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SIMULATION AND DESIGN OF 
ONE LEGGED THREE DIMENSIONAL 

HOPPING ROBOT 

 

 

SUMMARY 

As a result of improving in technology, we can see many machines around us. And 
for specifically, robots started new era in this field. Now we use robots places where 
human is not able to work or can be dangerous to work there. 

But we should not think that all robots work all places. For example, we cannot use 
wheeled robots in every area. Because of this, there are many type of robots which 

used in many places. So we see the advantage of legged locomotion after knowing 
this fact. 

Legged locomotion  has been widely used because of its easy mobility in rough 

terrain and it is the least constrained walking. The planar one-legged robots have 
attracted many researchers due to the simplicity of its mechanical design. It was 

thought that the analysis and experiments of the one-legged robots would enlighten 
the designing of biped, quadruped, and multi- legged robots. 

The field of dynamically stable legged locomotion has made great strides in 1980s, 

led primarily by Marc Raibert. The study of one-legged hopping problem has 
fascinated many scholars and researchers since then. 

The aim of this thesis , after looking to past researches, is to create a prototype of one 

legged hopping robot which can be able to walk in three dimensions. It used the 
energy stored in the spring when the time of touchdown and stance . It moves in 

three dimensions by its electrical motors placed in 120 degrees around the base. 

Before this , we need model of the system. Because dynamics of the system is 
different in stance and flight, it is hard to control it properly. So we should make sum 

assumptions. 

Another important job of the system is to walk. After jumping, system should walk 

in dimension we want to move. It can be done by controlling the length and angle of 
the electrical motors. 

In this study, CATIA software is used to create the prototype of the system, 

MATLAB and SIMULINK is used for simulations. 
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ÜÇ BOYUTTA HAREKET EDEN TEK BACAKLI ROBOTUN 

SĠMULASYONU VE TASARIMI 

 

 

ÖZET 

Hepimizin bildiği gibi teknoloji günümüzde oldukça geliĢmiĢtir ve geliĢmeye devam 
etmektedir. Bu geliĢmede en büyük pay hiç Ģüphesiz robotlarındır. Robotlar insan 

hayatını kolaylaĢtırmanın yanı sıra insanın çalıĢmasının mümkün olmadığı veya çok 
zor olduğu Ģartlarda da çalıĢabildiği için oldukça popülerdir. Bu da bizi pek çok türde 

robot olduğunu gösterir. 

Bu tezde tek bacaklı zıplayan robot ele alınmıĢtır. Bu konuyu seçmemin sebebi 
yürüyen robotların temelini teĢkil etmesidir. Yürüyen robotların tasarımında temel 

teĢkil ettiği için zıplayan robotlar iyi analiz edildiği takdirde değiĢik türde yürüyen 
robot tasarımı daha kolay yapılabilir. 

Tekerlekli vb. diğer türde robotlardan farklı olarak ayaklı robotlar hemen her türde 
hareket edebilme ve minimum enerji ilkesiyle çalıĢma gibi avantajlara sahip olduğu 
için sıklıkla tercih edilmiĢtir. 

Tek bacaklı zıplayan robotlar konusunda ilk çalıĢmalar 1980 yıllarında Raibert 
tarafından yapılmıĢtır. Bu tarihlerden itibaren pek çok araĢtırmacı bu konuda 

çalıĢmıĢtır. 

Ġlk olarak yatay ve düĢey hareketin modellenmesi yapılmıĢtır. Hız denklemeleri 
yatay ve düĢey yer değiĢtirme denklemlerinin iki kere türev alınmasıyla elde 

edilmiĢtir. Daha sonra bu hareket sırasında meydana gelen kuvvetler tespit edilmeye 
çalıĢılmıĢtır. Bu kuvvetler robotun yere temas ettiği noktada ve eklem noktasında 
yatay ve düĢey kuvvetler olarak tespit edilmiĢtir. Ardından robotun hareket çevrimi 

ele alınmıĢtır. Havadaki ve yerdeki anlar olmak üzere iki kısımda incelenebileceği 
görülmüĢtür. Sistemin hareketi için önemli olduğundan bir turda geçirilen zaman 

öğrenilmeye çalıĢılmıĢtır. 

Bütün bu bilgilerden sonra zıplama hareketinin matematik modellenmesine 
çalıĢılmıĢtır. Bu modelleme Lagrange dinamiği yöntemi ile yapılmıĢtır. Sistemin ilk 

temas, temas, kopma ve havada olmak üzere dört hali için ayrı ayrı denklemler 
çıkarılmıĢtır. Bunlardan hareketin temelin oluĢturan yerde ve havada olduğu 

durumların durum-uzay denklemleri çıkarılmıĢtır. 

Daha sonra sistemin sadece düĢey hareketi incelenmiĢ ve bu hareketin dinamik 
denklemleri elde edilmiĢtir. Bu sistemin kontrol edilmesi gerektiğinden bu iĢin nasıl 

yapılması gerektiği önem kazanmıĢtır. Bunun için Lineer Kuadratik Regülatör (LQR) 
yönteminin uygun olabileceği görülmüĢtür. Bu yöntem minimum enerji prensibine 

göre çalıĢtığından sistemin kontrolü için yeterlidir. Bu yöntemin nasıl elde edildiği 
ve denklemlerin nasıl çıkarıldığı araĢtırılmıĢtır. Önceden elde ettiğimiz düĢey 
harekete ait dinamik denklemler bu yönteme uygulanmıĢtır. Durum-uzay formatına 

getirilen sistemin kontrol edilebildiği ve gözlemlenebildiği tespit edilmiĢtir. 
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Zıplama hareketi incelendikten sonra sistemden beklediğimiz diğer hareket olan 
yürüme hareketine geçilmiĢtir. Sistemin havada ve yerdeki durumlarında nasıl 
hareket etmesi gerektiği incelenmiĢtir. Yürüme anında sistemin davranıĢının nasıl 

olduğu ve yürümenin kararlı bir Ģekilde olması için simetri kavramı ortaya çıkmıĢtır. 
Sistemin yürümesinin hızlı veya yavaĢ bir Ģekilde nasıl olabileceği nört nokta ile 

açıklanmıĢtır. Bütün bu analizlerden görülmüĢtür ki sistemin yürümesi pek çok 
parametrenin uygun bir Ģekilde bir araya gelmesi sonucu olmaktadır. 

ġimdiye kadar elde edilen bilgiler ıĢığında üç boyutta hareket eden robot tasarımı 

yapılmıĢtır. Tasarım yapılırken CATIA programından faydalanılmıĢtır. 

Sistemin çalıĢma prensibi temel olarak yay yüklü ters sarkaç (SLIP) tasarımı üzerine 

geliĢtirilmiĢir. ÇalıĢma prensibi belli bir yükseklikte bırakılan sistemin içinde 
bulunan yayı kullanarak sıkıĢması ve sıkıĢma sonucu depoladığı enerjiyi yeniden 
aynı yüksekliğe çıkmak için kullanması Ģeklinde açıklanabilir. Sistemin yürümesi ise 

içinde bulunan elektrik motorlarının uzunluk ve açılarının kontrol edilmesi sonucu 
mümkündür. Elektrik motorlarının üçü birden aynı anda hareket ettirilirse sisteme 

yerdeyken yay sıkıĢması sonucu oluĢan kuvvet dıĢında ekstra kuvvet sağlar. 

Sistemin tasarımında belli parametrelere dikkat edilmiĢtir. Bunun baĢında sistemin 
toplam ağırlığı gelir.Sistem ne kadar hafif olursa yerda kalma süresi o kadar kısa olur 

ve havada daha fazla kalır. Bu da yürümenin daha kolay kontrol edilmesi anlamına 
gelir. 

Sistemi oluĢturan parçaları daha detaylı incelersek, temel parça olarak bacak, yay, 
mesnet, elektrik motorları ve tabandır. 

