ISTANBUL TECHNICAL UNIVERSITY % INSTITUTE OF SCIENCE AND TECHNOLOGY

MODEL BASED PARALLELIZATION OF OBJECT ORIENTED SOFTWARE
FOR MULTICORE SYSTEMS

Ph.D. Thesis By

Tolga OVATMAN
Department : Computer Engineering
Programme : Computer Engineering

JUNE 2011

ISTANBUL TECHNICAL UNIVERSITY % INSTITUTE OF SCIENCE AND TECHNOLOGY

MODEL BASED PARALLELIZATION OF OBJECT ORIENTED SOFTWARE
FOR MULTICORE SYSTEMS

Ph.D. Thesis by
Tolga OVATMAN
(504052505)

Date of submission : 20 April 2011
Date of defence examination : 16 June 2011

Supervisor(Chairman) : Assist.Prof.Dr. Feza BUZLUCA (ITU)

Members of the Examining Committee : Prof.Dr. Nadia ERDOGAN (ITY)
Prof.Dr. Emre HARMANCI (ITU)
Assoc.Prof.Dr. Can OZTURAN (BU)
Assist.Prof.Dr. Elif KARSLIG IL (YTU)

JUNE 2011

ISTANBUL TEKN IK UN IVERSITESI % FEN BIL IMLER |1 ENSTITUSU

COK CEK IRDEKL | SISTEMLER ICIN NESNEYE DAYALI YAZILIMLARIN
MODEL TABANLI PARALELLEST IRILMESI

DOKTORA TEZ |
Tolga OVATMAN
(504052505)

Tezin Enstitlye Verildigi Tarih : 20 Nisan 2011
Tezin Savunuldwu Tarih ;16 Haziran 2011

Tez Danismani : Yrd.Dog.Dr. Feza BUZLUCA (ITU)
Diger Juri Uyeleri : Prof.Dr. Nadia ERDOGAN (ITU)
Prof.Dr. Emre HARMANCI (ITU)
Dog¢.Dr. Can OZTURAN (BU)
Yrd.Dog.Dr. Elif KARSLIG IL (YTU)

HAZ IRAN 2011

“Our freedom to doubt was born out of a struggle against aityho
in the early days of science. It was a very deep and stronggitu
permit us to question - to doubt - to not be sure.
| think that it is important that we do not forget this struggl
and thus perhaps lose what we have gained.”

Richard Phillips Feynman, " The Value of Science",
addressto the National Academy of Sciences (Autumn 1955)

Vi

FOREWORD

The paper you are about to read is not only a detailed sumnfiamy a@octoral study,

but also the epilogue to my 30 years as a student. During #hgesirs of my PhD

education there are many people contributed to the studa$drms the basis of this
thesis. | would proudly mention those people, of whom you firay the traces whilst
reading the paper.

Dr. Feza Buzluca is the first person | would like to thank fag &fforts as an advisor
during my PhD studies. He is the reason of almost every bitgdmzed and properly
prepared product that | was able produce during the last satsy Not only he
influenced me as a researcher but also he was a role modehétiing and literature.
| can't thank him enough for all the guidance and friendshiptigh those six years.

Next, | would like to thank Prof.Dr.Nadia Erdan and Dr.Elif Karshgil for
supporting me with their knowledge and their advising effturing my thesis studies.
Prof.Erd@an has lead me with her experience and wisdom and Dr.Kérahepys
encouraged me with her energy and vision. They are very itapbassets of this
thesis. 1 would also like to thank Prof.Dr.Emre Harmanci Bn€an Ozturan for their
valuable feedback and insightful remarks on my thesis studProf.Harmanci was
kind enough to spend several hours with me working on the s@impt and has helped
me to improve it in a very authentic and unique way.

During my thesis study | was very fortunate to study with imipot researchers in
Europe and United States. | would like to thank Prof. Thomasgéft from Missouri
University of Science and Technology for his contributibmany work on dependency
patterns. | would also like to thank Prof.Michael Reichli&tdnsen and my colleague
Aske Wiid Brekling from Technical University of Denmark foheir collaboration
during the early stages of my PhD study. Finally | would likethank my colleague
Gul Nildem Demir for her contributions on clustering for @eglency patterns and also
for her continuous support as a friend.

| would like to thank all my professors at Istanbul Technithdiversity Computer
Engineering Department, but especially Prof.Dr.Emre Haron and Prof.Dr.Esref
Adali for their guidance and influences during the evolubdmy scientific thinking

and working discipline. | would also like to thank Dr.Cunefahtuy and Dr.Mustafa
Kamasak for their mental support.

| also owe many thanks to all my research assitant colleagored TU. | would like to
thank Dr.Yusuf Yaslan, Dr.Burak Kantarci, Dr.Mehmet Teé®andikkaya and Dr.Ender
Yuksel for their friendship, help and many contributionsytthave made during my
studies. | would also like to especially thank Dr.Berk Cakbier walking together
with me in almost all the phases of my PhD study.

| was not only supported academically during my PhD studypulin't be able to
complete my work without mental support of my friends. | wenthank Kenan Kule,
Kivang¢ Kaya and Cenk Cigen for remembering me of the life gratvs outside the
lab whenever | need.

Vi

Last but not least | would like to thank my mother and fatherifidluencing me with
their infinite vision through all my life. | wouldn’t be heréhey haven't encouraged
me to continue as a graduate student and support me all the lweguld also like
to thank Irfan Sakin for paving the way to my academic life asla model with his
engineering career.

“To be whole is to be part..” says Ursula K. Le Guin in her famaovel. |
believe my PhD study(and myself as a PhD candidate) becanteke wince all the
people | mentioned above(and the ones | forgot the mentiecarne a part with their
contributions. Le Guin continues as “...true voyage ismetu

June 2011 Tolga OVATMAN
Computer Engineer, M.Sc.

viii

TABLE OF CONTENTS

Page
FOREWORDD . ..o e e e e i e Vii
TABLE OF CONTENTS . ..o e iX
ABBREVIATIONS e Xi
LIST OF TABLES i e Xiii
LIST OF FIGURES. ...t XV
LIST OF SYMBOLS e e e e Xvii
SUMM ARY L e XiX
(@)74 = XXi
1. INTRODUCTION . . . e 1
1.1. Multi-core Computing oot 2
1.2. Model Based Parallelization and Schedulingooooo. 4
1.3. Contributions and Dissertation Outline.........cowu.voieoin... 6
2. RELATED WORKo 9
2.1. Model Driven Parallelization oo, 9
2.2. Model Driven Scheduling 11
3. EXPLORING IMPLICIT PARALLELISM IN CLASS DIAGRAMS 1 5
3.1. Class Diagrams and Implicit Parallelism 15
3.2. Dependency Patternsin Class Diagramscccevevvvnnn... 18
3.2.1. Single-class dependency patterns.cooeviiiia ... 18

3.2.2. Multi-class dependency patterns.coveev ... 19
3.2.3. Occurances of dependency patterns.ccuuuueeeeeen.... 20

3.2.4. Parallelization using dependency patterns c. ..o vivi ... 24
3.2.4.1. Dependency pattern occurences in selected desitpins. 27
3.2.4.2. Dependency patterns in a real-world software................ 31

3.3. A Metric Set for Dependency Patternsccoeeiiiiinn... 39

3.3.1. Related work on pattern metrics.coeeeeiiiiiinan. 40

3.3.2. Dependency pattern specific metricso e eiiinn ... 42
3.3.2.1. Hub/Authority metrics 42

Ratio of Dependency Directions.co i immmn s, 42
Ratio of Singular Dependencies...............oiiiiiiiiiinnan.. 43
3.3.2.2. CyCle MetriCS . ..ot e 44
Number of Cyclic Dependenciesiiieenniain. 44
Ratio of Cyclic Dependencies. ...t mmmm e 44
3.3.2.3.Bridge MetriCS.o 45
Ratio of External/Internal Bridge Dependencies.................. 45
Ratio of Bridge to Source Dependenciescccuueo.... 46
Ratio of Sibling Bridge Classes ...t e 47

iX

3.3.24.01sland MetriCS oot 47

Ratio of External/Internal Island Dependencies a7
Cumulation of Inner Island Dependencies.............cc......... 49
3.3.2.5. Correlation among dependency pattern metrics 49
3.3.3. Real-world examples of dependency pattern metrics............ 50
3.3.3.1. Hub/Authority metricexamples e e oo e 50
3.3.3.2.Cyclemetricexamples ... 53
3.3.3.3.Bridge metricexamples ... i i 55
3.3.34. Island metricexamples..............c.i it 58
3.4. Detecting Dependency Patterns e eeennn.. 59
3.4.1. Related work on pattern detection . .. 60
3.4.2. An enhancement to graph clusterlng for dependertuyrpaietectlon 62
3.4.2.1. Clustering for dependency patterns cececeeee e e oo oo v o .. 63
3.4.2.2. Bridge detection algorithm............ ... 65
3.4.2.3. Evaluation of bridge detection algorithm 68
3.5. Summary and ConcluSIoNSttt i e 71
4. CACHE-AWARE SCHEDULING FOR MULTICORE SYSTEMS........ 73
4.1. Cache-Aware Scheduling of Design Patterns in a Muki&yocessor. 73
4.1.1. Cache-aware scheduling. ...t e 74
4.1.2. Case studies on software design patterns . . Y 4 o
4.1.3. Effects of cache-aware scheduling on basic examples 79
4.1.4. Applying cache-aware scheduling 80
4.1 4.1 SUategy . ..ot 81
A4 2. VISIOF . o oot e 82
4.0.4.3.0DSEIVEN. ..ot 82
4.2. A Cache-Aware Dispatcher for Dependency Patterns............... 84
4.2.1. Graph models of dependency patterns and multicoeepsors 85
4.2.2. A graph matching algorithm for cache-aware disgatch. 87
4.2.2.1. Compile-time graphmatcher................. ..., 88
4.2.2.2. Runtime resource allocatorcccoiiiin... 89
4.2.2.3. A sample scheduling scenario. e . 91
4.2.3. Applying cache-aware dispatcher for a ba5|c castystu 95
4.2.3.1. Case study software on image filtering.......caue.......... 96
4.2.3.2.Experimentalresults oiii 97
Applying composite filters on many subregions of an imageairalbel .
Applying many filters in parallel on a single image................... 101
Applying many filters in parallel on multipleimages 103
Applying many filters on subregions of multiple images ingila 105
4.3. Summary and CoNnCIUSIONSttt e e 107
5. CONCLUSIONS AND FUTURE WORK\ 109
5.1, CONCIUSIONS. . ..ot 109
5.2, FULUre WOIK . . .o oo 111
REFERENCES e 113
APPENDICES. ... 121
CURRICULUM VITAE. e 131

ABBREVIATIONS

API
AST
CAWS
CFS
CIID
Clpolicy

CMP
CPU
Cus
GHz
GoF
GPU
IC

JNI
JOMP
Ln Cache
NCD
NUMA
MCL
MPI
OpenMP
(O
RBSD
RCD
RDD
REIBD
REIID
RSBC
RSD
SACS
TRW

UML
ZEB

Application Programming Interface

Abstract Syntax Tree

Cache-Aware Scheduler

Completely Fair Scheduler

Cumulation of Inner Island Dependencies
Confidence Interval of a running time for a specific
schedulingpolicy.

Chip Multi-processing

Central Processing Unit

Cache-Unaware Scheduler

Giga Hertz

Gang of Four

Graphics Processing Unit

Integrated Circuit

Jaca Native Interface

An OpenMP-like Interface for Java

Level-n Cache

Number of Cyclic Dependencies

Non-Uniform Memory Access

Markov Cluster Algorithm

Message Passing Interface

Open Multi-Processing

Operating System

Ratio of Bridge to Source Dependencies

Ratio of Cyclic Dependencies

Ratio of Dependency Directions

Ratio of External/Internal Bridge Dependencies
Ratio of External/Internal Island Dependencies
Ratio of Sibling Bridge Classes

Ratio of Singular Dependencies

Same Core Scheduling

Abbreviation for TRWeb. A 4 dual-core processor server used
in experiments.

Unified Modeling Language

Abbreviation for Zebella. A 2 hex-core processor serveduse
in experiments.

Xi

Xii

LIST OF TABLES

Table 3.1
Table 3.2

Table 3.3

Table 4.1
Table 4.2
Table 4.3

:Correlation among defined metrics. 49
:Adjusted rand index metric obtained for the studied cluster

techniques: Hierarchical graph clustering, clusteringthwi
normalized cut and ratio associations, spectral graphesing,

and Markov clustering. oL 65
:Adjusted rand index for clustering improved by applying the
bridge detection algorithm to studied clustering techaegu . . . 69
:Normalized running times for basic strategy implementatio. . 79
:Normalized running times for basic visitor implementation . . 80

:Normalized running times for basic observer implementatio . 80

Xiii

Xiv

LIST OF FIGURES

Figure 1.1 :Diagram of a typical multiple multicore processor system
Figure 3.1 :Single-class dependency patterns
Figure 3.2 :Multi-class dependency patterns
Figure 3.3 :Dependency pattern occurrences in class diagrams
Figure 3.4 :Sequential implementation abtifyObservers()
Figure 3.5 :Parallelized implementation abtifyObservers()
Figure 3.6 0Observer'supdatethread
Figure 3.7 :Parallelization of observer
Figure 3.8 :Parallelization ofdecorator
Figure 3.9 Parallelization of abstractfactory
Figure 3.10 Control asamasterclass
Figure 3.11 Dependency relations @bntrol
Figure 3.12 Jikes performance upgrade by master class improvement
Figure 3.13 AstExpression as an authority superclass
Figure 3.14 Parallelization of authority superclass
Figure 3.15 AttributeInfo descendants as a hub bridge
Figure 3.16 Parallelization of an authority bridge
Figure 3.17 ‘An example class for hub/authority metrics
Figure 3.18 An example class forcycle metrics.
Figure 3.19 ‘An example for bridge metrics
Figure 3.20 ‘An example forisland metrics
Figure 3.21 Controlasahubpattern.
Figure 3.22 Constructor ofontrolclass
Figure 3.23 Jikes performance upgrade by hub parallelization
Figure 3.24 Self dependencies hriableSymbol
Figure 3.25 Self dependencies 8brtOption
Figure 3.26 AttributeInfo descendents as an authority bridge instance . . .
Figure 3.27 AttributeInfousage v v v v v v v
Figure 3.28 An example bridgefromJBoss
Figure 3.29 An example bridgefromJBoss
Figure 3.30 Sample islands having distinct island metric values

60

Figure 3.31 Performance of spectral graph clustering (a) and Markov

clustering (b) compared to manual clustering (¢).

.. .64

Figure 3.32 ‘A sample graph to be used in illustrating bridge detectigodhm. 66
Figure 3.33 Matrices of the sample graph in Figure 3.32 used in bridgeatiein. 67

Figure 3.34 Clustering obtained from MCL (a), manually (b), after deieg
and separating bridges and hubs/authorities from MCL te¢ci.

70

Figure 4.1 :Central processing unit architecture used in cache-aware

scheduling experiments of design patterns

XV

Figure 4.2 :Strategy designpattern 77

Figure 4.3 Visitordesignpattern, 78
Figure 4.4 Observerdesignpattern 78
Figure 4.5 :Scheduling strategies with different policies. 82
Figure 4.6 :Scheduling 8 visitors with different policies. 83
Figure 4.7 :Scheduling 2 observers with different policies. 84
Figure 4.8 :Scheduling many subject-observer tuples with differeticps. . 84
Figure 4.9 A sample representation of multiple chip multi-processors . . 86
Figure 4.10 An example dependency patterngraph 87
Figure 4.11 Graphs to be used in sample scheduling scenario 91
Figure 4.12 image filtering software diagrams 96
Figure 4.13 ‘A sample representation of a chip multi-processor.98
Figure 4.14 ‘A sample representation of a chip multi-processor.99
Figure 4.15 Applying composite filters on many subregions of a singlegema
inparallel 100
Figure 4.16 TRW results for applying composite filters on many subregioh
asingleimageinparallel 100
Figure 4.17 ZEB results for applying composite filters on many subregioh
asingleimageinparallel o oL 101
Figure 4.18 Applying many filters in parallel on a singleimage 021

Figure 4.19 Applying many filters in parallel on a single image on TRW . . 021
Figure 4.20 Applying many filters in parallel on a single image on ZEB . . .103

Figure 4.21 Applying many filters in parallel on multiple images 103
Figure 4.22 Applying many filters in parallel on two imageson TRW 410
Figure 4.23 ‘Applying many filters in parallel on many imageson TRW410
Figure 4.24 Applying many filters in parallel on two imageson ZEB 510
Figure 4.25 Applying many filters in parallel on three imageson ZEB . . . 051
Figure 4.26 Applying many filters on many subregions of multiple images i
parallel 106
Figure 4.27 ‘Applying many filters on many subregions of an image in patall
ONZEB 106
Figure 4.28 Applying many filters on many subregions of two images in
parallelonZEB 107
Figure A.1 :Dependency relations @LASS. 122
Figure A.2 :Dependency relations @DOKUP. 123

Figure A.3 :Dependency relations aBT (Some insignificant class names have
been excluded from the diagram for the sake of simplicity).... 124

Figure B.1 :Results of manual clustering fapOKUP. 125
Figure B.2 :Results of best clustering obtained f@okupP. 126
Figure B.3 :Results improved by bridge detection f@0KUP. 127
Figure B.4 :Results of manual clustering fasT. 128
Figure B.5 :Results of best clustering obtained #8T. 129
Figure B.6 :Results improved by bridge detection ®8T. 130

XVi

LIST OF SYMBOLS

Oi : Performance oif" experiment.

Pn . Normalized performance.

Dout . The number of direct dependencies of a class towards other
classes.

Din : The number of direct dependencies towards a class.

Dot : The number of direct dependencies a class have.

Dsng . The number of dependencies towards a class where
the originating class has only one dependency.

Deyc . The number of direct dependencies a class have towards itsel

Dext . The number of dependencies a group of classes have towards
other classes.

Dint . The number of dependencies towards a group of classes.

Dsrc . The number of dependencies between the source classes
of a bridge and the classes in the bridge pattern.

Npar . The number of different ancestor classes that the classes
of a bridge pattern have.

Nbdg . The number of classes inside a bridge pattern.

al...] : Standard deviation of a series.

W A core of a processor.

Uo : Main memory.

i : A cache memory in a processor.

b; A bridge pattern instance.

Ij . Anisland pattern instance.

a : An authority pattern instance.

h; : A hub pattern instance.

Yi : Acycle pattern instance.

oG : it class in a pattern p.

o) . Distribution factor of a pattern.

N¢ : The number of classes inside a pattern.

N . The number of cores in a processor.

& . Left threshold that distribution can deviate.

& : Right threshold that distribution can deviate.

T () . Function to select one upper level gfin processors’
memory hierarchy.

() : Function to select one lower level gf in processors’
memory hierarchy.

A() : Function to schedule each object in a pattern distributiegt
over a set of cores.

() : Function to schedule objects in a pattern over a set of caieg u

operating system’s scheduling policy.

XVii

XViii

MODEL BASED PARALLELIZATION OF OBJECT ORIENTED SOFTWARE
FOR MULTICORE SYSTEMS

SUMMARY

As multicore processors are becoming more wide-sprea€rdging of parallelism is

once again becoming an important concern during the sagtal@avelopment process.
Substantial refactoring is required to parallelize legseguential software in order to
exploit the advantages offered by parallel processinghimthesis study, guidelines
are offered to aid in parallelizing and scheduling of obj@géented programs by

analyzing their designs as represented in UML class diagiram

As a starting point, often occurring patterns of class-depacies are defined and their
characteristics in class diagrams are demonstrated bgtiga¢ing their properties.

Example instances exhibiting the usage of these patterndags diagrams are

presented through analyzing the runtime aspects of thesenices. This way, it is

possible to identify how they impact the parallelizationotject oriented software.

Taking these lessons into account when refactoring egistbject-oriented software

can significantly reduce time and effort required. Propasethods are evaluated by
applying it to three popular design patterns and a realdvcake study.

The dependency patterns defined in thesis studies can betetkutomatically by
using clustering methods and some supporting algorithmise #ifferent pattern
types(authorities, hubs, cycles, bridges and islands) mardetected using class
diagram analysis. However the properties of detectednpattecurences can still show
a great variance when such a grouping is used. There ssliseaineed to distinguish
each pattern instance regarding different propertieshlgg. Software design metrics
can be used to further identify the relation of dependenttiepaclasses among each
other and with the outer group. A metric set is proposed tbakte the dependency
pattern definitions allowing the developer/designer ttherr identify characteristics of
each pattern.

Later in the studies, automatically detecting dependeattems in software designs
is focused. After applying graph clustering techniquesgpathdency graphs extracted
from class diagrams it has been found that these techniqaes not able to detect

key dependency patterns that relied on characteristitioakhips of classes within

a cluster to classes outside of that cluster. An algorithnprigposed to detect

such dependencies. Experiments show that this algorithhhonly detects these

elements, but also improves on the studied graph clustéstigniques when applied

to dependency analysis of class diagrams.

In the last part of the thesis, leveraging utilization of #ered caches of multicore
processors is explored. Providing a scheduling mechariatmtaximizes throughput
by reducing miss-rates of shared caches and preservestiestaof processor usage is
in the center of this problem. Proposed scheduling algmstin this field usually take
advantage of thread level proper- ties of software proganodifications at operating

XiX

system level. In the last chapter, a different approach @iegh by using software
models to guide operating system to effectively map sofsarbjects onto processor
cores. The scheduling method takes class dependencieadntmnt and tries to
schedule objects of coupled classes onto cores that sfeo®thmon cache. Firstly,
case studies on implementations of three software desitgrps(Strategy, Visitor and
Observer) is presented. Later, an image filtering softwa@aementation is used in
our experiments on two different multiple multicore pros@sarchitectures. During
the experiments cache-aware scheduler is used in guidimgxisi completely fair
scheduler(CFS) anal(1) scheduler to perform more cache-aware thread assignments
and increase performance. Obtained results promise thdtnglrestricting OS
scheduler using class-relational information presentha dbject oriented software
model can be fruitful in increasing software performancerauiticore processors.

The two main contributions of this thesis are the use ofcstaiject oriented software
designs in detecting impilict parallelism in software ansing this model based
information during scheduling of object oriented paraleftware. The derivation
process of proposed methods are mainly based on re-usitegnsathat can be found
in software designs letting us preserve the software qudliring parallelization

process. In addition to this process “performance” -as thendtive quality concern

for parallel software- is improved using the derived tegleis. The experiments
show that performance improvements up to 30% can be achiesiag model based
techniques.

XX

COK GEK IRDEKL | SISTEMLER ICIN NESNEYE DAYALI YAZILIMLARIN
MODEL TABANLI PARALELLEST IRILMES |

OZET

Cok cekirdekli islemciler yayginlasmasini strdurdikgazilim gelistirme surecinde
paralellestirme calismalarinin 6énemi de gitgide arttadk. Halihazirda bulunan
siradiizensel c¢alisma prensiplerine gore hazirlanmzgiydarin paralel igletimin
nimetlerinden faydalanabilmesi icin 6nemli bir yeniderzeileme calismasi yapmak
gerekiyor. Bu tez calismasinda, nesneye dayali yazmimlgaralellestirme
calismalarinda kullaniimak tGzere kullanilabilecek aa#lanr, UML sinif gizenekleri
ile temsil edilen yazihm tasarimlari Uzerinde yapilan later sonucunda elde
edilmektedir.

Baslangi¢c noktasi olarak sinif gpanhliklari arasinda sikg¢a ortaya cikan éruntiler
ve bu oruntilerin yazilima 6zgu gostaydikarakteristikler, orunttlerin bir takim
Ozellikleri incelenerek ortaya cikarilmigtir. Bu Orulgin sinif cgizeneklerinde
ortaya cikma bicimleri, ortntilerden cesitli 6rneklemalarak ve bu 6rneklerin
calisma zamaninda goOstdagdidavraniglar incelenerek aciklanmistir. Bu sekilde
bagimlilik érintulerinin nesneye dayali yazilimlarin patkdstiriimesine olan etkisi
incelenmistir. Incelemelerde ortaya cikan edinimlerle halihazirda bafunesneye
dayali yazilimlarin paralellestiriimesi icin harcanaaba blytk oranda azaltilabilir.
Onerilen teknikler tG¢ yazilim tasarim kalibi ve gercektekdéanilan bir yazilim
Uzerinde uygulanarak tekniklerin gecedilincelenmistir.

Tanimlanan bamhlik érintuleri 6bekleme teknikleri ve bir takim ek teklerle
otomatik olarak sinif cizenekleri icinde bulunabilir. Biirtanalizlere dgtim
sinifi, otorite, dongusel sinif, kdpri ve adacik ismi \ailbes farkli Orinti
algilanabilmektedir. Ancak bu sekilde gruplansa dahi,niaygruba dahil
bagimlilik 6rintl drnekleri sahip olduklar 6zellikler agglan biyik farkliliklara
gosterebilmektedir. Her bir érintt orgiei digerinden ayiracak bir 6lcim sistemine
bu noktada ihtiyag duyulmaktadir. Yazilim o&lgutleri bu ataadaha detayl bir
analiz sglamak icin kullanilabilirler. Bgimhlik érintilerinin yazihmda gostergii
Ozellikleri detaylandirmak amaciyla bir ol¢ut kiimesi tengmalarinda énerilmistir.

Tez calismalarinin sonraki béliumlerindegoalilik 6runtilerinin otomatik olarak
yazilim tasarimlarinda algilaniimasina odaklaniimistt Bu amagcla yazilim
tasarimlarindan edinilen cizgeler tzerinde ©6bekleme rdigalari uygulanmig ve
sonucgta bu algoritmalarin Ozellikle “koprd” adi verilen Gatileri algilamakta
yetersiz kaldyl gorulmistir. Bu sorunu ¢ozmeye yonelik tanimlanan ritiga ile
hem “korpri’lerin algilanmasi gganmis hem de bdylece 6bekleme tekniklerinin
bagimlilik kalibi algilama amaciyla basarimi arttiriltms

Tez calismalarinda son olarak cok cekirdekli islemdéerortak kullanilan cep
belleklerin paylasiimasindanganan faydanin model tabanh tekniklerle arttiriimasi
uzerine yg@unlasiimistir. Bu noktadaki sorun islemci kullanieianadaleti koruma

XXi

amach yapilan iplik-islemci atamalarinin paylasilap delleklerde bulunan verilerin
siklikla yer d@istirmesine yol agcmasidir. Bu konuda yapilan ¢alismgénellikle
isletim sistemi cekirdg dizeyine yakin dgsklik veya ekler icermektedir. Son
bolumde bu sorunu ¢ozmek igin farkh bir yol tercih edilerglazilim modeli
analizi sonucu ortaya c¢ikarilan sinifgenliliklari kullanilarak yazilim mimarisi ve
islemci mimarisi eslestirmesi yapilimistir. Bu egigye gore olusturulan is gldum
yontemi aralarinda yiksek §anlilik bulunan siniflari, paylasacaklari veri miktari
cok olabilecginden ortak cep bellek kullanan cgekirdeklere atamayassigektadir.
Onerilen is dgitim yontemi “strateji”,“ziyaretci” ve “gdzlemci” isinil tasarim
kaliplarinin gerceklemeleri ve bir goruntu filtreleme yemi Uzerinde denenmigtir.
Deneyler sirasinda onerilen @éaci Linux isletim sisteminin CFS v@ (1) isimli

iki farkli is siralayicisini yonlendirmekte kullanilsnye bu sayede bagarimlarini
arttirdgi gozlenmistir. Elde edilen sonuclar igletim sistesisifalayicisinin yazilim
modelindeki siniflar arasi iliskiler g6z 6nuinde bulundarak cep bellek kullanimini
arttiracak sekilde yonlendirmesinin basarimi art§rgontindedir.

Tez calismalan sonucunda iki farkli alanda katkilaglaamistir. Bunlardan ilki
yazilhim tasarimlari kullanilarak yazilimin genelindeligiulunan paralelfjin ortaya
cikartilmasi. Ikincisi ise model tabanli bilgiler 1§inda nesneye dayali yazilimlarin
is siralamasinin yonlendirilmesidir. Onerilen tekniideolusturulmasi esnasinda
yazihmlarda bulunan druntilerin/kaliplarin tekrar lamimi ile paralellestirme
strecinde yazilim kalitesinin korunmasig&nmistir. Ayrica kullanilan tekniklerle
paralel yazihmlar icin en O6nemli kalite isterlerinden mldagsarimin arttirilmasi
sgglanmistir. Sunulan deneyler, 6nerilen model tabanhitd&rin kullanimi ile %30’a
varan basarim artisinin@anabilecgini gostermektedir.

