the flows beforehand will
be these flows in the switch(es). In [34], a rounding-based algorithm is used to balance
the demands in the links and controller. [35] dynamically assigns controllers to the
switches and finds a Nash stable point after solving the stable matching problem for
these assignments. [36] considers reliability and response time together and define a
new metric Quality of Controller (QoC). After that, authors map switches and
controllers with each other using QoC. [37] makes one controller responsible for many
switches by considering the processing capacity of each controller. Authors in [38]
change the assignment of a switch before congestion between this switch and
controller by predicting the future amount of flows that will come to this switch. [39]
implements a layer named “flowcache” between the control plane and data plane to
cache some requests coming from switches to decrease the load of the controllers.
Finally, authors in [40] implement different controllers in architecture in a way each
controller is responsible for different works. But, these works aren’t adaptable for 5G
to implement to meet the requirements of different flow types and prioritize these flow
because they don’t take into account these requirements. Also, solutions of these works
don’t consume as little time as latency requirements of 5G flow due to do their

processes.



2.2 Current Solutions for Packet Classification Problem in SDN

Methods for packet classification can be categorized into two main groups: hardware-
based and algorithmic-based. Hardware-based solutions usually choose hardware
derived from Content Addressable Memory (CAM), such as ternary CAM (TCAM)
[41], [42], binary CAM (BCAM) [43]. Also, some hardware-based solutions use Field
Programmable Gate Array (FPGA) [44] or Graphics Processing Unit [45] as a
hardware technology. Hardware-based solutions are faster than algorithmic-based
solutions, especially TCAM-based solutions. However, TCAM-based solutions
consume lots of power and aren’t scalable with an increase in the number of rules.
Besides, we cannot always use hardware-based solutions for every situation because

of the requirement for specific hardware.

Algorithmic-based solutions are mainly divided into two as decision tree-based and
tuple-space based. Decision treebased methods have three different ways for
separating search spaces of rules: cutting (HyperCuts [30], EffiCut [46]), splitting
(HyperSplit [47], SmartSplit [48]) and hybrid usage of both (CutSplit [49]). EffiCut
minimizes the rule replication problem by constructing multiple decision trees
compared to HyperCuts; however, it is slow in classification due to the large number
of trees. SmartSplit divides the rules using the Efficut method and creates a decision
tree using either HyperSplit or HyperCuts methods according to the properties of the
resulting rulesets. As a result, it classifies packets faster than other methods; but it does
not allow a fast rule update due to its feature of complex decision tree construction.
CutSplit divides the rules based on the properties of some rule fields. As a result, it
can cause mismatches in packet-rule matching. In addition to these decision tree
methods, PartitionSort [50] defines a sortability function and partitions the rules using
this function. Thus, it has a balance between the rule update and packet classification
time. However, the running time of rule partitioning depends on the number of rule
fields. This makes this method not a scalable solution with the increasing number of
rule fields. TSS [51] method, which is the most common of Tuple-Space based
methods, offers a fast rule update. However, the packet classification is slow due to
lots of field comparisons when necessary and high number of hash tables. The
TupleMerge [27] method that improves TSS has faster packet classification and rule
update than PartitionSort as it combines some hash tables. However, it combines rules

that must be separated by ignoring some bits in the rule fields.



As seen, decision tree methods that do not construct multiple trees cause the rule
replication problem. When they construct multiple trees, they are not scalable because
they depend on the number of rule fields during the rule partitioning, or they cannot
eliminate the rule replication problem. When they partition the rules independent from
the number of rule fields, they can cause errors in matching because they ignore some
rule fields and don’t reflect the characteristics of ignored fields in rulesets after
partitioning. Likewise, tuple-space based methods may result in a large number of rule
groups as a result of rule partitioning or cause inaccurate rulesets if they sacrifice from

characteristics of rule fields.