Sistemin toplam serbestlik derecesine baktığımız zaman motorların alt ve üst 

bağlantı noktalarındaki üniversal mesnetten dolayı 6, toplamda 18; ayağın sıkıĢması 
ve üç yöne hareketinden oluĢan 4 olmak üzere toplam 22 serbestlik derecesi 
mevcuttur. Fakat sistem motorların ve ayağın birbirine bağlı olmasından dolayı 

paralel yapıdadır ve son olarak sistemin serbestlik derecesi 4 olarak görülür. 

Sistemi oluĢturan temel parçaları incelediğimiz zaman ayak yapısının en önemli 

parçası olduğunu görürüz. En uçta yerle teması sağlayan birinci parçadır. Bu 
parçanın enerji kayıplarını en aza indirmek için ince ve boru Ģeklinde olması 
düĢünülmüĢtür. Birinci ve ikinci parça arasındaki yay temas anında sıkıĢmayı sağlar. 

Üçüncü parça tabana bağlıdır ve dönme hareketini gerçekleĢtirir. Ayak yapısı 
tasarlanırken uzun ve ağır olmamasına dikkate dilmiĢtir. Çünkü ağır sistem havada 

kalma süresini kısaltır ve uzun olursa sistemin kendi ve diğer ekipmanların 
ağırlığından dolayı eğilme problemi görülebilir. Bu nedenlerden ötürü ayak yapısının 
imal edilmesi aĢamasında alüminyumun daha uygun olabileceği öngörülmüĢtür. 

Sistemdeki diğer önemli parça elektrik motorlarıdır. Sistemin istenilen yönde 
hareketini sağlar ve sıkıĢma sırasında sisteme eksta kuvvet verir. Dairesel hereketi 

doğrusal harekete çevirir. Sistemin temas anı kısa olduğu için seçilen motorlar hızlı 
olmalıdır. Bunun yanında motor seçiminde dikkate edilmesi gereken diğer 
parametreler uzun çalıĢma aralığı, hafiflik ve fiyattır. Bu ihtiyaçları karĢılayan SKF-

CARE33H modeli elektrik motorun uygun olacağı düĢünülmektedir. 

Motor ve ayakların üç boyutta hareketi mesnetler tarafından sağlanır. Üniversal 

olarak tasarlanan mesnetler ayağa ve tabana bağlıdır. Tabana bağlı mesnet ayağın 
dönmesine yardımcı olurken ayağa bağlı mesnetler motorun dönme hareketini 
öteleme hareketine çevirmesine yardımcı olur. Mesnetlerin tasarımı CATIA 

programı kullanılarak yapılmıĢtır. 
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Sisteme ait taban olarak adlandırdığımız parça ayak, motorlar ve diğer ekipmanları ( 
batarya, sensör vb. ) taĢıyan kısmıdr. Mümkün olduğu kadar hafif olması gerektiği 
için et kalınlığı ince dairesel halka Ģeklinde tasarlanmıĢtır. Tasarım yapılırken 

zıplama ve yürüme esnasında sistemin devrilebileceği öngörüldüğü için çemberin 
çapı büyük düĢünülmemiĢtir. 

Tasarımdan sonra sistemin simülasyonları yapılmıĢtır. Simülasyonlar yapılırken 
MATLAB ve SIMULINK programları kullanılmıĢtır. 

Öncelikle sistemin sadece kütle ve yaydan ibaret olduğu temel durum ele alınmıĢtır. 

Bu durumda sistemde herhangi bir kayıp yoktur ve sistem aynı yüksekliğe tekrar 
yükselir. Ġkinci durumda sisteme damper eklenir. Bu durumda sistemin enerjisi 

sönümleneceği için hareket belli bir süre sonra durur. Sistemin normal hareketi bu 
olduğu için aynı yüksekliğe ulaĢmak içi dıĢarıdan bir kuvvet eklenmesi gerketiği 
görülür. Bu kuvvetin nasıl ve ne zaman ekleneceği araĢtırılmıĢtır. Sisteme gereken bu 

kuvvetin yere temas ettiği anda elektrik motorlarına rampa fonksiyonu Ģeklinde 
giriĢinin uygun olacağı düĢünülmüĢ ve simülasyon sonuçları ile görülmüĢtür. 

 
Sonuç olarak bu çalıĢma neticesinde elde edilen bilgiler ıĢığında tek ayaklı robotun 
zıplama ve  daha sonrasında  yürümesinin pek çok parametreye bağlı olduğu 

görülmüĢtür. Bu parametrelerin uygun Ģekilde seçilmesi neticesinde daha kararlı bir 
hareket  elde edilmesi mümkün olacaktır. Bu hareketin sağlanmasından sonra üç 

boyutta hareketin kontrollü bir Ģekilde yapılması daha kolay olacaktır. 
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1. INTRODUCTION 

In this thesis a special type of robot named one-legged hopping robot is studied. The 

most notable results obtained on this subject was achieved in the 1980's by a group 

of researchers led by Prof. Dr. Marc Raibert at MIT. In this chapter the motivation 

and the literature review regarding to one legged hopping machines are presented. 

1.1 Background 

There are several reasons to conduct this type of research. 

The first reason is to study the mobility on rough terrain. When considering 

displacements on rough terrains, perturbations resulting from the system's interaction 

with the ground are intermittent and discretized in space in the case of legged 

vehicles, while their effects on the vehicle are permanent in the case of wheeled 

locomotion. It is commonly acknowledged that legged locomotion is superior to 

wheeled locomotion when the terrain is soft. It is also considered that legged vehicle 

can easily overcome obstacles by utilizing the flight period. 

The second reason to study legged machines is to understand biological legged 

locomotion. The principle of control which is used in human and animal locomotion 

is still not understood. Humans and animal enjoy high mobility and efficiency of 

locomotion due to their naturally designed legged system. It is of great interest to the 

researchers to build mechanical machines which replicates human and animal 

motions. 

The planar one-legged robots have attracted many researchers due to the simplicity 

of its mechanical design. It was thought that the analysis and experiments of the one-

legged robots would enlighten the designing of biped, quadruped, and multi-legged 

robots. 

The first one-legged robot was built by Raibert. It had a pneumatic cylinder installed 

in its leg and hence moved as a springy inverted pendulum while on the ground. 

Raibert decomposed the control problem into body attitude control, hopping height 



2 

 

control and horizontal velocity control and showed that separate designs of the three 

controllers may be robust enough to allow decoupled operation. After Raibert's 

works, one legged running robots filled with a leg spring have been widely studied 

both experimentally and theoretically. Most of the one-legged robots proposed 

during the past two decades were similar to Raibert's design since they had some 

parts functioning like a spring to restore energy and provide force for take-off. These 

robots were also called one legged hoppers since their locomotion were series of 

cyclic hops. 

1.2 Literature Review 

1.2.1 Types of legged robots 

Legged robots fall into two classes, statically stable robots and dynamically stable 

robots. 

The static stability is a simple concept. There is a contact polygon formed by 

connecting all the neighboring footholds. It is called statically stable when the 

projection of the center of mass of the body lies in the convex hull of the contact 

polygon. 

A statically stable robot can stand still without falling over. Static stability is a useful 

feature and it can be achieved by requiring enough legs on the robot to provide 

sufficient static points of support. 

On the other hand, dynamic stability allows a robot to be stable while moving. For 

example, one-legged hopping robots are dynamically stable and they can hop in 

place or to various places without falling over. It is enough to say a robot is 

dynamically stable when it maintains balance in the overall locomotion cycle even if 

the robot is not balanced statically at any time. 

A statically stable system could be dynamically unstable and a statically unstable 

system could be dynamically stable.  

