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A LINKAGE ANALYSIS AND A GENOME-WIDE ASSOCIATION STUDY 
ON FAMILIAL MULTIPLE SCLEROSIS 

SUMMARY 

Multiple Sclerosis (MS) is an immune-mediated, neuroinflammatory and 
neurodegenerative disorder affecting the central nervous system (CNS), and 
characterised by multifocal lesions in white and grey matter with demyelination, 
axonal transection, neuronal degeneration, gliosis, and perivenular inflammatory cell 
infiltrates. MS is a complex disease, which develops in genetically susceptible 
individuals under specific environmental influences. Early observations from 
classical genetic studies have shown that MS has a genetic background with a broad 
range of heritability estimates (25%-76%) reported by different studies. Early linkage 
analyses revealed a strong association of HLA-DRB1 locus of the class II human 
leukocyte antigen (HLA) region with MS. Subsequent linkage and candidate-gene 
based analyses have identified different HLA allele associations and a non-HLA 
association, interleukin 7 receptor alpha (IL7RA) gene. Further chip-based genome 
wide association studies (GWAS) have identified a total of 110 non-HLA 
associations, most of which are related to immune pathways, supporting the immune 
basis of MS. However, current knowledge on MS genetics can explain only about 
27% of the predicted MS heritability, leaving much to be explored.  
We have previously conducted a proteome study in our MS cohort that have been 
collected in Istanbul University, Cerrahpaşa Faculty of Medical, Neurology 
Department since 2007. The proteome study identified pathological pathways in MS 
including renin-angiotensin, aldestorene-regulated sodium reabsorption, 
complement-coagulation and notch signalling patways with potential biomarkers. In 
the current study, to our knowledge for the first time, we wanted to correlate 
genomic data from familial MS pedigrees and unrelated patient/control groups with 
the proteome data.  
To this end, first we conducted a linkage analysis in MS patients and their affected 
and unaffected relatives. 10 multiplex MS families with 35 individuals were included 
in the analysis and SNP genotyping on the Illumina CytoSNP 300K array was 
performed for genomes of each individual. NPL scores were calculated for each of 
3118 informative SNP markers spaced at an average of 1 cM intervals using 
SimWalk multipoint NPL analysis. Fine mapping of regions showing NPL scores 
higher than 1.7 was performed for each SNP markers spaced at every 0.2 cM, 
revealing that the most promising loci for linkage were mapped to 13q13.3 and 
21q22.2, with NPL scores of 1.82 and 1.85, respectively. From the resulted loci, 
Interferon (Alpha, Beta, and Omega) Receptor 1 (IFNAR1) 18417, Interferon 
(Alpha, Beta, and Omega) Receptor 2 IFNAR2 11876 polymorphisms, and Mab-21-
Like 1 (MAB21L1) CAG repeat number were selected as candidate genes for further 
analyses. Selected regions were amplified by polymerase chain reaction (PCR) and 
genotyped in 27 unrelated patients with MS and 10 healthy controls of Turkish 



 
 

xx 

origin. Statistical analyses were performed to calculate genotype and allele 
frequencies, revealing a significant association of IFNAR2 11876 GG genotype with 
increased risk of MS (P = 0.027, OR 3.64 [95% CI 1.09 – 12.1]). 

We further conducted a GWAS comprising of 11 unrelated MS cases that had been 
included in the proteomic analyses and in the linkage study, and 60 healthy controls 
of Turkish origin, revealing 14 SNPs with significant association (P < 10-4), and 106 
SNPs showing suggestive association with MS (P < 10-3). Subsequently, 
chromosomal regions from the linkage analysis and SNPs from the GWAS were 
analysed in order to observe a correlation with the previous proteomic findings. One 
gene with significant (INS-IGF2, P = 4.39E-07), and eight genes with suggestive 
associations (PRKCE, MAPK9, RBPJL, ADAMTSL1, NR6A1, NOTCH2, IL1R1, 
NTN1) from the GWAS were found to involve in pathways those shown to be 
affected in MS subtypes, and there were three genes common between the GWAS 
and linkage results (CLDN14, RUNX1, LINC00598). When individual proteome 
data of each patient involved in the genetic analyses was observed, a total of 20 
proteins having altered expression level in one or more patients were also found to 
have significant or suggestive association in the GWAS. Among them, CNTN5 had 
the only significantly associated SNP markers (P = 4.71E-05 and P = 7.79E-05). 
Using a multi-disciplinary approach that combined genetic, proteomic, and 
bioinformatic analyses, we identified several candidate genes, whose possible roles 
will be explored in our further studies. 
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AİLESEL MULTIPL SKLEROZ’DA BAĞLANTI ANALİZİ VE GENOM 
ÇAPI İLİŞKİLENDİRME ÇALIŞMASI 

ÖZET 

Multipl Skleroz (MS); merkezi sinir sistemini  (MSS) etkileyen, immun-aracılı, nöro-
inflamatuvar, nörodejeneratif bir hastalıktır. MS, hem ak hem gri maddede 
demiyelinizasyon ile görülen multifokal lezyonlar, aksonal transeksiyon, nöronal 
dejenerasyon, gliyozis ve perivenüler inflamatuvar hücre infiltratı ile karakterize 
edilir. Bu patolojik özelliklerin otoreaktif lenfositlerin kan beyin bariyerinden 
geçerek miyelin gibi MSS bileşenlerinin yıkımına sebep olmaları sonucu ortaya 
çıktığı düşünülmektedir. Bu proseste T hücrelerinin ana rolü oynadığı düşünülmekle 
birlikte, naif CD4+ T yardımcı hücrelerinden farklılaşan Th1 ve Th17 hücrelerinin 
patogenezdeki rolleri önceki çalışmalarda gösterilmiştir. MS patolojisi; başta görsel, 
duyu, motor ve kognitif semptomlar olmak üzere geniş bir klinik tablo 
oluşturmaktadır. Hastalık, farklı klinik tipler olarak kendini göstermektedir. Temel 
olarak MS’in klinik belirtileri 20 ve 40 yaşları arasındaki genç yetişkinlerde 
yinelenen-düzelen MS (RRMS) formu olarak ortaya çıkmakla birlikte atak dönemleri 
arasında hastalarda tam ya da kısmi düzelmeler gözlenir. RRMS hastalarının birçoğu 
sonradan progresif MS formlarına dönüşmektedir. MS’in klinik spektrumu ayrıca 
presemptomatik fazlar içermektedir. Bunlardan biri olan klinik izole sendromda 
(KIS) hastalar tek bir atak geçirir ve ikinci bir atak ya da spesifik lezyon aktivitesi 
gösterdikleri takdirde klinik olarak kesin MS teşhisi konur. MS tanısı için 
Schumacher kriterleri başta olmak üzere Poser ve McDonald (2001, 2005 revizyonu, 
2010 revizyonu) kriterleri geliştirilmiştir ve günümüzde tanıda kullanılan belli 
parametreler mevcuttur. Klinik muayenenin yanı sıra göz önünde bulundurulan 
parametreler; magnetik rezonans (MR) görüntüsünde MS-spesifik lezyonların ve 
beyin-omurilik sıvısında oligoklonal bantların varlığı ve tepkisel potansiyel 
ölçümleridir. Mevcut kriterler ile MS’in tanısı kolaylaştırılmış olsa da nöromiyelit 
optika (NMO) gibi MS’e benzerlik gösteren bir grup hastalığın mevcut olması kesin 
tanıyı zorlaştırabilmektedir. Aynı zamanda alt tipler arasındaki geçişlerin ya da 
hastaların tedavilere verecekleri tepkilerin tahmin edilebilmesinde de zorluklar 
yaşanmaktadır. Bu amaçla bir süredir hastaların vücut sıvılarında gerçekleştirilen 
proteomik analizlere yoğunlaşılmasıyla birlikte, henüz geliştirilmiş ve onaylanmış 
tanı kitleri bulunmamaktadır. Diğer taraftan, bu çalışmalar ile günümüze kadar 
birçok aday protein belirteci tanımlanmıştır. 
MS, spesifik çevresel etkenler altında genetik olarak yatkın bireylerde ortaya çıkan 
kompleks bir hastalıktır. Klasik genetik çalışmalar sonucu MS’in 25%-76% arasında 
değişen kalıtılabilirlik hesaplamalarıyla birlikte genetik bir altyapısının olduğu 
gösterilmiştir. MS hastalarının birinci dereceden akrabası olmanın MS riskini 20-40 
kat, yaklaşık 1/1000’den 1/25-50’ye arttırdığı gösterilmiştir. Ayrıca ikiz çalışmaları 
sonucu tek yumurta ikizlerinin MS için konkordans oranının çift yumurta ikizlerine 
göre daha fazla olduğu görülmüş, böylece gözlemlenen ailesel agregasyonun ortak 
çevredense ortak kalıtılan faktörlere daha çok bağlı olduğu ortaya çıkmıştır. MS’in 
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genetik temelinin ilk kez kanıtlandığı bağlantı analizleriyle 6.kromozomda bulunan 
majör histokompatibilite kompleks (MHC) bölgesinin MS riski ile ilişkili olduğu 
gösterilmiştir. Daha sonraki bağlantı analizleriyle ayrıntılı haritalama sonucu spesifik 
olarak sınıf II insan lökosit antijen (HLA) bölgesindeki HLA-DRB1 lokusunun MS 
ile güçlü bir asosiyasyon gösterdiği bulunmuştur. Takip eden bağlantı ve aday-gen 
temelli analizler ile birçok farklı HLA asosiyasyonuna ek olarak interlökin 7 reseptör 
alfa (IL7RA) geninin de MS ile ilişkisi gösterilmiştir. Sonrasında gerçekleştirilen çip 
temelli genom çapı ilişkilendirme çalışmaları (GWAS) ile 110 tane HLA olmayan 
asosiyasyon bulunmuştur. Bu genlerin birçoğu T hücre aktivasyonu ve lenfosit 
proliferasyonu gibi immün yolaklarda yer aldığından, MS’in immün temelini 
destekleyecek niteliktedir. Ayrıca genlerin üçte birinden fazlasının daha önce farklı 
otoimmün hastalıklarla ilişkisi gösterilmiştir. Fakat, birçoğunun MS ile fonksiyonel 
olarak ilişkisi henüz bilinmemektedir. Ayrıca MS ile ilişkisi gösterilmiş bütün HLA 
olmayan genler düşük-orta risk etkisine sahip yaygın varyantları teşkil etmektedir ve 
HLA asosiyasyonları ile birlikte MS’in tahmin edilen kalıtılabilirliğinin yalnızca 
27%’si kadarını açıklamaktadır. Daha yüksek işlem hacmine sahip teknolojilerin 
geliştirilmesiyle, mevcut verilerin meta-analizleriyle ve disiplinler arası çalışmalarla 
MS genetiği ile ilgili bu büyük bilgi açığının ilerleyen zamanlarda doldurulması 
mümkündür.  

Daha önce grubumuz, 2007’den beri İstanbul Üniversitesi, Cerrahpaşa Tıp Fakültesi, 
Nöroloji Bölümü’nde toplanan farkli alt tiplere sahip 179 MS hastasında ve 42 MS 
olmayan kontrolde proteomik bir çalışma gerçekleştirmiş ve toplamda 151 proteinin 
kontrollerle karşılaştırıldığında MS hastalarında ya da farklı MS alt tiplerinde 
ekspresyon seviyesinin değiştiğini saptamıştır. Çalışmada birçok potansiyel 
biyobelirteçle birlikte MS’teki patolojik yolaklar açığa çıkarılmıştır. Bu yolaklar 
renin-anjiyotensin, aldosteron-regüle sodyum geri emilim, komplement-koagülasyon 
ve notch sinyal yolaklarını içermektedir. Bu çalışmada ise, bildiğimiz kadarıyla şu 
ana kadar ilk kez, ailesel MS soyağaçlarından ve akraba olmayan hasta/kontrol 
gruplarından elde edilen genetik veriler, aynı bireylerin proteomik sonuçları ile 
karşılaştırılmıştır.   
Bu amaç ışığında, öncelikle MS hastalarını ve sağlıklı/hasta akrabalarını içeren 28 
aileden (42 MS hastası, 37 sağlıklı kontrol) etik kurul onayı ve her bir bireyden 
bilgilendirme onam formu alındıktan sonra kan örneği toplanmıştır. Kan 
örneklerinden DNA izole edildikten sonra bilgi verici nitelikteki 10 aile seçilerek bir 
bağlantı analizi gerçekleştirilmiştir. Öncelikle bu ailelerdeki 18 MS hastası ve 17 
sağlıklı akrabada Illumina CytoSNP 300K array kullanılarak genom boyu SNP 
genotiplemesi yapılmıştır. Toplamda 300.000 SNP genotiplendirilmiş ve eleme 
kriterlerinin ardından 245.008 adet SNP çalışmalara dahil edilmiştir. Bağlantı analizi 
için 1 cM aralıklarla bulunan 3118 bilgi verici SNP, SimWalk multipoint non-
parametric linkage (NPL) analiziyle taranmıştır. Genomda NPL skoru 1.7’den 
yüksek olan 13. (37.9 cM, en yakın SNP rs612701, NPL Z = 1.72, p = 0.019) ve 21. 
(41.82 cM, en yakın SNP rs2834861, NPL Z = 1.7, p = 0.019) kromozomlardaki 
birer bölge detaylı haritalama amacıyla sırasıyla 639 ve 831 SNP ile 0.2 cM 
aralıklarla taranmıştır. Bunun sonucunda, bağlantı için en umut verici lokusların 
sırasıyla 1.82 ve 1.85 NPL skorlarıyla 13q13.3 (34.11 cM, en yakın SNP rs1461965, 
NPL Z = 1.82, p = 0.015) ve 21q22.2 (45.08 cM, en yakın SNP rs11701543, NPL Z 
= 1.85, p = 0.014) olduğu belirlenmiştir. Bu lokuslardan Interferon (Alfa, Beta, and 
Omega) Receptor 1 (IFNAR1) 18417, Interferon (Alfa, Beta, and Omega) Receptor 2 
IFNAR2 11876 polymorphisms ve Mab-21-Like 1 (MAB21L1) CAG tekrar sayıları 
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sonraki analizler için aday olarak seçilmiştir. Seçilen bölgeler Türk kökenli 27 
akraba olmayan MS hastası ve 10 sağlıklı kontrolde polimeraz zincir reaksiyonu 
(PZR) ile çoğaltılıp genotiplenmiştir. Genotip ve alel frekanslarının hesaplanarak 
istatistiksel analizler yapılmış ve bunun sonucunda IFNAR2 11876 GG genotipinin 
MS riskiyle ilişkisi bulunmuştur (P = 0.027, OR 3.64 [95% CI 1.09 – 12.1]).  

