
İSTANBUL TECHNICAL UNIVERSITY ⋆ INSTITUTE OF SCIENCE AND TECHNOLOGY

MODEL BASED PARALLELIZATION OF OBJECT ORIENTED SOFTWARE

FOR MULTICORE SYSTEMS

Ph.D. Thesis By
Tolga OVATMAN

Department : Computer Engineering

Programme : Computer Engineering

JUNE 2011

İSTANBUL TECHNICAL UNIVERSITY ⋆ INSTITUTE OF SCIENCE AND TECHNOLOGY

MODEL BASED PARALLELIZATION OF OBJECT ORIENTED SOFTWARE

FOR MULTICORE SYSTEMS

Ph.D. Thesis by
Tolga OVATMAN

(504052505)

Date of submission : 20 April 2011
Date of defence examination : 16 June 2011

Supervisor(Chairman) : Assist.Prof.Dr. Feza BUZLUCA (ITU)
Members of the Examining Committee : Prof.Dr. Nadia ERDOĞAN (ITU)

Prof.Dr. Emre HARMANCI (ITU)
Assoc.Prof.Dr. Can ÖZTURAN (BU)
Assist.Prof.Dr. Elif KARSLIG İL (YTU)

JUNE 2011

İSTANBUL TEKN İK ÜN İVERSİTESİ ⋆ FEN BİL İMLER İ ENSTİTÜSÜ

ÇOK ÇEK İRDEKL İ SİSTEMLER İÇ İN NESNEYE DAYALI YAZILIMLARIN

MODEL TABANLI PARALELLEŞT İR İLMES İ

DOKTORA TEZ İ
Tolga OVATMAN

(504052505)

Tezin Enstitüye Verildi ği Tarih : 20 Nisan 2011
Tezin Savunuldŭgu Tarih : 16 Haziran 2011

Tez Danışmanı : Yrd.Doç.Dr. Feza BUZLUCA (İTÜ)
Diğer Jüri Üyeleri : Prof.Dr. Nadia ERDOĞAN (İTÜ)

Prof.Dr. Emre HARMANCI (İTÜ)
Doç.Dr. Can ÖZTURAN (BÜ)
Yrd.Doç.Dr. Elif KARSLIG İL (YTÜ)

HAZ İRAN 2011

“Our freedom to doubt was born out of a struggle against authority
in the early days of science. It was a very deep and strong struggle:

permit us to question - to doubt - to not be sure.
I think that it is important that we do not forget this struggle

and thus perhaps lose what we have gained.”

Richard Phillips Feynman, "The Value of Science",
address to the National Academy of Sciences (Autumn 1955)

v

vi

FOREWORD

The paper you are about to read is not only a detailed summary of my doctoral study,
but also the epilogue to my 30 years as a student. During the six years of my PhD
education there are many people contributed to the studies that forms the basis of this
thesis. I would proudly mention those people, of whom you mayfind the traces whilst
reading the paper.

Dr. Feza Buzluca is the first person I would like to thank for his efforts as an advisor
during my PhD studies. He is the reason of almost every bit of organized and properly
prepared product that I was able produce during the last six years. Not only he
influenced me as a researcher but also he was a role model for teaching and literature.
I can’t thank him enough for all the guidance and friendship through those six years.

Next, I would like to thank Prof.Dr.Nadia Erdoğan and Dr.Elif Karslıgil for
supporting me with their knowledge and their advising effort during my thesis studies.
Prof.Erdŏgan has lead me with her experience and wisdom and Dr.Karslıgil always
encouraged me with her energy and vision. They are very important assets of this
thesis. I would also like to thank Prof.Dr.Emre Harmancı andDr.Can Özturan for their
valuable feedback and insightful remarks on my thesis studies. Prof.Harmancı was
kind enough to spend several hours with me working on the manuscript and has helped
me to improve it in a very authentic and unique way.

During my thesis study I was very fortunate to study with important researchers in
Europe and United States. I would like to thank Prof.Thomas Weigert from Missouri
University of Science and Technology for his contributionsto my work on dependency
patterns. I would also like to thank Prof.Michael Reichhardt Hansen and my colleague
Aske Wiid Brekling from Technical University of Denmark fortheir collaboration
during the early stages of my PhD study. Finally I would like to thank my colleague
Gül Nildem Demir for her contributions on clustering for dependency patterns and also
for her continuous support as a friend.

I would like to thank all my professors at Istanbul TechnicalUniversity Computer
Engineering Department, but especially Prof.Dr.Emre Harmancı and Prof.Dr.Eşref
Adalı for their guidance and influences during the evolutionof my scientific thinking
and working discipline. I would also like to thank Dr.CüneydTantŭg and Dr.Mustafa
Kamaşak for their mental support.

I also owe many thanks to all my research assitant colleaguesfrom İTÜ. I would like to
thank Dr.Yusuf Yaslan, Dr.Burak Kantarcı, Dr.Mehmet TahirSandıkkaya and Dr.Ender
Yüksel for their friendship, help and many contributions they have made during my
studies. I would also like to especially thank Dr.Berk Canberk for walking together
with me in almost all the phases of my PhD study.

I was not only supported academically during my PhD study; I wouldn’t be able to
complete my work without mental support of my friends. I wantto thank Kenan Kule,
Kıvanç Kaya and Cenk Çiçen for remembering me of the life thatgrows outside the
lab whenever I need.

vii

Last but not least I would like to thank my mother and father for influencing me with
their infinite vision through all my life. I wouldn’t be here if hey haven’t encouraged
me to continue as a graduate student and support me all the way. I would also like
to thank Irfan Sakin for paving the way to my academic life as arole model with his
engineering career.

“To be whole is to be part...” says Ursula K. Le Guin in her famous novel. I
believe my PhD study(and myself as a PhD candidate) became a whole since all the
people I mentioned above(and the ones I forgot the mention) became a part with their
contributions. Le Guin continues as “...true voyage is return.”

June 2011 Tolga OVATMAN

Computer Engineer, M.Sc.

viii

TABLE OF CONTENTS

Page

FOREWORD. vii
TABLE OF CONTENTS ix
ABBREVIATIONS xi
LIST OF TABLES xiii
LIST OF FIGURES. xv
LIST OF SYMBOLS.xvii
SUMMARY xix
ÖZET .. xxi
1. INTRODUCTION. 1

1.1. Multi-core Computing 2
1.2. Model Based Parallelization and Scheduling 4
1.3. Contributions and Dissertation Outline. 6

2. RELATED WORK 9
2.1. Model Driven Parallelization .. 9
2.2. Model Driven Scheduling 11

3. EXPLORING IMPLICIT PARALLELISM IN CLASS DIAGRAMS 1 5
3.1. Class Diagrams and Implicit Parallelism 15
3.2. Dependency Patterns in Class Diagrams 18

3.2.1. Single-class dependency patterns 18
3.2.2. Multi-class dependency patterns. 19
3.2.3. Occurances of dependency patterns 20
3.2.4. Parallelization using dependency patterns 24

3.2.4.1. Dependency pattern occurences in selected designpatterns 27
3.2.4.2. Dependency patterns in a real-world software 31

3.3. A Metric Set for Dependency Patterns 39
3.3.1. Related work on pattern metrics 40
3.3.2. Dependency pattern specific metrics 42

3.3.2.1. Hub/Authority metrics 42
Ratio of Dependency Directions 42
Ratio of Singular Dependencies 43

3.3.2.2. Cycle metrics 44
Number of Cyclic Dependencies 44
Ratio of Cyclic Dependencies 44

3.3.2.3. Bridge metrics 45
Ratio of External/Internal Bridge Dependencies. 45
Ratio of Bridge to Source Dependencies 46
Ratio of Sibling Bridge Classes 47

ix

3.3.2.4. Island metrics 47
Ratio of External/Internal Island Dependencies 47
Cumulation of Inner Island Dependencies 49

3.3.2.5. Correlation among dependency pattern metrics 49
3.3.3. Real-world examples of dependency pattern metrics 50

3.3.3.1. Hub/Authority metric examples 50
3.3.3.2. Cycle metric examples 53
3.3.3.3. Bridge metric examples 55
3.3.3.4. Island metric examples 58

3.4. Detecting Dependency Patterns 59
3.4.1. Related work on pattern detection 60
3.4.2. An enhancement to graph clustering for dependency pattern detection. 62

3.4.2.1. Clustering for dependency patterns 63
3.4.2.2. Bridge detection algorithm. 65
3.4.2.3. Evaluation of bridge detection algorithm 68

3.5. Summary and Conclusions 71
4. CACHE-AWARE SCHEDULING FOR MULTICORE SYSTEMS. 7 3

4.1. Cache-Aware Scheduling of Design Patterns in a Multicore Processor. 73
4.1.1. Cache-aware scheduling 74
4.1.2. Case studies on software design patterns 76
4.1.3. Effects of cache-aware scheduling on basic examples. 79
4.1.4. Applying cache-aware scheduling 80

4.1.4.1. Strategy 81
4.1.4.2. Visitor 82
4.1.4.3. Observer 82

4.2. A Cache-Aware Dispatcher for Dependency Patterns 84
4.2.1. Graph models of dependency patterns and multicore processors 85
4.2.2. A graph matching algorithm for cache-aware dispatcher 87

4.2.2.1. Compile-time graph matcher 88
4.2.2.2. Runtime resource allocator 89
4.2.2.3. A sample scheduling scenario 91

4.2.3. Applying cache-aware dispatcher for a basic case study. 95
4.2.3.1. Case study software on image filtering 96
4.2.3.2. Experimental results 97

Applying composite filters on many subregions of an image in parallel . 99
Applying many filters in parallel on a single image 101
Applying many filters in parallel on multiple images 103
Applying many filters on subregions of multiple images in parallel 105

4.3. Summary and Conclusions 107
5. CONCLUSIONS AND FUTURE WORK. 109

5.1. Conclusions. .. 109
5.2. Future Work 111

REFERENCES 113
APPENDICES. 121
CURRICULUM VITAE. 131

x

ABBREVIATIONS

API : Application Programming Interface
AST : Abstract Syntax Tree
CAWS : Cache-Aware Scheduler
CFS : Completely Fair Scheduler
CIID : Cumulation of Inner Island Dependencies
CIpolicy : Confidence Interval of a running time for a specific

schedulingpolicy.
CMP : Chip Multi-processing
CPU : Central Processing Unit
CUS : Cache-Unaware Scheduler
GHz : Giga Hertz
GoF : Gang of Four
GPU : Graphics Processing Unit
IC : Integrated Circuit
JNI : Jaca Native Interface
JOMP : An OpenMP-like Interface for Java
Ln Cache : Level-n Cache
NCD : Number of Cyclic Dependencies
NUMA : Non-Uniform Memory Access
MCL : Markov Cluster Algorithm
MPI : Message Passing Interface
OpenMP : Open Multi-Processing
OS : Operating System
RBSD : Ratio of Bridge to Source Dependencies
RCD : Ratio of Cyclic Dependencies
RDD : Ratio of Dependency Directions
REIBD : Ratio of External/Internal Bridge Dependencies
REIID : Ratio of External/Internal Island Dependencies
RSBC : Ratio of Sibling Bridge Classes
RSD : Ratio of Singular Dependencies
SACS : Same Core Scheduling
TRW : Abbreviation for TRWeb. A 4 dual-core processor server used

in experiments.
UML : Unified Modeling Language
ZEB : Abbreviation for Zebella. A 2 hex-core processor server used

in experiments.

xi

xii

LIST OF TABLES

Page

Table 3.1 :Correlation among defined metrics. 49
Table 3.2 :Adjusted rand index metric obtained for the studied clustering

techniques: Hierarchical graph clustering, clustering with
normalized cut and ratio associations, spectral graph clustering,
and Markov clustering. 65

Table 3.3 :Adjusted rand index for clustering improved by applying the
bridge detection algorithm to studied clustering techniques. . . . 69

Table 4.1 :Normalized running times for basic strategy implementation. . . . 79
Table 4.2 :Normalized running times for basic visitor implementation. . . . 80
Table 4.3 :Normalized running times for basic observer implementation. . . 80

xiii

xiv

LIST OF FIGURES

Page

Figure 1.1 :Diagram of a typical multiple multicore processor system 3
Figure 3.1 :Single-class dependency patterns 18
Figure 3.2 :Multi-class dependency patterns 19
Figure 3.3 :Dependency pattern occurrences in class diagrams23
Figure 3.4 :Sequential implementation ofnotifyObservers() 25
Figure 3.5 :Parallelized implementation ofnotifyObservers() 26
Figure 3.6 :Observer’s update thread . 26
Figure 3.7 :Parallelization of observer . 28
Figure 3.8 :Parallelization of decorator . 29
Figure 3.9 :Parallelization of abstract factory 30
Figure 3.10 :Control as a master class . 32
Figure 3.11 :Dependency relations ofControl 33
Figure 3.12 :Jikes performance upgrade by master class improvement 34
Figure 3.13 :AstExpression as an authority superclass 35
Figure 3.14 :Parallelization of authority superclass36
Figure 3.15 :AttributeInfo descendants as a hub bridge 37
Figure 3.16 :Parallelization of an authority bridge 38
Figure 3.17 :An example class for hub/authority metrics 43
Figure 3.18 :An example class for cycle metrics 44
Figure 3.19 :An example for bridge metrics 46
Figure 3.20 :An example for island metrics 48
Figure 3.21 :Control as a hub pattern . 51
Figure 3.22 :Constructor ofControl class 52
Figure 3.23 :Jikes performance upgrade by hub parallelization 53
Figure 3.24 :Self dependencies ofVariableSymbol 54
Figure 3.25 :Self dependencies ofSortOption 55
Figure 3.26 :AttributeInfo descendents as an authority bridge instance . . . 57
Figure 3.27 :AttributeInfo usage . 57
Figure 3.28 :An example bridge from JBoss 58
Figure 3.29 :An example bridge from JBoss 59
Figure 3.30 :Sample islands having distinct island metric values 60
Figure 3.31 :Performance of spectral graph clustering (a) and Markov

clustering (b) compared to manual clustering (c). 64
Figure 3.32 :A sample graph to be used in illustrating bridge detection algorithm. 66
Figure 3.33 :Matrices of the sample graph in Figure 3.32 used in bridge detection. 67
Figure 3.34 :Clustering obtained from MCL (a), manually (b), after detecting

and separating bridges and hubs/authorities from MCL results (c). 70
Figure 4.1 :Central processing unit architecture used in cache-aware

scheduling experiments of design patterns 77

xv

Figure 4.2 :Strategy design pattern . 77
Figure 4.3 :Visitor design pattern . 78
Figure 4.4 :Observer design pattern . 78
Figure 4.5 :Scheduling strategies with different policies. 82
Figure 4.6 :Scheduling 8 visitors with different policies. 83
Figure 4.7 :Scheduling 2 observers with different policies. 84
Figure 4.8 :Scheduling many subject-observer tuples with different policies. . 84
Figure 4.9 :A sample representation of multiple chip multi-processors. . . . 86
Figure 4.10 :An example dependency pattern graph 87
Figure 4.11 :Graphs to be used in sample scheduling scenario 91
Figure 4.12 :Image filtering software diagrams 96
Figure 4.13 :A sample representation of a chip multi-processor 98
Figure 4.14 :A sample representation of a chip multi-processor 99
Figure 4.15 :Applying composite filters on many subregions of a single image

in parallel . 100
Figure 4.16 :TRW results for applying composite filters on many subregions of

a single image in parallel . 100
Figure 4.17 :ZEB results for applying composite filters on many subregions of

a single image in parallel . 101
Figure 4.18 :Applying many filters in parallel on a single image 102
Figure 4.19 :Applying many filters in parallel on a single image on TRW . . . 102
Figure 4.20 :Applying many filters in parallel on a single image on ZEB103
Figure 4.21 :Applying many filters in parallel on multiple images103
Figure 4.22 :Applying many filters in parallel on two images on TRW 104
Figure 4.23 :Applying many filters in parallel on many images on TRW 104
Figure 4.24 :Applying many filters in parallel on two images on ZEB 105
Figure 4.25 :Applying many filters in parallel on three images on ZEB 105
Figure 4.26 :Applying many filters on many subregions of multiple images in

parallel . 106
Figure 4.27 :Applying many filters on many subregions of an image in parallel

on ZEB . 106
Figure 4.28 :Applying many filters on many subregions of two images in

parallel on ZEB . 107
Figure A.1 :Dependency relations ofCLASS. 122
Figure A.2 :Dependency relations ofLOOKUP. 123
Figure A.3 :Dependency relations ofAST (Some insignificant class names have

been excluded from the diagram for the sake of simplicity). 124
Figure B.1 :Results of manual clustering forLOOKUP. 125
Figure B.2 :Results of best clustering obtained forLOOKUP. 126
Figure B.3 :Results improved by bridge detection forLOOKUP. 127
Figure B.4 :Results of manual clustering forAST. 128
Figure B.5 :Results of best clustering obtained forAST. 129
Figure B.6 :Results improved by bridge detection forAST. 130

xvi

LIST OF SYMBOLS

ρi : Performance ofith experiment.
ρn : Normalized performance.
Dout : The number of direct dependencies of a class towards other

classes.
Din : The number of direct dependencies towards a class.
Dtot : The number of direct dependencies a class have.
Dsng : The number of dependencies towards a class where

the originating class has only one dependency.
Dcyc : The number of direct dependencies a class have towards itself.
Dext : The number of dependencies a group of classes have towards

other classes.
Dint : The number of dependencies towards a group of classes.
Dsrc : The number of dependencies between the source classes

of a bridge and the classes in the bridge pattern.
Npar : The number of different ancestor classes that the classes

of a bridge pattern have.
Nbdg : The number of classes inside a bridge pattern.
σ [...] : Standard deviation of a series.
ωi : A core of a processor.
µ0 : Main memory.
µi : A cache memory in a processor.
bi : A bridge pattern instance.
i i : An island pattern instance.
ai : An authority pattern instance.
hi : A hub pattern instance.
yi : A cycle pattern instance.

pci : ith class in a pattern p.
δ : Distribution factor of a pattern.
Nc : The number of classes inside a pattern.
Nω : The number of cores in a processor.
εl : Left threshold that distribution can deviate.
εr : Right threshold that distribution can deviate.
↑ (µi) : Function to select one upper level ofµi in processors’

memory hierarchy.
↓ (µi) : Function to select one lower level ofµi in processors’

memory hierarchy.
∆() : Function to schedule each object in a pattern distributing them

over a set of cores.
Π() : Function to schedule objects in a pattern over a set of cores using

operating system’s scheduling policy.

xvii

xviii

MODEL BASED PARALLELIZATION OF OBJECT ORIENTED SOFTWARE
FOR MULTICORE SYSTEMS

SUMMARY

As multicore processors are becoming more wide-spread, leveraging of parallelism is
once again becoming an important concern during the software development process.
Substantial refactoring is required to parallelize legacysequential software in order to
exploit the advantages offered by parallel processing. In this thesis study, guidelines
are offered to aid in parallelizing and scheduling of object-oriented programs by
analyzing their designs as represented in UML class diagrams.

As a starting point, often occurring patterns of class-dependencies are defined and their
characteristics in class diagrams are demonstrated by investigating their properties.
Example instances exhibiting the usage of these patterns inclass diagrams are
presented through analyzing the runtime aspects of these instances. This way, it is
possible to identify how they impact the parallelization ofobject oriented software.
Taking these lessons into account when refactoring existing object-oriented software
can significantly reduce time and effort required. Proposedmethods are evaluated by
applying it to three popular design patterns and a real-world case study.

The dependency patterns defined in thesis studies can be detected automatically by
using clustering methods and some supporting algorithms. Five different pattern
types(authorities, hubs, cycles, bridges and islands) canbe detected using class
diagram analysis. However the properties of detected pattern occurences can still show
a great variance when such a grouping is used. There still exists a need to distinguish
each pattern instance regarding different properties theyhave. Software design metrics
can be used to further identify the relation of dependency pattern classes among each
other and with the outer group. A metric set is proposed to elaborate the dependency
pattern definitions allowing the developer/designer to further identify characteristics of
each pattern.

Later in the studies, automatically detecting dependency patterns in software designs
is focused. After applying graph clustering techniques to dependency graphs extracted
from class diagrams it has been found that these techniques were not able to detect
key dependency patterns that relied on characteristic relationships of classes within
a cluster to classes outside of that cluster. An algorithm isproposed to detect
such dependencies. Experiments show that this algorithm not only detects these
elements, but also improves on the studied graph clusteringtechniques when applied
to dependency analysis of class diagrams.

In the last part of the thesis, leveraging utilization of theshared caches of multicore
processors is explored. Providing a scheduling mechanism that maximizes throughput
by reducing miss-rates of shared caches and preserves the fairness of processor usage is
in the center of this problem. Proposed scheduling algorithms in this field usually take
advantage of thread level proper- ties of software providing modifications at operating

xix

system level. In the last chapter, a different approach is applied by using software
models to guide operating system to effectively map software’s objects onto processor
cores. The scheduling method takes class dependencies intoaccount and tries to
schedule objects of coupled classes onto cores that share the common cache. Firstly,
case studies on implementations of three software design patterns(Strategy, Visitor and
Observer) is presented. Later, an image filtering software implementation is used in
our experiments on two different multiple multicore processor architectures. During
the experiments cache-aware scheduler is used in guiding Linux’s completely fair
scheduler(CFS) andO(1) scheduler to perform more cache-aware thread assignments
and increase performance. Obtained results promise that guiding/restricting OS
scheduler using class-relational information present in the object oriented software
model can be fruitful in increasing software performance onmulticore processors.

The two main contributions of this thesis are the use of static object oriented software
designs in detecting impilict parallelism in software and using this model based
information during scheduling of object oriented parallelsoftware. The derivation
process of proposed methods are mainly based on re-using patterns that can be found
in software designs letting us preserve the software quality during parallelization
process. In addition to this process “performance” -as the distinctive quality concern
for parallel software- is improved using the derived techniques. The experiments
show that performance improvements up to 30% can be achievedusing model based
techniques.

xx

ÇOK ÇEK İRDEKL İ SİSTEMLER İÇ İN NESNEYE DAYALI YAZILIMLARIN
MODEL TABANLI PARALELLEŞT İR İLMES İ

ÖZET

Çok çekirdekli işlemciler yaygınlaşmasını sürdürdükçe, yazılım geliştirme sürecinde
paralelleştirme çalışmalarının önemi de gitgide artmaktadır. Halihazırda bulunan
sıradüzensel çalışma prensiplerine göre hazırlanmış yazılımların paralel işletimin
nimetlerinden faydalanabilmesi için önemli bir yeniden düzenleme çalışması yapmak
gerekiyor. Bu tez çalışmasında, nesneye dayalı yazılımların paralelleştirme
çalışmalarında kullanılmak üzere kullanılabilecek ana hatlar, UML sınıf çizenekleri
ile temsil edilen yazılım tasarımları üzerinde yapılan analizler sonucunda elde
edilmektedir.

Başlangıç noktası olarak sınıf bağımlılıkları arasında sıkça ortaya çıkan örüntüler
ve bu örüntülerin yazılıma özgü gösterdiği karakteristikler, örüntülerin bir takım
özellikleri incelenerek ortaya çıkarılmıştır. Bu örüntülerin sınıf çizeneklerinde
ortaya çıkma biçimleri, örüntülerden çeşitli örnekler sunularak ve bu örneklerin
çalışma zamanında gösterdiği davranışlar incelenerek açıklanmıştır. Bu şekilde
băgımlılık örüntülerinin nesneye dayalı yazılımların paralelleştirilmesine olan etkisi
incelenmiştir. İncelemelerde ortaya çıkan edinimlerle halihazırda bulunan nesneye
dayalı yazılımların paralelleştirilmesi için harcanan çaba büyük oranda azaltılabilir.
Önerilen teknikler üç yazılım tasarım kalıbı ve gerçekte dekullanılan bir yazılım
üzerinde uygulanarak tekniklerin geçerliliği incelenmiştir.

Tanımlanan băgımlılık örüntüleri öbekleme teknikleri ve bir takım ek tekniklerle
otomatik olarak sınıf çizenekleri içinde bulunabilir. Bu tür analizlere dăgıtım
sınıfı, otorite, döngüsel sınıf, köprü ve adacık ismi verilen beş farklı örüntü
algılanabilmektedir. Ancak bu şekilde gruplansa dahi, aynı gruba dahil
băgımlılık örüntü örnekleri sahip oldukları özellikler açısından büyük farklılıklara
gösterebilmektedir. Her bir örüntü örneğini diğerinden ayıracak bir ölçüm sistemine
bu noktada ihtiyaç duyulmaktadır. Yazılım ölçütleri bu amaçla daha detaylı bir
analiz săglamak için kullanılabilirler. Băgımlılık örüntülerinin yazılımda gösterdiği
özellikleri detaylandırmak amacıyla bir ölçüt kümesi tez çalışmalarında önerilmiştir.

Tez çalışmalarının sonraki bölümlerinde bağımlılık örüntülerinin otomatik olarak
yazılım tasarımlarında algılanılmasına odaklanılmıştır. Bu amaçla yazılım
tasarımlarından edinilen çizgeler üzerinde öbekleme algoritmaları uygulanmış ve
sonuçta bu algoritmaların özellikle “köprü” adı verilen örüntüleri algılamakta
yetersiz kaldı̆gı görülmüştür. Bu sorunu çözmeye yönelik tanımlanan algoritma ile
hem “körprü”lerin algılanması sağlanmış hem de böylece öbekleme tekniklerinin
băgımlılık kalıbı algılama amacıyla başarımı arttırılmıştır.

Tez çalışmalarında son olarak çok çekirdekli işlemcilerde ortak kullanılan cep
belleklerin paylaşılmasından sağlanan faydanın model tabanlı tekniklerle arttırılması
üzerine yŏgunlaşılmıştır. Bu noktadaki sorun işlemci kullanımında adaleti koruma

xxi

amaçlı yapılan iplik-işlemci atamalarının paylaşılan cep belleklerde bulunan verilerin
sıklıkla yer dĕgiştirmesine yol açmasıdır. Bu konuda yapılan çalışmalar genellikle
işletim sistemi çekirdĕgi düzeyine yakın dĕgişklik veya ekler içermektedir. Son
bölümde bu sorunu çözmek için farklı bir yol tercih edilerekyazılım modeli
analizi sonucu ortaya çıkarılan sınıf bağımlılıkları kullanılarak yazılım mimarisi ve
işlemci mimarisi eşleştirmesi yapılmıştır. Bu eşle¸smeye göre oluşturulan iş dağıtım
yöntemi aralarında yüksek bağımlılık bulunan sınıfları, paylaşacakları veri miktarı
çok olabilecĕginden ortak cep bellek kullanan çekirdeklere atamaya çalışmaktadır.
Önerilen iş dăgıtım yöntemi “strateji”,“ziyaretçi” ve “gözlemci” isimli tasarım
kalıplarının gerçeklemeleri ve bir görüntü filtreleme yazılımı üzerinde denenmiştir.
Deneyler sırasında önerilen dağıtıcı Linux işletim sisteminin CFS veO(1) isimli
iki farklı iş sıralayıcısını yönlendirmekte kullanılmı¸s ve bu sayede başarımlarını
arttırdı̆gı gözlenmiştir. Elde edilen sonuçlar işletim sistemi i¸s sıralayıcısının yazılım
modelindeki sınıflar arası ilişkiler göz önünde bulundurularak cep bellek kullanımını
arttıracak şekilde yönlendirmesinin başarımı arttırdığı yönündedir.