Statically stable machines are only simple successful solutions for low-speed 

locomotion, where dynamic forces are small compared to static ones. As a result, 

statically stable legged machines suffer not only from a large number of legs but also 

from a low cruising speed. On the contrary, dynamically stable robots enjoy less 
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design complexity, achieve higher speeds and can be more energy efficient. The 

main disadvantage of dynamic balance is the lack of a general control methodology. 

1.2.2 Research on legged machines 

The scientific study of legged locomotion began over a century ago when Muybridge 

tried to find out whether or not a trotting horse left the ground with all four feet at the 

same time. After that Muybridge went on to document the walking and running 

behavior over 40 animals including humans. His photographic data are still of 

considerable value and survive as a landmark in locomotion research. 

The studies of walking machines also have its origin in Muybridge's time. An early 

walking model appeared in about 1870 .It used a linkage originally designed by the 

famous Russian mathematician Chebyshev some years earlier to move the body 

along a straight horizontal path while the feet moved up and down to exchange 

support. 

During the 90 years that followed, people viewed that building walking machines as 

the task of designing kinematic linkages that would generate suitable stepping 

motion. Many designs were proposed but the performance of such machines was 

limited by their fixed patterns of motion since they could not adjust to the terrain's 

variations. By late 1950s it had become clear that a linkage providing fixed motion 

would not do the trick of walking or running, and useful walking machines would 

need control.  

One approach to control was harness human. Ralph Mosher used this approach in 

building four legged walking truck at General Electric in mid 1960s Despite its 

dependence on a well-trained human for control, this walking machine was a 

landmark in legged technology. 

Computer control became alternative to human control of legged vehicles in 1970s. 

McGhee's group was the first to use this approach successfully They built an insect-

like hexapod that could walk with a number of standard gaits and negotiate simple 

obstacles. The computer's major task is to solve kinematic equations in order to 

coordinate the 18 electric motors driving the legs. Gurfinkel and his group build a 

machine with quite similar performances to McGhee's at about the same time. It used 

a hybrid computer for control Hirose realized the linkage design and computer 

control are not exclusive and his experience with clever and unusual mechanisms led 
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to a simplified control of locomotion and improved their efficiency McGhee, 

Gurfinkel, and Hirose's walking machine groups represent a class called Static 

Crawlers. Each differs in the details of construction and computing technology used 

for control. Several other machines that fall into this class have been studied in the 

intervening years. 

Another class of legged systems are dynamic machines that balance actively. The 

legged machines fall into this class operate in a regime where the velocity and kinetic 

energies are important determinants of behavior. The exchange of energy among its 

various forms is also important in the dynamics of legged locomotion. Shannon was 

probably the first to build a machine that balanced an inverted pendulum atop of a 

small powered truck. The truck drove back and forth in response to the tipping 

movements of the pendulum. This study was forwarded by his students to 

demonstrate controllers for two pendulums at once, and finally the case that one 

pendulum were mounted on top of the other. Later, they extended these techniques to 

provide balance for a flexible inverted pendulum. Miura and Shimoyama built the 

first walking machine that really balanced actively. The control of their biped relied 

on an inverted pendulum model. Each time a foot was placed on the floor, its 

position was chosen according to the tipping behavior expected from an inverted 

pendulum. Matsuoka was the first to build a machine that was able to run, where 

running is defined by the presence of intervals of ballistic flight when all feet are off 

the ground. Matsuoka's goal was to model repetitive hopping in humans. He 

formulated a model with a body and one massless leg and also simplified the 

problem by assuming that the duration of the support phase was short compared with 

the flight phase. 

The field of dynamically stable legged locomotion has made great strides in 1980s, 

led primarily by Marc Raibert. He build a variety of running robots, starting with a 

planner one-legged machine, followed by a 3D one-legged, a two-legged planar 

robot and a four-legged quadruped. Among his works, Raibert introduced a scheme 

for exciting the leg spring from rest in order to regulate the energy in the spring-

mass. 
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Raibert has also proposed a tabular control algorithm  which uses a large table of pre-

computed data and calculates the control signal by interpolation. This algorithm was 

applied experimentally to 2-D and 3-D physical prototypes. 

After Raibert's work, many researchers were attracted to study and conduct research 

on one-legged running robots either experimentally or theoretically. 

Based on their established approach to analyze the intermittent dynamics of a 

juggling robot, Koditschek and Buehler derived an analytical discrete map for a 

simplified vertical hopper, modeled after Raibert's robots. Lapshin proved the 

asymptotic global stability of the vertical motion of a one-legged robot with linear 

leg spring. Vakakis and Burdick observed chaotic behavior when they changed the 

parameters of a model similar to that used by Koditschek and Buehler. Later 

M'Closky and Burdick used a planar hopper model with a body placed on top of a 

massless and an inertia-less leg similar to Raibert's, They showed by perturbation and 

numerical integration methods that even the planner hopper can show chaotic 

behavior in a certain set of parameters. There exist very few related results that use 

the continuous-time framework for stability analysis of hopping robots due to their 

intermittent dynamics. Li and He used a perturbation approach to study the existence 

and stability of limit cycles for a vertical hopper. Sznair and Damborg (1989) used an 

adaptive control algorithm for both vertical and horizontal motion of a two 

dimensional hopping robot, deriving a rather simple analytical solution for vertical 

motion control. Prosser and Kam suggested an approach which involved a near 

inverse of the system dynamics (based on off-line synthesis and inverse model) on an 

electrically actuated hopper. The preliminary control strategy in their electrically 

actuated hopping robot was obtained by a least-square fit of data to a multivariable 

polynomial. This method was later enhanced by applying on-line estimation of 

Controllers parameters (Lebaudy, 1993) Rad et al (1993) employed an open loop 

control approach on an electrically actuated hopper. A high gain PD controller was 

used to return the actuator.  
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2. THE MODEL FOR VERTICAL AND HORIZONTAL MOTION    

In this chapter, a one-legged hopping machine is modeled by a springy leg with 

nonzero mass, a simple body, and an actuated hinge-type hip. We can discuss both 

vertical and horizontal motion in this model. The most important characteristic of the 

body is that it has a mass that must be balanced at the top of the leg because of the 

structure; it applies torque to the leg.  Legs change length and orientation with 

respect to the body. Figure 2.1 shows the model used for analysis and simulation. 

 

Figure 2.1: Planar one legged model. 

List of parameters and notations is presented as follows: 

Symbol  Parameter 

1M    Leg mass 
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2M   Body mass 

1r   Leg center of mass 

2r   Body center of mass 

1I   Leg moment of inertia 

2I   Body moment of inertia 

0k    Leg spring rest length 

LK   Leg spring stiffness 

2LK    Mechanical stop stiffness 

2LB   Mechanical stop damping 

GK   Ground stiffness 

GB   Ground damping 

X                     Position actuator length 

The basic features of the model are a body of mass 2M , a compliant leg of mass 1M , 

and the ground. The overall length of the leg is influenced by a spring, a position 

actuator in series with the spring, and a mechanical stop. 

The position actuator, length x, is arranged in series with the spring, acting between 

the spring and the hip. When the actuator changes length, it does work on the spring 

to increase or decrease the energy stored in the spring. 

The spring, which has unsprung length 0k  and stiffness LK , is modeled as though one 

end is rigidly connected to the foot, with the other end fastened to one side of the 

position actuator. The mechanical stop, modeled as a very stiff spring with damping, 

acts to prevent the spring from expanding beyond its rest length. The spring and 

mechanical stop are arranged so that only the spring generates forces when 

0( )x k   , and only the mechanical stop generates forces when 0( )x k    .The 

stiffness and damping of the mechanical stop, 2LK and 2LB , are chosen so that 

vibrations between the body and leg at lift-off decay quickly. The ground is modeled 



9 

 

as a stiff, damped spring which has stiffness 
GK and damping BG. The damping 

coefficient is chosen to keep the foot from bouncing on the ground during touchdown 

and lift-off. This compliance in the ground represents the compliances of both the 

ground and the foot. We assume that the stiffness of the ground is much greater than 

the stiffness of the leg, 
G LK K . 