Daha sonra, proteomik çalışmaya ve bağlantı analizine dahil edilmiş olan 11 akraba 
olmayan MS hastası ve 60 sağlıklı kontrol ile bir genom çapı ilişkilendirme çalışması 
(GWAS) gerçekleştirilmiştir. Çalışmanın sonucunda MS ile anlamlı derecede (P < 
10-4) ilişki gösteren 14, anlamlıya yakın (P < 10-3) ilişki gösteren ise 106 SNP 
belirlenmiştir. Ardından, bağlantı analizi sonucu açığa çıkarılan kromozomal 
bölgeler ve GWAS sonucu bulunan SNP’ler analiz edilerek önceki proteom 
çalışması ile olası korelasyonlar incelenmiştir. GWAS sonucu MS ile anlamlı ölçüde 
ilişkili bulunan bir gen (INS-IGF2, P = 4.39E-07) ve anlamlıya yakın ölçüde ilişki 
gösteren sekiz genin (PRKCE, MAPK9, RBPJL, ADAMTSL1, NR6A1, NOTCH2, 
IL1R1, NTN1) MS alt tiplerinde etkilenmiş olduğu belirlenen yolaklarda rol aldığı 
gözlenmiştir. Ek olarak, GWAS ve bağlantı analizi için ortak olan üç gen (CLDN14, 
RUNX1, LINC00598) olduğu görülmüştür. Genetik analizlerde yer alan bireylerin 
tek tek proteom verisi incelendiğinde ise bir ya da daha fazla hastada ekspresyon 
seviyesi değişmiş 20 proteini kodlayan genin, GWAS sonucunda anlamlı ya da 
anlamlıya yakın ilişki gösteren SNP’i içerdiği belirlenmiştir. Bu genler arasından tek 
anlamlı SNP ilişkisi gösteren genin CNTN5 olduğu görülmüştür (P = 4.71E-05 and 
P = 7.79E-05). Bu çalışmada disiplinler arası bir yaklaşım izleyerek genetik, 
proteomik ve biyoinformatik analizler ile birçok aday gen belirlemiş bulunmaktayız. 
Bu genlerin MS’teki rolleri ileriki çalışmalarda araştırılacaktır.  
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1.  INTRODUCTION 

1.1 History of Multiple Sclerosis: 

Multiple Sclerosis (MS) is an immune-mediated, neuroinflammatory and 

neurodegenerative disorder affecting the central nervous system (CNS), first 

identified by Jean-Martin Charcot in 1868. By the late 18th century, physicians 

divided the condition into different groups like rheumatic disease, constitutional 

weakness, paraplegia, which were also classified as active/passive, 

functional/organic or “the pox” based. Although all cases experiencing weakness 

were started to diagnosed as paraplegia and as paraplexia if paralysis was complete 

by Robey Dunglison, after a few decades, more specific examination of the brain and 

spinal cord at autopsy led to separation of a number of disorders that had been 

previously grouped together. Jean-Martin Charcot and his colleague Edme Vulpian 

noted a pattern in which young adults having tremor and paralysis had grey plaques 

scattered throughout the brain, brain stem, and spinal cord. They separated this type 

of pattern from paralysis agitans described by James Parkinson in 1817, and named 

the condition as “sclérose en plaque disseminée” which we now know as MS. Since 

then, there have been still efforts to further identify a clear-edged subdivision pattern 

of MS by clinical symptoms, disease course, prognosis, magnetic resonance imaging 

(MRI) characteristics, biological markers, and other pathological findings. Thus, it 

still remains a question whether MS is a single disease or a group of syndromes [1]. 
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Figure 1.1: Views of the pons showing MS lesions on the exterior and cross sections 
of the medulla and pons by  Charchot (Bournville,1892). 

1.2 Clinical Manifestations and Disease Course 

MS pathology, in which chronic inflammation of the CNS leads to demyelination 

and axonal/neuronal damage, results in several neurological manifestations (Table 

1.1). Generally, symptoms can reflect MS lesions’ location, extension, and severity 

of tissue damage; with best correlation between spinal cord lesions and progressive 

disability. However, besides that this correlation is only approximate, there is 

pathology in both white and grey matter that MRI cannot detect [2,3]. 

Table 1.1: Typical clinical manifestations of MS [4,5,6] 

Visual symptoms Impaired acuity, impaired colour vision, visual field 
defect, double vision, oscillopsia, phospenes 

Motor system Weakness, spasticity, dysmetria, tremor 
Sensory system Sensory loss, neuropathic pain, imbalance 
Vestibular 
symptoms 

Vertigo, imbalance 

Bulbar symptoms Dysarthria, swallowing dysfunction 
Bowel/bladder 
symptoms 

Constipation, urgency, incontinence, hesitancy, 
frequent urinary tract infections 

Sexual dysfunction Decreased libido, erectile dysfunction, anorgasmia 
Cognitive 
impairment 
 

Poor concentration or attention, slowed thinking, 
poor memory, impaired executive function 
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Mood disorders Depression, anxiety, affective release 
Fatigue Handicap, motor, and systemic fatigue, heat 

intolerance  
Pain Chronic neuropathic pain, paresthesias, 

dysesthesias, neuralgic pain, Lhermitte’s 
phenomenon, pseudoradiculopathy, spasticity-based 
pain, paroxysmal motor phenomena-based pain, 
bladder spasms, back or joint pain from immobility, 
compression fractures 

Paroxysmal 
symptoms 

Epileptic seizures, paroxysmal dystonia, hemifacial 
spasms, Lhermitte’s phenomenon, Uthoff’s 
phenomenon 

Typically, clinical manifestations of MS first develop in young adults between the 

ages of 20 and 40, as a relapsing-remitting (RR) course in most of the cases, majority 

of whom later converting into a progressive course. RRMS is defined as serial 

exacerbations varying in neurological manifestations and severity between patients 

and each relapse of a patient, with partial or complete recovery. In time, RRMS 

patients converting into a progressive disease phase, in which there is relapse-free 

gradual worsening of disability, are diagnosed as secondary-progressive MS (SPMS). 

When gradual worsening of disease disability starts from the onset, it is called 

primary-progressive MS (PPMS), which is seen in a minority of the cases. Rarely, 

patients with gradual worsening at the onset also experience relapses, known as 

progressive-relapsing MS (PRMS) (Figure 1.2). There are also two definitions 

describing clinical severity of the disease: benign and malignant forms. Benign MS 

refers to patients who remain fully functional after 15 years from disease onset, 

whereas malignant MS patients experience a rapid progressive course with extensive 

disability or death after a shorter period from the onset [7]. 
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Figure 1.2: Typical disease course of MS in (a) RRMS, (b) SPMS, (c) PPMS, and 
(d)  PRMS [7]. 

The spectrum of MS also includes presymptomatic phases with unpredictable 

duration before its initial clinical exhibition, one of which is radiologically isolated 

syndrome (RIS) characterised by MRI findings suggestive of MS, with no clinical 

manifestation. This clinically silent phase of the disease converts into symptomatic 

MS types in about one-third of the patients with RIS in five years [8]. When MRI 

finding compatible with MS is together with a single attack, the condition has been 

called clinically isolated syndrome (CIS), which may then convert into RRMS, also 

termed clinically definite MS (CDMS), or single-attack progressive MS (SAPMS) 

[9,10]. However, according to the last revised McDonald diagnostic criteria [11], CIS 
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refers to a single attack with only attack-related lesion on MRI, showing no other 

lesion activity and rest of the cases are defined as single-attack MS (SAMS). 

However, these terms are still new and needed to be well defined and sharper edged 

to allow both clinicians and researchers a mutual understanding. Therefore, study 

designs and outcomes can be consensus among clinical trials of current and new 

therapies, assisting clinicians in determining which treatment strategy should be used 

for each patient.  

1.3 Diagnosis, Prognosis, and Treatment Strategies 

1.3.1 Diagnosis of multiple sclerosis 

Since MS can cause a variety of symptoms referable to different regions of brain and 

spinal cord, initial differential diagnosis can be challenging. Although diagnostic 

criteria for MS have still been evolving, current criteria rely on the main principles 

established in the middle 20th century: (1) dissemination in space (DIS) and time 

(DIT), implying that more than one CNS region should be affected and there should 

be more than one time point during the disease course, and (2) exclusion of other 

possible conditions [12]. The first diagnostic criteria for MS, Schumacher criteria, 

required two relapses separate in time and space, and exclusion of all other 

conditions [13]. In 1983, Poser Criteria [14] were proposed, necessitating the use of 

also paraclinical findings (evoked potentials and CSF analyses) in addition to 

demonstration of neurologic abnormalities, to support the diagnosis. Currently, 

abnormal intrathecal immunoglobulin (IgG) synthesis (increased IgG index, 

synthesis rate, and/or oligoclonal bands (OCB)), and evoked potentials 

demonstrating subclinical involvement in CNS sensory pathways are still typical 

examinations in MS diagnosis [15]. Later on, MRI findings demonstrating CNS 

lesions have begun to be used to meet the need for evidence of DIT and DIS. In 2001 

[16], McDonald Criteria were proposed based on this principle, later revised in 2005 

[17] and 2010 [11], establishing a diagnostic scheme with clarified definitions and 

requirements, simplified categories, and effective MRI interpretations. The last 

revision allows additional incorporation of MRI data in the assessment of DIT and 

DIS, therefore MRI findings can now be sufficient to make the diagnosis even after 

one clinical attack in certain conditions (Table 1.2). 
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Table 1.2: International criteria for MS diagnosis [11, 16, 17]. 

Although current criteria for MS allow more reliable diagnosis, there are a number of 

disorders that may mimic MS, mainly disseminated encephalomyelitis (ADEM) and 

neuromyelitis optica (NMO) [18]. Differentiation between MS related disorders is 

crucial in management of the conditions, since a treatment strategy of one can cause 

deterioration of another’s course [19]. Therefore, in addition to current knowledge, 

unique clinical and neurological features, as well as immunological biomarkers 

should be defined to distinguish MS from MS-related disorders to tailor treatment in 

each individual patient. Accurate clinical and radiological features and biomarkers 

are needed also for predicting course of the disease, to assess whether patients will 

experience disability progression or have a more benign course [20].  

1.3.2 Prognosis of multiple sclerosis 

Period between experiencing the first symptoms and walking with a cane has been 

shown to take 15-30 years, reported to be longer in recent years probably due to the 

positive effects of the disease-modifying therapies (DMT). In case of PPMS, age of 

onset is 10 years longer than that of RRMS, however progression is more rapid [18]. 

Clinical presentation Additional data needed for MS diagnosis 
≥2 relapses; objective clinical 
evidence of ≥2 lesions or 
objective clinical evidence of 1 
lesion with reasonable historical 
evidence of a prior relapse 

None 

≥2 relapses; objective clinical 
evidence of 1 lesion 

DIS, demonstrated by MRI or a further 
clinical relapse 

1 relapse; objective clinical 
evidence of ≥2 lesions 

DIT, demonstrated by MRI or a further 
clinical relapse 

1 relapse; objective clinical 
evidence of 1 lesion (CIS) 

DIS, demonstrated by MRI or a second 
clinical relapse, and DIT, demonstrated by 
MRI or a second clinical relapse 

Insidious neurologic 
progression suggestive of MS 

1 year of disease progression plus two out 
of three of the following:  

- Evidence for DIS in the brain, 
demonstrated by MRI (≥1 T2 
lesions)  

- Evidence for DIS in the spinal cord, 
demonstrated by MRI (≥2 T2 
lesions) 

- Positive CSF 
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Predicting disease course for CIS patients whether there will be a second attack, 

meeting the criteria for clinically definite MS diagnosis, can be challenging. 

However, there are certain clinical and epidemiologic features that have been used to 

assess the risk of conversion from CIS to CDMS, of which non-white race, age less 

than 30 years, involvement of less functional systems at first disease presentation, 

motor symptoms, smoking, increased EBV antigen titer, and high Expanded 

Disability Status Scale (EDSS) scores at baseline were shown to affect the 

conversion risk [20-24]. Moreover, MRI data shows that while conversion risk from 

CIS to CDMS is around 20% in patients without brain lesion, this risk is much higher 

(60-80%) in those with asymptomatic brain lesions [25-29]. In addition, in CIS 

patients with optic neuritis, the risk of developing CDMS in 15 years is 50%, and 

72% in case there are one or more lesions on MRI. Conversion from RRMS to SPMS 

is also difficult to predict and define, since relapses may continue even if progressive 

phase initiates. In about 60-80% of the cases with relapsing forms, the course 

becomes chronic and progressive [20, 30]. To improve both diagnosis and prognosis, 

serum and CSF protein biomarkers have been investigated, even though currently 

there is no validated biomarker set in use other than CSF IgG OCBs [31]. Current 

promising candidate biomarkers may help in the determination of the most effective 

treatment strategy for each individual patient in the future. 

1.3.3 Treatment of multiple sclerosis 

Although there is no cure for MS, disease-modifying therapies have been developed 

to alter the disease course since 1993. IFN-β and glatiramer, the first era 

immunmodulators, were shown to result in about 30% reduction in annual relapse 

rate in RRMS patients by placebo-controlled and double blind clinical trials [32]. 

However, long-term follow up of a pivotal IFN- β1a trial showed that a minority of 

patients receiving the drug worsened, emphasising the heterogeneity between 

individuals in MS [33]. Consistently, other studies have showed that treatment with 

all members of IFN-β drug class results in new or active MRI lesions shortly after 

beginning the treatment in a minority of MS patients, whilst others experience better 

outcomes [34]. Unfortunately, there is no well-established biomarker to foresee 

responders and non-responders to these therapies. 
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Further therapeutic development in MS has been achieved by the approvals of 

natalizumab in and fingolimod [35-37]. Natalizumab, a monoclonal antibody 

specific to integrin-α4 in leucocytes, was shown to result in reduced inflammation 

with more than 65% reduction in relapse rate during 2 years of treatment and at least 

90% inhibition of new MRI lesion formation [38, 39]. However, a 1:1000 risk of 

developing progressive multifocal leucoencephalopathy (PML), a rare and often fatal 

brain infection, has been reported later on, although the initial safety profiles were 

favourable [40]. Fingolimod is a prodrug, later converted into sphingosine-1-

phosphate (S1P) analogue, which downregulates S1P receptors on leucocytes and 

endothelium, therefore T lymphocytes are trapped in lymph nodes, which results in 

reduced inflammation. Fingolimod treatment has resulted in reduced disease and 

MRI activity, and 55-60% lower relapse rates [35, 37, 41]. However, there are some 

safety concerns, since fingolimod is not target specific, targeting also CNS 

astrocytes and oligodendrocytes, arterial and bronchial smooth muscle cells, and 

atrial myocytes [41].  Later on, other molecules have been developed in which two 

oral immunomodulators teriflunomid and dimethyl fumarate [42, 43], and a 

monoclonal antibody alemtuzumab [44] were approved and other agents such as 

laquinimod, daclizumab, ocrelizumab, and ofatumumab have still been under clinical 

testing [45-48].   