Tez çalışmaları sonucunda iki farklı alanda katkılar sağlanmıştır. Bunlardan ilki
yazılım tasarımları kullanılarak yazılımın genelinde gizli bulunan paralellĭgin ortaya
çıkartılması. İkincisi ise model tabanlı bilgiler ışığında nesneye dayalı yazılımların
iş sıralamasının yönlendirilmesidir. Önerilen tekniklerin oluşturulması esnasında
yazılımlarda bulunan örüntülerin/kalıpların tekrar kullanımı ile paralelleştirme
sürecinde yazılım kalitesinin korunması sağlanmıştır. Ayrıca kullanılan tekniklerle
paralel yazılımlar için en önemli kalite isterlerinden olan başarımın arttırılması
săglanmıştır. Sunulan deneyler, önerilen model tabanlı tekniklerin kullanımı ile %30’a
varan başarım artışının sağlanabilecĕgini göstermektedir.

1. INTRODUCTION

Originally the term computing is used for counting and calculating. People who

perform those operations are called computers. But with thespreading of computing

machines after the pioneering work of transistors by W. Shockley et al. in 1947, the

discipline of computing has begun to be defined as “the systematic study of algorithmic

processes that describe and transform information: their theory, analysis, design,

efficiency, implementation, and application. Actually, the fundamental question

underlying all computing is ’What can be (efficiently) automated?’”([1] pg.12). In

terms of effectiveness, one of the first aspects that comes into mind is collaboration

of many processing elements working on a problem divided into sub problems; in

other words parallelization. Parallel computing can be seen as an evolution of serial

computing that attempts to emulate many complicated, interrelated events happening

at the same time, yet within a sequence. First practical usage of parallel computing in

computer industry was ILLIAC IV in 1976 which used up to 256 processors to provide

an efficient level of computation. Until now parallel computing is being realized in

many different platforms ranging from cluster computing todistributed computing. In

the architecture level, Flynn’s taxonomy [2] classified processing levels based upon the

number of concurrent instruction (or control) and data streams available.

Until the development of multi-core CPUs, parallel computing is widely used in servers

which use multiple processing units in separate chips interconnected via external buses.

The term multiprocessing is used for the ability of a system to support more than

one processor and/or the ability to allocate tasks between them [3]. However as the

processor technology comes closer to the edge of the Moore’slaw microchip producers

has begun to search for alternative ways to improve computing efficiency. As a result

they recently come up with the concept of multi-core computing. A multicore CPU

(or chip-level multiprocessor, CMP) combines two or more independent cores into a

single package containing a single piece silicon integrated circuit (IC), called die, or

more dies packaged together. A multicore microprocessor implements multiprocessing

1

in a single physical package. A system with N cores is effective when it is presented

with N or more threads concurrently. In this context, “multi” typically means a

relatively small number of cores. However, the technology is widely used in other

areas, especially those of embedded processors such as network processors and digital

signal processors, and in GPUs. Despite many advantages of parallel computing,

multicore CPUs face a very difficult disadvantage in terms oflegacy applications and

software needs. Those disadvantages include the requirement of operating system (OS)

support and adjustments to existing software to maximize utilization of the computing

resources provided by multicore processors. Also, the ability of multicore processors

to increase application performance depends on the use of multiple threads within

applications.

The studies in this thesis are directed towards increasing the performance of object

oriented software that runs on multicore processors. As theprocessor technology

continues increasing the number of cores in a single die, problem of decomposing

software for parallel run becomes graver as well. Until the last decade, most of

the parallelization efforts for solving this problem were aimed towards expensive

multiprocessor hardware and its programmer. As a result, there exist a wide

area of study that focuses on low level programming models that can be applied

at programming stage of software development by a limited number of elite

programmers. The studies in this thesis is aimed towards modern driven parallelization

of object oriented software in order to present a basis for parallel decomposition

that can be applied by a wider range of practitioners at earlystages of software

development.

1.1 Multi-core Computing

Chip multiprocessors, also known as multicore computing, involves more than one

processor placed on a single chip and can be thought of the most extreme form of

tightly-coupled multiprocessing. In fact Intel and AMD have recently announced their

multicore processors for PC usage. This is the first time whenparallel programming

methodologies are brought down from High Performance Computing to PC user

and developer level. Actually a multicore CPU is similar with multi processor

supercomputer processor architecture, except the processors are produced in a single

2

die physically. In Dual-Core architecture (like Intel’s) as seen in Figure 1.1 there exist

two processing elements with their own caches and a shared cache. These components

are connected to each other via internal buses. In AMD Opteron dual-core architecture

the main principles of NUMA is used in memory management.

It can be seen that multicore processors don’t bring any new concepts to parallel

computing models. It is more or less possible to use existingparallel programming

models like OpenMP and MPI with multicore systems. But thereexists two issues of

this situation. The first issue is the efficiency of the previous programming models

for application software development. It is clear that muchof the effort for parallel

computing is based on high performance computing and problems which are a little

bit more data centric. Secondly, with the introduction of heterogeneity, current parallel

programming models has begun losing efficiency in adapting complex core structures.

Figure 1.1: Diagram of a typical multiple multicore processor system.

Since the emerging of the multicore CPUs, programming environment didn’t change

much because dual cores perform well in multitasking and thus they barely meet the

expectations. But in the future (and even in today by quad-core users) matching

Amdahl’s law, multitasking performance will not be high enough. This is because

the user will not be able to produce as much tasks as the numberof CPUs at the same

time. This will result in computer performances equivalentto the speed of a few cores

3

but far less than the sum of all available. At this stage called manycore computing we

need to perform the parallel decomposition while programming the computer rather

than leaving it to the operating system.

The future of multicore computing is called manycore computing, where hundred

or even thousands of cores are interconnected in a variety ofdifferent ways, having

different number and sizes of cache memories. This can produce an exploitation

in the design space of processors and bring many different problems that software

developers haven’t expected to deal with before. One of the most serious problems is

producing scalable software that is going to meet performance expectations in a variety

of different processor architectures. Viability of producing such an effective solution to

this problem is beyond the scope of this discussion, on the other hand one may expect

to deal with a heavy load of refactoring effort in such a heterogeneous environment.

Refactoring code for every different processor architecture is an unbearable burden.

However, the perspective of today’s software engineering discipline is converging

towards automatic code generation and architecture software factories, utilizing model

driven engineering methods. It is possible to expect that, parallelization for different

processor architectures is going to take place among these efforts as the multicore

processors continue to develop.

1.2 Model Based Parallelization and Scheduling

In order to take advantage of multiple processors, sequential legacy software needs to

be refactored: it can be parallelized by injecting threads into the code and localizing

them on different processors or by distributing objects across processors. Doing so is

cumbersome since it requires intimate knowledge of the legacy software and detailed

code analysis.

Exploring parallelism implicit in software requires global analysis of the system which

is difficult by focusing on code alone. Consider the example of a web browser

originally designed for a single processor system: Say, this browser supports tabbed

browsing and uses a single address bar and navigation toolbar for all of its tabs.

A key decision when redesigning the browser for a parallel environment might be

to implement the tabs as separate threads while keeping address bar and navigation

4

toolbar shared sections among the tab threads. Alternatively, the address bar and

navigation toolbar could be embedded within the tabs and handled as part of a tab

thread.

How to realize such opportunities of parallelization by examining the source code and

looking for parallelizable constructs is not obvious. For object oriented software in

particular it is not always possible to find large bodies of consecutive instructions

within a single class, as methods are often purposefully kept short. Moreover,

just considering the interrelations between a few classes will not be helpful in

this example since all of these components–tool bar, address bar, and tabs–may be

involved in complicated class relations and class hierarchies provided by the leveraged

framework. Much unnecessary detail will be present in the code making analysis by

code inspection and refactoring difficult.

It may be more efficient to explore parallelization opportunities at a global scale by

relying on software models rather than by relying on code inspection. While due

to its familiarity it may be obvious to consider tabs as an opportunity to introduce

parallelism, there may be other less obvious opportunitiesimplicit in the design.

For less familiar domains, finding such opportunities will be more difficult. In

addition, model analysis is subjective and different designers inspecting the model

may arrive at different interpretations. Proposed approach attempts to overcome these

difficulties by identifying recurring structures in software models that have a bearing

on parallelization and then provide recipes for how to leverage these structures for

parallelization.

During thesis studies, UML class diagrams are chosen as the starting point to explore

the parallelism implicit in the structure of a software system. This may be unintuitive,

as class diagrams model the static structure of software. However class diagrams

also give important information about the runtime behaviorof the modeled system.

By analyzing concepts such as relationship cardinalities,dependency sequences, and

inheritance relations, one can draw inferences about possible manifestations of runtime

patterns these classes participate in.

Another key point in thesis studies is using software designpatterns to propose reusable

and scalable approaches for parallelization. Most of the time, proposed techniques are

5

experimented on intuitive implementations of software design patterns. The reason

behind this decision is the place of design patterns in today’s object oriented software.

Firstly, design patterns tend to be used frequently as the building blocks of software

design being more specific and descriptive in software design than classes but also

being modular enough to be used in a versatile way. Secondly,design patterns are seen

crucial in producing quality software because they are continuously improved through

time.

On the other hand using static UML class diagrams in making decisions that are

going to effect scheduling is not a heavily studied topic. Especially static models

are known as quite disconnected with the runtime behavior ofsoftware. However

class diagrams reflect the solution domain of the problem carrying information like

possible data sharing components of the software. Such information can be useful in

parallelization and scheduling of software because placing the parallel components of

software to allow effective data communication between them may be as important as

an effective parallelization. Based on these reasons usinga model-driven pattern based

methodology has helped to preserve the overall quality of the system whilst improving

performance of the software.

As a summary, processor technology has undergone a serious change in the last

decade by the introduction of multicore processors. Sooneror later, it is expected

to experience such an evolution in software technology as well. In this thesis, model

based approaches are proposed to be used through the evolution of object oriented

software. The possibility of preserving the overall quality while improving software

performance is discussed and the experimental results related to such discussions are

presented as main contributions.

1.3 Contributions and Dissertation Outline

Considering the expected shift towards integrating parallelization inside sequential

developed software, thesis studies are focused on developing methodology for

refactoring of sequential software for parallel systems using software models as

a medium. Instead of developing new programming models for parallel software

development, main focus is aiding software designers and developers in exploring

implicit parallelism that reside in software and steering operating system in a proper

6

way to enhance the data reuse between software components. Two main contributions

are presented in this dissertation towards this goal are:

• Model driven parallelization: The difficulties in using classes and/or conventional

design patterns are discussed. To overcome these difficulties a set of structural

patterns are proposed which emerge in class diagrams causedby the graph based

nature of the diagram. Following the definition of dependency patterns, metrics are

also proposed to identify their properties and also clustering methods are discussed

in detection of dependency patterns.

• Model driven scheduling: Shared data and cache utilizationof processors are

not yet handled by the modern operating system schedulers. Since dependency

patterns also capture possible common data usage among software components an

enhancement to apply a more cache aware scheduling is proposed using dependency

patterns and their properties.

The rest of the thesis is organized as follows: Chapter 2 contains previous studies as

a basis to thesis studies on model driven parallelization and scheduling. In Chapter 3,

dependency patterns are presented as recurring structuresin UML class diagrams and

their role in software parallelization is discussed. A metric set is also presented

Chapter 3 to perform finer-grained analysis on dependency diagrams. Finally the

usage of current clustering techniques in detecting dependency diagrams are discussed

and an improvement to clustering techniques is proposed. Anenhancement to

scheduling of object oriented software is proposed in Chapter 4. As the initial phase,

experiments of a cache-aware scheduler on design patterns are presented. Later an

object dispatcher implementation based on cache-aware scheduling methodology is

proposed and performance improvement gained by its application on an image filtering

software is discussed. The thesis is concluded by summarizing the achievement and

giving future directions in improving quality of object oriented software for multicore

processors.

7

8

2. RELATED WORK

In this thesis model driven methods have been used on improving quality of object

oriented software for parallel systems. The studies performed in this purpose have

been structured as two main parts which are based on model driven parallelism

exploration(Chapter 3) and model driven scheduling improvement(Chapter 4). Many

different studies exist in the literature that forms a basisfor our work and stand as

complementary approaches.

2.1 Model Driven Parallelization

Parallelization of Object Oriented Software is applied at many different stages of

software development. At program code level, [4] focus on automatically exploiting

implicit parallelism in loops and multi-way recursive methods. They have restructured

a Java compiler to specify implicitly parallel structures like loops in an explicit way.

Another transformation based study that parallelize loopsto improve performance is

by [5] where the transformations can be applied by an OpenMP compiler for Java

like JOMP [6] to exploit code level parallelism. [7] worked at the bytecode level to

provide mechanisms to parallelize Java applications and execute them on distributed

processors, without requiring the application programmerto explicitly use dedicated

message-passing libraries. In [8] and [9] an automatic parallelizing system based on

Java is designed and implemented where dependencies in the source code are analyzed

for implicit functional parallelism. On other approaches [10, 11], in addition to code

analysis, other environments such as compilers, run-time environments, operating

system kernels, etc., are utilized to exploit the implicit parallelism in object oriented

software.

At the model level, behavioral models (such as UML behavioral diagrams) have

been used to reason about different aspects of parallelizing object oriented software.

Sequence diagrams have been leveraged in timing analysis, synchronization and

deadlock detection in concurrent and distributed object systems [12–14]. Activity

9

diagrams have been used to analyze timing properties [13, 15]. [16] transformed UML

statechart diagrams to PROMELA specifications in order to apply the SPIN model

checker [17, 18]. Analysis need not be restricted to a singletype of behavioral diagram;

different UML diagrams may be included in the analysis [19–21]. Parallelizing

software based on its sequential model has also been studiedfor embedded systems.

For instance, [22] used a UML-based code-block-level modeling language to perform

containment-checking-based methodology for applicationpartitioning verification for

multiprocessor embedded systems.

Instead of using code analysis and dynamic models/object models in parallelizing

object oriented software, we analyze static class diagrams. These diagrams can be

obtained at the earliest stages of software design. [13] took advantage of stereotypes

applied to elements of class diagrams to aid in detecting deadlocks in distributed

object systems. [23] embedded an explicit CSP notation in UML class diagrams. [24]

used a graph model of the relationships between events created by the execution of

a distributed system to derive a model of the concurrent relationships in the same

system. A similar graph-based approach is used in this thesis studies to reason about

parallelism but instead of event relations class relationsare used. [25] utilizes use cases

to check whether the behavior of an entity complies with the composed behavior of its

sub-entities.

[26] proposed a system called COMPASS, providing guidelines on parallelization

process based on the former techniques applied by developers during

parallelization. [27] proposed a reverse engineering based method to facilitate

systematic migration of code from sequential to parallel processing environments.

Their approach constructs dependency graphs of FORTRAN programs and uses rule

based methods in parallelization.

Besides dependencies amongst software components, utilization of caches is another

important topic when parallelizing software for multicore/multiprocessor systems.

Cache locality is a well-studied problem which also gains importance as multicore

processors are becoming prevalent. An important area of research is modifying

scheduling mechanism of operating systems in order to take advantage of cache

memory, see [28–33].

10

In this thesis, parallelization solely based on examining interrelations among classes

is focused in Chapter 3. The guidelines on dependency pattern parallelization point to

the possible regions in asoftware modelthat should be examined when parallelizing

the software. Dependency graphs obtained from static classdiagrams of object

oriented software are used to reveal recurring structures in software models and to

reason about their parallelization. Following the presented approach, it is possible

to identify areas in the model that might benefit from parallelization. Presented

guidelines aid to structure the code derived from the areas of the model that have been

pinpointed by class diagram analysis, aiming to obtain performance improvements

from parallelization. Class diagrams can be used at the design stage before the system

is implemented or after reverse engineering of the code of a sequential legacy software

has been performed.

2.2 Model Driven Scheduling

For the last decade, mainstream in processor technology is chip multiprocessors, also

named as multicore processors, which involve multiple processing cores in a processor

die. By their nature, multicore processors utilize parallel running software where cores

are assigned to each thread produced by parallel decomposition of software. This

assignment operation is done by operating system schedulers, which put emphasis

on fairness and load-balancing problems rather than utilization of shared data among

threads.

As multicore architectures get more complicated, cache memories not only serve

as buffers for accelerating memory access of threads but also provide a rapid

communication medium for shared data among threads. Recentmulticore processor

architectures contain relatively smaller caches for each distinct core and larger shared

caches for the cores that reside on the same chip. It can be expected to encounter more

complicated cache hierarchies as the number of cores increase.

Aside from this situation, current operating system schedulers do not provide an

effective way to deal with cache utilization of processors yet. Instead, their primary

concern is more fair time-slicing of processing elements toprovide user balanced

running time of applications [34–37]. This is quite naturalsince operating system

scheduler is expected to run on a wide range of processor architectures and application

11

software. Leveraging different concerns in such a heterogeneous environment is a

serious challenge, that becomes more important as multicore processors continue

evolving towards manycore processors.

Improving operating system schedulers to take cache utilization into account is being

heavily studied by the community. In most of the studies, a single centralized solution

to replace the scheduler is proposed using data gathered from runtime profile of

software [28–33] [38–40]. Since proposed improvements areat operating system level,

software analysis are carried on lower level software structures like loops or thread

groups.

Using graph based techniques on scheduling has been appliedin a variety of different

cases. Earlier studies on using graph matching algorithms for parallel scheduling was

applied on multi-processor architectures. In [41], task graphs were used to identify

special tasks they call “backbone” tasks that carry the application. Using those

special structures they tried to map the task graph effectively onto a multiprocessor

system. Discovering special structures inside graph models of software forms the

roots of the studies in this thesis. Trifunovic and Knottenbelt used graph coloring

to effectively decompose parallel sparse matrix–vector multiplication algorithm [42].

Further information on utilization of task graphs in scheduling can be found in [43].

Later when the chip multiprocessor began to emerge, studieson scheduling by graph

matching began to focus on locality aware scheduling. In their paper, Guangyu Chen et

al. performed data aware scheduling in four steps [44]. In the first step, the application

code is parallelized and the resulting parallel threads areassigned to virtual processors.

The second step implements a virtual processor-to-physical processor mapping. In the

third step, data elements are mapped to memories attached toCMP nodes. The last

step of their approach determines the paths (between memories and processors) for

data to travel in an energy efficient manner. This strategy partly resembles the software

decomposition and mapping strategy presented in Chapter 3 except the process of the

amount of data being shared at the third and fourth steps of their study. A more

cache specific study is performed by [45]. They propose a new cache management

policy called Promotion/Insertion Pseudo-Partitioning (PIPP). Instead of explicitly

partitioning the cache by ways, sets or total occupancy, PIPP implicitly partitions the

cache by simply managing the insertion and promotion policies of the cache.

12

One of the latest studies that model the resources of the processor and the software

to perform matching between two models for multicore systems is done by [46]. In

their paper they introduce the Multi-BSP model to model all levels of an architecture

together. Later at each level, their Multi-BSP model incorporates memory size as a

further parameter. The goal of the study is to identify a bridging model on which

the community can agree, one which would influence the designof both software and

hardware. The proposed architectural model in Section 4.2.1 is a subset of his general

model which doesn’t take communication costs.

Previous work on cache-aware scheduling on multicore systems generally takes

advantage of dynamic information of software provided by runtime analysis [28–33].

This type of scheduling can be supported with the information obtained by static

analysis of software models and shared data between them. Wickzier et al. provide

annotations for the programmer to explicitly guide theirO2 scheduler called CoreTime

in managing shared data among multiple threads [38]. Xue et al. also proposed a

method claiming that static scheduling can be made localityaware by ensuring that

the set of iterations assigned to a processor exhibit data reuse [39]. In Chapter 4 a

further step has been taken and the impact of inter-class relationships of software’s

object oriented model is evaluated to guide its scheduling.

Another interesting point in Xue’s study is the usage of loops as recurring

software components in scheduling decisions. Loops are heavily used in software

parallelization/cache-utilization studies before. Tam et al. utilize threads as disjoint

components of parallel/concurrent software and schedule them based on sharing

patterns they pose at runtime [30]. In other words, they basically find coupled threads

at runtime and schedule them to share L2 caches. Federova et al. identify coupled

threads as co-runner threads and try to reduce performance variability caused by

cache-unfair scheduling of them [40]. In thesis studies coupled software components

at object oriented level has been focused and the data sharing classes’ objects (which

are already specified at software model/code) are used to guide the operating system’s

scheduler.

Using static software models is another rarely used subjectin cache-aware scheduling

studies. One of those studies that explicitly uses models and software abstractions in

maximizing cache reuse in multicore scheduling is done by [47]. They try to solve

13

optimal multicore scheduling problem by using a graph theoretic formulation and

answer set programming in their study. In this thesis objectoriented software models

are specifically used to reason about data sharing among software’s classes.

14

3. EXPLORING IMPLICIT PARALLELISM IN CLASS DIAGRAMS

In this chapter, analysis on static class diagrams of objectoriented software is going

to be focused and the impacts of the recurring structures detected by those analysis on

the parallelization process is going to be presented. Main goal in identifying those

recurring structures is gaining insight on characteristics of the software by relying

on the software model at hand. This way it can be possible to analyze software

characteristics from a parallelization perspective and use the detected recurring

structures in parallelizing object oriented software.

In Section 3.1 the relation between class diagrams and the parallelization process of

object oriented software using class diagrams will be examined briefly. In Section

3.2 dependency patterns will be presented as the frequentlyrecurring structures in

class diagrams and their impacts on the paralellization performance will be presented.

Examining the general properties of dependency diagrams further, a metric set will

be presented in Section 3.3 to allow better distinction among dependency patterns.

Finally in Section 3.4, two methods will be presented to detect dependency patterns

inside class diagrams.

3.1 Class Diagrams and Implicit Parallelism

Refactoring legacy application software is a crucial step in introducing the concepts of

parallelism into today’s software development efforts. When analyzing object oriented

software for parallelism, using diagrams that model classes and objects as well as

the relationship between them can be fruitful [48, 49]. Behavioral diagrams such

as sequence diagrams [13, 50] and activity diagrams [51] were used to reason about

timing aspects of object oriented software.

UML provides different specification techniques and diagrams to model the various

aspects of a software system. For example, static class diagrams model the classes

used in the software and the many kinds of relations that may exist between them;

15

sequence and communication diagrams represent the dynamicstructure of the software

by specifying message exchanges between objects. Therefore it would be quite natural

to investigate the dynamic structure of the software using abehavioral model in order

to detect opportunities for parallelization.

In practice, behavioral model analysis is not without difficulties. In particular, when

looking for opportunities for parallelization in a system-wide scope and attempt to

discover these opportunities in a top-down manner, sequence and communication

diagrams can be prohibitively complicated. Providing a detailed system-wide scenario

or processing a communication diagram consisting of all theclasses in software

system and the communications between these classes is usually not feasible without

applying abstractions. But finding appropriate abstractions or identifying suitable

decompositions of the software system is fraught with difficulties also, such as

ensuring consistency among different parts of the system model when recombining

them at the system level [50, 52, 53]. Without this global system view, it is only

possible to perform local analysis using such behavioral models.

Class diagrams have been used together with behavioral diagrams to connect software

behavior with software structure. A new relationship has been added between classes

to represent behavioral evolution, referred to as “contextrelation” [54]. Context

relations are used to model dynamically related classes at runtime. Two classes

are context related if one of them can dynamically affect thebehavior of the other.

A reflective architecture which provides the ability to change object behavior at

run-time by using design-time information was also proposed in the literature [55].

They integrated reflection with design patterns to get a flexible and easily adaptable

architecture that can dynamically adapt the software system to environmental changes.

In their approach, the system is divided into its structure described by its object model

and its behavior described by state and sequence diagrams. Structural evolution is

carried out by causal connection between these two layers.

Analyzing static class diagrams to reveal parallelism turns out to be helpful in a

variety of ways. Unlike for behavioral diagrams, obtaininga global class diagram

of the overall system is possible even without simplifying abstractions, albeit it may be

tedious. Further, as a practical consideration, it is much easier to obtain class diagrams

from a legacy system using reverse engineering techniques.Obtaining behavioral

16

diagrams may not even be feasible without a large set of test cases being available

such that these test cases cover every aspect of the system behavior. Moreover, reverse

engineering a behavioral diagram requires the system to be executed, which may

induce a large number of different diagrams based on the scenarios used to execute

the program.

In class diagrams, all possible object interactions that can occur at runtime are

represented by class relations; for instance an association between two classes means

that at runtime an interaction may occur between instances of these two classes.

Complete class diagrams represent the system as a whole, while each behavioral

diagram represents only a single runtime trace (or several traces, when inline constructs

are used). If two classes are unrelated in a class diagram onemay deduce that

they will not be related at runtime; however, it is not possible to conclude this from

communication diagrams. If it is possible to separate two independent regions inside

a class diagram, it may be possible to separate those regionsat runtime as well. By

identifying these regions, parallelizable parts of the software can be discovered.

An important advantage of leveraging dependency patterns in parallelization is that

they can be identified automatically using class diagrams. In the refactoring and

parallelization process, only identified portions of the resultant code need to be focused

on and a global and thorough analysis of the code can be avoided.

In this chapter, dependency patterns found in class diagrams are introduced and their

impact and guide on parallelization is illustrated. The impact of dependency patterns

on the parallelization of object-oriented application software is studied using several

familiar design patterns [56] and a case study of an open source compiler project Jikes

[57].

Jikes is a mid-size project consisting of roughly 250 classes and about 30 header

files written in C++. In the following experiments, three packages calledCLASS (39

classes),LOOKUP (41 classes), andAST (103 classes) were used. Class diagrams for

these packages are obtained by reverse engineering from header files, resulting in

medium to large size diagrams. Parallelism is injected intothe code sections resulting

from the design segments identified as dependency patterns.

17

3.2 Dependency Patterns in Class Diagrams

Dependency patterns can be identified using dependency relations extracted from class

diagrams. Similar concepts have been introduced by [58] whoapplied graph theoretic

techniques to UML class diagrams. Dependency is defined in the context of this study

as any direct usage relation among classes. These relationsinclude associations, as

well as access to attributes and method parameters. It does not include composition,

generalization, and realization relations; these relations will be considered in later

sections.