1. INTRODUCTION

Originally the term computing is used for counting and cklting. People who
perform those operations are called computers. But wittsgineading of computing
machines after the pioneering work of transistors by W. 8leycet al. in 1947, the
discipline of computing has begun to be definedthe ‘Systematic study of algorithmic
processes that describe and transform information: thee&ory, analysis, design,
efficiency, implementation, and application. Actuallye tundamental question
underlying all computing is 'What can be (efficiently) autded?”([1] pg.12). In
terms of effectiveness, one of the first aspects that comesnind is collaboration
of many processing elements working on a problem divided gutb problems; in
other words parallelization. Parallel computing can bensean evolution of serial
computing that attempts to emulate many complicated, nelted events happening
at the same time, yet within a sequence. First practicalaisdgarallel computing in
computer industry was ILLIAC 1V in 1976 which used up to 256@essors to provide
an efficient level of computation. Until now parallel comimgt is being realized in
many different platforms ranging from cluster computinglistributed computing. In
the architecture level, Flynn's taxonomy [2] classifiedqassing levels based upon the

number of concurrent instruction (or control) and datasstre available.

Until the development of multi-core CPUSs, parallel compgtis widely used in servers
which use multiple processing units in separate chipséotarected via external buses.
The term multiprocessing is used for the ability of a systensupport more than
one processor and/or the ability to allocate tasks betweem {3]. However as the
processor technology comes closer to the edge of the Mdaveisicrochip producers
has begun to search for alternative ways to improve comgutiiiciency. As a result
they recently come up with the concept of multi-core commmtiA multicore CPU
(or chip-level multiprocessor, CMP) combines two or morgependent cores into a
single package containing a single piece silicon integratecuit (IC), called die, or

more dies packaged together. A multicore microprocesspliements multiprocessing

in a single physical package. A system with N cores is effeatthen it is presented
with N or more threads concurrently. In this context, “nuliypically means a
relatively small number of cores. However, the technolagyvidely used in other
areas, especially those of embedded processors such agkptacessors and digital
signal processors, and in GPUs. Despite many advantagearallgb computing,
multicore CPUs face a very difficult disadvantage in termkegécy applications and
software needs. Those disadvantages include the requitedr@perating system (OS)
support and adjustments to existing software to maximidieation of the computing
resources provided by multicore processors. Also, thetylbil multicore processors
to increase application performance depends on the use lbpratthreads within

applications.

The studies in this thesis are directed towards increasiagoerformance of object
oriented software that runs on multicore processors. Asptiveessor technology
continues increasing the number of cores in a single dighlgno of decomposing
software for parallel run becomes graver as well. Until thst [decade, most of
the parallelization efforts for solving this problem wergnad towards expensive
multiprocessor hardware and its programmer. As a resulrettexist a wide
area of study that focuses on low level programming modeds ¢an be applied
at programming stage of software development by a limitedhmer of elite

programmers. The studies in this thesis is aimed towardemattiven parallelization
of object oriented software in order to present a basis foallgh decomposition
that can be applied by a wider range of practitioners at estdges of software

development.

1.1 Multi-core Computing

Chip multiprocessors, also known as multicore computingplves more than one
processor placed on a single chip and can be thought of thé ertbbeme form of
tightly-coupled multiprocessing. In fact Intel and AMD Harecently announced their
multicore processors for PC usage. This is the first time wegallel programming
methodologies are brought down from High Performance Camguo PC user
and developer level. Actually a multicore CPU is similar lwinulti processor

supercomputer processor architecture, except the pamsesse produced in a single

die physically. In Dual-Core architecture (like Intel's seen in Figure 1.1 there exist
two processing elements with their own caches and a shacké cihese components
are connected to each other via internal buses. In AMD Optéuval-core architecture

the main principles of NUMA is used in memory management.

It can be seen that multicore processors don't bring any nemcepts to parallel
computing models. It is more or less possible to use exigiamgllel programming
models like OpenMP and MPI with multicore systems. But tredists two issues of
this situation. The first issue is the efficiency of the pregigprogramming models
for application software development. It is clear that mothhe effort for parallel

computing is based on high performance computing and problghich are a little

bit more data centric. Secondly, with the introduction dnegeneity, current parallel

programming models has begun losing efficiency in adaptmgpdex core structures.

Dual core CPU chip Dual core CPU chip
CPU core CPU core CPU core CPU core
and and and and
L1 caches L1 caches L1 caches) \ L1 caches
us 1nterface Bus interface

and
L2 caches L2 caches
Main Memory

Figure 1.1: Diagram of a typical multiple multicore processor system.

Since the emerging of the multicore CPUs, programming enwirent didn’t change
much because dual cores perform well in multitasking and thay barely meet the
expectations. But in the future (and even in today by quad-esers) matching
Amdahl’s law, multitasking performance will not be high eigh. This is because
the user will not be able to produce as much tasks as the nurhl#Us at the same

time. This will result in computer performances equivakerthe speed of a few cores

but far less than the sum of all available. At this stage dait@nycore computing we
need to perform the parallel decomposition while prograngnthe computer rather

than leaving it to the operating system.

The future of multicore computing is called manycore cormputwhere hundred
or even thousands of cores are interconnected in a varietyffefent ways, having
different number and sizes of cache memories. This can pmdn exploitation
in the design space of processors and bring many differestilgms that software
developers haven't expected to deal with before. One of thst serious problems is
producing scalable software that is going to meet perfooa@axpectations in a variety
of different processor architectures. Viability of prodwgsuch an effective solution to
this problem is beyond the scope of this discussion, on therdtand one may expect

to deal with a heavy load of refactoring effort in such a hageneous environment.

Refactoring code for every different processor architecis an unbearable burden.
However, the perspective of today’s software engineerisgipline is converging
towards automatic code generation and architecture sedtigatories, utilizing model
driven engineering methods. It is possible to expect thetalfelization for different
processor architectures is going to take place among tHéstseas the multicore

processors continue to develop.

1.2 Model Based Parallelization and Scheduling

In order to take advantage of multiple processors, secpldagacy software needs to
be refactored: it can be parallelized by injecting threads the code and localizing
them on different processors or by distributing object®sgprocessors. Doing so is
cumbersome since it requires intimate knowledge of theckegaftware and detailed

code analysis.

Exploring parallelism implicitin software requires gldlaaalysis of the system which
is difficult by focusing on code alone. Consider the examglea aveb browser
originally designed for a single processor system: Say, lhowser supports tabbed
browsing and uses a single address bar and navigation tofball of its tabs.
A key decision when redesigning the browser for a parallgirenment might be

to implement the tabs as separate threads while keepingsslbar and navigation

toolbar shared sections among the tab threads. Alterhgtithee address bar and
navigation toolbar could be embedded within the tabs andillednas part of a tab

thread.

How to realize such opportunities of parallelization bymxang the source code and
looking for parallelizable constructs is not obvious. Fofezt oriented software in
particular it is not always possible to find large bodies ohsmErutive instructions
within a single class, as methods are often purposefullyt lsbyort. Moreover,

just considering the interrelations between a few classéisnat be helpful in

this example since all of these components—tool bar, addras and tabs—may be
involved in complicated class relations and class hierasgbrovided by the leveraged
framework. Much unnecessary detail will be present in thdecmaking analysis by

code inspection and refactoring difficult.

It may be more efficient to explore parallelization oppoities at a global scale by
relying on software models rather than by relying on cod@ecton. While due
to its familiarity it may be obvious to consider tabs as anapmity to introduce
parallelism, there may be other less obvious opportunitigdicit in the design.
For less familiar domains, finding such opportunities wid more difficult. In
addition, model analysis is subjective and different daesig inspecting the model
may arrive at different interpretations. Proposed apgr@tempts to overcome these
difficulties by identifying recurring structures in softreamodels that have a bearing
on parallelization and then provide recipes for how to lagerthese structures for

parallelization.

During thesis studies, UML class diagrams are chosen agdheng point to explore
the parallelism implicit in the structure of a software gyst This may be unintuitive,
as class diagrams model the static structure of softwareweMer class diagrams
also give important information about the runtime behawabthe modeled system.
By analyzing concepts such as relationship cardinalidependency sequences, and
inheritance relations, one can draw inferences aboutlplessianifestations of runtime

patterns these classes participate in.

Another key pointin thesis studies is using software degajterns to propose reusable

and scalable approaches for parallelization. Most of the tiproposed techniques are

experimented on intuitive implementations of softwareigiepatterns. The reason
behind this decision is the place of design patterns in tsdayject oriented software.
Firstly, design patterns tend to be used frequently as tidibg blocks of software
design being more specific and descriptive in software deign classes but also
being modular enough to be used in a versatile way. Secaselygn patterns are seen
crucial in producing quality software because they areinaously improved through

time.

On the other hand using static UML class diagrams in makingstms that are
going to effect scheduling is not a heavily studied topic.pétsally static models
are known as quite disconnected with the runtime behavisgoftivare. However
class diagrams reflect the solution domain of the problemyicay information like
possible data sharing components of the software. Suchmatton can be useful in
parallelization and scheduling of software because pipttie parallel components of
software to allow effective data communication betweemtineay be as important as
an effective parallelization. Based on these reasons asmngdel-driven pattern based
methodology has helped to preserve the overall quality@ggistem whilst improving

performance of the software.

As a summary, processor technology has undergone a set@amge in the last
decade by the introduction of multicore processors. Soonédater, it is expected
to experience such an evolution in software technology dk Wethis thesis, model
based approaches are proposed to be used through the evad@itobject oriented
software. The possibility of preserving the overall qualithile improving software
performance is discussed and the experimental resultedeia such discussions are

presented as main contributions.

1.3 Contributions and Dissertation Outline

Considering the expected shift towards integrating palialition inside sequential
developed software, thesis studies are focused on dewglopiethodology for
refactoring of sequential software for parallel systemmgisoftware models as
a medium. Instead of developing new programming models &valfel software
development, main focus is aiding software designers aneélajgers in exploring

implicit parallelism that reside in software and steerimpgi@ting system in a proper

6

way to enhance the data reuse between software componemtsndin contributions

are presented in this dissertation towards this goal are:

e Model driven parallelization: The difficulties in using skes and/or conventional
design patterns are discussed. To overcome these diffisidtiset of structural
patterns are proposed which emerge in class diagrams chydée graph based
nature of the diagram. Following the definition of depenggraiterns, metrics are
also proposed to identify their properties and also clisgenethods are discussed

in detection of dependency patterns.

e Model driven scheduling: Shared data and cache utilizatbprocessors are
not yet handled by the modern operating system scheduldrece S8ependency
patterns also capture possible common data usage amon@softomponents an
enhancement to apply a more cache aware scheduling is papssg dependency

patterns and their properties.

The rest of the thesis is organized as follows: Chapter 2apasiprevious studies as
a basis to thesis studies on model driven parallelizatiahseheduling. In Chapter 3,
dependency patterns are presented as recurring strustus®4lL class diagrams and
their role in software parallelization is discussed. A neeBet is also presented
Chapter 3 to perform finer-grained analysis on dependeragraims. Finally the
usage of current clustering techniques in detecting depreryddiagrams are discussed
and an improvement to clustering techniques is proposed. eAmancement to
scheduling of object oriented software is proposed in Giragt As the initial phase,
experiments of a cache-aware scheduler on design pattesr@esented. Later an
object dispatcher implementation based on cache-awaexsglihg methodology is
proposed and performance improvement gained by its apiplican an image filtering
software is discussed. The thesis is concluded by summgribe achievement and
giving future directions in improving quality of object ented software for multicore

processaors.

2. RELATED WORK

In this thesis model driven methods have been used on impyayuality of object
oriented software for parallel systems. The studies perdorin this purpose have
been structured as two main parts which are based on modendparallelism
exploration(Chapter 3) and model driven scheduling impnognt(Chapter 4). Many
different studies exist in the literature that forms a basrsour work and stand as

complementary approaches.

2.1 Model Driven Parallelization

Parallelization of Object Oriented Software is applied ang different stages of
software development. At program code level, [4] focus otom@uatically exploiting

implicit parallelism in loops and multi-way recursive metis. They have restructured
a Java compiler to specify implicitly parallel structurdselloops in an explicit way.

Another transformation based study that parallelize Idopsnprove performance is
by [5] where the transformations can be applied by an OpenbtRpder for Java

like JOMP [6] to exploit code level parallelism. [7] worked the bytecode level to

provide mechanisms to parallelize Java applications aedwtg them on distributed
processors, without requiring the application programtoesxplicitly use dedicated
message-passing libraries. In [8] and [9] an automaticligdivang system based on
Java is designed and implemented where dependencies inuteesode are analyzed
for implicit functional parallelism. On other approach&®[11], in addition to code
analysis, other environments such as compilers, run-timranments, operating
system kernels, etc., are utilized to exploit the implictadlelism in object oriented

software.

At the model level, behavioral models (such as UML behavidiagrams) have
been used to reason about different aspects of paraligldject oriented software.
Sequence diagrams have been leveraged in timing analygish®nization and

deadlock detection in concurrent and distributed objestesys [12—14]. Activity

diagrams have been used to analyze timing properties [13,183 transformed UML
statechart diagrams to PROMELA specifications in order foyathe SPIN model
checker [17, 18]. Analysis need not be restricted to a sitygle of behavioral diagram;
different UML diagrams may be included in the analysis [1B-2 Parallelizing
software based on its sequential model has also been stisdiechbedded systems.
For instance, [22] used a UML-based code-block-level magdéanguage to perform
containment-checking-based methodology for applicgb@mitioning verification for

multiprocessor embedded systems.

Instead of using code analysis and dynamic models/objectetadn parallelizing
object oriented software, we analyze static class diagraftese diagrams can be
obtained at the earliest stages of software design. [13 &olvantage of stereotypes
applied to elements of class diagrams to aid in detectinglldeks in distributed
object systems. [23] embedded an explicit CSP notation irLdMss diagrams. [24]
used a graph model of the relationships between eventsdrégtthe execution of
a distributed system to derive a model of the concurrentiogiships in the same
system. A similar graph-based approach is used in thisgls#sdies to reason about
parallelism but instead of event relations class relatasasised. [25] utilizes use cases
to check whether the behavior of an entity complies with thmgosed behavior of its

sub-entities.

[26] proposed a system called COMPASS, providing guidsliog parallelization
process based on the former techniques applied by devslopkiring

parallelization. [27] proposed a reverse engineering dasethod to facilitate
systematic migration of code from sequential to parall@lcpssing environments.
Their approach constructs dependency graphs of FORTRANramws and uses rule

based methods in parallelization.

Besides dependencies amongst software componentsatibiizof caches is another
important topic when parallelizing software for multichreiltiprocessor systems.
Cache locality is a well-studied problem which also gainpamance as multicore
processors are becoming prevalent. An important area @farels is modifying

scheduling mechanism of operating systems in order to takerdage of cache

memory, see [28-33].

10

In this thesis, parallelization solely based on examinmmgrrelations among classes
is focused in Chapter 3. The guidelines on dependency paiteallelization point to
the possible regions in software modethat should be examined when parallelizing
the software. Dependency graphs obtained from static adasgams of object
oriented software are used to reveal recurring structuresoftware models and to
reason about their parallelization. Following the presdrapproach, it is possible
to identify areas in the model that might benefit from pataiégion. Presented
guidelines aid to structure the code derived from the aréetileeanodel that have been
pinpointed by class diagram analysis, aiming to obtaingrernce improvements
from parallelization. Class diagrams can be used at thgdasage before the system
Is implemented or after reverse engineering of the code efjaential legacy software

has been performed.

2.2 Model Driven Scheduling

For the last decade, mainstream in processor technolodypshultiprocessors, also
named as multicore processors, which involve multiple @ssig cores in a processor
die. By their nature, multicore processors utilize pataillaning software where cores
are assigned to each thread produced by parallel decongposit software. This
assignment operation is done by operating system scheduwidich put emphasis
on fairness and load-balancing problems rather than atidim of shared data among

threads.

As multicore architectures get more complicated, cache ones not only serve
as buffers for accelerating memory access of threads bot @isvide a rapid
communication medium for shared data among threads. Rewdtitore processor
architectures contain relatively smaller caches for eastindt core and larger shared
caches for the cores that reside on the same chip. It can leetexito encounter more

complicated cache hierarchies as the number of cores s&rea

Aside from this situation, current operating system scherdudo not provide an
effective way to deal with cache utilization of processoes. yinstead, their primary
concern is more fair time-slicing of processing elementpravide user balanced
running time of applications [34-37]. This is quite natusaice operating system

scheduler is expected to run on a wide range of processatextthres and application

11

software. Leveraging different concerns in such a hetereges environment is a
serious challenge, that becomes more important as mudtiposcessors continue

evolving towards manycore processors.

Improving operating system schedulers to take cache afiitiz into account is being
heavily studied by the community. In most of the studiesnglsi centralized solution
to replace the scheduler is proposed using data gathered rinatime profile of

software [28—33] [38—40]. Since proposed improvementsboperating system level,
software analysis are carried on lower level software sines like loops or thread

groups.

Using graph based techniques on scheduling has been apphedriety of different

cases. Earlier studies on using graph matching algoritemgdrallel scheduling was
applied on multi-processor architectures. In [41], taskphs were used to identify
special tasks they call “backbone” tasks that carry theiegipbn. Using those
special structures they tried to map the task graph effegtionto a multiprocessor
system. Discovering special structures inside graph nsodekoftware forms the
roots of the studies in this thesis. Trifunovic and Knottelhlused graph coloring
to effectively decompose parallel sparse matrix—vectaltipiication algorithm [42].

Further information on utilization of task graphs in schigdyican be found in [43].

Later when the chip multiprocessor began to emerge, stotdiessheduling by graph
matching began to focus on locality aware scheduling. liv fager, Guangyu Chen et
al. performed data aware scheduling in four steps [44]. érfitilst step, the application
code is parallelized and the resulting parallel threadasseyned to virtual processors.
The second step implements a virtual processor-to-physicaessor mapping. In the
third step, data elements are mapped to memories attach@llifonodes. The last
step of their approach determines the paths (between mesnanid processors) for
data to travel in an energy efficient manner. This strategyyp@sembles the software
decomposition and mapping strategy presented in Chapterepethe process of the
amount of data being shared at the third and fourth stepsedf #tiudy. A more
cache specific study is performed by [45]. They propose a rashe management
policy called Promotion/Insertion Pseudo-Partitioni®JRP). Instead of explicitly
partitioning the cache by ways, sets or total occupancypRifplicitly partitions the

cache by simply managing the insertion and promotion pedioif the cache.

12

One of the latest studies that model the resources of theegsoc and the software
to perform matching between two models for multicore systésrdone by [46]. In
their paper they introduce the Multi-BSP model to model elels of an architecture
together. Later at each level, their Multi-BSP model incrgtes memory size as a
further parameter. The goal of the study is to identify a ¢pnd model on which
the community can agree, one which would influence the desdigoth software and
hardware. The proposed architectural model in Sectiord 4s2a subset of his general

model which doesn’t take communication costs.

Previous work on cache-aware scheduling on multicore systgenerally takes
advantage of dynamic information of software provided hytime analysis [28—33].

This type of scheduling can be supported with the infornrmatibtained by static
analysis of software models and shared data between thewkzMfi et al. provide

annotations for the programmer to explicitly guide thi@frscheduler called CoreTime
in managing shared data among multiple threads [38]. Xud. ealao proposed a
method claiming that static scheduling can be made localitgre by ensuring that
the set of iterations assigned to a processor exhibit datserf89]. In Chapter 4 a
further step has been taken and the impact of inter-claasiarships of software’s

object oriented model is evaluated to guide its scheduling.

Another interesting point in Xue's study is the usage of ogs recurring
software components in scheduling decisions. Loops areiljjazsed in software
parallelization/cache-utilization studies before. Tanale utilize threads as disjoint
components of parallel/concurrent software and schecwentbased on sharing
patterns they pose at runtime [30]. In other words, theydadlgifind coupled threads
at runtime and schedule them to share L2 caches. Federova ideatify coupled
threads as co-runner threads and try to reduce performaart&biity caused by
cache-unfair scheduling of them [40]. In thesis studiegpbsaisoftware components
at object oriented level has been focused and the data ghdasses’ objects (which
are already specified at software model/code) are used de ¢joe operating system’s

scheduler.

Using static software models is another rarely used subjexziche-aware scheduling
studies. One of those studies that explicitly uses modealssaftware abstractions in

maximizing cache reuse in multicore scheduling is done . [4 hey try to solve

13

optimal multicore scheduling problem by using a graph tBBorformulation and
answer set programming in their study. In this thesis olpeeinted software models

are specifically used to reason about data sharing amongasefs classes.

14

3. EXPLORING IMPLICIT PARALLELISM IN CLASS DIAGRAMS

In this chapter, analysis on static class diagrams of olggented software is going
to be focused and the impacts of the recurring structurestbet by those analysis on
the parallelization process is going to be presented. Maal o identifying those
recurring structures is gaining insight on characterssb€ the software by relying
on the software model at hand. This way it can be possible &yaa software
characteristics from a parallelization perspective and tiee detected recurring

structures in parallelizing object oriented software.

In Section 3.1 the relation between class diagrams and ttadiglezation process of
object oriented software using class diagrams will be eranhibriefly. In Section
3.2 dependency patterns will be presented as the frequestlyring structures in
class diagrams and their impacts on the paralellizatiofopeance will be presented.
Examining the general properties of dependency diagramiseiy a metric set will
be presented in Section 3.3 to allow better distinction agndependency patterns.
Finally in Section 3.4, two methods will be presented to detlependency patterns

inside class diagrams.

3.1 Class Diagrams and Implicit Parallelism

Refactoring legacy application software is a crucial stejpiroducing the concepts of
parallelism into today’s software development efforts.aiflanalyzing object oriented
software for parallelism, using diagrams that model class®d objects as well as
the relationship between them can be fruitful [48, 49]. Bedwal diagrams such

as sequence diagrams [13, 50] and activity diagrams [51¢ weed to reason about

timing aspects of object oriented software.

UML provides different specification techniques and diagga¢o model the various
aspects of a software system. For example, static classadisgmodel the classes

used in the software and the many kinds of relations that mést between them;

15

sequence and communication diagrams represent the dystiagture of the software
by specifying message exchanges between objects. Therefavuld be quite natural
to investigate the dynamic structure of the software usibgleavioral model in order

to detect opportunities for parallelization.

In practice, behavioral model analysis is not without diffiees. In particular, when
looking for opportunities for parallelization in a systemde scope and attempt to
discover these opportunities in a top-down manner, segquand communication
diagrams can be prohibitively complicated. Providing adetl system-wide scenario
or processing a communication diagram consisting of all dlasses in software
system and the communications between these classes I/umideasible without

applying abstractions. But finding appropriate abstrastior identifying suitable
decompositions of the software system is fraught with diffies also, such as
ensuring consistency among different parts of the systemieinwhen recombining
them at the system level [50, 52, 53]. Without this globalteysview, it is only

possible to perform local analysis using such behavioralets

Class diagrams have been used together with behaviorabdisgo connect software
behavior with software structure. A new relationship hasrbadded between classes
to represent behavioral evolution, referred to as “contejdtion” [54]. Context
relations are used to model dynamically related classesirdtmie. Two classes
are context related if one of them can dynamically affectlibkavior of the other.
A reflective architecture which provides the ability to chanobject behavior at
run-time by using design-time information was also proposethe literature [55].
They integrated reflection with design patterns to get alflexand easily adaptable
architecture that can dynamically adapt the software systeenvironmental changes.
In their approach, the system is divided into its structwgsatibed by its object model
and its behavior described by state and sequence diagratnsctugal evolution is

carried out by causal connection between these two layers.

Analyzing static class diagrams to reveal parallelism guonit to be helpful in a
variety of ways. Unlike for behavioral diagrams, obtainaglobal class diagram
of the overall system is possible even without simplifyibhgtactions, albeit it may be
tedious. Further, as a practical consideration, it is mashes to obtain class diagrams

from a legacy system using reverse engineering techniq@staining behavioral

16

diagrams may not even be feasible without a large set of testscbeing available
such that these test cases cover every aspect of the systenidre Moreover, reverse
engineering a behavioral diagram requires the system toxeeuted, which may
induce a large number of different diagrams based on theasosnused to execute

the program.

In class diagrams, all possible object interactions that cecur at runtime are
represented by class relations; for instance an assatiagitiveen two classes means
that at runtime an interaction may occur between instanédbese two classes.
Complete class diagrams represent the system as a wholk edth behavioral
diagram represents only a single runtime trace (or sewva@@$, when inline constructs
are used). If two classes are unrelated in a class diagrammayededuce that
they will not be related at runtime; however, it is not posito conclude this from
communication diagrams. If it is possible to separate tvaependent regions inside
a class diagram, it may be possible to separate those regionstime as well. By

identifying these regions, parallelizable parts of theéwafe can be discovered.

An important advantage of leveraging dependency pattermaiallelization is that
they can be identified automatically using class diagrams.thé refactoring and
parallelization process, only identified portions of theuleant code need to be focused

on and a global and thorough analysis of the code can be aloide

In this chapter, dependency patterns found in class disgemintroduced and their
impact and guide on parallelization is illustrated. The atipof dependency patterns
on the parallelization of object-oriented applicationta@ifre is studied using several
familiar design patterns [56] and a case study of an operceaampiler project Jikes
[57].

Jikes is a mid-size project consisting of roughly 250 classed about 30 header
files written in C++. In the following experiments, three pages called®LASS (39
classes)L.OOKUP (41 classes), andiST (103 classes) were used. Class diagrams for
these packages are obtained by reverse engineering frodemékes, resulting in
medium to large size diagrams. Parallelism is injectedtiméocode sections resulting

from the design segments identified as dependency patterns.

17

3.2 Dependency Patterns in Class Diagrams

Dependency patterns can be identified using dependentyprsl@xtracted from class
diagrams. Similar concepts have been introduced by [58]agmpdied graph theoretic
techniques to UML class diagrams. Dependency is definectindghtext of this study
as any direct usage relation among classes. These relatidode associations, as
well as access to attributes and method parameters. It ddesatude composition,
generalization, and realization relations; these refatiwill be considered in later

sections.

Dependency patterns may involve a single class and its deperes to or from other
classes, as well as multiple classes and their dependéreti@sen each other and to
or from other classes. In the single-class case, a pattersists of the single class
and dependencies to or from other classes outside therpalttethe multi-class case,
dependency relations exist within the pattern in additmualépendencies to or from

classes outside the pattern.

3.2.1 Single-class dependency patterns

Single-class dependency patterns fall into the three oategy“authority”, “hub”, and

“cycle”, based on the type of dependency relationshipsldmsds involved in.

SN T
| !

(a) Authority. (b) Hub. (c) Cycle.

Figure 3.1: Single-class dependency patterns.

e An authority is a class that is involved in a large number of dependencies f
other classes to this class, see Figure 3.1(a). In othersyardauthority is a class
which other classes are coupled to. How many incoming deperies are required
to constitute an authority class is subjective and maydiifsed on the situation. In
order for a class to be identified as an authority, it shouletfzasignificant portion

of dependencies among all the dependencies present oradsedtagram.

18

e A hub is a class that has a large number of dependencies to otlssesl|asee
Figure 3.1(b), that is, it is coupled to a number of otherszasn a noticeable way.
Similarly to an authority class, its identification is sutijee and relative to other

dependencies found on the class diagram.

e A cycleis a class that has a dependency to itself, see Figure 3ltigtifying a

class as a cycle is simple as it merely requires detectinj-dejgendency.

Authorities and hubs are important in terms of parallei@atsince they have the
potential to be accessed frequently at runtime. Cycleslacemmportant because they
show the potential for sequential behavior to be imposedratme which needs to be

avoided in order to effectively parallelize such patterns.

3.2.2 Multi-class dependency patterns

Multi-class dependency patterns fall into the categoregle” and “island”. These
categories are formed with respect to the dependencyoelétiat exists within the

pattern.

FEN PEN FEN
o o €

(a) Authority Bridge. (b) Hub Bridge. (c) Flow Bridge.

(d) Island.

Figure 3.2: Multi-class dependency patterns.

¢ A bridge consists of a group of classes where each class in the paistommon
dependencies to at least two classes. Classes may be maevhbariiple bridges,
and therefore have additional dependencies to other clangside the pattern.

