
ISTANBUL TECHNICAL UNIVERSITY F GRADUATE SCHOOL

HIGH-SPEED TRAJECTORY REPLANNING AND TRAJECTORY
TRACKING FOR COLLISION AVOIDANCE

Ph.D. THESIS

Mehmet HASANZADE

Department of Aeronautics and Astronautics Engineering

Aeronautics and Astronautics Engineering Programme

MARCH 2021

ISTANBUL TECHNICAL UNIVERSITY F GRADUATE SCHOOL

HIGH-SPEED TRAJECTORY REPLANNING AND TRAJECTORY
TRACKING FOR COLLISION AVOIDANCE

Ph.D. THESIS

Mehmet HASANZADE
(511162110)

Department of Aeronautics and Astronautics Engineering

Aeronautics and Astronautics Engineering Programme

Thesis Advisor: Asst. Prof. Dr. Emre KOYUNCU

MARCH 2021

İSTANBUL TEKNİK ÜNİVERSİTESİ F LİSANSÜSTÜ EĞİTİM ENSTİTÜSÜ

ÇARPIŞMA ÖNLEMEK İÇİN YÜKSEK HIZLI ROTA
PLANLAMA VE ROTA TAKİBİ

DOKTORA TEZİ

Mehmet HASANZADE
(511162110)

Uçak ve Uzay Mühendisligi Anabilim Dalı

Uçak ve Uzay Mühendisligi Programı

Tez Danışmanı: Asst. Prof. Dr. Emre KOYUNCU

MART 2021

Mehmet HASANZADE, a Ph.D. student of ITU Graduate School student ID 511162110,
successfully defended the dissertation entitled “HIGH-SPEED TRAJECTORY RE-
PLANNING AND TRAJECTORY TRACKING FOR COLLISION AVOIDANCE”,
which he/she prepared after fulfilling the requirements specified in the associated leg-
islations, before the jury whose signatures are below.

Thesis Advisor : Asst. Prof. Dr. Emre KOYUNCU
Istanbul Technical University

Jury Members : Asst. Prof. Dr. Ramazan YENİÇERİ
Istanbul Technical University

Prof. Dr. İbrahim ÖZKOL
Istanbul Technical University

Dr. M. Umut DEMİREZEN
Roketsan

Asst. Prof. Dr. Hakan AKÇA
Ege University

Date of Submission : 13 Feb 2021
Date of Defense : 10 March 2021

v

vi

To my family,

vii

viii

FOREWORD

I would like to begin with expressing my gratitude to my thesis advisor Prof. Emre
KOYUNCU for his support and guidance throughout this study. I am thankful for his
invaluable advice. It is a precious experience and a milestone to work with him during
my Ph.D. progress in ITU Aerospace Research Center.

I would like to thank Prof. Ramazan YENİÇERİ for his encouragement and support in
many projects that we conducted.

I would like to thank Prof. Gökhan İNALHAN for expanding my vision through my
academic life.

I can not forget my labmates, without them my Ph.D. progress would have been
much more overwhelming and stressful. I would like to thank Aykut ÇETİN, Emre
SALDIRAN, and Ömer HEREKOĞLU for being perfect teammates in many of our
projects. I hope we will have the opportunity to work together again in the future.
I would like to thank Emre SALDIRAN (again) and Omar SHADEED for their
contribution and support to my thesis. Also I would like to thank ITU Aerospace
Research Center family, especially Arınç Tutku ALTUN, Yunus BİÇER, Mevlüt
UZUN, Güney GUNER, Barış BAŞPINAR who have been always there to help and
encourage me.

I would like to thank and apologize to all my friends, instead of sharing my time with
them, I had to devote all my time to work. Thanks for your patient, understanding, and
the most important thing, your friendship during this long and hard path.

Last but definitely not least, I am really grateful and thankful to my lovely,
irreplaceable parents Bayzid Ahmet HASANZADE, Mehtap HASANZADE, and my
lovely sister Mine HASANZADE for their priceless understanding, patience, and
endless support. Thanks to my father’s teachings and the vision he brought me, I
was able to reach this point.

March 2021 Mehmet HASANZADE

ix

x

TABLE OF CONTENTS

Page

FOREWORD.. ix
TABLE OF CONTENTS... xi
ABBREVIATIONS .. xiii
LIST OF TABLES .. xv
LIST OF FIGURES .. xvii
SUMMARY .. xxi
ÖZET .. xxiii
1. INTRODUCTION .. 1

1.1 Aims and Objectives... 3
1.2 Thesis Outline... 5
1.3 Contributions to Knowledge... 5

2. LITERATURE REVIEW... 7
2.1 Trajectory Planning and Replanning Literature ... 7
2.2 Trajectory Tracking Literature.. 13

3. A DYNAMICALLY FEASIBLE FAST REPLANNING STRATEGY
WITH DEEP REINFORCEMENT LEARNING.. 19

3.1 Problem Formulation and Contribution.. 19
3.1.1 Problem formulation ... 19

3.2 Differential Flatness Based Dynamic Model.. 20
3.2.1 Aerial vehicle model ... 21
3.2.2 Perception model .. 22

3.3 Trajectory Characterization and Modification.. 23
3.3.1 Trajectory parameterization with B-Spline... 23
3.3.2 Trajectory modification with control point relocation and knot insertion 27
3.3.3 Replan decision point.. 30

3.4 Optimal Replanning with Deep Reinforcement Learning................................ 31
3.4.1 Proximal policy optimization.. 32

3.5 Fast Replanning Software Implementation Results.. 36
3.5.1 Batch simulation results.. 38
3.5.2 Performance comparison with other algorithms 41

3.6 Fast Replanning Hardware Implementation Results: Under VICON System . 43
3.7 Fast Replanning Hardware Implementation Results: Outdoor Test 50

4. AGGRESSIVE TRAJECTORY TRACKING CONTROLLER BASED ON
DEEP REINFORCEMENT LEARNING .. 65

4.1 Proposed Architecture .. 66
4.2 Aerial Vehicle Model.. 66
4.3 Trajectory Generation... 67

4.3.1 Trajectory representation .. 67
4.3.2 Aerial vehicle dynamical constraints .. 68

xi

4.4 Deep Reinforcement Learning - Proximal Policy Optimization Approach 70
4.5 Simulation Experiments ... 72

4.5.1 LQR differential flatness based controller .. 72
4.5.2 LQI differential flatness based controller.. 73
4.5.3 Performance comparison .. 74

5. CONCLUSIONS AND FUTURE RECOMMENDATIONS 77
REFERENCES.. 81
CURRICULUM VITAE... 87

xii

ABBREVIATIONS

CL-RRT* : Closed Loop - Rapidly-exploring Random Tree
CPU : Central Processing Unit
DDPG : Deep Deterministic Policy Gradient
DRL : Deep Reinforcement learning
ESC : Electronic Speed Control
FOV : Field Of View
GPS : Global Positioning System
GNSS : Global Navigation Satellite System
GPU : Graphical Processing Unit
IMU : Inertial Measurement Unit
INS : Inertial Navigation System
MDP : Markov Decision Process
NED : North-East-Down
UAV : Unmanned Aerial Vehicle
PI : Proportional-Integral controller
PID : Proportional-Integral-Derivative controller
PPO : Proximal Policy Optimization
PWM : Pulse-Width Modulation
RC : Radio Control
RF : Radio Frequency
RMS : Root Mean Square
SLAM : Simultaneous Localization And Mapping
TRPO : Trust Region Policy Optimization

xiii

xiv

LIST OF TABLES

Page

Table 3.1 : Comparisons with other similar trajectory replanning methodologies.41
Table 3.2 : The aerial vehicle specifications. ... 50
Table 4.1 : Crazyflie aerial vehicle parameters. ... 69
Table 4.2 : α values.. 71
Table 4.3 : Error RMS values as a result of 500 Monte-Carlo analysis................. 74

xv

xvi

LIST OF FIGURES

Page

Figure 1.1 : Current and future UAV adaptation among companies with
50M+ revenue [1].. 1