3. FLOW MANAGEMENT ENGINE FOR THE SDN CONTROLLER
UNDER ULTRA-DENSE DEMANDS

3.1 Proposed Flow Management Engine

The recommended management engine can be seen in Figure 3.1. The engine consist
of two separated but connected steps: admission and prioritization steps. In the
admission step, we implement three different queues for three flow types of 5G:
eMBB, mMTC, and URLLC flow. In this step, we changed the LRED algorithm in a
way that we take into account both queues in this step and queues in the prioritization
step. If there is a signal (s) that is coming from the prioritization step and shows one
of the queues in this step is full, we drop a message from the queue in the admission
step that corresponds to the queue created for the same flow type in prioritization step.
The admission step would send the request (t) to the prioritization step if that request
didn’t drop. In the prioritization step, we give priority to flows considering both delay
requirements and queue fullness of these flow. We will explain the admission step and

prioritization step in detail in Section 3.1 and Section 3.2, respectively.

Flow Management Engine
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Figure 3.1: The Proposed Management Engine.
3.1.1 Admission step

We use the LRED algorithm to admit messages coming from the data plane in this
step. The LRED algorithm is an active queue management method. We use this

algorithm because it is fast and depends on the loss-ratio of the coming packets. How
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However, we change this algorithm to take into account of our multiple queues in this
step and queues in the next step given as Algorithm 3.1.

Algorithm 3.1: Admission Management Algorithm.

Initialize y
Equalize s to FALSE
for one flow type j
determine drop probability rjwith equation (3.3)
create v between 0 and 1 in a uniformly randomize manner
if queue is full
send the packet_in message to the switch
add one to my;
else
if sjis TRUE
send the packet_in message to the switch
add one to my;
else if v<r;
send the packet_in message to the switch
add one to my;
end

As seen in Algorithm 1, we look at the queue fullness of each queue in this step before
looking at any other condition. If the queue is full, we send the newly incoming
packet_in message for that flow type back to switch. If the queue is not full, we check
queue fullness again; but this time, the algorithm looks at the queues in the
prioritization step. That means the algorithm looks the value of s, whether it is TRUE
or not. If s is TRUE, the algorithm again sends the incoming packet_in message back
to switch. If s is FALSE and v, which is a random value produced before is less than
the drop probability value rj, which is calculated earlier, we again reject the incoming
packet_in message for the related flow type. In that point, by saying drop probability,
we mean sending back or rejecting the incoming packet_in message. So we use the
words ‘drop’ and ‘rejection’ interchangeably from now on. After each rejection of the
packet_in message, we increase the number of the rejected message by one to use this
value the calculation of drop ratio. We use the equation 3.1 to calculate the drop ratio
(f;) for each flow below:

T—
Yn=o My j(t—n)

fi(t) = gt (3.9

In the equation 3.1, mg(t) is the total number of incoming packet_in messages for a
flow type, mnj(t) is the total number of rejected packet_in messages for the same flow

type. These two values are calculated for a period T.
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This drop ratio is used to calculate the expected drop rate (f;) for each flow type. This

rate is necessary to determine a drop probability r; for each flow type and equation of

this rate as follows:
fif@®) = w.fift—=1)+ 1 — wyf(®) (3.2

where w; is the weighting factor. After that, we calculate the drop probability for each
flow type using f;*(¢), instant length of each queue l;, and steady-state queue length l;

as follows:

=fM+y fj*(t)(lj - lsj), wherey > 0 (3.3)

where y is constant value. In that point, if we use the same Isj value for all flow types
in the calculation of the drop probability, there will be an unnecessary rejection of
packet_in messages of the flow type with the highest arrival rate. We give the lowest
Isj value for this flow type differently from the original LRED algorithm [31] to prevent
unnecessary rejections. Also, we give different ls; values for other flow types in the

manner because each flow type has different arrival rates.

3.1.2 Prioritization step

In this step, we construct three different queues for each flow type because each flow
type has different delay requirements in 5G. However, we also have to decrease the
duration of each message of a flow in this step. That means we have to take into
account the length of each queue. To solve these problems, we define a new priority
value that considers both delay requirements and length of queues of each flow. Also,
we create a tree structure, and an algorithm to travel the tree to select which flow type’s

message should be considered first.