2.1 Body and Leg Dynamics 

The following equations are derived using geometric relationships shown in Figure 

2.1. We differentiate twice with respect to time. First, 
0x  is the horizontal 

displacement of the foot and 
1x is the horizontal displacement of the leg: 

1 0 1 1x  = x  + r sin                 (2.1) 

. . .

1 0 11 1x  = x  + r cos                  (2.2) 

  
.. .. .. .

2
1 0 1 11 1 1 1x  = x  + r cos r sin ( )                   (2.3) 

Next, 0y  is the vertical displacement of the foot and 1y  is the vertical displacement 

of the leg: 

1 0 1 1cosy y r                   (2.4) 

. . .

11 11 0
( sin )y y r                    (2.5) 

.. .. .. .
2

1 1 1 1 11 0
( sin cos ( ) )y y r                      (2.6) 

Third, 2x  is the horizontal displacement of the body: 

      2 0 1 2 2sin sin( )x x r                     (2.7) 

      
. . . . . .

2 0 1 21 1 2 2sin cos cosx x r                       (2.8) 

   

.. .. .. . .. .
2

2 0 1 11 1 1

..
2

22 2 2 2

. .

1 1

sin cos ( ) sin

( cos ( ) sin )

2 cos

x x

r

      

   

 

   

 



              (2.9) 
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Finally,
2y  is the vertical displacement of the body: 

2 0 1 2 2cos cos( )y y r                  (2.10) 

   
. . . . .

1 21 1 2 22 0
cos ( sin ) siny y r                     (2.11) 

    

.. .. .. . .
2

11 12 0

.. . .
2

2 12 2 2 2 1

cos ( ) ( sin )

( cos ( ) sin ) 2 cos

y y

r

    

     

   

  

           (2.12) 

2.2 Force and Torque Analysis of Leg and Body 

There are external and internal forces act on the one-legged robot. The forces are 

decomposed and studied into details in this section. Figure 2.2 shows a force diagram 

of the external and internal forces in the model. 

 

Figure 2.2: Force illustration for full model. 

The first two equations are derived by summing the forces in the x and y directions 

for the leg. The third equation sums the moments of inertia for the leg: 

..

11 1 1sin cosx t NM x F F F                 (2.13) 

           
..

1 1 1 11
cos siny T NM y F F F M g                (2.14) 
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..

11 1 1 1 1 1cos sin ( ) ( )x y NI F r F r F r t                     (2.15) 

The next three equations are similarly derived for the body; 

..

2 1 1 22
cos sinT NM y F F M g                (2.16) 

   
..

22 1 1sin cosT NM x F F                (2.17) 

..

22 2 2 1 2 2 1sin( ) cos( ) ( )T NI F r F r t                     (2.18) 

Where ; 

xF , yF  horizontal and vertical forces on the foot 

TF , 
NF   forces acting at the hip between the leg and body. 

TF  acts tangent to the leg 

and 
NF  acts perpendicular to the leg. 

2.3 The Hop Cycle 

2.3.1 Phases and events 

Hopping is a cycle which has two phases. We call flight when the foot is not 

touching the ground. During flight, the trajectory of the center of gravity of the 

system is ballistic. The other phase when the foot is touching the ground is called 

stance. During stance, the leg helps the system to behave like that of an inverted 

pendulum. there are four events in the hopping cycle : 

Lift-off: The moment at which the foot loses contact with the ground 

Top: The moment in flight when the body has peak altitude and vertical motion 

changes from upward to downward 

Touchdown: The moment the foot makes contact with the ground 

Bottom: The moment in stance when the body has minimum altitude and vertical 

motion of the body changes from downward to upward. These events can each be 

detected from the behavior of the state variables. 
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2.3.2 Total time of a hopping cycle  

For the case of repetitive hopping in which periods of support alternate with periods 

of flight, the following values can be calculated. During the stance phase, the system 

can be viewed as a spring-mass oscillator with natural frequency 
n : 

2

L
n

K

M
               (2.19) 

During repetitive hopping, each stance interval has duration equal to one 

half of the period associated with 
n : 

21 2
.

2
STANCE

n L

M
T

K





               (2.20) 

During flight the system moves along a parabolic trajectory determined by 

the acceleration of gravity. The period of flight is: 

8
FLIGHT

H
T

g
                         (2.21) 

where 

g is gravity and 

H is the hopping height measured at the foot. 

The period of a full hopping cycle is just the sum of tans ceT and flightT : 

28

L

MH
T

g K
               (2.22) 
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3. MODELLING AND CONTROL OF THE SYSTEM 

3.1 Mathematical Model of Jumping 

We need to obtain the mathematical model of the system to decide when we will give 

energy to the system, to make simulation of the system and to observe the behaviour 

of the system. 

In the previous chapter, we see that dynamics of the system is different both in stance 

phase and in flight phase. So we should need two models for these phases. In 

addition, we need to add extra energy losses to these models. Figure 3.1 shows the 

hopper model. 

 

                                Figure 3.1: Hopper  model. 

The leg spring absorbs energy by shortening under load of the body and returns 

energy by lengthening, accelerating the body upward. A mechanical stop prevents 

the leg from extending beyond a fixed length. The unsprung  mass mu represents that 

portion of the leg that is functioning below the spring, the rest being included in body 

mass M. 

When the actuator changes length,  it does work on the leg spring to increase or 

decrease its stored energy. This arrangement of actuator, leg, spring and mechanical 

stop permits the model to hop. During stance phase the actuator excites the spring 
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mass system. As the leg reaches maximum length, the mechanical stop permits a 

fraction of kinetic energy to transfer from the body to the leg, enabling the foot to 

leave the ground.  There are two sources of energy loss impact of unsprung mass to 

the ground which we assume to be perfectly inelastic and friction which is modeled 

as a dry friction Ffr  and viscous friction. The idea of maintaining the desired hopping 

height of the system is to measure the energy in the vertical motion during stance 

phase and to control the leg actuation to inject energy to the system to reach to the 

desired hopping height.  

3.2 Dynamics 

The motion is divided into two phases, flight and stance phases and two transient,  

touchdown and lift-of.  In modeling , we consider the dynamics of the actuator 

Suppose the actuator consist of DC motor and ball screw transmission, where the 

rotating parts have a moment of inertia J and sliding mass is represented by ms. The 

ball screw transmission ratio is r. The input to the system is the motor torque    

Moreover, we suppose the motor and ball screw transmission have an overall 

efficiency   . For the modeling we use the Lagrange approach. The Lagrange 

formulation can be written as; 

   
. j

j
j

L L
Q

t qq

 
     
    

               (3.1) 

Where Lagrangian L is subtraction of potential energy from kinetic energy namely 

L T V  , qj is the generalized coordinate,  which for our system is z and p,  and the 

Qj is the generalized non-conservative force,  which could be derived using virtual 

work principle.  

3.2.1 Flight 

During flight phase we can write the kinetic and potential energies as follows 

 
2. . . .

2 21 1 1
( / ) ( )

2 2 2
u sT J p r m M z m z p                  (3.2) 

And; 

2

0 0 0

1
( ) ( ) ( )

2
s uV Mgz m g z p k s l p m g z l                    (3.3) 
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where p is the downward linear motion of the actuator,  and is related to the DC 

motor angular position   with; 

p

r
                    (3.4) 

Therefore, Lagrangian L follows; 

2 2. . . .