Dependency patterns may involve a single class and its dependencies to or from other

classes, as well as multiple classes and their dependenciesbetween each other and to

or from other classes. In the single-class case, a pattern consists of the single class

and dependencies to or from other classes outside the pattern. In the multi-class case,

dependency relations exist within the pattern in addition to dependencies to or from

classes outside the pattern.

3.2.1 Single-class dependency patterns

Single-class dependency patterns fall into the three categories “authority”, “hub”, and

“cycle”, based on the type of dependency relationships the class is involved in.

(a) Authority. (b) Hub. (c) Cycle.

Figure 3.1: Single-class dependency patterns.

• An authority is a class that is involved in a large number of dependencies from

other classes to this class, see Figure 3.1(a). In other words, an authority is a class

which other classes are coupled to. How many incoming dependencies are required

to constitute an authority class is subjective and may differ based on the situation. In

order for a class to be identified as an authority, it should have a significant portion

of dependencies among all the dependencies present on the class diagram.

18

• A hub is a class that has a large number of dependencies to other classes, see

Figure 3.1(b), that is, it is coupled to a number of other classes in a noticeable way.

Similarly to an authority class, its identification is subjective and relative to other

dependencies found on the class diagram.

• A cycle is a class that has a dependency to itself, see Figure 3.1(c).Identifying a

class as a cycle is simple as it merely requires detecting a self-dependency.

Authorities and hubs are important in terms of parallelization since they have the

potential to be accessed frequently at runtime. Cycles are also important because they

show the potential for sequential behavior to be imposed at runtime which needs to be

avoided in order to effectively parallelize such patterns.

3.2.2 Multi-class dependency patterns

Multi-class dependency patterns fall into the categories “bridge” and “island”. These

categories are formed with respect to the dependency relation that exists within the

pattern.

(a) Authority Bridge. (b) Hub Bridge. (c) Flow Bridge.

(d) Island.

Figure 3.2: Multi-class dependency patterns.

• A bridge consists of a group of classes where each class in the patternhas common

dependencies to at least two classes. Classes may be membersof multiple bridges,

and therefore have additional dependencies to other classes outside the pattern.

In addition, classes in a bridge may also have dependencies between each other.

19

(These kind of dependencies are rare in practice.) Bridges come in the form of “hub

bridge”,“authority bridge”, and “flow bridge” which resultfrom their relationship

to classes outside the pattern. Figure 3.2(a) shows an “authority bridge” where

common source classes have dependencies to the classes inside the bridge pattern.

Figure 3.2(b) shows a “hub bridge” where all the classes inside the bridge have

dependencies to a common set of target classes. In a “flow bridge”, as shown

in Figure 3.2(c), the classes inside the bridge pattern havedependencies from a

common set of source classes and to a common set of destination classes.

• In anisland pattern, members of the pattern have most of their dependencies within

the pattern, see Figure 3.2(d). Islands form clusters in thedependency graph and

can be detected using clustering techniques [59–61].

Classes inside an island are strongly coupled with each other and objects of these

classes can be assigned to the same (or nearby) processing elements to benefit from

cache reuse since they tend to communicate frequently amongst each other. During

the experiments it is observed that bridges represent alternating behavior at runtime

which often results from polymorphism.

Figures A.1, A.2, and A.3 show the class diagrams for three different modules of the

Jikes compiler [57],CLASS, LOOKUP, andAST. In these diagrams, many occurrences of

above dependency patterns can be identified easily.

3.2.3 Occurances of dependency patterns

Interpreting dependency patterns based only on their dependency relations does not

provide us with enough detail to infer the properties they impose at runtime. Relations

like inheritance and composition can provide additional information. For instance, a

class may be determined to be an authority since it has many dependency relations

to other classes, however this structure does not always imply that the dependencies

concern common aspects of the system behavior. On the other hand, knowing that the

authority is also at the top of a class hierarchy provides additional valuable information

about the pattern: the authority class is being used in a polymorphic way and all

dependencies are focused on a smaller set of behaviors. Likewise, detecting that a

class as a hub is not enough to immediately allows us to conclude that it can be

parallelized since having many dependencies towards otherclasses does not require

20

them to be independent. Knowing that a hub creates many objects allows us to infer

that the resultant objects can be handled independently from each other. In order to

augment dependency relations with other important relationships between classes, [58]

considers these relationships as one single relation. However, this analysis results in a

loss of precision in terms of inter-class relations.

Examples of such differences in patterns can be seen in the Jikes case study, where

the same kind of pattern occurs for entirely different properties. One example involves

the classesAstExpression andStoragePool (see Figure A.3). Although these two

classes are determined to be authority classes through dependency graph analysis,

they perform very different roles.AstExpression is a superclass, representing

expressions in the abstract syntax tree (AST) whileStoragePool is a container

class holding different types of AST elements during the compilation process. It is

expected thatAstExpression will be used by a smaller number of class instances

thanStoragePool.

Another example involves hub classes.ClassFile, FieldInfo, andMethodInfo
from theCLASS module of Jikes (see Figure A.1), are hubs that are at the sources of a

bridge and connect mostly with bridge classes. In contrast,the hub classControl from

the LOOKUP module (see Figure A.2), has various kinds of external dependencies to

authorities, bridge classes, and classes inside islands. It also constructs and initializes

a bigger number of objects than the earlier mentioned hubs.

A final example involves two different bridges, again from Jikes. Comparing the bridge

shown in the center of Figure A.1 to the bridge shown at the upper left of Figure A.3

consisting of classesAstForeahStatement and AstCathClause. The former

bridge holds classes that are used in an alternating way during attribute processing

when compiling source code. A similar frequent use cannot befound for the latter.

Thus, based on an analysis of dependencies only a number of patterns may be arrived

having different roles and properties that affect parallelization differently. Such

patterns should be separated by considering additional relations, other than dependency

relations. This poses an additional challenge as one may obtain numerous dependency

patterns from dependency graph analysis. Examining each occurrence of a pattern one

by one and trying to find common properties they represent is tedious and complicated.

21

Relevant properties of patterns need to be expressed explicitly and consistently to

improve the definition of simple dependency patterns.

By studying the typical relationships that classes in dependency patterns partake in, it is

determined that hub and authority classes tend to be ancestor classes, tightly coupled to

other classes, and mostly use other classes in the pattern. Bridges are typically sibling

classes with little or no relation to another class and to classes outside the pattern.

Thus the following typical occurrences of dependency patterns in class diagrams are

identified. These examples instantiate dependency patterns and also consider relations

such as inheritance, association, and composition. The impact of parallelization of

these patterns are highlighted for each case.

• An authority superclass, see Figure 3.3(a), is placed at the top of an inheritance

hierarchy. The following points should be taken into consideration when

parallelizing such classes:

– Authority superclasses encapsulate common information for its descendants.

Usually, descendants are used in a polymorphic way.

– Heavily used portions in an authority superclass that are inherited to its

subclasses should be protected against parallel access.

– Sections of its subclasses that hold common synchronization properties can be

abstracted in the authority superclass.

• One authority to many sub-classesconsists of two classes with a one-to-many

relation between them, where the authority class has cardinality 1 and the “many”

side of the relationship is a superclass in a class hierarchy, see Figure 3.3(b). The

authority must not have any descendants in this case. The following points should

be taken into consideration when parallelizing such classes:

– The authority class becomes a local critical section.

– There exist independent links towards the authority class form the many

side(Class B) which can be executed in parallel.

– The consistency of the concurrently accessed authority class attributes must

be assured.

22

Class A Class A

(a) Authority Superclass

Class A Class B

Class A1 *

(b) One authority to many sub-classes

Class A

(c) A Hub as a Master Class

Class A Class A

(d) Self-dependent Class

Class A Class B

Class A

Class B

Class C

Class C

(e)Sibling Bridge Classes

Figure 3.3: Dependency pattern occurrences in class diagrams.

• A hub class can be identified as amaster classif it has many composition or

aggregation relations to other classes, see Figure 3.3(c).The following points

should be taken into consideration when parallelizing suchclasses:

– A hub class uses many objects frequently in order to orchestrate system

behavior.

– Introduce parallelism to the class directly by analyzing independent portions

of its methods.

– Traditional parallelization opportunities like loop parallelization can be

spotted easier in this type of class.

23

• Self-dependent classeshave dependencies to themselves or to their ancestor class,

see Figure 3.3(d). The following points should be taken intoconsideration when

parallelizing such classes:

– Self-dependencies negatively affect parallelization as they usually impose

sequential behavior.

– Such dependencies should be eliminated by transforming these patterns to

parallelizable structures (e.g., by transforming access to a linked list into a

table access)

– Often, these classes tend to include global variables or class variables. Such

variables should be eliminated as much as possible.

• For bridge classes, some or all classes in a bridge element are siblings in the class

hierarchy, see Figure 3.3(e). Following points should be taken into consideration

when parallelizing such classes:

– Bridge classes are frequently accessed in an alternating way, making it

possible to introduce parallelism on bridge access. Sections of code that use

bridge classes should be parallelized.

– If the bridge is a hub bridge, instances of the sibling classes can be distributed

freely over available processors. The opposite ends of the bridge should be

synchronized since they are accessed in parallel by the bridge classes.

– If the bridge is an authority/flow bridge, instances of the sibling classes should

be distributed once and localized (that is, they should not be migrated among

processing elements). The rationale behind this policy is to avoid having the

processing elements wait for each other in the case where objects of the same

class are synchronized during object access.

– An object distribution policy can be implemented in the ancestor class and can

be inherited in descendant bridge classes.

3.2.4 Parallelization using dependency patterns

In this Section, implementations of the Observer, Decorator, and Abstract Factory

design patterns [56] are used to demonstrate the parallelization of dependency patterns.

Successively, IBM Java Jikes compiler [57] is analyzed as a case study to identify

occurrences of dependency patterns in real-life systems and to study their effects on

24

parallelization. The examples and the case study are parallelized using the guidelines

that have been introduced in the previous sections. Experiments are performed using

a four Intel 2.6 GHz Xeon processor system running under a Linux 2.6 kernel. C++ is

used as implementation language since it provides a basic API for the pthreadlibrary

which allows to bind the execution of threads on a CPU basis.

The pthread library allows thread distribution via theshed_setaffinity andCPU_SET functions. By passing a bit mask to these methods, developercan specify

the processing elements for the calling thread to run. If multiple bits of the mask are

set, the operating system schedules the thread among the selected processing elements.

By usingpthreadfunctions, an object’s method can be programmed as a thread and can

be bound to a processing element allowing to explicitly program distribution schemes

for the objects.

Our usage ofpthread library and shed_setaffinity function on a sequential

implementation of thenotifyObservers() method in the Observer pattern given in

Figure 3.4. In the sequential implementation all the observers (denoted asobservers)

registered to the subject are notified in a loop sequentially.

1 vo id S u b j e c t : : n o t i f y O b s e r v e r s () {
2 f o r (i n t i =0 ; i <numOfObs ; i ++)
3 o b s e r v e r s [i]−> n o t i f y (t h i s −> s t a t e) ;
4 }

Figure 3.4: Sequential implementation ofnotifyObservers.

The parallelized version of thenotifyObservers() method is shown in Figure 3.5.

Instead of sequentially calling each observer’snotify() method, a new thread is

created for eachnotify() call (at line 8) and provided with thread specific information

usingobserverData. In this data structure, the observer object that is going tobe

updated (line 4), the affinity of the observer thread (line 5)and the state of the subject

(line 6) are passed to the observer thread.

In this example, the processor affinities of the observer threads are determined using

a round robin scheduling algorithm. Briefly, in the subject’s notification loop a new

thread is created for each observer passing observer specific data to the thread as

parameter. The actual processor assignment and observer notification process is carried

out in the thread’s function (obs_thr) shown in Figure 3.6 which is nothing but an

ordinary function that is conventionally used inpthread programming.

25

1 vo id S u b j e c t : : n o t i f y O b s e r v e r s () {
2
3 f o r (i n t i =0 ; i <numOfObs ; i ++){
4 o b s e r v e r D a t a [i]−>obs= o b s e r v e r s [i] ;
5 o b s e r v e r D a t a [i]−> a f f i n i t y = i%numOfPRoc ;
6 o b s e r v e r D a t a [i]−> s t a t e =t h i s −> s t a t e ;
7
8 i f (p t h r e a d _ c r e a t e (& p _ t h r e a d [i] , NULL, obs_ th r ,
9 o b s e r v e r D a t a) != 0)

10 f p r i n t f (s t d e r r , " E r r o r c r e a t i n g t h e t h r e a d ") ;
11 }
12
13 f o r (i n t i =0 ; i <numOfObs ; i ++)
14 p t h r e a d _ j o i n (p _ t h r e a d [i] , NULL) ;
15 }

Figure 3.5: Parallelized implementation ofnotifyObservers.

The function that is executed for each observer thread is presented in Figure 3.6. After

saving the parameter that has been passed to the thread (line2), the bit mask holding

the processor affinity of the thread is set (line 5). Processor binding is performed right

after the bit mask is set (line 7) and finally the observer’snotify method is called (line

10), updating the status of the observer.

1 vo id ∗ o b s _ t h r (vo id ∗ a rg) {
2 OBSERVERDATA∗ oData =(OBSERVERDATA∗) a rg ;
3 c p u _ s e t _ t mask ;
4
5 CPU_SET(oData−> a f f i n i t y , &mask) ;
6
7 i f (s c h e d _ s e t a f f i n i t y (0 , &mask) <0)
8 p e r r o r (" s c h e d _ s e t a f f i n i t y ") ;
9

10 (oData−>obs)−> n o t i f y (oData−> s t a t e) ;
11 }

Figure 3.6: Observer’s update thread.

During design pattern implementation, each object in a pattern is programmed as a

separate thread with a dummy workload. Many different examples of dependency

patterns can be found in the case study; more notable ones arefocused below. In all

the plots presented below, y-axis represents normalized runtime performance.

ρi =
1
Ti

(3.1)

ρn =
ρi

ρ(best)
i

×100 (3.2)

In Equations(3.1) and (3.2), Ti represents avarage running time for each case,ρi

represents performance of each case andρ(best)
i is the best performance(lowestTi ,

26

highestρi) among all measurements for the plot at hand. Multiplicating the result

by 100 enables to easily read the performance differences between measurements with

terms of percentage.

3.2.4.1 Dependency pattern occurences in selected design patterns

A “one authority to many sub-classes” pattern can be found inthe observer design

pattern shown in Figure 3.7(a). Based on the above describedguidelines, subclasses

of theObserver should be distributed and theSubjet class should be synchronized.

For this pattern, we study the effect of distributing a pool of identical workloaded

observers over multiple processors, in order to see if distribution of observers improves

the overall performance of the system. Each observer is configured to have an equal

amount of latency when the update to the subject is posted to each observer. The

time spent after a number of update operations is evaluated for different numbers of

observer objects running on the utilized processors.

Figure 3.7(b) shows the performance of the parallelizationfor different number of

processors (processing elements). Because of the read-only behavior of the pattern all

processing elements are fully utilized. The plot shows how the performance increases

linearly with the number of processors.

In a loop, theSubjet updates all observers sequentially. Updating is independent

for each observer, and therefore can be performed in parallel. The state variable

should be synchronized since race conditions can occur during the state change of theSubjet. An observer can obtain an inaccurate value if theSubjet tries to change

its state during the update. [62] contains a more detailed discussion of the experiments

with the observer pattern.

The decorator pattern shown in Figure 3.8(a) exhibits self-dependency. This is handled

by decomposing the class introducing a “has-a” relation.ConreteComponent is

decomposed into manySubComponents and access to eachSubComponent by the

decorator is parallelized.

Parallelization of the decorator pattern is performed in a way so that each decorator

operates in parallel on a differentSubComponent object and only one decorator can

operate on aSubComponent object at a time, makingSubComponent objects critical

sections. Instead of using only one critical section (theConreteComponent), certain

27

(a) Observer Design Pattern.

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

Number of processor cores

1 Observer
2 Observers
3 Observers
4 Observers
8 Observers

(b) Observer Parallelization Performance.

Figure 3.7: Parallelization of observer.

elements of the class are decomposed and isolated into many different classes calledSubComponents that act as separate critical sections. The self-dependency pattern can

be used in spotting such opportunities for parallelism.

The performance results for the parallelized decorator pattern are shown in

Figure 3.8(b). The speed-up continues until the number of subcomponents reaches

the number of processors (processing elements). Also, if the number of components

goes beyond the number of processor, performance degrades.There exists a natural

bound on the number of sub-components as they must be protected as critical sections.

Here the dependency pattern enables the software developerto make implementation

decisions as to how many threads to employ based on observingthat the relation

28

(a) Decorator Design Pattern.

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

Number of processor cores

1 SubComponent
2 SubComponents
4 SubComponents
6 SubComponents
8 SubComponents

(b) Decorator Parallelization Performance.

Figure 3.8: Parallelization of decorator.

between the number ofSubComponents and the number of processing elements affects

performance. [63] provides additional information concering these experiments for the

decorator pattern.

In the abstract factory pattern shown in Figure 3.9(a), a “flow bridge” is present

where a client is dependent on each concrete factory and eachconcrete factory is

dependent on the interface namedClass. Figure 3.9(b) shows the performance of

our implementation when factory objects are distributed among processors (processing

elements) manually in an ordered fashion. Each type of factory object is responsible

of creating objects of the same type. (Object creation is represented by a specific

29

(a) Abstract Factory Design Pattern.

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

Number of processor cores

1 Factory
2 Factories
3 Factories
4 Factories

(b) Abstract Factory Parallelization Performance.

Figure 3.9: Parallelization of abstract factory.

workload value where a factory spends a predetermined amount of time during object

creation.)

During the experiments with factories, when the number of processors is equal to

the number of concrete factories, a concrete factory is always assigned to the same

processor which means that each processor always creates only one kind of object. In

a less balanced distribution, processors may produce different kinds of objects each

time it is necessary to create an object. This results in different processors waiting for

each other in order to gain access to the singleton concrete factories. For a two system

with two processing elements, optimal number of concrete factories are multiples of

two while for a three processor system this number becomes multiples of three and for

a four processor system it becomes multiples of four. It is important here to remember

30

object distribution is made with standard scheduling algorithm where each object that

is requested to be created, its creator factory is assigned to the processor in a round

robin way, more formally like in Equation(3.3).affinity(Oi) = i mod k (3.3)affinity(Oi) is function that sets the affinity for each object to be created in the

system andk is the number of processing elements available. It is assumed that each

kind of object is requested to be created sequentially. Looking at our distribution

scheme it is natural to have this as a result. When the number of processors is

equal to the number of concrete factories, a concrete factory is always assigned to

a processor which means that processor always creates one kind of object. In a less

balanced distribution where number of processors is not a factor of number of types

of concrete factories, each processors may produce a different kind of object each

time. This results in different processors waiting for eachother in order to gain access

to the Singleton concrete factory. This result is quite important because we see the

importance of locality in a parallel environment where keeping a constant concrete

factory in each processor increases the performance more than simple parallelization.

Here the importance of locality in a parallel environment can be seen where keeping the

same concrete factory in a processor increases the performance more than randomly

distributing factory objects. This leads to the principle that frequently accessed

synchronized objects of a flow bridge should be bound to specific processors instead

of being migrated often. This result conforms with the guidelines proposed in

Section 3.2.3.

3.2.4.2 Dependency patterns in a real-world software

The Jikes case study exhibits many examples of dependency patterns. The classControl is a “master class” shown in Figures 3.10 and 3.11. In this class, the main

functions of the compilation process, such as lexical analysis (scanner), syntactic and

semantic analysis (parser), and code generation, are triggered. Further, if several files

are compiled, these separate compilations are handledsequentiallyby loops in theControl class. By parallelizing theControl class detected by dependency pattern

analysis the compilation process can be parallelized. The compilation process involves

31

many independent operations (such as syntactic analysis ofeach file) that can be

performed in parallel when compiling multiple files.

After injecting parallelism into detected regions, a performance improvement can be

seen for multi-file compilation as shown in Figure 3.12. The performance results

for different numbers of processors are obtained compilingsimilarly sized files and

compiling files with very different sizes. After parallelizing the above loops, instances

of Sanner, Parser, andStoragePool are executed in each thread. The dependency

diagram forControl (see Figure 3.11) reveals a dependency relation from these

classes toControl. Therefore, all of the dependent classes ofControl become

candidates as thread parameters.

Figure 3.10: Control as a master class (also seeControl’s complete dependency
diagram in Figure A.2).

As a compiler has an inherently sequential nature, parallelizing the independent

file compilation process is one of the more beneficial optimizations. Naturally,

performance improvement for file compilation is not as greatas for the small examples

of the design patterns: a performance improvement of approximately 10% can be

seen in Figure 3.12. This performance improvement is obtained without any detailed

insight into the software being parallelized, merely by parallelizing a few loops found

in inspecting the class identified as a dependency pattern. With additional insight into

the software and applying parallelization at the initial implementation of the system,

further improvement in performance might be obtained.

32

Figure 3.11: Dependency relations ofControl.

For parallelization it is not sufficient to solely discover parallelizable sections.

Important locales in the software that need to be protected against race conditions

caused by parallel access should be discovered as well. The first locales to look for

such conditions are regions of the design where dependency relations are concentrated.

Those regions may experience interactions of the many relations they hold to other

classes. Dependency patterns allow us to locate such potentially interacting code

sections without requiring runtime information. An authority superclass is not only

a frequently accessed part of the software by being an authority, but also encapsulates

common information among its descendants by being a superclass. Consequentially,

an authority superclass will often be used frequently at runtime and may require

synchronization when parallelizing.

The classAstExpression from the case study illustrates the properties of an authority

superclass as shown in Figure 3.13.AstExpression is a generalization that represents

the various nodes of the syntax tree. Due to the dense dependency relations of the

superclass, these nodes will be frequently referenced in a polymorphic way. The

sub-classes differ only with respect to a small set of their properties but have much

in common. When the compiler is parallelized they should share synchronization

properties andAstExpression as their superclass will be a good place to handle this

synchronization.

For example, other than its constructors,AstExpression has only one base class

method,IsConstant(), which is responsible to check the value of a public instance

33

 70

 75

 80

 85

 90

 95

 100

 105

 0 1 2 3 4 5

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

Number of processor cores

1 File
2 Files
4 Files
8 Files

(a) Compilation of uniform length files.

 80

 85

 90

 95

 100

 105

 110

 0 1 2 3 4 5

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

Number of processor cores

1 File
2 Files
4 Files
8 Files

(b) Compilation of varying length files.

Figure 3.12: Jikes performance improvement by master class parallelization.

variable. Although this method is a one-liner, it is called often during compilation.

For example, when compiling 400 lines of Java code, this method is called from 730

different objects, where each object calls this function approximately 5 times. This

heavy access traffic to the method makes it a potential critical section. Paying extra

attention to synchronization points such as in this examplewill prevent race conditions

that may occur in instance variables ofAstExpression.

34

(a) AstExpression Dependencies (also seeAstExpression’s complete
dependency diagram in Figure A.3).

(b) AstExpression inheritance relations.

Figure 3.13: AstExpression as an authority superclass.

Parallelism is injected to those regions where authority superclass objects are accessed

frequently. Figure 3.14 shows a small performance speed-upin a four processor system

as the workload of the authority superclass increases.

An example of a bridge pattern can be seen in Figure 3.15 (the complete dependency

diagram ofCLASS is shown in Figure A.1), where a subset of the descendants ofAttribute form an authority bridge. In the implementation of the classes at the

ends of the bridge, indicated by S in Figure 3.15(a), bridge objects are used in a

similar alternating way when they are accessed in loops.ClassFile, MethodInfo
andFieldInfo maintain instances of subclasses ofAttributeInfo in a buffer array

35

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40 45

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

Additional workload

Unimproved
Authority Parallelized

(a) Single-file compilation performance.

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

Additional workload

Unimproved
Authority Parallelized

(b) Multi-file compilation performance.

Figure 3.14: Parallelization of authority superclass.

which is then iterated over in the mentioned loops. This situation needs special care

while distributing and recombining the buffer of the bridgeobjects.

A bridge object access can be found in the constructor for above classes. The

constructor method contains a switch statement in which appropriate actions are taken

depending on the attribute type. This switch is executed many times in a loop for

eachAttributeInfo object. By parallelizing this loop the performance improvement

shown in Figure 3.16 is obtained, as the workload of the operation increases in a four

processor system.

36

(a) AttributeInfo Dependencies (also seeAttributeInfo’s complete
dependency diagram in Figure A.1).

(b) AttributeInfo inheritance relations.

Figure 3.15: AttributeInfo descendent’s as a hub bridge.

Another example of a bridge can be seen in Figure A.3 where a subset of

the descendants ofAstStatement form a hub bridge betweenAstBlok andAstExpression. All classes that are part of the bridge are statements whichare

excessively processed inside a method of the bytecode generator class. This method

contains a huge switch statement in which appropriate actions are taken depending

on the statement type. This method is called in a loop, successively processing each

statement based on a polymorphic parameter. When parallelizing this loop, the two

ends of the bridge(AstStatement and AstExpression) become important as they

need to be protected against parallel access. The findings for AstExpression as an

authority superclass also coincide with the role of this class in the bridge pattern.

Dependency pattern analysis provides two different advantages when analyzing a

software design. The first advantage is the possible performance improvement by

pinpointing opportunities for parallelization. The second advantage is the identification

37

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

Additional workload

Unimproved
Bridge Improvement

(a) Single-file compilation performance.

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

Additional workload

Unimproved
Bridge Improvement

(b) Multi-file compilation performance.

Figure 3.16: Parallelization of authority bridge. The horizontal axis indicates the
additional workload handled by the parallelized system: A value of “10”
means that each bridge class handles a 10 times larger workload than in
the unparallelized version.

38

of inherently sequential regions which have the potential to cause bottlenecks for

system performance. Developers can leverage workload by loading the inherently

sequential regions as lightly as possible and shifting the workload to the parallelizable

regions. For example, in a web browser, replicating the address and navigation bars

in each tab can be a good parallelization opportunity and minimize a potential bottle

neck. It is better to have bridge classes with large workloads rather than concentrating

the workload in authority superclasses.

3.3 A Metric Set for Dependency Patterns

Software metrics are the means of measurement that are becoming increasingly

popular for modern object oriented software. Metrics can beused to measure some

property of a piece of software or its specifications. Software metrics are not specific to

object oriented software or their application area is not specific to programming stage;

there also exist metrics for imperative software or metricsfor software design. Metric

usage address to make estimations on various aspects of software like robustness,

maintainability and reusability.