The created tree contains four levels, as seen in Figure 3.2. There are possible next
states of each queue in each level. Nodes in the tree hold a priority value which is

calculated as follows:

P=max(%,&,&)max(Nlpl,szZ,N3p3), (3.4)
1 P2 P3

where P is the priority value for a node, N is the length of each queue, and pj is the
priority value which represents delay requirements of each flow. These priority values

for flow types is between 0 and 1. Also, the summation of these priority values equals
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1, which can be shown as 213-=1 p; = 1. Thanks to the priority value P for a node, we

consider both lengths of the queue and delay requirements of each flow. Also, as seen
in Figure 3.2, each node has three child nodes representing the next possible states
created from this node. These states are selecting from a message only from the first

flow type, only from the second flow type, and only from the third flow type.

qp: URLLC
q,: eMBB
qz: mMTC

Figure 3.2: The Proposed Tree Structure.

Calculation of priority values of each node and traveling all the nodes in the tree causes
an increase in the response time of the controller. To prevent this increase, we create
four levels and propose an algorithm, as seen in the Algorithm 3.2. In the algorithm,
we first check whether there is more than one node in which there is queue(s) whose
length(es) is greater than or equal to the determined threshold value in or not. If there
is more than one node, we sum the priority values of flow types whose queues exceed
the threshold value. After that, we select the node whose summation of priority values
is greater than other nodes’ as a parent node. If there is one node in this situation
described above, we select that node as a parent node. However, if no node is in that
situation, we calculate the priority value P for each node at the same level using
equation 3.4. After that, we select the node whose priority value P is greater than
other’s queues exceed the threshold value with higher priority values. The threshold
value is determined using 9(whole queue length)/10 because of the ratio between the
possible highest priority value for a flow type to has is 0.7 and possible lowest value
0.1. As aresult, we expect a selection from all queues till the threshold. Another proof
for considering both queue length and delay requirements is the selection of the node
with the maximum priority value P. As seen in the equation 3.4, the max(.) function at
the right pushes to select a message from the queue if the length of this queue is the
maximum. On the other hand, the max(.) function at the left pushes to select a message

from the queue, which holds messages for the flow type whose delay tolerance is the
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minimum. Because we give the highest priority value to this flow type to this flow
type.

Algorithm 3.2: Prioritizaion Algorithm.

Initialize N,, N,, N5 for the starting level
for each level s starting from the level 1 in the tree
determine possible lengthes N for each queue in all nodes
if more than one nodes have queue(s) whose length(es) are greater than or
equal to the threshold value
select the node as a parent, which has more flow types with higher
priority values
add this node to the decision path
if only one node has queue(s) whose length(es) are greater than or equal to
the threshold value
select the node as a parent
add this node to the decision path
else
determine priority values P for each node using the equation (3.4)
select the node a parent with the highest P
add this node to the decision path
execute the decision path
end

3.2 Performance Results

We evaluate our proposed method using a single machine with Ubuntu 18.04 LTS,
Intel Core i7, 12.00 GB RAM. We construct a topology with 20 OpenFlow switches
and 2 controllers. Each controller is responsible for half of the switches and 8 hosts
connect to each switch. We choose to use POX [7] as an operating system for
controllers. We created three flow types with different characteristics to reflect
URLLC, mMTC, eMBB services. In this context, we give different priority values for
these services and create different packet sizes as seen in Table 3.1. Also, we use the
“waiting time calculation” in [52] to create these flows with different distributions
because eMMB is UDP, URLLC and mMTC flows are TCP flows. Other details about
the performance parameters can be seen in Table 3.1.

We compare our method with two different methods: only using First In First Out
(FIFO) method (method 1) in the admission step and only using our LRED method in
the admission step (method 2). As seen, we don’t implement a prioritization step in
these two methods. Because we want to compare the effect of both admission and
prioritization steps separately. We compare our management engine with these

methods in controller response time, e2e latency, and drop rate for each flow type. Du
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During the experiments, we add 40 hosts to network in each experiment that means 2

additional hosts for each switch.

Table 3.1: Performance Parameters.

