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SIMULATION AND DESIGN OF
ONE LEGGED THREE DIMENSIONAL
HOPPING ROBOT

SUMMARY

As a result of improving in technology, we can see many machines around us. And
for specifically, robots started new era in this field. Now we use robots places where
human is not able to work or can be dangerous to work there.

But we should not think that all robots work all places. For example, we cannot use
wheeled robots in every area. Because of this, there are many type of robots which
used in many places. So we see the advantage of legged locomotion after knowing
this fact.

Legged locomotion has been widely used because of its easy mobility in rough
terrain and it is the least constrained walking. The planar one-legged robots have
attracted many researchers due to the simplicity of its mechanical design. It was
thought that the analysis and experiments of the one-legged robots would enlighten
the designing of biped, quadruped, and multi-legged robots.

The field of dynamically stable legged locomotion has made great strides in 1980s,

led primarily by Marc Raibert. The study of one-legged hopping problem has
fascinated many scholars and researchers since then.

The aim of this thesis , after looking to past researches, is to create a prototype of one
legged hopping robot which can be able to walk in three dimensions. It used the
energy stored in the spring when the time of touchdown and stance . It moves in
three dimensions by its electrical motors placed in 120 degrees around the base.

Before this , we need model of the system. Because dynamics of the system is
different in stance and flight, it is hard to control it properly. So we should make sum
assumptions.

Another important job of the system is to walk. After jumping, system should walk

in dimension we want to move. It can be done by controlling the length and angle of
the electrical motors.

In this study, CATIA software is used to create the prototype of the system,
MATLAB and SIMULINK is used for simulations.






UC BOYUTTA HAREKET EDEN TEK BACAKLI ROBOTUN
SIMULASYONU VE TASARIMI

OZET
Hepimizin bildigi gibi teknoloji giintimiizde olduk¢a gelismistir ve gelismeye devam
etmektedir. Bu gelismede en biiyik pay hi¢ siiphesiz robotlarmdr. Robotlar insan
hayatm kolaylastrmanin yam swra insanmn c¢ahgmasmmn miimkiin olmadigi veya cok
zor oldugu sartlarda da cahsabildigi i¢cin olduk¢a poplilerdir. Bu da bizi pek cok tiirde
robot oldugunu gosterir.

Bu tezde tek bacakll zplayan robot ele alnmistr. Bu konuyu se¢cmemin sebebi
yiirtiyen robotlarm temelini teskil etmesidir. Yiirliyen robotlarm tasarimmda temel
teskil ettifi i¢in ziplayan robotlar iyi analiz edildigi takdirde degisik tiirde yiirliyen
robot tasarmu daha kolay yapilabilir.

Tekerlekli vb. diger tiirde robotlardan farkh olarak ayakh robotlar hemen her tiirde
hareket edebilme ve minimum enerji ikesiyle ¢aligma gibi avantajlara sahip oldugu
icin siklkla tercih edimistir.

Tek bacakl zplayan robotlar konusunda ilk cahsmalar 1980 yillarmda Raibert
tarafindan yapimustr. Bu tarhlerden itbaren pek ¢ok arastrmact bu konuda
caligmustir.

Ik olarak yatay ve diisey hareketin modellenmesi yapimstr. Hiz denklemeleri
yatay ve diisey yer degistime denklemlerinin iki kere tirev almmasiyla elde
ediimigtir. Daha sonra bu hareket swrasmda meydana gelen kuvvetler tespit ediimeye
cahsilmustr. Bu kuvvetler robotun yere temas ettii noktada ve eklem noktasmda
yatay ve diisey kuvvetler olarak tespit edilmisti. Ardmndan robotun hareket ¢evrimi
ele almmustr. Havadaki ve yerdeki anlar olmak iizere iki kisimda incelenebilecegi
goriilmiitiir. Sistemin hareketi icin Oneml oldugundan bir turda gegirilen zaman
Ogrenilmeye c¢alisilmigtir.

Biitin bu bilgilerden sonra zplama hareketinin  matematikk modellenmesine
cabgimistr. Bu modelleme Lagrange dinamigi yontemi ile yapinustr. Sistemin ik
temas, temas, kopma ve havada olmak {izere dort hali i¢in ayr1 ayr1 denklemler
cikarilmistr. Bunlardan hareketin temelin  olusturan yerde ve havada oldugu
durumlarm durum-uzay denklemleri ¢ikarilmistr.

Daha sonra sistemin sadece diisey hareketi incelenmis ve bu hareketin dinamik
denklemleri elde edimistir. Bu sistemin kontrol edilmesi gerektiginden bu isin nasil
yapimasi gerektigi onem kazanmustr. Bunun i¢in Lineer Kuadratk Regiilator (LQR)
yonteminin uygun olabilecegi goriilmiistir. Bu yOntem minimum enerji prensibine
gore cahstigndan sistemin kontrolii i¢cin yeterlidi. Bu yontemin nasil elde edildigi
ve denklemlerin nasil ¢ikarldi arastmimustr.  Onceden elde ettigimiz  diisey
harekete ait dinamik denklemler bu yonteme uygulanmistr. Durum-uzay formatma
getirilen sistemin kontrol edilebildigi ve gdzlemlenebildigi tespit edimistir.
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Ziplama hareketi incelendikten sonra sistemden bekledigimiz diger hareket olan
yiriime hareketine gecilmistir.  Sistemin havada ve yerdeki durumlarmda nasil
hareket etmesi gerektigi incelenmistir. Yiirime anmnda sistemin davramsmm nasil
oldugu ve yiirimenin kararh bir sekilde olmasi i¢in simetri kavramu ortaya c¢ikmustir.
Sistemin yiirimesinin hizh veya yavas bir sekilde nasil olabilecegi nort nokta ile
acikklanmistr. Biitin bu analizlerden gorilmiistir ki sistemin yiirtimesi pek ¢ok
parametrenin uygun bir sekilde bir araya gelmesi sonucu olmaktadir.

Simdiye kadar elde edilen bilgiler s18mda lic boyutta hareket eden robot tasarmmu
yapilmistr. Tasarm yapiirken CATIA programmndan faydalanilmistir.

Sistemin ¢alisma prensibi temel olarak yay yiikli ters sarka¢ (SLIP) tasarmm iizerine
gelistirilmisir.  Cahsma prensibi = belli bir  yikseklikte brakilan sistemin iginde
bulunan yayr kullanarak sikismasi ve sikisma sonucu depoladidi enerjiyi yemden
aynt yikkseklige ¢ikmak icin kullanmasi seklinde agiklanabilir. Sistemin ylirlimesi ise
icinde bulunan elektrik motorlarmm uzunluk ve agiarmm kontrol edilmesi sonucu
miimkiindiir. Elektrik motorlarmm iicli birden aym anda hareket ettirilirse sisteme
yerdeyken yay sikismasi sonucu olusan kuvvet disnda ekstra kuvvet saglar.

Sistemin tasarminda belli parametrelere dikkat ediimisti. Bunun basmnda sistemin
toplam agrhg gelir.Sistem ne kadar hafif olursa yerda kalma siiresi o kadar kisa olur
ve havada daha fazla kalr. Bu da yiirlimenin daha kolay kontrol edilmesi anlamma
gelir.

Sistemi olusturan parcalari daha detayh incelersek, temel parca olarak bacak, yay,
mesnet, elektrik motorlar1 ve tabandir.