Figure 1.2 : Frequency of drone flights per month: 2017 vs 2018 comparison [1]. 2
Figure 1.3 : Current UAV market in Rogers’ innovation adoption lifecycle........... 2
Figure 1.4 : Current and future UAV trends. ... 3
Figure 2.1 : Generated trajectory via optimizing polynomial path segments

through a map of a laboratory environment [2]. 7
Figure 2.2 : Convex decomposition representation to find temporary goal in

known map [3]. ... 8
Figure 2.3 : Minimum snap trajectory generation. (left) ensures to pass

through desired waypoints. (right) ensures to pass thorugh safe
corridors [4]. ... 9

Figure 2.4 : Using ball shaped safe regions to find safety corridors [5]................ 10
Figure 2.5 : Modifying trajectory by adding feasible detour [6]. 11
Figure 2.6 : Motion Primitives are utilized to evaluate the paths probabilisti-

cally for possible collision [7]... 12
Figure 2.7 : Triple integrator planner generates aggressive manuevers [8]........... 13
Figure 2.8 : Trajectory tracking performance considering rotor drag effects

on the vehicle [9]. ... 14
Figure 2.9 : Control performance of the RL agent [10]. 16
Figure 3.1 : Illustration of the agile trajectory replanning problem. 19
Figure 3.2 : Test environment with Crazyflie, which is used as the platform

to navigate in ρ = 1.2 obstacle/m2 dense environment. 20
Figure 3.3 : Sensing with limited field of view (FOV) and range for the aerial

vehicle. The local interest of environment is perceived as random. ... 23
Figure 3.4 : An example B-spline trajectory agility with instantaneous

velocities(red) and accelerations (green), where the velocity
vectors shows the motion direction of the aerial vehicle. 26

Figure 3.5 : An example of B-spline curve defined by five control points
P0,..,4 which are shown as blue dots. The curve is completely
enclosed within the convex hull created by its control points. 27

Figure 3.6 : Collision sensing over trajectory around t̄ knot point........................ 28
Figure 3.7 : Control point relocation over the trajectory. 28
Figure 3.8 : Replacing control points with the new ones through knot

insertion method is presented. (a) is a simple trajectory defined
by P0, ...,P9 control points. (b) shows knot insertion method and
the output of the method is shown as Q3, ...,Q7 control points. (c)
presents the result of the knot insertion method where P3, ...,P6
are replaced with Q3, ...,Q7 control points. .. 29

xvii

Figure 3.9 : Replanning scopes over the trajectories with different number of
control point representations... 31

Figure 3.10 : Depiction of scenarios with random obstacle generation and
limited FOV... 33

Figure 3.11 : Safety volume around the vehicle. ... 36
Figure 3.12 : Reward performance, each episode includes 5120 randomly

generated scenarios. .. 36
Figure 3.13 : Replanning algorithm in 20m × 20m environment with an

obstacle density of 0.1 obstacles/m2.. 37
Figure 3.14 : The cluttered environment simulation, randomly generated

obstacles in 20m×20m environment with an obstacle density of
> 0.05obstacles/m2.. 38

Figure 3.15 : The cluttered environment simulation, randomly generated
obstacles in 20m×20m environment with an obstacle density of
> 0.1obstacles/m2.. 39

Figure 3.16 : The cluttered environment simulation, randomly generated
obstacles in 20m×20m environment with an obstacle density of
> 0.1obstacles/m2.. 40

Figure 3.17 : 500 different flight scenarios where all the obstacles are
positioned randomly on the map are tested. The result of the
flight tests are shown for the following metrics (a) velocity m/s,
(b) acceleration m/s2,and (c) jerk m/s3. ... 41

Figure 3.18 : Comparison with Closed-loop RRT* solution for trajectory
replanning. .. 42

Figure 3.19 : The system architecture for hardware implementations. 44
Figure 3.20 : Differentially flat trajectory tracking architecture. 45
Figure 3.21 : Attitude controller inputs and outputs.. 46
Figure 3.22 : Attitude rate controller inputs and outputs... 46
Figure 3.23 : Low level controller architecture. .. 47
Figure 3.24 : Frames from the flight test. The obstacles density in the

environment is ρ = 1.2 obstacle/m2. .. 49
Figure 3.25 : Scenario 1: The reference trajectory is given in blue and the

actual trajectory flown is given in red. .. 49
Figure 3.26 : Scenario 2: The reference trajectory is given in blue and the

actual trajectory flown is given in red. .. 50
Figure 3.27 : Scenario 1: The dashes indicate the start and the end of the

scenario.(a) The achieved maximum velocity is 3.74m/s, and (b)
the maximum acceleration is 11.08m/s2. (c) A peak roll angle
of 30.5deg was achieved during flight. (d) A peak pitch angle
of 38.1deg was achieved during flight.(e) A peak roll rate of
248.23deg/s was achieved during flight. (f) A peak pitch rate
of 409.8deg/s was achieved during flight... 51

Figure 3.28 : Scenario 2: The dashes indicate the start and the end of the
scenario.(a) The achieved maximum velocity is 4.21m/s, and (b)
the maximum acceleration is 10.19m/s2. (c) A peak roll angle
of 17.1deg was achieved during flight. (d) A peak pitch angle
of 32.2deg was achieved during flight.(e) A peak roll rate of
185.84deg/s was achieved during flight. (f) A peak pitch rate
of 309.23deg/s was achieved during flight... 52

Figure 3.29 : Avionics and the communication interfaces on the aerial vehicle. 53

xviii

Figure 3.30 : Power distribution schematics. .. 53
Figure 3.31 : Ardupilot position control system schematics. 54
Figure 3.32 : Scenario 3: pos+vel controller. The results show the

performance of the controllers for trajectory tracking and
obstacle avoidance. ... 55

Figure 3.33 : Scenario 3: the performance of the flight tests where for outer
loop control, pos+vel controller is utilized.(a) The achieved
maximum velocity in X-Y axis is 12.06m/s, and (b) the
maximum acceleration in X-Y axis is 12.36m/s2. (c) A peak roll
angle of 51.46deg was achieved during flight. (d) A peak pitch
angle of 45.77deg was achieved during flight.(e) A peak roll rate
of 451.27deg/s was achieved during flight. (f) A peak pitch rate
of 328.26deg/s was achieved during flight... 56

Figure 3.34 : Ardupilot modified position control system schematics.................... 57
Figure 3.35 : Scenario 3: pos+vel controller vs pos+vel+acc controller. The

results show the peformance of the controllers for trajectory
tracking and obstacle avoidance. .. 57

Figure 3.36 : Scenario 4: the performance of the flight tests where for outer
loop control, pos+vel controller are utilized.(a) The achieved
maximum velocity in X-Y axis is 14.42m/s, and (b) the
maximum acceleration in X-Y axis is 21.03m/s2. (c) A peak roll
angle of 66.83deg was achieved during flight. (d) A peak pitch
angle of 68.36deg was achieved during flight.(e) A peak roll rate
of 412.23deg/s was achieved during flight. (f) A peak pitch rate
of 320.14deg/s was achieved during flight... 58