In general, natalizumab seems to be the most effective therapy in MS treatment, 

followed by fingolimod and dimethyl fumarate, respectively. However, there is 

heterogeneity in treatment responses of the patients, caused by factors still largely 

unknown. Although there is no biomarker to predict treatment responses, a careful 

clinical assessment can be crucial in deciding the initial therapy. For instance, 

glatiramer acetate has a favourable safety profile on pregnant women, therefore 

female patients with mild presentation of the disease with no brainstem or spinal 

cord lesion can be treated with this drug. In addition to difficulties in prediction of 

therapy responses, the overall effects of current treatments in progressive MS seem 

to be poor [32]. Therefore, current and forthcoming therapies should be integrated 

with improving scientific knowledge in order to develop effective personalised 

treatment strategies for each phenotype of MS. 
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1.4 Biology of Multiple Sclerosis 

1.4.1 Pathology of multiple sclerosis 

Multifocal lesions in white matter and grey matter with demyelination, axonal 

transection, neuronal degeneration, gliosis, and perivenular inflammatory cell 

infiltrates are pathological characteristics of MS (Figure 1.3) [7]. 

 

 

 

 

 

 

Figure 1.3: MS plaques in a cross-section of the brain (Courtesy of Michele Mass, 
MD, Portland VA Medical  Center and Oregon Health & Sciences 
University) 

Although currently it is largely accepted that inflammation occurs at all stages of the 

disease, whereas neurodegeneration on an inflammatory background, over the years, 

numerous number of studies have been reported contradictory findings on whether 

neurodegeneration or inflammation first occurs at the onset of MS [49-57]. 

Therefore, there are 2 models suggested for demyelination in MS pathology. Some 

studies show that myelin sheath is lost due to direct myelin damage (primary 

demyelination) followed by axonal damage (outside-in model). Alternatively, 

secondary demyelination occurs by axonal damage and neurodegeneration according 

to the inside-out model [58]. In either case, demyelination process involves tissue 

infiltration by T and B cells together with activated microglia, macrophages, and 

astrocytes eventually giving rise to chronic active lesion formation, followed by 

repopulation of oligodendrocyte progenitors at the damaged area providing 

remyelination. Remyelination correlates with elevated oligodendrocytes expressing 

myelin proteins, which is also supported by microglia and astrocytes [59]. However, 

remyelination capacity provides only transient recovery, and is shown to be higher in 

early lesions compared to those in chronic MS [60]. Absence of trophic support by 
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myelin during demyelination process in lesions eventually causes axonal damage and 

neurodegeneration. Axonal damage is also contributed by some compounds 

produced by microglia and macrophages [61]. Furthermore, it was shown that axons 

in normal appearing white matter (NAWM) also undergo neurodegeneration, which 

may be explained by mechanisms based on the inside-out model [62]. Similarly, both 

demyelinated regions and normal appearing grey matter (NAGM) face with axonal 

damage and neurodegeneration [58]. 

Although CNS inflammation is decreased giving place to more progressive 

neurodegenerative stage in long-standing disease, new MS lesions can continue to 

develop in the very late stages of the disease [63, 64]. Studies have suggested that 

there is a certain sequence of events generating MS lesions, which takes weeks to 

months to complete and can occur almost everywhere throughout the CNS (Figure 

1.4). When there is a tight microglia cluster in an area of normal myelin without any 

visible abnormalities in the tissue, it is called a ‘pre-active lesion’. If myelin begins 

to degenerate causing an inflammatory response, and macrophages are present 

among microglia; transition to an ‘active lesion’ is observed. Hypertrophic astrocytes 

are also seen in an active lesion, and lymphocytes present in the perivascular space, 

forming cuffs around the blood vessels. After a while, macrophages complete 

phagocytosis of myelin in the lesion, which becomes a ‘chronic active lesion’.  At 

this stage, macrophages leave the place, astrocyte number increases, and 

oligodendrocytes are diminished consistent with the myelin repair failure in late 

stages of MS. At last, an obvious low cellularity in a demyelinated, grey, sunken, 

sclerotic lesion with a few astrocytes indicates ‘chronic inactive lesion’, where 

neurodegeneration aspect takes full swing [58]. 
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Although there was no reported extensive examination of grey matter MS pathology 

until the 1990s, 4 typical patterns were documented after immunohistochemical 

staining of myelin had become widely applied (Figure 1.5). A “type I lesion” is a 

clear roundish lesion including both white and grey matter without a boundary [58]. 

A “type II lesion” shows an entirely grey matter area of demyelination, whereas 

“type III lesions” cover demyelinated and non-inflammatory leptomeningeal layers 

whose distribution is very close to the cerebrospinal fluid (CSF), suggesting that CSF 

may be related to the this type of pathology. Lastly, a “type IV lesion” covers the 

entire cortical width, some of which may be developed as a consequence of a type II 

lesion enlargement first forming a type III, and eventually a type IV lesion [58]. 

Whilst an active white matter lesion shows it’s described properties, demyelinated 

grey matter parts show no activity in terms of inflammation [65]. 

 

 

 

 

 

 

 

Figure 1.4: White matter lesion progression. NAWM with some activated microglia 
(A). A pre-active lesion in which microglia form a cluster (B). 
Macrophage recruitment from the blood, phagocytosis of myelin in the 
active lesion (C). Myelin is completely absent in the centre of the 
chronic active lesion (D). Hypertrophic astrocytes in the centre of the 
chronic inactive lesion – the gliotic scar (E) [58]. 

Figure 1.5: Grey matter lesions. GM, grey matter; WM, white matter; L, demyelinated 
lesions [58]. 
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In addition to the brain lesion, extensive lesions involving both white and grey 

matter are seen in the spinal cord. Spinal cord lesions show little inflammatory 

activity and undergo extensive axonal damage leading to loss of up to 70% of 

existing axons [65].  

1.4.2. Pathogenesis and physiopathology 

Pathological characteristics of MS have been thought to result from migration of 

autoreactive lymphocytes across the blood brain barrier (BBB), causing destruction 

of self-target CNS components, such as myelin proteins [18, 66]. Studies on MS 

lesions showing heterogenous pathology have suggested that there are different 

mechanisms operating demyelination, indicating that MS may have more than one 

etiology, all of which result in the same pathological end points [68]. 

Genetic association findings revealing HLA class II genes, along with numerous 

other MS risk alleles in immune related loci [69], support the idea that MS is an 

autoimmune disease. HLA class II-bearing cells process and present antigens to 

CD4+ T helper and CD8+ effector T cells, and accordingly, reactive T cells to myelin 

proteins such as myelin basic protein (MBP), myelin oligodendrocyte glycoprotein 

(MOG), myelin proteolipid protein (PLP) have been found in peripheral blood of 

MS patients [18]. However, the actual problem seems that regulatory lymphocytes 

fail to suppress these effector cells in MS pathogenesis resulting in their activation 

and proliferation, since autoreactive lymphocytes are also present in healthy 

individuals [70]. Indeed, it has been found that the difference between MBP-reactive 

T cells in MS patients and healthy individuals is that those in the patients express IL-

2 receptor, a hallmark of activated T cells [71]. Moreover, autoimmunity may not be 

the primary mechanism, where self-antigen destruction may be the consequence of 

antigen spreading occurred by liberation of CNS components leading to secondary 

immune response. Thus, it still remains to be elucidated whether outside-in model, in 

which the pathologic circumstances begin outside and proceed into the CNS, or 

inside-out model suggesting abnormalities within the CNS recruit inflammatory cells 

from the peripheral blood, is the initial pathogenic mechanism promoting the 

disease. In each case, abnormal entry of leucocytes into the CNS through BBB is 

seen. Accordingly, altered expression levels of chemokines and respective receptors 

presumably causing increased leucocyte trafficking into the CNS have been detected 
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in peripheral blood, CSF, and CNS lesions of MS patients, also emphasising the 

effects of chemokine-based regulation of the disease pathogenesis [18].  

In each possible disease mechanism, T cells play a major role in both mediating and 

regulating MS pathophysiology. Upon antigen stimulation, myelin reactive naïve 

CD4+ T helper cells activate, expand, and differentiate into different T helper cell 

subsets [72]. Among these subsets, IFN-γ secreting pro-inflammatory Th1 cells have 

previously been thought to be responsible for mediating the disease [73]. Later on, 

IL-17 producing Th17 cells have also been shown to play a crucial role in EAE 

development. Moreover, after elevated IL-17 mRNA levels have been reported in 

CSF, PBMC, and MS lesions, Th17 numbers have also been shown to increase in 

MS [74, 75]. Relative contributions of Th1 and Th17 polarised cells to MS have still 

been investigated, yet both types seem to mediate disease pathogenesis. In addition, 

myelin reactive CD8+ effector T cells have been detected in MS, and higher 

frequency of CD8+ T cells has been found in MS lesions [76, 77]. These cells have 

been thought to contribute to demyelination and axonal damage by expressing 

cytotoxic molecules such as perforin and granzyme B. In MS lesions, granzyme B 

expressing CD8+ T cells have been found in close proximity to injured axons [78]. 

As mentioned above, altered frequency [79, 80] and function [81-83] of CD4+ and 

CD8+ regulatory T cells (Treg), which are responsible for self-specific T cell 

response suppression and peripheral tolerance maintenance [84, 85], have been 

reported in MS. Taken all together, deregulation of CD4+ T and CD8+ T cells result 

in a transition from physiological surveillance to a pathological immune response 

causing demyelination [86], and relative contribution of these cells may be one of 

the underlying reasons of disease heterogeneity.  

Although pathogenic relevance is unknown, detection of increased IgG and 

oligoclonal bands in CSF has become a routine in MS diagnosis, indicating the role 

of B cells in the disease mechanism. Proinflammatory effects of B cells are thought 

to predominate over their anti-inflammatory effects in MS patients [87]. B cells may 

affect T cell activation by their antigen presentation function or they may directly 

contribute to formation of MS lesions. Indeed, autoantibodies without any evidence 

of high affinity pathogenic antibody have been previously reported in MS [88], and 

it has been shown that autoantibodies to myelin proteins may be a part of 

demyelination process [89]. Moreover, treatment with a monoclonal antibody, 
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rituximab, dramatically reduces inflammation by deleting B cells in RRMS, 

emphasising the role of B cells at least in relapsing forms of MS [90]. In addition, 

ectopic B cell follicles in the CNS of MS patients were detected, especially in those 

having progressive phases [91].  

In addition to adaptive immune response, innate immune system has been shown to 

have roles in MS pathogenesis. In EAE, infiltrating monocytes were shown to trigger 

severe paralysis [92]. Moreover, conflicting studies revealing both positive and 

negative effects of natural killer (NK) cells have been reported [93]. Further 

investigation exploring roles of each immune cell and their interaction with each 

other and other components leading to MS pathogenesis is needed in order to 

improve our understanding of complex nature of the disease. In summary, upon 

migration of activated self-reactive T cells into the CSF and perivascular space, BBB 

permeability further increases, causing additional access of other inflammatory cells. 

As a result, severe disruption of BBB, and CNS damage occurs, which in turn result 

in formation of lesion, where axonal and myelin loss occur by cytotoxic CD8+ T cells 

and toxic intermediates like nitric oxide and glutamate, causing clinical exacerbation 

of the disease. After the lesion acute phase is over, remyelination starts with more 

abundant remyelination in a minority of the patients (approximately 20%) [86]. In 

each case, demyelination eventually disrupts neuron signaling in affected regions, 

causing irreversible and permanent neuronal damage and disability as the disease 

progresses [94]. 

1.5 Epidemiology of Multiple Sclerosis 

MS is the most common non-traumatic cause of the neurological disability in young 

adults, with age of onset between 20 and 40 years [95]. However, global knowledge 

on MS epidemiology has been scarce. To fill this gap, a joint study of the Multiple 

Sclerosis International Federation (MSIF) and the World Health Organisation 

(WHO) was published in 2008 [96], as the first Atlas of MS with an update in 2013 

[97]. According to the Atlas of MS 2013, the estimated total number of people 

affected by MS is increased from 2.1 million (30/100.000) in 2008, to 2.3 million 

(33/100.000) in 2013. The increase in prevalence can be attributed to increased 

incidence in some countries, as well as improved diagnosis and reporting of MS, and 

increased survival of both MS patients and general population [98]. 
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As represented in Figure 1.6, prevalence of MS varies around the world, being 

highest in North America (140/100.000) and Europe (108/100.000), and lowest in 

Sub-Saharan Africa (2.1/100.000) and East Asia (2.2/100.000). Overall, with notable 

exceptions, MS exhibits a latitude gradient with high prevalence in northern parts of 

North America and Europe and in southern parts of Australia and New Zealand, and 

decreasing prevalence in regions closer to the equator. Moreover, the ratio of women 

to men with MS varies around the world, being twice as common among women in 

general, and considerably higher in some regions such as East Asia in which female-

to-male ratio is 3 [97]. Epidemiological data on MS for Turkey have been reported 

for two metropolitan cities; Edirne [99] and Maltepe/Istanbul [100], with 

33.9/100.000 prevalence and 2.55 female-to-male ratio and 101.6/100.000 

prevalence and 1.56 female-to-male ratio, respectively.  

1.6 Genetics and Environment in Multiple Sclerosis 

1.6.1 Genetic epidemiology 

Early observations from classical genetic studies have provided pivotal data 

suggesting that MS has a genetic component. Previous heritability estimates for MS 

range from 25% to 76%, while the largest population-based study recently conducted 

for MS, reported 64% heritability estimate with a 95% confidence interval (CI) of 

Figure 1.6: Global prevalence of MS in 2013 [97]. 
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0.36-0.76 [101] (Table 1.3). Family studies have shown that having a first-degree 

relative with MS increases the risk 20 to 40 times, from approximately 1/1000 to  

1/25-50 [102-106]. Moreover, in second and third degree relatives of affected 

individuals were shown to have an increased recurrence risk compared to those who 

do not have any affected relatives [102, 106, 107]. Also a positive family history was 

reported for 20% of all patients with European descent [66]. In accordance with these 

observations, increased concordance rates in monozygotic twins compared to 

dizygotic twins (Table 1.3), indicate that observed familial aggregation is likely due 

to shared heritable factors rather than shared environment. In a recent meta-analysis 

comprising of previous twin studies, reported a 50% estimate of heritability, 21% 

shared environment component, and 29% unique environment component [108]. 

Moreover, a population-based adoption study conducted in Canada revealed that the 

frequency of MS among first-degree non-biological relatives living with the index 

case was not significantly different from that of general population [109]. All 

together, observed familial clustering in MS seems to be mainly due to genetic 

factors.  

Table 1.3: Main twin studies conducted for MS 

Exceptions for the latitude gradient, also observations showing reduced prevalence of 

MS among African-Americans [115, 116] regardless of geographical location 

indicate that differences of genetic susceptibility factors for MS across different 

populations may be the answer of at least a part of the geographical distribution of 

MS. On the other hand, migration studies have reported that people, who migrate to 

Population Number of 
Concordant 
Monozygotes/Total 
(%) 

Number of 
Concordant 
Dizygotes/Total (%) 

Heritability 
(95% 
confidence 
intervals) 

France  [93] 1/7 (5.8%) 1/37 (2.7%) 0.25 (0-0.88) 
Italy [110] 8/55 (15%) 6/150 (4%) 0.48 (0.06-0.86) 
North 
America 
[111] 

56/418 (13.4%) 19/380 (5%) 0.31 (0.13-0.49) 

Canada [112] 37/146 (25%) 12/224 (5.4%) 0.53 (0.28-0.8) 
UK [113] 11/44 (25%) 2.61 (3.3%) 0.66 (0.22-0.94) 
Denmark 
[114] 

5/37 (24%) 1/71 (3%) 0.76 (0.33-0.88) 

Sweden 
[101] 

12/78 (15.38%) 4/237 (1.69%) 0.64 (0.36-0.76) 
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an area having different MS prevalence than that of their homeland, tend to adopt the 

MS risk of their new homeland, unless they migrate after their childhood years [117], 

which can be explained by environmental influences rather than genetic factors. 