Parameter Value
Mininet Version 2.2.2
OpenFlow Version 1.3

Hosts per Switch [8-16]

Queue Length 1000 packets
Arrival Rate per Flow 500 packets / sec

Priorit values 0.5,0.3,0.2 (URLLC, mMTC, eMBB)
Packet Sizes 100, 80, 70 byte (URLLC, mMTC, eMBB)

For the average controller response time, we get the best results, as seen in Figure 3.3.
Also, our method results are close to the target area, which is shown in Fig. 1.1 because
firstly, in the admission step, we reject the messages if the queue for that flow type is
full in the prioritization step. Another reason for getting these results is our selection
method described in Algorithm 3.2 and equation 3.4. In the algorithm, we firstly select
messages from the queues whose lengths exceed the threshold value. But, while
selecting, we also take into account delay requirements of flow types by looking at
their priority values. Secondly, we select messages by looking at the priority value of
nodes calculated using equation 3.4. Thanks to max(.) functions in this equation, while
we consider priorities of flow types, we take into account of the duration of messages
in the prioritization. Also, differences between the results for flow types are not huge
thanks to selection method in the prioritization method as seen in Figure 3.3. But, the
best results among the flow types is for the URLLC service with approximately 53%
better results than method 1 and 43% better results than method 2 when there 3200

hosts, as seen in the Figure 3.3 (a). Because, it has the highest priority value.

Our method gives a response to incoming packet_in messages in a fast and dynamic
way thanks to our changed LRED method in the admission step. That also brings us
an advantage in preventing congestion between the control plane and the data plane.
As a result of this advantage, we decrease e2e latency for all flow types, as seen in
Figure 3.4. We improve e2e latency for URLLC flow type with the amount of 58%
from method 1, and 50% from method 2 when there are 3200 hosts; but this improvem

improvement is lower for other flow types. Because we give different priority value of
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improvement is lower for other flow types. Because we give different priority value of
them and URLLC flow type has the highest priority in the equation 3.4.
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Figure 3.3: Average Response Time vs Number of Hosts.

LRED method considers the drop rate of the packet while calculating the drop
probability. So, our method also considers the drop rate, which means the rejection
rate of packet_in messages, as seen in equation 3.3. As a result, our method gives the
best results for all flow types in terms of drop rate, as seen in Figure 3.5. However, the
improvement from method 2 isn’t huge, like the improvement of method 2 from
method 1. For example, the drop rate of mMMTC flow is less in method 2 than method
1 with the amount of 21% but is less in the proposed method than method 2 with the
amount of 3%. Because, when we implement the admission step with the prioritization

step, the admission step considers the queue fullness in the prioritization.
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4. INTERVAL PARTITIONING FOR PACKET CLASSIFICATION IN
OPENFLOW vSWITCH

4.1 Proposed Method

In this section, we will explain how we develop a partitioning method considering the
characteristic of rule fields but eliminating the adverse effects of the number of rule
fields. After that, we describe how we can construct decision trees, classify a packet,

and update a rule, respectively.

4.1.1 Proposed rule partioning method

We must overcome two main challenges in developing an effective and fast
partitioning method: i) How can we consider characteristics of rule fields but prevent
retarding effect of the number of fields in partitioning at the same time? ii) How can
we separate rules in a way that there will be no rule replication in the decision tree

constructed using one ruleset?

Before digging into these challenges, it is necessary to explain the counterpart of
packet classification in geometry. It will be better to think of a two-dimensional
Cartesian coordinate system to facilitate explanation. We create an example of rules
in Table 4.1 to use in the explanation. When we create a Cartesian coordinate system
whose axes represent rule fields, a rule forms a rectangle, and a packet forms a dot
whose coordinates are values of header fields of the packet in decimal base. In that
representation, when we said that a packet matches with a rule, it means that packet or
dot will be in the area of rectangle shape of that rule, as seen in Figure 4.1a. The dot

Pxy) shows the incoming packet.

If we look specifically at the matching of the packet with the rule R5 in Figure 4.1a,
we can say that coordinate values of the packet are between coordinate values of two

corners of the rule represented with dots I and Jic,g) That mathematically means:
a <x <c, (4.1

b <y <d, (4.2)
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After that, we can easily sum the inequality 4.1 with the inequality 4.2 and get:

a+b < x+y <c+d, (4.3)

Table 4.1: Example 2D Rulelist.

Rules Field X Field Y in1D
R1 [14 15] [015] [14 30]
R2 [8 9] [47] [12 16]
R3 [2 3] [4 5] [6 8]
R4 [0 15] [6 7] [6 22]
R5 [47] [2 3] [6 10]
R6 [0 15] [0 15] [0 30]

The question at this point is: what is the meaning of the inequality 4.3 in a geometric
perspective? When we interpret the inequality 4.3 in one dimension, we can see that if
a packet matches with a rule, it means the packet must be on the line, which represents
the related rule, as seen in Figure 4.1b. If we look at the whole picture of Figure 4.1b,
the rule partitioning problem becomes an interval partitioning problem. At this point,
instead of using as few sources as possible, we try to use as few rulesets as possible to
construct decision trees for each ruleset.