Figure 3.37 : Scenario 4: the performance of the flight tests where for
outer loop control, pos+vel+acc controller is utilized.(a) The
achieved maximum velocity in X-Y axis is 13.62m/s, and (b) the
maximum acceleration in X-Y axis is 20.82m/s2. (c) A peak roll
angle of 69.84deg was achieved during flight. (d) A peak pitch
angle of 70.29deg was achieved during flight.(e) A peak roll rate
of 386.80deg/s was achieved during flight. (f) A peak pitch rate
of 346.22deg/s was achieved during flight... 59

Figure 3.38 : Scenario 5: pos+vel+acc controller. The results show the
performance of the controllers for trajectory tracking and
obstacle avoidance. ... 60

Figure 3.39 : Scenario 5: the performance of the flight tests where for
outer loop control, pos+vel+acc controller is utilized. (a) The
achieved maximum velocity in X-Y axis is 18.43m/s, and (b) the
maximum acceleration in X-Y axis is 19.10m/s2. (c) A peak roll
angle of 77.02deg was achieved during flight. (d) A peak pitch
angle of 70.22deg was achieved during flight.(e) A peak roll rate
of 522.01deg/s was achieved during flight. (f) A peak pitch rate
of 365.59deg/s was achieved during flight... 61

Figure 3.40 : One of the outdoor flight tests scene with using pos+vel controller. . 62
Figure 3.41 : One of the outdoor flight tests scene with using pos+vel+acc

controller. .. 62
Figure 4.1 : The reference trajectory is given in blue and the actual trajectory

flown is given in red. ... 65
Figure 4.2 : Proposed system architecture... 66
Figure 4.3 : Forward acceleration limits.. 69

xix

Figure 4.4 : Architecture of LQR Differentially Flat based Controller. 73
Figure 4.5 : Comparison between three different trajectory tracking con-

trollers (position). .. 75
Figure 4.6 : Comparison between three different trajectory tracking con-

trollers (velocity). .. 76

xx

HIGH-SPEED TRAJECTORY REPLANNING AND TRAJECTORY
TRACKING FOR COLLISION AVOIDANCE

SUMMARY

Not long ago, the operations or the applications requiring high-performance guided
and navigation would have required the use of tactical-size unmanned aerial vehicles.
The main reason for this was that high-performance algorithms required bigger or
heavier avionics with high computing capabilities or reliable communication buses
linked with the ground systems. However, with the development of technology, these
capabilities can now be achieved in smaller avionics, making it possible on-board
for small-size unmanned aerial vehicles. New lightweight sensory systems enabled
small unmanned systems to have advanced "situational awareness" and allow them to
be capable of performing complex missions. Yet, guidance, navigation, and motion
planning methodologies are still mostly "conservative" and "use-case-specific," render
the UAVs incapable of performing multipurpose-operations.

There are many studies on route planning algorithms for situations where the map
of the environment is known. Since these studies can operate in the initial phase of
the operation, where a response is not expected to be very fast, it can guide the vehicle
from the starting point to the end point safely, which is feasible and safe for the vehicle.
However, in cases where unknown obstacles occur which can be sensed by any sensor,
replanning of the trajectory is necessary in order to avoid obstacles. It is expected that
the algorithms will be able to generate the replanned trajectory since the vehicle has
less time to avoid it. Therefore, The time efficiency of the replanning phase is directly
related to the speed and the aggressiveness of the trajectory followed by the vehicle. it
is crucial to utilize an algorithm that generates an evasive maneuver in real time and
ensures safety and dynamical feasibility.

In this thesis, studies were carried out on two topics, trajectory replanning and
trajectory tracking. The first study, this thesis proposes a fast re-planning strategy
based on deep reinforcement learning for highly agile aerial vehicles. First, the
differential flatness model of an air vehicle is utilized, allowing us to directly map the
desired output trajectory, which is parameterized with b-spline curves, into required
input states to track trajectory. Moreover, perception model is used with fixed range
and FOV on the vehicle, and as soon as the vehicle detects the obstacle, it performs
the real-time evasive action through repetitive re-planning over an infinite trajectory.
Specifically, the algorithm is initialized with a flight trajectory plan, then performs
optimal control point vector update and knot insertion to generate a dynamically
feasible conflict-free trajectory. Through this modification, the regenerated trajectory
provides feasible evasive maneuvers for the vehicle, where the location and the number
of the added control points form the "agility" of this evasive maneuver. The control

xxi

point insertion considering dynamic constraints and the defined agility metrics is
transformed into a trajectory optimization problem, which is solved through deep
reinforcement learning (DRL). The proximal policy optimization (PPO) method is
utilized to train the re-planner with the random forest generation environment. The
agent produces re-planned dynamically feasible conflict-free trajectories with modified
control points approximately in 400us, which enables the real-time flight trajectory
generation for highly agile aerial vehicles.

The second study proposes a deep reinforcement learning-based trajectory tracking
controller, enabling to minimize the positional and velocity track error for aerial
vehicles based on a Proximal Policy Optimization (PPO) algorithm where the
controller is trained through randomly generated feasible trajectories. PI controller
is utilized for the attitude controller and PID for the attitude rate controller as the
aerial vehicle’s low-level controllers. The trajectory generator based on the dynamic
model guarantees the flat outputs, such that they do not exceed the given dynamical
limitations of the vehicle, and produces pitch and roll references to the attitude
controller. Simulation results show the root mean square error of the trajectory tracking
performance. Also, DRL agent performance is compared with LQR and LQI based
trajectory tracking controllers.

xxii

ÇARPIŞMA ÖNLEMEK İÇİN YÜKSEK HIZLI ROTA
PLANLAMA VE ROTA TAKİBİ

ÖZET

Son yıllarda artan teknolojik gelişmeler nedeniyle, insansız hava araçlarının yüksek
performanslı güdüm ve navigasyon özelliklerine sahip olması beklenmektedir. Bu
özelliklere sahip olan araçların, özellikle taktiksel boyutlarda olması istenmektedir.
Elbette bu beklenti, hafif aviyonik komponentlerin araç üzerinde bulunmasını zorunlu
kılmakta ve bu gibi aviyoniklerin beklenen algoritmik hesaplama ağırlığı kaldırması
beklentisi doğurmaktadır. Bunun yanında da bu özellikleri barındıran araçların emir
ve kontrolünün yer istasyonuyla sağlanması ve operasyon sürecinde haberleşmenin
kopmadan ve istenilen müdahalelere olanak sağlar şekilde olmalıdır.

Günümüz teknolojisi ile bu beklentileri karşılamanın mümkün olduğunu söyleye-
biliriz. Gelişmiş teknoloji ile yüksek hesaplama gücüne sahip aviyoniklerin
artık daha hafif şekilde geliştirilebilmesi, taktiksel boyuttaki araçların istenilen
özellikleri kazanmasına olanak sağlamıştır. Elbette, hesaplama gücünün bu denli
ihtiyaç duyulduğu alanlarınından agresif rota takibi ve rotanın tekrar planlanması
uygulamaları gösterilebilir. Agresif bir rotanın takibi esnasında karşısına çıkan bir
engelden kaçınabilmesi için, araç çok agresif ve hızlı olduğundan, yine mikrosaniyeler
mertebesinde rotanın tekrar planlanım engelden kaçması istenmektedir. Bunun
yanında planlanan rotanın lokal olarak optimaliteyi sağlaması, üretilen rotanın
kullanılan aracın dinamiklerini göz önüne olarak oluşturulması, rota planlama
konusundaki önemli unsurlardan birkaçıdır. Bunun yanında da rotanın tekrar
planlanması durumunda engele çarpmamak için üretilecek yeni rotanın arama alanının
yeteri kadar büyük olması ve lokal optimaliteye ulaşabilmesi için, kullanılan rota takip
algoritmasının da yüksek hassasiyet ile takibi gerçekleştirebilmesi gerekmektedir.