Collectively, it is clear that there is an active interplay between genetic and 

environmental factors determining the distribution of MS in different populations, as 

well as determining development of MS.   

1.6.2 Molecular genetics studies 

1.6.2.1 Linkage and candidate gene-based analyses 

The first direct finding for MS genetics came from linkage analyses conducted in 

1972, revealing that major histocompatibility complex (MHC) region on 

chromosome 6p21 is associated with risk of MS [118, 119]. Later, this association 

was fine-mapped to specifically HLA-DRB1 locus of the class II human leukocyte 

antigen (HLA) region, showing the strongest effect for HLA-DRB1*1501 haplotype 

(heterozygosity conferring an odds ratio (OR) 2.7 and homozygosity of 6.7) [120]. 

Besides this, there are a number of HLA-DRB1 haplotypes both positively and 

negatively associated with risk of MS, whose relative frequencies varying between 

populations play important role in determining the susceptibility to MS (Figure 1.7) 

[121-125]. In addition to HLA-DRB1 alleles, long-suspected protective effect of 

class-I HLA loci was confirmed, revealing that this effect is mainly driven by HLA-

A*02:01 allele [122, 126]. However, even the largest study included 730 multiplex 

families with 2692 individuals, subsequent linkage analyses have failed to reveal 

additional MS-associated non-HLA regions [127]. Moreover, a well-powered non-

parametric linkage analysis performed by International Multiple Sclerosis Genetics 

Consortium (IMSGC) did not reveal any other associated loci outside the MHC 

region [128]. Alternative to and together with linkage analyses, a numerous number 

of candidate-gene based studies have been performed. However, the only non-HLA 

association was identified between the SNP rs6897932 in interleukin 7 receptor 

alpha (IL7RA) gene and MS by a study comprising of large case and control 

numbers [129].   
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Pioneer family based linkage analyses and candidate-gene based studies have left a 

large gap in explaining the genetic basis of MS, since HLA region together with 

IL7R association accounts for only a small part of the underlying genetic 

predisposition to MS [120].  

1.6.2.2 Genome-wide association studies  

After HapMap project had identified ‘tag’ SNPs within haplotype blocks that identify 

corresponding haplotypes, effective and cost-efficient Chip-based genome wide 

association studies (GWAS) have been performed, identifying common variations 

associated with complex disorders [131]. In an afford to fill the gap in MS genetics, 

IMSGC conducted the first GWAS using trios from UK and USA in 2007, revealing 

two risk loci: IL7RA and novel interleukin 2 receptor alpha (IL2RA) [132]. After 

that, growing number of replicable single nucleotide polymorphisms (SNPs) with 

minor allele frequencies (MAF > 0.5%) exerting small to moderate risk effects have 

been revealed by high-throughput genotyping technologies. To date, 14 GWAS have 

been completed (Table 1.4), revealing 110 non-HLA risk variants in 103 loci, also 

confirming the major role of HLA-DRB*1501 (Figure 1.8) [133].  

 

Figure 1.7: Log-transformed odds ratios for multiple sclerosis for combinations of 
HLA-DRB1 alleles. X, any non-disease associated allele [130], 
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Table 3.4: Genome-wide association studies conducted for MS 

Population Case/Control 
Number 

SNP 
Number 

Novel Associations 

UK & USA 
[121] 

931/Parents 334.923 " 29 loci 
" Immunologically relevant 

genes – mostly T helper 
cell differentiation 
 

UK [134] 975/1466 12.374 " 2 loci (ARTS1, IL23R) 
 

Spain [135] 242/242 428.867 " No novel locus 
Netherlands 
[136] 

45/195 250.000 " 1 locus (KIF1B) 
 

Mixed [137] 978/883 551.642 " No novel locus 
USA [138] 860/1720 709.690 " 3 loci (CD6, IRF8, 

TNFRS1A) 
 

Australia & 
New Zealand 
[139] 

1618/3413 302.098 " 2 loci associated with 
other autoimmune 
diseases (SNPs on 12q13-
14 and 20q13) 

 
Sardinia/Italy 
[140] 

882/872 555.335 " 1 locus (CBLB) 

Germany 
[141] 

590/825 300.000 " 2 loci (VAV2, ZNF433) 
 

Finland [142] 68/136 297.343 " 1 locus (STAT3) 
Mixed [132] 9772/17.376 474.806 " 2 loci (IL2RA, IL7RA) 

 
Mixed [143] 1453/2176 906.600 " 3 loci (3p24.1, 9p24.1, 

2p21) 
Spain [144] 296/801 130.903 " No novel locus 

 
Italy [145] 197/234 277.866 " No novel locus 

Among these studies, those including fewer than 800 cases could not identify novel 

and replicable variations associated with MS, whereas each of the other studies 

added new loci to the growing list. The largest GWAS conducted by IMSGC and 

Welcome Trust Case Control Consortium (WTCCC2) identified 34 novel 

associations, and confirmed 23 previously associated variants. Most of these SNPs 

were mapped to close proximity to genes that are significantly over-expressed in 

immune-related pathways, such as T-cell activation and lymphocyte proliferation, 

emphasising the immune basis of MS. Moreover, more than a third of these SNPs 

have previously been implicated in other autoimmune diseases [134].        
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Among the 110 non-HLA associations identified in total, 15 of them are coding-

variants, and 35 of them are in tight linkage disequilibrium with coding variants 

[146]. However, according to the PolyPhen and SIFT, prediction software 

programmes, only 7 of the 14 missense variations are possibly harmful [147, 148]. 

On the other hand, almost all of the 110 SNPs are suggestive of regulatory functions 

of corresponding regions, since HaploReg v2 tool showed that the SNPs coincide 

with chromatin features. 109 of 110 SNPs change at least one regulatory sequence 

motif or are in linkage disequilibrium with other variants that change these motifs 

[149]. In addition, cell-type-specific maps of active promoter regions for the SNPs 

significantly overlap in immune cells, but not any other cell types, adding further 

support to the immune based aetiology of MS [150]. However, the functional 

relevance of these variations is still largely unknown. Among the ones have been 

investigated, rs6897932 in IL7R, rs2104286 in IL2R, and rs1800693 in TNFRSF1A 

Figure 1.8: 2014 genetic atlas of MS. The most outer track indicates autosomal 
chromosomes, the second track shows the gene closest to the most 
associated SNP, the third track indicates the physical position of the 184 
fine-mapping intervals, and the most inner track shows –log(p) for each 
SNP [69]. 
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genes were shown to increase the concentration of soluble form of the corresponding 

protein receptor, inhibiting signalling [132, 151, 152].  Also rs6677309 in CD58 was 

shown to cause reduced expression of CD58, thus resulting in regulatory T cell 

dysfunction [153].  In addition, rs34536443 in TYK2 results in reduced TYK2 

activity and increased cytokine secretion from Th2 cells [154].  Further functional 

knowledge of these variants can provide crucial inside into aetiology of MS.     

Although there are a substantial number of identified associations, all of the non-HLA 

associations are common variants with low-moderate risk, and together with HLA 

associations, they explain only about 27% of the predicted MS heritability [133]. 

Remaining “missing heritability” may be due to currently undetectable rarer variants 

(MAF<0.5%) with larger effects, common variants (MAF>5%) with smaller effects 

(1<OR<1.1), or unknown gene-gene interactions between known variants. Many 

association studies have been performed in order to reveal rare variants, which are 

population specific because of founder effects, resulting in inconsistent association 

findings across different populations [155]. Recently, exome sequencing studies in 

multiplex MS families have revealed several rare functional variants on CYP27B1 

gene, which encodes for the enzyme that converts 25-hydroxyvitamin D3 into the 

active hormone 1,25 dihydroxyvitamin D3 [156] (Figure 1.9). Although this finding 

has not been replicated in any other cohorts yet, it supports the growing evidence for 

the role of vitamin D deficiency in MS susceptibility [157]. In addition, a rare variant 

in TYK2 was associated with the risk, but the finding needs to be confirmed [158]. 

However, resequencing of a number of candidate genes in more than 3000 MS 

patients suggested that rare variants with large effects are not common in autoimmune 

diseases, thus are unlikely to a large part of MS heritability [159]. Larger studies 

using high-throughput sequencing technologies or meta-analyses of existing data 

improving statistical power of current findings might shed light on remaining missing 

heritability of MS. 

1.6.3 Environment and epigenetics  

Genetic epidemiological studies indicating worldwide increase in MS incidence and 

female to male ratio, and migration studies showing adoption of the risk of the new 

region have led researchers to focus their interest on environmental factors that may 

influence MS susceptibility. Accumulating evidence supports several candidates, 
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most notably sunlight/vitamin D exposure and Ebstein-Barr virus (EBV). It has been 

shown that MS prevalence increases with increased latitude, which is correlated with 

sunlight exposure and vitamin D concentrations [160, 161], and the risk decreases 

with migration from high to low latitudes [162]. Among a body of evidence 

indicating association between exposure to sunlight and vitamin D with MS, the most 

direct evidence has come from a nested prospective case-control study, which 

included over 7 million individuals from US military and evaluated serum 

concentrations of 25-hydroxyvitamin D, a molecule enzymatically formed from 

inactive vitamin D (Figure 1.9). The study revealed that individuals with less than 

63·3 nmol/L 25-hydroxyvitamin D (bottom quintile) had a 62% higher odd of MS 

than those in the top quintile (>99·2 nmol/L), indicating that serum 

25hydroxyvitamin D concentration is a significant predictor of developing MS [157]. 

Accordingly, in a proteomic study of our group showed that vitamin digestion and 

absorption pathway is significantly affected in progressive MS ( P = 1.73E-05), and 

VDBP (Vitamin D Binding Protein) level is decreased in CSF of CIS patients ( P < 

0.001), indicating lower vitamin D metabolism in CIS group [163].  

 

 

 

 

 

 

 

 

 

 

Figure 1.9: Origin and metabolism of vitamin D [164]. 

MS risk among individuals infected with EBV during their childhood is about 10 

times higher and individuals infected later in life is 2 to 3 times higher than that of 

non-infected individuals. In addition, among non-infected individuals, eventual 

infection with EBV causes a sharp increase in risk in about 5.6 years [165]. Along 

with this, higher serum antibody titers to EBV nuclear antigen 1 (EBNA-1) antigen 

have been reported in MS [166]. However, EBV infection is also common in healthy 
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population ( > 90%), and whether EBV is a causal factor or MS predisposes to EBV 

infection is still not clear [167]. In addition to these, several other factors have been 

suggested in MS development, such as tobacco smoking. A recent meta-analysis has 

reported a pooled OR of 1.52 for ever versus never smoking in MS development 

[168]. Also, a dose dependent association to MS risk has been reported in earlier 

studies [169]. Moreover, other factors including infectious mononucleosis, levels of 

dietary fats and antioxidants, sex hormones, higher education level, hepatitis B 

vaccine, psychological stress may influence MS risk. However, further research is 

needed to establish the whole causative environmental mechanisms with accurate 

risk ratios and respective genetic interactions.     

Together and compatible with the known environmental factors, altered methylation, 

histone acetylation, and other epigenetic statuses on several genes have been 

implicated in peripheral blood mononuclear cell (PBMC) or brain samples of MS 

patients compared to those of healthy individuals and in animal model of MS; 

experimental autoimmune encephalomyelitis (EAE) (Table 1.5).  

Table 1.5: Epigenetic mechanisms implicated in MS pathogenesis 

Factor Epigenetic Alteration 
MS Patients  
SHP-1 Increased methylation - Increased proinflammatory gene 

expression [170, 171]  
HERV-W Decreased methylation - Increased inflammation and reduced 

myelination capacity [172, 173] 
PAD2 Decreased methylation - Increased myelin citrullination, myelin 

breakdown, and anti-myelin immunity [174] 
PAD4 Decreased histone citrullination - Reduced myelin production 

[175] 
miR-17, miR-20a Decreased expression - Th1 and Th17 differentiation [176] 
miR-155, miR-326, 
miR-34a 

Increased expression - Decreased CD47 and increased macrophage mediated myelin phagocytosis 
[177] 

miR-155, miR-338 Increased expression - Reduced neurosteroid production [178] 
EAE studies  
T cell factor 1 Increased acetylation/ methylation - Th17 differentiation [179] 
IFN-c/IL- 17A Decreased methylation - Increased IFN-c and IL-17 production 

[180] 
IFN-c/IL- 17A, IL-4/ 
Foxp3 

Increased methylation, demethylation - Increased Th1 and 
decreased Th2 response [180] 

IL-17A Increased methylation - Decreased Th17 differentiation [181] 
IRF1 Decreased acetylation - Increased Th17 differentiation [182] 
Foxp3 Increased methylation - Decreased regulatory T cell activity 

[183] 
miR-155 Increased expression - Increased Th17 differentiation [184] 
miR-326 Increased expression - Increased Th17 differentiation [185] 
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In addition to the possible causal effects of epigenetic changes by mediating the 

influences of environmental factors, they also may at least partly explain the wide 

spectrum of clinical phenotypes of MS. All together, MS is a multifactorial disease 

caused by complex interactions of genetic, epigenetic, and environmental 

susceptibility factors, which have not been fully elucidated yet, leaving a gap in 

understanding how the genetic determinants of the disease result in the disease 

phenotype. 

1.7 Biomarkers in Multiple Sclerosis 

There is a lack of prognostic markers to help predicting disease outcome in terms of 

risks and time periods of the conversions as well as treatment responses, which are 

highly variable between individuals with MS. Currently, there is no validated 

biological marker either for diagnosis or prognosis of MS, even though many 

potential candidate biomarkers have been identified, including GFAP, MOG, tau, 

and NFL proteins [186, 187, 188]. In this context, a recent study of Avsar et al. 

performed proteomic analyses in CSF of a prospective cohort comprising of 179 

patients, and 42 non-MS controls, revealing that a total of 151 proteins were 

differentially expressed in MS patients compared to controls, or in different clinical 

MS subtypes. In addition to several candidate biomarkers to be analysed in further 

studies, KEGG pathway analysis of the resulted proteins revealed that renin-

angiotensin system (RAS) and complement and coagulation (CCC) pathway are 

affected in all disease subtypes, whilst aldosterone-regulated sodium reabsorption, 

renin-angiotensin, vitamin digestion and absorption, and notch signaling pathways 

are affected in a subtype specific manner [163]. Besides improving diagnostic and 

prognostic process in MS, identification of biomarker sets can also give information 

on both molecular mechanisms responsible for the notable phenotypic heterogeneity 

in MS and underlying disease mechanisms. 