Sistemin toplam serbestlk derecesine baktigimz zaman motorlarm alt ve st
baglanti noktalarndaki {iniversal mesnetten dolay1 6, toplamda 18; ayagm sikismasi
ve l¢ yone hareketinden olusan 4 olmak iizere toplam 22 serbestlk derecesi
meveuttur. Fakat sistem motorlarm ve ayagn birbirine bagh olmasmdan dolay1
paralel yapidadir ve son olarak sistemin serbestlk derecesi 4 olarak goriiliir.

Sistemi olusturan temel parcalart inceledigimiz zaman ayak yapismn en Gnemli
parcast oldugunu goriiriiz. En wugta yerle temasi saglayan birinci parcadr. Bu
parcanin enerji kayplarmi en aza indirmek icin ince ve boru seklinde olmasi
distiniimiistir. Birinci ve 1kinci par¢a arasmdaki yay temas aninda sikismayl saglar.
Ugiincii parga tabana baghdr ve donme hareketini gergeklestirir. Ayak yapist
tasarlanrken uzun ve agr olmamasma dikkate dilmistir. Ciinkii agr sistem havada
kalma siresini kisaltr ve uzun olursa sistemin kendi ve diger -ekipmanlarm
agrhgmdan dolayr egilme problemi goriilebilir. Bu nedenlerden otiirli ayak yapismmn
mmal edilmesi asamasinda aliiminyumun daha uygun olabilece§i OngOriilmiistiir.

Sistemdeki diger Onemli parca elektrik motorlaridr. Sistemin istenilen yonde
hareketini saglar ve skigma srasmda sisteme eksta kuvvet verir. Dairesel hereketi
dogrusal harekete cevirir. Sistemin temas am kisa oldugu i¢in secilen motorlar hizh
olmalidr. Bunun yanmda motor se¢iminde dikkate edilmesi gereken diger
parametreler uzun cahsma aral@, hafifk ve fiyattr. Bu ihtiyaglar1 karsilayan SKF-
CARE33H modeli elektrik motorun uygun olacag disiiniilmektedir.

Motor ve ayaklarm ii¢ boyutta hareketi mesnetler tarafindan saglanr. Universal
olarak tasarlanan mesnetler ayaga ve tabana baghdr. Tabana bagh mesnet ayagn
donmesine yardimcit olurken ayaga bagh mesnetler motorun donme hareketini
Oteleme hareketine c¢evirmesine yardimci olur. Mesnetlerin  tasarmmu  CATIA
programu kullanilarak yapilmistir.
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Sisteme ait taban olarak adlandrdigimiz parca ayak, motorlar ve diger ekipmanlart (
batarya, sensor vb. ) tasiyan kismudr. Mimkiin oldugu kadar hafif olmasi gerektigi
icn et kalnlign mce dairesel halka seklinde tasarlannustr. Tasarmm yapihirken
ziplama ve yiirime esnasmda sistemin devrilebilecegi Ongoriildiigii i¢in ¢emberin
cap1 biiylk distiniilmemistir.

Tasarimdan sonra  sistemin  simillasyonlart  yapinustr.  Simiilasyonlar  yapilirken
MATLAB ve SIMULINK programlar1 kullanilmigtur.

Oncelikle sistemin sadece kiitle ve yaydan ibaret oldugu temel durum ele ahnmustr.
Bu durumda sistemde herhangi bir kayp yoktur ve sistem aym yiikseklige tekrar
yikselir. ikinci durumda sisteme damper ekleni. Bu durumda sistemin enerjisi
soniimlenecegi icin hareket belli bir stire sonra durur. Sistemin normal hareketi bu
oldugu i¢in aym yikseklife ulagsmak i¢i disaridan bir kuvvet eklenmesi gerketigi
goriilir. Bu kuvvetin nasil ve ne zaman eklenecegi arastwilustr. Sisteme gereken bu
kuvvetin yere temas ettii anda elektrik motorlarma rampa fonksiyonu seklinde
girisinin uygun olacag disliniilmis ve simillasyon sonuglar1 ile goriilmiistiir.

Sonug¢ olarak bu c¢alisma neticesinde elde edilen bilgiler s13nda tek ayakh robotun
zZiplama ve  daha sonrasmda  yiirlimesinin pek c¢ok parametreye bagh oldugu
gortilmiistiir. Bu parametrelerin uygun sekilde secilmesi neticesmde daha kararh bir
hareket elde edimesi miimkiin olacaktr. Bu hareketin saglanmasmdan sonra {i¢
boyutta hareketin kontrollii bir sekilde yapimasi daha kolay olacaktir.
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1. INTRODUCTION

In this thesis a special type of robot named one-legged hopping robot is studied. The
most notable results obtained on this subject was achieved in the 1980's by a group
of researchers led by Prof. Dr. Marc Raibert at MIT. In this chapter the motivation

and the literature review regarding to one legged hopping machines are presented.

1.1 Background

There are several reasons to conduct this type of research.

The first reason is to study the mobility on rough terrain. When considering
displacements on rough terrains, perturbations resulting from the system's interaction
with the ground are intermittent and discretized in space in the case of legged
vehicles, while their effects on the vehicle are permanent in the case of wheeled
locomotion. It is commonly acknowledged that legged locomotion is superior to
wheeled locomotion when the terrain is soft. It is also considered that legged vehicle

can easily overcome obstacles by utilizing the flight period.

The second reason to study legged machines is to understand biological legged
locomotion. The principle of control which is used in human and animal locomotion
is still not understood. Humans and animal enjoy high mobility and efficiency of
locomotion due to their naturally designed legged system. It is of great interest to the
researchers to build mechanical machines which replicates human and animal

motions.

The planar one-legged robots have attracted many researchers due to the simplicity
of its mechanical design. It was thought that the analysis and experiments of the one-
legged robots would enlighten the designing of biped, quadruped, and multi-legged
robots.

The first one-legged robot was built by Raibert. It had a pneumatic cylinder installed
in its leg and hence moved as a springy inverted pendulum while on the ground.

Raibert decomposed the control problem into body attitude control, hopping height

1



control and horizontal velocity control and showed that separate designs of the three
controllers may be robust enough to allow decoupled operation. After Raibert's
works, one legged running robots filled with a leg spring have been widely studied
both experimentally and theoretically. Most of the one-legged robots proposed
during the past two decades were similar to Raibert's design since they had some
parts functioning like a spring to restore energy and provide force for take-off. These
robots were also called one legged hoppers since their locomotion were series of

cyclic hops.

1.2 Literature Review

1.2.1 Types of legged robots

Legged robots fall into two classes, statically stable robots and dynamically stable
robots.

The static stability is a simple concept. There is a contact polygon formed by
connecting all the neighboring footholds. It is called statically stable when the

projection of the center of mass of the body lies in the convex hull of the contact
polygon.

A statically stable robot can stand still without falling over. Static stability is a useful
feature and it can be achieved by requiring enough legs on the robot to provide

sufficient static points of support.

On the other hand, dynamic stability allows a robot to be stable while moving. For
example, one-legged hopping robots are dynamically stable and they can hop in
place or to various places without falling owver. It is enough to say a robot is
dynamically stable when it maintains balance in the overall locomotion cycle even if
the robot is not balanced statically at any time.

A statically stable system could be dynamically unstable and a statically unstable

system could be dynamically stable.