In addition, classes in a bridge may also have dependeneigsebn each other.

19

(These kind of dependencies are rare in practice.) Bridge®aén the form of “hub
bridge”,“authority bridge”, and “flow bridge” which resuitom their relationship
to classes outside the pattern. Figure 3.2(a) shows andatibridge” where
common source classes have dependencies to the classestivesbridge pattern.
Figure 3.2(b) shows a “hub bridge” where all the classeslashe bridge have
dependencies to a common set of target classes. In a “flowditicas shown
in Figure 3.2(c), the classes inside the bridge pattern kiapendencies from a

common set of source classes and to a common set of desticiEsses.

¢ In anisland pattern, members of the pattern have most of their deperesewdhin
the pattern, see Figure 3.2(d). Islands form clusters irdépendency graph and

can be detected using clustering techniques [59-61].

Classes inside an island are strongly coupled with eachr @ihé objects of these
classes can be assigned to the same (or nearby) processingne$ to benefit from
cache reuse since they tend to communicate frequently asheagh other. During
the experiments it is observed that bridges represennalieag behavior at runtime

which often results from polymorphism.

Figures A.1, A.2, and A.3 show the class diagrams for thréerdnt modules of the
Jikes compiler [57]CLASS, LOOKUP, andAST. In these diagrams, many occurrences of

above dependency patterns can be identified easily.

3.2.3 Occurances of dependency patterns

Interpreting dependency patterns based only on their dkgrey relations does not
provide us with enough detail to infer the properties thegase at runtime. Relations
like inheritance and composition can provide addition&iimation. For instance, a
class may be determined to be an authority since it has mgmgndency relations
to other classes, however this structure does not alwayly ithat the dependencies
concern common aspects of the system behavior. On the aihdr knowing that the
authority is also at the top of a class hierarchy providest@aal valuable information
about the pattern: the authority class is being used in anpaighic way and all
dependencies are focused on a smaller set of behaviorswisiedetecting that a
class as a hub is not enough to immediately allows us to cdacitbat it can be

parallelized since having many dependencies towards cthsses does not require

20

them to be independent. Knowing that a hub creates manytskg#ows us to infer
that the resultant objects can be handled independently &ach other. In order to
augment dependency relations with other important relatigps between classes, [58]
considers these relationships as one single relation. kewhis analysis results in a

loss of precision in terms of inter-class relations.

Examples of such differences in patterns can be seen in kbe dase study, where
the same kind of pattern occurs for entirely different prtips. One example involves
the classedstExpression andStoragePool (see Figure A.3). Although these two
classes are determined to be authority classes throughdiepey graph analysis,
they perform very different roles.AstExpression IS a superclass, representing
expressions in the abstract syntax tree (AST) wiSiteragePool is a container
class holding different types of AST elements during the pitetion process. It is
expected thatstExpression will be used by a smaller number of class instances

thanStoragePool.

Another example involves hub classe8lassFile, FieldInfo, andMethodInfo
from theCLASS module of Jikes (see Figure A.1), are hubs that are at thesswf a
bridge and connect mostly with bridge classes. In contifasfiub clasSontrol from
the LOOKUP module (see Figure A.2), has various kinds of external deépecies to
authorities, bridge classes, and classes inside islahdsol constructs and initializes

a bigger number of objects than the earlier mentioned hubs.

A final example involves two different bridges, again frohked. Comparing the bridge
shown in the center of Figure A.1 to the bridge shown at thesujgdt of Figure A.3
consisting of classesstForeachStatement and AstCatchClause. The former
bridge holds classes that are used in an alternating wayglatiribute processing

when compiling source code. A similar frequent use canndbbed for the latter.

Thus, based on an analysis of dependencies only a numbettefrizamay be arrived
having different roles and properties that affect pariaiégdion differently. Such
patterns should be separated by considering additioraioak, other than dependency
relations. This poses an additional challenge as one mayolimerous dependency
patterns from dependency graph analysis. Examining eaair@nce of a pattern one

by one and trying to find common properties they represestiistis and complicated.

21

Relevant properties of patterns need to be expressed igypdad consistently to

improve the definition of simple dependency patterns.

By studying the typical relationships that classes in ddpany patterns partake in, itis
determined that hub and authority classes tend to be amoéstses, tightly coupled to
other classes, and mostly use other classes in the pattedgeB are typically sibling

classes with little or no relation to another class and tgssea outside the pattern.
Thus the following typical occurrences of dependency pasgtén class diagrams are
identified. These examples instantiate dependency pateichalso consider relations
such as inheritance, association, and composition. Thadmgf parallelization of

these patterns are highlighted for each case.

e An authority superclass see Figure 3.3(a), is placed at the top of an inheritance
hierarchy. The following points should be taken into coesidion when
parallelizing such classes:

— Authority superclasses encapsulate common informatioiidaescendants.

Usually, descendants are used in a polymorphic way.

— Heavily used portions in an authority superclass that arerited to its

subclasses should be protected against parallel access.

— Sections of its subclasses that hold common synchronizptimperties can be

abstracted in the authority superclass.

e One authority to many sub-classesonsists of two classes with a one-to-many
relation between them, where the authority class has @il and the “many”
side of the relationship is a superclass in a class hierasg®eyFigure 3.3(b). The
authority must not have any descendants in this case. Tlsviaf points should
be taken into consideration when parallelizing such cksse

— The authority class becomes a local critical section.

— There exist independent links towards the authority clasenfthe many

side(Class B) which can be executed in parallel.

— The consistency of the concurrently accessed authorigs@#tributes must

be assured.

22

—|Class Al |Class A l

T [— ,lClass Al |Class AL _*| Class B
----- I —
(a) Authority Superclass (b) One authority to many sub-classes
: Class Aly—» Class Ai] Class A

(c) A Hub as a Master Class (d) Self-dependent Class

Class A

Class B A

Class Al [Class Bl Class G
Class C

(e) Sibling Bridge Classes

Figure 3.3: Dependency pattern occurrences in class diagrams.

e A hub classcan be identified as master classif it has many composition or
aggregation relations to other classes, see Figure 3.3[bg following points
should be taken into consideration when parallelizing silabses:

— A hub class uses many objects frequently in order to orchiessystem

behavior.

— Introduce parallelism to the class directly by analyzindependent portions

of its methods.

— Traditional parallelization opportunities like loop pHetization can be

spotted easier in this type of class.

23

e Self-dependent classdsave dependencies to themselves or to their ancestor class,
see Figure 3.3(d). The following points should be taken odonsideration when
parallelizing such classes:

— Self-dependencies negatively affect parallelization heesy tusually impose

sequential behavior.

— Such dependencies should be eliminated by transforminggetpatterns to
parallelizable structures (e.g., by transforming access linked list into a

table access)

— Often, these classes tend to include global variables ssalariables. Such

variables should be eliminated as much as possible.

e Forbridge classessome or all classes in a bridge element are siblings in tescl
hierarchy, see Figure 3.3(e). Following points should lkeranto consideration
when parallelizing such classes:

— Bridge classes are frequently accessed in an alternating mwaking it
possible to introduce parallelism on bridge access. Sectd code that use

bridge classes should be parallelized.

— If the bridge is a hub bridge, instances of the sibling classea be distributed
freely over available processors. The opposite ends of tidigéd should be

synchronized since they are accessed in parallel by thgddldsses.

— If the bridge is an authority/flow bridge, instances of th#isg classes should
be distributed once and localized (that is, they should eanigrated among
processing elements). The rationale behind this policg evbid having the
processing elements wait for each other in the case wheeetslyf the same

class are synchronized during object access.

— An object distribution policy can be implemented in the astoeclass and can

be inherited in descendant bridge classes.

3.2.4 Parallelization using dependency patterns

In this Section, implementations of the Observer, Decoyainod Abstract Factory
design patterns [56] are used to demonstrate the paralielizof dependency patterns.
Successively, IBM Java Jikes compiler [57] is analyzed asase sstudy to identify

occurrences of dependency patterns in real-life systemdastudy their effects on

24

parallelization. The examples and the case study are pkrell using the guidelines
that have been introduced in the previous sections. Exeeitsrare performed using
a four Intel 2.6 GHz Xeon processor system running under ex.ih6 kernel. C++ is
used as implementation language since it provides a badioAEhe pthreadlibrary

which allows to bind the execution of threads on a CPU basis.

The pthread library allows thread distribution via theched_setaffinity and
CPU_SET functions. By passing a bit mask to these methods, develmpespecify
the processing elements for the calling thread to run. Iftiplel bits of the mask are
set, the operating system schedules the thread among éogesbprocessing elements.
By usingpthreadfunctions, an object’s method can be programmed as a threbcka
be bound to a processing element allowing to explicitly paog distribution schemes

for the objects.

Our usage ofpthread library and sched_setaffinity function on a sequential
implementation of theotifyObservers() method in the Observer pattern given in
Figure 3.4. In the sequential implementation all the obser(denoted asbservers)

registered to the subject are notified in a loop sequentially

1void Subject:: notifyObservers (){
2 for (int i=0;i<numOfQObs;i++)
3 observers[i}>notify (this—>state);
4}
Figure 3.4: Sequential implementation abtifyObservers.

The parallelized version of theotifyObservers() method is shown in Figure 3.5.
Instead of sequentially calling each observerisify() method, a new thread is
created for eachotify () call (atline 8) and provided with thread specific informatio
usingobserverData. In this data structure, the observer object that is goingeto

updated (line 4), the affinity of the observer thread (lin@&) the state of the subject

(line 6) are passed to the observer thread.

In this example, the processor affinities of the observezatts are determined using
a round robin scheduling algorithm. Briefly, in the subjgctbtification loop a new
thread is created for each observer passing observer spdatf to the thread as
parameter. The actual processor assignment and obsetif@ation process is carried
out in the thread’s functionops_thr) shown in Figure 3.6 which is nothing but an

ordinary function that is conventionally usedgohread programming.

25

1void Subject::notifyObservers (){

2

3 for(int i=0;i<numOfObs;i++){

4 observerData[i}>obs=observers[i];

5 observerData[i}>affinity=i%numOfPRoc;

6 observerData[i}>stateshis —>state;

7

8 if (pthread_create(&p_thread[i], NULL, obs_thr,
9 observerData) != 0)

10 fprintf(stderr, "Error creating the thread");
11}

12

13 for(int i=0;i<numOfQObs;i++)

14 pthread_join(p_thread[i], NULL);

15}

Figure 3.5: Parallelized implementation abtifyObservers.

The function that is executed for each observer thread septed in Figure 3.6. After
saving the parameter that has been passed to the threa@)(lithe bit mask holding
the processor affinity of the thread is set (line 5). Proaelssaling is performed right
after the bit mask is set (line 7) and finally the observes'sify method is called (line

10), updating the status of the observer.

1void« obs_thr(voidx arg){
OBSERVERDATA:« oData =(OBSERVERDATA) arg;
cpu_set_t mask;

if (sched_setaffinity (0, &mask) <O0)

2

3

4

5 CPU_SET(oData>affinity , &mask);
6

7

8 perror("sched_setaffinity");

9

10 (oData—>obs)->notify (oData—>state);
11}

Figure 3.6: Observer’s update thread.

During design pattern implementation, each object in agpatis programmed as a
separate thread with a dummy workload. Many different edampf dependency
patterns can be found in the case study; more notable ondéscurged below. In all

the plots presented below, y-axis represents normaliz&thna performance.

1
o= % % 100 (3.2)
|

In Equations(3.1) and (3.2), T; represents avarage running time for each case,

represents performance of each case gﬁ’as‘) is the best performance(lowest,

26

highestp;) among all measurements for the plot at hand. Multiplicatine result
by 100 enables to easily read the performance differendaseba measurements with

terms of percentage.

3.2.4.1 Dependency pattern occurences in selected desigitprns

A “one authority to many sub-classes” pattern can be founthénobserver design
pattern shown in Figure 3.7(a). Based on the above descgbieelines, subclasses
of theObserver should be distributed and ti$abject class should be synchronized.
For this pattern, we study the effect of distributing a pobldentical workloaded
observers over multiple processors, in order to see ifidigion of observers improves
the overall performance of the system. Each observer isgumedil to have an equal
amount of latency when the update to the subject is posteaddhb ebserver. The
time spent after a number of update operations is evaluatedifferent numbers of

observer objects running on the utilized processors.

Figure 3.7(b) shows the performance of the parallelizat@ndifferent number of
processors (processing elements). Because of the repdb@mhvior of the pattern all
processing elements are fully utilized. The plot shows hHwsverformance increases

linearly with the number of processors.

In a loop, theSubject updates all observers sequentially. Updating is independe
for each observer, and therefore can be performed in pardllee state variable
should be synchronized since race conditions can occungltiie state change of the
Subject. An observer can obtain an inaccurate value ifgheject tries to change
its state during the update. [62] contains a more detailecldision of the experiments

with the observer pattern.

The decorator pattern shown in Figure 3.8(a) exhibitsdetfendency. This is handled
by decomposing the class introducing a “has-a” relati@ncreteComponent IS
decomposed into manyubComponentsS and access to eadubComponent by the

decorator is parallelized.

Parallelization of the decorator pattern is performed inay &0 that each decorator
operates in parallel on a differestibComponent object and only one decorator can
operate on &ubComponent object at a time, makingubComponent objects critical

sections. Instead of using only one critical section (theecreteComponent), certain

27

Observer

Subject
N . 0..* 1 |state
s.getState(); 7. _ -update(s: Subject) attach(o: Observer)
detach(o: Observer)
getState()
notify()
ConcreteObserverl| |ConcreteObserver2 for(Observer o:observers)
o.update();
update() update()

(a) Observer Design Pattern.

-
-

-
-

-

Pt

- '—“
1 Observer——

2 Observers=-x----
3 Observers:»--
4 Observers:g-
8 Observers---s--

100
Q
e

S 80
£
o

Qo 60
©
Q
N

= 40
£
(e}

< 20

0

0

1 2

3 4

Number of processor cores

(b) Observer Parallelization Performance.

Figure 3.7: Parallelization of observer.

28

be used in spotting such opportunities for parallelism.

elements of the class are decomposed and isolated into niffenguit classes called

SubComponents that act as separate critical sections. The self-depepgattern can

The performance results for the parallelized decoratotepatare shown in
Figure 3.8(b). The speed-up continues until the number bésmponents reaches
the number of processors (processing elements). Alsoeihtimber of components
goes beyond the number of processor, performance degratiese exists a natural
bound on the number of sub-components as they must be mdtestritical sections.
Here the dependency pattern enables the software devétoperke implementation

decisions as to how many threads to employ based on obseitvaighe relation

<<interface>>
Component

+Operation() : void

SubComponent ConcreteComponent Decorator
1_*? #c : Component
h +Operation() : void +Operation() : void
AN
Decorator A Decorator B Decorator C
+Operation(): void | f+Operation(): void||+Operation(): void
(a) Decorator Design Pattern.
100 r 1 SubComponent

2 SubComponents-x-----
8 4 SubComponentg:«m---
= 80 | 6 SubComponentg:
@©
= 8 SubComponentg--=--
S
1 /-
3 60 -

e mmmmmmn
Q »
N e
© 40 Vg
£ /
2
20
0
0 1 2 3 4

between the number 8fibComponents and the number of processing elements affects

performance. [63] provides additional information comegthese experiments for the

decorator pattern.

In the abstract factory pattern shown in Figure 3.9(a), aw'flaridge” is present
where a client is dependent on each concrete factory and aautrete factory is
dependent on the interface namethss. Figure 3.9(b) shows the performance of
our implementation when factory objects are distributedmagprocessors (processing
elements) manually in an ordered fashion. Each type of faaibject is responsible

of creating objects of the same type. (Object creation isessgnted by a specific

Number of processor cores

(b) Decorator Parallelization Performance.

Figure 3.8: Parallelization of decorator.

29

Abstract Factory

Client

getObject() : Class

<<interface>>|
Class

T

<<Singleton>> <<Singletor>> Class A Class B
A Factory B Factory
getObject(): Class A| [getObject(): Class B
(a) Abstract Factory Design Pattern.
100 1 Factory 8
2 Factor!es-----x """
3 3 Factories
% 80 4 Factories: -
é x
o) RN
=
Q 60
- R
M X
qﬂ) . e }’3..%
= 40 o : i, N
,/' ‘‘‘‘‘‘ £ K
g Pttt
2 .ﬁ...
20
0
0 1 2 3 4 5

(b) Abstract Factory Parallelization Performance.

Number of processor cores

Figure 3.9: Parallelization of abstract factory.

workload value where a factory spends a predetermined anodtime during object

creation.)

During the experiments with factories, when the number aicgssors is equal to
the number of concrete factories, a concrete factory isyavessigned to the same
processor which means that each processor always credyesnerkind of object. In
a less balanced distribution, processors may producerelff&kinds of objects each
time it is necessary to create an object. This results irgfit processors waiting for
each other in order to gain access to the singleton con@eterfes. For a two system
with two processing elements, optimal number of concretéofees are multiples of
two while for a three processor system this number becoméigphes of three and for

a four processor system it becomes multiples of four. It igantant here to remember

30

object distribution is made with standard scheduling atgor where each object that
is requested to be created, its creator factory is assignéuetprocessor in a round

robin way, more formally like in Equatiorf3.3).
affinity(Oj) =i modk (3.3)

affinity(0;) is function that sets the affinity for each object to be createthe
system and is the number of processing elements available. It is asgduhs each
kind of object is requested to be created sequentially. lmgpkt our distribution
scheme it is natural to have this as a result. When the numbprogcessors is
equal to the number of concrete factories, a concrete fadsoalways assigned to
a processor which means that processor always creates mohefkobject. In a less
balanced distribution where number of processors is not@rfaf number of types
of concrete factories, each processors may produce aatfféind of object each
time. This results in different processors waiting for eatiter in order to gain access
to the Singleton concrete factory. This result is quite intigat because we see the
importance of locality in a parallel environment where kegpa constant concrete

factory in each processor increases the performance mamestimple parallelization.

Here the importance of locality in a parallel environmemt ba seen where keeping the
same concrete factory in a processor increases the perioenmaore than randomly
distributing factory objects. This leads to the principlatt frequently accessed
synchronized objects of a flow bridge should be bound to fipgmocessors instead
of being migrated often. This result conforms with the gilirdes proposed in
Section 3.2.3.

3.2.4.2 Dependency patterns in a real-world software

The Jikes case study exhibits many examples of dependentyrisa The class
Control is a “master class” shown in Figures 3.10 and 3.11. In thissclthe main
functions of the compilation process, such as lexical aigslfscanner), syntactic and
semantic analysis (parser), and code generation, areetadg Further, if several files
are compiled, these separate compilations are harsfigdentiallyby loops in the
Control class. By parallelizing th€ontrol class detected by dependency pattern

analysis the compilation process can be parallelized. dhegpdation process involves

31

many independent operations (such as syntactic analyseadi file) that can be

performed in parallel when compiling multiple files.

After injecting parallelism into detected regions, a parfance improvement can be
seen for multi-file compilation as shown in Figure 3.12. Thef@rmance results

for different numbers of processors are obtained comp#ingjlarly sized files and
compiling files with very different sizes. After parallglig the above loops, instances

of Scanner, Parser, andStoragePool are executed in each thread. The dependency
diagram forControl (see Figure 3.11) reveals a dependency relation from these
classes tcControl. Therefore, all of the dependent classesCofitrol become

candidates as thread parameters.

= Controljg -
Utf8LiteralValue v EystemTable

PackageSymbol

e bl }lntLiteralTahleI |LiteralL00kupTab]e

/ stBinaryExpression
I 7

Figure 3.10: Control as a master class (also seentrol’s complete dependency
diagram in Figure A.2).

As a compiler has an inherently sequential nature, paiafigl the independent
file compilation process is one of the more beneficial optatians. Naturally,
performance improvement for file compilation is not as gesdaor the small examples
of the design patterns: a performance improvement of appetely 10% can be
seen in Figure 3.12. This performance improvement is obthwmithout any detailed
insight into the software being parallelized, merely bygtlatizing a few loops found
in inspecting the class identified as a dependency patteith. aifditional insight into
the software and applying parallelization at the initiapiementation of the system,

further improvement in performance might be obtained.

32

Control] \ption

TypeDependenceChecker

Semantic

Parser Scanner

LexStreaTI
StoragePoo!I

Figure 3.11: Dependency relations @bntrol.

For parallelization it is not sufficient to solely discovearpllelizable sections.
Important locales in the software that need to be protectgdinat race conditions
caused by parallel access should be discovered as well. fEhdofiales to look for

such conditions are regions of the design where dependelations are concentrated.
Those regions may experience interactions of the manyioekathey hold to other

classes. Dependency patterns allow us to locate such @dtembteracting code

sections without requiring runtime information. An autityisuperclass is not only
a frequently accessed part of the software by being an atythout also encapsulates
common information among its descendants by being a s@gssiclConsequentially,
an authority superclass will often be used frequently atimm and may require

synchronization when parallelizing.

The classistExpression from the case study illustrates the properties of an aughori
superclass as shown in Figure 3.A8tExpression iS a generalization that represents
the various nodes of the syntax tree. Due to the dense depgndelations of the
superclass, these nodes will be frequently referenced inlamrphic way. The
sub-classes differ only with respect to a small set of theapprties but have much

in common. When the compiler is parallelized they shouldresisynchronization
properties andstExpression as their superclass will be a good place to handle this

synchronization.

For example, other than its constructoistExpression has only one base class

method,IsConstant (), which is responsible to check the value of a public instance

33

105

o 100
(&)
S
= 95
S
o 90 '
bo] x
8 85
g
S 80 :
z ¥ 1 File ——
2 Files ===
7 4 Files e
= 8 Files wawmm
70 ‘ :
0 1 2 3 4 5
Number of processor cores
(a) Compilation of uniform length files.
110 —
1 File ——
2 Files =ww----
g 105 4 Files - 1
S 8 Files wwgmm
g
5 100 p———
s | T
S 95 e T a
g i
g 9 o |
‘‘‘‘‘‘‘‘‘‘‘‘‘ u“
85 o
80
0 1 2 3 4 5

Number of processor cores
(b) Compilation of varying length files.

Figure 3.12: Jikes performance improvement by master class paralligiiza

variable. Although this method is a one-liner, it is calléten during compilation.
For example, when compiling 400 lines of Java code, this otkth called from 730
different objects, where each object calls this functiopragimately 5 times. This
heavy access traffic to the method makes it a potential afitiection. Paying extra
attention to synchronization points such as in this examglgrevent race conditions

that may occur in instance variablesiftExpression.

34

AstExpressionStatement|
AstDimExpr
/
kstReturnStatemeni AstAssertStatement
I AstThrowStatement|
AstParenthesizedExpression
AstSwitchLabe
AstBinaryExpression

A (4 AstConditionalExpressio
2iAstExpression &2

N

<-
N AstFieldAccess AstArrayAccess

(a) AstExpression Dependencies (also seestExpression’s complete
dependency diagram in Figure A.3).

AstClassCreationExpressiori A j
| [AstFalseLiteral]/ At TrueLiteral |AstAssignmentExpressi0n|

(AstStringLitera

AstThisExpressio : | AstSuperExpression |AstParenthesizedExpressionI
A StFIe]dACCESV
/ AstPostUnaryExpression| | AstMethodInvocation

v AstCharacterLiteral

AstExpression } =
T \ AstPreUnaryExpresswnH AstCondltlonalExprcSSlon|

I -
ArrayInitializer \ AstDoubleLiteral stClassLlleralI" AstArrayAccess
~ | AstArrayCreationExpression |

: AstBinaryExpression
motation AstName AstLongLiteral
AstlntegerLitera |A stFloatLiteralIAstCastExpression |

AstNullLiterall

(b) AstExpressioninheritance relations.

Figure 3.13: AstExpression as an authority superclass.

Parallelism is injected to those regions where authoripestiass objects are accessed
frequently. Figure 3.14 shows a small performance speed-alfour processor system

as the workload of the authority superclass increases.

An example of a bridge pattern can be seen in Figure 3.15 (ihmplete dependency
diagram ofCLASS is shown in Figure A.1), where a subset of the descendants of
Attribute form an authority bridge. In the implementation of the céssat the
ends of the bridge, indicated by S in Figure 3.15(a), bridggads are used in a
similar alternating way when they are accessed in lodfisssFile, MethodInfo

andFieldInfo maintain instances of subclassesietributeInfo in a buffer array

35

Normalized performance

Normalized performance

100 Unimproved —— -
| Authority Parallelized------

80

60

40 \

20 ‘\\
.

0 5 10 15 20 25 30 35 40 45
Additional workload

(a) Single-file compilation performance.

Unimproved ——
Authority Parallelized----------

100

80

60

40 \

20 \\
——

0 5 10 15 20 25 30 35 40
Additional workload

%

(b) Multi-file compilation performance.

Figure 3.14: Parallelization of authority superclass.

which is then iterated over in the mentioned loops. Thisasitun needs special care

while distributing and recombining the buffer of the bridggects.

A bridge object access can be found in the constructor fovaldasses.
constructor method contains a switch statement in whiclhogpjate actions are taken
depending on the attribute type. This switch is executedyntiames in a loop for
eachAttributeInfo object. By parallelizing this loop the performance impnaoant
shown in Figure 3.16 is obtained, as the workload of the djggrancreases in a four

processor system.

36

Attributelnfo
DeprecatedAttribute
SyntheticAttribute

SignatureAttribute _—Qg MethodInfo }
AnnotationsAttribute == © « ==

(a) AttributeInfo Dependencies (also seectributeInfo’s complete
dependency diagram in Figure A.1).

[ExceptionsAttribute| [StackMapAttribute

CodeAttribute ParameterAnnotationsAttribute
DeprecatedAttribute
— L ineNumberTable. AttributeI}AnnotationDefaultAttribute
SyntheticAttribute . .
InnerClassA ttribute SourceFileAttribute
WUrtributelnfol
SignatureAttribute UnknownAttribute EnclosingMethodAttribute
o~
IAnnotationsAttribute ' LocalVariableTableAttribute
ConstantValueAttribute
BridgeAttribute

(b) AttributeInfo inheritance relations.

Figure 3.15: AttributeInfo descendent’s as a hub bridge.

Another example of a bridge can be seen in Figure A.3 where ksesuof
the descendants ofstStatement form a hub bridge betweedstBlock and
AstExpression. All classes that are part of the bridge are statements wéuieh
excessively processed inside a method of the bytecodeaenetass. This method
contains a huge switch statement in which appropriate r&tioe taken depending
on the statement type. This method is called in a loop, ssoedy processing each
statement based on a polymorphic parameter. When pazaikglihis loop, the two
ends of the bridgagtStatement and AstExpression) become important as they
need to be protected against parallel access. The findings{@xpression as an

authority superclass also coincide with the role of thisslia the bridge pattern.

Dependency pattern analysis provides two different adped when analyzing a
software design. The first advantage is the possible pedoce improvement by

pinpointing opportunities for parallelization. The sed@uvantage is the identification

37

100 [Unimproved —_—
: Bridge Improvement:--------
@ i
o ¥
S 80 "E_
£ 4
S
5 60 K
S
(O] *,
N
= 40
e *...
: \
20 N~ e
\:\.-.-.:%f
0
0 10 20 30 40 50
Additional workload
(a) Single-file compilation performance.
100 [Unimproved —_—
1 Bridge Improvement:--------
-
S 80 %
£ %
K] %
g 00 \
©
Q
N
< 40 ‘)g\
£ N\ T
S ™
20 TN
\Qb _____________
—_—
0
0 10 20 30 40 50

Additional workload
(b) Multi-file compilation performance.
Figure 3.16: Parallelization of authority bridge. The horizontal axiglicates the
additional workload handled by the parallelized systemahug of “10”

means that each bridge class handles a 10 times larger \adrittan in
the unparallelized version.

38

of inherently sequential regions which have the potentatdause bottlenecks for
system performance. Developers can leverage workload diflg the inherently
sequential regions as lightly as possible and shifting thkisad to the parallelizable
regions. For example, in a web browser, replicating the egkland navigation bars
in each tab can be a good parallelization opportunity andmize a potential bottle
neck. It is better to have bridge classes with large worldaather than concentrating

the workload in authority superclasses.

3.3 A Metric Set for Dependency Patterns

Software metrics are the means of measurement that are begontreasingly
popular for modern object oriented software. Metrics cauged to measure some
property of a piece of software or its specifications. Sofewvaetrics are not specific to
object oriented software or their application area is netsjt to programming stage;
there also exist metrics for imperative software or metioecsoftware design. Metric
usage address to make estimations on various aspects wiasnflike robustness,

maintainability and reusability.