2

0 0 0

1 1 1

2 2 2

1
( )

2

t s t

s u

L J p m z m z p m gz

m gp k s l p m gl

   

    

             (3.5) 

t s um M m m                                             (3.6) 

2 s

J
m

r
                           (3.7) 

Before taking derivatives, we need to derive the generalized forces. Assume the 

friction forces are divided into a viscous damping due to the spring, and a dry friction 

act on the body due to the planariser Ffr,p. The friction of the sliding part of the 

actuator added to the ball screw friction and motor bearing frictions acts in the 

formulation by considering an overall efficiency   for the actuator.  In the virtual 

work approach we assume infinitesimal virtual displacement on the system and find 

the virtual work done on the system, which will be equal to the generalized force 

times virtual displacement. To decouple the generalized forces,  Qz and Qp, we apply 

decoupled virtual displacements dz and dp respectively. 

Suppose we have a virtual displacement dz and no displacement dp then the virtual 

work will be; 

.

, ( )z z fr pdW Q dz F sign z dz                (3.9) 

And the generalized force turn out to be ; 

.

, ( )z fr pQ F sign z dz               (3.10) 

Now suppose a virtual displacement dp and no displacement dz the virtual work will 

be; 

.

p p sdW Q dp c s ds d                 (3.11) 
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where 
s  is the torque acting on the sliding mass and is equal to   where   is the 

motor torque. Moreover ; 

0s s p    
. .

s p    ds dp            (3.12) 

By using these equations we obtain; 

.

pQ c p
r


                (3.13) 

Using Lagrangian equation we end up with; 

.. .. .

, ( )t s t fr pm z m p m g F sign z               (3.14) 

.. .. .

0 0( )s sp m z m g k s l p c p
r


                  (3.15) 

Final state equation will be; 

.
..

,

..

( )1 t fr p
s

s t
s s

m g F sign zmz

m m m g Fp
r





                     

          (3.16) 

Where sF  is the spring force 

2

t sm m               (3.17) 

.

0 0( )sF k s l p c p                  

(3.18) 

The final state equation can be shown in the standard form ; 

           
.

x Ax B E                (3.19) 

Where ; 

0 1 0 0

0 0 0

0 0 0 1

0 0 0

s

t

m c

A

m c





 
 
 
 

  
 
 

 
 

 ; 

0

0

s

t

m
B

r

m





 
 
 
 
 
 

 ;  

.

.

z

z
x

p

p

 
 
 

  
 
 
  

        

(3.20) 
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.

, 0 0

.

, 0 0

0

( ( )) ( ( ))1

0

( ( )) ( ( ))

t fr p s s

s t fr p t s

m g F sign z m m g k s l p
E

m m g F sign z m m g k s l p





 
 
     

  
 
 

      

            

(3.21) 

 

3.2.2 Touchdown 

It occurs when the leg has its free length. At his time the velocity is not 

changed but the kinetic energy of the unsprung mass mt   ( the mass of the 

toe, the lower leg tube, the fraction of the spring mass ) is dissipated. 

  

2.1

2

moment of touchdown

dtk t

d

E m z

t





            (3.22) 

3.2.3 Stance 

In this phase, the kinetic energy is stored as potential energy in the spring. The model 

is derived using the Lagrangian, based on general coordinates z and p. Total kinetic 

energy ; 

2. . . .
2 21 1 1

( / ) ( )
2 2 2

sT J p r M z m z p               (3.23) 

Where p r  

The potential energy is given by ; 

2

0 0

1
( ) ( )

2
sV Mgz m g z p k s l p                (3.24) 

Therefore; 

2 2. . . .
2

0

1 1 1
( ) ( ) ( )

2 2 2
s s sL J p M m z m z p Mgz m g z p k s z p                   (3.25) 

2 s

J
m

r
               (3.26) 

The friction forces are modeled as viscous and dry frictions. In this case the dry 

frictions have two components. The first part is due to the planariser, namely Ffr,p 
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which is also present in the flight phase and the second part is due to the sliding of 

the lower leg and upper leg called ffr,s  which is present only in the stance phase.  

Similar to the method used in the flight phase,  we will use the virtual work approach 

to find the generalized forces. 

First suppose a virtual displacement dz and no dp; 

. .

, ,( ) ( )z z fr p fr sdW Q dz c sds F F sign z dz                 (3.27) 

But in this case, 

s z p  ,    
. . .

s z p               (3.28) 

In general, ds dz dp  , but now we do not have dp. Therefore, 

ds dz              (3.29) 

Thus, the generalized force Qz will derived as; 

. . .

, ,( ) ( ) ( )z fr p fr sQ c z p F F sign z                (3.30) 

Now consider a virtual displacement dp and no dz, 

.

p p sdW Q dp c s ds d                  (3.31) 

s                (3.32) 

In this case, 

ds dp                   (3.33) 

Finally, generalized force will be simplified to; 

 
. .

( )pQ c z p
r


                (3.34) 

By differentiation, we end up with ; 

.. .. . . .

0 , ,

.. .. . .

0

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

s s s fr s fr p

s s

M m z m p M m g k s z p c p z F F sign z

p m z m g k s z p c p z
r




          

       

    (3.35) 

Final state equation will be; 
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.
..

, ,

..

( ) ( ( )1 s s fr s fr p
s

s s
s s

M m g F F F sign zmz

m M m m g Fp
r





                        

          (3.36) 

  
2 2s

J MJ
M m

r r


 
   
 

             (3.37) 

 
. .

0( ) ( )sF k s z p c p z                       (3.38) 

The final state equation can be shown in the standard form ; 

.

x Ax B E    

Where ; 

 

0 1 0 0

0 0

0 0 0 1

0 0

Jc Jc

r r
A

Mc Mc

 

 

 
 
 
 

  
 
 

 
 

 ;

0

0

s

s

m
B

r

M m
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(3.37) 
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 
 

             

 

3.2.4 Lift-Off  

It is the time when the leg is fully extended. At this time, due to conservation of 

linear momentum,  

. . . . .

0 0 0( ) ( ) ( )l l ls s u sM m z m p M m z m z p                    (3.39) 

Then, 

. .

z z
 

                (3.40) 
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Where   is defined as ; 

t u

t

m m

m



             (3.41 ) 
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4. VERTICAL HOPPING AND CONTROL STRATEGIES 

Figure 4.1 shows the simplified vertical model and based on this model new vertical 

controllers are designed and simulations are performed. Equations can be reduced to 

the following for vertical motion: 

 

Figure 4:1. One legged hopping robot ( vertical only ). 

                                     
..

1 11 y TM y F F M g                 (4.1) 

..

2 22 TM y F M g                  (4.2) 

0 1 1y y r                 (4.3) 

2 1 1 2y y r r                    (4.4) 

Where 

0 0( ) ( ) 0T LF K k x if k x                    (4.5) 

Otherwise; 

    
.

2 0 2( )T L LF K k x B                      (4.6) 
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0

.

00 0y Gy GF K B y if y                  (4.7) 

Otherwise; 

0yF                  (4.8) 

4.1 Linear Quadratic Regulator 

The optimal Linear Quadratic Regulator (LQR) method is a powerful technique for 

designing controllers for complex systems that have stringent performance 

requirements. For most realistic applications, the LQR problem must be solved by 

using a Computer-Aided-Design package. A simulation is conducted by using 

MATLAB.  

Consider the system; 

.

0( ) ( ) , (0)x A t x B t u x x                (4.9) 

where ,n mx R u R  with associated quadratic performance index, 

0

1 1
( ) ( ) ( ( ) ( ) )

2 2

T

T T T

t

J x T Sx T x Q t x u R t u dt                    (4.10) 

0[ ; ]t T  is the time interval over which we are interested in the behavior of the plant. 

We want to determine the control *( )u t  on 0[ ; ]t T  that minimizes J for the case 

where the final state is fixed. In this case *u  will turn out to be an open-loop control. 