Statically stable machines are only simple successful solutions for low-speed
locomotion, where dynamic forces are small compared to static ones. As a result,
statically stable legged machines suffer not only from a large number of legs but also

from a low cruising speed. On the contrary, dynamically stable robots enjoy less



design complexity, achieve higher speeds and can be more energy efficient. The

main disadvantage of dynamic balance is the lack of a general control methodology.

1.2.2 Research on legged machines

The scientific study of legged locomotion began over a century ago when Muybridge
tried to find out whether or not a trotting horse left the ground with all four feet at the
same time. After that Muybridge went on to document the walking and running
behavior over 40 animals including humans. His photographic data are still of

considerable value and survive as a landmark in locomotion research.

The studies of walking machines also have its origin in Muybridge's time. An early
walking model appeared in about 1870 .It used a linkage originally designed by the
famous Russian mathematician Chebyshev some years earlier to move the body
along a straight horizontal path while the feet moved up and down to exchange

support.

During the 90 years that followed, people viewed that building walking machines as
the task of designing kinematic linkages that would generate suitable stepping
motion. Many designs were proposed but the performance of such machines was
limited by their fixed patterns of motion since they could not adjust to the terrain's
variations. By late 1950s it had become clear that a linkage providing fixed motion
would not do the trick of walking or running, and useful walking machines would

need control.

One approach to control was harness human. Ralph Mosher used this approach in
building four legged walking truck at General Electric in mid 1960s Despite its
dependence on a well-trained human for control, this walking machine was a

landmark in legged technology.

Computer control became alternative to human control of legged vehicles in 1970s.
McGhee's group was the first to use this approach successfully They built an insect-
like hexapod that could walk with a number of standard gaits and negotiate simple
obstacles. The computer's major task is to sole Kkinematic equations in order to
coordinate the 18 electric motors driving the legs. Gurfinkel and his group build a
machine with quite similar performances to McGhee's at about the same time. It used
a hybrid computer for control Hirose realized the linkage design and computer

control are not exclusive and his experience with clever and unusual mechanisms led

3



to a simplified control of locomotion and improved their efficiency McGhee,
Gurfinkel, and Hirose's walking machine groups represent a class called Static
Crawlers. Each differs in the details of construction and computing technology used
for control. Several other machines that fall into this class have been studied in the

intervening years.

Another class of legged systems are dynamic machines that balance actively. The

legged machines fall into this class operate in a regime where the velocity and Kinetic

energies are important determinants of behavior. The exchange of energy among its
various forms is also important in the dynamics of legged locomotion. Shannon was
probably the first to build a machine that balanced an inverted pendulum atop of a

small powered truck. The truck drove back and forth in response to the tipping

movements of the pendulum. This study was forwarded by his students to
demonstrate controllers for two pendulums at once, and finally the case that one
pendulum were mounted on top of the other. Later, they extended these techniques to
provide balance for a flexible inverted pendulum. Miura and Shimoyama built the
first walking machine that really balanced actively. The control of their biped relied
on an inverted pendulum model. Each time a foot was placed on the floor, its
position was chosen according to the tipping behavior expected from an inverted
pendulum. Matsuoka was the first to build a machine that was able to run, where
running is defined by the presence of intervals of ballistic flight when all feet are off
the ground. Matsuoka's goal was to model repetitive hopping in humans. He
formulated a model with a body and one massless leg and also simplified the
problem by assuming that the duration of the support phase was short compared with
the flight phase.

The field of dynamically stable legged locomotion has made great strides in 1980s,
led primarily by Marc Raibert. He build a variety of running robots, starting with a
planner one-legged machine, followed by a 3D one-legged, a two-legged planar
robot and a four-legged quadruped. Among his works, Raibert introduced a scheme
for exciting the leg spring from rest in order to regulate the energy in the spring-

mass.



Raibert has also proposed a tabular control algorithm which uses a large table of pre-
computed data and calculates the control signal by interpolation. This algorithm was

applied experimentally to 2-D and 3-D physical prototypes.

After Raibert's work, many researchers were attracted to study and conduct research

on one-legged running robots either experimentally or theoretically.

Based on their established approach to analyze the intermittent dynamics of a
juggling robot, Koditschek and Buehler derived an analytical discrete map for a
simplified vertical hopper, modeled after Raibert's robots. Lapshin proved the
asymptotic global stability of the wvertical motion of a one-legged robot with linear
leg spring. Vakakis and Burdick observed chaotic behavior when they changed the
parameters of a model similar to that used by Koditschek and Buehler. Later
M'Closky and Burdick used a planar hopper model with a body placed on top of a
massless and an inertia-less leg similar to Raibert's, They showed by perturbation and
numerical integration methods that even the planner hopper can show chaotic
behavior in a certain set of parameters. There exist very few related results that use
the continuous-time framework for stability analysis of hopping robots due to their
intermittent dynamics. Li and He used a perturbation approach to study the existence
and stability of limit cycles for a vertical hopper. Sznair and Damborg (1989) used an
adaptive control algorithm for both wvertical and horizontal motion of a two
dimensional hopping robot, deriving a rather simple analytical solution for vertical
motion control. Prosser and Kam suggested an approach which involved a near
inverse of the system dynamics (based on off-line synthesis and inverse model) on an
electrically actuated hopper. The preliminary control strategy in their electrically
actuated hopping robot was obtained by a least-square fit of data to a multivariable
polynomial. This method was later enhanced by applying on-line estimation of
Controllers parameters (Lebaudy, 1993) Rad et al (1993) employed an open loop
control approach on an electrically actuated hopper. A high gain PD controller was

used to return the actuator.






2. THE MODEL FOR VERTICAL AND HORIZONTAL MOTION

In this chapter, a one-legged hopping machine is modeled by a springy leg with
nonzero mass, a simple body, and an actuated hinge-type hip. We can discuss both
vertical and horizontal motion in this model. The most important characteristic of the
body is that it has a mass that must be balanced at the top of the leg because of the
structure; it applies torque to the leg. Legs change length and orientation with

respect to the body. Figure 2.1 shows the model used for analysis and simulation.

BODY

-HIP

LEG

Figure 2.1: Planar one legged model.

List of parameters and notations is presented as follows:
Symbol Parameter

M, Leg mass



M, Body mass

r, Leg center of mass

r, Body center of mass

I, Leg moment of inertia

I, Body moment of inertia
K, Leg spring rest length
K, Leg spring stiffness

KL, Mechanical stop stiffness
B, Mechanical stop damping
Ks Ground stiffness

Bs Ground damping

X Position actuator length

The basic features of the model are a body of massM,, a compliant leg of massM,,

and the ground. The overall length of the leg is influenced by a spring, a position

actuator in series with the spring, and a mechanical stop.

The position actuator, length x, is arranged in series with the spring, acting between
the spring and the hip. When the actuator changes length, it does work on the spring

to increase or decrease the energy stored in the spring.

The spring, which has unsprung length k, and stiffnessK, , is modeled as though one

end is rigidly connected to the foot, with the other end fastened to one side of the
position actuator. The mechanical stop, modeled as a very stiff spring with damping,
acts to prevent the spring from expanding beyond its rest length. The spring and
mechanical stop are arranged so that only the spring generates forces when

(w—x) <k,, and only the mechanical stop generates forces when (w—x)>k, .The

stiffness and damping of the mechanical stop, K ,andB,,, are chosen so that

vibrations between the body and leg at lift-off decay quickly. The ground is modeled



as a stiff, damped spring which has stiffness K, and damping Bg. The damping

coefficient is chosen to keep the foot from bouncing on the ground during touchdown
and lift-off. This compliance in the ground represents the compliances of both the

ground and the foot. We assume that the stiffness of the ground is much greater than

the stifiness of the leg, K >>K, .