Measuring software properties is an important and yet a e’amyga of software
engineering. Many different metrics have been proposesutiir time considering
different properties of software. What makes the area vagu¢hat it has

never been possible to completely define all the attributes & specific metric
represent. Moreover, it is very hard to empirically valel@n exact recipe using
metrics that increase the software quality. Software tu#eing a subjective and
multi-dimensional concept, is the main reason behind tld§eulties. In order to

define metrics serving their cause as much as possible, mpsrtant to precisely
define their application domain and the attributes of safvitlaat they measure. During
the thesis studies, dependency patterns are chosen aspiieatpn domain of the

metrics to be defined.

In this section metric definitions to conduct a finer analgsisndividual properties of
dependency patterns and their place in object orientedaddtare presented. A finer
analysis for dependency patterns is needed because of masgyns. Some of those

reasons can be listed as follows:

39

e A distinction/quantification is needed among occurrendesaividual patterns
types inside class diagrams according to the differentgnags they have. When
they are detected based on their general definitions a crssmation between
pattern types can be obtained. However by measuring detprigperties using

metrics a more continuous distinction among dependendgmpatcan be obtained.

e In some cases, arbitrary classes/class groups can comaémdencies coinciding
with specific dependency patterns. It is needed to sort msettialse alarms by
analyzing their specific properties deeper and having aetdapight about their

role in class diagrams.

e Current metrics in the literature are not defined to measpeeiic properties of
dependency patterns and needs to be tailored(and new sne¢eal to be defined)

for dependency patterns.

Enriching the specification power of dependency pattermsgudesign metrics can
provide a stronger connection between static softwargdesid runtime behavior of
the software. This will allow the designer to gain a betteesight on implementation
stage of software. By defining dependency pattern specificead will be possible to

relate them with software parallelization concepts primgdecipes based on metric
values. When the dependency patterns are used as a conneetieeen static and
dynamic properties of software they can provide a basisdtaldishing a connection
between software design metrics and parallelization as wealother advantage of
using dependency pattern based metrics is obtaining grofigtasses formed by
a particular grouping strategy defined by dependency pattePrevious studies on

design metrics for groups of classes only use software jg@skas subjects.

3.3.1 Related work on pattern metrics

Through the history of object oriented software developtmeretrics have been an
important mean of measurement in evaluating quality oedé#iht software aspects. Itis
not possible to define a single recipe for assessing quatgse it has many different
dimensions as a concept. For this reason the process otmetivation becomes more
effective if a metric at hand is shown to be theoreticallyd/ad measuring properties

of software which it was designed to assess.

40

Quality assurance methods becomes more effective whenatieegpplied at initial

phases of system implementation. Design phase is one of ety stages where
pictures of the software are drawn from different perspesti Chidamber and
Kemerer carried out pioneering work [64] in the field of sadte design metrics, which
have been used as a touchstone in many of succeeding stidréastance Harrison
et al. compared MOOD metric set [65] with Chidamber’s mattashow that two sets
are complementary and offer different assessments of am\66]. Later Bansiya and
Davis extended this metric set [67] to build a hierarchicatmod for object oriented
quality assessment. Briand et al. also made importantegugipecially about the

coupling metrics [68, 69] of object oriented software dasig

For the field of parallel software, performance is the pryr@ncern leading the field
towards developing performance metrics. One of the earigamples is DePaoli
and Morasca’s work on adopting complexity metrics, like MbE's cyclomatic
complexity [70], to concurrent Ada software. Many otherfpgnance models/metrics
exist in literature like [71] in which resource metrics arged to characterize the
various models of parallel computation. Another exampléafiingsworth and Miller
utilizing existing performance metrics in a new techniqukick they call “True
Zeroing® [72]. Parallelization metrics are defined at a lovexel compared to object
oriented design metrics and in the last decade a few stusisstkat relate the two
distinct fields. One of these studies is by [73], where thescdbe how to measure and
attribute arbitrary performance metrics for a high-levellimthreaded programming

model known as Cilk [74].

The relation between software design metrics and desigerpatare also another field
of study where most of the research is being done on detedé&sgn patterns using
design metrics. And et al. conducted a study on this subfEjtWwhere they feed a
multi-stage reduction strategy based approach with olgeented software metrics
to extract structural design patterns from software désagie. Another study [76]
use metrics to measure the improvement when software desigerns are used in
software development. Lastly, Robert Martin describedtaobedependency metrics

that measure the conformance of a design to the desiratierp@i7].

Almost all of the examples above are class centric methodguality assessment

models based on class metrics where relations among grdughasses are ignored

41

most of the time for a simple reason: lacking a stable graypiinciple. Robert C.
Martin’s software package metrics [78] satisfies this sigetby defining the grouping
principle as software packages, hence allow to infer abepddencies among classes
vastly. However dependencies are not specific to intergugekelationships; they also
existamong classes in a package. On the other hand, it igiampdo remember again
a stable grouping principle is needed, in order to define @pti/anetrics over groups

of classes and relationship among those.

Following all the information above, a missing piece of thezzde can be found
out in relationships among software design metrics, paratiftware, design patterns
and multi-class dependency metrics. Dependency pattstansd at a place between
parallel software and object oriented software design.yTitlethe gap between the
expression of logical concurrency in software and its padion at run-time. Software
design can be assessed regarding parallelization usirendepcy patterns by using

the proposed metrics and effects of these properties oroftease implementation.

3.3.2 Dependency pattern specific metrics

In this section a set of metrics is proposed for each type pkeddency patterns
introduced in the last section. Metrics are exemplified gigimple examples and
interpretations of the possible metric values are expthingfter metric definitions,

a study on correlation among the metrics is also presenteayisg that the metrics
cover different attributes of patterns. It is important tte¢hat some of the metrics

below are adapted to dependency patterns from softwaregacketrics [78].
3.3.2.1 Hub/Authority metrics

Ratio of Dependency Directions

Ratio of Dependency Directions(RDD) of a class measuresimame of its
afferent/efferent dependencies using the ratio of thesidifice between its afferent

and efferent dependencies over its total number of depereterMore formally:

RDD = M (3 _4)
Dtot

In Equation(3.4), Doyt represents the number of direct dependencies of the class

towards other classes whil®, represents number of direct dependencies to the class

42

and Dy represents total number of dependencies that the class lrareinstance
RDD will be calculated as 0.2 ((3-2)/5) félass S in Figure 3.17

\5 :

\
. SQD

/C

Figure 3.17: An example class for hub/authority metrics.

RDD defines the amount of hubness/authorityness of a clasbe imetric values
is close to 1, class at hand shows hub properties and if mahe is close to -1
the class shows authority properties. This metric shouldhfyglied after a class
has been selected as a hub/authority. For instance a clésomly two efferent
dependencies can be said to have hub properties using thig.meowever it has

too few dependencies to be identified as a hub or an authority.

In terms of parallelization, having a RDD closer to O ind&saa higher parallelization
effort. In this case, class’ afferent and efferent usagealarited which brings out
lots of possible dependency conflicts in software. On theroland if the metric is
closer to 1, parts of class showing hub properties can batebleasier, making the
class suitable for introducing parallelization. When thetma is closer to -1, this is
an indication of a heavier synchronization work since ciassiostly used by other

classes.

Ratio of Singular Dependencies
Ratio of Singular Dependencies(RSD) of a class measuresndaoe of singly

dependent class dependencies to/from the subject clags. fbfonally:

RSD — D5ng (3.5)
Dot

In Equation(3.5), Dsng represents the number of direct dependencies that has been

solely made to the subject class ddd; represents total number of dependencies that

the subject class have. For instance RSD will be calculatddl @ (3/5) for the class
in Figure 3.17 sinc€lass B andClass D has dependencies only tdass S not to

another class whilelass A andClass C has other dependencies as well.

43

RSD defines the amount of independence of a class and its dimisras a whole;

if the metric values is close to 1 class at hand and the cldabs¢fiave dependency
relationships with it can be handled more independentignftbe rest of the system.
Also if the classes that have their only relationship witd subject class are also the

children of the subject class, this can be a good indicatiggolymorphic usage.

In terms of parallelization, having a RSD closer to 1 indésadin easier parallelization
process since the developer would only be concerned abogtlar dependencies

towards/from the class at hand.
3.3.2.2 Cycle metrics

Number of Cyclic Dependencies

Number of Cyclic Dependencies(NCD) of a class measures timbar of

dependencies that a class has towards itself. For insta@d2 Will be calculated

|
Is 1

[

Figure 3.18: An example class for cycle metrics.

as 2 for theClass Sin Figure 3.18.

Having a high value of NCD indicates more effort on paratiafion. However the
outcome of this effort can be predicted with an additionalriragvhich is defined next.
Ratio of Cyclic Dependencies

Ratio of Cyclic Dependencies(RCD) of a class measures damoe of its cyclic
dependencies by measuring the ratio of its self dependeisier its total number

of dependencies. More formally:

RCD — Do (3.6)
Dot

44

In Equation(3.6), D¢y represents the number of self dependencies of the clad3:and
represents total number of dependencies that the classavimstance RDD will be

calculated as 0.33 (2/6) for tliaass S in Figure 3.18.

RCD defines the amount of self dependency of a class; if theienetlue is close
to 1, class’ whole purpose becomes based on the cyclic depend In terms of
parallelization, number of cyclic dependencies shoulddresdered before analyzing
this metric. If the class has many cyclic dependencies ardvéttue of RCD is
also high, developer should pay more attention on resolaimg) parallelizing self
dependencies inside the class. However in this situatioa stibject class usage is
a bigger threat to the parallelization since it has manyicyd#pendencies scattered

around the software, sequentializing software run.

When both of the metrics are low, there are many dependetavi@sds a single cyclic
dependency which holds a potential for a performance bobstwvemall numbers of
self dependencies are resolved. When RCD is low and NCD Is fi@igolving many
self dependencies may end up with a local performance bbBosilly if RCD is high

when NCD is low a small effort may provide a local performahoest.
3.3.2.3 Bridge metrics

Ratio of External/Internal Bridge Dependencies

Ratio of External/internal Bridge Dependencies(REIBD) afbridge measures
dominance of its internal/external dependencies usingratie of the difference
between its external and internal dependencies(excludagource connections) over

its total number of dependencies. More formally:

Dext— Dint
REIBD = ——— 3.7
Dext+ Dint (3.7)

In Equation(3.7), Dey: represents the total number of direct dependencies that has
been made towards/from outside the bridge(excluding goconinections) an®jn;
represents number of direct dependencies bridge clasdesansong themselves. For
instance REIBD will be calculated as 0 ((3-3)/(3+3)) for thredge in Figure 3.19. In

the figure S1 and S2 are source classes of the bridge.

In a bridge, absence of external or internal dependenciesggent so it is not practical

to use a simpler formula likBex:/Dint to measure to dominance of dependencies.

45

Al A2

o3}
g
o3}
N

|BB|| B4||BS|

Figure 3.19: An example for bridge metrics.

REIBD defines the amount of independence of a bridge; if thieionalues is close to
-1, bridge at hand mainly has dependency relations with ldesses out of the pattern
and if metric value is close to 1 the bridge classes are mai@bendent among each

other. This metric only shows dominance of internal/exaébmidge dependencies.

In terms of parallelization, having a REIBD closer to O irates a harder
parallelizability, since it shows that the bridge has sameunt of internal and external
dependencies. In practice having a value closer to -1 igtsithice bridges may be
isolated easier if they don’t have any dependencies outs&pattern. The metric is
not defined for the bridges that doesn’t have any dependeagiart from its source

dependencies.

Ratio of Bridge to Source Dependencies

Ratio of Bridge to Source Dependencies(RBSD) of a bridgesores purity of bridge
dependencies using the ratio of its source dependenciasitsveotal number of

dependencies. More formally:

(3.8)

In Equation(3.8), Dgc represents the total number of direct dependencies of éridg
classes to/from source classes &hg represents total number of dependencies that
bridge classes have. For instance RBSD will be calculate@l @b (10/16) for the
bridge in Figure 3.19

RBSD defines the amount of dedication of bridge classes tpdttern; if the metric

value is close to 1, bridge at hand mainly has dependendyoesawvith the sources of

46

the bridge and if metric value is close to 0 the bridge claksssmore dependencies
other than its sources. This metric should not be too clo$eftw a bridge since the

bridge loses most of its properties when it has more nonegodependencies.

In terms of parallelization, having a REIBD closer to 1 irates easier parallelization
for a bridge. Developer wouldn't have to deal with unrelateghendency relations
when parallelizing the bridge, facilitating bridge paetitation. Also during the

runtime, non-source dependencies may indicate barriethealternating routes of

the bridge decelerating parallel behavior.

Ratio of Sibling Bridge Classes

Ratio of Sibling Bridge Classes(RSBC) of a bridge measunesdensity of sibling
classes inside a bridge using the ratio of ancestor clagde&ige classes to the total

number of classes inside the bridge. More formally:

par

RSBC = Npar (3.9)
Npdg

In Equation(3.9), Npar represents number of different parents that bridge cldsses
andNygg represents total number of classes inside the bridge. Btarine RSBC will

be calculated as 0.4 (2/5) for the bridge in Figure 3.19.

RSBC actually has two dimensions. Metric can be closer to énndil the classes
inside the bridge have separate ancestors or when thets aXmsw classes inside the
pattern. In both cases parallelization process is relgtiverder. Having many sibling

classes in large bridges alternating heavily providestebgarallelization opportunity.
3.3.2.4 Island metrics

Ratio of External/Internal Island Dependencies

Ratio of External/Internal Island Dependencies(REIID) af bridge measures
dominance of its external dependencies using the ratio dfenmés external
dependencies over its internal dependencies. More foymall
REIID = Dfe“ (3.10)

int
In Equation(3.10) Dey: represents the total number of direct dependencies that has

been made towards/from outside the island &ng represents number of direct

47

dependencies island classes make among themselves. EorceREIID will be

calculated as 0.45 (5/11) for the bridge in Figure 3.20.

[>

Figure 3.20: An example for island metrics.

REIID is actually used to measure the same properties of apgod classes that
REIBD measures. However, by definition islands always haxgel number of inner
dependencies which makes it viable to use a simpler ratio RAIBD. Moreover,

based on the definition islands always have much more inrpamdiencies than outer
dependencies. Itis more practical to use a metric that peda finer measurement of

external dependency dominance.

REIID defines the amount of independence of an island; if te&imvalue is close
to O, island at hand has less dependencies to/from clasgsgle@u This shows
its independence from the rest of the diagram making the pyewandidate for

parallelization as a whole.

As mentioned before, classes inside the island communioate with each other
rather than the rest of the software and hence objects oktaed should be placed
closer among the processing elements to minimize commitimmoeost. As the metric
value increase the group starts to lose its island charadteen the islands are detected
prior to the metric assessment, the value of this metric Ishoat be far from 0 in

practice.

48

Cumulation of Inner Island Dependencies

Cumulation of Inner Island Dependencies(ClID) measuregiiktribution amount of
the inner dependencies of an island. It can be defined asadhdasd deviation of
number of dependencies each class has to/from other classds or outside the
group. For instance CIID will be calculated as 1.3%[8 4 4 5 2 6 3])) for the bridge
in Figure 3.20

Having a small CIID shows that the dependencies of the istaeddistributed in a
balanced way; it is harder to introduce parallelism insige island. On the other
hand when this metric is high, it shows that the dependerasiesoncentrated on a
few classes. In this situation the island may be split up talEmislands. Another
idea is to introduce local parallelization to the heavy daejant classes being local

hubs/authorities inside the island.

3.3.2.5 Correlation among dependency pattern metrics

It is very important to obtain distinct metrics that repmesaifferent properties of the
dependency patterns. To reason about the distinctnesse ahétrics, in Table 3.1
correlation coefficients metrics that were measured usB@ different dependency
patterns inside four different real-world software is pmed. Case studies are
introduced in more detail in Section 3.3.3. Each metric impared with the metrics

of the same dependency pattern in Table 3.1.

Table 3.1: Correlation among defined metrics.

RDD | RSD
RDD 1
A —Rsp 031 | 1
NCD | RCD
Cycle | _NCD 1

RCD 0.55 1

REIBD | RBSD | RSBC
REIBD 1
Bridge | RBSD | -0.63 1
RSBC | 0.16 -0.2 1
REIID | CIID
REIID 1
ClID -0.02 1

Island

49

Two high correlated values in Table 3.1 are NCD-RCD and RERBSD couples.
These correlations can be considered as natural since NCbeirgy used as
a complementary metric for RCD, these two metrics are aedlytogether in

Section 3.3.2.2 to reason about cycle properties.

For the second couple, REIBD-RBSD, the reason behind threlation is the sample
space. REIBD metric is actually not specific to bridges, i t& applied to any
group of classes like in REIID case for islands. However, mties metric is applied
to the bridges number of external/internal dependenciesrbes the complement
of source dependencies in the bridge. REIBD-RBSD are alsdyzed together
in Section 3.3.2.3 like the former case although they alslovidually hold distinct
properties of the pattern. On the other hand, especiallyyaing REIBD without
considering RBSD may mislead for some certain propertiesthe pureness of the
bridge). Rest of the metrics doesn't have an obvious cdroglaamong themselves

and can be used individually to reason about distinct ptaseof the patterns.

3.3.3 Real-world examples of dependency pattern metrics

In this section using real world software, examples of depegy patterns having
different metric values will be given. Case studies are ehdsom different areas
and programming languages: Jikes [57] is the mid-sized demproject of IBM
written in C++, Leda [79] is an open source library of effidielata structures and
algorithms written in C++, JBoss [80] is a well-known comntymlriven application

server written in Java and finally DSpace [81] is an open sQ0MdS written in Java.

In the following sections, simple strategies on metric rptetation and metric
priorities in parallelization process will be presenteddach dependency pattern type.
Following the parallelization proposals, examples of dej@mcy patterns in the case
study software will be presented and the metric measurenfenthe patterns will be

revised using the examples.

3.3.3.1 Hub/Authority metric examples
Utilization strategy of hub/authority metrics in paraitgtion can be listed as follows:

1. Inthe reasoning process one should first consider RDDienétis better for RDD

to be either close to 1 or -1. This provides a clearer paraiihg strategy based on

50

class at hand being a hub or an authority. Having an RDD clwms@rrepresents

complicated class behavior and a tedious parallelizationgss.

2. Based on the information from RDD, the value of RSD alsoobess important.
Having a higher RSD is always better but it becomes more itapoif the class
at hand is an authority. This situation poses a possiblenpaighic usage where

parallelization can be introduced to the classes that esel#iss at hand.

The classControl shown in Figure 3.21 is a hub from Jikes, having a high
RDD(1) and low RSD(0.02). Jikes being a compilésntrol is the orchestrating
class of the process where the main operators of the comgpilgirocess, such
as lexical analyzer(scanner), syntactic/semantic aeglyarser) and code generator,
are triggered. Further, if several files are compiled, a laophis class handles
these separate compilatiossquentially Compilation process of separate files are

independent of each other and can be performed in parallel.

Indicated by its high RDD valueGontrol is a strong hub to which parallelism
may be introduced in many different ways from method calbpelization to object
distribution. In the examples below parallelize is done ioamventional way, by
parallelizing loops. It is not mandatory to use loop pafaion in every case;
one can not guarantee to find parallelizable loops in evenason. However it is
a common construct in object oriented/imperative softwhet is easy to detect and
parallelize; it will be one of the first places for a develofmelook for a parallelization

opportunity.

DirectorySymbol

DirectoryEntry|

=—=Control g P —
Utf8LiteralValue EystemTable

PackageSymbol

/ |

S EieralTable ’lntLiteralTableI |LiteralLookupTable

/ stBinaryExpression
| 7

Figure 3.21: Control as a hub pattern.

51

Control:: Control (){
/[« Initialization etc .x/
for (file_symbol = (FileSymbok) input_java_file_set.FirstElement();
file_symbol;
file_symbol = (FileSymbo4) input_java_file_set.NextElement()) {
K
Header Processing
*/

}

1
2
3
4
5
6
7
8
9
10 /« Further Processing/

11 for (int j = 0; j < num_files; j++) {
12 [%

13 Body Processing

14 */

15

16

}

/« Further Processing/

17 :
I Figure 3.22: Constructor ofontrol class.

By analyzing the actual implementation @ntrol class, one may find mentioned
loops which can also be seen in the code snippet in Figure 3A&2r introducing
parallelism on these loops, performance improvement carsdam for multi-file
compilation process in Figure 3.23. In the figure, perforaganumbers in (a) are
obtained when identical files are compiled by the compilengislifferent number
of processor and in (b) files with various sizes are used inpdation process. When
loops in Figure 3.22 are parallelized, instanceSainner, Parser andStoragePool
are sent to threads as parametergolftrol’s dependency diagram in Figure A.3 is
examined, mentioned classes can be found out to have depsnadationship with
Control. In a more detailed parallelization process all of the depeah classes of
Control become candidates as thread parameter. Analyzing clagsadian this
way, lets the programmer to focus on important sections ss$es of software before

detailed code analysis.

As being a huge clas3DBCEntityBridge from JBoss, needs a huge effort to be
parallelized since its RDD(0) value indicates that it wil bised as much as it will use
other classes. Actually the class has 2 inline classes amdefi®ods, from which 30
of them is setter/getter, 14 of them is initialization andf 8h@m scheduling methods.
There exists 40 different loops inside 1500 lines of codemsidtent with the metric

value, this class surely needs a lot of effort to be parakeli

Lastly GenPtr is an interesting example from Leda having an RDD value ofnd a

RSD value of 0.83. These values indicate thaiPtr doesn’t actually use any other

52

Normalized performance

Normalized performance

105 ‘

1PE ——
2 PES e
4 PES rras
100 Ty 8 PES -t |
95 g
90
85
80

0 1 2 3 4 5 6 7 8 9
Number of files

(a) Compilation of uniform length files.
105

1 PE ——

100 . 4 PES U]
. 8 PES @

95

90

85

80

75

70

0 1 2 3 4 5 6 7 8 9
Number of files

(b) Compilation of varying length files.

Figure 3.23: Jikes performance upgrade by hub Parallelization.

classes and has the potential to be used as an abstradiZgestar type. In actual
software, GenPtr is nothing but a type definition, standing for void pointer8s
understood from its metric value this artifact is alwaysnigeiised by other classes,

never explicitly using any other class.
3.3.3.2 Cycle metric examples

Utilization strategy of cycle metrics in parallelizatioarcbe listed as follows:

e High NCD and RCD: In this situation there are many self dependencies exists

inside the class that needs more effort to break. On the dthrd class is

53

1 class VariableSymbol : public Symbol, public AccessFlags{
public:

/«Various properties and methodg

VariableSymbok accessed_local;

private:
/«Various properties and methodg

b

10 VariableSymbo¥ TypeSymbol:: FindOrlnsertLocalShadow(VariableSymbolocal){
11 /+*Various operations/

©CoOoO~NOULAWN

12

13 VariableSymbot accessed;

14 for (accessed = variable> accessed_local;
15 accessed & accessed != local;

16 accessed = accessed> accessed_local);
17 assert(accessed);

18

19 return variable;

20}

Figure 3.24: Self dependencies #hriableSymbol.

quite independent from the rest of the software, bringingaloperformance

improvements when tweaked.

e Low NCD and RCD: In this situation objects of the class is being used in many
places of the software and it also has a small part that debgeequential behavior.
Self dependent part of the class should be detected andzadatly discover if it is

being used heavily inside the software.

e High NCD, low RCD: This is one of the hardest parallelization situations where
most of the class consists self dependencies and the classis heavily used in
software. This class probably becomes a bottleneck in [phrzaltion process and

should be analyzed carefully.

e Low NCD, high RCD: This type of self dependency is easy to detect and harmless

for parallelization most of the time.

Based on the guidelines enlisted above, example intetfmessof cycle metrics from

case studies can be given as follows.

ForVariableSymbol class from Jikes having an RCD value of 0.11 and an NCD value
of 1 exhibits self dependency in seven different pointsdesoftware. Four of these
points occur in loop conditions, causing the loop to gaingusetial behavior. One

example to this situation is present in Figure 3.24.

54

1 public class SortOption{

2 /[« Various Attributes«/

3 /[« Self dependent attributes«/

4 private static Set<SortOption> sortOptionsSet aull;

5 private static Map<Integer, SortOption> sortOptionsMap mull ;
6

7

8

9

/I« Various methods/
/[« Self dependent method$
public static Map<lnteger, SortOption> getSortOptionsMap()

10 throws SortException{

11 /!l Operations using sortOptionsMap class variable
12 synchronized (SortOption.class){

13 /I Synchronized operations

14 }

15 return SortOption.sortOptionsMap;

16 }

17 public static Set<SortOption> getSortOptions ()

18 throws SortException{

19 /1l Operations using sortOptionsSet class variable
20 synchronized (SortOption.class){

21 /I Synchronized operations

22 }

23 return SortOption.sortOptionsSet;

24 }

25}

Figure 3.25: Self dependencies 8brt0Option.

As mentioned earlier self dependency is concentrated afpo# in this case and
this self dependency used in different points of softwara@an$forming this self

dependency to a parallelizable construct can be fruitful.

SortOption class from DSpace in Figure 3.25 has an RCD value of 0.33 ahtCdn
value of 2, acts as a mediator between many different somipdementations in the

software.

It is not surprising to see some of its methods having synthend sections as an
outcome of this situation. Although it has a few sections teak self-dependent
behavior(NCD), class has a lot more dependencies thaneyaidiency(RCD) making
those self dependencies possibly scattered through ttveasefwhich is relatively bad

for parallelization.
3.3.3.3 Bridge metric examples

Utilization strategy of bridge metrics in parallelizatioan be listed as follows:

1. Most important metric for a bridge is RBSD where a highdu&andicates some
type of alternating usage most of the time in practice. H@wvévs metric should be

paid equal attention with RSBC metric. Although having RS&dow as possible

55

together with a high RBSD is the most favorable case, havihggla RSBC may
sometimes mislead developer, especially when bridge tshgge created using a

factory.

2. As mentioned, RSBC is an important metric since bridgestipshow their
alternating behavior in a polymorphic way. RSBC should besatered together
with number of classes inside the bridge and RBSD value. itfiger both has a
high RBSD value and large number of classes one should resredR&BC can be
sometimes misleading since polymorphism is not the only feaya software to

implement alternating behavior.

3. Lastly REIBD should be considered to fine tune the paradgbn of the bridge.
While having an REIBD close to -1 is better if the bridge haswa RBSD value
since this situation may end up with the isolation of the geictlasses(although
in practice this is a rare situation). When the RBSD valueigh thaving an
REIBD value closer to zero is better since it indicates femenber of non-source

dependencies most of the time.

Based on the guidelines enlisted above, example intetpmeseof bridge metrics from

case studies can be given as follows.

An instance of a bridge pattern can be seen in Figure 3.26renhiesubset of the
descendents okttribute form an authority bridge. At the ends of the bridge,
bridge objects are used in a similar way by being alterntisgitched inside loops.
InsideClassFile, MethodInfo andFieldInfo classesAttributeInfo’s subclass
instances are keptin a buffer array which are then iteratedtyy the mentioned loops.
This situation needs special care while scattering ancegatipthe buffer of the bridge

objects.

An example snippet of bridge object access can be fougddasFile constructor in
Figure 3.27. This method contains a switch statement in hvhjgpropriate actions
are taken depending on attribute type. This switch is execubany times in a
loop for eachAttributeInfo object. By parallelizing this loop the performance
speedup can be seen in Figure 3.16 as the workload of thehswgtoperation
increases. This group is actually two overlapping bridgesrag three classes called

ClassFile MethodInfo andFieldInfo. Dominant external dependencies implicated

56

MethodInfo
- -

AnnotationsAttribute ~

(a)AttributeInfo Dependencies.

[ExceptionsAttribute| [StackMapAttribute

CodeAttribute ParameterAnnotationsAttribute
DeprecatedAttribute
— LineNumberTable. AttributeI}AnnotationDefaultAttribute
SyntheticAttribute . .
InnerClassA ttribute SourceFileAttribute
WUrtributelnfol
SignatureAttribute UnknownAttribute EnclosingMethodAttribute
o~
IAnnotationsAttribute ' LocalVariableTableAttribute
ConstantValueAttribute

BridgeAttribute

(b)AttributeInfo inheritance relationships.