We assume that the final time T is fixed and known, and that no function of the final 

state ( ( ))x T is specified. The initial plant state 0( )x t is given. Weighting matrices 

S(T) and Q(T) are symmetric and positive semi definite, and R(t) is symmetric and 

positive definite, for all 0[ ; ]t t T [6] 

4.1.1 The state and costate equations 

The Hamiltonian is; 

1
( ) ( ) ( )

2

T T TH t x Qx u Ru Ax Bu               (4.11) 
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where T nR  is an undetermined multiplier, commonly referred to as the costate 

variables. The state and costate equations are 

. H
x Ax Bu




  


             (4.12) 

.
TH

Qx A
x

 


  


             (4.13) 

and the stationary condition is ; 

0 TH
Ru B

u



  


             (4.15) 

Solving (4.15) yields the optimal control in terms of the costate; 

1( ) ( )Tu t R B t               (4.16) 

Using (4.16)  in the state equation yields the homogeneous Hamiltonian system. 

.
1

.

T

T

x A BR B x

Q A 


 
               

 

              (4.17) 

4.1.2 Fixed final state and open loop control 

Suppose that the initial state is known to be 0( )x t and that the control objective is to 

drive the state exactly to the given fixed reference value r(T) at the final time T. 

Since x(T) is fixed at r(T), it is redundant to include a final state weighting in the cost 

index. Let S(T) = 0. Also, for our LQR design, we are only interested in minimizing 

the control effort, so let Q = 0 so that the cost function reduces to; [6] 

0

1

2

T

T

t

J u Rudt               (4.18) 

The state and costate equation are now,  

     
.

1 Tx Ax BR B               (4.19) 

        
.

TA                (4.20) 

Setting Q = 0 decoupled the costate equation from the state equation, so its solution 

is just 
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      ( )( ) ( )
TA T tt e t               (4.21) 

where ( )t is still unknown. Using the expression in the state equation yields 

.
1 ( ) ( )

TT A T tx Ax BR B e t               (4.22) 

whose solution is 

0( ) ( ) 1 ( )

0
0

( ) ( ) ( )
Tt

A t t A t A T

t
x t e x t e BR Be T d                    (4.23) 

4.1.3 Dynamics of the hopper 

For the vertical case, the hopper can be modeled as follows: 

            
..

2 22 TM y F M g                (4.24) 

      
0 1 1y y r                                     (4.25) 

               2 1 1 2y y r r                          (4.26) 

Where  

    0 0( ) ( ) 0T LF K k x if k x                   (4.27) 

Otherwise ; 

    
.

2 0 2( )T L LF K k x B                            (4.28) 

               0

.

00
0y Gy GF K B y if y                (4.29) 

Otherwise ; 

0yF                                     (4.30) 

During stance period, 
0

.

0y Gy GF K B y   and 0( )T LF K k x   =0. As 

a result, the reduced state-space model;  

.

1 2x x               (4.31) 
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.

2

1

y TF F
x g

M


                                  (4.32) 

.

3 4x x                                    (4.33) 

.

4

2

TF
x g

M
                          (4.34) 

by defining the transformation; 

1 2

.

2 1

3 2

.

4 2

x y

x y

x y

x y









 

The state space model can be represented as; 

.

1

1 1 0
.

2 1 11 1 1 2

.
3

3

4. 0

4
22 2 2

00 1 0 0 0

( )
0

0 00 0 0 1

( )
0 0
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x
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M MM M M xx

x
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x K k r KK K
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x MM M M

     
         
        
                
       
                   

     (4.35) 

where u = x 

Since during flight phase, there is no control applied to the system and the control 

can only be applied during the stance phase. Thus the problem can be formulated as 

how to transfer the states from ; 

1
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1

1 2
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0 2 0

1 2
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M M
gH

M

k r x

M M
gH

M
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
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 
 
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within time 2

L

M
T

K
 . 

1iH 
 is the previous hopping height and 

iH  is the desired 

hopping height for this cycle. 

After the coordinate transformation, the state space model is transformed into; 

.

1
1

.

2 2 11 1 1

.

3
3

.
4

22 2

4

0 1 0 0 0

0

00 0 0 1

0 0

G L G LL

LL L

x
x

K K B KK

MM M Mx x
x

x
x KK K

x MM M
x




 








 
      
      
        
             
      
      

           
 

           (4.36) 

Where; 

1 2
1 1 1

( )

G

M M
x x r

K

 
                         (4.37) 

2 2x x


                        (4.38) 

1 2 2
3 3 1 0

( )

G L

M M M
x x r k r g

K K

 
                                (4.39) 

4 4x x


                                             (4.40) 

Next, we examine the controllability of the linear system. 
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for ¸  = 0 Full Rank 

for ¸  = 0 Full Rank 

So the system is controllable. 
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5. MATHEMATICAL MODEL OF WALKING 

The main point of this way of modeling is when jumping in stance phase, the use of 

its pushing force not only for jump but also for walking with and angle and in flight 

phase moving towards the leg to prepare landing. The model can be derived as a 

SLIP model with Lagrange method. 

5.1 Algortihm For Flight Phase 

In flight phase, there is no disturbance affects to the system. So we can think the 

movement of the system same as the control of inverted pendulum. During this time, 

the signal of the motor should calculate the point of landing and the try to keep the 

angle of leg between rotation angle compared to the reference angle. [3] 

5.2 The Behavior of The Leg In Stance and Symmetry 

The angle when the leg is on the ground describes the orbit of center of gravity of the 

system. In this orbit, if we think the ahead speed is constant, total movement of the 

system can be described with speed and the stance period ( sT ). 

.

sx T x                 (5.1) 

In this orbit, to keep the speed constant, the sum of the horizontal forces act to the 

system should be 0. This means that there is symmetry in the stance.  

 

Figure 5.1: The desired orbit in stance. 
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Figure 5.1 shows the ideal movement of the leg. If we assume in the middle 

of this orbit t= 0 and x(0)=0; because of the symmetry,   is the angle 

between leg and the rotation axis and  is the motor torque, the parameters 

act the center of gravity in stance ; 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

z t z t

x t x t

t t

t t

 

 

 

  

  

  

 

These expressions are true only in symmetry. 

When we think about symmetry in flight, we ask ourselves the point of 

landing. Symmetry is available when the leg lands on the middle of orbit. 

because the orbit describes the movement of  center of gravity, we can keep 

the symmetry by putting the toe to the point between the calculated orbit 

and the length of the leg. These data tell the controller how to calculate the 

reference. 

The middle point of the orbit in stance can be called as neutral point. If the 

leg lands before that point leg slows down ; after that leg fastens. So that we 

can change the speed of the leg. Figure 5.2 shows the importance of neutral 

point in stance phase. 

 

Figure 5.2: The effect of neutral point to acceleration. 

In flight, the job of algorithm is to calculate the orbit in stance decide the angle of leg 

between rotational axis. [3] 
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Controller needs to do when in flight, to maintain the angle of the leg to the reference 

angle. xso is the length between the neutral point and the center of gravity ; 
.

x d is the 

desired towards speed and x s is the length between the neutral point to reach keep 

the desired speed. The equations are ; 

.

. . .

, ( )
2

s
d

x

T
xso x xs k x x                 (5.2) 

With these equations, we can derive the equation that gives the reference angle 

effects  rotational axis, 

.

. .
.

( )
arcsin( )

2

d
s x

k x xT x
d

R R



               (5.3) 

Where R is the distance of the leg to the rotational axis. Because stance is only 

related to the mass of the leg and the spring constant, when the system is working 

this equation can be applied by the feedback of 
.

x .[3] 

5.3 Algorithm For Stance Phase 

When we examine the behavior of the system in this phase, the thing that should be 

done is after toe is on the ground, to rotate the body around this pivot point until 

flight. This movement should be suitable to the symmetry rules. This can be possible 

by giving position reference to the motors which system’s center of gravity is on the 

orbit. 