2.1 Body and Leg Dynamics

The following equations are derived using geometric relationships shown in Figure

2.1. We differentiate twice with respect to time. First, X, is the horizontal

displacement of the foot and x, is the horizontal displacement of the leg:

X, =X, +1sing, (2.1)
X1 = Xo +1,C0S6, 6: (2.2)
X1 = Xo + [,COSH, Oi—rsind,(6:)> (2.3)

Next, y, is the vertical displacement of the foot and y, is the vertical displacement

of the leg:
Y, =Y, +FCOSH (2.4)
Y, = Yo+ I(-sing,) 6, (2.5)
Y1 = Yo~ (6,Sin 6, +c0s6,(6,)°) (2.6)

Third, X, is the horizontal displacement of the body:
X, =X, + @sin @, —r, sin(—6,) 2.7)
X2 = Xo+ @SN 6, +® 6, c0s 6, + 1, 62 c0s b, (2.8)

X2 = Xo+ @SiN 6, + 0 01 €08 6, — w(6:)? sin 6,
+1,(02 cos 6, — (6,)?sin 6,) (2.9)

+2 601 C0S 6,



Finally, y, is the vertical displacement of the bodly:

Y, = Y, + ®C0S6, + I, cos(—6,) (2.10)
Y, = Yo+ @C0s 6, +w O (—sin 6,) —r, B2 sin 6, (2.11)
y, = §/O+ ®C0s 6, +(61)%(—sin 6,) (2.12)

+1,(02 c0s 0, — (6,)?sin 6,) + 2w 1 cos b,

2.2 Force and Torque Analysis of Leg and Body

There are external and internal forces act on the one-legged robot. The forces are
decomposed and studied into details in this section. Figure 2.2 shows a force diagram

of the external and internal forces in the model.

Figure 2.2: Force illustration for full model.

The first two equations are derived by summing the forces in the x and y directions

for the leg. The third equation sums the moments of inertia for the leg:
M, x. = F, — F, sin@, — F, cos 6, (2.13)

M,y,=F, —F cosd —F;sing -M.g (2.14)
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l,0:=-Frcosd +Frsing —F (o-r)—z(t) (2.15)

The next three equations are similarly derived for the body;

M,y,=F cosg —F sing —M,g (2.16)
M, x; = F, sing, +F, cos6, (2.17)
1,0, = F.1,sin(8, —6,) — F,r, cos(6, —6,) +z(t) (2.18)

Where ;

F., F, horizontal and vertical forces on the foot

F., F, forces acting at the hip between the leg and body. F, acts tangent to the leg

and F, acts perpendicular to the leg.

2.3 The Hop Cycle

2.3.1 Phases and events

Hopping is a cycle which has two phases. We call flight when the foot is not
touching the ground. During flight, the trajectory of the center of gravity of the
system is ballistic. The other phase when the foot is touching the ground is called
stance. During stance, the leg helps the system to behave like that of an inverted

pendulum. there are four events in the hopping cycle :
Lift-off: The moment at which the foot loses contact with the ground

Top: The moment in flight when the body has peak altitude and vertical motion

changes from upward to downward
Touchdown: The moment the foot makes contact with the ground

Bottom: The moment in stance when the body has minimum altitude and vertical
motion of the body changes from downward to upward. These events can each be

detected from the behavior of the state variables.

11



2.3.2 Total time of a hopping cycle

For the case of repetitive hopping in which periods of support alternate with periods
of flight, the following values can be calculated. During the stance phase, the system

can be viewed as a spring-mass oscillator with natural frequency «, :
o = |— (2.19)

During repetitive hopping, each stance interval has duration equal to one

half of the period associated with o, :

1 27 M
Tomee == =1 /—2 2.20
STANCE 2 C()n KL ( )

During flight the system moves along a parabolic trajectory determined by

the acceleration of gravity. The period of flight is:

8H
TFLIGHT Y (2'21)

g
where
g is gravity and
H is the hopping height measured at the foot.

The period of a full hopping cycle is just the sum of T . and T, :

tance

ro B, M @22)
g K.
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3. MODELLING AND CONTROL OF THE SYSTEM

3.1 Mathematical Model of Jumping

We need to obtain the mathematical model of the system to decide when we will give
energy to the system, to make simulation of the system and to observe the behaviour
of the system.

In the previous chapter, we see that dynamics of the system is different both in stance
phase and in flight phase. So we should need two models for these phases. In

addition, we need to add extra energy losses to these models. Figure 3.1 shows the

hopper model.
N S \» Pe
T& (

0
Z

Stance Phase Flight Phase

Figure 3.1: Hopper model.

The leg spring absorbs energy by shortening under load of the body and returns
energy by lengthening, accelerating the body upward. A mechanical stop prevents
the leg from extending beyond a fixed length. The unsprung mass my represents that
portion of the leg that is functioning below the spring, the rest being included in body

mass M.

When the actuator changes length, it does work on the leg spring to increase or
decrease its stored energy. This arrangement of actuator, leg, spring and mechanical

stop permits the model to hop. During stance phase the actuator excites the spring

13



mass system. As the leg reaches maximum length, the mechanical stop permits a
fraction of Kinetic energy to transfer from the body to the leg, enabling the foot to
leave the ground. There are two sources of energy loss impact of unsprung mass to
the ground which we assume to be perfectly inelastic and friction which is modeled
as a dry friction F, and viscous friction. The idea of maintaining the desired hopping
height of the system is to measure the energy in the vertical motion during stance
phase and to control the leg actuation to inject energy to the system to reach to the

desired hopping height.

3.2 Dynamics

The motion is divided into two phases, flight and stance phases and two transient,
touchdown and lift-of. In modeling , we consider the dynamics of the actuator
Suppose the actuator consist of DC motor and ball screw transmission, where the
rotating parts have a moment of inertia J and sliding mass is represented by ms. The
ball screw transmission ratio is r. The input to the system is the motor torque ¢
Moreover, we suppose the motor and ball screw transmission have an owverall

efficiency n . For the modeling we use the Lagrange approach. The Lagrange

formulation can be written as;

0| oL oL

a I _a_sz (3.1)
oq, | i

Where Lagrangian L is subtraction of potential energy from Kinetic energy namely

L=T-V, qj is the generalized coordinate, which for our systemis z and p, and the

Qj is the generalized non-conservative force, which could be derived using virtual

work principle.

3.2.1 Flight
During flight phase we can write the kinetic and potential energies as follows
1 . , 1 21 o,
T=2J(p/r)*+Z(m,+M)z +=m(z-p) (3.2)
2 2 2
And;
V =Mz +m,g(z-p)+ k(s ~l + ) +mg(z 1) (33)
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where p is the downward linear motion of the actuator, and is related to the DC

motor angular position & with;

oL (3.4)
r
Therefore, Lagrangian L follows;
1 211
L=—alp +-mz +—-m,zp-m0z
2 2 2 (3.5)

+msgp+%k(s0 —l,+p)*+m,gl,

m =M -+m +m, (3.6)
a :i2+mS (3.7)

r

Before taking derivatives, we need to derive the generalized forces. Assume the
friction forces are divided into a viscous damping due to the spring, and a dry friction
act on the body due to the planariser F . The friction of the sliding part of the
actuator added to the ball screw friction and motor bearing frictions acts in the
formulation by considering an overall efficiency » for the actuator. In the virtual
work approach we assume infinitesimal virtual displacement on the system and find
the virtual work done on the system, which will be equal to the generalized force
times virtual displacement. To decouple the generalized forces, Q, and Qp, we apply
decoupled virtual displacements dz and dp respectively.