Measuring software properties is an important and yet a vague area of software

engineering. Many different metrics have been proposed through time considering

different properties of software. What makes the area vagueis that it has

never been possible to completely define all the attributes that a specific metric

represent. Moreover, it is very hard to empirically validate an exact recipe using

metrics that increase the software quality. Software quality being a subjective and

multi-dimensional concept, is the main reason behind thesedifficulties. In order to

define metrics serving their cause as much as possible, it is important to precisely

define their application domain and the attributes of software that they measure. During

the thesis studies, dependency patterns are chosen as the application domain of the

metrics to be defined.

In this section metric definitions to conduct a finer analysison individual properties of

dependency patterns and their place in object oriented software are presented. A finer

analysis for dependency patterns is needed because of many reasons. Some of those

reasons can be listed as follows:

39

• A distinction/quantification is needed among occurrences of individual patterns

types inside class diagrams according to the different properties they have. When

they are detected based on their general definitions a crisp distinction between

pattern types can be obtained. However by measuring detailed properties using

metrics a more continuous distinction among dependency patterns can be obtained.

• In some cases, arbitrary classes/class groups can contain dependencies coinciding

with specific dependency patterns. It is needed to sort out those false alarms by

analyzing their specific properties deeper and having a deeper insight about their

role in class diagrams.

• Current metrics in the literature are not defined to measure specific properties of

dependency patterns and needs to be tailored(and new metrics need to be defined)

for dependency patterns.

Enriching the specification power of dependency patterns using design metrics can

provide a stronger connection between static software design and runtime behavior of

the software. This will allow the designer to gain a better foresight on implementation

stage of software. By defining dependency pattern specific metrics it will be possible to

relate them with software parallelization concepts providing recipes based on metric

values. When the dependency patterns are used as a connection between static and

dynamic properties of software they can provide a basis for establishing a connection

between software design metrics and parallelization as well. Another advantage of

using dependency pattern based metrics is obtaining groupsof classes formed by

a particular grouping strategy defined by dependency patterns. Previous studies on

design metrics for groups of classes only use software packages as subjects.

3.3.1 Related work on pattern metrics

Through the history of object oriented software development, metrics have been an

important mean of measurement in evaluating quality of different software aspects. It is

not possible to define a single recipe for assessing quality because it has many different

dimensions as a concept. For this reason the process of metric derivation becomes more

effective if a metric at hand is shown to be theoretically valid in measuring properties

of software which it was designed to assess.

40

Quality assurance methods becomes more effective when theyare applied at initial

phases of system implementation. Design phase is one of these early stages where

pictures of the software are drawn from different perspectives. Chidamber and

Kemerer carried out pioneering work [64] in the field of software design metrics, which

have been used as a touchstone in many of succeeding studies.For instance Harrison

et al. compared MOOD metric set [65] with Chidamber’s metrics to show that two sets

are complementary and offer different assessments of a system [66]. Later Bansiya and

Davis extended this metric set [67] to build a hierarchical method for object oriented

quality assessment. Briand et al. also made important studies especially about the

coupling metrics [68, 69] of object oriented software design.

For the field of parallel software, performance is the primary concern leading the field

towards developing performance metrics. One of the earliest examples is DePaoli

and Morasca’s work on adopting complexity metrics, like McCabe’s cyclomatic

complexity [70], to concurrent Ada software. Many other performance models/metrics

exist in literature like [71] in which resource metrics are used to characterize the

various models of parallel computation. Another example isHollingsworth and Miller

utilizing existing performance metrics in a new technique which they call “True

Zeroing“ [72]. Parallelization metrics are defined at a lower level compared to object

oriented design metrics and in the last decade a few studies exist that relate the two

distinct fields. One of these studies is by [73], where they describe how to measure and

attribute arbitrary performance metrics for a high-level multithreaded programming

model known as Cilk [74].

The relation between software design metrics and design patterns are also another field

of study where most of the research is being done on detectingdesign patterns using

design metrics. And et al. conducted a study on this subject [75] where they feed a

multi-stage reduction strategy based approach with objectoriented software metrics

to extract structural design patterns from software design/code. Another study [76]

use metrics to measure the improvement when software designpatterns are used in

software development. Lastly, Robert Martin described a set of dependency metrics

that measure the conformance of a design to the desirable pattern [77].

Almost all of the examples above are class centric methods orquality assessment

models based on class metrics where relations among groups of classes are ignored

41

most of the time for a simple reason: lacking a stable grouping principle. Robert C.

Martin’s software package metrics [78] satisfies this shortage by defining the grouping

principle as software packages, hence allow to infer about dependencies among classes

vastly. However dependencies are not specific to inter-package relationships; they also

exist among classes in a package. On the other hand, it is important to remember again

a stable grouping principle is needed, in order to define and apply metrics over groups

of classes and relationship among those.

Following all the information above, a missing piece of the puzzle can be found

out in relationships among software design metrics, parallel software, design patterns

and multi-class dependency metrics. Dependency patterns,stand at a place between

parallel software and object oriented software design. They fill the gap between the

expression of logical concurrency in software and its realization at run-time. Software

design can be assessed regarding parallelization using dependency patterns by using

the proposed metrics and effects of these properties on the software implementation.

3.3.2 Dependency pattern specific metrics

In this section a set of metrics is proposed for each type of dependency patterns

introduced in the last section. Metrics are exemplified using simple examples and

interpretations of the possible metric values are explained. After metric definitions,

a study on correlation among the metrics is also presented, showing that the metrics

cover different attributes of patterns. It is important to cite that some of the metrics

below are adapted to dependency patterns from software package metrics [78].

3.3.2.1 Hub/Authority metrics

Ratio of Dependency Directions

Ratio of Dependency Directions(RDD) of a class measures dominance of its

afferent/efferent dependencies using the ratio of the difference between its afferent

and efferent dependencies over its total number of dependencies. More formally:RDD= Dout−Din

Dtot
(3.4)

In Equation(3.4), Dout represents the number of direct dependencies of the class

towards other classes whileDin represents number of direct dependencies to the class

42

and Dtot represents total number of dependencies that the class have. For instance

RDD will be calculated as 0.2 ((3-2)/5) forClass S in Figure 3.17

S

B

D

A

C

Figure 3.17: An example class for hub/authority metrics.

RDD defines the amount of hubness/authorityness of a class; if the metric values

is close to 1, class at hand shows hub properties and if metricvalue is close to -1

the class shows authority properties. This metric should beapplied after a class

has been selected as a hub/authority. For instance a class with only two efferent

dependencies can be said to have hub properties using this metric. However it has

too few dependencies to be identified as a hub or an authority.

In terms of parallelization, having a RDD closer to 0 indicates a higher parallelization

effort. In this case, class’ afferent and efferent usage is balanced which brings out

lots of possible dependency conflicts in software. On the other hand if the metric is

closer to 1, parts of class showing hub properties can be isolated easier, making the

class suitable for introducing parallelization. When the metric is closer to -1, this is

an indication of a heavier synchronization work since classis mostly used by other

classes.

Ratio of Singular Dependencies

Ratio of Singular Dependencies(RSD) of a class measures dominance of singly

dependent class dependencies to/from the subject class. More formally:RSD= Dsng

Dtot
(3.5)

In Equation(3.5), Dsng represents the number of direct dependencies that has been

solely made to the subject class andDtot represents total number of dependencies that

the subject class have. For instance RSD will be calculated as 0.6 (3/5) for the class

in Figure 3.17 sinceClass B andClass D has dependencies only toClass S not to

another class whileClass A andClass C has other dependencies as well.

43

RSD defines the amount of independence of a class and its dependents as a whole;

if the metric values is close to 1 class at hand and the classesthat have dependency

relationships with it can be handled more independently from the rest of the system.

Also if the classes that have their only relationship with the subject class are also the

children of the subject class, this can be a good indication of polymorphic usage.

In terms of parallelization, having a RSD closer to 1 indicates an easier parallelization

process since the developer would only be concerned about singular dependencies

towards/from the class at hand.

3.3.2.2 Cycle metrics

Number of Cyclic Dependencies

Number of Cyclic Dependencies(NCD) of a class measures the number of

dependencies that a class has towards itself. For instance NCD will be calculated

as 2 for theClass S in Figure 3.18.

S

Figure 3.18: An example class for cycle metrics.

Having a high value of NCD indicates more effort on parallelization. However the

outcome of this effort can be predicted with an additional metric which is defined next.

Ratio of Cyclic Dependencies

Ratio of Cyclic Dependencies(RCD) of a class measures dominance of its cyclic

dependencies by measuring the ratio of its self dependencies over its total number

of dependencies. More formally:RCD= Dcyc

Dtot
(3.6)

44

In Equation(3.6), Dcyc represents the number of self dependencies of the class andDtot

represents total number of dependencies that the class have. For instance RDD will be

calculated as 0.33 (2/6) for theClass S in Figure 3.18.

RCD defines the amount of self dependency of a class; if the metric value is close

to 1, class’ whole purpose becomes based on the cyclic dependency. In terms of

parallelization, number of cyclic dependencies should be considered before analyzing

this metric. If the class has many cyclic dependencies and the value of RCD is

also high, developer should pay more attention on resolvingand parallelizing self

dependencies inside the class. However in this situation, the subject class usage is

a bigger threat to the parallelization since it has many cyclic dependencies scattered

around the software, sequentializing software run.

When both of the metrics are low, there are many dependenciestowards a single cyclic

dependency which holds a potential for a performance boost when small numbers of

self dependencies are resolved. When RCD is low and NCD is high resolving many

self dependencies may end up with a local performance boost.Finally if RCD is high

when NCD is low a small effort may provide a local performanceboost.

3.3.2.3 Bridge metrics

Ratio of External/Internal Bridge Dependencies

Ratio of External/Internal Bridge Dependencies(REIBD) ofa bridge measures

dominance of its internal/external dependencies using theratio of the difference

between its external and internal dependencies(excludingthe source connections) over

its total number of dependencies. More formally:REIBD= Dext−Dint

Dext+Dint
(3.7)

In Equation(3.7), Dext represents the total number of direct dependencies that has

been made towards/from outside the bridge(excluding source connections) andDint

represents number of direct dependencies bridge classes make among themselves. For

instance REIBD will be calculated as 0 ((3-3)/(3+3)) for thebridge in Figure 3.19. In

the figure S1 and S2 are source classes of the bridge.

In a bridge, absence of external or internal dependencies isfrequent so it is not practical

to use a simpler formula likeDext/Dint to measure to dominance of dependencies.

45

S1

B1

B2

B3

B4

B5

S2

B1 B2 B3 B4 B5

A1 A2

Figure 3.19: An example for bridge metrics.

REIBD defines the amount of independence of a bridge; if the metric values is close to

-1, bridge at hand mainly has dependency relations with the classes out of the pattern

and if metric value is close to 1 the bridge classes are mainlydependent among each

other. This metric only shows dominance of internal/external bridge dependencies.

In terms of parallelization, having a REIBD closer to 0 indicates a harder

parallelizability, since it shows that the bridge has same amount of internal and external

dependencies. In practice having a value closer to -1 is better since bridges may be

isolated easier if they don’t have any dependencies outsidethe pattern. The metric is

not defined for the bridges that doesn’t have any dependencies apart from its source

dependencies.

Ratio of Bridge to Source Dependencies

Ratio of Bridge to Source Dependencies(RBSD) of a bridge measures purity of bridge

dependencies using the ratio of its source dependencies over its total number of

dependencies. More formally:RBSD= Dsrc

Dtot
(3.8)

In Equation(3.8), Dsrc represents the total number of direct dependencies of bridge

classes to/from source classes andDtot represents total number of dependencies that

bridge classes have. For instance RBSD will be calculated as0.625 (10/16) for the

bridge in Figure 3.19

RBSD defines the amount of dedication of bridge classes to thepattern; if the metric

value is close to 1, bridge at hand mainly has dependency relations with the sources of

46

the bridge and if metric value is close to 0 the bridge classeshas more dependencies

other than its sources. This metric should not be too close to0 for a bridge since the

bridge loses most of its properties when it has more non-source dependencies.

In terms of parallelization, having a REIBD closer to 1 indicates easier parallelization

for a bridge. Developer wouldn’t have to deal with unrelateddependency relations

when parallelizing the bridge, facilitating bridge parallelization. Also during the

runtime, non-source dependencies may indicate barriers onthe alternating routes of

the bridge decelerating parallel behavior.

Ratio of Sibling Bridge Classes

Ratio of Sibling Bridge Classes(RSBC) of a bridge measures the density of sibling

classes inside a bridge using the ratio of ancestor classes of bridge classes to the total

number of classes inside the bridge. More formally:RSBC= Npar

Nbdg
(3.9)

In Equation(3.9), Npar represents number of different parents that bridge classeshave

andNbdg represents total number of classes inside the bridge. For instance RSBC will

be calculated as 0.4 (2/5) for the bridge in Figure 3.19.

RSBC actually has two dimensions. Metric can be closer to 1 when all the classes

inside the bridge have separate ancestors or when there exists a few classes inside the

pattern. In both cases parallelization process is relatively harder. Having many sibling

classes in large bridges alternating heavily provides a better parallelization opportunity.

3.3.2.4 Island metrics

Ratio of External/Internal Island Dependencies

Ratio of External/Internal Island Dependencies(REIID) ofa bridge measures

dominance of its external dependencies using the ratio of pattern’s external

dependencies over its internal dependencies. More formally:REIID= Dext

Dint
(3.10)

In Equation(3.10), Dext represents the total number of direct dependencies that has

been made towards/from outside the island andDint represents number of direct

47

dependencies island classes make among themselves. For instance REIID will be

calculated as 0.45 (5/11) for the bridge in Figure 3.20.

Figure 3.20: An example for island metrics.

REIID is actually used to measure the same properties of a group of classes that

REIBD measures. However, by definition islands always have large number of inner

dependencies which makes it viable to use a simpler ratio than REIBD. Moreover,

based on the definition islands always have much more inner dependencies than outer

dependencies. It is more practical to use a metric that performs a finer measurement of

external dependency dominance.

REIID defines the amount of independence of an island; if the metric value is close

to 0, island at hand has less dependencies to/from classes outside. This shows

its independence from the rest of the diagram making the group a candidate for

parallelization as a whole.

As mentioned before, classes inside the island communicatemore with each other

rather than the rest of the software and hence objects of the island should be placed

closer among the processing elements to minimize communication cost. As the metric

value increase the group starts to lose its island character. When the islands are detected

prior to the metric assessment, the value of this metric should not be far from 0 in

practice.

48

Cumulation of Inner Island Dependencies

Cumulation of Inner Island Dependencies(CIID) measures the distribution amount of

the inner dependencies of an island. It can be defined as the standard deviation of

number of dependencies each class has to/from other classesinside or outside the

group. For instance CIID will be calculated as 1.35 (σ ([3 4 4 5 2 6 3])) for the bridge

in Figure 3.20

Having a small CIID shows that the dependencies of the islandare distributed in a

balanced way; it is harder to introduce parallelism inside the island. On the other

hand when this metric is high, it shows that the dependenciesare concentrated on a

few classes. In this situation the island may be split up to smaller islands. Another

idea is to introduce local parallelization to the heavy dependent classes being local

hubs/authorities inside the island.

3.3.2.5 Correlation among dependency pattern metrics

It is very important to obtain distinct metrics that represent different properties of the

dependency patterns. To reason about the distinctness of the metrics, in Table 3.1

correlation coefficients metrics that were measured using 130 different dependency

patterns inside four different real-world software is presented. Case studies are

introduced in more detail in Section 3.3.3. Each metric is compared with the metrics

of the same dependency pattern in Table 3.1.

Table 3.1: Correlation among defined metrics.

RDD RSD

H/A
RDD 1
RSD -0.31 1

NCD RCD

Cycle
NCD 1
RCD 0.55 1

REIBD RBSD RSBC

Bridge
REIBD 1
RBSD -0.63 1
RSBC 0.16 -0.2 1

REIID CIID

Island
REIID 1
CIID -0.02 1

49

Two high correlated values in Table 3.1 are NCD-RCD and REIBD-RBSD couples.

These correlations can be considered as natural since NCD isbeing used as

a complementary metric for RCD, these two metrics are analyzed together in

Section 3.3.2.2 to reason about cycle properties.

For the second couple, REIBD-RBSD, the reason behind the correlation is the sample

space. REIBD metric is actually not specific to bridges, it can be applied to any

group of classes like in REIID case for islands. However, when this metric is applied

to the bridges number of external/internal dependencies becomes the complement

of source dependencies in the bridge. REIBD-RBSD are also analyzed together

in Section 3.3.2.3 like the former case although they also individually hold distinct

properties of the pattern. On the other hand, especially analyzing REIBD without

considering RBSD may mislead for some certain properties(like the pureness of the

bridge). Rest of the metrics doesn’t have an obvious correlation among themselves

and can be used individually to reason about distinct properties of the patterns.

3.3.3 Real-world examples of dependency pattern metrics

In this section using real world software, examples of dependency patterns having

different metric values will be given. Case studies are chosen from different areas

and programming languages: Jikes [57] is the mid-sized compiler project of IBM

written in C++, Leda [79] is an open source library of efficient data structures and

algorithms written in C++, JBoss [80] is a well-known community driven application

server written in Java and finally DSpace [81] is an open source CMS written in Java.

In the following sections, simple strategies on metric interpretation and metric

priorities in parallelization process will be presented for each dependency pattern type.

Following the parallelization proposals, examples of dependency patterns in the case

study software will be presented and the metric measurements for the patterns will be

revised using the examples.

3.3.3.1 Hub/Authority metric examples

Utilization strategy of hub/authority metrics in parallelization can be listed as follows:

1. In the reasoning process one should first consider RDD metric. It is better for RDD

to be either close to 1 or -1. This provides a clearer parallelizing strategy based on

50

class at hand being a hub or an authority. Having an RDD closerto 0 represents

complicated class behavior and a tedious parallelization process.

2. Based on the information from RDD, the value of RSD also becomes important.

Having a higher RSD is always better but it becomes more important if the class

at hand is an authority. This situation poses a possible polymorphic usage where

parallelization can be introduced to the classes that use the class at hand.

The classControl shown in Figure 3.21 is a hub from Jikes, having a high

RDD(1) and low RSD(0.02). Jikes being a compiler,Control is the orchestrating

class of the process where the main operators of the compilation process, such

as lexical analyzer(scanner), syntactic/semantic analyzer(parser) and code generator,

are triggered. Further, if several files are compiled, a loopin this class handles

these separate compilationssequentially. Compilation process of separate files are

independent of each other and can be performed in parallel.

Indicated by its high RDD value,Control is a strong hub to which parallelism

may be introduced in many different ways from method call parallelization to object

distribution. In the examples below parallelize is done in aconventional way, by

parallelizing loops. It is not mandatory to use loop parallelization in every case;

one can not guarantee to find parallelizable loops in every situation. However it is

a common construct in object oriented/imperative softwarethat is easy to detect and

parallelize; it will be one of the first places for a developerto look for a parallelization

opportunity.

Figure 3.21: Control as a hub pattern.

51

1 C o n t r o l : : C o n t r o l () {
2 /∗ I n i t i a l i z a t i o n e t c .∗ /
3 f o r (f i l e _ s y m b o l = (F i leSymbo l∗) i n p u t _ j a v a _ f i l e _ s e t . F i r s t E l e m e n t () ;
4 f i l e _ s y m b o l ;
5 f i l e _ s y m b o l = (F i leSymbo l∗) i n p u t _ j a v a _ f i l e _ s e t . NextElement ()) {
6 /∗
7 Header P r o c e s s i n g
8 ∗ /
9 }

10 /∗ Fu r the r P r o c e s s i n g∗ /
11 f o r (i n t j = 0 ; j < n u m _ f i l e s ; j ++) {
12 /∗
13 Body P r o c e s s i n g
14 ∗ /
15 }
16 /∗ Fu r the r P r o c e s s i n g∗ /
17 }

Figure 3.22: Constructor ofControl class.

By analyzing the actual implementation ofControl class, one may find mentioned

loops which can also be seen in the code snippet in Figure 3.22. After introducing

parallelism on these loops, performance improvement can beseen for multi-file

compilation process in Figure 3.23. In the figure, performance numbers in (a) are

obtained when identical files are compiled by the compiler using different number

of processor and in (b) files with various sizes are used in compilation process. When

loops in Figure 3.22 are parallelized, instances ofSanner, Parser andStoragePool
are sent to threads as parameters. IfControl’s dependency diagram in Figure A.3 is

examined, mentioned classes can be found out to have dependency relationship withControl. In a more detailed parallelization process all of the dependent classes ofControl become candidates as thread parameter. Analyzing class diagram in this

way, lets the programmer to focus on important sections and classes of software before

detailed code analysis.

As being a huge classJDBCEntityBridge from JBoss, needs a huge effort to be

parallelized since its RDD(0) value indicates that it will be used as much as it will use

other classes. Actually the class has 2 inline classes and 70methods, from which 30

of them is setter/getter, 14 of them is initialization and 8 of them scheduling methods.

There exists 40 different loops inside 1500 lines of codes. Consistent with the metric

value, this class surely needs a lot of effort to be parallelized.

Lastly GenPtr is an interesting example from Leda having an RDD value of -1 and

RSD value of 0.83. These values indicate thatGenPtr doesn’t actually use any other

52

 80

 85

 90

 95

 100

 105

 0 1 2 3 4 5 6 7 8 9

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

Number of files

1 PE
2 PEs
4 PEs
8 PEs

(a) Compilation of uniform length files.

 70

 75

 80

 85

 90

 95

 100

 105

 0 1 2 3 4 5 6 7 8 9

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

Number of files

1 PE
2 PEs
4 PEs
8 PEs

(b) Compilation of varying length files.

Figure 3.23: Jikes performance upgrade by hub Parallelization.

classes and has the potential to be used as an abstract/generic data type. In actual

software,GenPtr is nothing but a type definition, standing for void pointers.As

understood from its metric value this artifact is always being used by other classes,

never explicitly using any other class.

3.3.3.2 Cycle metric examples

Utilization strategy of cycle metrics in parallelization can be listed as follows:

• High NCD and RCD: In this situation there are many self dependencies exists

inside the class that needs more effort to break. On the otherhand class is

53

1 c l a s s Var iab leSymbo l : pub l i c Symbol , pub l i c AccessF lags {
2 pub l i c :
3 /∗ Var ious p r o p e r t i e s and methods∗ /
4 Var iab leSymbo l∗ a c c e s s e d _ l o c a l ;
5
6 p r i v a t e :
7 /∗ Var ious p r o p e r t i e s and methods∗ /
8 } ;
9

10 Var iab leSymbo l∗ TypeSymbol : : F indOr Inse r tLoca lShadow (Var iab leSymbo l∗ l o c a l) {
11 /∗ Var ious o p e r a t i o n s∗ /
12
13 Var iab leSymbo l∗ a c c e s s e d ;
14 f o r (a c c e s s e d = v a r i a b l e−> a c c e s s e d _ l o c a l ;
15 a c c e s s e d && a c c e s s e d != l o c a l ;
16 a c c e s s e d = a c c e s s e d−> a c c e s s e d _ l o c a l) ;
17 a s s e r t (a c c e s s e d) ;
18
19 re turn v a r i a b l e ;
20 }

Figure 3.24: Self dependencies ofVariableSymbol.

quite independent from the rest of the software, bringing local performance

improvements when tweaked.

• Low NCD and RCD: In this situation objects of the class is being used in many

places of the software and it also has a small part that obligates sequential behavior.

Self dependent part of the class should be detected and analyzed to discover if it is

being used heavily inside the software.

• High NCD, low RCD: This is one of the hardest parallelization situations where

most of the class consists self dependencies and the class isbeing heavily used in

software. This class probably becomes a bottleneck in parallelization process and

should be analyzed carefully.

• Low NCD, high RCD: This type of self dependency is easy to detect and harmless

for parallelization most of the time.

Based on the guidelines enlisted above, example interpretations of cycle metrics from

case studies can be given as follows.

ForVariableSymbol class from Jikes having an RCD value of 0.11 and an NCD value

of 1 exhibits self dependency in seven different points inside software. Four of these

points occur in loop conditions, causing the loop to gain a sequential behavior. One

example to this situation is present in Figure 3.24.

54

1 pub l i c c l a s s S o r t O p t i o n {
2 /∗ Var ious A t t r i b u t e s∗ /
3 /∗ S e l f dependen t a t t r i b u t e s∗ /
4 p r i v a t e s t a t i c Set < So r tOp t ion > s o r t O p t i o n s S e t =n u l l ;
5 p r i v a t e s t a t i c Map< I n t e g e r , So r tOp t ion > so r tOp t ionsMap =n u l l ;
6
7 /∗ Var ious methods∗ /
8 /∗ S e l f dependen t methods∗ /
9 pub l i c s t a t i c Map< I n t e g e r , So r tOp t ion > ge tSo r tOp t ionsMap ()

10 throws S o r t E x c e p t i o n {
11 / / Ope ra t i ons u s i n g sor tOp t ionsMap c l a s s v a r i a b l e
12 synchron ized (S o r t O p t i o n .c l a s s) {
13 / / S y n c h r o n i z e d o p e r a t i o n s
14 }
15 re turn S o r t O p t i o n . so r tOp t i onsMap ;
16 }
17 pub l i c s t a t i c Set < So r tOp t ion > g e t S o r t O p t i o n s ()
18 throws S o r t E x c e p t i o n {
19 / / Ope ra t i ons u s i n g s o r t O p t i o n s S e t c l a s s v a r i a b l e
20 synchron ized (S o r t O p t i o n .c l a s s) {
21 / / S y n c h r o n i z ed o p e r a t i o n s
22 }
23 re turn S o r t O p t i o n . s o r t O p t i o n s S e t ;
24 }
25 }

Figure 3.25: Self dependencies ofSortOption.

As mentioned earlier self dependency is concentrated at onepoint in this case and

this self dependency used in different points of software. Transforming this self

dependency to a parallelizable construct can be fruitful.SortOption class from DSpace in Figure 3.25 has an RCD value of 0.33 and anNCD

value of 2, acts as a mediator between many different sortingimplementations in the

software.

It is not surprising to see some of its methods having synchronized sections as an

outcome of this situation. Although it has a few sections to break self-dependent

behavior(NCD), class has a lot more dependencies than self dependency(RCD) making

those self dependencies possibly scattered through the software which is relatively bad

for parallelization.

3.3.3.3 Bridge metric examples

Utilization strategy of bridge metrics in parallelizationcan be listed as follows:

1. Most important metric for a bridge is RBSD where a higher value indicates some

type of alternating usage most of the time in practice. However this metric should be

paid equal attention with RSBC metric. Although having RSBCas low as possible

55

together with a high RBSD is the most favorable case, having ahigh RSBC may

sometimes mislead developer, especially when bridge objects are created using a

factory.