As writing the algorithms that give these position reference, we assume that the 

center of the mass is on the rotational axis ( ry ). The distance between the mass 

center and the neutral point, the distance to the neutral point to reach the desired 

speed are needed to define the orbit in this phase. 

.

. . .

, ( )
2

s
d

x

T
xso x xs k x x                 (5.4) 

The sum of these equations give us the distance between the mass center and the toe 

when stance. 

xs xso xs                 (5.5) 
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In this phase, the speed of leg is constant according to the mass center. By thinking 

this, orbit of the mass center according to the toe which is on the 
rx , 

kt is the time of 

stance; the equations are ; [3] 

.

( ) ( )d kxs t xso xs x t t                  (5.6) 

          
.

arcsin( ( ))d kd xso xs x t t                  (5.7) 
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6. DESIGN OF ONE LEGGED 3D HOPPING ROBOT 

6.1 The Method 

System is designed based on the spring loaded inverted pendulum (SLIP ) model. In 

this model, energy of the system is stored by springs and then given to the system 

again. It jumps in a vertical direction ( z-axis ) and gives its initial potential energy to 

the spring. By using this stored energy, system jumps. 

 Because we aim to design the system moving in 3 dimensions, we do not need any 

rotating axis. We need to rotate the leg to move forward. So we have 3 degree of 

freedom in the system. 

We must examine the moves of jumping and walking before starting the design of 

the leg. 

6.2  Jumping 

This is the essential movement of the robot. To be succeed in walking, robot should 

jump. As a result of spring- mass system described by Hooke’s Law; potential 

energy is stored in the spring. After that this energy is used to provide the initial 

potential energy. Because of the frictions and damping, some of this energy turns 

into heat that has negative effect in jumping. To prevent this effect, we need 

actuators to give the lost energy in the system. We can make this by using pneumatic 

cylinder or electrical motor. In this design, we choose electrical motor because of its 

easy application. Figure 6.1  shows the phases of hopping. 

 

Figure 6.1: Phases of hopping. 
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These are ; 

1 : leg is in the air, spring is free 

2: touchdown phase, spring compression 

3 : lift-off begins, spring gives stored energy inside 

1: robot reached initial height 

This electrical motor converts the rotational motion to linear motion. Because of  the 

height control is directly related to spring compression, we can measure the length of 

the leg with length sensor and we stop the motor when we reach the lenght we want. 

6.3 Walking 

After jumping, robot can walk by its hip ankle. We can control walking with 

actuators too. For doing this, we need to measure the angle between the leg and the 

ground. If the angle is too big, robot can fall to the ground. So we should not have 

too much angle.  

Another important point we need to discuss is the choose of electrical motor. So we 

should know the time of touchdown to decide the speed of motor.  

s

n

M
T

k





                (6.1) 

sT : time of touchdown 

If we put random mass and spring coefficient in this equation, we see that time is so 

short, like 0.120 ms. And if we think we have electrical linear actuator which has 5 

mm pitch, we will add the energy to the system by the formula ; 

        2 21 1
.3500.(0,005) 0,0437

2 2
kx   joules             (6.2) 

This energy is not enough to compensate the energy loss in the system. To prevent 

this, we need to have motors which have big pitch. Normally, this affects the price of 

the motor. 

After this discussion, we can see that optimization of the system is too complicated. 

Total mass and the spring coefficient effect the time of touchdown which is too short 

and at the same time we need fast electrical motor to jump. 
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6.4 The Design of The Robot 

Figure 6.2 shows the overall design of one legged 3d hopping robot. The parts of it 

will be listed below. 

 

Figure 6.2: Overall view of the robot. 

6.4.1 How it works ? 

As it is said previous chapter, we drop the system from initial height. We have leg 

that have 3 parts and it has a spring with them. At touchdown, legs will compress but 

after that, as a reason of losses; it will not reach same height. To prevent this, we 

have 3 linear actuators. They have two effects to the system; 

 If we apply three of them at the same time in touchdown phase, we will have 

strong extra force to reach initial height. 

 If we could control the legs one by one or together, we would able to walk in 

direction we want to move. 

Each linear actuator has 2 DOF. There is 2 DOF universal joint to hold the actuator 

to the base and similar joints to hold it to the leg. In total, there are 22 DOF in the 

system but 19 is dependent on each other due to parallel structure. So, system has 4 

independent DOF . 
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6.4.2 Parts of The System 

6.4.2.1 Leg 

Figure 6.3 shows the structure of leg. 

 

Figure 6.3: Structure of leg and its connection. 

We decided to design leg with 3 parts. Part 1 is touching to the ground in the stance 

phase. Part 2 guides the leg and part 3 is the connecting part of the leg to the base . 

Hopping of the system is the result of compression of spring between part 1 and part 

2. During stance phase, spring is compressed by actuators to pump extra energy to 

the system. 

We need to discuss two parameters before design. First one is the mass of the legs. In 

previous chapters, we saw that mass of the legs effects the time of touchdown. 

Because of this, it should be better to use aluminum as material rather than steel to 

make it light. 

Other concern is the length of the keg. If it is too long, there can be problem called 

flambage because of the mass and the impact at touchdown. So we do not design it 

long to prevent the flambage. 
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6.4.2.2 Linear actuators 

Figure 6.4 is the electrical motor used in the system. 

 

Figure 6.4: Electrical motor. 

We want to move in three dimensions, so we use three linear actuators. We move 

by controlling the angle and the length of the actuators.  When we are choosing 

them, we need to check  some parameter like weight, speed, stroke and load.  

Below we can see some examples of linear actuators. They have long stroke, less 

weight, high speed and big load. Figure 6.5 shows the technical data of the 

motor. 

 

Figure 6.5: Technical specifications of the motor. 

It is benefit for us to choose CARE33H when we look at the table because even if 

it has not high load ;  it has more speed compared to other models. 
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6.4.2.3 Joints 

Figure 6.6 and 6.7 are the joints used in the system.   

   

Figure 6.6: Upper joint.       Figure 6.7: Lower joint. 

These are another essential parts because they give degree of freedom to the system. 

Upper joint helps the system to move up and down; lower joints help to rotate the leg 

when linear actuators are extracting. 

6.4.2.4 Base 

Figure 6.8 is the base of the system. 

 

Figure 6.8: The base. 

Leg and the actuators connected to this part. And also it carries other parts like 

battery. So this part should be strong. We need to decide this part’s diameter related 

to the length of the leg because if we take the diameter too long when we have short 

leg, system could fall to the ground when jumping. And also we have to make it light 

to have long period of lift-off.   
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7. SIMULATION OF THE SYSTEM 

7.1 Spring-Mass Without Damper 

In this part of simulation, system is considered only with spring but without damper. 

System is thrown from initial height H and when touchdown occurs, legs begin to 

distract because of spring. When lift-off begins, legs begin to extract and system 

reaches to the same height because it has no damper. 

Figure 7.1 shows the free body diagram of the system ; 

 

Figure 7.1: Free body diagram of spring- mass system without damper. 

Equations of motion are ; 

..

F M x                  (7.1) 

..

Mg kx M x                  (7.2) 

.. k
x g x

M

 
  

 
                  (7.3) 

M : total mass of the leg and body 

g: gravity 

k: spring coefficient 

Figure 7.2 shows the simulink diagram of the spring mass system without damper. 
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Figure 7.2: Simulation of spring mass system  without damper . 

We begin this simulation when we drop the system from initial height we choose. 

Until touchdown phase, there is no effect of integrator to the system. We need to add 

this effect by comparing the height of system ( x ).  When 0x  , spring begins to 

compress and until take-off phase ( 0x  ) we should add this effect to the system. 

Figure 7.3  plot of spring mass system  without damper.  

 

Figure 7.3 : Plot of spring mass system  without damper.  