Ortamın haritasının bilindiği durumlar için rota planlama algoritmaları üzerine bir
çok çalışma ortaya konulmuştur. Bu çalışmalar, operasyonun başlangıç fazında
çalışabileceği için, çok hızlı bir şekilde cevap verilmesi beklenmediğinden, araç için
uygun olan ve hiç bir yere çarpmadan güvenli şekilde başlangıç noktasından bitiş
noktasına yönlendirebilmektedir. Ama bilinmeyen engellerin oluştuğu durumlarda
engellerden kaçabilmek için tekrar planlama yapmak gerekmektedir. Bu hesabın
yapılması da aracın takip ettiği rotanın agresifliğiyle direk olarak ilgilidir. Aracın
yüksek hızlı olduğu durumlarda karşısına engel çıktığına önleyebilmesi için daha
az zamana sahip olduğundan, uygulanması gereken algoritmaların bu özelliği
sağlayabilmesi beklenmektedir.

Bu tez içerisinde engel çıktığı zaman rotanın tekrar planlanması problemine
ve rota takip problemine çözümler önerilmiştir. Rotanın tekrar planlanması

xxiii

problemine derin pekiştirmeli öğrenme metodu ile oluşturulan ajan kullanılarak
çözüm önerilmiştir. Öncelikle kullanılan insansız hava aracının diferansiyel düzlük
(differential flatness) özelliği kullanılarak, aracın pozisyon ve türevleri üzerinden
rotanın tanımlaması yapılması sağlanmıştır. Bu özellik sayesinde rotanın yine
üzerindeki bir noktanın konumu ve türevleri elde edildiğinde, aracın bu rotayı
takip edebilmesi beklenmektedir. Rota planlama için de B-spline denilen rota
planlama algoritması kullanılmıştır. B-spline tipinde bir rota, içerisinde bulunan
kontrol noktaları sayesinde geometrik olarak rotanın şeklinin belirlenmesini ve
bu noktalar arasındaki hız, ivme vs. gibi pozisyon türevlerinin belirlenmesine
olanak sağlamaktadır. Bununla beraber B-spline tanımalaması, rota üzerindeki her
noktanın türevlerinde de sürekli olmasını garanti etmektedir. Kontrol noktalarının
konumaları değiştirilebildği için de istenilen geometrik şekil elde edilebilir ve bu
özellik engellerden kaçınmak için algoritmaya olanak sağlayacaktır. Ek olarak insansız
hava aracı üzerinde bir kamera sensörünün bulunduğu varsayılmıştır. Bu sensör bir
emülatör olarak modellenip, sensörün menzili ve görüş açısı kısıtlanmıştır. İnsansız
hava aracı B-spline rotayı takip ederken, önüne bir engel çıktığında, bu engel sensör
emülatörü üzerinden algılanabilmektedir. Rotanın sadece algılanan engel etrafında
planlanması sağlanabilmesi için yine engel üzerinde bir kontrol noktasının bulunması,
daha optimal bir çözüm sağlayabilmektedir. Bu nedenle B-spline tanımlamasının bir
özelliği olan düğüm ilavesi (knot insertion) metodu kullanılarak, başlangıçta üretilen
B-spline rotasının pozisyon ve türevlerinde hiç bir şekilde değişmeden, fakat kontrol
nokta sayısını bir arttırıp, bu yeni kontrol noktasını tam olarak engelin üzerinde veya
rotanın algılanan engele en yakın noktasına konumlandırılması sağlanmıştır. Daha
sonra derin pekiştirmeli öğrenme metoduyla eğitilen ajanın, bu yeni konumlandırılan
kontrol noktası için yeni bir lokasyon belirlenmesi sağlanmıştır. Ajan eğitilirken
ödül fonksiyonu, aracın tüm durum değişkenleri sınırları içerisinde kalması sağlandığı
gibi, engele çarpmaması için belirlenen bir güvenlik uzaklığını sağlayacak şekilde
kontrol noktasının yeni konumunu belirlenmesi sağlanmıştır. Bu şekilde tasarlanan
bir simülasyon ortamında ajanın eğitimi sağlanmıştır. Buna ek olarak ajanın ürettiği
yeni nokta, aracın dinamik limitlerinde sürekli olarak kalmasını sağlayabilmek için
ve üretilen rotanın hali hazırda agresif olduğundan, aracı mümkün olduğunca en az
şekilde çevikliğini arttıracak rotayı oluşturmayı amaçlamaktadır. Bu özellik, tüm
rota boyunca karşısına çıkacak engeller için yeterli aksiyon setini mümkün olduğunca
geniş tutabilmesi için kullanılmıştır. Yapılan eğitim sonucunda simülasyon ortamında
testler yapılmış ve bir çok rastgele üretilen senaryo içerisinde üretilen rotanın, istenilen
limitler içerisinde kaldığı gösterilmiştir. Aracın gerçek zamanlı olarak bu rotayı
yeniden üretebilmesi için de bu problemin formülasyonu bu şekilde basitleştirilmiştir.
Bu yaklaşım sayesinde, ajan 400us’de çözüm üretebilmektedir ve yaptığımız
literatür araştırmalarla karşılaştırdığımızda en hızlı çözümü bu metod üretmektedir.
Simülasyonda performans kriterleri gösterildikten sonra, iç ortam da VICON sistemi
altında Crazyflie aracı ile gerçek testler ve performansları gösterilmiştir. Bu sistemde
de diferansiyel düzlük kontrolcüsü olan LQI kontrolcüsü kullanılmıştır. Önceki
yapılan çalışmalarda LQR kontrolcüsü ile rota takibi yapıldığında kalıcı durum hatası
barındırdığını, bu nedenle bu hatadan kurtulmak için de LQI kontrolcüsü kullanıldı.
Daha sonra yarış insansız hava aracı tasarlanmış ve aviyonik şeması paylaşılmıştır.
Bu araca da önerilen metodu kullanarak agresif rotalar üretilmiş ve sanal engellerden
kaçılması sağlanarak, performansı gösterilmiştir. Bu testlerde araç üzerinde ArduPilot
otopilotu kullanılmış ve üzerindek pozisyon ve hız kontrolcüsü kullanılarak testler

xxiv

gerçekleştirilmiştir. Var olan bu kontorlcünün performansı yeterli görülmediği için
de kontrolcü modifiye edilerek, pozisyon, hız ve ivme kontrolcüsü haline getirilmiş
ve testler tekrarlanmıştır. Bu kontrolcü ile yapılan uçuşlarda aracın hem açısal hemde
ivme değerleri olarak aracın limitlere dayandığını ve bu limitlerde engellerden kaçarak
rota takibini gerçekleştirebildiği gösterilmiştir.