124 R1

R4

R2

[rs ||
Py) Jica)
RS
Tiab)

Y

2 4 6 8 10 12 14
(@) Rules in 2D.

b R6

*—o—o
Tath) Jieray
R4

R3

R2

(b) Rules in 1D.

Figure 4.1: Rules Before Partitioning and Packet Classification.
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We can solve the first challenge mentioned at the beginning in this section by
converting the rule partitioning problem to the interval partitioning problem and
representing the packet classification in one dimension. As seen in Figure 4.1b, we get
line representations of rules by summing coordinate values of start and end points of
each rule interval. That means we consider characteristics of each rule field while we
obtain line representation of each rule. Besides, we propose a classic greedy algorithm
solution [53] for rule partitioning, as seen in Algorithm 4.1. If we use a greedy
algorithm, the limitation of the running time of the rule partitioning problem becomes
O(nlogn), where n is the number of the rules. As a result, we eliminate the retarding
effect of the number of fields in rule partitioning.

Algorithm 4.1: Rule Partitioning Greedy Algorithm.

get rule intervals in 1D
sort intervals by starting time inaway s; < s, < -+ <'s,
set number of ruleset r — 0
forl=1tondo
if rule | is compatible with some ruleset k then
put rule I in ruleset k
else
construct a new rulesetr + 1
putrule linrulesetr + 1
r—r+1
end if
end for
end

Thanks to the proposed greedy algorithm, we can solve the second challenge
mentioned at the beginning of this section. We can say that the rules in one ruleset
don’t overlap with each other. That means the ranges for packets of these rules don’t
intersect with each other’s ranges. Thus, there will be no rule replication in decision
trees. The partitioning results can be seen in Figure 4.2a and Figure 4.2b in 2D and
1D, respectively. Before finishing this chapter, we prove the solution of the second

challenge.

Lemma: Let have d-dimensional n rules R1 through RN in one ruleset obtained the
proposed partitioning method. For any resulting ruleset, there will be no rule

replication in the decision tree constructed by using this ruleset.

Proof: If any two or more rules in one ruleset intersect with each other’s ranges, that
means one incoming packet classified to this ruleset can match with these intersected

rules. Let think one ruleset that is obtained the proposed partitioning method and has
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two rules R1, R2. Each rule has two fields. Also, let range or interval of rule R1 in two
fields be [a, c] and [b, d], respectively, and range or interval of rule R2 in two fields

be [k, m] and [l, n] respectively. Lastly, let say:

a+b<c+d<k+l<m+n, (4.4)
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Figure 4.2: Rules After Partitioning.

We can construct this inequality because if we solved an interval partitioning problem,
we know that each interval in one set doesn’t intersect with each other. Let an incoming
packet P has two header fields with the value of (e, f). If this incoming packet matches
with both R1and R2, thatmustbea +b <e+f <c+dandk+l <e+f<m+
n But we know thatc +d < k + 1. That means e + f don’tbe < c+dand >k + [
at the same same time. As a result, an incoming packet can’t match with these two

rules at the same time. Also, that means ranges of R1 and R2 can’t intersect with each
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other. This proof doesn’t change if we use more rules or more fields. This proof shows
that we can construct a decision tree for one ruleset in a way that each leaf node of this
decision tree represents different rule(s). As a result, we eliminate the rule replication

problem thanks to the proposed partitioning method.
4.1.2 Classification, rule update

4.1.2.1 Classification

We must first construct a decision tree for each ruleset, which is obtained using the
proposed interval partitioning algorithm before classification a packet. We will use the
HyperCuts method [30] to construct a decision tree. The reason for choosing this
method is a facility for constructing a wider decision tree. Thanks to this tree, we can
do classification faster. Also, we can construct these decision trees in a way that each
leaf node in a tree holds different rule(s) because rules in a ruleset don’t intersect with

each other.