Suppose we have a virtual displacement dz and no displacement dp then the virtual

work will be;
dW, =Q,dz = F,, sign(-z)dz (3.9)
And the generalized force turn out to be ;

Q, =-Fy psign(z)dz (3.10)

Now suppose a virtual displacement dp and no displacement dz the virtual work will
be;

dwW, =Q,dp=—csds+7z,d6o (3.11)

15



where 7, is the torque acting on the sliding mass and is equal to 7z where 7 is the

motor torque. Moreover ;

S=s,-p s

I
|
= -

By using these equations we obtain;

Q=+

Using Lagrangian equation we end up with;

m, i_rns b+ mg = _Ffr,pSign(i)

a p-m, z-mg =" —k(s,~l,+ p)~cp

Final state equation will be;

y|m

S

5

Where F, is the spring force

The final state equation can be shown in the standard form ;

Where ;
0
0
A=
0
0
(3.20)

F =k(s,—l,+p)+cp

Xx=AX+Br+E
o
_mg¢
4 ; gl
1 yr
_mc
7 |

16

z| 1[a m,
m

|

y=am —m}’

ds =-dp

-mg - Ffr'psign(i)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.19)



0

o _ 1| @(mg—F ,sign(@) +m,(m.g —k(s,~l; + p))
- .
| m (m,g - Fy,_,sign(2)) +m,(m,g —k(s, ~l, + p)) |
(3.21)
3.2.2 Touchdown

It occurs when the leg has its free length. At his time the velocity is not
changed but the kinetic energy of the unsprung mass m; ( the mass of the

toe, the lower leg tube, the fraction of the spring mass ) is dissipated.

2

Ek = Emt th (322)

t, = moment of touchdown

3.2.3 Stance

In this phase, the kinetic energy is stored as potential energy in the spring. The model
is derived using the Lagrangian, based on general coordinates z and p. Total kinetic

energy ;

2

1. - i
T=2J(p/r)?*+=Mz +=m (z— p)* 3.23
S I (/)" +2 5 Ms(2=P) (3.23)
Where p=ré@
The potential energy is given by ;
V =Mgz+m.g(z- p)+%k(s0 —l,+ p)? (3.24)

Therefore;

2

L=2adp +5(M+m)z -m 2p-Mgz +mg(z-p)—, k(s -2+p) (329

(3.26)

The friction forces are modeled as viscous and dry frictions. In this case the dry

frictions have two components. The first part is due to the planariser, namely Fyp

17



which is also present in the flight phase and the second part is due to the sliding of

the lower leg and upper leg called fs which is present only in the stance phase.

Similar to the method used in the flight phase, we will use the virtual work approach

to find the generalized forces.

First suppose a virtual displacement dz and no dp;

dW, =Q,dz =—csds+(F, , +F, ,)sign(—z)dz

fr,p

But in this case,

S=7-p, S=7-p
In general, ds=dz—dp, but now we do not have dp. Therefore,

ds=dz

Thus, the generalized force Q, will derived as;
Q, =—¢(z— p)—(Fy , + Fy.,)sign(2)
Now consider a virtual displacement dp and no dz,
dW, =Q,dp=—csds+7,d0
T, =NT
In this case,
ds=-dp

Finally, generalized force will be simplified to;
o -
Qy=c(z-p)=""

By differentiation, we end up with ;

(M +m.)z—m, p+(M +m,)g =K(s, — 2+ p) +¢(p-2) - (F , + F,.,)sign(z)

a p-m, 2-m,g =" ~K(s, =2+ p) ~¢(p-2)

Final state equation will be;

18

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)



. ~(M +m,)g+F, —(F, . +F, sign(z)
z :l{a m, } Tf, fr,p (3.36)
o pglm M+m, msg+77——FS
.
ﬂz[M +%jms+M—;] (337)
r r
F. =k(s,—z+ p)—c(p—2) (3.38)

The final state equation can be shown in the standard form ;

X=Ax+Br+E
Where ;
0 1 0 0 ] o
z
_Je oy 2 0 .
A rg rp ;B=l m, = z
0 0 0 1 pri 0 p
o Mo o _Me M +m, 0
. B B ]
(3.37)
] 0 -
e 1 alMam)g(F, +F ,)sign(z)+m.(mg —k(s; =2+ p)+K(s ~2+ )
- .
_ms (_(M +ms)g +k(SO -+ p)_(Ffr,s + Ffr,p)Sign(z))+(M +ms)(msg —k(SO -+ p))_

3.2.4 Lift-Off

It is the time when the leg is fully extended. At this time, due to conservation of

linear momentum,

(M +ms)2|o_—ms p: M +mu)2|0++ ms(2|o+— p) (3.39)

Then,

Uz =1 (3.40)
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Where 4 is defined as ;

u=——-" (3.41)
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4. VERTICAL HOPPING AND CONTROL STRATEGIES

Figure 4.1 shows the simplified vertical model and based on this model new vertical
controllers are designed and simulations are performed. Equations can be reduced to
the following for vertical motion:

e ___ BODY
I
IT |—| I ! HIP
Il
Ml: I1 = N Mechanical
O W Stop
- :1‘|
Y2 o . —————— LEG
YO Bg ’_LJ‘_‘ Kg
L

Figure 4:1. One legged hopping robot ( vertical only ).

Ml y1=Fy_FT _Mlg (4.1)
M,y,=F —M,g 4.2)
Yo=Y 11 (4-3)
o=Y,=Yy,+- (4-4)
Where

F =K (k,—o+x) if(k,—o+x)>0 (4.5)

Otherwise;
F =Kk, ~o+X)-B,® (4.6)
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F,=—Kg, —Bs Yy  if ¥,<0 4.7)
Otherwise;

F =0 (4.8)

4.1 Linear Quadratic Regulator

The optimal Linear Quadratic Regulator (LQR) method is a powerful technique for
designing controllers for complex systems that have stringent performance
requirements. For most realistic applications, the LQR problem must be solved by
using a Computer-Aided-Design package. A simulation is conducted by using
MATLAB.

Consider the system;
x=At)x+B(t)u, x(0)=x, (4.9)

where xeR",ueR™with associated quadratic performance index,
1+ 1T T T
J=2X MM+ j (X"Q(t)x +u"R(t)u)dt (4.10)
)

[t,;T] is the time interval over which we are interested in the behavior of the plant.
We want to determine the control u*(t) on [t,;T] that minimizes J for the case

where the final state is fixed. In this case u* will turn out to be an open-loop control.