Yapılan çalışmalar sonucunda, dış ortam testlerinde araç üzerinde etkiyen rüzgar
ve GPS’in sağladığı pozisyon ve hız değerlerindeki belirsizlikten ötürü, iç ortamda
yapılan testlerle karşılaştırdığımızda beklenen performansı veremediği görüldü. Bu
nedenle rota takip algoritması için derin pekiştirmeli öğrenme tabanlı bir çözüm
geliştirilmiştir. Bu çözümde de B-spline ile üretilen agresif manevralara sahip rotanın
pozisyon ve türevleri üretilmiş ve derin pekiştirmeli öğrenme ajanının bu referanslara
bağlı olarak yunuslama ve yuvarlanma açılarını üretmesi sağlanmıştır. Bu yaklaşımla
takip edilen rotalar yine LQR ve LQI diferansiyel düzlük kontrolcüleri ile de takip
edilip performans karşılaştırılması yapılmış ve daha yüksek hassasiyet ile rota takibi
yapabildiği gösterilmiştir.

xxv

xxvi

1. INTRODUCTION

Especially with the development of battery and engine technology, unmanned aerial

vehicle (UAV) have taken their place in our lives for a few decades. We frequently

see its use in civil and entertainment areas such as observation, cargo transportation,

cinematic shooting, game purposes, drone racing competitions, as well as in military

fields such as obtaining information, observing and even using ammunition. With the

development of the technology used on these small and large UAVs, it finds a place in

new application areas, while it also enables it to be used with more advanced methods.

Figure 1.1 : Current and future UAV adaptation among companies with 50M+
revenue [1].

When we look at the UAV market, according to 2018 data, 10% of the companies that

earned 50M + income were able to realize the UAV adaptation. 2% of these companies

started using drones in late 2018, and 7% planned to use drones in their future plans

which can be seen in Fig. 1.1. This shows that 19% of the surveyed companies are

using or expecting to use UAVs in the future. This shows that the UAV market increases

significantly every year and also creates new needs. [1]

In study conducted in 2018, it was observed that companies using UAVs achieved

serious results and therefore increased their usage frequency in the next year. As an

example, while there were 41% companies that made +10 flights in 2017, it rose to

54% in 2018, which is shown in Fig. 1.2 . When we look at the total, when the

1

Figure 1.2 : Frequency of drone flights per month: 2017 vs 2018 comparison [1].

comparison is made between 2017-2018, it is seen that the total flight increased by

84%. Considering this result, also the companies that will be adapted, we can say that

UAVs will appear in many areas. [1]

Figure 1.3 : Current UAV market in Rogers’ innovation adoption lifecycle.

Also, it is important to mention that this study shows that when we look at the adoption

percentage, this indicates that this is not established technology in the market, yet. [1]

also shows that according to Rogers’ innovation adoption life-cycle, the current drone

market is in early adopters stage which is shown in Fig. 1.3 . It is an indication that

the drone market will grow a lot in the future. [1]

2

Looking at the surveys conducted during market research seen in Fig. 2.1 , it is planned

to do research and development on light detection ranging (LIDAR) and automation

topics on UAVs [1]. Moreover, these two capability are also included in the ideas

that attract the most attention of companies. Sense and avoid, collision avoidance and

trajectory replanning studies, which have been hot topics recently and they are subtopic

of ranging and automation, have been studied and many start-ups have been established

in the light of these studies.

UAVs are becoming more and more capable of being used for complicated operations

as the technology barriers in perception and computational power are being removed.

Novel sensory systems integrated with AI-based perception algorithms allow small

size UAVs to be capable of performing the missions requiring high-level situational

awareness. Moreover, recent developments in the field of hardware such as GPUs with

neural network architectures improve the computational abilities of unmanned systems

to run demanding algorithms. Yet, the small UAVs are still incapable of performing

such agile operations as the motion planning algorithms mostly built upon and work

for specific cases. Therefore, the challenge in developing generalized agile trajectory

planning and precise tracking algorithms remains open.

Figure 1.4 : Current and future UAV trends.

1.1 Aims and Objectives

This thesis proposes two different solution for trajectory replanning and trajectory

tracking.

3

The first study, this thesis proposes a fast re-planning strategy based on deep

reinforcement learning for highly agile aerial vehicles. First, the differential flatness

model of an air vehicle is utilized, allowing us to directly map the desired output

trajectory, which is parameterized with b-spline curves, into required input states

to track trajectory. Moreover, perception model is used with fixed range and FOV

on the vehicle, and as soon as the vehicle detects the obstacle, it performs the

real-time evasive action through repetitive re-planning over an infinite trajectory.

Specifically, the algorithm is initialized with a flight trajectory plan, then performs

optimal control point vector update and knot insertion to generate a dynamically

feasible conflict-free trajectory. Through this modification, the regenerated trajectory

provides feasible evasive maneuvers for the vehicle, where the location and the number

of the added control points form the "agility" of this evasive maneuver. The control

point insertion considering dynamic constraints and the defined agility metrics is

transformed into a trajectory optimization problem, which is solved through deep

reinforcement learning (DRL). The proximal policy optimization (PPO) method is

utilized to train the re-planner with the random forest generation environment. The

agent produces re-planned dynamically feasible conflict-free trajectories with modified

control points approximately in 400us, which enables the real-time flight trajectory

generation for highly agile aerial vehicles. This proposed solution is published at

Journal of Intelligent and Robotics Systems [11].

The second study proposes a deep reinforcement learning-based trajectory tracking

controller, enabling to minimize the positional and velocity track error for aerial

vehicles based on a Proximal Policy Optimization (PPO) algorithm where the

controller is trained through randomly generated feasible trajectories. PI controller

is utilized for the attitude controller and PID for the attitude rate controller as the

aerial vehicle’s low-level controllers. The trajectory generator based on the dynamic

model guarantees the flat outputs, such that they do not exceed the given dynamical

limitations of the vehicle, and produces pitch and roll references to the attitude

controller. Simulation results show the root mean square error of the trajectory tracking

performance. Also, DRL agent performance is compared with LQR and LQI based

trajectory tracking controllers. This proposed solution is published at AIAA Scitech

Forum [12].

4

1.2 Thesis Outline

The rest of the paper organized as follows: Section-2 mentions about the literature

survey for trajectory planning, re-planning and trajectory tracking. In Section-3,

deep reinforcement learning based aggressive collision avoidance method is exlained,

simulations, indoor tests and outdoor tests results are shared. Section-4 explains the

trajectory tracking algorithm based on proximal policy optimization. This proposed

architecture is compared with LQR and LQI differential flatness based controller.

1.3 Contributions to Knowledge

Continues Space within dynamical limits:

The proposed method utilizes B-spline trajectory representation which could be

generated by using control points. One of the property of the B-spline enables to add

new control point without changing trajectory position, velocity, acceleration and other

derivatives. By using this property, we can change the curvature of the trajectory by

changing the position of the control point. This allows us to find a solution in continues

space. When we compare this with motion primitive selection from trajectory library,

even these methods only ensures local optimality because of non prior knowledge of

all obstacles, our method can generate more optimal trajectory because of searching in

continues space.

Computation Time:

Computation time is one of the significant feature of trajectory replanning algorithms,

which can allow to be used in more faster or more agile situations. The computational

speed of the algorithm used may, in some cases, put in situations where the collision

cannot be avoided. Because of this, some of the algorithms also propose safety time

which also depends on the situation. This safety time allows to compare the time of

the collision going to be occur and the time how much the computation may take.

Of course how much the computation going to take have a major effect on the safety

time. Therefore, the less computation time is more appropriate for agile and fast cases,

where it also allows to find collision avoidance maneuver even in very limited space.