1.8 Candidate Genes Selected in the Study 

IFNAR1 and IFNAR2 genes encode for type I membrane proteins each of which 

forms one of the two chains of interferons receptor alpha and beta. Both genes are 

known to involve in inflammation-related pathways including T cell activation, 
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cytokine-mediated signaling, response to interferon-alpha, and type I interferon 

signaling pathway, and highly expressed in leucocytes. IFNAR1 and IFNAR2 have 

been implicated in a number of inflammatory conditions, such as measles, hepatitis B 

and C infection, mumps, cerebritis, cerebral malaria, and multiple sclerosis. In a 

study of Levya et al., IFNAR1 18417 and IFNAR2 11876 polymorphisms were 

found to be associated with risk of MS in a cohort of 147 MS patients and 210 

controls (p=0.001 and p=0.035, respectively) [189].  

MAB21L1 encodes for a protein similar to a cell-fate determining protein expressed 

by MAB-21 in Caenorhabditis elegans (C.elegans). The gene is highly expressed in 

the cerebellum. In 5’ UTR region of MAB21L, there is trinucleotide CAG repeats 

with a normal range of 9-29, and expansion of this repeat was previously suggested 

to have a role in some neuropsychiatric and neurodegenerative conditions; including 

mental retardation, attention deficit/hyperactivity disorder, Huntington’s disease, and 

Machado-Joseph disease [190, 191]. 

1.9 Aim of the Study 

The aim of this study is to investigate genetic basis of MS and search for correlation 

between the results of previous proteomic study of our group and the genetic 

analyses involving the same MS cohort. In an effort to do these, after SNP 

genotyping on the Illumina CytoSNP 300K array in 35 individuals from 10 multiplex 

MS families across the genome, a non-parametric linkage (NPL) analysis was 

performed. Subsequent fine-mapping of two regions showing NPL scores higher than 

1.7 revealed the most promising loci for linkage, from which Interferon (Alpha, Beta, 

and Omega) Receptor 1 (IFNAR1), Interferon (Alpha, Beta, and Omega) Receptor 2 

IFNAR2, and Mab-21-Like 1 (MAB21L1) were selected as candidate genes for 

further analyses. Case-control studies was conducted including 27 unrelated patients 

with MS and 10 healthy controls of Turkish origin, and each individual was 

genotyped for CAG repeat number in MAB21L1, IFNAR1 18417, and IFNAR2 

11876 variations. Then, a GWAS was conducted using 11 unrelated MS patients 

from the families and 60 healthy controls, revealing 14 SNPs with significant 

association (P<10-4), additionally 106 SNPs showing suggestive association with MS 

(P<10-3). Resulting chromosomal regions suggestive of linkage and 

significant/suggestive SNPs from the GWAS were analysed in order to observe 



 
 

26 

possible correlations with the proteome data. One gene with significant (INS-IGF2) 

and eight genes with suggestive association (PRKCE, MAPK9, RBPJL, 

ADAMTSL1, NR6A1, NOTCH2, IL1R1, NTN1) that found to involve in pathways 

those shown to be affected in MS subtypes, and three common genes between 

GWAS and linkage results (CLDN4, RUNX1, LINC00598) were detected. 

Additionally, individual proteome data of each patient involved in the genetic 

analyses was observed, and proteins having altered expression level in one or more 

patients, whose corresponding genes that showed significant or suggestive 

association in the GWAS were noted; including neuronal cell adhesion, titin-cap, and 

contactin. As the second objective of this study, we developed a database comprising 

of allelic variations previously associated with 17 common diseases in Turkish 

population, including MS, to provide population specific gathered information with 

pathway enrichment, meta-analysis, and other quick calculation tools. 
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2.  MATERIALS and METHODS 

2.1 Materials 

2.1.1 Equipment 

Equipment list is given in Appendix A. 

2.1.2 Chemicals and buffers 

Chemicals and buffers used in this study are shown in Appendix B. 

2.2 Methods 

2.2.1 Sample collection and preparation 

28 families comprising of 42 MS patients and 37 healthy individuals were included 

in the study. All patients were diagnosed in Cerrahpaşa Faculty of Medicine 

Department of Neurology. Peripheral blood of each individual in the study groups 

was collected into 10-milliliter (ml) EDTA tubes and stored in -80oC. Each 

individual of the study group filled an informed consent form, given in Appendix C, 

prior to the sample collection, and ethics committee approval was taken. DNA 

isolation from each blood sample was performed using Roche DNA Isolation Kit for 

Mammalian Blood: 

" All solutions and blood samples were warmed to 15-25oC. 

" For 1 ml of blood, 3 ml of Red Blood Cell Lysis Buffer was added into a 

sterile 50 ml centrifuge tube and mixed. 

" Tubes were inverted for 10 minutes, and centrifuged at 875 x g for 10 

minutes. 
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" Supernatants were discarded, and white cell containing pellets were 

thoroughly resuspended in residual supernatant at the bottom of the tube 

by vortexing. 

" Last three steps were repeated to obtain completely red blood cell-free 

pellets. 

" 0.5 ml of White Cell Lysis Buffer was added onto each pellet and tubes 

were vortexed thoroughly. 

" Tubes were incubated at 37oC and vortexed in every 10 minutes until the 

solutions contained no undissolved particles. 

" 260 µl of Protein Precipitation Solution was added into each tube and tubes 

were vortexed for 25 seconds. 

" Solutions were transferred into sterile 2 ml ependorf tubes. 

" Tubes were centrifuged at 12.000 x g for 10 minutes. 

" DNA containing supernatants were poured into 50 ml centrifuge tubes 

containing 5 ml of absolute ethanol. 

" DNA samples were collected and transferred into 1.5 ml ependorf tubes 

containing 200 ml of 70% ethanol. 

" Tubes were centrifuged at 875 x g for 5 minutes, and supernatants were 

discarded. 

" DNA pellets were allowed to air dry, and resuspended in 100 µl of TE 

Buffer by incubating at 65oC for 10 minutes and vortexing in every 2-3 

minutes. 

" Concentration and purity of isolated DNA samples were measured by 

Nanodrop at 260/280 nanometers (nm), and samples were stored in 4oC 

until use.  

2.2.2 Linkage analysis and candidate gene selection 

From 28 MS pedigrees, 10 families including one or more affected individuals and at 

least one first-degree relative were selected. DNA of 18 patients and 17 healthy 

relatives from the families was quantified by optical density, and SNP genotyping on 

the Illumina CytoSNP 300K array was performed for genomes of 35 individuals 

from the included families according to the manufacturer’s protocol. A total of 

300.000 SNP markers were sequenced in each individual, and SNPs that are on 
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chromosome Y, with call rates lower than 95% and minor allele frequency (MAF) 

lower than 0.01, and in strong linkage disequilibrium (r2>0.5) were excluded from 

the study. Multipoint non-parametric linkage analysis was performed, as 

implemented in SimWalk [192]. Uninformative SNPs were excluded yielding 

245.008 informative SNPs, and Mendelian error rate of less than 1% was accepted. 

NPL results were calculated for each of 3118 informative SNP markers spaced at an 

average of 1 cM intervals, and expressed as NPL Z scores. Fine mapping of regions 

showing NPL scores higher than 1.7 was performed for each of 639 and 831 

informative SNP markers spaced at every 0.2 cM for chromosome 13 and 21, 

respectively. NPL scores for each region were analysed, and chromosomal positions 

suggestive of linkage were determined. Analyses were performed using 

easyLINKAGE software v5.08 [193]. From the resulting loci, protein coding genes 

were listed and further observation was done based upon a literature review, by 

determining the relation of each gene to MS and other inflammatory/neurological 

conditions using MalaCards Human Disease Database, and unrelated genes were 

excluded. Among the selected genes, determination of possibe functional relevance 

with MS was done by considering biological proccesses and pathways in which each 

corresponding protein encoded by each gene involves (GeneCards The Human Gene 

Compendium, KEGG Pathway Database). As a result of the analyses, IFNAR1 

18417 G/C and IFNAR2 11876 T/G polymorphisms, and MAB21L1 CAG repeat 

numbers were chosen for further investigation.    

2.2.3 Analysis of IFNAR1, IFNAR2, and MAB21L1 variations 

PCR reactions were carried out in a final volume of 50 µl, in a mixture of 5 µl 10X 

DreamTag Green Buffer and 0.5 µl DreamTag Polymerase (Thermo Scientific), 2 µl 

of each 10mM primer, 3 µl of 50 ng template DNA, 2 µl of 2 mM MgCl2, 1.5 µl of 

10 mM dNTP, and 34 µl of nuclease-free water. Primers designed for amplification 

of CAG repeat region in MAB21L1, IFNAR1 18417, and IFNAR2 11876 

polymorphisms are given in Table 2.1.  
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Table 2.1: Primers for amplified regions and product size                

Amplification of the regions was performed for 27 unrelated MS patients’ and 10 

healthy individuals’ genomic DNA. PCR conditions are given in Table 2.2. 

Table 2.2: PCR conditions 

PCR products of IFNAR1 and IFNAR2 were loaded on a 1% agarose gel and run at 

100V for 30 minutes. MAB21L1 products were loaded on a 4% agarose gel and run 

at 80V for 2 hours. Bands were identified under UV light and cut using a razor 

blade, placing into 1.5 ml ependorf tubes. PCR products were isolated from the gel 

pieces using High Pure PCR Product Purification Kit (Roche):  

" Gel masses were determined by pre-weighting empty tubes, and then re-

weighting with gel pieces in them.  

" 300 µl of Binding Buffer was added for every 100 mg agarose gel slice into the 

tubes. 

" Gels were completely dissolved to release the DNAs by incubating the 

suspensions at 56oC for 10 minutes and vortexing in every 2-3 minutes.   

" 150 µl of isopropanol for every 100 mg agarose gel slice was added into the tubes 

and vortexed thoroughly. 

Amplified Region Primers Product Size 

IFNAR1 18417 Forward 5’-GCTCAGATTGGTCCTCCAGA-3’ 

Reverse 5’-TTCCATGACGTAAGTAGTGCTG-3’ 

358 

IFNAR2 11876 Forward 5’-GAGACCAGGCTCACTTGAATAA -3’ 

Reverse 5’-CAGGGTGGTACTGGGTCCT-3’ 

360 

MAB21L1 CAG 

repeat 

Forward 5’-GCGGTTCTCTCACACAAGGA-3’ 

Reverse 5’-GCCGCAACACTCAGAAATGG-3’ 

229 

Step Temperature Time Cycle number 

Initial denaturation 95oC 2 min 1 

Denaturation 95oC 30 sec 35 

Annealing 60oC (IFNAR1) 

59.2oC (IFNAR2) 

62oC (MAB21L1) 

30 sec 35 

Extension 72oC 1 min 35 

Final extension 72oC 7 min 1 

Hold 4oC   



 
 

31 

" Entire contents of the tubes were added into High Pure Filter Tubes inserted into 

Collection Tubes. 

" Tubes were centrifuged for 1 minute at maximum speed and flowthrough 

solutions were discarded. 

" Filter Tubes were reconnected with the Collection Tubes and 500 µl of Wash 

Buffer was added to the upper reservoirs.  

" Tubes were centrifuged for 1 minute at maximum speed and flowthrough 

solutions were discarded.     

" Filter Tubes were reconnected with the Collection Tubes and 200 µl of Wash 

Buffer was added to the upper reservoirs.  

" Filter tubes were recombined with clean 1.5 ml ependorf tubes. 

" 50 µl of Elution Solution was added into upper reservoir of the each Filter Tube 

and tubes were centrifuged for 1 minute at maximum speed.Ependorf tubes 

containing the purified DNA samples were stored at -20oC until further use.                                                                                                                                    

Purified PCR products were sequenced by Applied Biosystems BigDye Terminator 

v3.1 Cycle Sequencing Kit by MedSanTek. Sequences of corresponding regions 

were analysed using Geneious software programme to observe IFNAR1 18417 G/C 

and IFNAR2 11876 T/G polymorphisms, and MAB21L1 CAG repeat numbers in 

patients and controls. Genotypic and allelic frequencies of IFNAR1 18417 G/C and 

IFNAR2 11876 T/G and CAG repeat numbers were calculated, and those for 

patients were compared to both healthy controls included in the study and historic 

controls. Comparisons were done by Student’s t test using GraphPad Prism 6 

Software, and P<0.05 was considered significant.     

2.2.4 Genome-wide association study 

11 unrelated MS patients from the families, and 60 unrelated healthy individuals 

previously genotyped on the Illumina CytoSNP 300K array were included in the 

GWAS. SNPs that are on chromosome Y, with call rates lower than 95% and minor 

allele frequency (MAF) lower than 0.01, and in strong linkage disequilibrium 

(r2>0.5) were excluded from the study. Individuals showing identity by descent 

(IBD) rate higher than 0.25 F (inbreeding coefficient) were excluded from the study. 

An additive model of genetic inheritance was assumed and correlation/trend test was 

applied. Bonferroni adjustment and false discovery rate (FDR) were performed for 
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multiple correction test. Illumina GenomeStudio v2011.1 Software was used to 

determine SNP associations based on allelic differences between patients and 

controls, and P<5x10-4 was considered significant. The most significantly associated 

markers were determined.   

2.2.5 Correlation between genetic and proteomic analyses 

In order to observe whether there is a correlation between the linkage and the GWAS 

results with previous proteomic data of our group [163]; protein coding genes located 

on the suggestive linkage regions, genes possessing the SNPs with significant and 

suggestive associations in the GWAS, and genes encode for the proteins that found 

to be differentially expressed in MS subtypes were listed, and common genes were 

noted. Since CSF proteomic data of MS patients that involved in this study was 

available, each protein having altered expression level in each patient was 

individually compared with the linkage and the GWAS results, and overlapping 

genes were listed. Additionally, pathways in which proteins encoded by each gene 

revealed in the genetic analyses involve were noted (KEGG Pathway Database, 

GeneCards The Human Gene Compendium), and genes encoding for proteins that 

involve in the affected pathways implicated in the proteomic analyses were 

determined. The best-correlated genes were determined for further analyses.   

2.2.6 Database construction 

PubMed was searched for common disease gene association studies performed in 

Turkish population to develop the TUSNP, which comprises specific allelic 

variations that were previously associated with 17 common diseases in Turkish 

population. The list of diseases included in TUSNP is given in Table 3.1.  