2. As mentioned, RSBC is an important metric since bridges mostly show their

alternating behavior in a polymorphic way. RSBC should be considered together

with number of classes inside the bridge and RBSD value. If bridge both has a

high RBSD value and large number of classes one should remember RSBC can be

sometimes misleading since polymorphism is not the only wayfor a software to

implement alternating behavior.

3. Lastly REIBD should be considered to fine tune the parallelization of the bridge.

While having an REIBD close to -1 is better if the bridge has a low RBSD value

since this situation may end up with the isolation of the bridge classes(although

in practice this is a rare situation). When the RBSD value is high having an

REIBD value closer to zero is better since it indicates fewernumber of non-source

dependencies most of the time.

Based on the guidelines enlisted above, example interpretations of bridge metrics from

case studies can be given as follows.

An instance of a bridge pattern can be seen in Figure 3.26, where a subset of the

descendents ofAttribute form an authority bridge. At the ends of the bridge,

bridge objects are used in a similar way by being alternatingly switched inside loops.

InsideClassFile, MethodInfo andFieldInfo classes,AttributeInfo’s subclass

instances are kept in a buffer array which are then iterated over by the mentioned loops.

This situation needs special care while scattering and gathering the buffer of the bridge

objects.

An example snippet of bridge object access can be found inClassFile constructor in

Figure 3.27. This method contains a switch statement in which appropriate actions

are taken depending on attribute type. This switch is executed many times in a

loop for eachAttributeInfo object. By parallelizing this loop the performance

speedup can be seen in Figure 3.16 as the workload of the switching operation

increases. This group is actually two overlapping bridges among three classes calledClassFile MethodInfo andFieldInfo. Dominant external dependencies implicated

56

(a)AttributeInfo Dependencies.

(b)AttributeInfo inheritance relationships.

Figure 3.26: AttributeInfo descendents as an authority bridge instance.

by REIBD(1) metric are dependencies inside another bridge.Having high RBSD(0.63)

and low RSBC(0.2) values, this bridge is a good candidate forparallelization. On the

other hand, RBSD value for the group is not as high as it shouldbe, a false negative

caused by the overlapping bridge connections it have.

1 C l a s s F i l e : : C l a s s F i l e (cons t char∗ buf , unsigned b u f _ s i z e)
2 {
3 /∗Some p r o c e s s i n g∗ /
4 swi tch (a t t r −> Tag ())
5 {
6 case A t t r i b u t e I n f o : : ATTRIBUTE_Synthetic :
7 /∗ Opera t i ons u s i n g S y n t h e t i c A t t r i b u t e o b j e c t∗ /
8 case A t t r i b u t e I n f o : : ATTRIBUTE_Deprecated :
9 /∗ Opera t i ons u s i n g D e p r e c a t e d A t t r i b u t e o b j e c t∗ /

10 case A t t r i b u t e I n f o : : ATTRIBUTE_Signature :
11 /∗ Opera t i ons u s i n g S i g n a t u r e A t t r i b u t e o b j e c t∗ /
12 case A t t r i b u t e I n f o : : ATTRIBUTE_SourceFile :
13 /∗ Opera t i ons u s i n g A n n o t a t i o n s A t t r i b u t e o b j e c t∗ /
14 /∗ S e v e r a l o t h e r c a s e s∗ /
15 }
16 } ;

Figure 3.27: AttributeInfo usage.

57

Another bridge Example from JBoss can be seen in Figure 3.28.In this

bridge it can be seen that the bridge has a balanced amount of external/internal

dependencies. These non-source dependencies originate from a single class calledJDBCTypeComplexProperty which is actually used byJDBCTypeComplex in practice.

If JDBCTypeComplexProperty is taken out of the bridge, its metric values are

improved at a great amount. MoreoverJDBCTypeComplex andJDBCTypeSimple are

sibling classes that are created by a factory calledJDBCTypeFatory which is a good

indication of a bridge usage in practice.

Figure 3.28: An example bridge from JBoss.

A final example bridge from JBoss is in Figure 3.29 which is actually a false

negative example for RSBC. In this example, the importance of analyzing the metrics

collaboratively can be seen. Even though none of the classesare siblings in this bridge

it has a high RBSD value and large number of classes inside thebridge showing a

good parallelization opportunity. When the code is analyzed it is no surprise two

sources of the bridge use the bridge classes heavily inside them. First of all, objects

of the bridge classes are created by a factory insidestartStoreManager() method

of JDBCStoreManager class. This can be a good place to introduce parallelism as

discussed earlier. For the other end of the bridge,JDBCFieldBridge class is used

heavily inside the loops of bridge classes as well.

3.3.3.4 Island metric examples

REEID and CIID can be analyzed together to detect the islandsthat are connected to

the rest of the software over local authority/hub classes(like JDBCEntityMetaData)

to draw guidelines on parallelizing modular parts of software. A lower REEID is more

important in any case where the island is more independent.

58

Figure 3.29: An example bridge from JBoss.

Having different CIID values can have different advantages: an island with a low CIID

can be packed easier but harder to parallelize especially ifit has a large number of

external dependencies. On the contrary, additional local parallelization strategies can

be applied on specific classes inside the island if CIID is higher.

Island metrics involve large number of classes and mostly self-defining most of the

times. For instance, REEID metric is a natural outcome of diagram clustering; it can

be easily inferred that having large number of external dependencies making the group

more dependent to the rest of the software. On the other hand it may be useful to look

at two examples of CIID metrics in the case studies.

In Figure 3.30, first island has a CIID value of 3.36 indicating the heavy dependency

load on two classes calledJDBCEntityMetaData andAppliationMetaData. On

the other hand, for the second island this value is 1.3 indicating a well balanced

dependency distribution which can be seen in the figure as well. On the contrary

REEID metric of the second island is about three times highercompared to the first

island making it more dependent to the rest of the software. Similar conclusions can

be made, visually analyzing the figure, where almost all of the external dependencies

that the first island has is owned byJDBCEntityMetaData.

3.4 Detecting Dependency Patterns

By defining dependency patterns and their properties it is possible to perform a

structural parallelization operation over sequential software. On the other hand

detecting those patterns inside class diagrams may not always be performed easily all

the time. Especially for the specific pattern ”bridges“ conventional techniques provide

59

Figure 3.30: Sample islands having distinct island metric values.

an inadequate performance. In this section an enhancement over clustering techniques

is presented to discover the dependency patterns inside class diagrams.

3.4.1 Related work on pattern detection

Graph clustering has been applied previously to software models for modularization

aspects and static analysis of software. [82] used hierarchical graph clustering over

dependency graphs of software files in order to reorganize the modular structure of

software: In a graph constructed from software modules, theconnectivity of vertices

inside/among clusters is used in optimizing the modularization of software. [83]

used spectral graph partitioning techniques in order to detect reusable components in

software by analyzing class diagrams. This approach is based on an iterative method

for partitioning class diagram in order to identify dense communities of classes.

60

By conducting a more specific analysis on dependency graphs extracted from

software, it is possible to reason about many different aspects of object oriented

systems including software quality, modularization, and runtime properties. [84]

apply clustering to dependency graphs extracted from Java source code to increase

modularity. [85] performs dependency analysis at the module level in order to reveal

the high level structure of software. A structural visualization was accomplished

by partitioning the graphs constructed from module-level inter-relationships obtained

from source code analysis. [86] used dynamic dependencies to construct a more

realistic dependency graph from pure static representations of the software as input

to clustering. This approach can be used for program comprehension, but it cannot be

applied during early stages of software development since source code and/or dynamic

information is required. In contrast, [49] built a weightedcommunication graph using

predetermined rules at the design stage. This graph was thanpartitioned in order to

minimize the communication cost among clusters.

Software design models can also serve as the source of graphsenabling us to reason

about design-level aspects of software. UML class diagramsare one of the most

widely used tools to model the static structure of software.As there are many different

relationships among classes inherent in UML class diagrams(such as composition,

generalization, or association) various mappings of the diagram to a graph can

be performed to extract dependency graphs through graph clustering. Using this

approach, Wu analyzed UML class diagrams to support programslicing and coupling

measurement [87]. Similarly, [58] presented graph theoretical techniques as a generic

way to discover patterns in UML diagrams, albeit considering any relationship between

two classes as an edge in the graph.

In most of this work, clustering has been applied to dependency graphs without

considering structures that emerge from software design. For example, albeit [58]

identify highly coupled, huge classes to which they refer as“god classes”, their work

does not comment on utilizing these structures during graphclustering. In contrast,

in this section common dependency patterns that emerge in UML class diagrams are

focused on improving the performance of popular clusteringtechniques when detecting

those patterns.

61

3.4.2 An enhancement to graph clustering for dependency pattern detection

Graph theory and clustering have been applied to many different aspects of software

analysis. In particular, dependency graphs are widely usedin the analysis of object

oriented software systems, treating software artifacts asvertices and relationships

among them as edges. The dependency graph is extracted from aprogram using

various methods, including source code and byte code analysis.

UML [88] has become the most prevalent visual modeling language for software

development. As such it is also the platform of choice for performing analysis of

object oriented software designs. In particular, class diagrams have been the subject of

clustering techniques.

Clustering studies applied to software designs usually deal with static properties

of software like modularization [84] and software structure [85]. To reason about

dynamic properties of software, the analysis should include runtime information which

is not present at the early design stage. By detecting recurring class diagram structures

(which is referred to as dependency patterns) and their runtime properties it will be

possible to relate them to dynamic properties of software without having the actual

implementation and/or runtime information.

However, certain structures in class diagrams are frequently missed in the clustering

process because they do not fit neatly into a the definition of acluster. Typically these

structures are comprised of a group of classes having dense identical dependencies

towards or from two specific classes outside the group. Classgroups with such

dependencies are referred asbridge patterns in this thesis. Current clustering

techniques tend to merge bridge patterns with larger class groups or distribute the

classes inside the bridge pattern amongst many other class groups.

In related research on parallelization of software designsit has been found that

bridge patterns play a key role, and therefore, methods of detecting such patterns are

investigated.

In thesis studies class diagrams are represented with undirected graphs considering

only dependency relationships among classes. Clustering methods are extended with

algorithms that are able to cope with patterns that were not able to be detected as

clusters, independent of the particular clustering methodbeing used. The proposed

62

algorithm is focused on detecting bridge patterns. Withoutthis step, key aspects of the

relationship between elements in a UML class diagram will bemissed in an analysis

of these diagrams, as the bridge pattern does not fit the definition of a cluster.

3.4.2.1 Clustering for dependency patterns

In this section, clustering is leveraged to identify dependency patterns and apply

different graph clustering techniques to graphs extractedfrom class diagrams.

Although dependency is a directed relation, detection of dependency patterns is

implemented using undirected graphs, due to its superior clustering performance.

Using undirected graphs does not interfere with pattern direction detection; directional

analysis of patterns can still be performed independently after pattern detection.

This approach is evaluated by searching for dependency patterns inside the open source

compiler project Jikes [57] (which originated from the IBM alphaWorks project). Class

diagrams for Jikes’CLASS (39 classes),LOOKUP(41 classes), andAST (103 classes)

packages are obtained by reverse engineering from header files, resulting in medium

to large size diagrams. In Appendix B graphs extracted from dependency diagrams

of LOOKUP andAST can be seen. In these graphs, many occurrences of dependency

patterns can be spotted easily. Some patterns are labeled inthese figures and will be

referred to in the discussion of the experiments in later sections.

In order to detect these patterns automatically, the following graph clustering

techniques are applied to undirected graphs extracted fromthe dependency diagrams:

(i) k-way hierarchical graph clustering [59], (ii) clustering based on computing

normalized cut and ratio associations for a given undirected graph without eigenvector

computation [89], (iii) spectral graph clustering [60], and (iv) Markov clustering and

flow simulation [61]. Clustering experiments were conducted using the software tools

Cluto [90], Graclus [91], kernlab [92], and MCL [93], respectively.

In Figure 3.31, the results of automated clustering appliedto CLASS using spectral

graph clustering (a) and Markov clustering (c), respectively, are compared to a manual

clustering of the same graph (b).

Table 3.2 shows the adjusted rand index [94] for these experiments which provides

a basic comparison between the results of the various clustering techniques and the

desired clusters. The adjusted rand index is a measure of thesimilarity between two

63

(a) (b)

(c)

Figure 3.31: Performance of spectral graph clustering (a) and Markov clustering (b)
compared to manual clustering (c).

data clusterings, yielding a value between 0 and 1, with 0 indicating that the two data

clusters do not agree on any pair of points and 1 indicating that the data clusters are

exactly the same.

As the results shown in Figure 3.31 reveal, the studied clustering techniques are not

very successful in partitioning the dependency graph of thecase study. Examining the

obtained clusters in detail, one can see that these clustering techniques were not able

to detect any bridge dependency patterns. For example, in the manually created target

64

clustering (b) a bridge pattern can be seen marked as group B.In (a), it can be see that

two vertices of the bridge are scattered amongst other clusters and in (c) this bridge is

merged altogether with another cluster.

Table 3.2: Adjusted rand index metric obtained for the studied clustering techniques:
Hierarchical graph clustering, clustering with normalized cut and ratio
associations, spectral graph clustering, and Markov clustering.

CLUTO GRACLUS KERNLAB MCL
CLASS 0.182 0.474 0.516 0.558
LOOKUP 0.353 0.343 0.262 0.183
AST 0.481 0.333 0.540 0.150

The reason for the failure to detect bridges is the loose relationship of vertices within

the bridge pattern as well as their defining connections to single vertices outside of the

cluster. Therefore it is needed to provide a detection technique that is able to separate

bridge classes from other clusters. For the rest of the dependency patterns described in

Section 3.2, clustering techniques provide acceptable performance.

3.4.2.2 Bridge detection algorithm

An algorithm is presented to find bridge patterns in a dependency graph derived from

class diagrams. As defined, bridges are groups of classes where all classes inside the

group are connected to at least two common classes. In a classdiagram, there may

be overlapping bridges where two bridges share a class or a group of classes. Classes

inside a bridge may have dependencies between each other or with other classes outside

the group. In practice bridges have no or few dependencies other than those to the

classes they connect.

The proposed algorithm uses the Hamming distances among thevertices in the

adjacency matrix of the undirected and unweighted graph extracted from dependency

diagram. The Hamming distance between two strings of equal length measures the

minimum number of substitutions required to change one intothe other. The algorithm

also accepts a threshold parameter which determines the required dependency

similarity of vertices inside a bridge. It is assumed that authority and hub vertices have

been excluded as well as those vertices that have only a single connection. Detection

of authority-hub vertices and singly connected vertices can be performed simply by

counting the number of edges originating from each vertex.

65

1

7

2

3

4

5

6

8

9

Bridge A

Bridge B

Figure 3.32: A sample graph to be used in illustrating bridge detection algorithm.

The proposed algorithm shall be illustrated using the sample graph shown in

Figure 3.32. In the sample graph, a bridge can be seen comprised of the vertices

labeled 3, 4, and 5(Bridge A), connecting vertices 2 and 8 anda bridge consisting of

vertices 5 and 9(Bridge B), connecting vertices 6 and 8. These two bridges overlap

as they share vertex 5. The vertices labeled 2 and 8 are excluded as candidates for a

bridge since they are determined to be authorities or hubs; the vertices numbered 1 and

7 are excluded since they have single connections.

In Algorithm 1, the distance matrix is formed by calculatingHamming distances

between each vertex in the adjacency matrix of the graph in Figure 3.33(a). The

distance matrix, shown in Figure 3.33(b) for the sample graph, is obtained in lines

2 through 5 of Algorithm 1. Those pairs of vertices that are similar to each other

below a given threshold are detected in the next step(line 6). The Hamming distance is

used as the similarity measure between vertices since it counts the number of different

connections between two vertex rows in the adjacency matrix.

In the example, a threshold of 2 is used, which means the only distances selected are

smaller than or equal to 2. The threshold value used in our algorithm indicates the

maximum distance between two vertices within a bridge. In our experiments, setting

this threshold around 2 yielded best results. The thresholdmay need to be adjusted for

different scenarios, based on experiments.

66

1 2 3 4 5 6 7 8 9
1 0 1 0 0 0 0 0 0 0
2 1 0 1 1 1 0 0 0 0
3 0 1 0 0 0 0 1 1 0
4 0 1 0 0 0 0 0 1 0
5 0 1 0 0 0 1 0 1 0
6 0 0 0 0 1 0 0 0 1
7 0 0 1 0 0 0 0 0 0
8 0 0 1 1 1 0 0 0 1
9 0 0 0 0 0 1 0 1 0

(a) Adjacency matrix.

1 2 3 4 5 6 7 8 9
1 0 5 2 1 2 3 2 5 3
2 0 7 6 7 4 3 2 6
3 0 1 2 5 4 7 3
4 0 1 4 3 6 2
5 0 5 4 7 1
6 0 3 2 4
7 0 3 3
8 0 6
9 0
(b) Hamming distance matrix.

1 2 3 4 5 6 7 8 9
3−4(BridgeA) 0 1 0 0 0 0 0 1 0
3−5(BridgeA) 0 1 0 0 0 0 0 1 0
4−5(BridgeA) 0 1 0 0 0 0 0 1 0
5−9(BridgeB) 0 0 0 0 0 1 0 1 0
(c) Common connections of similar vertices.

Figure 3.33: Matrices of the sample graph in Figure 3.32 used in bridge detection.

Algorithm 1 Bridge discovery using the adjacency hamming distance between
vertices.

1: Form the adjacency matrix of graphG(v,e)
2: for all pairs of verticesdo
3: Find Hamming distances between corresponding rows
4: end for
5: Form distance matrix between vertices
6: Detect pairs below a given threshold and add them to setP(v1,v2)
7: for all pairs(vi,v j) in setP do
8: Add (vi ,v j) and

∧
(row(vi),row(v j)) to P′

9: Remove pairs from setP′ which have only one common connection
10: end for
11: for all joinable pairs(s1...sn) in setP′ do
12: Add

⋃
(s1,..,sn) and

∧
(row(s1),...,row(sn)) to result setR

13: end for

67

As mentioned earlier, vertices numbered 1, 2, 7 and 8 are excluded from this operation

as well as the diagonal 0’s which indicate self connectivitybetween vertices. Distances

to which the selection process is applied to are shown in boldin Figure 3.33(b). After

the selection process, the following vertex pairs are selected: 3−4(in Bridge A), 3−

5(in Bridge A), 4−5(in Bridge A), and 5−9(in Bridge B). The pairs that reside in the

same bridge are then merged into a common node set of the bridge.

In the loop starting at line 7 of Algorithm 1, the common connection matrix of selected

vertex pairs is constructed, see Figure 3.33(c). The matrixis built up using binary

ANDed rows of pairs from the adjacency matrix indicated by
∧

). In this matrix, each

pair that has two or more common connections is joined until no further vertices can be

joined. Pairs with only one common connection outside the pair are eliminated (line

9), since vertices inside a bridge need to have two common connections outside the

bridge.

When the loop starting at line 11 of Algorithm 1 is reached, each line in Figure 3.33(c)

is joined with suitable rows inside the matrix. The join operation is performed over

two common connections in rows being joined. For example, the first three rows of

Figure 3.33(c) can be joined over columns 2 and 8 while the last row (5−9) cannot be

joined with any other row since there are no rows which have connections in the sixth

and eighth columns. After the join operations, groups 3−4−5 and 5−9 are detected

as bridges. The join operation over rows is performed by applying set union (indicated

as
⋃

) over vertex sets and applying binary AND to corresponding rows. An additional

threshold could be applied to eliminate bridges below a desired size.

This algorithm has time complexity polynomial in the numberof all verticesv inside

bridges. The joining operation starting at line 11 in Algorithm 1 operates onv2 vertex

pairs resulting in a complexity ofO(v4). Such complexity would not be acceptable

for large data sets. However, it is not common for a class diagram to have thousands

of classes, and there are significantly fewer classes involved in bridges than the total

number of classes in a diagram. Consequentially, this algorithm is usable in practice.

3.4.2.3 Evaluation of bridge detection algorithm

The graph obtained by applying bridge detection algorithm to the case study is shown

in Figure 3.34. Figure 3.34(b) repeats the target clusters for CLASS as determined by

68

manual clustering, with the bridge highlighted and labeledas B. Figure 3.34(a) shows

the result of clustering with MCL, which yielded the best result among the studied

clustering techniques forCLASS. In (a), the bridge B is merged with two other clusters.

If the number of clusters are increased, the vertices of the bridge would once again be

split over separate clusters as shown in Figure 3.31(a). Figure 3.34(c) shows clusters

resulting after detection of authority or hub vertices and detection of bridges using

bridge detection algorithm on the clustering obtained fromMCL.

For CLASS and LOOKUP, bridge detection algorithm was able tofind the bridges

that were detected manually. In the more complicated AST graph, bridge detection

algorithm in addition found some smaller bridges (consisting of two classes) that

were spread throughout the diagram. The threshold value used in bridge detection

algorithm indicates the maximum distance between two vertices within a bridge. In

the experiments, setting this threshold around 2 yielded best results. The threshold

may need to be adjusted for different scenarios, based on experiments.

Table 3.3 shows the adjusted rand index when applying bridgedetection algorithm to

clustering obtained from the studied techniques. Except for AST, the algorithm nearly

doubled the adjusted rand index scores. To put the minimal improvement for AST in

context, consider that the adjusted rand index calculationused in this evaluation does

not take overlapping bridges into account. A visual inspection of the results for AST,

however, indicates significant subjective improvement, see Figures B.4 B.5 B.6.

Table 3.3: Adjusted rand index for clustering improved by applying thebridge
detection algorithm to studied clustering techniques.

CLUTO GRACLUS KERNLAB MCL
CLASS 0.925 0.925 1.000 1.000
LOOKUP 0.699 0.692 0.654 0.545
AST 0.511 0.549 0.544 0.460

The improvement over clustering results by the bridge detection algorithm is somewhat

expected, since bridges do not fit the definition of a cluster.Vertices inside a bridge are

typically less connected amongst each other and their connections outside the group

are all to specific vertices.

There are some trade-offs to be considered when deciding on thresholds for bridge

and authority or hub detection. One may end up with a larger set of bridges including

69

(a) (b)

(c)

Figure 3.34: Clustering obtained from MCL (a), manually (b), after detecting and
separating bridges and hubs/authorities from MCL results (c).

practically useless ones when thresholds are chosen loosely. On the other hand, it is

possible to miss some of the bridges if thresholds are set tootight.

Appendix B compares manually obtained target clustering, the best obtained

clustering, and the result of applying bridge detection algorithm to the best obtained

clustering forLOOKUP. Clustering in Figure B.2 is the output produced by Cluto, which

yielded the best result forLOOKUP as shown in Table 3.2. It is clearly seen that in this

clustering, the bridge indicated as group F is merged with the vertices it is connected

to, while the bridge indicated as group B in Figure B.1 is split. After applying bridge

detection algorithm to Figure B.2, as shown in Figure B.3, the two bridges are isolated

as B and F. Only one vertex from F remains separated, yieldinga lower error rate in

bridges as compared to the clustering in Figure B.2.

70

Appendix B contains similar results forAST. The clustering produced by kernlab in

Figure B.5 separated one vertex from group B as compared to the desired clustering

Figure B.4. Moreover, the clusters labeled D and E are mergedcompletely with other

clusters. After applying the bridge detection algorithm toFigure B.5, group D and

group E are separated into different clusters in Figure B.6.Also, group B is split

into three different bridges where group B1 and group B2 share two vertices inside

the bridge and group B1 and group B3 share one vertex inside the bridge. This is

an example of overlapping bridges which, of course, cannot be detected by current

clustering since by definition clusters may not overlap.

3.5 Summary and Conclusions

It is possible to achieve performance boosts by ignoring parallelism inherent in the

problem and instead applying local imperative parallelization techniques. Another

source of parallelism, however, is implicit in the softwarestructure, which can be

revealed through dependencies between classes represented in static software models.

Focusing on the these models has the potential to detect parallelism at the design stage

which is harder to detect using code analysis.

In this chapter, static class diagrams are analyzed to determine portions of the

diagram that will exhibit distinctive properties at runtime that make it amenable to

parallel execution. Dependency patterns are defined and identified their usage in class

diagrams showing through experiments that these patterns play an important role in

parallelization of object oriented software. As illustration, examples are presented

from design patterns and a case study, which exhibit these dependency patterns and

demonstrate how these patterns lead to select particular techniques for parallelizing

the represented software. Detecting instances of dependency pattern inside software

design patterns is an indication that dependency patterns occur in object oriented

software frequently.

By analyzing the static structure of software models it is possible to detect

opportunities for parallelization and to provide guidelines for injecting parallelism into

the software under development. These opportunities are represented by patterns in

the design model such as “sibling bridges”, “master classes”, “one authority to many

subclasses”, etc. These patterns are not only useful in injecting parallelism but also

71

point to areas of the software model that need to be synchronized, such as “authority

superclasses” or “one authority to many subclasses”, or to areas that have sequential

behavior (“self-dependent classes”). Software performance being heavily influenced

by its implementation, using dependency patterns providesguidelines on how to

benefit from software designs to lead the programmer in implementing parallelism

more effectively.

Later, a set of metric definitions are presented for measuring the properties of

dependency patterns. Previous studies on multi-class metrics are bound to package

based metrics whereas parallelization metrics are concentrated on performance

measurement. In thesis studies the old metrics were adaptedand new metrics were

derived for dependency patterns. By this it is possible to use dependency patterns as a

bridge between software design metrics and parallelizability of software.

Using the metric set proposed, some examples have been presented from four

different industrial sized systems, commenting on the validity of the metrics using

parallelization experiments and manual code analysis. A correlation study for the

metric set is also presented to show that the metrics cover different properties of the

dependency patterns.

Finally, dependency patterns are detected using clustering methods over dependency

graphs obtained from class diagrams. However, the studied clustering techniques could

not identify bridge patterns as these do not fit the definitionof a cluster. A bridge

detection algorithm was proposed in order to improve the clustering performance for

dependency graphs. Applying bridge detection algorithm toclustering results obtained

for the case study yielded a noticeable improvement in clustering performance.

Putting all together, in this chapter recurring structuresin software design were

identified which can be utilized in detecting implicit parallelism in object oriented

software. A set of metrics is proposed for more detailed analysis of the dependency

patterns and usage of clustering methods in detecting thosepatterns are elaborated by a

bridge detection algorithm. By taking advantage of the dependency patterns proposed

in this capter, following chapter aims at performance improvement of object oriented

software scheduling.

72

4. CACHE-AWARE SCHEDULING OF OBJECT ORIENTED SOFTWARE
FOR MULTICORE SYSTEMS

In the previous chapter a methodology based on the dependencies among components

of an object oriented software is proposed. This methodology can be used to simplify

the process of exploring major level parallelization opportunities in a software before

the implementation process begins. In this chapter, a step is taken further to investigate

the possibility of inferring scheduling information basedon the software models. To

produce such information, data sharing behavior between classes of the software is

examined. Prediction of data sharing behavior of software before runtime lets us to

produce a dispatching mechanism based on the software modelwhich utilizes the cache

usage and provide performance gains up to 25%.