It is also important to mention about the relation between sensors limited field of view

and computation time. If the safety time is big, in agile cases, the obstacle may occur

5

in front of the vehicle very fast and not from the end of the view, but maybe in the

middle. These cases only could be solved by having very little computation time that

allows to generate new trajectory where the vehicle still have enough action space

to act. Our proposed method takes 1.2 ms to prepare the header part and generate

replanned trajectory which is fastest solution within my knowledge.

Conservative Planning:

Limited FOV only ensures the obstacles that could be sensed by sensor. The vehicle

could not know if there are any other obstacles outside of this FOV. It would be

dangerous to assume or believe that the outside of FOV is safe. This is why the

proposed solution allows the generated replanned trajectory to avoid the obstacles

inside the FOV by avoiding as close as possible and ensures the safety distance to

the obstacles.

Computation Power:

The proposed solution can produce solutions quickly in time, and it can produce

solutions at these speeds without the need for high-performance CPU. This property

also allows the solution to be used for very light weighted vehicles where it is not

needed to mount heavy electronics or computers.

6

2. LITERATURE REVIEW

2.1 Trajectory Planning and Replanning Literature

Optimization-based trajectory planning and re-planning are one of the approaches

to generate safe non-collision trajectories, and some of these approaches are using

differential flatness to formulate the output trajectory. This approach provides

convenience to optimize dynamically feasible trajectories [13].

Optimizing polynomial path segments is also one of the path planning algorithm that

allows to automatically tune the aggressiveness on each segment by changing time

allocation for the segment [2]. The problem formulation modified as a unconstrained

quadratic program which allows efficient computation. Polynomial trajectories

are represented as differentially flat which allows to get rid of computationally

comprehensive sampling and reduce the high dimensional state space of a quadcopter.

The algorithm take samples in position only and use straight trajectory steering, then

to compute polynomial trajectory, these samples become support points to generate

desired trajectory. That approach allow the algorithm to compute faster, but it sacrifices

the theoretical optimality. Also, meanwhile finding these support points, algorithm also

checks if there are any collisions between these straight trajectories. [14] improves [2]

Figure 2.1 : Generated trajectory via optimizing polynomial path segments through a
map of a laboratory environment [2].

7

algorithm by handling the derivatives of the position. Moreover, they use probabilistic

approach to exceed uncertainties. They also decrease the computational time, which

allows them to use this algorithm in more aggressive situations.

[15] generates time optimal trajectory for each degree of freedom. The trajectory

feasibility for the vehicle is also constructed that includes the dynamical limits of the

vehicle and input constraints. For computational efficiency, feasibility of the trajectory

checked after the time-optimal jerk trajectories generated. Then, the trajectory

replanned by tuning jerk constraints if any infeasible part is found.

Traditional planning approaches have combined exploration and SLAM [16] to allow

the robot plan collision-free paths with a temporary goal and an accumulated map. [3]

proposes a short range policy that utilizes similar approach. The difference is that

the algorithm do not need the entire environment information, instead it uses the

goal point, it generates nearby points as a temporary goal in known map. Convex

decomposition of the local map is used to find these temporary goal and a safe

trajectory shown in Fig. 2.2. Because of the temporary goals, this algorithm also allows

the vehicle to plan or replan the trajectory when new map boundary data achieved by

the sensor data. The algorithm also ensures the dynamical feasibility of the trajectory

by using state constraints. [17] uses octree-based environment representation to define

Figure 2.2 : Convex decomposition representation to find temporary goal in known
map [3].

the environment. This environment incrementally built by using onboard sensors.

Through known and perceived environment, polyhedral decomposition is used to

define collision free space for convexification. These spaces are used the find free

8

corridors and generate minimum snap trajectory. This trajectory satisfies the safety of

the path and the dynamical constraints of the vehicle.

[4] developed real-time optimal trajectory generation algorithm that generates flat

outputs through the trajectory. The generated minimum snap trajectory also guarantees

the position and its derivative constraints and ensures the trajectory to pass through

desired corridors which are priori-known safe passages. On the other hand, [5] utilizes

Figure 2.3 : Minimum snap trajectory generation. (left) ensures to pass through
desired waypoints. (right) ensures to pass thorugh safe corridors [4].

kd-tree representation of the environment. [5] uses safety flight corridors to guarantee

safety in 3D space. To generate these paths, sampling based path finding method is

utilized. To generate this, first, RRG method is used to construct a randomly sampled

graph where the centers of the ball shape sage regions are used as vertices. Then, these

safe regions defined as ball shaped are used to present the safety corridors. Then, the

intersection of these safe ball-shaped regions are used as a waypoint constraint shown

in Fig. 2.4. To find these waypoints and generate the safe corridors, sampling-based

path finding algorithm is used. A quadratically constrained quadratic programming

(QCQP) are utilized to generate desired minimum jerk polynomial trajectory. This

solution runs onboard within 100 milliseconds, which enables to be used in real-time

flights. Another solution for the local replanning is the changing the B-spline control

points to avoid the obstacles [18]. The obstacles in the environment are modelled as a

occupancy grid and stored in a three dimentional circular buffer. The begining phase,

9

Figure 2.4 : Using ball shaped safe regions to find safety corridors [5].

straight uniform B-spline is defined from starting point to goal point. In flight, If any

obstacles intersect with the trajectory, the control point positions are remodified where

the number of the modified control points depend on the size of the obstacle. Also,

this number directly dependent on the computation time of the proposed algorithm.

Replacement of the control points are formulized as a unconstraint optimization which

allows the algorithm work faster.

The Bézier curves are also another trajectory representation, and it can be utilized to

generate a collision avoidance solutions. [19] integrated this representation for time

coordination of the multiple vehicles. First, Pythagorean Hodograph Bézier curves are

used to generate the desired trajectory that ensures the dynamical limits of the vehicles

and allows the spatial separation between the trajectories. Collision avoidance with

dynamic obstacles feature is formulated by adjusting the speed profiles of the vehicles.

To improve this, [6] extends this approach with modifying the trajectory by adding an

feasible detour where it ensures the safe passage which can be seen in Fig. 2.5. This

generation of the detour also considers the constraints of the vehicles position, velocity

and acceleration. Short range receding horizon control policy (SRRHCP) is utilized

where the policy relies on a sampling based strategy that allows faster computation

[20]. With the idea of short trajectories, it plans from the current state to the next

waypoint which is also inside the field of view of the sensor. Because of the limited

field of view, receding horizon control policy is decided to generate a trajectory in

finite time horizon. The collision safety is ensured by using polyhedral decomposition

of the visible free space. This method provides safe gaps in the visible map, and the

next waypoint is determined within this safe free space. Also, in situations where there

is no feasible trajectory to avoid the collision, stopping trajectories are also utilized to

10

Figure 2.5 : Modifying trajectory by adding feasible detour [6].

allow the vehicle to shift into zero velocity state. Generated trajectories also allows the

flight to be within the dynamical limits of the vehicle.

Another critic factor is the effect of the uncertainty on the trajectory. Even though

this uncertainty might occur because of the performance of the trajectory tracking

controller, attitude controller or the state feedback algorithms, it is also important to

consider these situations where the uncertainty of the system may allow the vehicle

to have a collision. Therefore, robust high-speed system is proposed [7] where the

primitives are utilized to evaluate the paths probabilistically for possible collision

which can be seen in Fig. 2.6. The motion primitives are applied in visible depth

information, and each primitives are also calculated by adding the uncertainty of

the state of the vehicle in corresponding time. These primitive calculations are also

provided by triple-double integrator maneuver library. To allow real-time control,

approximation methods are implemented with spatial partitioning data structures.

These motion primitives can also generated by sampling the vehicle’s control space

that also allows the dynamically feasibility of the primitives [21].