We determine a condition to construct a decision tree. This condition is that number
of rules in one ruleset must be higher or equal than 2 because there is a possibility of
getting rulesets that have rules less than 2. After constructing decision trees, we
combine the rulesets that don’t allow us to construct a decision tree and make one
ruleset from these separate rulesets. Then, we order the rules in the combined ruleset
according to the priority order in a table holding. Also, we hold the information about

the interval of each rule in 1D (as seen in Figure 4.1a) in this table.

When a packet comes, we have to determine which ruleset or decision tree we start to
search for matching in. After constructing part, we order decision trees and the
remaining combined ruleset according to the maximum priority value of a rule that is
in each tree or ruleset like in PartitionSort [50]. Consequently, we start to search for a
matching according to this order. If the packet matches and priority value of matched
rule is higher than the next ruleset, we stop searching. When we search a matching in
the remaining combined ruleset, we also start from the rule which has the highest
priority value by looking at the 1D interval information of each rule. We stop searching

after we find a match in the table.
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4.1.2.2 Rule update

We use a similar approach in rule insertion and eviction operation, shortly named rule
update, with PartitionSort. In rule insertion operation, we look at the decision trees in
order. If a new rule can be held in one leaf node of one decision tree, we add the new
rule to this decision tree. If not, we add this new rule to the remaining combined ruleset.
After that, we run the interval partitioning algorithm only for the new version of the
remaining ruleset. If we can construct a new decision tree(s), we construct it (them)
and again combine remaining rulesets. Then, we reorder decision trees, and the

remaining combined ruleset again.

In rule eviction operation, after we found which ruleset the rule is in, we evict this rule
from that ruleset. If we evict a rule from a decision tree and the number of rules in this
tree becomes less than 2, we add the remaining rule the combined ruleset. After these
operations, we check the priority order of rulesets, and if necessary, we reorder the

rulesets.

4.2 Performance Evaluation

We evaluate our method by creating synthetic rulelists using ClassBench [54], because
we don’t have an access to the real rulelists. We use 12 different parameter files for
creation synthetic rulelists. These files include three different categories: 5 access
control lists (ACL), 5 firewalls (FW) and 2 IP chains (IPC). We generate 4 different
sizes of rulelists from 1k to 64k for each category.We create 5 different rulelists per
each size using each parameter files. As a result, we have 240 different rulelist in total.
Finally, we generate different rulelists with different number of rule fields (5, 10, 15,
and 20 rule fields) for 64k rule size.

We compare our method with PartitionSort [50] and TupleMerge [27] in two
scenarios: online scenarios and offline scenarios. For online scenarios, we measure
packet classification and rule update times. For offline scenarios, we measure
construction and packet classification times. In our experiment, classification time is
the time that is needed to classify 1.000.000 packets. We generate these packets using
the Trace Generator tool of the ClassBench method. Rule update time is the time that

is needed to insert or delete one rule. Finally, construction time is the time that is
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needed to construct the data structure for rules. In comparison, we use the average

value of each performance metric for each category and size.

To evaluate our method, we use Intel i7-8750H CPU, 2.2GHz with 6 Cores, 16GB

RAM running Windows 10 as an environment.

4.2.1 Online scenario

In the online scenario, we randomly select half of a rulelist to construct a data structure.
After that, we insert the other halves in random order. While inserting, we randomly
delete some rules from the data structure. The total number of insertions and deletions
are 500.000 per each. While dynamically changing the rules in the data structure, we
measure and compare packet classification and rule update time of PartitionSort,

TupleMerge, and the proposed methods.

In Figure 4.3, we compare packet classification times of methods in each size while
increasing the size of rulelists. As seen, our method has the best classification time for
each category and in each size because our decision trees for each ruleset is wider than
decision trees in PartitionSort thanks to using HyperCuts for construction even if we
have more partitions. Our method is also better than the TupleMerge method because
we have fewer rules in each ruleset, and we don’t have to search for each rule field
sometimes. We have the best improvement (up to 40% better than the TupleMerge)
for the Ipc category because there are rules whose search space of fields is narrower

in this category. As a result, we have a fewer number of rulesets for this category.
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Figure 4.3: Online Classification vs Rule Size.