In Section 4.1 the enhancement philosophy is introduced supported by results obtained

by re-scheduling design patterns considering cache-reuse. In Section 4.2 an object

dispatcher is presented which uses the cache-reuse policy presented in the first section.

Proposed dispatcher uses dependency pattern diagram of thesoftware to match with

the processor-memory hierarchy of the processor at hand. Experiments are performed

on an image filtering software to reason about the applicability of the cache-aware

scheduling.

4.1 Cache-Aware Scheduling of Design Patterns in a Multicore Processor

Improving operating system schedulers to take cache utilization into account is being

heavily studied by the community. In most of the studies, a single centralized solution

to replace the scheduler is proposed using data gathered from runtime profile of

software [28–33] [38–40]. Since proposed improvements areat operating system level,

software analysis are carried on lower level software structures like loops or thread

groups.

Apart from approaches based on modification of operating system’s scheduler, another

idea is guiding the scheduler using classes as higher level software components. In

73

the following sections it is shown that extracting such guidelines from object oriented

software design can improve Linux’s completely fair scheduler(CFS). Cache-aware

scheduling approach is applied on design pattern implementations and performance

improvement is gained when the scheduler is guided regarding coupled classes of

software. Coupled classes access methods of each other frequently, raising the

probability of shared data between their objects at runtime. Design patterns (which

can be found frequently in object oriented software) are used to reason about possible

object tuples that frequently share data at runtime.

At the end of the experiments it can be seen that extracting information from the

software model and placing tightly coupled objects into neighboring cores (cores

that share the same cache) improves operating system’s scheduler performance.

Cache-aware scheduling approach does not need to change thewhole scheduling

mechanism of the system. Instead it can be applied by analyzing the dependency

relation among classes in the class diagram of software and provide a set of candidate

cores for the classes that have the potential to communicatefrequently at runtime.

Placing those classes’ objects at neighboring cores decrease cache miss rates by taking

advantage of shared data between software classes.

4.1.1 Cache-aware scheduling

In the context of thesis studies, the termCache-Aware Schedulingis used to indicate

the operation of guiding operating system’s scheduler withthe information of shared

data between software classes. Shared data can be detected dynamically via runtime

environment or an external dynamic analysis tool. However partial or full development

of the software at hand is needed to perform this kind of analysis. Software models and

static class diagrams are used to reason about parallelism at an early stage of software

development.

Using software models to guide scheduling provides two important advantages. Firstly,

parallelization information can be obtained before the actual software runs or even

before it is implemented. This helps us to design more competing software for

multicore systems and to produce parallel code that performs better on different

multicore architectures. Secondly, the ability to guide the operating system’s scheduler

without replacing it during the scheduling process is provided. The analysis of

74

software model at hand can be performed semi-automaticallyby a programmer or an

automated tool to detect data sharing software components of software. According to

this information the operating system’s scheduler tries toassign objects, which operate

on common data to proper cores so that shared data can be placed into shared caches.

During the analysis of the software three different factorsin parallelization should be

considered.

- Parallelization : The number of distinct parts in softwarethat can run independently.

They should be scheduled to different cores.

- Data sharing : Object tuples that share a significant amountof data regarding

shared/non-shared caches. They should be scheduled to neighboring (or same)

cores.

- Resource utilization : The ratio of processing cores(not idle) to the number of

objects that run on the system. This concept can be seen as theutilization amount

of the processing power of CPU at a given time.

Resource utilization is heavily influenced by parallelization and data sharing since

these two factors have an orthogonal effect on system performance. Decomposing

software too much for the favor of parallelization causes objects to write on different

caches frequently and increase cache misses. On the other hand scheduling objects

strictly on neighboring cores to utilize cache reuse may cause parallelized objects

to wait for the same core even though there are some other idlecores present. This

situation decreases the parallelization performance whenthere exists fewer cores in

the die than the objects to be scheduled. During the experiments the effect of each

of these factors over another is explored to extract more meaningful information from

the model. Practical real-world examples based on design pattern implementations are

used, which are small enough to successfully observe the effect of each factor during

the scheduling.

In thesis studies Gang of Four (GoF) software design patterns [56] are used to analyze

data sharing classes of the pattern. Software design patterns are frequently used in

today’s object oriented software designs to solve common problems. A large number

of studies exist in the literature about detecting softwaredesign patterns [95–100],

making it possible to automate proposed approach.

75

Cache-aware scheduling technique is applied on design patterns to show that even for

smaller parts of the software a better scheduling can be provided using data sharing

information between components. This approach can be applied to larger software

where many different instances of many design patterns can be found and analyzed

for data sharing. In this chapter it is focused on the applicability of model based

scheduler guidance by analyzing data usage of recurring themes in software designs.

Cache-aware scheduling approach is not limited to specific software design patterns

but rather offers to use parallelization strategies together with patterns that emerge in

software designs.

4.1.2 Case studies on software design patterns

Experiments are performed in a system with 4 double cored Intel Xeon processors

and an operating system of Linux kernel 2.6 running on it. Java is used as the

main programming language to develop the design pattern case studies. Since

Java lacks an API to explicitly set a thread’s processor affinity, C++ is used to

implementpthread’s [101] thread affinity setting functions [102] and JNI to call C++

thread affinity setter implementations from Java programs.pthread library allows

thread distribution viashed_setaffinity andCPUSET functions which can be used

to explicitly define thread-to-processor distribution schemes for the objects in the

patterns. For the majority of the experiments, objects of the patterns are programmed

as separate threads, and assigned to processors either explicitly under control of the

programmer or automatically by the system scheduler.

In the experiments below program runs are repeated for a sufficient number of times

to let the running time average converge.

Figure 4.1 presents the central processing unit architecture used in the experiments

which consists of four different processors each having twocores with a shared L3

cache of 4096KB in size. In implemented scheduling schemes the term “neighboring

cores” is used to indicate the cores that reside in the same physical processor and share

the same cache (e.g. core #1 - core #7, core #2 - core #5, core #3- core #6, core #4 -

core #8).

Proposed scheduling approach is abbreviated as CAWS (Cache-Aware Scheduling)

where the threads that share data are placed onto neighboring cores as much as

76

Figure 4.1: Central processing unit architecture used in cache-aware scheduling
experiments of design patterns.

possible. Linux’s schedulers actually does not take cachesinto account and migrate

the threads often, resulting threads to share caches in a non-determined way.

For the case studies, three different design patterns are implemented: Strategy,

Visitor and Observer. All these patterns commonly consist of some master (service

requester)-worker (service provider) classes. UML diagrams of the mentioned patterns

can be found below.

Figure 4.2: Strategy design pattern.

For strategy (Figure 4.2), each strategy object (worker) provides a service of applying

a different algorithm on the client (master/service requester) object. Data is shared

77

between strategy and client objects for this pattern. At runtime there may be many

clients (service requester) running in parallel using a specific strategy object in

common.

Figure 4.3: Visitor design pattern.

In visitor (Figure 4.3), each visitor object provides its service when it is called

explicitly by the master (service requester) object. At runtime there may be many

elements requesting services from a set of visitor objects arbitrarily. Some visitor

objects may be used in common during these service requests as well. Objects that

implement the Visitor interface and Element objects that are visited by Visitors are

data sharing components for Visitor pattern.

Figure 4.4: Observer design pattern.

In observer (Figure 4.4), a subject object presents the update notification service of its

states to a set of observer objects. At runtime some observerobjects may register to

different common subjects. A Subject object and its observers commonly use the state

of the Subject in this design pattern.

Similar examples can be implemented for other patterns as well, the examples in

this section are chosen to illustrate different data sharing (read-only, read/write) and

78

thread creation schemes. Further implementations are explained in detail in Section

4.1.4 but before initiating more complicated experiment scenarios it can be useful to

illustrate the effect of cache reuse in scheduling design patterns on basic experimental

configuration.

4.1.3 Effects of cache-aware scheduling on basic examples

To show that sharing common caches makes a notable performance difference

at runtime a basic set of isolated examples are provided showing the difference

of cache-aware scheduling with respect to its counterparts. For this purpose

implementations in this section consist of only one master-worker object couple for

each design pattern. In each of the examples below there onlyexist two objects at

runtime sharing a fixed amount of data that is proportional tothe size of common

caches in the processor.

For each set of experiments on a determined amount of data(for each column in tables)

the worst-case running times are used to normalize running times between 0 and 1

(worst performance). For each set of experiments CAWS represents cache-aware

scheduling policy and CFS is Linux’ default scheduler. On the other hand CUS

represents cache-unaware scheduling where data sharing objects are always placed at

non-neighboring cores. The results obtained for each of theexamples are as follows.

- Strategy : In Table 4.1 it can be seen that for a large quantity of shared data,

scheduling two objects at neighboring cores(CAWS) outperforms the CFS and

CUS. When the amount of data being shared gets smaller cache sharing effect loses

its significance.

Table 4.1: Normalized running times for basic strategy implementation.

Shared Data: 1MB 8KB None
CFS 0.95 0.99970 0.99965
CAWS 0.87 0.99965 1.00000
CUS 1.00 1.00000 1.00000

- Visitor : In Table 4.2 similar results can be seen in Table 4.1. When theamount of

shared data gets closer to shared cache sizes using a cache-aware scheduling starts

to perform better.

79

Table 4.2: Normalized running times for basic visitor implementation.

Shared Data: 1MB 8KB None
CFS 0.81 0.96 0.9998
CAWS 0.77 0.96 1.0000
CUS 1.00 1.00 1.0000

- Observer : Finally in Table 4.3 similar results can be seen except this time an

additional scheduling scheme has also been added(referredto as SACS(Same Core

Scheduling)). Since one observer and one subject cannot runparallel at all they can

be placed at the same core at runtime. When placed at same core, with an amount of

data small enough to fit the private cache, the system had a superior performance.

Table 4.3: Normalized running times for basic observer implementation.

Shared Data: 1MB 8KB None
CFS 0.99 1.00 1.00
CAWS 0.87 1.00 1.00
SACS 0.87 0.29 0.99
CUS 1.00 1.00 1.00

As it can be seen from the running times above, scheduling thedata sharing objects in a

way that allows them to use the same processor cache outperforms the Linux’s CFS. It

can also be seen that for the objects that have sequential behavior and use shared data,

scheduling them at the very same core provides superior performance since it allows

storing shared data at private cache of the core.

From basic examples above it can be seen that migrating shared data among

processors and re-fetching large amounts of data inside thememory hierarchy are time

consuming operations that degrade software performance. By running experiments on

multi-object examples sounder comments about cache-awarescheduling can be made

on more realistic cases.

4.1.4 Applying cache-aware scheduling

More complicated configurations on design patterns can be experimented to show the

difference between cache-aware scheduling and current scheduler of Linux. In this

section many objects inside the design patterns interact during runtime using different

parallelization approaches. For all the patterns below, different number of objects are

instantiated for each different type of class that the pattern contains. Each object

80

is implemented as a separate thread, hence two terms (objectand thread) are used

interchangeably in this Section.

In all the plots presented below y-axis represents normalized runtime performance

where normalization is performed by calculating for each experiment.

ρi =
1
Ti

(4.1)

ρn =
ρi

ρ(best)
i

×100 (4.2)

In Equations(4.1) and (4.2), Ti represents avarage running time for each case,ρi

represents performance of each case andρ(best)
i is the best performance(lowestTi ,

highestρi) among all measurements for the plot at hand. Multiplicating the result

by 100 enables to easily read the performance differences between measurements with

terms of percentage.

4.1.4.1 Strategy

For strategy pattern, a constant number of strategy objectsare constructed, each

representing a different strategy for a specific number of client objects. Each client

object is affiliated with a strategy object at runtime working on a predetermined amount

of shared data that is smaller than the size of the shared cache. For the sake of

simplicity, the data of the client is always read (never written) by the strategy for this

case.

In Figure 4.5, it can be seen that Normalized running times of32 client objects under

different scheduling policies using different number of strategies. When the number

of parallelized parts (strategies) are less than number of distinct processing cores in

the system, a performance gain is observed which is caused byreduced missing rate

during the data access of threads.

If the number of parallelizable parts exceed the number of cores (8 in this case),

scheduler starts to preempt threads and change cache content thus the effect of

cache-aware scheduling vanishes for number of strategies more than 8. A speedup of

nearly 10% compared to CFS, is present when cache aware scheduling is used during

the running time of strategy implementation.

81

 40

 50

 60

 70

 80

 90

 100

 0 2 4 6 8 10 12 14 16

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

Number of strategies

CAWS
CFS

Figure 4.5: Scheduling strategies with different policies.

4.1.4.2 Visitor

In this case, desired number of visitors are constructed independently before element

objects run. When an element needs a visitor one is taken fromthe pool and assigned

to the element object. Since waiting times can vary for each element and each visitor,

each class holds a queue of the next object to provide/request service. Visitors hold

a queue of elements to start serving the next object in line after the ongoing work

finishes. A similar situation is present for elements as well, they hold a queue of

visitors to ask for a service. For this case a more complicated structure is used where

any visitors may visit any elements during runtime; unlike strategy no predetermined

element-visitor bindings are applied before system run.

In Figure 4.6 cache-aware scheduling outperformed others until the number of

parallelized objects reach the number of cores. Additionally, even when visitors are

scheduled on distinct cores from elements but in the same cores with other visitors,

CAWS still outperform CFS. This time cache read and writes are used so a cache

utilization is not present as much as in strategy case.

4.1.4.3 Observer

Implementation of observer adopts a different object construction approach than

the previous cases. This time, observer objects are constructed inside subject

objects. This enforces each observer thread to be started and joined inside a different

82

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 2 4 6 8 10 12 14 16 18

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

Number of elements

CAWS
CFS

Figure 4.6: Scheduling 8 visitors with different policies.

object, providing larger number of object constructions during runtime. Additionally,

subject-observer groups run more isolated in this case thusneed less synchronization

effort. Moreover instead of enforcing objects to be scheduled on static cores, a set

of candidate cores are provided to operating system for eachobject. Hence a hybrid

CAWS-CFS approach is used versus CFS this time.

In Figure 4.7, running times for 2 observers observing different number of subjects is

presented. Although observer objects are created and destroyed continuously for each

subject, degrading the amount of data reuse during runtime,scheduling the system

using a cache-aware policy still provided performance upgrade when compared to

CFS.

Finally in Figure 4.8, the number of objects in the system varies as a whole consisting

of different number of subjects and observers. Again using CAWS policy results in a

better performance than the default CFS scheduling. For both examples mixing CFS

with CAWS still provided better results than using only CFS.Albeit gaining relatively

smaller performance improvements in some of the cases above, it is important to

consider that CAWS operates on application level while CFS operates directly on the

kernel level. Guiding operating system scheduler based on model driven analysis may

also allow us to start tuning an application for a specific processor architecture before

the software is implemented.

83

 50

 60

 70

 80

 90

 100

 1 2 3 4 5 6 7 8 9

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

Number of subjects

CAWS
CFS

Figure 4.7: Scheduling 2 observers with different policies.

 40

 50

 60

 70

 80

 90

 100

 4 6 8 10 12 14 16 18

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

Number of objects

CAWS
CFS

Figure 4.8: Scheduling many subject-observer tuples with different policies.

In experiments with design pattern implementations, the benefit obtained from cache

utilization degrades as the number of objects reach beyond the number of cores in

the system. This situation is caused by increased number of cache misses as different

objects starts to be switched on the cores of the system. Nevertheless this problem

loses its significance as the number of cores reside in a chip tend to increase over time.

4.2 A Cache-Aware Dispatcher for Dependency Patterns

Based on the experiments in the last section, scheduling frequently communicating and

data sharing objects to the processing elements that share acommon cache, provides

84

performance improvements supporting applicability of CAWS. On the other hand

implementing a scheduler from scratch has its own difficulties and problems on quite

different domains which are out of the context of this thesis. However even guiding

the scheduler using thread affinity directives during runtime provided an acceptable

performance improvement for design patterns.

A more systematic and scalable approach for this object dispatching strategy is

implemented and experimented in this section. This cache-aware dispatcher uses graph

based models of dependency relations among software components and memory-core

hierarchy of processing element at hand to provide object/thread-core distribution

strategies that will increase cache re-use. Different experiments are conducted for

four different software models and two different processorarchitectures to illustrate

the scalability of the proposed dispatcher.

4.2.1 Graph models of dependency patterns and multicore processors

From the initial phases of the thesis studies, software design is presented by labeled

graphs and the operations on software like dependency pattern extraction is realized by

graph transformations. To provide a scheduling mechanism that maps the dependency

pattern onto cores of a chip multi-processor it is enough to perform a graph matching

operation between the dependency pattern graph and a processor graph. The processor

graph should represent core/memory hierarchy of the chip multi-processor at hand.

Definition 1. A Processor-Memory Hierarchy Graph(G) is a labeled graph where two

types of nodes are called memories(M) and cores(C).

G= 〈M∪C,E〉 (4.3)

where C = {ω1,ω2...ωm} is the set of cores in the processors and

M = {µ0,µ1...µm, ...µn} is the set of memories (private(µ1...µm) and shared

caches(µm+1...µn) and main memory(µ0)). Therefore edges in graph G can be defined

asE ⊆ (M×C)∪ (C×M)∪ (M×M)

On the basis of this definition an example processor and the memory hierarchy graph

representing the processor can be found in Figure 4.9. For the processor in Figure (a)

L1 caches are not included in the graph for simplicity.

Graph model of dependency patterns can be defined as follows.

85

(a) A sample multiple chip multi-processors.

��
�� ��

���� ���� �	

�

�

�
�
�
�
�
�
	

�

��

��
��

(b) Graph representation of the processing unit in Figure 4.9a.

Figure 4.9: (a) presents an example processing unit and (b) presents thememory
hierarchy graph representing it.

Definition 2. A dependency pattern graphs is a labeled graph where five types

of patterns called bridges(B), islands(I), authorities(A), hubs(H) and cycles(Y) are

represented as nodes in the graph.

G= 〈P,E〉 (4.4)

where pattern set(P) is the union of the sets of five different pattern typesP= {B∪ I∪

A ∪H∪Y}. Each pattern set includes a finite number of patternsmP ∈ Z
+.

B = {b1,b2...bmB}

I = {i1, i2...imI}

A = {a1,a2...amA}

H = {h1,h2...hmH}

Y = {y1,y2...ymC}

86

Each pattern(1≤ i ≤ mP) includes a finite number of classesn ∈ Z
+. Bridges and

islands can hold multiple classes and the rest of the patterns can hold a single class.

bi = {bc1,bc2...bcnB}

i i = {ic1, ic2...icnI}

ai = {ac}

hi = {hc}

yi = {yc}

On the basis of this definition an example dependency patterngraph can be found in

Figure 4.10.

Figure 4.10: An example dependency pattern graph.

4.2.2 A graph matching algorithm for cache-aware dispatcher

Using the graph models of the software and processor at hand,a graph matching

algorithm is presented together with a runtime allocation algorithm using the candidate

processor groups provided by the graph matching algorithm.Cache-aware scheduler to

be presented in the context of the thesis studies firstly applies graph matching algorithm

over the graphs at hand to provide a set of candidate core groups. The algorithm that

will be used to match the processor and dependency pattern graphs to produce these

core groups is presented in Section 4.2.2.1 Those candidatecore groups are than used

at runtime to place the object at hand to the most idle core present in the set of core

group selected for the particular dependency pattern instance.

The most idle core is determined by the runtime resource allocator presented in

Section 4.2.2.2. Runtime resource allocator keeps track ofall the objects it has

dispatched during the program execution and also objects notify resource allocator

87

when they gave up a core. This enables runtime resource allovator to be informed

about idleness of the cores at any given time of program execution. Moreover this kind

of information can also be obtained thorugh system calls which is not implemented in

the context of this study.

4.2.2.1 Compile-time graph matcher

The graph matcher algorithm is used to provide all of the possible mappings of the

dependency patterns at hand to the provided processor architecture. Algorithm 2 starts

to place the dependency patterns to the processor graph by calculating candidate core

group set of the hub having the most external dependencies initially. Later, dependency

graph is started to being traversed using a breadth first search except “node-adjacent”

pairs are placed in the “to be visited” queue as “caller-callee” pairs rather than nodes

itself. This way, candidate core groups of the callee are setbased on the candidate

core groups of the caller. This lets the algorithm include different core groups to the

candidate set depending on the dependency pattern that accesses the pattern at hand.

At lines 8,14 and 16 of Algorithm 2, a number of sets of candidate cores are determined

as the algorithm continues to run. The operations↑ and↓ are used in the algorithm to

select the descendant and ancestor nodes in the memory-corehierarchy. For example,

considering Figure 4.9b↑(µ7) operation will select the ancestorµ9 node while↑(µ9)

will select the set{µ1,µ7}. For authorities and cycles sets of candidate cores contains

only one core since most of the time they need to be placed in the most idle neighboring

core. However, especially for bridges and islands there exist a set of candidate cores

where the objects from a specific patterns needs to be distributed at runtime. Following

distribution criterion can be used to determine the number of cores that is suitable for

the particular number of classes inside a pattern.

δ =
Nc

Nω
(4.5)

In Equation(4.5), Nc denotes the number of classes inside the dependency pattern

and Nω denotes the number of cores that share the memory unit represented by a

processor’s graph node. In order to place a pattern to a groupof cores distribution

factorδ should be in the interval[1− εl ,1+ εr] whereε denotes the threshold that the

distribution factor may deviate from the caseδ = 1. Whenδ = 1 each class inside a

88

Algorithm 2 Graph matching algorithm.

1: ς =
⋃
(ω j) a set of candidate cores that a class’ object can be placed

2: σPi =
⋃
(ς j) is the set of candidate core sets for each pattern

3: Choose the hub(hmax) with the most external dependencies from dependency graph
GD(P,E)

4: ςhmax = µ0

5: Place each neighbor of (hmax) to the visit queue as <cr ,ce>(Caller class,Callee
class) pairs

6: for all <cr ,ce> pairs in the visit queuedo
7: if ce∈ hi then
8: µhci =↑ (µcr)
9: else ifce ∈ ai then

10: µaci = µcr

11: else ifce ∈ yi then
12: µyci = µcr

13: else ifce ∈ bi then
14: µbci =↓ (µcr)
15: else ifce ∈ i i then
16: µici =↓ (µcr)
17: end if
18: for all ωi ∈ C do
19: if ωi is a descendant ofµce then
20: ς∪= ωi

21: end if
22: end for
23: σPce

∪= ς
24: ς = /0
25: Add each neighbor of thece to the visit queue as <cr ,ce> pairs
26: end for

pattern is place to a specific core, henceεl andεr each tune the under-distribution and

over-distribution of the pattern classes over the given setof cores.

4.2.2.2 Runtime resource allocator

Runtime resource allocator is used to select the core to schedule each object at runtime.

It uses candidate set of core groups provided by the graph matching algorithm in

the last section. In order to decide which core to schedule anobject to, resource

allocator selects a subset of candidate groups by using the calling object’s scheduled

core information. Among the candidate groups a group is selected based on the core

idleness and the object is placed on a core inside the group based on the type of the

pattern it belongs to. Resource allocation algorithm is presented in Algorithm 3.

89

Algorithm 3 Resource allocation algorithm.

1: while Software represented by dependency pattern graphGD(P,E) runsdo
2: ς =

⋃
(ω j) a set of candidate cores that a class’ object can be placed

3: σPi =
⋃
(ς j) is the set of candidate core sets for each pattern

4: Obtain the<or ,oe>(Caller object,Callee object) information of the object to be
scheduled.

5: if oe∈ hi then
6: for all ς j ∈ σhi do
7: if ωor ∈ ς j then
8: Placeoe to Π(ς j)
9: end if

10: end for
11: else ifoe∈ ai then
12: Placeoe to ωk ∈ σai whereωk is a neigbhor ofωor

13: else ifoe∈ yi then
14: Placeoe to most idleωk ∈ σyi

15: else ifoe∈ bi then
16: for all ς j ∈ σbi do
17: if or /∈ H andor /∈ C andωor ∈ ς j then
18: Placeoe to ∆(ς j)
19: else
20: Placeoe to ∆(ς j) whereς j is the most idle set.
21: end if
22: end for
23: else ifoe∈ i i then
24: for all ς j ∈ σi i do
25: if or /∈ H andor /∈ C andωor ∈ ς j then
26: Placeoe to Π(ς j)
27: else
28: Placeoe to Π(ς j) whereς j is the most idle set.
29: end if
30: end for
31: end if
32: end while

In Algorithm 3 an object may be placed in a specific core, a set of objects may be

distributed in a balanced way by CAWS(this operation is indicated as∆) or a set of

objects can be scheduled to a pool of candidate cores(this operation is indicated asΠ)

where operating system(OS) decides the core that a specific object in the set is going

to be assigned to. Also each class in the software marks its affiliated core as busy to

the resource allocator before it begins to run and remove themark after it ends its run.

Resource allocator uses these marks to obtain how many objects are set affiliated to a

core at a specific time and hence provide a more balanced scheduling scheme.

90

4.2.2.3 A sample scheduling scenario

It can be useful to illustrate how the scheduler works in a sample scenario. The example

processor graph in Figure 4.9 and the example dependency graph in Figure 4.10 will

be used in this sample. Both of the graphs can be seen in Figure4.11.

��
�� ��

���� ���� �	

�

�

�
�
�
�
�
�
	

�

��

��
��

(a) Graph representation of the processor in Figure 4.9a.

(b) An example
dependency
pattern
graph.

Figure 4.11: Graphs to be used in sample scheduling scenario.

If the graph matching algorithm is run with parameters (εl :0.2 ,εr :0.5), and the number

of classes thati1,i2 and b1 contains is assumed as 6, 2 and 4 consecutively, the

algorithm in Algorithm 2 runs in the following sequence.

1. h1 received

(a) h1 is placed to nodeµ0

(b) The group [ω1,ω2,ω3,ω4,ω5,ω6,ω7,ω8] is added to candidate set ofh1

(c) <h1,b1> <h1,i1> and <h1,i2> pairs added to visit queue

2. <h1,b1> received

(a) b1 can be placed to nodes [µ9,µ10], [µ9,µ11], [µ9,µ12], [µ10,µ11], [µ10,µ12],

[µ11,µ12]

91

(b) Groups [ω1,ω7,ω2,ω5], [ω1,ω7,ω3,ω6], [ω1,ω7,ω4,ω8], [ω2,ω5,ω3,ω6],

[ω2,ω5,ω4,ω8], [ω3,ω6,ω4,ω8] are added to candidate set ofb1

(c) <b1,a1> pair added to visit queue.