One of the study focuses on the computationally light-weight motion primitive

generation [22]. To overcome the computation weight, instead of including constraints

in the planning phase, the constraint check is conducted after having calculated motion

primitives. This approach allows faster computation and easy to implement since

being modular. These primitives also ensured to be the minimum jerk solutions for

11

Figure 2.6 : Motion Primitives are utilized to evaluate the paths probabilistically for
possible collision [7].

the current state to desired state. After achieving the primitives, dynamical feasibility

is checked from each of the primitives.

Some of the work focus on not only how to choose a trajectory from the trajectory

library, but how to create a search space which consist of a set of candidate paths

[23,24]. This work especially shows that the mutual separation of the set of trajectories

search has an effect on prior probability of the relative completeness. This problem

formulated as a maximum k-facility dispersion problem, and a greedy search algorithm

is used to produce a good set of paths.

[25] proposes incremental replanning algorithm that using previous computation. The

motion primitives are generated off-line where the robot motion model is utilized.

Differential flatness feature is used the decrease the dimensionality of the problem and

the complexity of the dynamics of the vehicle. To generate motion primitives, greedy

algorithm is proposed. This method also ensures the continuity of the shifting phase of

the motion primitives where all primitives guarantees to be dynamically feasible for the

vehicle. This work [8] shown in Fig. 2.7, also addresses a collision avoidance method

where there are no priori information about the cluttered environment. By sampling

terminal possible states, the generated motion primitive meets the minimum-time,

input and state constraints. The proposed algorithm called triple integrator planner

(TIP) allows to compute really fast solutions which allows to perform in real-time

12

Figure 2.7 : Triple integrator planner generates aggressive manuevers [8].

flights. Also, this algorithm focuses on generating aggressive maneuvers where the

vehicle is desired to finish the mission as soon as possible. Therefore, the fast

solution generation also contribute to this sort of missions. Because, the expected

motion primitives should ensure the minimum time intention, the motion primitives are

generated by ensuring to reach the desired point in maximum feasible jerk or maximum

feasible acceleration. Still, this approach has limitations because of the sensor field of

view. [26] develop this new work by improving triple integrator planner which is called

relaxed-contraint triple integrator planner. This method overcomes the limiting vehicle

speed problem because of the perception sensor.

2.2 Trajectory Tracking Literature

After planning and replanning of the trajectory, to ensure the desired optimality

of the results, trajectory tracking methods become crucial, especially in aggressive

collision avoidance cases. The vehicle is expected to track the desired trajectory.

Even though, the used path replanning methods may guarantee the local optimality, to

ensure this optimality in flight, the trajectory tracking method should provide expected

performance. To solve this problem, the trajectory tracking literature approaches are

mostly based on Lyapunov/backstepping techniques [27–34] and geometric control

[35–37].

In [38], the author implemented a LQR differential flatness based controller to track

multiple trajectories with multiple UAVs. However, we saw that as the trajectories get

more agile, the tracking performance drops significantly which showed the urgent need

for a more agile trajectory tracking controller.

13

As steady state errors are often encountered in [38], LQI method is used to overcome

this error [11]. Even though the steady state error is eliminated, the expected trajectory

tracking performance could not be achieved.

Before the vehicles are expected to engage in aggressive behavior, classical or

quadratic controller were meeting the expectation. The most important reason for

this is that the vehicles were not facing with significant drag force, therefore without

even computing this, suggested solutions in the past were providing expected results.

However, with the expectation of the aggressive manuevers from the quadcopter,

studies on this subject have appeared in the literature recently.

The proposed architecture in [39] utilizes LQR differential flatness based controller

for the quadcopter platform. Because of the yaw rate capability of the quadcopters,

arbitrary changes of the yaw is accepted, but small pitch and roll angles are not limited.

One of the study [9] focuses on linear rotor drag effects on the vehicle and proposes a

solution based on differentially flat formulation of these drag effects via its position and

heading. This feature is used to calculate the feed forward control terms from desired

trajectory references. Nonlinear feedback control system is proposed to include these

control terms to conduct a accurate aggressive flight with quadcopter shown in Fig. 2.8.

This solution also shows results that the root mean squared tracking error is improved

by 50% when compared with the results found in [39].

Figure 2.8 : Trajectory tracking performance considering rotor drag effects on the
vehicle [9].

14

The proposed solution in [40] examine a solution for guarantee applicable zero thrust

actuation that still converges to the desired trajectory, ensure that the actuation does

not grow unbounded and guarantee global asymtotic convergence where the trajectory

tracking error becomes zero. To provide these features, a nonlinear state feedback

controller is proposed in [40].

Another focus in trajectory tracking controller is a single motor failure. The proposed

method in [41] allows the quadcopter to continue to track the trajectory even a single

rotor loss situation occurs. To overcome this problem, dynamic feedback control law

is presented to maintain the desired velocity references along the trajectory.

[42] proposes an architecture for continuous time predictive control for limited output

trajectory tracking problems by designing continuous-time sampled-data NMPC

framework. This framework ensures the constraints of the states and inputs. The

formulation allows to guarantee the convergence by utilizing end penalties and

conditions based on terminal regions. Further, geometric nature of trajectory tracking

problems are also studied by utilizing the analysis of transverse normal forms to

compute the end penalties.

Recent progresses on emerging field of deep reinforcement learning allows the agent to

learn to solve high dimensional complex problems. Because of the risks for damaging

vehicle, the utilizing reinforcement learning techniques in vehicles are still restraint,

especially in UAVs because of the possible crashes. Since many trials are required

for the learning of an agent, the trainings are usually carried out in a simulation

environment, and then tested by implementing the agent. Although the theoretical

evidence of the reinforcement learning techniques studied is not clear, it can be seen

that the agent created with Monte Carlo simulations meets the requirements. Of

course, while performing these tests, all factors that may be experienced in real flights

should also be found in the Monte Carlo simulation. In literature, we see that the

solutions proposed for trajectory tracking problem with the backstepping approach

and geometric control are dominant, but the number of solutions with reinforcement

learning also increases over time.

The work in [43] used the Deep Deterministic Policy Grandient (DDPG) reinforcement

learning algorithm for solving a path following problem in a UAV. The agent was

15

in charge of only determining the yaw angle command while the desired altitude

and forward velocity are specified by the user. The agent generates delta yaw angle

which is added to current yaw command, and used in attitude controller. In aggressive

trajectories, only generating yaw angle commands would not be sufficient to track.

Figure 2.9 : Control performance of the RL agent [10].

[10] proposes new approach to train the deep reinforcement learning agent end-to-end.

The presented method uses raw sensor data and generates motors thrust directly. When

we consider classical approaches for controlling UAV, the agent includes sensor fusion,

high level and low level controllers as a concept. The agent models the whole process

that allows dynamic stabilization even in upside-down throw situations. The agent

trained by deterministic on-policy method, where zero-bias and zero variance samples

are used in training. Also for precision, they used the vehicle model that they used

in real flight tests in training. One of the tests are shown in Fig. 2.9 It is shown that

their approach outperformed DDPG and Trust Region Policy Optimization (TRPO)

algorithms.

One of the studies focuses on designing controller for autonomous inverted flight

on a helicopter. The proposed approach [44] includes using real flight data to learn

helicopter’s dynamics and utilizing reinforcement learning algorithm for learning a

controller.