Figure 3.26: AttributeInfo descendents as an authority bridge instance.

by REIBD(1) metric are dependencies inside another bridigeing high RBSD(0.63)
and low RSBC(0.2) values, this bridge is a good candidatpdoallelization. On the
other hand, RBSD value for the group is not as high as it shbe]d false negative

caused by the overlapping bridge connections it have.
1 ClassFile:: ClassFiledonst char« buf, unsigned buf_size)

2 {
3 /+«Some processing/

4 switch (attr —> Tag())

5 {

6 case Attributelnfo :: ATTRIBUTE_Synthetic:

7 /[« Operations using SyntheticAttribute objeg/t
8 case Attributelnfo :: ATTRIBUTE_Deprecated:

9 /+« Operations using DeprecatedAttribute objedt
10 case Attributelnfo :: ATTRIBUTE_Signature:

11 /+« Operations using SignatureAttribute objest
12 case Attributelnfo :: ATTRIBUTE_SourceFile:

13
14
15

/[« Operations using AnnotationsAttribute objecit
I/« Several other cases

16 }; . .
I Figure 3.27: AttributeInfo usage.

57

Another bridge Example from JBoss can be seen in Figure 3.2B1 this
bridge it can be seen that the bridge has a balanced amounitehal/internal
dependencies. These non-source dependencies originateafisingle class called
JDBCTypeComplexProperty which is actually used byDBCTypeComplex in practice.

If JDBCTypeComplexProperty is taken out of the bridge, its metric values are
improved at a great amount. MoreoVB®BCTypeComplex andJDBCTypeSimple are
sibling classes that are created by a factory calEBCTypeFactory which is a good

indication of a bridge usage in practice.

[JDBCFindByPrimaryKeyQuery | [JDBClnitEntityCommand] JDBCCreateBeanClassinstanceCommandl

>< R i
JDBCActivateEntityCommand BCRemovekiniityCommand

ss<iJDBCI oadRelationCommand
—~ N

[JDBCStoreManager 2 DBCEntityBridge

[CascadeDeleteStrategy |

Figure 3.28: An example bridge from JBoss.

A final example bridge from JBoss is in Figure 3.29 which isually a false
negative example for RSBC. In this example, the importafi@nalyzing the metrics
collaboratively can be seen. Even though none of the classesblings in this bridge

it has a high RBSD value and large number of classes insidéridge showing a
good parallelization opportunity. When the code is analyites no surprise two
sources of the bridge use the bridge classes heavily insaa.t First of all, objects

of the bridge classes are created by a factory instde-tStoreManager () method

of JDBCStoreManager class. This can be a good place to introduce parallelism as
discussed earlier. For the other end of the bridipBCFieldBridge class is used

heavily inside the loops of bridge classes as well.

3.3.3.4 Island metric examples

REEID and CIID can be analyzed together to detect the islt#ratsare connected to
the rest of the software over local authority/hub clasges(@DBCEntityMetaData)
to draw guidelines on parallelizing modular parts of sofevaA lower REEID is more

important in any case where the island is more independent.

58

|Agfz:gateFunct10ni
QJDBCResultSetRead{\u DBCTypeSimple]

[JDBCTypeComplex]

Y
l;|] DBCParameterSetter I
7

Figure 3.29: An example bridge from JBoss.

Having different CIID values can have different advantagesisland with a low CIID
can be packed easier but harder to parallelize especialiynds a large humber of
external dependencies. On the contrary, additional logedl|elization strategies can

be applied on specific classes inside the island if CIID iséig

Island metrics involve large number of classes and mostiydedining most of the
times. For instance, REEID metric is a natural outcome ofmimn clustering; it can
be easily inferred that having large number of external ddpaecies making the group
more dependent to the rest of the software. On the other hamalyi be useful to look

at two examples of CIID metrics in the case studies.

In Figure 3.30, first island has a CIID value of 3.36 indicgtthe heavy dependency
load on two classes calletbBCEntityMetaData andApplicationMetaData. On
the other hand, for the second island this value is 1.3 itidigea well balanced
dependency distribution which can be seen in the figure ab vi@h the contrary
REEID metric of the second island is about three times higbenpared to the first
island making it more dependent to the rest of the softwanmil® conclusions can
be made, visually analyzing the figure, where almost all efakternal dependencies

that the first island has is owned ByBCEntityMetaData.

3.4 Detecting Dependency Patterns

By defining dependency patterns and their properties it ssipte to perform a
structural parallelization operation over sequentialtvgafe. On the other hand
detecting those patterns inside class diagrams may noysleperformed easily all

the time. Especially for the specific pattern "bridges” cemional techniques provide

59

lIDBCOptimisticLockingMetaDataIR

JDBCEntityMetaData|

[IDBCCMPFieldMetaDatal \1\

JDBCAuditMetaData

) DBCEmityCommandMetaDataI
|J DBCQueryMetaDataFactory|

|JDBCCMPF ieldPropertyMetaData I

|AssemblyDescriptorMetaDataI

2|XmlF ileLoaderl VerificationStrategy|

| JDBCApplicationMetaDataI

ApplicationMetaData

JDBCXmlFileLoader|

IorSecurityConﬁgMetaDataI | EjbPortComponentMetaData I

| ConfigurationMetaData I

|SecurityldentityMetaData I

[ClusterConfigMetaData|

AstDeclared

R - a.riableDecla.ratorId
stModifier AstPackageDecleration

/K AstCompilationUnitI

|AstLocalVariableStatement
// AstArrayCreationExpressionI

Figure 3.30: Sample islands having distinct island metric values.

an inadequate performance. In this section an enhancemwentlastering techniques

is presented to discover the dependency patterns insisle diagrams.

3.4.1 Related work on pattern detection

Graph clustering has been applied previously to softwardatsofor modularization
aspects and static analysis of software. [82] used hidichraph clustering over
dependency graphs of software files in order to reorganizartbdular structure of
software: In a graph constructed from software modulesgctimmectivity of vertices
inside/among clusters is used in optimizing the moduléiomaof software. [83]
used spectral graph partitioning techniques in order tealeeusable components in
software by analyzing class diagrams. This approach isdbasen iterative method

for partitioning class diagram in order to identify densenoounities of classes.

60

By conducting a more specific analysis on dependency graptraceed from
software, it is possible to reason about many different espef object oriented
systems including software quality, modularization, amdtime properties. [84]
apply clustering to dependency graphs extracted from Jawecs code to increase
modularity. [85] performs dependency analysis at the metkuel in order to reveal
the high level structure of software. A structural visualian was accomplished
by partitioning the graphs constructed from module-len&tii-relationships obtained
from source code analysis. [86] used dynamic dependencie®rstruct a more
realistic dependency graph from pure static representaidd the software as input
to clustering. This approach can be used for program corepsebn, but it cannot be
applied during early stages of software development sioaece code and/or dynamic
information is required. In contrast, [49] built a weightsammmunication graph using
predetermined rules at the design stage. This graph wasptréitioned in order to

minimize the communication cost among clusters.

Software design models can also serve as the source of geapbing us to reason
about design-level aspects of software. UML class diagraresone of the most
widely used tools to model the static structure of softwaAthere are many different
relationships among classes inherent in UML class diagr@umsh as composition,
generalization, or association) various mappings of tregrdim to a graph can
be performed to extract dependency graphs through gragteding. Using this
approach, Wu analyzed UML class diagrams to support progfemg and coupling
measurement [87]. Similarly, [58] presented graph theémaktechniques as a generic
way to discover patterns in UML diagrams, albeit considg&any relationship between

two classes as an edge in the graph.

In most of this work, clustering has been applied to depecygaraphs without
considering structures that emerge from software desigo. ekample, albeit [58]
identify highly coupled, huge classes to which they refefgasl classes”, their work
does not comment on utilizing these structures during gcdps$tering. In contrast,
in this section common dependency patterns that emerge ih tldés diagrams are
focused onimproving the performance of popular clustei@epniques when detecting

those patterns.

61

3.4.2 An enhancement to graph clustering for dependency peern detection

Graph theory and clustering have been applied to many difteaspects of software
analysis. In particular, dependency graphs are widely uséde analysis of object
oriented software systems, treating software artifactyeatices and relationships
among them as edges. The dependency graph is extracted fpmogem using

various methods, including source code and byte code asalys

UML [88] has become the most prevalent visual modeling laggufor software
development. As such it is also the platform of choice forfgrening analysis of
object oriented software designs. In particular, clasgrdias have been the subject of

clustering techniques.

Clustering studies applied to software designs usually déth static properties
of software like modularization [84] and software struetfi85]. To reason about
dynamic properties of software, the analysis should ineluchtime information which
is not present at the early design stage. By detecting riegwlass diagram structures
(which is referred to as dependency patterns) and theirmnenproperties it will be
possible to relate them to dynamic properties of softwarthout having the actual

implementation and/or runtime information.

However, certain structures in class diagrams are fretuenssed in the clustering
process because they do not fit neatly into a the definitionchigter. Typically these
structures are comprised of a group of classes having dees¢idal dependencies
towards or from two specific classes outside the group. Gassps with such
dependencies are referred bhadge patterns in this thesis. Current clustering
techniques tend to merge bridge patterns with larger classpg or distribute the

classes inside the bridge pattern amongst many other dlaspgy

In related research on parallelization of software desigrisas been found that
bridge patterns play a key role, and therefore, methodstetcteg such patterns are

investigated.

In thesis studies class diagrams are represented withaateldr graphs considering
only dependency relationships among classes. Clusteretgads are extended with
algorithms that are able to cope with patterns that were higt # be detected as

clusters, independent of the particular clustering metbheidg used. The proposed

62

algorithm is focused on detecting bridge patterns. Witlloiststep, key aspects of the
relationship between elements in a UML class diagram wilirigsed in an analysis

of these diagrams, as the bridge pattern does not fit the tiefiof a cluster.

3.4.2.1 Clustering for dependency patterns

In this section, clustering is leveraged to identify depamay patterns and apply
different graph clustering techniques to graphs extradtedh class diagrams.
Although dependency is a directed relation, detection gfeddency patterns is
implemented using undirected graphs, due to its superigsteling performance.
Using undirected graphs does not interfere with pattemction detection; directional

analysis of patterns can still be performed independefiity pattern detection.

This approach is evaluated by searching for dependenarpainside the open source
compiler project Jikes [57] (which originated from the IBMpBaWorks project). Class
diagrams for JikesCLASS (39 classes)L.OOKUP(41 classes), andST (103 classes)
packages are obtained by reverse engineering from heagrriélsulting in medium

to large size diagrams. In Appendix B graphs extracted frepeddency diagrams

of LOOKUP and AST can be seen. In these graphs, many occurrences of dependency
patterns can be spotted easily. Some patterns are labelbdse figures and will be

referred to in the discussion of the experiments in latetices.

In order to detect these patterns automatically, the fafigwgraph clustering
techniques are applied to undirected graphs extractedtiierdependency diagrams:
(i) k-way hierarchical graph clustering [59], (ii) clusieg based on computing
normalized cut and ratio associations for a given undicegtaph without eigenvector
computation [89], (iii) spectral graph clustering [60],dafiv) Markov clustering and
flow simulation [61]. Clustering experiments were conddaising the software tools
Cluto [90], Graclus [91], kernlab [92], and MCL [93], respieely.

In Figure 3.31, the results of automated clustering appitedLASS using spectral
graph clustering (a) and Markov clustering (c), respettj\aee compared to a manual

clustering of the same graph (b).

Table 3.2 shows the adjusted rand index [94] for these exygatis which provides
a basic comparison between the results of the various dingteechniques and the

desired clusters. The adjusted rand index is a measure @gfrthkarity between two

63

(@) (b)

(©)

Figure 3.31: Performance of spectral graph clustering (a) and Markostehing (b)
compared to manual clustering (c).

data clusterings, yielding a value between 0 and 1, with @&atohg that the two data

clusters do not agree on any pair of points and 1 indicatiag tthe data clusters are

exactly the same.

As the results shown in Figure 3.31 reveal, the studied etugg techniques are not
very successful in partitioning the dependency graph ot#se study. Examining the
obtained clusters in detail, one can see that these clogterchniques were not able

to detect any bridge dependency patterns. For exampleeiménually created target

64

clustering (b) a bridge pattern can be seen marked as groump(8), it can be see that
two vertices of the bridge are scattered amongst otheratkiand in (c) this bridge is

merged altogether with another cluster.

Table 3.2: Adjusted rand index metric obtained for the studied clusgetechniques:
Hierarchical graph clustering, clustering with normatizeut and ratio
associations, spectral graph clustering, and Markov etiung.

CLUTO | GRACLUS| KERNLAB MCL
CLASS 0.182 0.474 0.516 0.558
LOOKUP 0.353 0.343 0.262 0.183
AST 0.481 0.333 0.540 0.150

The reason for the failure to detect bridges is the looseioalship of vertices within

the bridge pattern as well as their defining connectionsiglsivertices outside of the
cluster. Therefore it is needed to provide a detection teckenthat is able to separate
bridge classes from other clusters. For the rest of the adkgp®y patterns described in

Section 3.2, clustering techniques provide acceptablepeance.

3.4.2.2 Bridge detection algorithm

An algorithm is presented to find bridge patterns in a depecygraph derived from
class diagrams. As defined, bridges are groups of classe® ahelasses inside the
group are connected to at least two common classes. In adikEgam, there may
be overlapping bridges where two bridges share a class augp@f classes. Classes
inside a bridge may have dependencies between each othghother classes outside
the group. In practice bridges have no or few dependencles dhan those to the

classes they connect.

The proposed algorithm uses the Hamming distances amongseitiees in the

adjacency matrix of the undirected and unweighted graptaeted from dependency
diagram. The Hamming distance between two strings of ecumth measures the
minimum number of substitutions required to change oneth#@ther. The algorithm
also accepts a threshold parameter which determines tha@redqdependency
similarity of vertices inside a bridge. It is assumed thdbhatity and hub vertices have
been excluded as well as those vertices that have only aestoginection. Detection
of authority-hub vertices and singly connected vertices loa performed simply by

counting the number of edges originating from each vertex.

65

Bridge A

Bridge B

Figure 3.32: A sample graph to be used in illustrating bridge detectigo@dhm.

The proposed algorithm shall be illustrated using the sangiaph shown in
Figure 3.32. In the sample graph, a bridge can be seen cadpoisthe vertices
labeled 3, 4, and 5(Bridge A), connecting vertices 2 and 8aahddge consisting of
vertices 5 and 9(Bridge B), connecting vertices 6 and 8. @he® bridges overlap
as they share vertex 5. The vertices labeled 2 and 8 are exthglcandidates for a
bridge since they are determined to be authorities or htks;értices numbered 1 and

7 are excluded since they have single connections.

In Algorithm 1, the distance matrix is formed by calculatifggmming distances
between each vertex in the adjacency matrix of the graph gurgi 3.33(a). The
distance matrix, shown in Figure 3.33(b) for the sample lgrap obtained in lines
2 through 5 of Algorithm 1. Those pairs of vertices that amilsir to each other
below a given threshold are detected in the next step(lin€lg Hamming distance is
used as the similarity measure between vertices sinceitsdne number of different

connections between two vertex rows in the adjacency matrix

In the example, a threshold of 2 is used, which means the oslgrttes selected are
smaller than or equal to 2. The threshold value used in owritign indicates the
maximum distance between two vertices within a bridge. Inexgperiments, setting
this threshold around 2 yielded best results. The threshalgneed to be adjusted for

different scenarios, based on experiments.

66

1234567829

1101 000 0O0O0O

2/17 01 110000

3]0 1 0000110

4/0 1 0000010

5(0 1 0001010

6/0 00010001

7/0 01 0000O00O0

8/0 011100001

9]0 0 00O 0O 1010

(a) Adjacency matrix.

1234567829

11052123253

2 07 67 4326

3 0125473

4 014362

5 05471

6 0 3 214

7 0 3 3

8 0 6

9 0

(b) Hamming distance matrix.
1234567189
3—4(BridgeA |0 1 0 0 0 0010
3—-5BridgeA |0 1 0 000010
4—-5BridgeA |0 1 0 000 01O
5-9(BridgeB |0 0 0 001 010

(c) Common connections of similar vertices.

Figure 3.33: Matrices of the sample graph in Figure 3.32 used in bridgeatiein.

Algorithm 1 Bridge discovery using the adjacency hamming distance dmtw
vertices.
: Form the adjacency matrix of gra@(v, e)
for all pairs of verticeslo
Find Hamming distances between corresponding rows
end for
Form distance matrix between vertices
Detect pairs below a given threshold and add them t®g8at v,)
for all pairs(vi,v;) in setP do
Add (vi,vj) and A(row(v;),row(v;)) to P’
Remove pairs from sé&¥ which have only one common connection
end for
. for all joinable pairgs;...s,) in setP’ do
Add J(s1,...51) and A(row(sy),...,row(,)) to result seR
: end for

=

el ol el =
W N kR o

67

As mentioned earlier, vertices numbered 1, 2, 7 and 8 arei@ed|from this operation
as well as the diagonal 0’s which indicate self connectibéfween vertices. Distances
to which the selection process is applied to are shown in indfiigure 3.33(b). After
the selection process, the following vertex pairs are sete@— 4(in Bridge A), 3—
5(in Bridge A), 4—5(in Bridge A), and 5- 9(in Bridge B). The pairs that reside in the

same bridge are then merged into a common node set of theebridg

In the loop starting at line 7 of Algorithm 1, the common coctien matrix of selected
vertex pairs is constructed, see Figure 3.33(c). The matrbuilt up using binary
ANDed rows of pairs from the adjacency matrix indicated/fJy In this matrix, each
pair that has two or more common connections is joined uatilnther vertices can be
joined. Pairs with only one common connection outside thegra eliminated (line
9), since vertices inside a bridge need to have two commonezions outside the

bridge.

When the loop starting at line 11 of Algorithm 1 is reacheahdane in Figure 3.33(c)
is joined with suitable rows inside the matrix. The join cgtéon is performed over
two common connections in rows being joined. For example filst three rows of
Figure 3.33(c) can be joined over columns 2 and 8 while the¢as (5— 9) cannot be
joined with any other row since there are no rows which haveeotions in the sixth
and eighth columns. After the join operations, groups8—5 and 5- 9 are detected
as bridges. The join operation over rows is performed byyapglset union (indicated
aslJ) over vertex sets and applying binary AND to correspondovgs:. An additional

threshold could be applied to eliminate bridges below arddsize.

This algorithm has time complexity polynomial in the numbéall verticesv inside
bridges. The joining operation starting at line 11 in Algon 1 operates ow vertex
pairs resulting in a complexity dd(v*). Such complexity would not be acceptable
for large data sets. However, it is not common for a classrdrago have thousands
of classes, and there are significantly fewer classes iadaiv bridges than the total

number of classes in a diagram. Consequentially, this glgoris usable in practice.

3.4.2.3 Evaluation of bridge detection algorithm

The graph obtained by applying bridge detection algoritbrtihe case study is shown
in Figure 3.34. Figure 3.34(b) repeats the target clustarsIfASS as determined by

68

manual clustering, with the bridge highlighted and labels®. Figure 3.34(a) shows
the result of clustering with MCL, which yielded the bestuksmong the studied
clustering techniques f@LASS. In (a), the bridge B is merged with two other clusters.
If the number of clusters are increased, the vertices of tialg® would once again be
split over separate clusters as shown in Figure 3.31(aur€ig.34(c) shows clusters
resulting after detection of authority or hub vertices ardedtion of bridges using

bridge detection algorithm on the clustering obtained fiM@L.

For CLASS and LOOKUP, bridge detection algorithm was abléirid the bridges
that were detected manually. In the more complicated ASplgraridge detection
algorithm in addition found some smaller bridges (consgstof two classes) that
were spread throughout the diagram. The threshold valué iasbridge detection
algorithm indicates the maximum distance between two aestivithin a bridge. In
the experiments, setting this threshold around 2 yieldesd f@sults. The threshold

may need to be adjusted for different scenarios, based ariexgnts.

Table 3.3 shows the adjusted rand index when applying bidégection algorithm to
clustering obtained from the studied techniques. ExcapA8&Y, the algorithm nearly
doubled the adjusted rand index scores. To put the minimadawement for AST in
context, consider that the adjusted rand index calculatg®d in this evaluation does
not take overlapping bridges into account. A visual insjpecdf the results for AST,

however, indicates significant subjective improvemerd,Sgures B.4 B.5 B.6.

Table 3.3: Adjusted rand index for clustering improved by applying thedge
detection algorithm to studied clustering techniques.

CLUTO | GRACLUS| KERNLAB MCL
CLASS 0.925 0.925 1.000 1.000
LOOKUP 0.699 0.692 0.654 0.545
AST 0.511 0.549 0.544 0.460

The improvement over clustering results by the bridge dietealgorithm is somewhat
expected, since bridges do not fit the definition of a cluMertices inside a bridge are
typically less connected amongst each other and their cbions outside the group

are all to specific vertices.

There are some trade-offs to be considered when decidin@resholds for bridge

and authority or hub detection. One may end up with a largesfderidges including

69

(a) (b)

(©)

Figure 3.34: Clustering obtained from MCL (a), manually (b), after d¢iteg and
separating bridges and hubs/authorities from MCL resal)ts (

practically useless ones when thresholds are chosen yod3althe other hand, it is

possible to miss some of the bridges if thresholds are sdighb

Appendix B compares manually obtained target clusterifge best obtained
clustering, and the result of applying bridge detectioroatgm to the best obtained
clustering forL.00KUP. Clustering in Figure B.2 is the output produced by Clutoiclih
yielded the best result fat00KUP as shown in Table 3.2. It is clearly seen that in this
clustering, the bridge indicated as group F is merged wighveirtices it is connected
to, while the bridge indicated as group B in Figure B.1 ists@iter applying bridge
detection algorithm to Figure B.2, as shown in Figure B.8,ttho bridges are isolated
as B and F. Only one vertex from F remains separated, yieldilogver error rate in

bridges as compared to the clustering in Figure B.2.

70

Appendix B contains similar results fasST. The clustering produced by kernlab in
Figure B.5 separated one vertex from group B as comparecetddhired clustering
Figure B.4. Moreover, the clusters labeled D and E are mergetpletely with other
clusters. After applying the bridge detection algorithmFigure B.5, group D and
group E are separated into different clusters in Figure BA&o, group B is split
into three different bridges where group B1 and group B2 eslhap vertices inside
the bridge and group B1 and group B3 share one vertex insel®ridge. This is
an example of overlapping bridges which, of course, caneotldtected by current

clustering since by definition clusters may not overlap.

3.5 Summary and Conclusions

It is possible to achieve performance boosts by ignoringlpdism inherent in the
problem and instead applying local imperative parall¢élaratechniques. Another
source of parallelism, however, is implicit in the softwasteucture, which can be
revealed through dependencies between classes repksestatic software models.
Focusing on the these models has the potential to detedlgbiara at the design stage

which is harder to detect using code analysis.

In this chapter, static class diagrams are analyzed to rdater portions of the
diagram that will exhibit distinctive properties at rungnthat make it amenable to
parallel execution. Dependency patterns are defined antifidd their usage in class
diagrams showing through experiments that these pattéagsapm important role in
parallelization of object oriented software. As illusiost, examples are presented
from design patterns and a case study, which exhibit thegendiency patterns and
demonstrate how these patterns lead to select particulanitpues for parallelizing
the represented software. Detecting instances of depengettern inside software
design patterns is an indication that dependency pattezosran object oriented

software frequently.

By analyzing the static structure of software models it issgdole to detect
opportunities for parallelization and to provide guidebrfor injecting parallelism into
the software under development. These opportunities gresented by patterns in
the design model such as “sibling bridges”, “master cldssese authority to many

subclasses”, etc. These patterns are not only useful intingeparallelism but also

71

point to areas of the software model that need to be syncednsuch as “authority
superclasses” or “one authority to many subclasses”, ordasathat have sequential
behavior (“self-dependent classes”). Software perforadmeing heavily influenced
by its implementation, using dependency patterns provgledelines on how to
benefit from software designs to lead the programmer in implging parallelism

more effectively.

Later, a set of metric definitions are presented for meagutine properties of
dependency patterns. Previous studies on multi-classasetre bound to package
based metrics whereas parallelization metrics are coratedt on performance
measurement. In thesis studies the old metrics were adapgbthew metrics were
derived for dependency patterns. By this it is possible todependency patterns as a

bridge between software design metrics and paralleliiglof software.

Using the metric set proposed, some examples have beennfméstom four
different industrial sized systems, commenting on thedigliof the metrics using
parallelization experiments and manual code analysis. retaiion study for the
metric set is also presented to show that the metrics cofferett properties of the

dependency patterns.

Finally, dependency patterns are detected using clugtengthods over dependency
graphs obtained from class diagrams. However, the studlisteecing techniques could
not identify bridge patterns as these do not fit the definibbm cluster. A bridge
detection algorithm was proposed in order to improve theteling performance for
dependency graphs. Applying bridge detection algoritholustering results obtained

for the case study yielded a noticeable improvement in etirgj performance.

Putting all together, in this chapter recurring structumessoftware design were
identified which can be utilized in detecting implicit pdedism in object oriented
software. A set of metrics is proposed for more detailedyaimslof the dependency
patterns and usage of clustering methods in detecting fraiterns are elaborated by a
bridge detection algorithm. By taking advantage of the depacy patterns proposed
in this capter, following chapter aims at performance imvproent of object oriented

software scheduling.

72

4. CACHE-AWARE SCHEDULING OF OBJECT ORIENTED SOFTWARE
FOR MULTICORE SYSTEMS

In the previous chapter a methodology based on the depeledearaong components
of an object oriented software is proposed. This methodotag be used to simplify
the process of exploring major level parallelization oppoities in a software before
the implementation process begins. In this chapter, a stiggen further to investigate
the possibility of inferring scheduling information basex the software models. To
produce such information, data sharing behavior betweassek of the software is
examined. Prediction of data sharing behavior of softwafere runtime lets us to
produce a dispatching mechanism based on the software mbobdl utilizes the cache

usage and provide performance gains up to 25%.

In Section 4.1 the enhancement philosophy is introducepatgd by results obtained
by re-scheduling design patterns considering cache-relrs&ection 4.2 an object
dispatcher is presented which uses the cache-reuse padisgmied in the first section.
Proposed dispatcher uses dependency pattern diagram sdftheare to match with

the processor-memory hierarchy of the processor at hangkerifments are performed
on an image filtering software to reason about the applitalof the cache-aware

scheduling.

4.1 Cache-Aware Scheduling of Design Patterns in a Multica Processor

Improving operating system schedulers to take cache atiitiz into account is being
heavily studied by the community. In most of the studiesnglsi centralized solution
to replace the scheduler is proposed using data gathered fuatime profile of

software [28—-33] [38—40]. Since proposed improvementaboperating system level,
software analysis are carried on lower level software sines like loops or thread

groups.

Apart from approaches based on modification of operatinggrys scheduler, another

idea is guiding the scheduler using classes as higher lef®éare components. In

73

the following sections it is shown that extracting such gliites from object oriented
software design can improve Linux’s completely fair scHed€FS). Cache-aware
scheduling approach is applied on design pattern implesiens and performance
improvement is gained when the scheduler is guided regardiupled classes of
software. Coupled classes access methods of each otherfithg raising the

probability of shared data between their objects at runtidesign patterns (which
can be found frequently in object oriented software) arelis@eason about possible

object tuples that frequently share data at runtime.

At the end of the experiments it can be seen that extractifggnration from the
software model and placing tightly coupled objects intoghebring cores (cores
that share the same cache) improves operating system’slideheperformance.
Cache-aware scheduling approach does not need to changehtiie scheduling
mechanism of the system. Instead it can be applied by amglythie dependency
relation among classes in the class diagram of software sowilde a set of candidate
cores for the classes that have the potential to communicaqeently at runtime.
Placing those classes’ objects at neighboring cores dezmeche miss rates by taking

advantage of shared data between software classes.

4.1.1 Cache-aware scheduling

In the context of thesis studies, the teBache-Aware Scheduling used to indicate
the operation of guiding operating system’s scheduler tighinformation of shared
data between software classes. Shared data can be detgotadichlly via runtime
environment or an external dynamic analysis tool. Howewagtigl or full development
of the software at hand is needed to perform this kind of aslysoftware models and
static class diagrams are used to reason about paralldiiamearly stage of software

development.