3. <h1,i1> received

(a) i1 can be placed to nodes [µ9,µ10,µ11], [µ9,µ10,µ12], [µ10,µ11,µ12],

[µ9,µ11,µ12]

(b) Groups [ω1,ω7,ω2,ω5,ω3,ω6], [ω1,ω7,ω2,ω5,ω4,ω8], [ω2,ω5,ω3,ω6,ω4,ω8],

[ω1,ω7,ω3,ω6,ω4,ω8] are added to candidate set ofi1

(c) <i1,b1> and <i1,a1> pairs added to visit queue

4. <h1,i2> received

(a) i2 can be placed to nodes [µ9], [µ10], [µ11], [µ12]

(b) Groups [ω1,ω7], [ω2,ω5], [ω3,ω6], [ω4,ω8] are added to candidate set ofi2

(c) <i2,i1> and <i2,y1> pairs added to visit queue

5. <b1,a1> received

(a) a1 can be placed to nodes [µ9,µ10], [µ9,µ11], [µ9,µ12], [µ10,µ11], [µ10,µ12],

[µ11,µ12]

(b) Groups [ω1,ω7,ω2,ω5], [ω1,ω7,ω3,ω6], [ω1,ω7,ω4,ω8], [ω2,ω5,ω3,ω6],

[ω2,ω5,ω4,ω8], [ω3,ω6,ω4,ω8] are added to candidate set ofa1

6. <i1,b1> received

(a) b1 can be placed to [µ1,µ7,µ2,µ5], [µ1,µ7,µ3,µ6], [µ2,µ5,µ3,µ6],

[µ1,µ7,µ4,µ8], [µ2,µ5,µ4,µ8], [µ2,µ5,µ4,µ8]

(b) Groups [ω1,ω7,ω2,ω5], [ω1,ω7,ω3,ω6], [ω2,ω5,ω3,ω6], [ω1,ω7,ω4,ω8],

[ω2,ω5,ω4,ω8], [ω2,ω5,ω4,ω8] are added to candidate set ofb1

7. <i1,a1> received

(a) a1 can be placed to nodes [µ9,µ10,µ11], [µ9,µ10,µ12], [µ10,µ11,µ12],

[µ9,µ11,µ12]

(b) Groups [ω1,ω7,ω2,ω5,ω3,ω6], [ω1,ω7,ω2,ω5,ω4,ω8], [ω2,ω5,ω3,ω6,ω4,ω8],

[ω1,ω7,ω3,ω6,ω4,ω8] are added to candidate set ofa1

8. <i2,i1> received

(a) i1 can be placed to nodes [µ1,µ7,µ2,µ5,µ3,µ6], [µ1,µ7,µ2,µ5,µ4,µ8],

[µ2,µ5,µ3,µ6,µ4 ,µ8]

92

(b) Groups [ω1,ω7,ω2,ω5,ω3,ω6], [ω1,ω7,ω2,ω5,ω4,ω8], [ω2,ω5,ω3,ω6,ω4,ω8]

are added to candidate set ofi1

9. <i2,y1> received

(a) y1 can be placed to nodes [µ9], [µ10], [µ11], [Pµ12]

(b) Groups [ω1,ω7], [ω2,ω5], [ω3,ω6], [ω4,ω8] are added to candidate set ofy1

(c) <y1,a1> pair added to visit queue

10. <y1,a1> received

(a) a1 can be placed to nodes [µ9], [µ10], [µ11], [µ12]

(b) Groups [ω1,ω7], [ω2,ω5], [ω3,ω6], [ω4,ω8] are added to candidate set ofa1

After algorithm finishes its run, set of candidate core groups for each pattern is

determined as follows.

• h1: [ω1,ω2,ω3,ω4,ω5,ω6,ω7,ω8]

• b1: [ω1,ω7,ω2,ω5], [ω1,ω7,ω3,ω6], [ω1,ω7,ω4,ω8], [ω2,ω5,ω3,ω6], [ω2,ω5,ω4,ω8],

[ω3,ω6,ω4,ω8]

• i1: [ω1,ω7,ω2,ω5,ω3,ω6], [ω1,ω7,ω2,ω5,ω4,ω8], [ω2,ω5,ω3,ω6,ω4,ω8],

[ω1,ω7,ω3,ω6,ω4,ω8]

• i2: [ω1,ω7], [ω2,ω5], [ω3,ω6], [ω4,ω8]

• y1: [ω1,ω7], [ω2,ω5], [ω3,ω6], [ω4,ω8]

• a1: [ω1,ω7,ω2,ω5], [ω1,ω7,ω3,ω6], [ω1,ω7,ω4,ω8], [ω2,ω5,ω3,ω6], [ω2,ω5,ω4,ω8],

[ω3,ω6,ω4,ω8], [ω1,ω7,ω2,ω5,ω3,ω6], [ω1,ω7,ω2,ω5,ω4,ω8], [ω2,ω5,ω3,ω6,ω4,ω8],

[ω1,ω7,ω3,ω6,ω4,ω8], [ω1,ω7], [ω2,ω5], [ω3,ω6], [ω4,ω8]

Using these set of candidate core groups, the following example scenario can be

executed where each step represents a parallel sequence of method calls from the object

of a dependency pattern to another object in the corresponding dependency pattern.

Step 1:h1 → b1 → a1

Step 2:h1 → i2 → y1 → a1

Step 3:h1 → i2 → i1 → a1

Step 4:h1 → i1 → b1 → a1

93

When this scenario executes, the allocation algorithm handles core affiliations as

follows.

1. Initially all cores are marked as idle [ω1:0,ω2:0,ω3:0,ω4:0,ω5:0,ω6:0,ω7:0,ω8:0]

2. Step 1 kicks in

(a) h1 starts running.h1 is scheduled toω1, ω1 is marked in the affiliation list

[ω1:1,ω2:0,ω3:0,ω4:0,ω5:0,ω6:0,ω7:0,ω8:0]

(b) b1 starts running. Objects ofb1 are scheduled to [ω2,ω5,ω3,ω6] consecutively.

Affiliation list becomes [ω1:1,ω2:1,ω3:1,ω4:0,ω5:1,ω6:1,ω7:0,ω8:0]

(c) a1 starts running.a1 is scheduled to the pool of(ω2,ω5,ω3,ω6). Affiliation list

becomes [ω1:1,ω2:2,ω3:2,ω4:0,ω5:2,ω6:2,ω7:0,ω8:0]

3. Step 2 kicks in

(a) h1 continues to run.h1 was scheduled toω1.

(b) i2 starts running. Objects of i2 are scheduled to the

pool of [ω4,ω8] consecutively. Affiliation list becomes

[ω1:1,ω2:2,ω3:2,ω4:1,ω5:2,ω6:2,ω7:0,ω8:1]

(c) y1 starts running. y1 is scheduled toω7. Affiliation list becomes

[ω1:1,ω2:2,ω3:2,ω4:1,ω5:2,ω6:2,ω7:1,ω8:1]

(d) Step 1’s b1 finishes. Affiliation list becomes

[ω1:1,ω2:1,ω3:1,ω4:1,ω5:1,ω6:1,ω7:1,ω8:1]

(e) a1 starts running. a1 is scheduled to the pool of (ω1,ω7). Affiliation list

becomes [ω1:2,ω2:1,ω3:1,ω4:1,ω5:1,ω6:1,ω7:2,ω8:1]

(f) Step 1’s a1 finishes. Affiliation list becomes

[ω1:1,ω2:0,ω3:0,ω4:1,ω5:0,ω6:0,ω7:1,ω8:1]

4. Step 3 kicks in

(a) h1 continues to run.h1 was scheduled toω1.

(b) i2 starts running. Objects of i2 are scheduled to the

pool of [ω2,ω5] consecutively. Affiliation list becomes

[ω1:1,ω2:1,ω3:0,ω4:1,ω5:1,ω6:0,ω7:1,ω8:1]

(c) i1 starts running. i1 is scheduled to the pool of (ω1,ω7,ω2,ω5,ω3,ω6).

Affiliation list becomes [ω1:2,ω2:2,ω3:1,ω4:1,ω5:2,ω6:1,ω7:2,ω8:1]

94

(d) a1 starts running. Assuming an object with an affiliation ofω2 from the

previous step callsa1, a1 is scheduled to the pool of (ω2,ω5). Affiliation list

becomes [ω1:2,ω2:3,ω3:1,ω4:1,ω5:3,ω6:1,ω7:2,ω8:1]

5. Step 4 kicks in

(a) h1 continues to run.h1 was scheduled toω1.

(b) Step 2’s i2 finishes. Affiliation list becomes

[ω1:2,ω2:3,ω3:1,ω4:0,ω5:3,ω6:1,ω7:2,ω8:0]

(c) i1 starts running. i1 is scheduled to the pool of (ω1,ω7,ω3,ω6,ω4,ω8).

Affiliation list becomes [ω1:3,ω2:3,ω3:2,ω4:1,ω5:3,ω6:2,ω7:3,ω8:1]

(d) Step 3’s i2 finishes. Affiliation list becomes

[ω1:3,ω2:2,ω3:2,ω4:1,ω5:2,ω6:2,ω7:3,ω8:1]

(e) b1 starts running. Assuming an object with an affiliation ofω7 from the

previous step callsb1, b1 is scheduled to the pool of (ω1,ω7,ω4,ω8). Affiliation

list becomes [ω1:4,ω2:2,ω3:2,ω4:2,ω5:2,ω6:2,ω7:4,ω8:2]

(f) Step 3’s i1 finishes. Affiliation list becomes

[ω1:3,ω2:1,ω3:1,ω4:2,ω5:1,ω6:1,ω7:3,ω8:2]

(g) a1 starts running. Assuming an object with an affiliation ofω1 from the

previous step callsa1, a1 is scheduled to the pool of (ω1,ω7). Affiliation list

becomes [ω1:4,ω2:1,ω3:1,ω4:2,ω5:1,ω6:1,ω7:4,ω8:2]

6. Rest of the objects finishes.

Please note that the core affiliation list held by the allocation algorithm is a superset of

the actual core assignments at runtime. Graph matching algorithm has a complexity of

O(e) where e is the number of edges in the dependency graph.

4.2.3 Applying cache-aware dispatcher for a basic case study

In this section the cache-aware scheduling implementationwill be applied to an image

filtering application where a number of filters are applied toan image consecutively or

at once using a composite filter. Firstly the software at handwill be parallelized using

dependency patterns and then the proposed compile-time graph matching and runtime

resource allocating algorithms will be applied to perform cache-aware scheduling on

the software. Obtained results will be compared with linux’CFS andO(1) scheduling.

95

4.2.3.1 Case study software on image filtering

An image filtering software is chosen to be used as a case studyin cache-aware

scheduling. Image filtering software simply reads in an image as a matrix of gray levels

for each pixel and convolves it with one or many filters definedin the software. Some

filters may be chosen to be applied as a composite filter on the image. This feature is

implemented by using a Composite pattern. The class diagramand the corresponding

dependency diagram of the software can be found in Figure 4.12.

(a) Class diagram of image filtering software.

H

B C

A

(b) Dependency
pattern
diagram
of image
filtering
software in
Figure 4.12a.

Figure 4.12: (a) presents class diagram of the case study and (b) presentsdependency
pattern diagram representing it.

It can be seen that Filter classes form a bridge from the hub classImageMatrix
to the authorityImageMatrix. During the implementation of the software Filter

classes (as a bridge) impose a possible parallelization opportunity. On the other

handCompositeFilter forms a cycle which means a possible sequential behavior

is present for this class. Care may need to be taken during theimplementation of this

class. Following classes reside in each of the dependency patterns in Figure 4.12b.

• H: ImageMatrix
• B: CompositeFilter BlurFilter EmbossFilter GaussianFilter
• C: CompositeFilter
• A: ImageBuffer

96

During the parallelization process, following the guidelines from the dependency

patterns, each filter is programmed as a separate thread working on subsection of

the image matrix. Each subsection is hold in an image buffer which is used by

different filters consecutively. AlsoCompositeFilter class is parallelized since it

applies each filter sequentially if implemented in its original form. When implemented

this way it is possible to apply three different filters on theimage in two different

ways. Firstly each filter can be applied separately on the image, and each filter works

parallel on the subsections of the image. Secondly filters can be applied as a composite

filter where three filters applied consecutively on the subsections of the image in a

parallel way. For instance ifBlurFilter andEmbossFilter is to be applied on an

image; for straightforward filteringBlurFilter is applied in a parallel way over the

subsections of the image andEmbossFilter is applied afterwards. For composite

filtering, image is decomposed into subsections first andCompositeFilter is applied

whereBlurFilter andEmbossFilter is applied consecutively for each subsection.

4.2.3.2 Experimental results

Experiments using cache-aware scheduling are performed intwo separate processor

architectures which can be seen in Figures 4.13 and 4.14 respectively. The processor

in Figure 4.13 (referred to as TRW) is a 4 processor architecture where each processor

holds 2 cores. The processor in Figure 4.14 (referred to as ZEB) is a 2 processor

architecture where each processor holds 6 cores. TRW runs a Linux server with 2.6.32

kernel using a CFS scheduler and ZEB runs a Linux server with 2.6.18 kernel usingO(1) scheduler.

During the experiments, image filtering software presentedin the previous section

has been slightly modified at each step to allow application of CAWS on different

parallelization perspectives. Four different parallelization scenarios are applied which

consist of applying composite filters on many subregions of asingle image in parallel,

applying many filters in parallel on a single image, applyingmany filters in parallel on

multiple images and applying many filters on many subregionsof multiple images in

parallel.

97

(a) A sample 2 cored 4 processor processing unit.

��
�� ��

���� ���� �	

�

�

�
�
�
�
�
�
	

�

��

��
��

(b) Graph representation of the processing unit in Figure 4.13a.

Figure 4.13: (a) presents an example processor and (b) presents the processor-memory
hierarchy graph representing it.

In all the plots presented below y-axis represents normalized runtime performance

where normalization is performed by calculating for each experiment.

ρi =
1
Ti

(4.6)

ρn =
ρi

ρ(best)
i

×100 (4.7)

In Equations(4.6) and (4.7), Ti represents avarage running time for each case,ρi

represents performance of each case andρ(best)
i is the best performance(lowestTi ,

highestρi) among all measurements for the plot at hand. Multiplicating the result

98

(a) A sample 6 cored 2 processor processing unit.

��

��� ���

�� �� ��
�� �� ��

�	 �
 �� ��� ��� ���

��
�� �� �� �� �� �	 �
 �� ��� ��� ���

(b) Graph representation of the processing unit in Figure 4.14a.

Figure 4.14: (a) presents an example processing unit and (b) presents the
processor-memory hierarchy graph representing it.

by 100 enables to easily read the performance differences between measurements with

terms of percentage. Confidence intervals of all the experimental results are obtained

by repeating experiments until results converge. A repetition of 25 times were enough

during the experiments.

Applying composite filters on many subregions of an image in parallel

For the first scenario in Figure 4.15 differentCompositeFilter objects are created

and run in parallel over an image kept in anImageMatrix object. The image is

decomposed into many subparts each hold in a differentImageBuffer object, so

that each composite filter instance can work on the image in parallel. For this

scenario filters inside a composite object run sequentiallyand reuse the corresponding

99

Figure 4.15: Applying composite filters on many subregions of a single image in
parallel.ImageBuffer after it has been convolved by the predecessor of the filter. This way

each subsections of the image are reused by the filters of aCompositeFilter.

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5 6 7 8 9

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

Number of composite filters

CAWS
CICAWS

CFS
CICFS

Figure 4.16: TRW results for applying composite filters on many subregions of a
single image in parallel.

In Figure 4.16, performance results of image filtering with respect to the increase of

parallelized regions inside the image is presented for TRW.The performance of both

CFS and CAWS increases with the number of parallelized parts. CAWS outperformed

CFS until the number of parallelized regions reaches the number of cores in the system.

In Figure 4.17 the peak performance diffrence versus CFS is not as much as the former

case, however an improvement can be seen as the number of parallel parts goes beyond

6(which is the number of cores that share a common cache).

100

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

Number of composite filters

CAWS
CICAWS

O(1)
CIO(1)

Figure 4.17: ZEB results for applying composite filters on many subregions of a single
image in parallel.

In all of the experiments presented in this section CAWS competed successfully with

CFS until the number of parallelized regions reached the number of cores. This

happens because the CAWS implementation used in the experiments doesn’t migrate

threads once it affiliates a thread with a core. Because of this after the number of

threads reaches the number of cores the affiliation of threads that waits in processor

queues should be updated frequently considering the workload of the cores. However

to make such a decision cost of migrating the thread should becompared with the

cost of cache misses migration is going to trigger. Making this kind of decisions is

a subject which is out of this dissertation’s scope so the numbers until the number of

threads reaches the number of cores is presented in results.

Applying many filters in parallel on a single image

In Figure 4.18 second scenario is depicted where many differentFilter instances are

applied on an image in parallel. This timeImageMatrix has only oneImageBuffer
which keeps the entire image. On the other hand unlike the first scenario this time

every filter gets the sameImageBuffer but produces its own copy by convolving on

it. In this example, entire image is reused by different filter instances in parallel.

In Figure 4.19, performance results of image filtering with respect to the number of

filters is presented for TRW. CAWS outperformed CFS until thenumber of parallelized

101

Figure 4.18: Applying many filters in parallel on a single image.

filters reached the number of cores in the system. At the end ofthe experiments, results

show that the improvement performed by CAWS increases up to∼20%.

In Figure 4.20 similar results can be seen for ZEB’sO(1) where performance

improvement reached 20%. It can be seen that performance peaks emerged when the

number of filters(parallel working threads) reaches the factors of number of cores that

share the same level cache(6 and 12 in our case). When the number of data sharing

software components spans the number of cores using common cache performance

drops substantially.

 50

 60

 70

 80

 90

 100

 0 1 2 3 4 5 6 7 8 9

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

Number of filters

CAWS
CICAWS

CFS
CICFS

Figure 4.19: TRW results for applying many filters in parallel on a single image.

102

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 2 4 6 8 10 12 14 16

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

Number of filters

CAWS
CICAWS

O(1)
CIO(1)

Figure 4.20: ZEB results for applying many filters in parallel on a single image.

Applying many filters in parallel on multiple images

Figure 4.21: Applying many filters in parallel on multiple images.

To make the previous scenario more realistic and increase the importance of thread

distribution multiple images are used for the scenario in Figure 4.21. When two or

three images are used instead of one, number of cache misses starts to increase if the

filters are placed randomly to the cores.

In Figures 4.22 and 4.23 results from two different perspectives are presented for TRW.

In Figure 4.22 the performance results of CFS with respect tovarying number of filters

on two different images is presented. In Figure 4.23 the number of filters is constant

where the number of images varies. For both of the cases performance improvement

has reached up to around 20%.

103

 50

 60

 70

 80

 90

 100

 0 1 2 3 4 5 6 7 8 9

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

Number of filters

CAWS
CICAWS

CFS
CICFS

Figure 4.22: TRW results for applying many filters in parallel on two images.

 70

 75

 80

 85

 90

 95

 100

 105

 0 1 2 3 4 5

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

Number of images

CAWS
CICAWS

CFS
CICFS

Figure 4.23: TRW results for applying many filters in parallel on many images.

In Figures 4.24 and 4.25 results using two and three different images in ZEB’sO(1)
are presented successively. For both cases performance improvement has reached up

to around 30%. For parallel filters on two images performanceof CAWS started to

fall behindO(1) after 10 filters because each image gets 5 filters for this caseallowing

CAWS to place 6 objects(1 image 5 filters) to the neighboring cores ZEB. For parallel

filters on three images CAWS started to be outperformed after9 filters since the number

of total objects in the system exceeds the number of cores.

104

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 2 4 6 8 10 12 14 16

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

Number of filters

CAWS
CICAWS

O(1)
CIO(1)

Figure 4.24: ZEB results for applying many filters in parallel on two images.

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 2 4 6 8 10 12 14 16

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

Number of filters

CAWS
CICAWS

O(1)
CIO(1)

Figure 4.25: ZEB results for applying many filters in parallel on three images.

Applying many filters on subregions of multiple images in parallel

For the last scenario in Figure 4.26 multiple images are evendecomposed into many

different subregions, each being held by a differentImageBuffer object. In this

scenario the number of parallelized parts are a lot more thanthe previous scenarios

increasing the chance of CAWS dispatcher to affiliate filtersthat work on differentImageBuffers (in other words filters that work on different data) resulting increased

miss rates and degrading performance. It is not meaningful to conduct such an

experiment with double cores sharing a cache so the experiments are only run for

ZEB for this scenario.

105

Figure 4.26: Applying many filters on many subregions of multiple images in parallel.

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

Number of subsections

CAWS
CICAWS

O(1)
CIO(1)

Figure 4.27: ZEB results for applying many filters on many subregions of animage in
parallel.

In Figures 4.27 and 4.28, results using one and two differentimages consisting of

many subregions in ZEB are presented successively. In the results x-axis present the

number of parallelized parts which is the total number of subsections inside all the

images in the system. For both cases performance improvement has reached up to

around 20%. In Figure 4.27 after the number of subsections reach over 6 CAWS starts

to place subsections to non-neighboring cores which resultin smaller performance

improvements after 6 subsections. In Figure 4.28 it can be seen that CAWS continues

to compete withO(1) until 10 cumulative subsections to be filterred present in the

system which results in two images and 5 filter objects convolving subsections of the

image at a given time. In this scenario each image object is assigned to another shared

cache maximizing cache reuse.

106

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 2 4 6 8 10 12

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

Number of cumulative subsections

CAWS
CICAWS

O(1)
CIO(1)

Figure 4.28: ZEB results for applying many filters on many subregions of two images
in parallel.

As a result of all the experiments above, it can be seen that CAWS provides a

maximum performance improvement of 20% in almost all of the cases. Performance

improvement has even reached up to 30% for two scenarios. On average CAWS

provides∼10% performance improvement if thread migration is not required at

runtime.

4.3 Summary and Conclusions

The studies on cache-aware scheduling presented in this chapter show that considering

shared data during scheduling increases the scheduling performance when multicore

processors are used. It is important to utilize shared data among software components

in guiding the scheduling process, even if it is not always possible to make accurate

predictions on data sharing among software components before the system is run.

The approach presented in Section 4.1 uses software models to reason about data

sharing among the classes of a software. Experimentations on three different

commonly used software design patterns to consider the effect of cache-aware

scheduling. Promising results are obtained to apply a model-based approach on

larger software considering the three important factors (parallelization, data sharing

and resource utilization) that effect the overall performance of the system in the

presented case studies. Beside its positive effects on scheduling performance, using

107

a model driven approach may lead to reason about software design for various core

organizations that processors can include in the future.

In Section 4.2 a dispatcher implementation is presented that uses CAWS principles to

match the dependency graph of a software with the memory-core hierarchy graph of

a processor. The results obtained by applying dispatcher onan image filtering case

study outperformed Linux’ CFS/O(1) with a rate up to 30% and showed promising

results for CAWS. The improvement continued until the number of threads has reached

the number of cores in the system since experimented CAWS implementation doesn’t

perform thread migration which is left as a future study for the dispatcher.

As future studies the presented model based dispatcher can be improved based on

the lessons obtained from the experiments presented in the last section. By using a

model driven dispatcher and cache aware scheduling methodology it can be possible to

reason about parallelization and data sharing during the early design stage of software

development. Moreover it can be possible to steer the design/development process

to produce more competing designs for parallelization whendifferent processor

architectures are used.

108

5. CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

At a first glance, model based analysis and runtime performance of a software seem to

stand almost at two distant phases of the software life cycle. However, as the recent

studies show, the decisions made at earlier stages of software development has the most

serious effects compared to latter stages. This thesis encourages that parallelization

can be seen as one of these decisions. However, it is more difficult to make such

decisions since parallelism is harder to detect at the earlier stages of software life. On

the other hand using model based analysis makes it possible to develop more efficient

parallelization solutions at earlier stages of software development. It is harder to detect

and utilize such parallelization opportunities at development phase. Following studies

are achieved in thesis to improve software quality for multicore systems.

In Chapter 3 dependency patterns and their occurrence in class diagrams are presented

which played key role in thesis studies. Utilization of dependency patterns in

parallelization and synchronization efforts are shown using a case study(Jikes). Later,

some more detailed examples are also presented on differentobject oriented software.

In those examples more detailed properties of dependency patterns are analysed using

software metrics. A metric set is defined in that purpose and the set of properties that

can be covered using defined set of metrics are presented. By using the proposed set of

metrics on dependency patterns found in different object oriented software, properties

of dependency pattern instances during parallelization process are analyzed. Finally,

using clustering techniques in exploring dependency patterns inside class diagrams is

discussed and an improvement is proposed for this process. Some of the obtained

schemes almost doubled the clustering performance for dependency patterns and a

noticeable improvement is obtained for the most of them. Moreover by using the

proposed technique, overlapping structures that cannot befound using conventional

clustering methods can be detected as well.

109

Chapter 4 presents improvement of object oriented softwarescheduling by analyzing

possible data sharing among software components using dependency patterns.

Dependency patterns capture the possible coupling betweenclasses of software at

runtime. The proposed technique uses this feature to reasonabout common data usage

among software classes and place related classes’ objects to the cores that share the

same level cache. Of course this placement policy is effected by the number of objects

that can be produced at runtime and the way a group of related objects distributed

regarding the architecture of the processor at hand. Firstly, to examine the applicability

of the cache-aware scheduling, technique is applied to basic implementations of

software design patterns and promising results are obtained. Later in this chapter an

example implementation of an object dispatcher is presented that uses cache-aware

scheduling principles. Final results showed that by applying the proposed technique,

Linux’ CFS/O(1) scheduler performance can be improved up to 25%.

The results show that it is possible to detect and utilize such implicit parallelization

decisions by analyzing class diagrams. Moreover it is even possible to fine tune

scheduling of object oriented software using the results ofsuch analysis. As the main

objective of parallelization efforts, the results in the thesis showed that it is possible

to obtain up to a maximum 25% performance improvement. In avarage, proposed

technique resulted around 10% performance improvement. But almost as important

as performance gains, having insight about other aspects ofparallel software quality,

like synchronization, is another outcome of proposed methodology. Last but not least,

applying model based analysis and pattern based solutions makes it easier to maintain

software quality during refactoring for parallelization.

As a final evaluation, the proposed improvements for parallelization presented in this

thesis are one of the early studies on model driven software refactoring for parallel

development that also considers quality based properties of modern software. Thesis

studies cover a wide range of topics from software metrics toscheduling and present

original and influential ideas over a complete range of properties on discovering

implicit parallelism in object oriented software.

110

5.2 Future Work

The future works are as follows:

• All the analysis presented in the thesis studies are performed based solely on static

models of software. Although this situation brings vagueness to the results of the

analysis, using dynamic models also has its own difficultiesdiscussed in Chapter 3.