We assume that the final time T is fixed and known, and that no function of the final
state w(x(T))is specified. The initial plant state X(t,)is given. Weighting matrices
S(T) and Q(T) are symmetric and positive semi definite, and R(t) is symmetric and
positive definite, for all t [t,;T][6]

4.1.1 The state and costate equations

The Hamiltonian is;

H(t)=%(XTQX+UT Ru) + A" (Ax+ Bu) (4.11)

22



where AT eR"is an undetermined multiplier, commonly referred to as the costate

variables. The state and costate equations are

oH

X =— = AX+ BuU (4.12)
oA
2=@=QX+AT,1 (4.13)
OX
and the stationary condition is ;
0= _RrusB2 (4.15)
ou

Solving (4.15) yields the optimal control in terms of the costate;
u(t)=—R™BTA(t) (4.16)

Using (4.16) in the state equation yields the homogeneous Hamiltonian system.

x| [A —BR'B {x} @17)
i e -A I |
4.1.2 Fixed final state and open loop control

Suppose that the initial state is known to be x(t,)and that the control objective is to

drive the state exactly to the given fixed reference value r(T) at the final time T.
Since x(T) is fixed at r(T), it is redundant to include a final state weighting in the cost
index. Let S(T) = 0. Also, for our LQR design, we are only interested in minimizing

the control effort, so let Q = 0 so that the cost function reduces to; [6]

1T
J == [u"Rudt 4.18
> J (4.18)

The state and costate equation are now,

Xx=AXx—BR'B" 1 (4.19)

A=—A"2 (4.20)
Setting Q =0 decoupled the costate equation from the state equation, so its solution
IS just
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At) =e* TY(1) 4.21)

where A(t)is still unknown. Using the expression in the state equation yields

x = Ax—BRB"e" "V 1(t) (4.22)
whose solution is

X(t) = e Ix(t,) — L to eAIBRIBe* T 4(T)dr (4.23)

4.1.3 Dynamics of the hopper

For the vertical case, the hopper can be modeled as follows:

Mz yz = FT _Mzg (4-24)
Yo=Y 01 (4-25)
o=Y,=y,+nL-r (4.26)
Where

F =K (k,—o+Xx) if(k,—o+x)>0 (4.27)

Otherwise ;
F =K, (k,—@+X)~B_, @ (4.28)
Fy :_KGyO - BG yO if Yo < 0 (429)

Otherwise ;
F,=0 (4.30)

During stance period, F, =—Kg, —Byy, and F =K (k,—@+X)=0. As

a result, the reduced state-space model;

X1 = X, (4.31)
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Xp = Y - 4.32
v g (4.32)
X3 =X, (4.33)
F
Xq=——— 4.34
vy g (4.34)
by defining the transformation;
X1=Y,
X2 = Y1
X3 =Y,
X4 = yz
The state space model can be represented as;
o7 [ 0 1 0 O] - 0 17 0
X
_1 _KG+KL _E ﬁ 0 X KGrl_KL(kO_r) _ﬁ
X | M, M, M, X, N M, N M, (4.35)
% 0 0 0 1| x 0 0
P B TS U R s R
L4 L 2 M2 i L MZ 4 L M2 _
where u =X

Since during flight phase, there is no control applied to the system and the control

can only be applied during the stance phase. Thus the problem can be formulated as

how to transfer the states from ;
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within time T =7 /% H. , is the previous hopping height and H, is the desired
L

hopping height for this cycle.

After the coordinate transformation, the state space model is transformed into;

>_(1 [ 0 1 0 O_‘;(‘ [
S| KetKe B Ko 1T ]
X2 _ Ml Ml Ml X2 4
. 0 0 0 1|-
X3 K K X3
L L _
. IV 0 - 0 X4
L 2 2 = - L
Where;
)‘(:X1+(M1+M2)_r1
KG
)7(2=X2
>_(3:x3+(M1+M2)—rl—kO+r+—2g
KG L
)_(4=X4

T 0 1 0 0 0
KetK By KooK
A, Ml Ml Ml B Ml
' 0 0 o 1|" | 0
Ko o Ko Ko
L 2 MZ a _MZ_
i 0 -1 0 0
,1(14_&)4_M 0 _K 0 ——L
Ml 1 Ml
[21-A]=
0 0 0 -1
a1 Ke g My
L Ml Ml Ml
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(4.37)

(4.38)

(4.39)

(4.40)

(4.41)



for , A=0 Full Rank
for , =0 Full Rank

So the system is controllable.
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5. MATHEMATICAL MODEL OF WALKING

The main point of this way of modeling is when jumping in stance phase, the use of
its pushing force not only for jump but also for walking with and angle and in flight
phase moving towards the leg to prepare landing. The model can be derived as a

SLIP model with Lagrange method.

5.1 Algortihm For Flight Phase

In flight phase, there is no disturbance affects to the system. So we can think the
movement of the system same as the control of inverted pendulum. During this time,
the signal of the motor should calculate the point of landing and the try to keep the

angle of leg between rotation angle compared to the reference angle. [3]

5.2 The Behavior of The Leg In Stance and Symmetry

The angle when the leg is on the ground describes the orbit of center of gravity of the

system. In this orbit, if we think the ahead speed is constant, total movement of the

system can be described with speed and the stance period (T, ).

AX=T, X (5.1)

In this orbit, to keep the speed constant, the sum of the horizontal forces act to the

system should be 0. This means that there is symmetry in the stance.

Figure 5.1: The desired orbit in stance.
29



Figure 5.1 shows the ideal movement of the leg. If we assume in the middle
of this orbit t= 0 and x(0)=0; because of the symmetry, ¢ is the angle

between leg and the rotation axis and zis the motor torque, the parameters

act the center of gravity in stance ;

z(-t)=z(t)

X(—t) = =x(t)
¢(-t) =—¢(t)
7(-t) =—z(t)

These expressions are true only in symmetry.

When we think about symmetry in flight, we ask ourselves the point of
landing. Symmetry is available when the leg lands on the middle of orbit.
because the orbit describes the movement of center of gravity, we can keep
the symmetry by putting the toe to the point between the calculated orbit
and the length of the leg. These data tell the controller how to calculate the

reference.

The middle point of the orbit in stance can be called as neutral point. If the
leg lands before that point leg slows down ; after that leg fastens. So that we
can change the speed of the leg. Figure 5.2 shows the importance of neutral

point in stance phase.

7N
N/
™
G/

Figure 5.2: The effect of neutral point to acceleration.

In flight, the job of algorithm is to calculate the orbit in stance decide the angle of leg

between rotational axis. [3]
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Controller needs to do when in flight, to maintain the angle of the leg to the reference
angle. xso is the length between the neutral point and the center of gravity ; xd is the

desired towards speed and xsAis the length between the neutral point to reach keep

the desired speed. The equations are ;
T . S
XS0 = ES X, XSA =K (X—Xq) (5.2)

With these equations, we can derive the equation that gives the reference angle

effects rotational axis,

K (X—Xq)

g ) (5.3)

T
d = arcsin(—=— +
¢ (2R

Where R is the distance of the leg to the rotational axis. Because stance is only

related to the mass of the leg and the spring constant, when the system is working

this equation can be applied by the feedback of x.[3]

5.3 Algorithm For Stance Phase

When we examine the behavior of the system in this phase, the thing that should be
done is after toe is on the ground, to rotate the body around this pivot point until
flight. This movement should be suitable to the symmetry rules. This can be possible
by giving position reference to the motors which system’s center of gravity is on the
orbit.

As writing the algorithms that give these position reference, we assume that the
center of the mass is on the rotational axis (y,). The distance between the mass

center and the neutral point, the distance to the neutral point to reach the desired

speed are needed to define the orbit in this phase.
XS0 = ES X, XSA =K (X—Xq) (5.4)

The sum of these equations give us the distance between the mass center and the toe

when stance.