Using software models to guide scheduling provides two g advantages. Firstly,
parallelization information can be obtained before theialcsoftware runs or even
before it is implemented. This helps us to design more coimgetoftware for
multicore systems and to produce parallel code that peddoetter on different
multicore architectures. Secondly, the ability to guidedperating system’s scheduler

without replacing it during the scheduling process is pied. The analysis of

74

software model at hand can be performed semi-automatioglly programmer or an
automated tool to detect data sharing software componéstsftavare. According to
this information the operating system’s scheduler triesstgign objects, which operate

on common data to proper cores so that shared data can be plawshared caches.

During the analysis of the software three different factorparallelization should be

considered.

- Parallelization : The number of distinct parts in softwidrat can run independently.

They should be scheduled to different cores.

- Data sharing : Object tuples that share a significant amotiatata regarding
shared/non-shared caches. They should be scheduled tobongitg (or same)

cores.

- Resource utilization : The ratio of processing cores(iade)ito the number of
objects that run on the system. This concept can be seen asilib&tion amount

of the processing power of CPU at a given time.

Resource utilization is heavily influenced by paralleli@atand data sharing since
these two factors have an orthogonal effect on system pedioce. Decomposing
software too much for the favor of parallelization causegcis to write on different

caches frequently and increase cache misses. On the othmersbheduling objects
strictly on neighboring cores to utilize cache reuse mayseaparallelized objects
to wait for the same core even though there are some othecadés present. This
situation decreases the parallelization performance where exists fewer cores in
the die than the objects to be scheduled. During the expatsiibe effect of each
of these factors over another is explored to extract morenmg#ul information from

the model. Practical real-world examples based on desig@rpamplementations are
used, which are small enough to successfully observe tbetedf each factor during

the scheduling.

In thesis studies Gang of Four (GoF) software design pa{é®] are used to analyze
data sharing classes of the pattern. Software design pattee frequently used in
today’s object oriented software designs to solve commoblpms. A large number
of studies exist in the literature about detecting softwdasign patterns [95-100],

making it possible to automate proposed approach.

75

Cache-aware scheduling technique is applied on desigerpatto show that even for
smaller parts of the software a better scheduling can beggdwsing data sharing
information between components. This approach can beexpp larger software
where many different instances of many design patterns eaiound and analyzed
for data sharing. In this chapter it is focused on the applitg of model based

scheduler guidance by analyzing data usage of recurrinrgdbhen software designs.
Cache-aware scheduling approach is not limited to speafievare design patterns
but rather offers to use parallelization strategies togretvith patterns that emerge in

software designs.

4.1.2 Case studies on software design patterns

Experiments are performed in a system with 4 double coregl l¢on processors
and an operating system of Linux kernel 2.6 running on it. aJavused as the
main programming language to develop the design pattera saglies. Since
Java lacks an API to explicitly set a thread’s processor iaffilC++ is used to
implementpthreads [101] thread affinity setting functions [102] and JNI tdlca++
thread affinity setter implementations from Java programthread library allows
thread distribution viached_setaffinity andCPUSET functions which can be used
to explicitly define thread-to-processor distribution exctes for the objects in the
patterns. For the majority of the experiments, objects efgatterns are programmed
as separate threads, and assigned to processors eithieitigxphder control of the

programmer or automatically by the system scheduler.

In the experiments below program runs are repeated for auffinumber of times

to let the running time average converge.

Figure 4.1 presents the central processing unit architeatsed in the experiments
which consists of four different processors each having ¢tm@s with a shared L3
cache of 4096KB in size. In implemented scheduling schehlmessrm “neighboring
cores” is used to indicate the cores that reside in the saygqath processor and share
the same cache (e.g. core #1 - core #7, core #2 - core #5, coreo#8 #6, core #4 -

core #8).

Proposed scheduling approach is abbreviated as CAWS (@aciiee Scheduling)

where the threads that share data are placed onto neiggboomres as much as

76

Main Memory(15GB)

Processor 1 Processor 2

‘ L3(4096KB) ‘ ‘ L3(4096KB) ‘

‘ L2(1024KB) ‘ ‘ L2(1024KB) ‘ ‘ L2(1024KB) ‘ ‘ L2(1024KB) ‘

‘ L1(16KB) ‘ ‘ L1(16KB) ‘ ‘ L1(16KB) ‘ ‘ L1(16KB) ‘
Core#l Core#7 Coretf2 Core#5

Processor 3 Processor 4

‘ L3(4096KB) ‘ ‘ L3(4096KB) ‘

‘ L2(1024KB) ‘ ‘ L2(1024KB)‘ ‘ L2(1024KB)‘ ‘ L2(1024KB)‘

‘ L1(16KB) ‘ ‘ L1(16KB) ‘ ‘ L1(16KB) ‘ ‘ L1(16KB) ‘
Core#3 Coret#6 Core#4 Core#8

Figure 4.1: Central processing unit architecture used in cache-awehedsiling
experiments of design patterns.

possible. Linux’s schedulers actually does not take cacttesaccount and migrate

the threads often, resulting threads to share caches in-determined way.

For the case studies, three different design patterns apéemnented: Strategy,
Visitor and Observer. All these patterns commonly consistame master (service
requester)-worker (service provider) classes. UML diagraf the mentioned patterns

can be found below.

Client 1 Strategy
<

StrategyAlgorithm() : void

I

ConcreteStrategy 1 ConcreteStrategy?2

ConcreteAlgorithm1() : void| [ConcreteAlgorithm2() : void

Figure 4.2: Strategy design pattern.

For strategy (Figure 4.2), each strategy object (workesyides a service of applying

a different algorithm on the client (master/service retgm@object. Data is shared

77

between strategy and client objects for this pattern. Atinue there may be many

clients (service requester) running in parallel using acsjgestrategy object in

common.
Element Client <<interface>>
1 1 1 1 Visitor
accept(Visitor : Object) : void visit(ConcreteElement : Object) : void
AN
1
1
<<realize>> |
1
Concrete Visitor

ConcreteElement

visit(ConcreteElement : Object) : void

accept(Visitor : Object) : void

Figure 4.3: Visitor design pattern.

In visitor (Figure 4.3), each visitor object provides its\see when it is called
explicitly by the master (service requester) object. Attime there may be many
elements requesting services from a set of visitor objedigrarily. Some visitor
objects may be used in common during these service requesiela Objects that
implement the Visitor interface and Element objects that\asited by Visitors are

data sharing components for Visitor pattern.

Observer Subject
N 0.* 1 |state
s.getState(; 7 -{update(s: Subject) attach(o: Observer)
detach(o: Observer)
getState()
notify()

ConcreteObserverl| |ConcreteObserver2|(for(Observer o:observers)
o.update();

update() update()

Figure 4.4: Observer design pattern.

In observer (Figure 4.4), a subject object presents thetapusification service of its
states to a set of observer objects. At runtime some obsebjects may register to
different common subjects. A Subject object and its obgsrwemmonly use the state

of the Subject in this design pattern.

Similar examples can be implemented for other patterns ds the examples in

this section are chosen to illustrate different data slyafiead-only, read/write) and

78

thread creation schemes. Further implementations araierpl in detail in Section
4.1.4 but before initiating more complicated experimemnscios it can be useful to

illustrate the effect of cache reuse in scheduling desigiepe on basic experimental

configuration.

4.1.3 Effects of cache-aware scheduling on basic examples

To show that sharing common caches makes a notable perfoemdifference
at runtime a basic set of isolated examples are provided islgotihe difference
of cache-aware scheduling with respect to its counterpartor this purpose
implementations in this section consist of only one mastarker object couple for
each design pattern. In each of the examples below thereexmy two objects at
runtime sharing a fixed amount of data that is proportionaht size of common

caches in the processor.

For each set of experiments on a determined amount of da&géh column in tables)
the worst-case running times are used to normalize runmingstbetween 0 and 1
(worst performance). For each set of experiments CAWS sepits cache-aware
scheduling policy and CFS is Linux’ default scheduler. Omn tither hand CUS
represents cache-unaware scheduling where data shajegére always placed at

non-neighboring cores. The results obtained for each oéthaenples are as follows.

- Strategy : In Table 4.1 it can be seen that for a large quantity of shaedd,d
scheduling two objects at neighboring cores(CAWS) outpers the CFS and
CUS. When the amount of data being shared gets smaller chahageffect loses

its significance.

Table 4.1: Normalized running times for basic strategy implementatio

Shared Data} 1MB 8KB None
CFS 0.95 | 0.99970| 0.99965
CAWS 0.87 | 0.99965| 1.00000
CuUs 1.00 | 1.00000| 1.00000

- Visitor : In Table 4.2 similar results can be seen in Table 4.1. Wheanhaunt of
shared data gets closer to shared cache sizes using a eeateeseheduling starts

to perform better.

79

Table 4.2: Normalized running times for basic visitor implementation

Shared Data} 1MB | 8KB | None
CFS 0.81 | 0.96| 0.9998
CAWS 0.77 | 0.96| 1.0000
Cus 1.00 | 1.00 | 1.0000

- Observer : Finally in Table 4.3 similar results can be seen except time tan
additional scheduling scheme has also been added(reteresdSACS(Same Core
Scheduling)). Since one observer and one subject cannpiamatiel at all they can
be placed at the same core at runtime. When placed at samevitbran amount of

data small enough to fit the private cache, the system hadegisuperformance.

Table 4.3: Normalized running times for basic observer implementatio

Shared Data} 1MB | 8KB | None
CFS 0.99 | 1.00| 1.00
CAWS 0.87 | 1.00| 1.00
SACS 0.87 | 0.29| 0.99
Cus 1.00 | 1.00| 1.00

As it can be seen from the running times above, schedulinddteesharing objects in a
way that allows them to use the same processor cache outperfoe Linux's CFS. It
can also be seen that for the objects that have sequentilibeland use shared data,
scheduling them at the very same core provides superioonpeaice since it allows

storing shared data at private cache of the core.

From basic examples above it can be seen that migrating dshdaea among

processors and re-fetching large amounts of data insideé&meory hierarchy are time
consuming operations that degrade software performanceuring experiments on
multi-object examples sounder comments about cache-aghezluling can be made

on more realistic cases.

4.1.4 Applying cache-aware scheduling

More complicated configurations on design patterns can pergrented to show the
difference between cache-aware scheduling and curreedatdr of Linux. In this

section many objects inside the design patterns interactgltuntime using different
parallelization approaches. For all the patterns beloffierdint number of objects are

instantiated for each different type of class that the patt®ntains. Each object

80

is implemented as a separate thread, hence two terms (@bjdcthread) are used

interchangeably in this Section.

In all the plots presented below y-axis represents normalizintime performance

where normalization is performed by calculating for eacpeginent.

1

== 4.1)
|

on— % « 100 (4.2)
|

In Equations(4.1) and (4.2), T; represents avarage running time for each case,
represents performance of each case gWaSD is the best performance(lowest
highestp;) among all measurements for the plot at hand. Multiplicatine result
by 100 enables to easily read the performance differendasba measurements with

terms of percentage.

4.1.4.1 Strategy

For strategy pattern, a constant number of strategy obpetsconstructed, each
representing a different strategy for a specific number iehtlobjects. Each client
objectis affiliated with a strategy object at runtime wotkon a predetermined amount
of shared data that is smaller than the size of the sharedecaElr the sake of
simplicity, the data of the client is always read (never &n) by the strategy for this

case.

In Figure 4.5, it can be seen that Normalized running time®2oflient objects under
different scheduling policies using different number ohstgies. When the number
of parallelized parts (strategies) are less than numberstihdt processing cores in
the system, a performance gain is observed which is causeedioged missing rate

during the data access of threads.

If the number of parallelizable parts exceed the number oés@8 in this case),
scheduler starts to preempt threads and change cache tdmisnthe effect of
cache-aware scheduling vanishes for number of strategies than 8. A speedup of
nearly 10% compared to CFS, is present when cache awareusiciged used during

the running time of strategy implementation.

81

O S S T T T |
/ —_
90 J/ \ |
/ -
; / -

Normalized performance

L
'o
o
o
f
>
o
3%
o
0 g
/ K3
>
o
o
o
-
X
0
o
o
60 g
?
0
o
o
o
o

50

40
0 2 4 6 8 10 12 14 16

Number of strategies

Figure 4.5: Scheduling strategies with different policies.

4.1.4.2 Visitor

In this case, desired number of visitors are constructeepaddently before element
objects run. When an element needs a visitor one is takentfierpool and assigned
to the element object. Since waiting times can vary for edement and each visitor,
each class holds a queue of the next object to provide/regaesce. Visitors hold

a queue of elements to start serving the next object in liter éfie ongoing work

finishes. A similar situation is present for elements as weky hold a queue of
visitors to ask for a service. For this case a more complicsteicture is used where
any visitors may visit any elements during runtime; unlik@tegy no predetermined

element-visitor bindings are applied before system run.

In Figure 4.6 cache-aware scheduling outperformed othetd8 the number of
parallelized objects reach the number of cores. Additignal’en when visitors are
scheduled on distinct cores from elements but in the sanesaeith other visitors,
CAWS sitill outperform CFS. This time cache read and writes @sed so a cache

utilization is not present as much as in strategy case.

4.1.4.3 Observer

Implementation of observer adopts a different object gqoltibn approach than
the previous cases. This time, observer objects are catstiunside subject

objects. This enforces each observer thread to be startepismed inside a different

82

100 CAWS —— |
90

80 \\
70 \
60 \

50 x

Normalized performance

G
20

0 2 4 6 8 10 12 14 16 18
Number of elements

Figure 4.6: Scheduling 8 visitors with different policies.

object, providing larger number of object constructionsmyruntime. Additionally,

subject-observer groups run more isolated in this casertbed less synchronization
effort. Moreover instead of enforcing objects to be schedwn static cores, a set
of candidate cores are provided to operating system for epgtt. Hence a hybrid

CAWS-CFS approach is used versus CFS this time.

In Figure 4.7, running times for 2 observers observing ik number of subjects is
presented. Although observer objects are created andygedtcontinuously for each
subject, degrading the amount of data reuse during runtstigeduling the system
using a cache-aware policy still provided performance aggrwhen compared to
CFS.

Finally in Figure 4.8, the number of objects in the systeniegas a whole consisting
of different number of subjects and observers. Again usiA@/S policy results in a
better performance than the default CFS scheduling. Fdr &mples mixing CFS
with CAWS still provided better results than using only CR$eit gaining relatively
smaller performance improvements in some of the cases alifoieimportant to
consider that CAWS operates on application level while Cp&ates directly on the
kernel level. Guiding operating system scheduler basedadehdriven analysis may
also allow us to start tuning an application for a specificcpssor architecture before

the software is implemented.

83

100
) .. T
o | T
< . \
90
S T, \\\\\
)
=
[} .,
o 80 o A\
s | \\
Q
N kS
© O e e R N\
£
: |
60
CAWS ——
CFS wwmeres
50 :

1 2 3 4 5 6 7 8 9
Number of subjects

Figure 4.7: Scheduling 2 observers with different policies.

100
8
c 90 » ™
I
g e \
o S \
= 80 e
o | T AN
_g- \’:c.__~~ \
L A
s T RN
E 60 N
<1 I S A A S A S
50 "h.
CAWS ——
CFS weeenes
40 : ‘

4 6 8 10 12 14 16 18
Number of objects

Figure 4.8: Scheduling many subject-observer tuples with differemicpes.

In experiments with design pattern implementations, theebeobtained from cache
utilization degrades as the number of objects reach beylmmchtimber of cores in
the system. This situation is caused by increased numberobiecmisses as different
objects starts to be switched on the cores of the system. rteless this problem

loses its significance as the number of cores reside in aehgtb increase over time.

4.2 A Cache-Aware Dispatcher for Dependency Patterns

Based on the experiments in the last section, scheduliqgérly communicating and

data sharing objects to the processing elements that slam@amon cache, provides

84

performance improvements supporting applicability of CB\WOn the other hand
implementing a scheduler from scratch has its own diffiesland problems on quite
different domains which are out of the context of this thesi®wever even guiding

the scheduler using thread affinity directives during netiprovided an acceptable

performance improvement for design patterns.

A more systematic and scalable approach for this objectatibpng strategy is
implemented and experimented in this section. This caeleeeadispatcher uses graph
based models of dependency relations among software canfsand memory-core
hierarchy of processing element at hand to provide obfeetd-core distribution
strategies that will increase cache re-use. Different exyts are conducted for
four different software models and two different processahitectures to illustrate

the scalability of the proposed dispatcher.

4.2.1 Graph models of dependency patterns and multicore pressors

From the initial phases of the thesis studies, softwaregdeasi presented by labeled
graphs and the operations on software like dependencypattgaction is realized by
graph transformations. To provide a scheduling mecharstmhaps the dependency
pattern onto cores of a chip multi-processor it is enoughetbopm a graph matching
operation between the dependency pattern graph and a poocgaph. The processor

graph should represent core/memory hierarchy of the chig+processor at hand.

Definition 1. A Processor-Memory Hierarchy Graph(G) is eelakd graph where two

types of nodes are called memories(M) and cores(C).
G=(MUC,E) (4.3)

where C = {wp,wp...con} is the set of cores in the processors and
M = {Uo, U1...Um,..-Un} IS the set of memories (privaje(...un) and shared
cachesfim.1..-Un) and main memoryfp)). Therefore edges in graph G can be defined

asEC (MxC)U(CxM)U(Mx M)

On the basis of this definition an example processor and tmeamnehierarchy graph
representing the processor can be found in Figure 4.9. Iequribressor in Figure (a)

L1 caches are not included in the graph for simplicity.

Graph model of dependency patterns can be defined as follows.

85

Main Memory(15GB)

Processor 1 Processor 2

‘ L3(4096KB) ‘ ‘ L3(4096KB) ‘

‘ L2(1024KB) ‘ ‘ L2(1024KB) ‘ ‘ L2(1024KB) ‘ ‘ L2(1024KB) ‘

‘ L1(16KB) ‘ ‘ L1(16KB) ‘ ‘ L1(16KB) ‘ ‘ L1(16KB) ‘
Coret#l Coret#t7 Core#2 Corett5

Processor 3 Processor 4

‘ L3(4096KB) ‘ ‘ L3(4096KB) ‘

‘ L2(1024KB)‘ ‘ L2(1024KB)‘ ‘ L2(1024KB) ‘ ‘ L2(1024KB)‘

‘ L1(16KB) ‘ ‘ L1(16KB) ‘ ‘ L1(16KB) ‘ ‘ L1(16KB) ‘
Core#3 Core#6 Core#4 Core#8

(a) A sample multiple chip multi-processors.

D D o D D R e
@ ®®® ® @
(b) Graph representation of the processing unit in Figure 4.9a.
Figure 4.9: (a) presents an example processing unit and (b) presentsi¢heory
hierarchy graph representing it.
Definition 2. A dependency pattern graphs is a labeled grapkrevfive types
of patterns called bridges(B), islands(l), authorities(Aubs(H) and cycles(Y) are

represented as nodes in the graph.
G=(PE) (4.4)

where pattern se® is the union of the sets of five different pattern tyjpes {BUI U
AUHUY}. Each pattern set includes a finite number of pattemns Z*.

B = {by,by...bmg}

| = {i1,i2...im }

A={a,a...am,}

H={hy,hy...hn, }

Y ={y1,Y2.-. Ymc }

86

Each pattern(K i < mp) includes a finite number of classass Z*. Bridges and
islands can hold multiple classes and the rest of the pattemm hold a single class.
bi = {bC1,bC2---bCns }

ij = {iC1,iC2...iCn, }

8 = {aC}
hi = {nc}
yi = {yc}

On the basis of this definition an example dependency pagieqoh can be found in
Figure 4.10.

Figure 4.10: An example dependency pattern graph.

4.2.2 A graph matching algorithm for cache-aware dispatche

Using the graph models of the software and processor at hamgaph matching
algorithm is presented together with a runtime allocatigo@thm using the candidate
processor groups provided by the graph matching algori@ache-aware scheduler to
be presented in the context of the thesis studies firstlyiegpgtaph matching algorithm
over the graphs at hand to provide a set of candidate corgogrdihe algorithm that
will be used to match the processor and dependency pattaphgto produce these
core groups is presented in Section 4.2.2.1 Those candidegegroups are than used
at runtime to place the object at hand to the most idle corsemtein the set of core

group selected for the particular dependency patternnosta

The most idle core is determined by the runtime resourcecatits presented in
Section 4.2.2.2. Runtime resource allocator keeps tracillofhe objects it has

dispatched during the program execution and also objedtf/mesource allocator

87

when they gave up a core. This enables runtime resourceastioto be informed
about idleness of the cores at any given time of program éxgcuMoreover this kind
of information can also be obtained thorugh system call€kvig not implemented in

the context of this study.

4.2.2.1 Compile-time graph matcher

The graph matcher algorithm is used to provide all of the iptessnappings of the
dependency patterns at hand to the provided processoteutthie. Algorithm 2 starts
to place the dependency patterns to the processor grapHdwatang candidate core
group set of the hub having the most external dependendiedlin Later, dependency
graph is started to being traversed using a breadth firstisescept “node-adjacent”
pairs are placed in the “to be visited” queue as “callereslipairs rather than nodes
itself. This way, candidate core groups of the callee arébaséd on the candidate
core groups of the caller. This lets the algorithm includédent core groups to the

candidate set depending on the dependency pattern thasasabe pattern at hand.

Atlines 8,14 and 16 of Algorithm 2, a number of sets of cantidares are determined
as the algorithm continues to run. The operatid@sd| are used in the algorithm to
select the descendant and ancestor nodes in the memorpiecaechy. For example,
considering Figure 4.9h(u7) operation will select the ancestag node whilet(ug)

will select the sef 111, u7}. For authorities and cycles sets of candidate cores cantain
only one core since most of the time they need to be place@imtyst idle neighboring
core. However, especially for bridges and islands therst exset of candidate cores
where the objects from a specific patterns needs to be distdlat runtime. Following
distribution criterion can be used to determine the numbeores that is suitable for
the particular number of classes inside a pattern.

5_Nw

(4.5)

In Equation(4.5), N denotes the number of classes inside the dependency pattern
and N, denotes the number of cores that share the memory unit ssgeesby a
processor’s graph node. In order to place a pattern to a gsbapres distribution
factord should be in the intervall — g, 1+ & wheree denotes the threshold that the

distribution factor may deviate from the cade= 1. Whend = 1 each class inside a

88

Algorithm 2 Graph matching algorithm.

1: ¢ =U(wj) a set of candidate cores that a class’ object can be placed

2: op, = J(¢j) is the set of candidate core sets for each pattern

3: Choose the hul,ay) with the most external dependencies from dependency graph
GD(R E)

4: Chpax — Ho

5. Place each neighbor ohfay) to the visit queue ascg,ce>(Caller class,Callee
class) pairs

6: for all <c;,ce> pairs in the visit queudo

7: if ce € hy then

8: Hic; :T (Ilcr)

9: elseifce € g then

10: uaCi = “Cr
11: elseifce € y; then
12: I'lyci = I'lcr

13: elseifce € bj then
14 Hyci =| (Ilcr)
15: elseifce € i then
16: B = (M)

17: endif

18: forall (g € Cdo

19: if) is a descendant @fc, then
20: U=

21: end if

22: end for

23: Op U=¢

24: ¢=0

25: Add each neighbor of the, to the visit queue ascg,ce> pairs
26: end for

pattern is place to a specific core, hescande; each tune the under-distribution and

over-distribution of the pattern classes over the giverokebres.

4.2.2.2 Runtime resource allocator

Runtime resource allocator is used to select the core tastheach object at runtime.
It uses candidate set of core groups provided by the graplhmagt algorithm in

the last section. In order to decide which core to scheduleaect to, resource
allocator selects a subset of candidate groups by usingalhegcobject’s scheduled
core information. Among the candidate groups a group itsdebased on the core
idleness and the object is placed on a core inside the grosgdban the type of the

pattern it belongs to. Resource allocation algorithm is@néed in Algorithm 3.

89

Algorithm 3 Resource allocation algorithm.

1: while Software represented by dependency pattern g&il®, E) runsdo

2:
3:
4:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:

¢ = U(wj) a set of candidate cores that a class’ object can be placed
op, = J(¢j) is the set of candidate core sets for each pattern
Obtain theo,,0e>(Caller object,Callee object) information of the objeatbie
scheduled.
if 0e € h; then
forall ¢; € o, do
if wy, € ¢j then
Placeoe to M(¢;)
end if
end for
else ifoe € g then
Placeoe to wy € 05 Wherewy is a neigbhor otuw,
else ifog € y; then
Placeoe to most idlewy € oy,
else ifoe € bj then
for all ¢j € oy, do
if or ¢ Hando, ¢ C andw, € ¢j then
Placeoe to A(¢j)
else
Placeoe to A(¢j) whereg; is the most idle set.
end if
end for
else ifoe € 1j then
forall ¢j € oj, do
if or ¢ Handoy ¢ C andwy, € ¢j then
Placeoe to IM(g;))
else
Placeoe to IM(gj) whereg; is the most idle set.
end if
end for
end if

32: end while

In Algorithm 3 an object may be placed in a specific core, a $etbgects may be

distributed in a balanced way by CAWS(this operation isc¢atkd ag)) or a set of

objects can be scheduled to a pool of candidate cores(terstpn is indicated al)

where operating system(OS) decides the core that a speljéctan the set is going

to be assigned to. Also each class in the software marksfilistad core as busy to

the resource allocator before it begins to run and removentdmé after it ends its run.

Resource allocator uses these marks to obtain how manytslajerset affiliated to a

core at a specific time and hence provide a more balanceddaigedcheme.

90

4.2.2.3 A sample scheduling scenario

It can be useful toillustrate how the scheduler works in a@arscenario. The example
processor graph in Figure 4.9 and the example dependengl grarigure 4.10 will

be used in this sample. Both of the graphs can be seen in Hglte

G,
GCRIGCIIGRICD

S S K S S

(a) Graph representation of the processor in Figure 4.9a.

(b) An example
dependency
pattern
graph.

Figure 4.11: Graphs to be used in sample scheduling scenario.

If the graph matching algorithm is run with parameteg)(2 &:0.5), and the number
of classes thaty,i» and b, contains is assumed as 6, 2 and 4 consecutively, the

algorithm in Algorithm 2 runs in the following sequence.

1. hy received
(a) hy is placed to nodel
(b) The group §v1,wy,ws, s, ws,ws,wr,ws] is added to candidate set lof
(c) <hi,b1><hy,i1> and <hy,ix> pairs added to visit queue

2. <hy,by> received

(@) by can be placed to nodesd,tio], [Ho.paal, [Ho.t2], [Hi0,p11], [Hao.Ha2l,
[H11,H12]

91

(b) Groups {u1,w7,0p,ws], [w1,w7,03,06], [W1,07,0,08], [Wr,Ws,ws,0e],
[, 05, 00,0], [ws,ws,004,ws] are added to candidate setlmf

(c) <by,a;> pair added to visit queue.