However results from the static analysis may be enhanced using information from

the dynamic diagrams and dynamic analysis of software. Especially for scheduling

of object oriented software feedback can be obtained from dynamic analysis of

related software.

• Dispatcher system proposed in Chapter 4 makes affinity settings for threads at

creation time. This causes the proposed system to fail in load balancing after the

number of parallel objects exceeds the number of cores because dispatcher doesn’t

update core affinities once threads are created. By introducing a dynamic affinity

updating system and migrating the threads to appropriate idle cores at runtime the

performance of the dispatcher can be improved. However thisimprovement brings

a lot of difficulties like the need of estimating the cost of migrating the object over

waiting for its completion which exceeds the scope of this thesis.

• Dependency diagrams are not specific only to parallel analysis. Instead they are

closely related with graph cluster based structures and canbe applied not only

in many different areas of software engineering but also many areas of computer

science(like web mining) as well where inter-graph relations pose important

structures.

• During thesis studies one of the major obstacles were findinga variety of different

software that were designed in an object oriented way, and parallelized neatly. In

order to observe different distribution and parallelization techniques a software

simulator can be very handy. As a future work, for simulatingvarious different

software model runs before the software is implemented, a software simulator(like

network simulators) can be implemented.

• There exist many multicore processor simulators in the literature, but most of them

includes very detailed configuration options to simulate the hardware in a detailed

111

way. Another need to work on software design for multicore systems is a multicore

processor simulator focused only on core-memory hierarchyof the processor with

a simple configuration interface.

• Based on the software and multicore processor simulators mentioned in the last

two items, the vision based on the thesis studies is being able to rapidly model the

software and processor architectures to reason about necessary modifications on

the software model as well as minimum acceptable needs that the processor shall

serve to obtain specific performance requirements from software. A framework like

this may hopefully form a bridge between respectively complicated hardware and

software design world in the future.

112

REFERENCES

[1] Comer, D.E., Gries, D., Mulder, M.C. , Tucker, A., Turner, A.J. and Young,
P.R., 1989. Computing as a Discipline,Communications of the ACM, 32,
9–23.

[2] Flynn, M.J. , 1972. Some Computer Organizations and Their Effectiveness, IEEE
Transactions on Computers, 21, 948–960.

[3] Joch, A. Chip Multiprocessing,<http://www.computerworld.com/s/article/54343/
Chip_Multiprocessing>, accessed at 11.04.2011.

[4] Bik, A.J.C. and Gannon, D.B., 1997. Automatically Exploiting Implicit
Parallelism in Java,Concurrency, Practice and Experience, pp. 579–619.

[5] Oliver, J., Guitart, J. , Ayguadé, E., Navarro, N. and Torres, J., 2001. Strategies
for the efficient exploitation of loop-level parallelism inJava,Concurrency
and Computation: Practice and Experience, 13, 663–680.

[6] Bull, J. and Kambites, M., 2000. JOMP—an OpenMP-like interface for Java,
Proceedings of the Conference on Java Grande, ACM, pp. 44–53.

[7] Felber, P., 2003. Semi-automatic Parallelization of Java Applications,On The Move
to Meaningful Internet Systems: CoopIS, DOA, and ODBASE, volume
2888 ofLecture Notes in Computer Science, Springer Berlin / Heidelberg,
pp. 1369–1383.

[8] Du, J., Chen, D. and Xie, L., 1999. JAPS: an automatic parallelizing system based
on Java,Science in China Series E: Technological Sciences, 42, 396–406.

[9] Yu, M. , Guo, M., Pan, Y., Zang, W. and Xie, L., 2002. JAPS-II: A Source to
Source Parallelizing Compiler for Java,Proceedings of the International
Conference on Parallel and Distributed Processing Techniques and
Applications - Volume 1, PDPTA ’02, CSREA Press, pp. 164–170.

[10] Guitart, J. , Martorell, X. , Torres, J. and Ayguadé, E., 2001. Efficient Execution
of Parallel Java Applications,3rd Annual Workshop on Java for High
Performance Computing (part of the 15th ACM International Conference
on Supercomputing), ICS’01, pp. 31–35.

[11] Chan, B. and Abdelrahman, T.S., 2004. Run-Time Support for the Automatic
Parallelization of Java Programs,The Journal of Supercomputing, 28(1),
91–117.

[12] Halvorsen, O., Runde, R.K. and Haugen, Ø., 2007. Time Exceptions in
Sequence Diagrams,Models in Software Engineering, volume 4364 of

113

Lecture Notes in Computer Science, Springer Berlin / Heidelberg, pp.
131–142.

[13] Kaveh, N., 2001. Using Model Checking to Detect Deadlocks in Distributed
Object Systems,Revised Papers from the Second International Workshop
on Engineering Distributed Objects., EDO’00, Springer-Verlag, London,
UK, pp. 116–128.

[14] Mitchell, B. , 2008. Characterizing Communication Channel Deadlocks in
Sequence Diagrams,IEEE Transactions on Software Engineering, 34(3),
305–320.

[15] Eshuis, R., 2006. Symbolic model checking of UML activity diagrams,
Transactions on Software Engineering and Methodology, 15(1), 1–38.

[16] Latella, D., Majzik, I. and Massink, M. , 1999. Automatic Verification of
a Behavioural Subset of UML Statechart Diagrams Using the SPIN
Model-checker,Formal Aspects of Computing, 11, 637–664.

[17] Holzmann, G.J., 1991. Design and validation of computer protocols,
Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

[18] Holzmann, G.J., 1997. The Model Checker SPIN,Software Engineering, 23(5),
279–295.

[19] Newman, E. and Greenhouse, A., 2001. Annotation-based Diagrams for
Shared-Data Concurrency,Workshop on Concurrency Issues in UML at
the Fourth International Conference on the Unified ModelingLanguage.

[20] Mehner, K. and Wagner, A., 2000. Visualizing the Synchronization of
Java-Threads with UML,Proceedings of the IEEE International
Symposium on Visual Languages, VL’00, IEEE Computer Society,
Washington, DC, USA, p. 199.

[21] Konrad, S., Campbell, L.A. and Cheng, B.H.C., 2004. Automated Analysis of
Timing Information in UML Diagrams,Proceedings of the Nineteenth
IEEE international conference on Automated software engineering,
ASE’04, IEEE Computer Society, Washington, DC, USA, pp. 350–353.

[22] Das, D., Chakrabarti, P.P. and Kumar, R., 2007. Functional verification of
task partitioning for multiprocessor embedded systems,Transactions on
Design Automation of Electronic Systems, 12(4), 44.

[23] Davies, J. and Crichton, C., 2003. Concurrency and Refinement in the Unified
Modeling Language,Formal Aspects of Computing, 15(2), 118–145.

[24] Edwards, D., Simmons, S. and Kearns, P., 2004. Graphical Limits of
Concurrency,Neural Parallel And Scientific Computations, 12, 219–232.

[25] Plasil, F. and Mencl, V., 2003. Getting ’Whole Picture’ Behavior In A Use Case
Model,Journal of Integrated Design and Process Science, 7(4), 63–79.

114

[26] Sethumadhavan, S., Arora, N. , Ganapathi, R.B., Demme, J. and Kaiser,
G.E., 2009. COMPASS: A Community-driven Parallelization Advisor for
Sequential Software,Proceedings of the ICSE Workshop on Multicore
Software Engineering, IWMSE’09, IEEE Computer Society, Washington,
DC, USA, pp. 41–48.

[27] Erraguntla, R. and Carver, D.L. , 1998. Migration of sequential systems to
parallel environments by reverse engineering,Information & Software
Technology, 40(7), 369–380.

[28] Kim, S., Ch, D. and Solihin, Y., 2004. Fair cache sharing and partitioning in a
chip multiprocessor architecture,In IEEE PACT, pp. 111–122.

[29] Tam, D., Azimi, R., Soares, L. and Stumm, M., 2007. Managing Shared L2
Caches on Multicore Systems in Software,Workshop on the Interaction
between Operating Systems and Computer Architecture.

[30] Tam, D., Azimi, R. and Stumm, M., 2007. Thread clustering: sharing-aware
scheduling on SMP-CMP-SMT multiprocessors,EuroSys ’07:
Proceedings of the 2nd ACM SIGOPS/EuroSys European Conference on
Computer Systems 2007, ACM, New York, NY, USA, pp. 47–58.

[31] Merkel, A. and Bellosa, F., 2008. Memory-aware scheduling for energy efficiency
on multicore processors,Proceedings of the 2008 conference on Power
aware computing and systems, HotPower’08, USENIX Association,
Berkeley, CA, USA, pp. 1–1.

[32] Ha, J., Arnold, M. , Blackburn, S.M. and McKinley, K.S., 2009. A concurrent
dynamic analysis framework for multicore hardware,OOPSLA ’09:
Proceeding of the 24th ACM SIGPLAN conference on Object oriented
programming systems languages and applications, ACM, New York, NY,
USA, pp. 155–174.

[33] Zhou, B., Qiao, J. and kuan Lin, S., 2009. Research on Dynamic Cache
Distribution Scheduling Algorithm on Multi-Core Processors,E-Business
and Information System Security, 2009. EBISS ’09. International
Conference on, pp. 1 –4.

[34] Zangerl, T., 2008. Optimisation: Operating System Scheduling on multi-core
architectures, <http://tzangerl.net/doc/MulticoreScheduling.pdf>,
accessed at 11.04.2011.

[35] Siddha, S., 2007. Multi-core and Linux Kernel,
<http://software.intel.com/sites/oss/pdfs/mclinux.pdf>, accessed at
11.04.2011.

[36] Microsoft , 2011. MSDN Section on Windows Scheduling,
<http://msdn.microsoft.com/en-us/library/ms685096(v=vs.85).aspx>,
accessed at 11.04.2011.

[37] Oracle, 2010. Solaris 11 Programming Interfaces Guide,
<http://download.oracle.com/docs/cd/E19963-01/html/821-1602/psched-
23069.html>, accessed at 11.04.2011.

115

[38] Boyd-Wickizer, S., Morris, R. and Kaashoek, M.F., 2009. Reinventing
Scheduling for Multicore Systems,Proceedings of the 12th Workshop on
Hot Topics in Operating Systems (HotOS-XII), Monte Verità, Switzerland.

[39] Xue, L., Kandemir, M.T. , Chen, G., Li, F. , Ozturk, O. , Ramanarayanan,
R. and Vaidyanathan, B., 2007. Locality-Aware Distributed Loop
Scheduling for Chip Multiprocessors,VLSID ’07: Proceedings of the
20th International Conference on VLSI Design held jointly with 6th
International Conference, IEEE Computer Society, Washington, DC,
USA, pp. 251–258.

[40] Fedorova, R., Seltzer, M. and , M.D.S., 2006. Cache-fair thread scheduling for
multicore processors,Technical Report, Harvard University.

[41] Koziris, N., Romesis, M., Tsanakas, P. and Papakonstantinou, G., 2000. An
efficient algorithm for the physical mapping of clustered task graphs onto
multiprocessor architectures,Parallel and Distributed Processing, 2000.
Proceedings. 8th Euromicro Workshop on, pp. 406 –413.

[42] Trifunovic, A. and Knottenbelt, W.J. , 2006. A General Graph Model
for Representing Exact Communication Volume in Parallel Sparse
Matrix-Vector Multiplication,ISCIS, pp. 813–824.

[43] Roig, C., Ripoll, A. and Guirado, F., 2007. A New Task Graph Model for
Mapping Message Passing Applications,Parallel and Distributed Systems,
IEEE Transactions on, 18(12), 1740 –1753.

[44] Chen, G., Li, F. , Son, S. and Kandemir, M., 2008. Application mapping for chip
multiprocessors,Design Automation Conference, 2008. DAC 2008. 45th
ACM/IEEE, pp. 620 –625.

[45] Xie, Y. and Loh, G.H., 2009. PIPP: Promotion/Insertion Pseudo-Partitioning of
Multi-core Shared Caches,In Proc. of the 36th Intl. Symp. on Computer
Architecture, pp. 174–183.

[46] Valiant, L.G. , 2008. A Bridging Model for Multi-core Computing,Proceedings of
the 16th annual European symposium on Algorithms, ESA ’08, pp. 13–28.

[47] Kumar, V. and Delgrande, J., 2009. Optimal Multicore Scheduling: An
Application of ASP Techniques,LPNMR ’09: Proceedings of the 10th
International Conference on Logic Programming and Nonmonotonic
Reasoning, Springer-Verlag, Berlin, Heidelberg, pp. 604–609.

[48] Yau, S., Jia, X., Bae, D., Chidambaram, M. and Oh, G., 1991. Using Model
Checking to Detect Deadlocks in Distributed Object Systems, Proceedings
of the Fifteenth Annual International Computer Software and Applications
Conference., COMPSAC’91, pp. 453–458.

[49] Yau, S., Bae, D. and Pour, G., 1992. A partitioning approach for object-oriented
software development for parallel processing systems,Proceedings of
the Sixteenth Annual International Computer Software and Applications
Conference., COMPSAC’92, pp. 251–256.

116

[50] Li, X. and Lilius, J. , 1999. Timing analysis of UML sequence diagrams,
Proceedings of the Second International Conference on The Unified
Modeling Language. Beyond the Standard., Springer, Fort Collins, CO,
USA, pp. 661–674.

[51] Li, X. , Meng, C., Yu, P., Jianhua, Z. and Guoliang, Z., 2001. Timing Analysis
of UML Activity Diagrams, Proceedings of the Fourth International
Conference on The Unified Modeling Language, Modeling Languages,
Concepts, and Tools, Springer-Verlag, London, UK, pp. 62–75.

[52] Engels, G., Küuster, J. and Groenwegen, L., 2002. Consistent Interaction Of
Software Components,Journal of Integrated Design and Process Science,
6(4), 2–22.

[53] Giese, H., Klein, F. and Burmester, S., 2005. Pattern Synthesis from Multiple
Scenarios for Parameterized Real-Time UML Models,Scenarios: Models,
Transformations and Tools, volume 3466 ofLecture Notes in Computer
Science, Springer Berlin / Heidelberg, pp. 193–211.

[54] Seiter, L., Palsberg, J. and Lieberherr, K., 1998. Evolution of Object Behavior
Using Context Relations,IEEE Transactions on Software Engineering, 24,
79–92.

[55] Cazzola, W., Ghoneim, A. and Saake, G., 2002. Reflective Analysis and
Design for Adapting Object Run-Time Behavior,Proceedings of the
Eighth International Conference on Object-Oriented Information Systems,
OOIS’02, Springer-Verlag, London, UK, pp. 242–254.

[56] Gamma, B., Helm, R., Johnson, R. and Vlissides, J., 1994.Design Patterns:
Elements of Reusable Object-Oriented Software, Addison-Wesley
Professional.

[57] IBM . Jikes,<http://jikes.sourceforge.net/>, accessed at 01.07.2011.

[58] Chatzigeorgiou, A., Tsantalis, N. and Stephanides, G., 2006. Application
of graph theory to OO software engineering,Proceedings of the
International Workshop on interdisciplinary software engineering
research., WISER’06, ACM, New York, NY, USA, pp. 29–36.

[59] Karypis, G. and Kumar, V. , 1995. A fast and high quality multilevel scheme for
partitioning irregular graphs,SIAM Journal on Scientific Computing, 20,
359–392.

[60] Ng, A., Jordan, M. and Weiss, Y., 2001. On spectral clustering: Analysis and
an algorithm,Advances in Neural Information Processing Systems, MIT
Press, pp. 849–856.

[61] van Dongen, S., 2000. Graph Clustering by Flow Simulation,Ph.D. thesis,
University of Utrecht, The Netherlands.

[62] Ovatman, T. and Buzluca, F., 2008. Investigating software design pattern
behavior in multiprocessor systems: A case study on observer,

117

23rd International Symposium on Computer and Information Sciences,
ISCIS’08, pp. 1 –4.

[63] Ovatman, T. and Buzluca, F., 2009. Software Design Pattern Behavior in
Shared Memory Multiprocessor Systems,International Conference on
Computational Intelligence and Software Engineering, CiSE’09, pp. 1 –4.

[64] Chidamber, S.R. and Kemerer, C.F., 1994. A Metrics Suite for Object Oriented
Design,IEEE Transactions on Software Engineering, 20(6), 476–493.

[65] Brito e Abreu, F. and Carapuca, R., 1994. Object-Oriented Software
Engineering: Measuring and Controlling the Development Process,Proc.
Int’l Conf. Software Quality.

[66] Harrison, R., Counsell, S. and Nithi, R., 1998. An Evaluation of the MOOD
Set of Object-Oriented Software Metrics,IEEE Transactions on Software
Engineering, 24, 491–496.

[67] Bansiya, J. and Davis, C.G., 2002. A Hierarchical Model for Object-Oriented
Design Quality Assessment,IEEE Transactions on Software Engineering,
28(1), 4–17.

[68] Briand, L.C. , Morasca, S. and Basili, V.R., 1996. Property-Based Software
Engineering Measurement,IEEE Trans. Softw. Eng., 22(1), 68–86.

[69] Briand, L. , Arisholm, E., Counsell, S., Houdek, F. and Thévenod-Fosse,
P., 1999. Empirical Studies of Object-Oriented Artifacts, Methods, and
Processes: State of The Art and Future Directions,Empirical Software
Engineering, 4, 387–404.

[70] McCabe, T.J., 1976. A Complexity Metric,IEEE Transactions on Software
Engineering, 2.

[71] Li, Z. , Mills, P.H. and Reif, J.H., 1989. Models and Resource Metrics for Parallel
and Distributed Computation,Proc. 28th Annual Hawaii International
Conference on System Sciences, pp. 133–143.

[72] Hollingsworth, J.K. and Miller, B.P. , 1992. Parallel program performance
metrics: a comprison and validation,Supercomputing ’92: Proceedings
of the 1992 ACM/IEEE conference on Supercomputing, IEEE Computer
Society Press, Los Alamitos, CA, USA, pp. 4–13.

[73] Tallent, N.R. and Mellor-Crummey, J.M. , 2009. Effective performance
measurement and analysis of multithreaded applications,PPoPP ’09:
Proceedings of the 14th ACM SIGPLAN symposium on Principlesand
practice of parallel programming, ACM, New York, NY, USA, pp.
229–240.

[74] Frigo, M. , Leiserson, C.E. and Randall, K.H., 1998. The Implementation of
the Cilk-5 Multithreaded Language,In Proceedings of the SIGPLAN
’98 Conference on Program Language Design and Implementation, pp.
212–223.

118

[75] Fiutem, A., , Antoniol, G., Fiutem, R. and Cristoforetti, L. , 1998. Using Metrics
to Identify Design Patterns in Object-Oriented Software,Proc. IEEE-CS
Software Metrics Symp. (Metrics’98, pp. 23–34.

[76] Huston, B., 2001. The effects of design pattern application on metric scores,
Journal of Systems and Software, 58(3), 261–269.

[77] Martin, R. , 1994. OO Design Quality Metrics – An Analysis of Dependencies,
<http://www.objectmentor.com/resources/articles/oodmetrc.pdf>,
accessed at 11.04.2011.

[78] Martin, R.C. , 2002. Agile Software Development, Principles, Patterns, and
Practices, Prentice Hall.

[79] LEDA . LEDA, <http://www.algorithmic-solutions.com/leda/>, accessed at
11.04.2011.

[80] JBoss. JBoss,<http://www.jboss.org/>, accessed at 11.04.2011.

[81] DSpace. DSpace,<http://www.dspace.org/>, accessed at 11.04.2011.

[82] Mancoridis, S., Mitchell, B.S. and Rorres, C., 1998. Using automatic clustering
to produce high-level system organizations of source code,In Proc. 6th
Intl. Workshop on Program Comprehension, pp. 45–53.

[83] Xanthos, S., 2004. Identification of reusable components within an object-oriented
software system using algebraic graph theory,Proceedings of OPSLA ’04,
ACM, New York, NY, USA, pp. 322–323.

[84] Dietrich, J., Yakovlev, V., McCartin, C. , Jenson, G. and Duchrow, M., 2008.
Cluster analysis of Java dependency graphs,SoftVis ’08: Proceedings of
the 4th ACM symposium on Software visuallization, ACM, New York, NY,
USA, pp. 91–94.

[85] Mitchell, B.S. and Mancoridis, S., 2006. On the automatic modularization of
software systems using the Bunch tool,Software Engineering, IEEE
Transactions on, 32(3), 193–208.

[86] Xiao, C. and Tzerpos, V., 2005. Software Clustering Based on Dynamic
Dependencies,Proceedings of CSMR ’05, IEEE Computer Society,
Washington, DC, USA, pp. 124–133.

[87] Wu, F. and Yi., T., 2004. Dependence analysis for UML class diagrams,Journal
of Electronics, 21, 249–254.

[88] OMG , 2007. OMG Unified Modeling Language (OMG UML), Infrastructure,
V2.1.2, <http://www.omg.org/spec/UML/2.1.2/Infrastructure/PDF> ,
accessed at 11.04.2011.

[89] Dhillon, I.S., Guan, Y. and Kulis, B., 2007. Weighted Graph Cuts without
Eigenvectors A Multilevel Approach,IEEE Trans. Pattern Anal. Mach.
Intell., 29(11), 1944–1957.

119

[90] Karypis, G., 2003. CLUTO - A Clustering Toolkit,Technical Report#02-017,
University of Minnesota, Department of Computer Science.

[91] Data Mining Laboratory, T.U.o.T.a.A. , 2009. Graclus,
<http://www.cs.utexas.edu/users/dml/Software/graclus.html>, accessed at
11.04.2011.

[92] Karatzoglou, A., Smola, A., Hornik, K. and Zeileis, A. , 2004. kernlab - An S4
Package for Kernel Methods in R,Journal of Statistical Software, 11(9),
1–20.

[93] van Dongen, S., 2008. MCL,<http://micans.org/mcl>, accessed at 11.04.2011.

[94] Hubert, L. and Arabie, P., 1985. Comparing Partitions,Journal of Classification,
2, 193–218.

[95] Bergenti, F. and Poggi, A., 2000. Improving UML Designs using Automatic
Design Pattern Detection,Proc. 12th International Conf. Software Eng.
and Knowledge Eng. (SEKE ’00), pp. 336–343.

[96] Antoniol, G., Casazza, G., Penta, M.D. and Fiutem, R., 2001. Object-oriented
design patterns recovery,Journal of Systems and Software, 59(2), 181 –
196.

[97] Heuzeroth, D., Holl, T. , Högström, G. and Löwe, W., 2003. Automatic
Design Pattern Detection,Proceedings of the 11th IEEE International
Workshop on Program Comprehension, IWPC ’03, IEEE Computer
Society, Washington, DC, USA, pp. 94–.

[98] Balanyi, Z. and Ferenc, R., 2003. Mining Design Patterns from C++ Source Code,
19th International Conference on Software Maintenance (ICSM 2003),
The Architecture of Existing Systems, 22-26 September 2003, Amsterdam,
The Netherlands, pp. 305–314.

[99] Tsantalis, N., Chatzigeorgiou, A., Stephanides, G. and Halkidis, S.T., 2006.
Design Pattern Detection Using Similarity Scoring,Software Engineering,
IEEE Transactions on, 32(11), 896 –909.

[100] Dong, J., Zhao, Y. and Sun, Y., 2009. A Matrix-Based Approach to Recovering
Design Patterns,Systems, Man and Cybernetics, Part A: Systems and
Humans, IEEE Transactions on, 39(6), 1271–1282.

[101] Nichols, B., Buttlar, D. and Farrell, J.P. , 1998. Pthreads Programming,
O’Reilly.

[102] GNU. GNU C library’s section on Limiting execution to certain CPUs,
<http://www.gnu.org/software/libc/manual/html_mono/libc.html#CPU-A
ffinity>, accessed at 11.04.2011.

120

APPENDICES

APPENDIX A: Class Diagrams of Case Studies for Dependency Patterns
APPENDIX B: Graphs Extracted from Case Studies for Dependency Patterns

121

APPENDIX A

Figure A.1: Dependency relations ofCLASS.

122

Figure A.2: Dependency relations ofLOOKUP.

123

Figure A.3: Dependency relations ofAST (Some insignificant class names have been excluded from the diagram for the sake of simplicity).

124

APPENDIX B

Figure B.1: Results of manual clustering forLOOKUP.

125

Figure B.2: Results of best clustering obtained forLOOKUP.

126

Figure B.3: Results improved by bridge detection forLOOKUP.

127

Figure B.4: Results of manual clustering forAST.

128

Figure B.5: Results of best clustering obtained forAST.

129

Figure B.6: Results improved by bridge detection forAST.

130

CURRICULUM VITAE

Candidate’s full name: Tolga OVATMAN

Place and date of birth: Bursa, 13 June 1981

Universities and Colleges attended: Istanbul Technical University
M.Sc. in Department of
of Computer Engineering
(2003-2005,TURKEY)

Hacettepe University
B.Sc. in Department of
Computer Science and Engineering
(1999-2003,TURKEY)

Publications:

Tolga Ovatman, Thomas Weigert, Feza Buzluca, 2011: Exploring implicit parallelism
in class diagrams:Journal of Systems and Software, Volume 84, Issue 5, Pages
821-834, ISSN 0164-1212, DOI: 10.1016/j.jss.2011.01.005.

Tolga Ovatman, Aske W. Brekling, Michael R. Hansen, 2010: Cost Analysis for
Embedded Systems: Experiments with Priced Timed Automata,Electronic Notes in
Theoretical Computer Science, Volume238, Issue 6, Pages 81-95.

Tolga Ovatman, Feza Buzluca, 2011: "Model Driven Cache-Aware Scheduling
of Object Oriented Software for Chip Multiprocessors", 08/2011, 14th Euromicro
Conference on Digital System Design Architectures, Methods and Tools, Oulu,
Finland.

Tolga Ovatman, Thomas Weigert, Feza Buzluca, 2010: "Applying Enhanced
Graph Clustering to Software Dependency Analysis", 06/2010, 19th International
Conference on Software Engineering and Data Engineering, San Francisco, CA, USA,
Received Software Engineering Track Best Paper Award.

Tolga Ovatman, Feza Buzluca,2009: "Software Design Pattern Behavior in Shared
Memory Multiprocessor Systems",International Conference on Computational
Intelligence and Software Engineering. dec/2009, s. 1–4.

Tolga Ovatman, Feza Buzluca, 2008: "Investigating software design pattern behavior
in multiprocessor systems: A case study on observer",23rd International Symposium
on Computer and Information Sciences. oct/2008, s. 1–4.

Tolga Ovatman, Feza Buzluca, 2008: "Çok Çekirdekli Sistemlerin Yazılım Kalitesi
Üzerine Etkileri", Yazılım Kalitesi ve Yazılım Geliştirme Araçları Sempozyumu,
İstanbul.

131