In Figure 4.4, we compare the rule update time of each method while increasing the
size of the rulelists. As seen, our method is better than the PartitionSort (up to 15 %

better), because of wider decision trees. Unlike the classification time, our method is
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worse than the TupleMerge in rule update time because the TupleMerge uses hash

tables like the TSS method as a data structure; but, our method isn’t too worse.
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= PartitionSort =e=s=+ TupleMerge == = Proposed Method

Figure 4.4: Online Update Time vs Rule Size.
4.2.2 Offline scenario

In the offline scenario, first, we construct data structure for all rules in rulelists. After

that, we compare the construction and packet classification times of each method.

In Figure 4.5, we compare the packet classification of each method. But this time, we
also take the average for all rulelists in each size. As expected, the proposed method
has the best improvement (up to 28% better than the TupleMerge). The reason for
getting these results is again using wider decision trees and fewer rules in each ruleset.
In Figure 4.6, we compare the construction time with the PartitionSort method for the
rulelists whose size is 64k while increasing the number of rule fields. We use only
PartitionSort for this comparison because of the usage of decision trees as a data
structure. As seen, our construction time is better (up to 88%) because the running time
of our partitioning method is independent of the number of rule fields.
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Figure 4.5: Offline Classification vs Rule Size.
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In Figure 4.7, we compare the packet classification time of our method with
TupleMerge for the rulelists whose sizes are 64k while increasing the number of rule
fields. As expected, our method is better up to 50% because TupleMerge has to search
whole rule fields when it is necessary. And finally, we compare the packet
classification time of our method in both online and offline scenarios in Figure 4.8. As
seen, offline is better than online. But the difference is not so much because we don’t
consume so much time while inserting or deleting a rule from the data structure thanks
to wider decision trees and fewer rules in each ruleset. Also, if there is a need to run

the partitioning method, the running of it doesn’t increase classification time much.
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Figure 4.7: Offline Classification Time vs Number of Rule Fields.
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Figure 4.8: Online Classification vs Offline Classification.
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5. CONCLUSIONS AND FUTURE WORK

Sofware-Defined Networking (SDN) brings a new, flexible, softwarization, and fast
approach to the network management by separating the control plane and data plane
from each other. But, it has its own problems like other technologies although it solves
many problems. One of its problems that is investigated in this thesis is the congestion
between the control plane and the data plane because of the centrality feature of the
control plane. Another problem of SDN, which is also investigated in this thesis, is the

slow packet classification and rule updating in OpenFlow vSwitches.

In this thesis, we firstly propose a fair and rapid Quality of Service (QoS) provisioning
solution for the SDN controllers facing heterogeneous service flows in ultra-dense
scenarios. We develop a novel flow-aware Management Engine to prevent congestions
in the controller when heterogeneous URLLC, eMBB, and mMTC traffic suddenly
increase. The fair processing of the proposed engine for heterogeneous flows provides
faster response time to the incoming new packets (up to 53%). Also, as a result of
faster response time, we decrease the e2e latency (up to 58%) and drop rates (up to
36%).

Secondly, we convert the rule partitioning problem to the interval partitioning problem
and propose a classic greedy algorithm as a solution. As a result, we eliminate the rule
replication problem in decision trees, and we make the running time of the partitioning
solution independent from the number of rule fields while considering the
characteristic of all rule fields. After that, we construct decision trees for each ruleset
using the HyperCuts method and order all constructed data structures according to the
highest priority value, which they have. Consequently, we decrease the construction
time (up to 88%), packet classification time (up to 40% for online, up to 50% for an
offline scenario with an increase in the number of the rule fields ), and rule updating
time (up to 15%).

As a future work, priority values for each flow type can be changed dynamically during
the calculation of the newly defined priority value for each node of the tree structure

for the congestion problem. In the thesis, it is assumed that these priority values of
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flow types are static. On the other hand, relating these values to packet loss ratio or
incoming amount of flow types and changing these values dynamically can indicate
how the proposed solution affects performance metrics in different scenarios. Also,
packet classification accuracy or errors can affect the e2e latency and packet drop rate
of different flow types. To investigate the effects of these, labeling rules to show which
flow types can be matched with these rules and comparing the classified packets at
first with the matched and separately stored packets for each label can be used as a

methodology for future work.
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