3. <hy,i;>received
(@) i1 can be placed to nodesud,uio,p11], [H9,H10.M12], [H10.M11,H12]s
[Mo, H11,H12]

(b) Groups {u1,w7,wp,0s,03,Ws], [wW1,Wr7,00,0s,0,08], [Wp,0s,03,0Ws,Ws, 0],
[, r7,003,05,004,0] are added to candidate setiof

(c) <i1,b1>and 41,a;> pairs added to visit queue
4. <hy,io> received
(a) iz can be placed to nodegd], [o], [H14], [H12]
(b) Groups fu1,wy7], [wr,ws], [ws,ws], [ws,ws] are added to candidate setipf
(c) <ip,i1>and d5,y1> pairs added to visit queue
5. <by,a;> received
(@) a1 can be placed to nodegid, o], [Ho,H11], [Ho,Ha2], [Hao.Haa], [Hao,H12],
[H11,22]
(b) Groups o, wr,ap,as], [wn,07,003,06], [01,007,008,008], [W, 05,003, 08],
[, 05, 00,0], [ws,ws,004,ws] are added to candidate setaf
6. <i1,b;>received
(@) b1 can be placed to th.u7,H2.Us], [Ha.p7.3.H6], [M2.Hs,H3,Me),
[11, 47, Ha, k], [H2, s, Ha, M), [H2,H5, Ha, Hg]
(b) Groups fur,wr,an,m5], [wr,wr,03,06], [, 05,003,06], [cor,07,001,008],
[, 05, 00,0], [wp,ws,004,ws] are added to candidate setlmf
7. <i1,a1> received
(@) a1 can be placed to nodesud o Haa], [Ho.Hio.ta2), [Hio.Has.pa2),
(Lo, 111,112
(b) Groups fu1,r,wp,ws,03,8], [r,007,002,05,008,08], [W, 05,003,006, 04, 8]
[, 007,003,05,004,w8] are added to candidate setaf
8. <iy,i1> received
(@) i1 can be placed to nodespypz,bz,Us, U3, Hs], [H1,17,12, s, Ha, Hs],
(M2, s, 43, e Ha ,Hg]

92

(b) Groups fu1,wrz,00,05,03,06], [wr,0W7,000,0s5,04,08], [wWp,05,0s,0s,004,08]
are added to candidate seti pf

9. <ip,y1> received
(a) y1 can be placed to nodegd], [p10], [H11], [PH12]
(b) Groups fu1,wy7], [wp,ws], [ws,ws], [, ws] are added to candidate setyaf

(c) <y1,a1> pair added to visit queue

10. <y1,a1> received
(a) a1 can be placed to nodegd], [t10], [H1al, [H12]
(b) Groups fur,wr], [ar,ws], [ws,ws], [cu,ws] are added to candidate setanf

After algorithm finishes its run, set of candidate core gsotgr each pattern is

determined as follows.

e hy: [oon,p,0s,00,005,Ws,07,08]

o by [wr,wr,wp,ax], [Wr,wr7,03,06], [Wr,W7,wWs,ws], [2,05, 03,0e], [W,0Ws,04,wWs],
[s, s, 4, 0s8]

® i1 [, w7,0p,05,03,06], [1,007,000,05,00,08], [, Ws, 03,0, 004,08],
[, 7,003, W8, 001, 08]

o ir: [wr,wr], [wp,ax], [ws,ws], [ws,ws]
o yi: [wr,wy7], [, ws], [ws,we], [s8]

o ap: [wr,wr,wp,ux], [W,wr,w3,0e], [Wr,wWr,ws,ws], [r,ws,03,0e], [Wp,ws,0ws,wWs],
[@3,Ws,00,Ws], [W1,W7,0,Ws5,wWs,We], [W1,0r7,0,0Ws,0Ws, 0], [Wp, w5, 03,08, 04,03],
[1, w7,03,05,00,08], [W1,07], [Wp,0x], [Ws,ws], [ws,ws]

Using these set of candidate core groups, the following @karacenario can be
executed where each step represents a parallel sequenethaithealls from the object

of a dependency pattern to another object in the correspgritipendency pattern.
Step 1:hy -+ by — a1
Step2hy — i, >y —a
Step3:hy —irx—i1—a

Step4:hy — iy — by —a

93

When this scenario executes, the allocation algorithm leandore affiliations as
follows.

1. Initially all cores are marked as idleq:0,w,:0,w3:0,004:0,05:0,05:0,007:0,ws5:0]

2. Step 1 kicksin

(a) hy starts running.h; is scheduled tav, w; is marked in the affiliation list
[or:1,00:0,003:0,004:0,005:0,005:0,007:0,005:0]

(b) by starts running. Objects &f are scheduled tadp,ws,ws,ws] consecutively.
Affiliation list becomes §u1:1,00:1,w3:1,004:0,05:1,005:1,07:0,08:0]

(c) ap starts runninga; is scheduled to the pool at,ws,ws,ws). Affiliation list
becomesdu;:1,ap:2,003:2,004:0,05:2,05:2,07:0,05:0]

3. Step 2 kicks in

(a) hy continues to runh; was scheduled tay.

(b) i starts running. Objects ofi, are scheduled to the
pool of [ws,ws] consecutively. Affiliation list becomes
[on:1,00:2,05:2,004:1,005:2,05:2,07:0,08:1]

(c) y1 starts running. y; is scheduled tow;. Affiliation list becomes
[on:1,00:2,03:2,004:1,005:2,005:2,07: 1,8 1]

(d) Step I's b finishes. Affiliation list becomes
[r:1,00:1,005:1,004:1,005:1,005:1,007:1,005:1]

(e) a; starts running. a; is scheduled to the pool otu,wy). Affiliation list
becomesdu;:2,ap:1,003:1,04:1,05:1,005:1,007:2,008:1]

(f) Step I's & finishes. Affiliation list becomes
[r:1,00:0,005:0,004:1,005:0,005:0,007:1,005:1]

4. Step 3 kicks in

(a) hy continues to runh; was scheduled tay.

(b) i starts running. Objects ofi, are scheduled to the
pool of [wp,ws] consecutively. Affiliation list becomes
[or:1,00:1,003:0,004:1,005:1,005:0,007:1,05:1]

(c) i1 starts running. i1 is scheduled to the pool ofwf,wr,wy,ws,ws,ws).
Affiliation list becomes §u:2,ap:2,w3:1,004:1,005:2,05:1,007:2,005:1]

94

(d) a; starts running. Assuming an object with an affiliation @f from the
previous step callas, a; is scheduled to the pool of,ws). Affiliation list
becomesdu;:2,w,:3,0w3:1,04:1,05:3,05:1,07:2,008:1]

5. Step 4 kicks in

(a) hy continues to runh; was scheduled tay.

(b) Step 2s 2 finishes. Affiliation list becomes
[or:2,000:3,003:1,004:0,005:3,05:1,007:2,05:0]

(c) i1 starts running. iy is scheduled to the pool ofwg,wr,ws,ws,ws,ws).
Affiliation list becomes §u;:3,a0:3,w3:2,00:1,005:3,05:2,07:3,ws:1]

(d) Step 3s iy finishes. Affiliation list becomes
[or:3,00:2,003:2,004:1,005:2,005:2,007:3,05: 1]

(e) by starts running. Assuming an object with an affiliation cof from the
previous step calllsy, b; is scheduled to the pool ofy,w7,,ws). Affiliation
list becomesdu;:4,ar:2,003:2,04:2,05:2,05:2,w7:4,05:2]

(f) Step 3s iy finishes. Affiliation list becomes
[or:3,00:1,003:1,004:2,005:1,005:1,007:3,08:2]

(g) a1 starts running. Assuming an object with an affiliation @of from the
previous step callas, a; is scheduled to the pool ofy,wy;). Affiliation list
becomesdu:4,ap:1,05:1,04:2,005:1,05:1,07:4,05:2]

6. Rest of the objects finishes.

Please note that the core affiliation list held by the alli@realgorithm is a superset of
the actual core assignments at runtime. Graph matchingigdgohas a complexity of

O(e) where e is the number of edges in the dependency graph.

4.2.3 Applying cache-aware dispatcher for a basic case styd

In this section the cache-aware scheduling implementatibbive applied to an image
filtering application where a number of filters are appliedimamage consecutively or
at once using a composite filter. Firstly the software at haiticbe parallelized using
dependency patterns and then the proposed compile-tirpé gratching and runtime
resource allocating algorithms will be applied to perforatlee-aware scheduling on

the software. Obtained results will be compared with linO¥S and) (1) scheduling.

95

4.2.3.1 Case study software on image filtering

An image filtering software is chosen to be used as a case studgiche-aware
scheduling. Image filtering software simply reads in an ienaga matrix of gray levels
for each pixel and convolves it with one or many filters defimethe software. Some
filters may be chosen to be applied as a composite filter omthge. This feature is
implemented by using a Composite pattern. The class diagrahthe corresponding

dependency diagram of the software can be found in Figuiz 4.1

<

—— | Filter ImageBuffer

F iompositeFilte
Applicationl—p‘lmageMatrlx — [BlurFilter

EmbossFilter

(a) Class diagram of image filtering software. (b) Dependency
pattern
diagram
of image
filtering
software in
Figure 4.12a.

Figure 4.12: (a) presents class diagram of the case study and (b) pretspegadency
pattern diagram representing it.

It can be seen that Filter classes form a bridge from the habs@mageMatrix

to the authorityImageMatrix. During the implementation of the software Filter
classes (as a bridge) impose a possible parallelizatiomrapgty. On the other
handCompositeFilter forms a cycle which means a possible sequential behavior
is present for this class. Care may need to be taken duringniblementation of this

class. Following classes reside in each of the dependeni®rpsin Figure 4.12b.

e H: ImageMatrix
e B: CompositeFilter BlurFilter EmbossFilter GaussianFilter
e C:CompositeFilter

e A: ImageBuffer

96

During the parallelization process, following the guidel from the dependency
patterns, each filter is programmed as a separate threadngask subsection of
the image matrix. Each subsection is hold in an image buffeichvis used by
different filters consecutively. AlsGompositeFilter class is parallelized since it
applies each filter sequentially if implemented in its araiform. When implemented
this way it is possible to apply three different filters on theage in two different
ways. Firstly each filter can be applied separately on thg@nand each filter works
parallel on the subsections of the image. Secondly filtandesapplied as a composite
filter where three filters applied consecutively on the satises of the image in a
parallel way. For instance BlurFilter andEmbossFilter is to be applied on an
image; for straightforward filteringlurFilter is applied in a parallel way over the
subsections of the image amdbossFilter is applied afterwards. For composite
filtering, image is decomposed into subsections firstGughositeFilter is applied

whereBlurFilter andEmbossFilter is applied consecutively for each subsection.

4.2.3.2 Experimental results

Experiments using cache-aware scheduling are performesdrseparate processor
architectures which can be seen in Figures 4.13 and 4.14ctagy. The processor
in Figure 4.13 (referred to as TRW) is a 4 processor architeatrhere each processor
holds 2 cores. The processor in Figure 4.14 (referred to &) Z&a 2 processor
architecture where each processor holds 6 cores. TRW rumaa Eerver with 2.6.32
kernel using a CFS scheduler and ZEB runs a Linux server wgi@ kernel using

0(1) scheduler.

During the experiments, image filtering software presemtethe previous section
has been slightly modified at each step to allow applicatib@AWS on different
parallelization perspectives. Four different parallatian scenarios are applied which
consist of applying composite filters on many subregionsshgle image in parallel,
applying many filters in parallel on a single image, applyimagny filters in parallel on
multiple images and applying many filters on many subregamaultiple images in

parallel.

97

Main Memory(15GB)

Processor 1 Processor 2

‘ L3(4096KB) ‘ ‘ L3(4096KB) ‘

‘ L2(1024KB)‘ ‘ L2(1024KB)‘ ‘ L2(1024KB)‘ ‘ L2(1024KB)‘

‘ L1(16KB) ‘ ‘ L1(16KB) ‘ ‘ L1(16KB) ‘ ‘ L1(16KB) ‘
Corettl Core#t7 Core#2 Corett5

Processor 3 Processor 4

‘ L3(4096KB) ‘ ‘ L3(4096KB) ‘

‘ L2(1024KB) ‘ ‘ L2(1024KB) ‘ ‘ L2(1024KB) ‘ ‘ L2(1024KB) ‘

‘ L1(16KB) ‘ ‘ L1(16KB) ‘ ‘ L1(16KB) ‘ ‘ L1(16KB) ‘
Core#3 Corett6 Core#t4 Core#8

(a) A sample 2 cored 4 processor processing unit.

(b) Graph representation of the processing unit in Figure 4.13a

Figure 4.13: (a) presents an example processor and (b) presents thaegoocaemory
hierarchy graph representing it.

In all the plots presented below y-axis represents normalizintime performance

where normalization is performed by calculating for eachezdnent.
(4.6)

Pi
Pn= pi(best)

In Equations(4.6) and (4.7), T; represents avarage running time for each case,

x 100 4.7)

represents performance of each case piﬁ’asﬁ is the best performance(lowest

highestp;) among all measurements for the plot at hand. Multipligatine result

98

Machine (32GB)
‘ L3 (12MB)
Socket P#0 Socket P#1 Socket P#2 Socket P#3 Socket P#4 Socket P#5
‘ L2 (256KB) ‘ ‘ L2 (256KB) ‘ ‘ L2 (256KB) ‘ ‘ L2 (256KB) ‘ ‘ L2 (256KB) ‘ ‘ L2 (256KB) ‘
Core P#0 Core P#0 Core P#0 Core P#0 Core P#0 Core P#0
‘ PU P#0 ‘ ‘ PU P#1 ‘ ‘ PU P#2 ‘ ‘ PU P#3 ‘ ‘ PU P#4 ‘ ‘ PU P#5 ‘
L3 (12MB)
Socket P#6 Socket P#7 Socket P#8 Socket P#9 Socket P#10 Socket P#11
‘ L2 (256KB) ‘ ‘ L2 (256KB) ‘ ‘ L2 (256KB) ‘ ‘ L2 (256KB) ‘ ‘ L2 (256KB) ‘ ‘ L2 (256KB) ‘
Core P#0 Core P#0 Core P#0 Core P#0 Core P#0 Core P#0
‘ PU P#6 ‘ ‘ PU P#7 ‘ ‘ PU P#8 ‘ ‘ PU P#9 ‘ ‘ PU P#10 ‘ ‘ PU P#11 ‘

(a) A sample 6 cored 2 processor processing unit.

@ @ @ Co @ G @ G0 GO @

(b) Graph representation of the processing unit in Figure 4.14a

© @

Figure 4.14:(a) presents an example processing unit and (b) presents the
processor-memory hierarchy graph representing it.

by 100 enables to easily read the performance differendaseba measurements with
terms of percentage. Confidence intervals of all the expental results are obtained
by repeating experiments until results converge. A reipetif 25 times were enough

during the experiments.

Applying composite filters on many subregions of an image in grallel

For the first scenario in Figure 4.15 differefdmpositeFilter objects are created
and run in parallel over an image kept in @mageMatrix object. The image is
decomposed into many subparts each hold in a diffeleageBuffer object, so
that each composite filter instance can work on the image mllph For this

scenario filters inside a composite object run sequentalt/reuse the corresponding

99

EBlur Gauss [Emboss |i

!|Filter [Filter [Filter i
CompositeFilter
ImageBuffer [Gauss [Blur |Emboss i

ImageBuffer | €«—|[Filter |Filter |Filter

ImageBuffer
ImageMatrix Sy
|Emboss |Blur |Gauss |

|Filter |Filter [Filter |

CompositeFilter

Figure 4.15: Applying composite filters on many subregions of a singlegean
parallel.

ImageBuffer after it has been convolved by the predecessor of the filthis Way

each subsections of the image are reused by the filterS @igositeFilter.

100 L
) N
S 80 A TN
é / “““““““ i \>
) ¥
& 60 /
o vl
-
)
5 40 /
[
E ¢
2 - CAWS
/ CICAWS
CFS

0 1 2 3 4 5 6 7 8 9
Number of composite filters

Figure 4.16: TRW results for applying composite filters on many subregioh a
single image in parallel.

In Figure 4.16, performance results of image filtering wigspect to the increase of
parallelized regions inside the image is presented for TRM¢. performance of both
CFS and CAWS increases with the number of parallelized p@A8VS outperformed
CFS until the number of parallelized regions reaches thdxewof cores in the system.
In Figure 4.17 the peak performance diffrence versus CF8tiasimuch as the former
case, however an improvement can be seen as the number ltélgzaes goes beyond

6(which is the number of cores that share a common cache).

100

100
(D)
e
= 80
£
S
g 60
o
)
N
= B0 [y
g .“.
(@)
zZ 20) CAWS
/ CICAWS
0O(1)
clo(1
0 () 1
0 2 4 6 8 10 12

Number of composite filters

Figure 4.17: ZEB results for applying composite filters on many subregiofra single
image in parallel.

In all of the experiments presented in this section CAWS catengh successfully with
CFS until the number of parallelized regions reached thebaunof cores. This
happens because the CAWS implementation used in the ex@@srdoesn’t migrate
threads once it affiliates a thread with a core. Because sfatter the number of
threads reaches the number of cores the affiliation of tisré@at waits in processor
queues should be updated frequently considering the waxikdd the cores. However
to make such a decision cost of migrating the thread shouldobgpared with the
cost of cache misses migration is going to trigger. Making Kind of decisions is
a subject which is out of this dissertation’s scope so thebmmuntil the number of

threads reaches the number of cores is presented in results.

Applying many filters in parallel on a single image

In Figure 4.18 second scenario is depicted where many diffé¥v L ter instances are
applied on an image in parallel. This timeageMatrix has only onémageBuffer
which keeps the entire image. On the other hand unlike thiesiisnario this time
every filter gets the sannageBuffer but produces its own copy by convolving on

it. In this example, entire image is reused by differentffiltstances in parallel.

In Figure 4.19, performance results of image filtering wispect to the number of

filters is presented for TRW. CAWS outperformed CFS untilntbmber of parallelized

101

Gauss
€«—— [Filters

Emboss
Filters

ImageMatrix

Figure 4.18: Applying many filters in parallel on a single image.

filters reached the number of cores in the system. At the etite@xperiments, results

show that the improvement performed by CAWS increases u2{fo.

In Figure 4.20 similar results can be seen for ZEB61) where performance
improvement reached 20%. It can be seen that performanés pegerged when the
number of filters(parallel working threads) reaches th&faocof number of cores that
share the same level cache(6 and 12 in our case). When theenwihtlata sharing
software components spans the number of cores using comaubhe @erformance

drops substantially.

100

3 0\
c
c -
g 9
g
(] .
80 ;
s O\
) K
N , \
< 70 Y .
g “"- i ; 4
g CAWS 1(.......... .jg :zg‘\\“
60 [CICAWS s-rremeees PN
CFS
CICFS st
50 ~

0 1 2 3 4 5 6 7 8 9
Number of filters

Figure 4.19: TRW results for applying many filters in parallel on a singteage.

102

100 cAwS'
CICAWS +-rerteees

8 90 O(1) v

5 CIOL) s

£ 80

S

) 70

o

T 60

N I 2ui N

< 50 ' Y

= N

5 40 R

z g
30 g
20

0 2 4 6 8 10 12 14 16
Number of filters

Figure 4.20: ZEB results for applying many filters in parallel on a singteage.

Applying many filters in parallel on multiple images

| IBlur

| /Filters
Gauss
Filters

s Emboss

Filters

£ +\\

ImageMatrices

Figure 4.21: Applying many filters in parallel on multiple images.

To make the previous scenario more realistic and increaséntportance of thread
distribution multiple images are used for the scenario guké 4.21. When two or
three images are used instead of one, number of cache miasisss increase if the

filters are placed randomly to the cores.

In Figures 4.22 and 4.23 results from two different perspestare presented for TRW.
In Figure 4.22 the performance results of CFS with respegitging number of filters

on two different images is presented. In Figure 4.23 the rarmbfilters is constant
where the number of images varies. For both of the casesrpafwe improvement

has reached up to around 20%.

103

100

80 \
70

Normalized performance

4 5 6 7 8 9
Number of filters

Figure 4.22: TRW results for applying many filters in parallel on two image

105
© 100
O e ‘
% h
E 95 “ : 2
o 90 -
o
o)
N85
g
5 80
prd CAWS
75 [CICAWS swrooenes
CFS
CICFS swnns
70 .
0 1 2 3 4 5

Number of images

Figure 4.23: TRW results for applying many filters in parallel on many ireag

In Figures 4.24 and 4.25 results using two and three différeages in ZEB's0(1)
are presented successively. For both cases performanceviempent has reached up
to around 30%. For parallel filters on two images performasfcEAWS started to
fall behind0 (1) after 10 filters because each image gets 5 filters for thisaléseing
CAWS to place 6 objects(1 image 5 filters) to the neighbormgs ZEB. For parallel
filters on three images CAWS started to be outperformed @fitters since the number

of total objects in the system exceeds the number of cores.

104

100

90
80
70

60

50

Normalized performance

40
30
20

0 2 4 6 8 10 12 14 16
Number of filters

Figure 4.24: ZEB results for applying many filters in parallel on two image

100 |4 i CAWS]
YN CICAWS oo
g sl .l TYA o |
Sl CIO@) -
é H "-":__' \
5 70 b N
g 60 |
R | \\ _
2 40 \/J;\,
30 H
20

0 2 4 6 8 10 12 14 16
Number of filters

Figure 4.25: ZEB results for applying many filters in parallel on three gaa.

Applying many filters on subregions of multiple images in paallel

For the last scenario in Figure 4.26 multiple images are emomposed into many
different subregions, each being held by a differénigeBuffer object. In this
scenario the number of parallelized parts are a lot more tharprevious scenarios
increasing the chance of CAWS dispatcher to affiliate filtbest work on different
ImageBuffers (in other words filters that work on different data) resigtincreased
miss rates and degrading performance. It is not meaningfudonduct such an
experiment with double cores sharing a cache so the expetsnage only run for

ZEB for this scenario.

105

IBlur

[Filters
|
ImageBuffer <€ Gauss
I

ImageBuffer - Filters

___«\

Emboss
Filters

ImageBuffer

ImageMatrices

Figure 4.26: Applying many filters on many subregions of multiple imageparallel.

100 .
. i
e
S 80
£
Nl
’g 60
©
@
N
= 40
£
(@]
prd 20 i

0
0 2 4 6 8 10 12

Number of subsections

Figure 4.27: ZEB results for applying many filters on many subregions ahaage in
parallel.

In Figures 4.27 and 4.28, results using one and two diffeir@ages consisting of
many subregions in ZEB are presented successively. In thtsex-axis present the
number of parallelized parts which is the total number ofsgations inside all the
images in the system. For both cases performance improtemasrreached up to
around 20%. In Figure 4.27 after the number of subsecticagrever 6 CAWS starts
to place subsections to non-neighboring cores which resudmaller performance
improvements after 6 subsections. In Figure 4.28 it can be #eat CAWS continues
to compete with0(1) until 10 cumulative subsections to be filterred present & th
system which results in two images and 5 filter objects cosrglsubsections of the
image at a given time. In this scenario each image objecsig@ad to another shared

cache maximizing cache reuse.

106

100

g 90 : /
€ 80 . -:
s AR\
@ 70 /. “
T 60 1
N . / T
c_d R Ly
§ 50 \¥ f 1
2 W | CAWS :
30 / CICAWS seeeetennes
—A O(1) i
20 l' CIO(T) sovom
0 2 4 6 8 10 12

Number of cumulative subsections

Figure 4.28: ZEB results for applying many filters on many subregions af invages
in parallel.

As a result of all the experiments above, it can be seen thAWv&Arovides a
maximum performance improvement of 20% in almost all of tases. Performance
improvement has even reached up to 30% for two scenarios. verage CAWS
provides ~10% performance improvement if thread migration is not negl at

runtime.

4.3 Summary and Conclusions

The studies on cache-aware scheduling presented in thpsestshow that considering
shared data during scheduling increases the schedulifgrpance when multicore
processors are used. It is important to utilize shared datang software components
in guiding the scheduling process, even if it is not alwaysslale to make accurate

predictions on data sharing among software componentsebttfe system is run.

The approach presented in Section 4.1 uses software madetason about data
sharing among the classes of a software. Experimentationshee different
commonly used software design patterns to consider thectefie cache-aware
scheduling. Promising results are obtained to apply a rmbdetéd approach on
larger software considering the three important factoesglelization, data sharing
and resource utilization) that effect the overall perfonce of the system in the

presented case studies. Beside its positive effects orislthg performance, using

107

a model driven approach may lead to reason about softwargndfes various core

organizations that processors can include in the future.

In Section 4.2 a dispatcher implementation is presenteidiges CAWS principles to
match the dependency graph of a software with the memowmy{uerarchy graph of
a processor. The results obtained by applying dispatchemomage filtering case
study outperformed Linux’ CF8(1) with a rate up to 30% and showed promising
results for CAWS. The improvement continued until the nundé¢hreads has reached
the number of cores in the system since experimented CAW&mentation doesn’t

perform thread migration which is left as a future study for tlispatcher.

As future studies the presented model based dispatcherecamgroved based on
the lessons obtained from the experiments presented iragheséction. By using a
model driven dispatcher and cache aware scheduling mdthgpdib can be possible to
reason about parallelization and data sharing during ttg @asign stage of software
development. Moreover it can be possible to steer the delsgelopment process
to produce more competing designs for parallelization whédferent processor

architectures are used.

108

5. CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

At a first glance, model based analysis and runtime perfoceaha software seem to
stand almost at two distant phases of the software life cydimvever, as the recent
studies show, the decisions made at earlier stages of geftieaelopment has the most
serious effects compared to latter stages. This thesisueages that parallelization
can be seen as one of these decisions. However, it is moreuttiffo make such
decisions since parallelism is harder to detect at theezatages of software life. On
the other hand using model based analysis makes it possitk/elop more efficient
parallelization solutions at earlier stages of softwaneetigpment. Itis harder to detect
and utilize such parallelization opportunities at devetept phase. Following studies

are achieved in thesis to improve software quality for ncolte systems.

In Chapter 3 dependency patterns and their occurrencedsa dlagrams are presented
which played key role in thesis studies. Utilization of degency patterns in
parallelization and synchronization efforts are showm@si case study(Jikes). Later,
some more detailed examples are also presented on diffavgsut oriented software.
In those examples more detailed properties of dependen®ripaare analysed using
software metrics. A metric set is defined in that purpose hedet of properties that
can be covered using defined set of metrics are presentedsilythe proposed set of
metrics on dependency patterns found in different objaented software, properties
of dependency pattern instances during parallelizatiocgss are analyzed. Finally,
using clustering techniques in exploring dependency petteside class diagrams is
discussed and an improvement is proposed for this processe $f the obtained
schemes almost doubled the clustering performance forndigpey patterns and a
noticeable improvement is obtained for the most of them. édwer by using the
proposed technique, overlapping structures that cannédured using conventional

clustering methods can be detected as well.

109

Chapter 4 presents improvement of object oriented softaeineduling by analyzing
possible data sharing among software components usingndepey patterns.
Dependency patterns capture the possible coupling betwlasses of software at
runtime. The proposed technique uses this feature to redsmrt common data usage
among software classes and place related classes’ obgettte tores that share the
same level cache. Of course this placement policy is effidayehe number of objects
that can be produced at runtime and the way a group of reldigtts distributed
regarding the architecture of the processor at hand. fitetexamine the applicability
of the cache-aware scheduling, technique is applied tochbagplementations of
software design patterns and promising results are olataibater in this chapter an
example implementation of an object dispatcher is presetitat uses cache-aware
scheduling principles. Final results showed that by apmglythe proposed technique,

Linux’ CFS/0(1) scheduler performance can be improved up to 25%.

The results show that it is possible to detect and utilizénsoplicit parallelization
decisions by analyzing class diagrams. Moreover it is evassiple to fine tune
scheduling of object oriented software using the resulsuch analysis. As the main
objective of parallelization efforts, the results in thesls showed that it is possible
to obtain up to a maximum 25% performance improvement. Ina@e& proposed
technique resulted around 10% performance improvement.aBuwost as important
as performance gains, having insight about other aspeqtaraflel software quality,
like synchronization, is another outcome of proposed nalagy. Last but not least,
applying model based analysis and pattern based solutiakesmit easier to maintain

software quality during refactoring for parallelization.

As a final evaluation, the proposed improvements for pdizdligon presented in this
thesis are one of the early studies on model driven softwefeetoring for parallel
development that also considers quality based propertieeodern software. Thesis
studies cover a wide range of topics from software metricscteeduling and present
original and influential ideas over a complete range of priog® on discovering

implicit parallelism in object oriented software.

110

5.2 Future Work

The future works are as follows:

¢ All the analysis presented in the thesis studies are peddiased solely on static
models of software. Although this situation brings vagusn® the results of the
analysis, using dynamic models also has its own difficutfissussed in Chapter 3.
However results from the static analysis may be enhancexd usiormation from
the dynamic diagrams and dynamic analysis of software. dalpefor scheduling
of object oriented software feedback can be obtained fromadhc analysis of

related software.

e Dispatcher system proposed in Chapter 4 makes affinityngsttior threads at
creation time. This causes the proposed system to fail it b@dancing after the
number of parallel objects exceeds the number of cores beahispatcher doesn't
update core affinities once threads are created. By introducdynamic affinity
updating system and migrating the threads to appropritgectes at runtime the
performance of the dispatcher can be improved. Howeveirrtipsovement brings
a lot of difficulties like the need of estimating the cost ofynaiting the object over

waiting for its completion which exceeds the scope of thesib.

e Dependency diagrams are not specific only to parallel aizalyastead they are
closely related with graph cluster based structures andbeaapplied not only
in many different areas of software engineering but alsoynaras of computer
science(like web mining) as well where inter-graph reladigpose important

structures.

e During thesis studies one of the major obstacles were fingivariety of different
software that were designed in an object oriented way, arallpbzed neatly. In
order to observe different distribution and paralleliaatiechniques a software
simulator can be very handy. As a future work, for simulatuagious different
software model runs before the software is implementedftavare simulator(like

network simulators) can be implemented.

e There exist many multicore processor simulators in theditee, but most of them

includes very detailed configuration options to simulateltardware in a detailed

111

way. Another need to work on software design for multicorgems is a multicore
processor simulator focused only on core-memory hieraotlige processor with

a simple configuration interface.