XS = XSO + XSA (5.5)
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In this phase, the speed of leg is constant according to the mass center. By thinking

this, orbit of the mass center according to the toe which is on the X, t, is the time of

stance; the equations are ; [3]
XS(t) = XS0+ XSA — Xq (t—t,) (5.6)

¢d = arcsin(xso+ XsA — Xq (t —t,)) (5.7)
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6. DESIGN OF ONE LEGGED 3D HOPPING ROBOT

6.1 The Method

System is designed based on the spring loaded inverted pendulum (SLIP ) model. In
this model, energy of the system is stored by springs and then given to the system
again. It jumps in a vertical direction ( z-axis ) and gives its initial potential energy to

the spring. By using this stored energy, system jumps.

Because we aim to design the system moving in 3 dimensions, we do not need any
rotating axis. We need to rotate the leg to move forward. So we have 3 degree of

freedom in the system.

We must examine the moves of jumping and walking before starting the design of

the leg.

6.2 Jumping

This is the essential movement of the robot. To be succeed in walking, robot should
jump. As a result of spring- mass system described by Hooke’s Law; potential
energy is stored in the spring. After that this energy is used to provide the initial
potential energy. Because of the frictions and damping, some of this energy turns
into heat that has negative effect in jumping. To prevent this effect, we need
actuators to give the lost energy in the system. We can make this by using pneumatic
cylinder or electrical motor. In this design, we choose electrical motor because of its

easy application. Figure 6.1 shows the phases of hopping.

ORRORRORRO

Figure 6.1: Phases of hopping.
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These are ;

1:leg is in the air, spring is free

2: touchdown phase, spring compression

3 : lit-off begins, spring gives stored energy inside
1: robot reached initial height

This electrical motor converts the rotational motion to linear motion. Because of the
height control is directly related to spring compression, we can measure the length of

the leg with length sensor and we stop the motor when we reach the lenght we want.

6.3 Walking

After jumping, robot can walk by its hip ankle. We can control walking with
actuators too. For doing this, we need to measure the angle between the leg and the
ground. If the angle is too big, robot can fall to the ground. So we should not have

too much angle.

Another important point we need to discuss is the choose of electrical motor. So we

should know the time of touchdown to decide the speed of motor.
T =—=rm|— (6.1)

T,: time of touchdown

If we put random mass and spring coefficient in this equation, we see that time is so
short, like 0.120 ms. And if we think we have electrical linear actuator which has 5
mm pitch, we will add the energy to the system by the formula ;

%kx2 = %.3500.(0, 005)” = 0,0437 joules (6.2)
This energy is not enough to compensate the energy loss in the system. To prevent
this, we need to have motors which have big pitch. Normally, this affects the price of

the motor.

After this discussion, we can see that optimization of the system is too complicated.
Total mass and the spring coefficient effect the time of touchdown which is too short
and at the same time we need fast electrical motor to jump.
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6.4 The Design of The Robot

Figure 6.2 shows the overall design of one legged 3d hopping robot. The parts of it

will be listed below.

Figure 6.2: Overall view of the robot.

6.4.1 How it works ?

As it is said previous chapter, we drop the system from initial height. We have leg
that have 3 parts and it has a spring with them. At touchdown, legs will compress but
after that, as a reason of losses; it will not reach same height. To prevent this, we

have 3 linear actuators. They have two effects to the system;

e If we apply three of them at the same time in touchdown phase, we will have

strong extra force to reach initial height.

e If we could control the legs one by one or together, we would able to walk in

direction we want to move.

Each linear actuator has 2 DOF. There is 2 DOF universal joint to hold the actuator
to the base and similar joints to hold it to the leg. In total, there are 22 DOF in the
system but 19 is dependent on each other due to parallel structure. So, system has 4
independent DOF .
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6.4.2 Parts of The System
6.4.2.1 Leg

Figure 6.3 shows the structure of leg.

Figure 6.3: Structure of leg and its connection.

We decided to design leg with 3 parts. Part 1 is touching to the ground in the stance
phase. Part 2 guides the leg and part 3 is the connecting part of the leg to the base .
Hopping of the system is the result of compression of spring between part 1 and part
2. During stance phase, spring is compressed by actuators to pump extra energy to
the system.

We need to discuss two parameters before design. First one is the mass of the legs. In
previous chapters, we saw that mass of the legs effects the time of touchdown.
Because of this, it should be better to use aluminum as material rather than steel to
make it light.

Other concern is the length of the keg. If it is too long, there can be problem called
flambage because of the mass and the impact at touchdown. So we do not design it

long to prevent the flambage.
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6.4.2.2 Linear actuators

Figure 6.4 is the electrical motor used in the system.

Figure 6.4: Electrical motor.

We want to move in three dimensions, so we use three linear actuators. We move
by controlling the angle and the length of the actuators. When we are choosing

them, we need to check some parameter like weight, speed, stroke and load.

Below we can see some examples of linear actuators. They have long stroke, less
weight, high speed and big load. Figure 6.5 shows the technical data of the

motor.

Technical data

Unit CARE 33A CARE 33M CARE 33H
Push load N 2000 1400 800
Pull load N 2000 1400 800
Speed (full load to no load) mm's 8t0127 16t 221 32 to 451
Stroke mm 50 to 300 50 to 500 50 to 500
Retracted length mm 5+150/162/1932 5+150/162/1932 5+150/162/1932
Voltage voC 24 24 24
Power consumption W /A WA A
Current consumption A 35 35 35
Duty cycle % 15 20 30
Ambient temperature °C -10ta +50 -10to 50 -10+to +50
Type of protection P 44165 44165 44/65
Weight kg 15t 20 15t020 15t020
Color - Black Black Black

Figure 6.5: Technical specifications of the motor.

It is benefit for us to choose CARE33H when we look at the table because even if

it has not high load ; it has more speed compared to other models.
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6.4.2.3 Joints

Figure 6.6 and 6.7 are the joints used in the system.

Figure 6.6: Upper joint. Figure 6.7: Lower joint.

These are another essential parts because they give degree of freedom to the system.

Upper joint helps the system to move up and down; lower joints help to rotate the leg

when linear actuators are extracting.
6.4.2.4 Base

Figure 6.8 is the base of the system.

Figure 6.8: The base.

Leg and the actuators connected to this part. And also it carries other parts like
battery. So this part should be strong. We need to decide this part’s diameter related
to the length of the leg because if we take the diameter too long when we have short
leg, system could fall to the ground when jumping. And also we have to make it light
to have long period of lift-off.
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7. SIMULATION OF THE SYSTEM

7.1 Spring-Mass Without Damper

In this part of simulation, system is considered only with spring but without damper.
System is thrown from initial height H and when touchdown occurs, legs begin to
distract because of spring. When Ilift-off begins, legs begin to extract and system

reaches to the same height because it has no damper.

Figure 7.1 shows the free body diagram of the system ;

kx

Mg

Figure 7.1: Free body diagram of spring- mass system without damper.

Equations of motion are ;

XF =M X (7.1)
Mg —kx =M x (7.2)
X=0-| — |x 7.3
a1 7.3
M : total mass of the leg and body

g: gravity
k: spring coefficient

Figure 7.2 shows the simulink diagram of the spring mass system without damper.
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Figure 7.2: Simulation of spring mass system without damper .

We begin this simulation when we drop the system from initial height we choose.
Until touchdown phase, there is no effect of integrator to the system. We need to add
this effect by comparing the height of system ( x ). When x<0, spring begins to

compress and until take-off phase ( x=0) we should add this effect to the system.
Figure 7.3 plot of spring mass system without damper.
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Figure 7.3 : Plot of spring mass system without damper.