Table 2.3: Common diseases included in the study 

 

 

 

 

  

 

Alzheimer’s Disease Macular degeneration 
Amyotrophic lateral sclerosis Multiple sclerosis 
Atrial fibrillation  Myocardial infarction 
Behçet’s Syndrome Osteoarthritis 
Breast cancer Psoriasis 
Colorectal cancer Rheumatoid arthritis 
Exfoliation glaucoma Systemic lupus erythematosus 
Hypertension Vitiligo 
Lung cancer  
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The data were collected from the studies published in Science Citation Index 

journals. Among the studies, only the ones showing significant risk or protective 

allele frequency differences between case and control groups were included, except 

for Behçet’s Syndrome. P values were calculated using Chi-square and Fischer’s 

exact test, and P<0.05 was considered significant. Odd ratio (OR) was used to assess 

strengths of the relationships. In addition; pathway enrichment, meta-analysis, and 

other quick calculation tools were included in the TUSNP.   
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3.  RESULTS 

3.1 Linkage Analysis and Candidate Genes 

SimWalk multipoint NPL analysis in 10 MS pedigrees excluded 324 uninformative 

SNP markers generating a genome-wide linkage analysis scanned for a total of 3118 

informative SNPs. The analysis showed two chromosomal regions with NPL Z 

scores higher than 1.7 on chromosome 13 at 37.9 cM (nearest marker rs612701, NPL 

Z = 1.72, p = 0.019) and chromosome 21 at 41.82 cM (nearest marker rs2834861, 

NPL Z = 1.7, p = 0.019) (Figure 3.1). Subsequent fine mapping of the regions 

comprising the stated highest NPL scores (33.4 cM - 41.5 for chromosome 13 cM 

and 36 cM - 52.5 cM for chromosome 21) with 639 and 831 SNPs respectively, 

revealed that the highest linkage peaks were on 34.11 cM (nearest marker 

rs1461965, NPL Z = 1.82, p = 0.015) on chromosome 13 and 45.08 cM (nearest 

marker rs11701543, NPL Z = 1.85, p = 0.014) on chromosome 21 (Figure 3.2 and 

Figure 3.3), revealing suggestive evidence of linkage for chromosomal regions of 

13q13.3 and 21q22.2 to MS.   

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.1 SimWalk Multipoint NPL Analysis showing the highest scores 
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Figure 2.2: Fine mapping of chromosome 13 from 28 cM to 46 cM region 

Figure 3.3: Fine mapping of chromosome 21 from 35 cM to 58 cM region 
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Within the regions of suggestive linkage, 24 protein coding genes in chromosome 13 

and 58 protein coding genes in chromosome 21 were listed, and literature was 

reviewed in order to observe relation of the genes to MS and other neurological 

and/or inflammatory conditions. The search was resulted in 22 candidate genes 

(Figure 3.4). 

Figure 3.4: Selection of candidate genes 

Among the candidate genes, IFNAR1 18417 and IFNAR2 11876 polymorphisms 

were found to be associated with risk of MS in a cohort of 147 MS patients and 210 

controls by Leyva et al. (p=0.001 and p=0.035, respectively) [189]. In addition, 

increased number of highly polymorphic CAG repeat region in MAB21L1 gene was 

previously suggested to be related to a number of neurological conditions; including 

mental retardation, attention deficit/hyperactivity disorder, Huntington’s disease, and 

Machado-Joseph disease [190, 191]. Therefore, IFNAR1 18417 and IFNAR2 11876 

polymorphisms, and CAG repeat number in MAB21L1 gene were considered as 

strong candidates for increased risk of MS and selected for further investigation. 

3.2 Analysis of IFNAR1, IFNAR2, and MAB21L1 variations 

Sequences of the regions were analysed using Geneious R8 Software (Figure 3.5), 

genotype and allele frequencies of IFNAR1 18417 G/C, IFNAR2 11876 T/G, and 
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MAB21L1 CAG repeat numbers are given in Table 3.1, Table 3.2, and Table 3,3; 

respectively. 

 

 

 

 

 

 

Table 3.1: Genotype and allele distribution of IFNAR1 G18417C polymorphism in 
patients and controls 

        *Patients versus controls,**Patients versus historic controls 

 

 

 

 

 

 

Gene Patients 

N=25 (%) 

Controls 

N=10 

(%) 

Controls 

Historic 

N=210 (%) 

P-value 

IFNAR1 rs2257167     

G18417G 16 (64) 6 (60) 151 (71.9)  

G18417C 8 (32) 4 (40) 54 (25.7)  

C18417C 1 (4) 0 (0) 5 (2.4) 0.54* 

0.5** 

Allele frequency     

G allele 40 (80) 16 (80) 356 (84.8)  

C allele 10 (20) 4 (20) 64 (15.2) 1* 

0.38** 

Figure 3.5 IFNAR2 sequence analysis in a patient homozygous for 11876 GG 
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Table 3.2: Genotype and allele distribution of IFNAR2 T11876G polymorphism in 
patients and controls 

    *Patients versus controls,**Patients versus historic controls 

Table 3.3: MAB21L1 CAG trinucleotide repeat numbers in patients and controls 

Neither genotypic nor allelic difference did not reach to significance between cases 

and controls for IFNAR1 18417 G/C polymophism. However, IFNAR2 11876 GG 

genotype frequency was significantly higher in patients compared to historic controls 

(18.52% vs 6.2%, respectively, p = 0.027,  OR 1.61 [95% CI 0.89 - 2.92]), even 

though there was no significant difference between allelic frequencies. Moreover, 

there was no CAG repeat number differences in MAB21L1 gene between the cases 

and controls (31.88 and 30.4, respectively). 

3.3 Genome-Wide Association Study 

Quality control of SNP markers was resulted in exclusion of 3.894 SNPs from 

chromosome Y, 11.638 SNPs having call rates lower than 95%, 118.727 SNPs in 

Gene Patients 

N=27 

(%) 

Controls 

N=10 

(%) 

Controls 

Historic 

N=210 (%) 

P-value OR; 95% CI 

IFNAR2 rs1051393 

T11876T 11 

(40.74) 

4 (40) 104 (49.5)   

T11876G 11 

(40.74) 

4 (40) 93 (44.3)   

G11876G 5 (18.52) 2 (20) 13 (6.2) 0.92* 

0.027** 

 

3.64 [1.09-

12.1]** 

Allele frequency      

T allele 33 (61.1) 12 (60) 301 (71.7)   

G allele 21 (38.9) 8 (40) 119 (28.3) 

 

0.93* 

0.1** 

 

Gene Patients 
(N = 27) 

Controls 
(N = 10) 

P value 

MAB21L1 (mean 
CAG trinucleotide 
number)  

31.88 30.4 0.3 
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linkage disequilibrium (r2>0.5), and 31.136 SNPs with minor allele frequency lower 

than 0.01. Additionally, one of the two healthy controls were excluded from the 

study, since they showed IBD level higher than 0.25, indicating second degree 

relativity. The GWAS was performed with a total of 129.605 SNP markers in 11 MS 

patients and 59 healthy controls, revealing 14 SNPs showing significant association 

(P<10-4). In addition, 106 SNPs showed higher frequencies in cases compared to 

controls, even though the differences did not achieve statistical significance (P<10-3). 

SNPs having significant and suggestive associations are shown in Table 3.4.    

Table 3.4: SNPs showing significant and suggestive associations between cases 
and controls 

Marker Ref/a
lt 

allele 

Chr. Region MAF 
(cases) 

MAF 
(controls) 

 P 

rs7873 T|C 11 INS-IGF2 0.36 0.03 4.39E-07 
rs7092208 G|A 10 MGMT 0.32 0.04 9.66E-06 
rs16990774 G|A 22 EFCAB6 0.23 0.02 2.25E-05 
rs844959 G|T X SPANXC 0.27 0.01 3.11E-05 
rs9388582 C|T 6 SOGA3 0.27 0.03 3.68E-05 
rs4605385 G|A 2 SCN9A 0.41 0.08 3.75E-05 
rs6737602 T|C 2 STK39 0.68 0.25 4.46E-05 
rs7377981 C|T 4 WHSC1 0.14 0.00 4.69E-05 
rs498973 C|T 17 PLXDC1 0.14 0.00 4.69E-05 
rs11696329 C|T 20 ATP9A 0.14 0.00 4.69E-05 
rs2656219 G|A 11 CNTN5 0.18 0.01 4.71E-05 
rs12988176 C|T 2 STON1-GTF2A1L 0.27 0.03 6.68E-05 
rs474241 C|T 11 CNTN5 0.45 0.11 7.79E-05 
rs13061453 G|A 3 CHCHD6 0.64 0.20 9.21E-05 
Suggestive Associations  
rs2249115 C|A 21 CLDN14 0.50 0.14 1.05E-04 
rs17058979 C|A 8 PNOC 0.23 0.03 1.25E-04 
rs11790551 G|T 9 GNA14 0.23 0.03 1.25E-04 
rs2834646 A|C 21 RUNX1 0.32 0.05 1.38E-04 
rs7356599 C|T 5 MYO10 0.27 0.03 2.03E-04 
rs2462915 C|T 14 BCL11B 0.32 0.07 2.25E-04 
rs4980041 C|T 10 ZMIZ1 0.59 0.19 2.25E-04 
rs9532539 G|A 13 LINC00598 0.82 0.36 2.42E-04 
rs2272504 A|C 12 TRHDE 0.50 0.15 2.46E-04 
rs10160702 C|T 11 KIRREL3 0.41 0.11 2.54E-04 
rs5910394 C|T X DOCK11 0.82 0.31 2.54E-04 
rs2376481 G|A 15 GABRG3 0.68 0.28 2.64E-04 
rs7122320 G|A 11 CNTN5 0.59 0.20 3.03E-04 
rs5994128 A|G 22 GAB4 0.59 0.20 3.03E-04 
rs599462 A|G 11 BC041900 0.32 0.06 3.13E-04 
rs6760801 G|A 2 CCDC85A 0.45 0.11 3.21E-04 
rs4255775 T|G 16 KIFC3 0.22 0.03 3.27E-04 
rs12123953 C|T 1 GIPC2 0.50 0.14 3.50E-04 
rs4980047 G|A 10 ZMIZ1 0.50 0.16 3.65E-04 
rs6869645 C|T 5 SLC6A3 0.18 0.02 3.70E-04 
rs7850420 C|T 9 MAPKAP1 0.18 0.02 3.70E-04 
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rs12417295 C|T 11 ARHGAP42 0.18 0.02 3.70E-04 
rs35206614 A|G 13 ATP7B 0.18 0.02 3.70E-04 
rs34853349 A|G 14 LINC00617 0.18 0.02 3.70E-04 
rs16984253 C|T 20 MYT1 0.18 0.02 3.70E-04 
rs12485136 G|A 22 PNPLA5 0.18 0.02 3.70E-04 
rs2875237 G|A 3 GRM7 0.27 0.05 3.72E-04 
rs4973986 A|C 3 ULK4 0.27 0.05 3.72E-04 
rs17311679 A|G 19 VRK3 0.27 0.05 3.72E-04 
rs1774847 T|C 1 TMEM183A 0.77 0.36 3.85E-04 
rs2295794 C|T 9 TLN1 0.09 0.48 3.89E-04 
rs3008639 G|A 1 AIDA 0.18 0.02 4.21E-04 
rs2414893 C|A 15 MEGF11 0.50 0.18 4.25E-04 
rs12297776 C|T 12 ERGIC2 0.41 0.12 4.35E-04 
rs507280 C|T 6 ROS1 0.36 0.10 4.55E-04 
rs11190831 C|T 10 TLX1NB 0.36 0.10 4.55E-04 
rs733126 C|T 11 USH1C 0.36 0.10 4.55E-04 
rs2370473 G|A 2 BC039382 0.23 0.03 4.78E-04 
rs16899078 C|T 5 CDH12 0.23 0.03 4.78E-04 
rs502156 T|G 6 AK126334 0.23 0.03 4.78E-04 
rs4751086 A|G 10 MGMT 0.23 0.03 4.78E-04 
rs4766819 C|T 12 FBXW8 0.23 0.03 4.78E-04 
rs7249176 A|G 19 LILRP2 0.23 0.03 4.78E-04 
rs4611723 G|A 21 LOC339622 0.23 0.03 4.78E-04 
rs4972701 C|T 2 BC046497 0.77 0.31 4.86E-04 
rs8025178 G|A 15 TRPM1 0.64 0.23 4.91E-04 
rs16971450 A|G 15 MTHFS 0.45 0.12 4.92E-04 
rs17464525 G|A 1 AP4B1 0.27 0.04 5.19E-04 
rs2034360 C|T 2 PRKCE 0.45 0.14 5.37E-04 
rs17080136 T|C 5 MAPK9 0.45 0.14 5.37E-04 
rs10976051 T|G 9 KDM4C 0.64 0.25 5.37E-04 
rs626657 C|A 17 CACNB1 0.36 0.09 5.89E-04 
rs7820617 T|C 8 TRIM55 0.27 0.03 6.56E-04 
rs6577449 C|T 1 CAMTA1 0.23 0.03 7.05E-04 
rs12712051 C|T 2 AFF3 0.23 0.03 7.05E-04 
rs10853465 C|T 18 LINC00669 0.23 0.03 7.05E-04 
rs6843239 C|T 4 SEC24D 0.18 0.56 7.36E-04 
rs5918486 A|G X SRPX 0.55 0.16 7.48E-04 
rs2147852 C|T 13 TBC1D4 0.50 0.18 7.53E-04 
rs12870594 T|C 13 TEX26-AS1 0.32 0.06 7.83E-04 
rs2133127 G|A 15 SNRPN 0.59 0.22 8.02E-04 
rs2032701 G|A 3 MECOM 0.36 0.11 8.25E-04 
rs2072793 G|A 20 RBPJL 0.77 0.38 8.31E-04 
rs11003872 C|T 10 PCDH15 0.68 0.33 8.44E-04 
rs6663477 A|G 1 VPS45 0.14 0.01 8.65E-04 
rs7589234 T|C 2 AFF3 0.14 0.01 8.65E-04 
rs1515495 A|G 3 TP63 0.14 0.01 8.65E-04 
rs10045011 C|T 5 FYB 0.14 0.01 8.65E-04 
rs799157 T|C 7 MLXIPL 0.14 0.01 8.65E-04 
rs12771692 G|A 10 LOC399715 0.14 0.01 8.65E-04 
rs4143858 A|G 11 CNTN5 0.14 0.01 8.65E-04 
rs7957161 T|C 12 PLXNC1 0.14 0.01 8.65E-04 
rs9565321 C|T 13 MYCBP2 0.14 0.01 8.65E-04 
rs7233275 G|A 18 TMEM241 0.14 0.01 8.65E-04 
rs11671231 C|T 19 LILRA5 0.14 0.01 8.65E-04 
rs7143254 C|A 14 LRFN5 0.50 0.17 8.82E-04 
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rs11791292 T|G 9 ADAMTSL1 0.27 0.06 9.07E-04 
rs3740829 T|C 11 ARHGAP32 0.27 0.06 9.07E-04 
rs1330884 T|G 13 RNF219-AS1 0.14 0.51 9.26E-04 
rs13440231 C|T 9 NR6A1 0.18 0.00 9.69E-04 
rs2131905 C|T 1 AKNAD1 0.09 0.00 9.69E-04 
rs17258606 T|C 1 NOTCH2 0.09 0.00 9.69E-04 
rs12077365 T|C 1 OBSCN 0.09 0.00 9.69E-04 
rs7581919 C|T 2 NBAS 0.09 0.00 9.69E-04 
rs3917329 G|T 2 IL1R1 0.09 0.00 9.69E-04 
rs3813247 G|T 2 TTN 0.09 0.00 9.69E-04 
rs9835263 A|G 3 AK124857 0.09 0.00 9.69E-04 
rs11098016 T|G 4 COL25A1 0.09 0.00 9.69E-04 
rs1521026 G|A 5 CDH18 0.09 0.00 9.69E-04 
rs7726659 A|G 5 ANKRD31 0.09 0.00 9.69E-04 
rs6964977 A|G 7 WBSCR17 0.09 0.00 9.69E-04 
rs10499905 C|T 7 SGCE 0.09 0.00 9.69E-04 
rs10486860 C|T 7 DLX6-AS1 0.09 0.00 9.69E-04 
rs6560837 C|T 10 DIP2C 0.09 0.00 9.69E-04 
rs3816685 T|C 10 JMJD1C 0.09 0.00 9.69E-04 
rs4769191 A|G 13 AK054845 0.09 0.00 9.69E-04 
rs17093516 A|G 14 SYNE2 0.09 0.00 9.69E-04 
rs2382868 T|C 16 GTF3C1 0.09 0.00 9.69E-04 
rs35794595 G|T 17 NTN1 0.09 0.00 9.69E-04 
rs414528 T|C 19 USE1 0.09 0.00 9.69E-04 
rs4803831 G|T 19 OPA3 0.09 0.00 9.69E-04 
rs6051643 G|A 20 DDRGK1 0.09 0.00 9.69E-04 
rs12484542 C|T 22 CSNK1E 0.09 0.00 9.69E-04 
rs5978925 C|T X KAL1 0.09 0.00 9.69E-04 
rs1947442 G|A 4 CCSER1 0.41 0.11 9.91E-04 
rs6753123 C|T 2 LOC284950 0.32 0.08 9.97E-04 

   Ref/alt allele, reference and alternative allele; Chr, chromosome; MAF, minor allele frequency.  