Based on the software and multicore processor simulatorgiomed in the last
two items, the vision based on the thesis studies is beirgtabiiapidly model the
software and processor architectures to reason aboutsagasodifications on
the software model as well as minimum acceptable needslbgirbcessor shall
serve to obtain specific performance requirements fromvsoé. A framework like

this may hopefully form a bridge between respectively cooapéd hardware and

software design world in the future.

112

REFERENCES

[1] Comer, D.E, Gries, D., Mulder, M.C., Tucker, A., Turner, A.J. and Young,
P.R., 1989. Computing as a Disciplin€ommunications of the ACN32,
9-23.

[2] Flynn, M.J., 1972. Some Computer Organizations and Their EffectvetEEE
Transactions on Computergl, 948—-960.

[3] Joch, A. Chip Multiprocessingghttp://www.computerworld.com/s/article/54343/
Chip_Multiprocessing>accessed at 11.04.2011.

[4] Bik, A.J.C. and Gannon, D.B, 1997. Automatically Exploiting Implicit
Parallelism in JavaConcurrency, Practice and Experieng®. 579-619.

[5] Oliver, J., Guitart, J., Ayguadé, E, Navarro, N. and Torres, J.,, 2001. Strategies
for the efficient exploitation of loop-level parallelismdava,Concurrency
and Computation: Practice and Experiends, 663—680.

[6] Bull, J. and Kambites, M., 2000. JOMP—an OpenMP-like interface for Java,
Proceedings of the Conference on Java GraieM, pp. 44-53.

[7] Felber, P, 2003. Semi-automatic Parallelization of Java Applicagi®n The Move
to Meaningful Internet Systems: CooplS, DOA, and ODBA®IIMe
2888 ofLecture Notes in Computer Scien&pringer Berlin / Heidelberg,
pp. 1369-1383.

[8] Du, J. Chen, D. and Xie, L, 1999. JAPS: an automatic parallelizing system based
on JavaScience in China Series E: Technological Sciend2s396—406.

[9] Yu, M., Guo, M., Pan, Y., Zang, W. and Xie, L., 2002. JAPS-II: A Source to
Source Parallelizing Compiler for Javatoceedings of the International
Conference on Parallel and Distributed Processing Techesy and
Applications - Volume IPDPTA '02, CSREA Press, pp. 164-170.

[10] Guitart, J., Martorell, X. , Torres, J. and Ayguadé, E, 2001. Efficient Execution
of Parallel Java Applications3rd Annual Workshop on Java for High
Performance Computing (part of the 15th ACM Internationah@&rence
on Supercomputing)CS’01, pp. 31-35.

[11] Chan, B. and Abdelrahman, T.S, 2004. Run-Time Support for the Automatic
Parallelization of Java ProgramBhe Journal of Supercomputingg(1),
91-117.

[12] Halvorsen, O, Runde, R.K. and Haugen, @, 2007. Time Exceptions in
Sequence Diagram$/odels in Software Engineeringolume 4364 of

113

Lecture Notes in Computer Sciencepringer Berlin / Heidelberg, pp.
131-142.

[13] Kaveh, N, 2001. Using Model Checking to Detect Deadlocks in Distieol
Object SystemsRevised Papers from the Second International Workshop
on Engineering Distributed Object€&£DO’00, Springer-Verlag, London,
UK, pp. 116-128.

[14] Mitchell, B., 2008. Characterizing Communication Channel Deadlocks in
Sequence DiagramE;EE Transactions on Software Engineer,ii3g(3),
305-320.

[15] Eshuis, R, 2006. Symbolic model checking of UML activity diagrams,
Transactions on Software Engineering and Methodaolag{1), 1-38.

[16] Latella, D., Majzik, I. and Massink, M., 1999. Automatic Verification of
a Behavioural Subset of UML Statechart Diagrams Using th&NSP
Model-checkerfFormal Aspects of Computingl, 637-664.

[17] Holzmann, G.J, 1991. Design and validation of computer protocpls
Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

[18] Holzmann, G.J, 1997. The Model Checker SPI$oftware Engineering23(5),
279-295.

[19] Newman, E. and Greenhouse, A.2001. Annotation-based Diagrams for
Shared-Data Concurrencworkshop on Concurrency Issues in UML at
the Fourth International Conference on the Unified Modeliagguage

[20] Mehner, K. and Wagner, A. 2000. Visualizing the Synchronization of
Java-Threads with UML,Proceedings of the IEEE International
Symposium on Visual Language¥L'00, IEEE Computer Society,
Washington, DC, USA, p. 199.

[21] Konrad, S., Campbell, L.A. and Cheng, B.H.C, 2004. Automated Analysis of
Timing Information in UML Diagrams,Proceedings of the Nineteenth
IEEE international conference on Automated software egfimg
ASE’'04, IEEE Computer Society, Washington, DC, USA, pp.-33B.

[22] Das, D, Chakrabarti, P.P. and Kumar, R., 2007. Functional verification of
task partitioning for multiprocessor embedded systefnansactions on
Design Automation of Electronic Systerhg(4), 44.

[23] Davies, J. and Crichton, C, 2003. Concurrency and Refinement in the Unified
Modeling Languageiormal Aspects of Computin@x(2), 118-145.

[24] Edwards, D. Simmons, S. and Kearns, B. 2004. Graphical Limits of
ConcurrencyNeural Parallel And Scientific Computatiqri®?, 219-232.

[25] Plasil, F. and Mencl, V, 2003. Getting 'Whole Picture’ Behavior In A Use Case
Model, Journal of Integrated Design and Process Scier¢é), 63—79.

114

[26] Sethumadhavan, S. Arora, N., Ganapathi, R.B, Demme, J. and Kaiser,
G.E., 2009. COMPASS: A Community-driven Parallelization Adwi$or
Sequential SoftwareProceedings of the ICSE Workshop on Multicore
Software EngineeringWMSE’09, IEEE Computer Society, Washington,
DC, USA, pp. 41-48.

[27] Erraguntla, R. and Carver, D.L., 1998. Migration of sequential systems to
parallel environments by reverse engineerihgformation & Software
Technology4((7), 369-380.

[28] Kim, S., Ch, D. and Solihin, Y., 2004. Fair cache sharing and partitioning in a
chip multiprocessor architecture, IEEE PACT pp. 111-122.

[29] Tam, D., Azimi, R., Soares, L. and Stumm, M, 2007. Managing Shared L2
Caches on Multicore Systems in SoftwaWgorkshop on the Interaction
between Operating Systems and Computer Architecture

[30] Tam, D., Azimi, R. and Stumm, M., 2007. Thread clustering: sharing-aware
scheduling on SMP-CMP-SMT multiprocessorsEuroSys ’'07:
Proceedings of the 2nd ACM SIGOPS/EuroSys European Cocte@n
Computer Systems 200XCM, New York, NY, USA, pp. 47-58.

[31] Merkel, A. and Bellosa, F, 2008. Memory-aware scheduling for energy efficiency
on multicore processorroceedings of the 2008 conference on Power
aware computing and systemsiotPower'08, USENIX Association,
Berkeley, CA, USA, pp. 1-1.

[32] Ha, J., Arnold, M., Blackburn, S.M. and McKinley, K.S., 2009. A concurrent
dynamic analysis framework for multicore hardwa®@ OPSLA '09:
Proceeding of the 24th ACM SIGPLAN conference on Objecintece
programming systems languages and applicatié®@M, New York, NY,
USA, pp. 155-174.

[33] Zhou, B., Qiao, J. and kuan Lin, S, 2009. Research on Dynamic Cache
Distribution Scheduling Algorithm on Multi-Core ProcessdE-Business
and Information System Security, 2009. EBISS ’09. Intéwnat
Conference oypp. 1 -4.

[34] zangerl, T., 2008. Optimisation: Operating System Scheduling on ruadte
architectures, <http://tzangerl.net/doc/MulticoreScheduling.pdf>
accessed at 11.04.2011.

[35] Siddha, S, 2007. Multi-core and Linux Kernel,
<http://software.intel.com/sites/oss/pdfs/mclinak>y accessed at
11.04.2011.

[36] Microsoft, 2011. MSDN Section on Windows Scheduling,
<http://msdn.microsoft.com/en-us/library/ms68508&(&.85).aspx>
accessed at 11.04.2011.

[37] Oracle, 2010. Solaris 11 Programming Interfaces Guide,
<http://download.oracle.com/docs/cd/E19963-01/h@21-1602/psched-
23069.html> accessed at 11.04.2011.

115

[38] Boyd-Wickizer, S. Morris, R. and Kaashoek, M.F, 2009. Reinventing
Scheduling for Multicore SystemPBroceedings of the 12th Workshop on
Hot Topics in Operating Systems (HotOS-XMonte Verita, Switzerland.

[39] Xue, L., Kandemir, M.T., Chen, G, Li, F., Ozturk, O., Ramanarayanan,
R. and Vaidyanathan, B, 2007. Locality-Aware Distributed Loop
Scheduling for Chip Multiprocessor$/LSID '07: Proceedings of the
20th International Conference on VLSI Design held jointlithw6th
International ConferencelEEE Computer Society, Washington, DC,
USA, pp. 251-258.

[40] Fedorova, R, Seltzer, M. and , M.D.S, 2006. Cache-fair thread scheduling for
multicore processordechnical ReportHarvard University.

[41] Koziris, N., Romesis, M, Tsanakas, P. and Papakonstantinou, G.2000. An
efficient algorithm for the physical mapping of clusteresktgraphs onto
multiprocessor architectureBarallel and Distributed Processing, 2000.
Proceedings. 8th Euromicro Workshop, @p. 406 —413.

[42] Trifunovic, A. and Knottenbelt, W.J., 2006. A General Graph Model
for Representing Exact Communication Volume in ParallelarSe
Matrix-Vector Multiplication,ISCIS pp. 813—-824.

[43] Roig, C. Ripoll, A. and Guirado, F., 2007. A New Task Graph Model for
Mapping Message Passing ApplicatioRarallel and Distributed Systems,
IEEE Transactions o 8(12), 1740 —1753.

[44] Chen, G, Li, F., Son, S. and Kandemir, M, 2008. Application mapping for chip
multiprocessorspDesign Automation Conference, 2008. DAC 2008. 45th
ACM/IEEE pp. 620 —625.

[45] Xie, Y. and Loh, G.H., 2009. PIPP: Promotion/Insertion Pseudo-Partitioning of
Multi-core Shared Cache#) Proc. of the 36th Intl. Symp. on Computer
Architecture pp. 174-183.

[46] Valiant, L.G., 2008. A Bridging Model for Multi-core Computingroceedings of
the 16th annual European symposium on AlgorithefA '08, pp. 13-28.

[47] Kumar, V. and Delgrande, J, 2009. Optimal Multicore Scheduling: An
Application of ASP Techniqued,PNMR '09: Proceedings of the 10th
International Conference on Logic Programming and Nonntonic
ReasoningSpringer-Verlag, Berlin, Heidelberg, pp. 604—609.

[48] Yau, S, Jia, X., Bae, D, Chidambaram, M. and Oh, G., 1991. Using Model
Checking to Detect Deadlocks in Distributed Object Systétnsceedings
of the Fifteenth Annual International Computer Softward applications
Conference.COMPSAC'91, pp. 453-458.

[49] Yau, S, Bae, D. and Pour, G, 1992. A partitioning approach for object-oriented
software development for parallel processing systeRmeceedings of
the Sixteenth Annual International Computer Software apglidations
Conference.COMPSAC’'92, pp. 251-256.

116

[50] Li, X. and Lilius, J., 1999. Timing analysis of UML sequence diagrams,
Proceedings of the Second International Conference on Thdied
Modeling Language. Beyond the Standa8pringer, Fort Collins, CO,
USA, pp. 661-674.

[51] Li, X., Meng, C,, Yu, P, Jianhua, Z. and Guoliang, Z, 2001. Timing Analysis
of UML Activity Diagrams, Proceedings of the Fourth International
Conference on The Unified Modeling Language, Modeling Laggs,
Concepts, and Tool$pringer-Verlag, London, UK, pp. 62—75.

[52] Engels, G, Kiuster, J. and Groenwegen, L, 2002. Consistent Interaction Of
Software Componentdpurnal of Integrated Design and Process Science
6(4), 2-22.

[53] Giese, H, Klein, F. and Burmester, S, 2005. Pattern Synthesis from Multiple
Scenarios for Parameterized Real-Time UML Mod8ksgnarios: Models,
Transformations and Toqglyvolume 3466 ofLecture Notes in Computer
ScienceSpringer Berlin / Heidelberg, pp. 193-211.

[54] Seiter, L., Palsberg, J. and Lieberherr, K., 1998. Evolution of Object Behavior
Using Context Relation$EEE Transactions on Software Engineerj2d,
79-92.

[55] Cazzola, W, Ghoneim, A. and Saake, G. 2002. Reflective Analysis and
Design for Adapting Object Run-Time BehavioProceedings of the
Eighth International Conference on Object-Oriented Imh@tion Systems
OO0IS’02, Springer-Verlag, London, UK, pp. 242-254.

[56] Gamma, B, Helm, R., Johnson, R. and Vlissides, J.1994.Design Patterns:
Elements of Reusable Object-Oriented Softwarddison-Wesley
Professional.

[57] IBM . Jikes<http://jikes.sourceforge.net/>accessed at 01.07.2011.

[58] Chatzigeorgiou, A, Tsantalis, N. and Stephanides, G.2006. Application
of graph theory to OO software engineeringroceedings of the
International Workshop on interdisciplinary software @mggring
research, WISER’06, ACM, New York, NY, USA, pp. 29-36.

[59] Karypis, G. and Kumar, V., 1995. A fast and high quality multilevel scheme for
partitioning irregular graphsSIAM Journal on Scientific Computing0,
359-392.

[60] Ng, A., Jordan, M. and Weiss, Y, 2001. On spectral clustering: Analysis and
an algorithm,Advances in Neural Information Processing Systewhd
Press, pp. 849-856.

[61] van Dongen, S. 2000. Graph Clustering by Flow Simulatio®h.D. thesis
University of Utrecht, The Netherlands.

[62] Ovatman, T. and Buzluca, F, 2008. Investigating software design pattern
behavior in multiprocessor systems: A case study on observe

117

23rd International Symposium on Computer and Informaticreixes
ISCIS’08, pp. 1 4.

[63] Ovatman, T. and Buzluca, F, 2009. Software Design Pattern Behavior in
Shared Memory Multiprocessor Systemsiernational Conference on
Computational Intelligence and Software Engineefi@gHE09, pp. 1 —4.

[64] Chidamber, S.R. and Kemerer, C.F, 1994. A Metrics Suite for Object Oriented
Design,IEEE Transactions on Software Engineeri@@6), 476—493.

[65] Brito e Abreu, F. and Carapuca, R, 1994. Object-Oriented Software
Engineering: Measuring and Controlling the DevelopmentPssProc.
Int’l Conf. Software Quality

[66] Harrison, R., Counsell, S. and Nithi, R, 1998. An Evaluation of the MOOD
Set of Object-Oriented Software Metrid&EE Transactions on Software
Engineering 24, 491-496.

[67] Bansiya, J. and Davis, C.G. 2002. A Hierarchical Model for Object-Oriented
Design Quality AssessmenEEE Transactions on Software Engineering
28(1), 4-17.

[68] Briand, L.C., Morasca, S. and Basili, V.R, 1996. Property-Based Software
Engineering MeasuremenEEE Trans. Softw. Eng22(1), 68—86.

[69] Briand, L., Arisholm, E., Counsell, S, Houdek, F. and Thévenod-Fosse,
P., 1999. Empirical Studies of Object-Oriented Artifacts, thteds, and
Processes: State of The Art and Future Directidfspirical Software
Engineering4, 387-404.

[70] McCabe, T.J, 1976. A Complexity Metric,IEEE Transactions on Software
Engineering 2.

[71] Li, Z., Mills, P.H. and Reif, J.H., 1989. Models and Resource Metrics for Parallel
and Distributed ComputatiorRroc. 28th Annual Hawaii International
Conference on System Sciengas 133-143.

[72] Hollingsworth, J.K. and Miller, B.P., 1992. Parallel program performance
metrics: a comprison and validatioBupercomputing '92: Proceedings
of the 1992 ACM/IEEE conference on SupercomputiB§E Computer
Society Press, Los Alamitos, CA, USA, pp. 4-13.

[73] Tallent, N.R. and Mellor-Crummey, J.M., 2009. Effective performance
measurement and analysis of multithreaded applicati@mPP '09:
Proceedings of the 14th ACM SIGPLAN symposium on Princigies
practice of parallel programming ACM, New York, NY, USA, pp.
229-240.

[74] Frigo, M., Leiserson, C.E. and Randall, K.H, 1998. The Implementation of
the Cilk-5 Multithreaded Languagdn Proceedings of the SIGPLAN
'98 Conference on Program Language Design and Implemeamtagp.
212-223.

118

[75]

[76]

[77]

[78]

[79]

[80]
[81]
[82]

[83]

[84]

[85]

[86]

Fiutem, A., , Antoniol, G., Fiutem, R. and Cristoforetti, L., 1998. Using Metrics
to ldentify Design Patterns in Object-Oriented Softwdegc. IEEE-CS
Software Metrics Symp. (Metrics’98p. 23-34.

Huston, B., 2001. The effects of design pattern application on mefrures,
Journal of Systems and Softwab&(3), 261—-269.

Martin, R., 1994. OO Design Quality Metrics — An Analysis of Dependesci
<http://www.objectmentor.com/resources/articles/owdrc.pdf>
accessed at 11.04.2011.

Martin, R.C., 2002. Agile Software Development, Principles, Patterns, and
Practices Prentice Hall.

LEDA. LEDA, <http://www.algorithmic-solutions.com/leda/> accessed at
11.04.2011.

JBoss JBossghttp://www.jboss.org/>accessed at 11.04.2011.
DSpace DSpaceghttp://www.dspace.org/>accessed at 11.04.2011.

Mancoridis, S., Mitchell, B.S. and Rorres, C, 1998. Using automatic clustering
to produce high-level system organizations of source cbd@roc. 6th
Intl. Workshop on Program Comprehensiqp. 45-53.

Xanthos, S, 2004. Identification of reusable components within an dbgeiented
software system using algebraic graph theBrgceedings of OPSLA '04
ACM, New York, NY, USA, pp. 322-323.

Dietrich, J., Yakovlev, V., McCartin, C., Jenson, G. and Duchrow, M, 2008.
Cluster analysis of Java dependency gra@udtVis '08: Proceedings of
the 4th ACM symposium on Software visuallizati@M, New York, NY,
USA, pp. 91-94.

Mitchell, B.S. and Mancoridis, S, 2006. On the automatic modularization of
software systems using the Bunch to8pftware Engineering, IEEE
Transactions on32(3), 193-208.

Xiao, C. and Tzerpos, V, 2005. Software Clustering Based on Dynamic
Dependencies,Proceedings of CSMR 'Q5IEEE Computer Society,
Washington, DC, USA, pp. 124-133.

[87] Wu, F. and Yi., T., 2004. Dependence analysis for UML class diagralosynal

[88]

[89]

of Electronics 21, 249-254.

OMG, 2007. OMG Unified Modeling Language (OMG UML), Infrastruct,
V2.1.2, <http://www.omg.org/spec/UML/2.1.2/Infrastructur@pP>,
accessed at 11.04.2011.

Dhillon, I.S., Guan, Y. and Kulis, B., 2007. Weighted Graph Cuts without
Eigenvectors A Multilevel ApproachEEE Trans. Pattern Anal. Mach.
Intell., 29%(11), 1944-1957.

119

[90] Karypis, G., 2003. CLUTO - A Clustering ToolkitTechnical Report02-017
University of Minnesota, Department of Computer Science.

[91] Data Mining Laboratory, T.U.0.T.a.A., 2009. Graclus,
<http://www.cs.utexas.edu/users/dml/Software/gratitm|> accessed at
11.04.2011.

[92] Karatzoglou, A., Smola, A, Hornik, K. and Zeileis, A., 2004. kernlab - An S4
Package for Kernel Methods in Rournal of Statistical Softwarel 1(9),
1-20.

[93] van Dongen, S.2008. MCL,<http://micans.org/mcl>accessed at 11.04.2011.

[94] Hubert, L. and Arabie, P., 1985. Comparing Partitiondpurnal of Classification
2,193-218.

[95] Bergenti, F. and Poggi, A, 2000. Improving UML Designs using Automatic
Design Pattern DetectioRroc. 12th International Conf. Software Eng.
and Knowledge Eng. (SEKE '0Q)p. 336—343.

[96] Antoniol, G., Casazza, G, Penta, M.D. and Fiutem, R, 2001. Object-oriented
design patterns recoverypurnal of Systems and SoftwaB(2), 181 —
196.

[97] Heuzeroth, D, Holl, T., Hogstrom, G. and Loéwe, W, 2003. Automatic
Design Pattern DetectiorRroceedings of the 11th IEEE International
Workshop on Program ComprehensiofWPC '03, IEEE Computer
Society, Washington, DC, USA, pp. 94—.

[98] Balanyi, Z. and Ferenc, R, 2003. Mining Design Patterns from C++ Source Code,
19th International Conference on Software MaintenanceS\MC2003),
The Architecture of Existing Systems, 22-26 September, 2008terdam,
The Netherlandgp. 305-314.

[99] Tsantalis, N, Chatzigeorgiou, A, Stephanides, G. and Halkidis, S.T. 2006.
Design Pattern Detection Using Similarity Scoriggpftware Engineering,
IEEE Transactions or82(11), 896 —909.

[100] Dong, J, Zhao, Y. and Sun, Y, 2009. A Matrix-Based Approach to Recovering
Design PatternsSystems, Man and Cybernetics, Part A: Systems and
Humans, IEEE Transactions p89(6), 1271-1282.

[101] Nichols, B, Buttlar, D. and Farrell, J.P., 1998. Pthreads Programming
O'Reilly.

[102] GNU. GNU C library’s section on Limiting execution to certain O8&
<http://www.gnu.org/software/libc/manual/html_moiiez. htmI#CPU-A
ffinity>, accessed at 11.04.2011.

120

APPENDICES

APPENDIX A: Class Diagrams of Case Studies for Dependency Patterns
APPENDIX B: Graphs Extracted from Case Studies for Dependency Patterns

121

APPENDIX A

ILineNmnberTableAttributeI

[VerificationTypelnf StackMapFram, StackMapAttribute] ¢ —{CodeAttribuid——> [Local Variable TableAttribute]

"_---.~

Ps ~

’ .
H RETI T Y Ll e .
[ConstantValueAttributd-t—FieldInfd—} -, Bridge
Soo < Attributelnfo . >
Sagm= =
Hub 7 ZDeprecatedAttribute -
i SSyntheticAtiribute v u
IS ; ; .
) SignatureAttribute \L/ r \}
" =
\ >|Annotat10nsAttr1butc|</, X ~
-y \~ = - -
Hub é'— ° e ~ PR »°
i [ClassFild—T TSeeamaae- r
s U

[SourceFileAttributd ConstantPool

| InnerClassesAttributeIlEn(:lOSingMethOdAttributeI

| ParameterAnnotationsAttn'buteI |Except10nsAttr1bute I

}AnnotatlonDefaultAttrlbuteI

[BridgeAtiributd) l

|AnnotationComponentVa1uel

4\

| AnnotationComponentAnnotatiori

IAnnotationComponentArra}I

Figure A.1: Dependency relations Gf.ASS.

122

.

S A B
ileSymbol thLiter : SystemTable

e

[

[AstExpression]

AstBinaryExpression

/

TR~ [T X
[PackageSymbol]’ - i
PackaeS mb(jL Bridge
----- fs-fand . PmmEm B EE SN_BE BB] I I-|-.-,-...
&—. [Utf8Literal Table] [IntLiteralTable | LiteralLOOkuDTableI|LongLiteralTable|Doub1eLiteralTab1e| FloatLiteralTable -"
T
lil-l-l-l-l-l-l-l-l |-|4|=,|_;-|-l 1mp
St TntLiteralValue | [TieralSvmbol LongLiteralValue] [DoubleLiteralValue || [FloatLiteral Value
[BlockSymbol = l
A ,

ypeLookupTable

4 %722 .
F Literal Value || &
~

Seenmm===”

~

Authority

Figure A.2: Dependency relations @f0KUP.

123

Bridge _.-T'AsiDoStatement e
. RS stWhileStatement N, | H |
Authority AN []
P D AstIfStatement K 2 I
:\ AstBlock AstSynchronizedStatement =" ! 7 | |
~ 1
RRCll e AstForeachStatement .AstExpresswn e Bridge
S 7 - N - =
3 AstSwitchStatement] rd ____._.__-_:--- Authority ,“TAstInstanceofExpression ’\‘
~AstForStatement ,\“"" ,x"——' ..."\\ i [AstCastExpression| :;
S Sl B N *JAstClassLitera e
“JAstCatchClause] »* ,»* \ ol .
[y p— R T e s B W N N N\ N) e SRR LI SRR L iy
Bridge
8 ’,' \ Bridge
DN N N N N\ /2 2 N N Pt L
H < y e
1 1 -me z - ~‘
H 2 e . /]AstAssignmentExpressioh]
. . y T \
+ H L . ~AstPreUnaryExpression] |
\ S . \ 7 !
1Y ’ ., kY .
3 I\ X , “JAstPostUnaryExpression}
. s] ~~~ v
\‘ 'l K \“
. ' a |
. = - . o0 H
Istand ZTAs(Type |4 N———c i
£} , /
Authority \ PO e, &
.-~ < ! Authority DN Island

*
|—+>[StoragePool “een B
~ N .
Sema N B \ RO P

s b MethodSymbol | §

LT ——t

’ A
r 1
Island :' / / \ Authority
] !
A 7

Figure A.3: Dependency relations a8T (Some insignificant class hames have been excluded fromdpgeath for the sake of simplicity).

124

APPENDIX B

Figure B.1: Results of manual clustering fQ00KUP.

125

Figure B.2: Results of best clustering obtained f@0OKUP.

126

Figure B.3: Results improved by bridge detection far0KUP.

127

Figure B.4: Results of manual clustering fasT.

128

_/\)\

Figure B.6: Results improved by bridge detection #8T.

130

CURRICULUM VITAE

Candidate’s full name: Tolga OVATMAN
Place and date of birth: Bursa, 13 June 1981

Universities and Colleges attended: Istanbul Technical University
M.Sc. in Department of
of Computer Engineering
(2003-2005,TURKEY)

Hacettepe University

B.Sc. in Department of

Computer Science and Engineering
(1999-2003, TURKEY)

Publications:

Tolga Ovatman, Thomas Weigert, Feza Buzluca, 2011: Exploring implicigielism
in class diagrams:Journal of Systems and Softwarolume 84, Issue 5, Pages
821-834, ISSN 0164-1212, DOI: 10.1016/}.jss.2011.01.005

Tolga Ovatman, Aske W. Brekling, Michael R. Hansen, 2010: Cost Analysis fo
Embedded Systems: Experiments with Priced Timed Autontd>ronic Notes in
Theoretical Computer Sciencéolume238, Issue 6, Pages 81-95.

Tolga Ovatman, Feza Buzluca, 2011: "Model Driven Cache-Aware Scheduling
of Object Oriented Software for Chip Multiprocessors”, ZIBI1, 14th Euromicro
Conference on Digital System Design Architectures, Methadd Tools Oulu,
Finland.

Tolga Ovatman, Thomas Weigert, Feza Buzluca, 2010: "Applying Enhanced
Graph Clustering to Software Dependency Analysis”, 0602aBth International
Conference on Software Engineering and Data Engineefsiag Francisco, CA, USA,
Received Software Engineering Track Best Paper Award.

Tolga Ovatman, Feza Buzluca,2009: "Software Design Pattern Behaviomiar&l
Memory Multiprocessor Systems'International Conference on Computational
Intelligence and Software Engineeringec/2009, s. 1-4.

Tolga Ovatman, Feza Buzluca, 2008: "Investigating software design patiehavior
in multiprocessor systems: A case study on obser&3t International Symposium
on Computer and Information Sciencest/2008, s. 1-4.

Tolga Ovatman, Feza Buzluca, 2008: "Cok Cekirdekli Sistemlerin Yaziliralikesi
_L"Jzerine Etkileri", Yazilim Kalitesi ve Yazilm Gelistirme Araglari Sempozyu
Istanbul.

131