Figure 7.3 shows that system reaches same initial height in every hop because there

IS no damper. System has sinusoidal movement and because of friction neglecting,
system does not stop.
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7.2 Spring-Mass System With Damper

In this part of simulation, system is considered only with spring and damper. System
is thrown again from initial height H and when touchdown occurs, legs begin to
shorten because of spring. When liftoff begins, legs begin to extract and because of
the damper, system could not reach its initial height and in every hop loses its
energy; then stops at the height where system is balanced at its own weight. Figure

7.4 is the free body diagram of the system with damper.

kx  cx

Mg

Figure 7.4 : Free body diagram of spring mass system with damper.

Equations of motion are :

S F=Mx (7.4)

Mg —kx—cx =M X (7.5)
- k c
X=g —(MJX—(MJ (7.6)

Figure 7.51s the simulink of spring mass system with damper.

C: damping coefficient
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Figure 7.5 : Simulink of spring mass system with damper.

Similar to previous simulation, we drop the system from initial height. We have extra
damper effect to the system. When x <0, spring begins to compress and damper
effects to the system related to its velocity. These two effects will continue until take-
off phase again. Figure 7.6 is the plot of spring mass system with damper.
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Figure 7.6 : Plot of spring mass system with damper.

Figure 7.6 shows us the effect of damper to the system. In every hop, system jumps
to a lower height. And the result of oscillations, system stops in a period of time. The

reason of the steady state in negative height is the total mass of leg and body.

7.2.1 Bode plot of the system
If we think of system with damper, we derive the transfer function ;
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1

H(S)=—— 1.7
) Ms? +cs +k (7.7
When we put for M= 50kg, c=500 Nm/s ,and for k=1000 N/m we have ;
H(s) = L (7.8)
50s? +500s +1000 '

By this transfer function using MATLAB, we obtain Figure 7.7 is the Bode plot of

the system.
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Figure 7.7 : Bode plot of the system.

Our system jumps too fast and because it has periodic motion, we need to know the
frequency of it if we have resonance. We can use this plot as a guide to pick the

electrical motor.

7.3 Spring-Mass System With Damper and Force

In the previous part, we see that we cannot have the same hopping height in every
jump. In order prevent this, we need to add force to the system in every touchdown
phase. Next part, it will be discussed the parameters effect energy that we need to

add. Figure 7.8 is the free body diagram of the system with damper and force.
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Figure 7.8: Free body diagram of spring-mass system with damper and force.

SF =M X (7.7)

Mg —kx—CX+F =M X (7.8)

k=g—(%)x—(ﬁj—F (7.9)

Figure 7.9 is the simulink diagram of the system with damper and force.
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Figure 7.9: Simulink of spring mass system with damper and force.

As we see in the previous simulation, we drop the system from initial height. We
have both damper and spring in the system. In order to obtain height at start, we add
force block to the simulation. When x <0, we add force related to the height of the
system ( x ) until take-off phase. Next chapter, we will try to see what effects the
height of the system. Figure 7.10 is the plot of spring mass system with damper and
force.
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Figure 7.10: Plot of spring mass system with damper and force.

Figure 7.10 shows us directly that if we want to keep hopping height constant, we
need to add extra energy when touchdown to gain energy lost by collusion and

friction.

7.4 Energy Pumping Mechanism ( EPM )

In the previous part, simulation is showed us that we need add extra energy to have
same hopping height in every jump. An efficient energy pumping mechanism is an
indispensable element of a self-sustaining hopping robot. This chapter will illustrate
with a simple simulation result as to why the EPM is so critical for a hopping robot
and hence set forth the objectives of the project in relation to the EPM.

7.4.1 Why we needit?

Figure 7.11 shows a simplistic model of a hopping robot where the block M
represents the body of the hopper while the block m represents the leg. The friction

that is present in the actual mechanism is ignored in the analysis.

Figure 7.11: Simplified model of hopping robot.
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In the Figure 7.11, M is the mass of the body and m is the mass of the leg. k is the
spring constant of the spring used while Iy is its free length. H is the height from
which the hopper is dropped. Let us define an event, touchdown as the instant when
the leg of the hopper touches the ground. Let us define another event, lift-off when
the leg just leaves the ground. Let us first consider the case when there is no interim
energy input to the system and for the sake of simplicity, the system is constrained to
move along a fixed vertical axis. Due to the impact during touchdown, it can be
assumed that the collision of the leg and the ground is perfectly inelastic. No further
energy loss occurs in the system till the next touchdown. Let E; be the total energy of
the system just before touchdown and E; be the total energy of the system just after
touchdown. As per our assumption that there is no other source of energy loss in the
system, the total energy of the system just after lift-off is also Es .

E, =MgH +mg(h-1,) (7.10)
Due to a perfectly inelastic collision
E, = MgH (7.12)

Now, let the hopper now hop to a height of h;. Thus,

MgH = Mgh, + mg(h—1,) (7.12)
Which vyields,
MH +ml,
=— 0 7.13
n M +m ( )
After n hops,
h, = My -l (7.14)
M +m

This equation shows that for a constant hopping height for the robot the m/M ratio
should go to 0. In other words, a hopping robot without an giving energy can exhibit
sustained hopping only if its leg is massless or its body is too heavy. Either of the
two cases are not practically realizable. Hence for sustained hopping, we need a
periodic input of energy equal to Ej- Ef to be pumped into the system. Now if we
consider the contribution of friction to the energy of the system, the energy lost due

to friction will be required to be pumped into the system along with the energy loss
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due to collision. Thus the periodic energy input will now equal Ej- Ef + Ef where Eg
is the energy loss of the system due to friction present at all the joints. It may be of
interest to note that if we increase or decrease the energy input about this required
value then we get a control of the hopping height of the robot.

7.5 Height Control With Linear Displacement Actuation

Figure 7.12 is the simulink diagram of system with linear displacement.

g L =
J\ = [—L
L=k )

Figure 7.12: Simulink of spring-mass system with linear displacement.

In the previous simulations, we saw that we cannot control hopping height. We have
to add extra force for jumping to the initial height. This chapter, a way of adding
force to the system will be discussed.

Because of the system has spring to jump, easy way to have force is distracting the
spring by electrical motor. By using this, we obtain spring force adding to the mass

of the system and the leg.

We have nearly same simulation as we see in the previous part. The difference is the
new part that we add for hopping initial height.

We use ramp signal for input because we need to trigger this input only in
touchdown phase for a short time. To obtain this, we hold ramp input O in lift-off
phase. In touchdown phase, we send ramp signal; because of the property of ramp
input, we have sudden increase in spring displacement. As a reason of this, we have
more force to jump. Figure 7.13 is the plot of spring-mass system with linear

displacement.
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Figure 7.13: Plot of spring-mass system with linear displacement.

In the Figure 7.13, we see we have oscillation motion in the system as it is in the
previous simulation. The reason of wide jumps is the delay of the ramp signal that
we hold it in lift-off phase.
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8. CONCLUSION

In this thesis, the simulation and the design of hopping robot is studied. Design
criteria were chosen to keep the total weight of the system at minimum, to have an
energy efficient system, to be able to manufacture a prototype using reasonable
priced actuators available in the market. To control the system, three actuators
perform the orientation control of the leg as well as external force control to the
spring. 3D design was done using CATIA software. Simulation results are obtained
using MATLAB SIMULINK. The future works of this study includes manufacturing

of the prototype of the proposed system in this thesis and obtain experimental results.
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