Figure 7.3 shows that system reaches same initial height in every hop because there 

is no damper. System has sinusoidal movement and because of friction neglecting, 

system does not stop. 
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7.2 Spring-Mass System With Damper 

In this part of simulation, system is considered only with spring and damper. System 

is thrown again from initial height H and when touchdown occurs, legs begin to 

shorten because of spring. When liftoff begins, legs begin to extract and because of 

the damper, system could not reach its initial height and in every hop loses its 

energy; then stops at the height where system is balanced at its own weight. Figure 

7.4 is the free body diagram of the system with damper. 

 

Figure 7.4 : Free body diagram of spring mass system  with damper. 

Equations of motion are : 

..

F M x                           (7.4) 

. ..

Mg kx c x M x                   (7.5) 

.. k c
x g x

M M

   
     

   
              (7.6) 

C: damping coefficient 

Figure 7.5 is the  simulink of spring mass system  with damper.  

 



42 

 

 

Figure 7.5 : Simulink of spring mass system  with damper.  

Similar to previous simulation, we drop the system from initial height. We have extra 

damper effect to the system. When 0x  , spring begins to compress and damper 

effects to the system related to its velocity. These two effects will continue until take-

off phase again. Figure 7.6  is the plot of spring mass system  with damper. 

 

  Figure 7.6 : Plot of spring mass system  with damper.  

Figure 7.6  shows us the effect  of damper to the system. In every hop, system jumps 

to a lower height. And the result of oscillations, system stops in a period of time. The 

reason of the steady state in negative height is the total mass of leg and body. 

7.2.1 Bode plot of the system 

If we think of system with damper, we derive the transfer function ; 
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2

1
( )H s

Ms cs k


 
               (7.7) 

When we put for  M= 50kg, c=500 Nm/s ,and for k=1000 N/m we have ; 

2

1
( )

50 500 1000
H s

s s


 
              (7.8) 

By this transfer function using  MATLAB, we obtain Figure 7.7  is the Bode plot of 

the system. 

 

Figure 7.7 : Bode plot of the system. 

Our system jumps too fast and because it has periodic motion, we need to know the 

frequency of it if we have resonance. We can use this plot as a guide to pick the 

electrical motor. 

7.3 Spring-Mass System With Damper and Force 

In the previous part, we see that we cannot have the same hopping height in every 

jump. In order prevent this, we need to add force to the system in every touchdown 

phase. Next part, it will be discussed the parameters effect energy that we need to 

add. Figure 7.8 is the free body diagram of the system with damper and force. 
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Figure 7.8: Free body diagram of spring-mass system with damper and force. 

..

F M x                 (7.7) 

. ..

Mg kx c x F M x                 (7.8) 

.. k c
x g x F

M M

   
      

   
                       (7.9) 

Figure 7.9 is the simulink diagram of the system with damper and force. 

 

Figure 7.9: Simulink of spring mass system with damper and force. 

As we see in the previous simulation,  we drop the system from initial height. We 

have both damper and spring in the system. In order to obtain height at start, we add 

force block to the simulation.  When 0x  , we add force related to the height of the 

system ( x ) until take-off phase. Next chapter, we will try to see what effects the 

height of the system. Figure 7.10 is the plot of spring mass system with damper and 

force.  
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Figure 7.10: Plot of spring mass system with damper and force. 

Figure 7.10 shows us directly that if we want to keep hopping height constant, we 

need to add extra energy when touchdown to gain energy lost by collusion and 

friction. 

7.4 Energy Pumping Mechanism ( EPM ) 

In the previous part, simulation is showed us that we need add extra energy to have 

same hopping height in every jump. An efficient energy pumping mechanism is an 

indispensable element of a self-sustaining hopping robot. This chapter will illustrate 

with a simple simulation result as to why the EPM is so critical for a hopping robot 

and hence set forth the objectives of the project in relation to the EPM. 

7.4.1 Why we need it ? 

Figure 7.11  shows a simplistic model of a hopping robot where the block M 

represents the body of the hopper while the block m represents the leg. The friction 

that is present in the actual mechanism is ignored in the analysis.  

 

Figure 7.11: Simplified model of hopping robot.  
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In the Figure 7.11,  M is the mass of the body and m is the mass of the leg. k is the 

spring constant of the spring used while l0 is its free length. H is the height from 

which the hopper is dropped. Let us define an event, touchdown as the instant when 

the leg of the hopper touches the ground. Let us define another event, lift-off when 

the leg just leaves the ground. Let us first consider the case when there is no interim 

energy input to the system and for the sake of simplicity, the system is constrained to 

move along a fixed vertical axis. Due to the impact during touchdown, it can be 

assumed that the collision of the leg and the ground is perfectly inelastic. No further 

energy loss occurs in the system till the next touchdown. Let Ei be the total energy of 

the system just before touchdown and Ef be the total energy of the system just after 

touchdown. As per our assumption that there is no other source of energy loss in the 

system, the total energy of the system just after lift-off is also Ef . 

 
0( )iE MgH mg h l              (7.10) 

Due to a perfectly inelastic collision , 

fE MgH             (7.11) 

Now, let the hopper now hop to a height of h1. Thus, 

1 0( )MgH Mgh mg h l              (7.12) 

Which yields, 

0
1

MH ml
h

M m





                    (7.13) 

After n hops, 

1 0n
n

Mh ml
h

M m

 



                         (7.14) 

This equation shows that for a constant hopping height for the robot the m/M ratio 

should go to 0. In other words, a hopping robot without an giving energy can exhibit 

sustained hopping only if its leg is massless or its body is too heavy. Either of the 

two cases are not  practically realizable. Hence for sustained hopping, we need a 

periodic input of energy equal to Ei- Ef to be pumped into the system. Now if we 

consider the contribution of friction to the energy of the system, the energy lost due 

to friction will be required to be pumped into the system along with the energy loss 
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due to collision. Thus the periodic energy input will now equal Ei- Ef + Efr where Efr 

is the energy loss of the system due to friction present at all the joints. It may be of 

interest to note that if we increase or decrease the energy input about this required 

value then we get a control of the hopping height of the robot. 

7.5 Height Control With Linear Displacement Actuation 

Figure 7.12 is the simulink diagram of system with linear displacement. 

 

Figure 7.12: Simulink of spring-mass system with linear displacement. 

In the previous simulations, we saw that we cannot control hopping height. We have 

to add extra force for jumping to the initial height. This chapter, a way of adding 

force to the system will be discussed. 

Because of the system has spring to jump, easy way to have force is distracting the 

spring by electrical motor. By using this, we obtain spring force adding to the mass 

of the system and the leg. 

We have nearly same simulation as we see in the previous part. The difference is the 

new part that we add for hopping initial height. 

We use ramp signal for input because we need to trigger this input only in 

touchdown phase for a short time. To obtain this, we hold ramp input 0 in lift-off 

phase. In touchdown phase, we send ramp signal; because of the property of ramp 

input, we have sudden increase in spring displacement. As a reason of this, we have 

more force to jump. Figure 7.13 is the plot of spring-mass system with linear 

displacement. 
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Figure 7.13: Plot of spring-mass system with linear displacement. 

In the Figure 7.13, we see we have oscillation motion in the system as it is in the 

previous simulation. The reason of wide jumps is the delay of the ramp  signal that 

we hold it in lift-off phase. 
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8. CONCLUSION 

In this thesis, the simulation and the design of hopping robot is studied. Design 

criteria were chosen to keep the total weight of the system at minimum, to have an 

energy efficient system, to be able to manufacture a prototype using reasonable 

priced actuators available in the market. To control the system, three actuators 

perform the orientation control of the leg as well as external force control to the 

spring. 3D design was done using CATIA software. Simulation results are obtained 

using MATLAB SIMULINK. The future works of this study includes manufacturing 

of the prototype of the proposed system in this thesis and obtain experimental results. 
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