3.4 Correlation between Genetic and Proteomic Analyses 

Correlation analyses of the linkage, GWAS, and proteome data yielded in 9 

overlapping genes in GWAS and proteomic results, and 3 overlapping genes in 

GWAS and linkage analysis (Table 3.5 and Table 3.6, respectively). Among the 

significant associations revealed in the GWAS, rs7873 located in Insulin - Insulin-

Like Growth Factor 2 Read-Through Product (INS-IGF2) was the strongest 

association (4.39E-07), and in the proteomic analyses sodium reabsorption pathway 

and type II diabetes mellitus, both of which involve INS, found to be affected in MS 

subtypes. In addition, 8 genes showing suggestive association in GWAS were found 

to involve in common pathways revealed in the proteomic data, including renin-

angiotensin system, NOD-like receptor signaling, and Notch signaling pathways. 

Moreover, other 3 genes revealed suggestive association in GWAS was also in 

regions of suggestive linkage showing NPL scores between 1.6 and 1.83.  
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Table 3.5: Correlation between linkage and GWAS data 

 
 

 
 

Table 3.6: Correlation between GWAS and CSF proteome data 

To analyse individual proteomic data of each patient, corresponding or possibly 

corresponding genes of proteins or protein fragments that found to have altered 

levels in MS patients were searched for associations resulted from the linkage and 

the GWAS. Besides the direct correlations; genes encoding for different forms of 

corresponding proteins, protein fragments, or subunits were also considered, which 

was resulted in a total of 20 correlations (Table 3.7). Among them, the only direct 

correlation was contactin protein, whose level had 1-4 fold change in MS patients, 

and accordingly, 2 significant and 2 suggestive SNP markers located on CNTN5 

gene encoding for contactin 5 protein were identified in the GWAS (Table 3.8).  

Table 3.7: Correlations between GWAS and individual CSF proteome data 
Protein Patient number with 

altered protein level 
Fold change 

Contactin 7 1-4 
amyloid beta A4 protein 4 1-4 
MAP9 4 1-4 
Ig gamma 2 H chain, BUR [human, Peptide 
Mutant, 348 aa] 

4 1-4 

Ig heavy chain V region - human (fragment) 5 2-4 
immunoglobulin heavy chain constant alpha 
1 membrane bound isoform 2 [Homo 
sapiens] 

2 1-3 

Marker Chr. Region NPL Score  P (GWAS) 

rs2249115 21 CLDN14 1.83 1.05E-04 
rs2834646 21 RUNX1 1.6-1.7  1.38E-04 
rs9532539 13 LINC00598 1.7 2.42E-04 

Marker Ch
r. 

Region Common Pathways  P (GWAS) 

rs7873 11 INS-IGF2 Sodium reabsorption, Type II 
diabetes 

4.39E-07 

rs2034360 2 PRKCE Renin-angiotensin, Type II diabetes 5.37E-04 
rs17080136 5 MAPK9 NOD-like receptor signaling, Type 

II diabetes 
5.37E-04 

rs2072793 20 RBPJL Notch signaling 8.31E-04 
rs11791292 9 ADAMTSL1 Notch signaling 9.07E-04 
rs13440231 9 NR6A1 Notch signaling 9.69E-04 
rs17258606 1 NOTCH2 Notch signaling 9.69E-04 
rs3917329 2 IL1R1 NOD-like receptor signaling 9.69E-04 
rs35794595 17 NTN1 Notch signaling 9.69E-04 
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Immunoglobulin kappa variable (IGKV1) 1 1-2 
Immunoglobulin kappa constant (IGKC) 1 1-2 
immunoglobulin light chain [Homo sapiens] 3 1-2 
Igl chain VLJ 2 2-4 
Complement C4d 2 1-2 
putative myosin 15B 4 1-4 
TMEM95 protein [Homo sapiens] 1 1-2 
neuronal cell adhesion molecule 4 1-3 
Titin-cap (telethonin) [Homo sapiens] 3 1-2 
Fibroblast growth factor receptor substrate 3 1 2-3 
Leucine rich alpha 2 glycoprotein 2 1-2 
Integrin alpha-IIb 2 2-3 
acylphosphatase 2, muscle type, isoform 
CRA_a [Homo sapiens] 

3 1-4 

Calcium/calmodulin-dependent protein 
kinase type II subunit beta 

1 2-3 

Table 3.8: Direct correlation between GWAS and individual CSF proteome data 

       * 1-2 fold change in 2 patients, 2-3 fold change in 4 patients, and 3-4 fold change in 1 patient. 

3.5 Database 

Data were generated from previous association studies for 17 common diseases 

conducted for Turkish population, and the TUSNP database was developed. For each 

study, gene name, SNP ID number, sample size, risk/protective allele frequency in 

cases and controls, P value, OR (95% CI), and PubMed ID were represented. Link to 

the GeneCards Human Gene Compendium (http://www.genecards.org) was provided 

for each gene comprising the corresponding SNP. An example is given in Figure 3.6. 

 

 

 

 

 

 

 

 

Marker Gene  Differentially Expressed 
Protein in MS Patients 

Fold 
change 

 P (GWAS) 

rs2656219 CNTN5 Contactin 1-4* 4.71E-05 

rs474241 CNTN5 Contactin 1-4* 7.79E-05 

rs7122320 CNTN5 Contactin 1-4* 3.03E-04 
rs4143858 CNTN5 Contactin 1-4* 8.65E-04 



 
 

45 

Figure 3.6: An example for the TUSNP data presentation 

The data generated from MS studies are shown in Table 3.9. 

Table 3.9: Association findings for MS in Turkish population 

Disease Sample 
Size 

Gene SNP-
Risk/Pr
otective 
Allele 

Allele 
Freq. in 
Controls 

Allele 
Freq. in 
Patients 

P OR 95% CI Reference 
(PMID) 

MS 103 MS 
cases, 
101 
controls 

HLA-
DRB1 

1501 0.139 0.282 0.02 2.4 1.2-5.0 9328791 

MS 103 MS 
cases, 
101 
controls 

HLA-
DRB1 

04 0.178 0.34 0.01 2.3 1.2-4.6 9328791 

RRMS 64 
RRMS 
cases, 
101 
controls 

HLA-
DRB1 

04 0.178 0.3593 0.01 2.6 1.3-5.3 9328791 

MS 103 MS 
cases, 
101 
controls 

HLA-
DQA1 

0101 0.307 0.155 0.02 0.4 0.2-0.8 9328791 

MS 103 MS 
cases, 
101 
controls 

HLA-
DQA1 

0103 0.188 0.068 0.02 0.3 0.1-0.7 9328791 

MS 103 MS 
cases, 
101 
controls 

HLA-
DQA1 

0301/2 0.208 0.339 0.05 1.9 1.0-3.6 9328791 

MS 103 MS 
cases, 
101 
controls 

HLA-
DQB1 

0501 0.237 0.097 0.01 0.3 0.2-0.8 9328791 

MS 103 MS 
cases, 
101 
controls 

HLA-
DQB1 

0602 0.099 0.262 0.00
5 

3.2 1.4-7.1 9328791 
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MS 103 MS 
cases, 
101 
controls 

HLA-
DQB1 

0302 0.148 0.291 0.02 2.3 1.2-4.7 9328791 

MS 180 
OCB-
positive 
cases, 
188 
controls 

HLA-
B 

8 0.058 0.155 0.00
3 

2.97 1.09-
8.08 

19457560 

MS 30 
OCB-
negative 
cases, 
188 
controls 

HLA-
B 

8 0.058 0.167 0.00
2 

3.25 1.21-
8.75 

19457560 

MS 122 
cases, 
188 
controls 

HLA-
B 

8 0.058 0.131 <0.0
5 

2.44  0.88-
6.79 

15301866 

MS 122 
cases, 
188 
controls 

HLA-
B 

7 0.053 0.131 <0.0
5 

2.69  0.94-
7.69 

15301866 

MS 180 
OCB-
positive 
cases, 
188 
controls 

HLA-
DR 

3 0.063 0.133 0.02 2.28 0.84-
6.15 

19457560 

MS 30 
OCB-
negative 
cases, 
188 
controls 

HLA-
DR 

3 0.063 0.133 0.02 2.28  0.84-
6.15 

19457560 

MS 180 
OCB-
positive 
cases, 
188 
controls 

HLA-
DR 

15 0.053 0.239 0 5.61 2.08-
15.07 

19457560 

MS 30 
OCB-
negative 
cases, 
188 
controls 

HLA-
DR 

15 0.053 0.1 0.00
1 

1.98 0.66-
5.91 

19457560 

MS 180 
OCB-
positive 
cases, 
30 
OCB-
negative 
cases 

HLA-
DR 

15 0.1 (OCB-
negative) 

0.239 
(OCB-
positive) 

0.00
7 

2.82 1.27-
6.28 

19457560 

MS 122 
cases, 
188 
controls 

HLA-
DR 

2 0.042 0.278 <0.0
5 

8.78 3.01-
25.61 

15301866 

MS 53 MS 
cases, 
66 
controls 

MEF
V 

rs61752
717 

0.0303 0.1037 0.02 3.7 0.99-
13.74 

20483145 

MS 53 MS 
cases, 
66 

MEF
V 

rs37439
30 

0.0075 0.066 0.01
3 

9.35 0.84-
103.59 

20483145 
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 For the SNPs analysed in more than one study, the TUSNP automatically provides a 

pooled OR result by conducting meta-analysis. The website also includes other tools 

for pathway enrichment, Hardy Weinberg calculation, odds ratio and relative risk 

ratio assesment, Chi-square and Student’s t-test, and power analysis provided in 

Utilities section. The TUSNP was designed to receive new data from users willing to 

submit their association findings regardless of statistical significance level, after a 

member of the editorial board overview and validate new submissions.  

  

controls 

MS 53 MS 
cases, 
66 
controls 

MEF
V 

rs28940
579  

0 0.0471 0.00
4 

10.9
3 

0.59-
201.73 

20483145 

MS 125 
cases, 
160 
controls 

IL4 Intron 3 
VNTR-
P1 

0.063 0.14 0.00
2 

2.44  1.38-
4.41 

23756167 

MS 409 
cases, 
256 
controls 

IL1B rs16944
-2 
(protecti
ve) 

0.486 0.418 0.01
5 

1,17
8 

0.999-
1.388 

23594042 

RRMS 277 
cases, 
256 
controls 

IL1B rs16944
-2 
(protecti
ve) 

0.486 0.408 0.01
1 

2,21
1 

1.261-
3.877 

23594042 

MS 101 
cases, 
164 
controls 

IL8 rs18723
8-C 

0.229 0.361 0.00
13 

1,90
9 

1.298-
2.808 

24402877 

RRMS 69 
cases, 
164 
controls 

IL8 rs18723
8-C 

0.229 0.348 0.01 1,79
7 

0.964-
3.347 

24402877 

RRMS 120 
RRMS 
cases, 
120 
controls 

MIF rs75562
2-C 

0.247 0.415 <0.0
5 

2.16  1.18-
3.95 

20233515 

MS 17 male 
cases, 
33 
female 
cases 

APOE ε4 allele 0.015 
(female 
cases) 

0.147 
(male 
cases) 

0.00
7 

11.3
1 

2.05-
62.24 

22165672 
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4. DISCUSSION and CONCLUSION REMARKS 

In this study; genetic basis of MS was explored, conducting a linkage study in MS 

pedigrees comprising of affected and unaffected individuals and a genome-wide 

association study using unrelated cases and healthy controls, and the results were 

compared to data of CSF proteome profiling that identified specific and shared 

pathways in MS clinical subtypes in the previous study of our group [163]. As a 

result, 2 suggestive linkage regions were identified, and among the selected 

candidate genes from the regions, associations of MAB21L1 CAG repeat number, 

IFNAR1 18417 G/C and IFNAR2 11876 T/G variations, and CAG repeat numbers in 

MAB21L1 were discovered by case-control studies, revealing a significant 

association of IFNAR2 11876 GG genotype with increased risk of MS (P = 0.027, 

OR 3.64 [95% CI 1.09 – 12.1]). Subsequent GWAS identified 14 SNPs with 

significant association (P<10-4), additionally 106 SNPs showing suggestive 

association with MS (P<10-3). When results were compared with each other and the 

proteome data, 9 genes with significant or suggestive associations from the GWAS 

were found to involve in pathways those shown to be activated in MS subtypes, and 

there were 3 genes common between GWAS and linkage results. Additionally, when 

individual proteome data of each patient involved in the genetic analyses was 

observed, a total of 20 proteins having altered expression level in one or more 

patients were also found to have significant or suggestive association in the GWAS.  

IFNAR1 (interferon (alpha, beta and omega) receptor 1) and IFNAR2 (interferon 

(alpha, beta and omega) receptor 2) are genes that encode for type I membrane 

proteins each of which forms one of the two chains of a receptor for interferons alpha 

and beta. IFNAR1 and IFNAR2 are known to involve in a number of pathways 

including T cell activation, cytokine-mediated signaling, response to interferon-

alpha, and type I interferon signaling pathway, and leucocytes are the cell type in 

which the highest expression levels for both of the genes occur. Given their 

inflammation based cellular roles, both genes have been implicated in a load of 
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inflammatory conditions, such as measles, hepatitis B and C infection, mumps, 

cerebritis, cerebral malaria, and multiple sclerosis. Previously, a number of cytokines 

associated with cerebral malaria have also been implicated in MS, suggesting a 

shared characteristics of inflammation that may be the answer of common 

susceptibility genes in both diseases, including IL10, IFNG, and TNF [194, 195, 196, 

197]. In cerebral malaria, IFNAR1 18417 G/C polymorphism was described in 

reduced risk of developing Plasmodium falciparum infection, a complication seen in 

the disease, compared to those possessing at least one C allele [198, 199]. 

Subsequently, in a study by Levya et al., IFNAR1 18417 G/C and IFNAR2 11876 

T/G polymorphisms were investigated in a cohort of 147 MS patients and 210 

controls, revealing significant associations of IFNAR1 18417 CC genotype and C 

allele (P = 0.001 and P = 0.0002, respectively), and IFNAR2 11876 GG genotype 

and G allele (P = 0.035 and P = 0.046 (Pcorr = 0.055), respectively) with risk of MS 

[189]. Taken into account that IFNAR1 and IFNAR2 are located on 21q22.1 which 

yielded one of the two highest NPL scores (1.85) in our linkage analysis, and as a 

result of the promising literature background, IFNAR1 18417 G/C and IFNAR2 

11876 T/G polymorphisms were considered as strong candidates for increased risk of 

MS. Our case-control studies exploring IFNAR1 18417 and IFNAR2 11876 

polymorphisms confirmed IFNAR2 11876 GG association (P = 0.027) revealing an 

odd ratio of 3.64 (95% CI 1.09 - 12.1), although the other associations did not reach 

to significance. In addition to IFNAR1 and IFNAR2 associations, MAB21L1 (Mab-

21-Like 1) gene was yet another selected candidate gene located on 13q.1 which 

yielded the second highest NPL socre (1.82) in the linkage analysis. MAB21L1 

encodes for a protein similar to a cell-fate determining protein expressed by MAB-21 

gene in Caenorhabditis elegans (C.elegans), and highly expressed in the cerebellum. 

Whilst the normal range of the trinucleotide CAG repeat number in 5’ UTR region of 

MAB21L is between 9 and 29, expansion of this repeat was previously suggested to 

have a role in a number of neuropsychiatric and neurodegenerative conditions; 

including mental retardation, attention deficit/hyperactivity disorder, Huntington’s 

disease, and Machado-Joseph disease [190, 191]. However, when we compared the 

CAG repeat numbers in MAB21L1 between MS patients and controls, we did not 

observe any differences, suggesting that CAG repeat expansion in 5’ UTR region of 

MAB21L1 does not affect susceptibility to MS. Based upon our linkage analysis and 

subsequent literature review; IFNAR1, IFNAR2, and MAB21L1 were considered as 
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promising candidates, and in addition to the investigated variations in this study, 

deep sequencing of the genes, as well as expression studies and functional analyses 

may further elucidate their roles in multiple sclerosis. On the other side, there are a 

number of other candidate genes resulted from our linkage analysis, some of which 

were previously implicated in MS or other inflammatory/neurological conditions. 

Among them, SNPs located in CLDN14, RUNX1, and LINC00598 genes showed 

suggestive association with MS in our GWAS results. Therefore, other candidate 

genes, particularly having correlation between the genetic analyses, should be 

carefully taken into consideration in further studies.   

Correlation analyses between the GWAS results and the proteome data revealed that 

among the correlations, only rs7873 located on INS-IGF2 readthrough, an important 

paralog of INS, had significant association, and it was the most significant marker 

resulted from the GWAS (P = 4.39E-07). INS (insulin) gene encodes for pro-insulin, 

which is then post-translationally cleaved into covalently bound A chain and B chain 

peptides and C peptide of insulin. The main role of insulin binding to it’s receptor 

INSR (insulin receptor) is stimulation of glucose uptake through PI3K 

(phosphatidylinositol 3-kinase), decreasing glucose concentration in blood. 

Therefore, many INS variations have been previously associated with type II 

diabetes mellitus, which is characterised by insulin resistance, thus high blood 

glucose levels due to insulin signaling defects. Insulin signaling also stimulates a 

number of other pathways one of which is aldosterone-regulated sodium reabsorption 

pathway that found to be activated in MS subtypes together with type II diabetes 

mellitus in the study of Avsar et al. The study showed that PI3K subunits (PIK3C1, 

PIK3C2, and PIK3R2), and INSR were upregulated in CSF of CIS patients compared 

to controls, revealing that sodium reabsorption pathway was significantly affected in 

CIS patients (P = 1,78E-04). Long before, it was shown that increased salt (sodium 

chloride; NaCl) concentrations, thus elevated hypertonicity could induce immune 

system activation as an external trigger [200, 201]. Accordingly, in a recent study of 

Kleinewietfeld et al., increased NaCl concentration dramatically augmented the 

induction of murine and human Th17 cells [202], which is a type of T helper cells 

that had been found to be critical for development of EAE [203]. This Th17 

promoting effect of high-salt concentration for naïve CD4 cells was through 

phosphorylation of p38/MAPK, which then activates NFAT5 and SGK1, both of 
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which are components of aldosterone-regulated sodium reabsorption pathway, and 

downstream components of INSR signaling [202]. Therefore, variations in INS gene 

may be responsible for alterations in insulin receptor signaling cascade in CIS 

patients, causing increased Na+ uptake through SGK1 and conversion of naïve CD4 

cells into Th17 cells. In this context, possible effects of sodium reabsorption pathway 

activation in MS will be explored in our further studies. Along with INS, other 8 

genes suggestive of association from the GWAS that found to involve in affected 

pathways in MS subtypes, as well as correlations observed in individual proteomic 

data of the patients involved in the GWAS should be investigated in further studies.    

In recent years, a considerable effort has been made for the discovery of genetic 

determinants of MS susceptibility by high-throughput technologies. However, only 

about 27% of the predicted heritability of MS has been elucidated yet. Remaining 

missing heritability is most likely due to undetected variants with small effects that 

cannot be uncovered by the detecting power of current technologies. Yet another 

challenge is that increasing number of data from genetic studies remain to be linked 

to functional understanding of MS pathogenesis. Therefore, we used multi-

disciplinary approaches combining genetic and proteomic analyses with currently 

available bioinformatic tools in order to fit the findings into a biological frame by 

further studies. To further overcome the challenges in deciphering MS complexity, 

novel bioinformatic tools and statistical methods with higher power should be 

developed, all MS risk loci identified by GWA studies should be fine-mapped or 

directly sequenced, and resulted candidate genes should be validated by functional 

assays. Moreover, to improve functional assessment methods, novel in vivo animal 

models possessing human genes would be advantageous, making models mimic MS 

more closely than that of current mouse models.   

As the second part of the study, we established the database TUSNP, the Turkish 

SNP Database, which represent the allelic SNP variants found to be associated with 

risk of 17 common diseases in Turkish population, including multiple sclerosis. By 

developing the TUSNP, we aimed to provide a comprehensive gathered information 

on allelic variants related to common disorders specifically in Turkish population, as 

association findings are mostly inconsistent across the populations. The TUSNP also 

provides users pathway enrichment, meta-analysis and other quick calculation tools, 

allowing further quick review of related associations. We aim to further extend our 
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database in a way to include a broader spectrum of common disorders. Although, the 

database includes all association studies only for Behcet’s Syndrome currently, 

further updates will include reported association findings failed to reach a statistical 

significance for all disorders included in the TUSNP, in order to provide reliable 

meta-analyses and extended information on each common disease. 
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APPENDIX A 

MicroCL 17 Centrifuge (Thermo Scientific) 

Allegra 25R Centrifuge (Beckman Coulter) 

Vortex (Labnet) 

Nanodrop (Thermo Scientific) 

T100 Thermal Cycler (Bio-Rad) 

Agarose gel electrophoresis system (Wealtec) 

Weighing scale (Precisa) 

Heat block (Techne) 

Refrigerator (+4oC - Vestel) 

Freezer (-20oC - Arcelik) 

Freezer (-80oC - Nuve) 
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APPENDIX B 

Red Blood Cell Lysis Buffer (Roche) 

White Cell Lysis Buffer (Roche) 

Protein Precipitation Solution (Roche) 

Ethanol (Sigma-Aldrich) 

DreamTag Green Buffer (Thermo Scientific) 

DreamTag Polymerase (Thermo Scientific) 

MgCl2 (Thermo Scientific) 

dNTP (Thermo Scientific) 

Nuclease-free water (Medifar) 

Agarose (Invitrogen) 

DNA ladder (Thermo Scientific) 

Binding Buffer (Roche) 

Wash Buffer (Roche) 

Elution Solution (Roche) 

Isopropanol (AppliChem) 
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APPENDIX C 

1. Davet edildiğiniz “A LINKAGE ANALYSIS AND A GENOME-WIDE 

ASSOCIATION STUDY ON FAMILIAL MULTIPLE SCLEROSIS” isimli çalışma 

bir araştırma projesidir. 

2. Çalışmanın amacı, MS hastalığının genetiğinin araştırılmasıdır. 

3. Araştırmada gönüllülere uygulanacak herhangi bir tedavi bulunmamaktadır. 

4. Araştırmaya katılmayı kabul ederseniz görevlendirilmiş bir hekim tarafından 

muayene edileceksiniz ve klinik bulgularınız kaydedilecektir. Muayene 

sonucunda doktorunuz uygun görürse çalışmaya alınacaksınız. Katılan 

gönüllülerin kollarından 10 ml (1 tüp) kan alınacaktır.  

5. Sizden alınan kanlardan DNA izole edilerek genotipleme yapılacaktır. 

6. Kan alınması sırasında oluşabilecek riskler: 1) İğne batmasına bağlı olarak acı 

duyabilirsiniz. 2) Düşük bir ihtimal olarak iğne batması sonucu kanamanın 

uzaması ve enfeksiyon riski bulunmaktadır. 

7. Araştırmada gönüllü açısından hedeflenen herhangi bir klinik yarar 

bulunmamaktadır.  

8. Bu çalışmaya katılmanız için sizden herhangi bir ücret talep edilmemektedir. 

Bunun yanı sıra size bir ödeme yapılmayacaktır. 

9. Bağlı bulunduğunuz Sosyal Güvenlik Kurumuna (SGK) herhangi bir ücret 

ödemeniz gerekmemektedir. 

10. Araştırmaya katılımınız sizin isteğinize bağlıdır ve istediğiniz zaman araştırmaya 

katılmayı reddedebilir veya araştırmadan çekilebilirsiniz. 

11. Sizinle ilgili tüm kimlik bilgileri, klinik bulgular ve elde edilecek deneysel 

bulgular gizli kalacak ve kimseyle paylaşılmayacaktır. Araştırma konularının 

yayınlanmasında dahi kimlik bilgileriniz kimseyle paylaşılmayacaktır. 

12. Araştırma konusuyla ilgili ve araştırmaya katılmaya devam etme isteğiniz 

etkileyebilecek yeni bilgiler edinildiğinde gönüllü veya yasal temsilcisi 

bilgilendirilecektir.  

13. Sizden bir defaya mahsus olarak kan alınması planlanmaktadır. 

14. Elde edilen kan örnekleri, MS’in etyopatogenezinin aydınlatılmasına katkıda 

bulunmak için kullanılacaktır. 
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15. Çalışmada bulunan analizler İstanbul Teknik Üniversitesi Moleküler Biyoloji ve 

Genetik Bölümü laboratuvarlarında gerçekleştirilecektir. Örnekler hiçbir şekilde 

yurtdışına gönderilmeyecektir. 

Yukarıda gönüllü kişiye araştırmaya katılmadan önce verilmesi gereken bilgileri 

gösteren metni okudum. Yukarıda konusu ve amacı belirtilen araştırma ile ilgili 

yazılı ve sözlü açıklamalar yapıldı. Karar vermem için yeterli süre tanındı. Bu 

koşullarla söz konusu araştırmaya kendi rızamla katılmayı kabul ediyorum. 

Araştırma kapsamında alınan kan örneklerinin  

o Sadece yukarıda bahsi geçen araştırmada kullanılmasına izin veriyorum. 

o İleride yapılması planlanan tüm araştırmalarda kullanılmasına izin veriyorum. 

o Hiçbir koşulda kullanılmasına izin vermiyorum. 

Bu formun imzalı bir kopyası bana verilecektir. 

Gönüllünün, 

Adı-Soyadı: 

Adresi: 

Tel-Faks: 

Tarih ve İmza: 

 

Açıklamaları yapan araştırıcının, 

Adı-Soyadı: 

Görevi: 

Adresi: 

Tel-Faks: 

Tarih ve İmza: 

 

Bir sorunla karşılaşıldığında aşağıdaki numaralardan proje sorumlularına 

ulaşabilirsiniz; 

Prof. Dr. Aksel SİVA: 0532 615 8781 

Doç. Dr. Eda TAHİR TURANLI: 0532 524 6521 

 

 

 

 



 
 

74 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

75 

CURRICULUM VITAE  

Name Surname: Elif Everest   

Place and Date of Birth: Mersin / 12.10.1989  

E-Mail: everest@itu.edu.tr 

EDUCATION:  

B.Sc.: Istanbul Technical University, Faculty of Science and Letters, Molecular 
Biology and Genetics Department (2007-2012)  

PROFESSIONAL EXPERIENCE AND REWARDS:  

Research assistant, Istanbul Technical University Faculty of Science and Letters, 
Molecular Biology and Genetics Department (2014 – present) 

Internship in Yale University School of Medicine, Neurogenetics Lab of 
Neurosurgery Department (2012) 

Internship in Yeditepe University, Genetics Diagnosis Centre, Department of 
Molecular Genetics/Cytology (2010) 

PUBLICATIONS, PRESENTATIONS AND PATENTS ON THE THESIS: 
# Everest E., Avsar T., Siva A., Uygunoglu U., Tutuncu M., Saip S., Karacan I., and 
Turanli ET.: Suggestive linkage to chromosomal regions 13q13.3 and 21q22.2 in 
families with Multiple Sclerosis. The European Human Genetics Conference, June 
06-09, 2015 Glasgow, Scotland, United Kingdom. 
# Everest E., Özgen EC., Kaya B., Saraç ÖS., and Turanli ET.: Turkish population-
specific single nucleotide polymorphisms related to common disorders and a meta-
analysis of association between HLA-B51 and Behçet’s Syndrome in Turkey. 11. 
Ulusal Tıbbi Genetik Kongresi, September 24-27, 2014 İstanbul, Turkey. 
# Erdem G., Erözenci A., Everest E., and Turanli ET.: Methylation status of 
alternatively spliced forms of MEFV transcripts determine differential protein 
interaction. 11. Ulusal Tıbbi Genetik Kongresi, 24-27 Eylül 2014, September 24-27, 
2014 İstanbul, Turkey. 
# Everest E., Karacan I., Sayın E., Bodur V., and Turanli ET.: Sık Görülen 
Hastalıkların Yatkınlık Genlerinde Popülasyon Spesifik Alel Frekansları Analizleri. 
10. Ulusal Tıbbi Genetik Kongresi, December 20-23, 2012 Bursa, Turkey. 