[45] points out that using PID controller for attitude could provide desired

performance under normal conditions, but more intelligent controller architecture

16

is still needed for harsh, and unpredictable environments. Therefore, [45]

proposes reinforcement learning based solution for inner controller by utilizing

Trust Region Policy Optimization (TRPO), Proximal Policy Optimization (PPO),

and Deep Deterministic Gradiend Policy (DDGP). It was found that PPO gave

the best results among the three RL algorithms and it also outperformed the

proportional-integral-derivative (PID) controller.

17

18

3. A DYNAMICALLY FEASIBLE FAST REPLANNING STRATEGY WITH
DEEP REINFORCEMENT LEARNING

3.1 Problem Formulation and Contribution

3.1.1 Problem formulation

Figure 3.1 : Illustration of the agile trajectory replanning problem.

Let C be the navigation map where C =C f ree∪Cobs, Cobs is an obstacle and C f ree is free

space, which is depicted in Fig. 3.1. X is defined as pre-calculated trajectory, which

is formulated as a B-spline. Before flight, Cobs are unknown, but only C′obs ⊆ Cobs

are known because of sensor on-board. Moreover, X∗ is dynamically feasible and

collision-free trajectory only in sensor field of view (FOV) where X∗∩C′obs = { /0}. The

objective is to navigate the vehicle to use optimal trajectory X∗ by using B-spline knot

insertion method and changing this new control point via deep reinforcement learning.

The test environment is shown in Fig. 3.2 It is important to note that the collision

avoidance can only be performed locally because of the limited sensor field of view

19

Figure 3.2 : Test environment with Crazyflie, which is used as the platform to
navigate in ρ = 1.2 obstacle/m2 dense environment.

and there is no prior information about the position of the obstacles. Therefore, the

generated solution is not ensures global optimality, but it guarantees local optimality.

Also, in aggressive maneuver envelope, proposed algorithm replans the trajectory in

1.2 ms.

3.2 Differential Flatness Based Dynamic Model

Considering the aerial vehicles, the trajectory planning problem with dynamical

constraints on the vehicle might become extremely challenging due to their high

dimensional dynamics. However, for most of the dynamical systems, it is generally

possible to parameterize a part of the state regarding a given output trajectory and its

time derivatives. This phenomenon called differentially flatness enabling an effective

dimension reduction when the whole state and the input can be parameterized with one

output. Let the state of the system is x∈Rn and let the input of the system is u∈Rm. A

nonlinear system ẋ = f (x,u), y = h(x) is differentially flat, if one can write the system

20

equation in the following form:

z = ζ (x,u, u̇, ...,u(p)) (3.1)

where,

x = x(z, ż, ...,z(q))u = u(z, ż, ...,z(q)). (3.2)

Through differential flatness formulation, all of the feasible trajectories for the system

can be written as functions of a flat output z ∈ Rm and its derivatives [13].

3.2.1 Aerial vehicle model

In this work, the differential flatness principle is applied to real-time flight trajectory

generation problem of an aerial vehicle. We have formulated the desired output

trajectory through b-spline curves, enabling a map into the required input states to

track the given trajectory. For the implementation purposes, we utilized dynamical

model of a quadcopter, which can be derived by the Lagrangian approach as given

below:

ẍ =U1
(cosψ)cosφ sinθ+sinψ sinφ

m (3.3)

ÿ =U1
(sinψ)cosφ sinθ−sinφ cosψ

m (3.4)

z̈ =U1
(cosθ)cosφ

m −g (3.5)

ṗ =
Iy−Iz

Ix
qr+ 1

Ix
U2− Jm

Ix
qΩr (3.6)

q̇ = Iz−Ix
Iy

pr+ 1
Iy

U3 +
Jm
Iy

pΩr (3.7)

ṙ =
Ix−Iy

Iz
pq+ d

Iz
U4 (3.8)

φ̇ = p+ sinφ tanθq+ cosφ tanθr (3.9)

θ̇ = cosφq− sinφr (3.10)

ψ̇ = sinφ

cosθ
q+ cosφ

cosθ
r (3.11)

Where m is the aircraft mass, p, q and r are the angular rates in the body-frame, Ix,

Iy and Iz are the moments of inertia. Jm is the motor inertia, and ΩR is defined as

ΩR =−Ω1−Ω3+Ω2+Ω4. The input vector with U1,U2,U3,U4 is expressed in terms

21

of the motor angular rates Ωi, where i = {1,2,3,4} and given as follows:

U1 = b∑
4
i=1 Ω2

i , (3.12)

U2 = bl(Ω2
4−Ω2

2), (3.13)

U3 = bl(Ω2
3−Ω2

1), (3.14)

U4 = d(−Ω2
1 +Ω2

2−Ω2
3 +Ω2

4) (3.15)

An aerial vehicle state can be represented by the flat variables xxx = [x,y,z,ψ], where

x,y,z are the Cartesian positions and ψ is the vehicle’s yaw angle. With these four

inputs, the dynamics of the quadcopter can be expressed as differentially flat. To obtain

these flat outputs, we utilize the b-spline curves to formulate the Cartesian position

vector [x,y,z] and derivatives. Yaw will be considered as a constant for simplification.

Therefore, the state of the aerial vehicle xxx is given as follows:

xxx = [xT ẋT ẍT]T = [xT vT aT]T (3.16)

Through B-spline representation, which will be explained in Section-3, one can

define position of the vehicle and its derivatives by using the B-spline continuously

differentiable property. The total thrust U1 can be represented by the flat outputs as

follows:

U1 = m
√

ẍ2 + ÿ2 +(z̈+g)2 (3.17)

The pitch θ and roll φ angle equations is given as follows:

φ = arcsinmẍsinψ−mÿcosψ/U1 (3.18)

θ = arcsin
mẍcosψ−mÿsinψ

U1 cosφ
(3.19)

Finally, U2, U3 and U4 can be derived as in Eq. (3.17) defined through flat outputs and

Lagrangian model of quadcopter.

3.2.2 Perception model

Typically, aerial vehicles have limited range and field of view (FOV). Because of

the forward and horizontal acceleration that the air vehicle can produce, the sensor

needs to have more FOV, on the other hand, in that physically maximum acceleration

situations, there is no way that air vehicle can sense the obstacles around itself [26].

The generating infinite collision-free trajectory for a flight in clutter environments with

22

a limited field of view, regardless of the planning algorithm, resembles the flying in an

environment with a random obstacle generating process. In [46], it is shown that when

this process is ergodic, the existence of an infinite collision-free trajectory exhibits a

phase transition with certain critical speed. Sensing with random obstacle process is

depicted in Fig.3.3.

Figure 3.3 : Sensing with limited field of view (FOV) and range for the aerial vehicle.
The local interest of environment is perceived as random.

3.3 Trajectory Characterization and Modification

In this section, we provide the details about output trajectory parameterization for the

aerial vehicle, and how to provide modification over the generated trajectory.

3.3.1 Trajectory parameterization with B-Spline

The B-Spline representation allows one to describe any flight trajectory with their

derivatives, which enables parameterizing of a flat output through the generation of

several joined polynomials. Generally, a pth-degree B-Spline curve is defined as

follows:

p(t) =
n

∑
i=0

PiBi,p(t)a≤ t ≤ b (3.20)

Where p(t) denotes the curve at t and the Pi are the control points. The Bi,k(t) are basis

functions that can be computed using the De Boor-Cox recursive formula [47–49].

Bi,0(t) =

{
1 if ti ≤ u < ui+1

0 otherwise
(3.21)

Bi,p(t) =
u−ui

ui+p−ui
Bi,p−1(t)+

ui+p+1−u
ui+p+1−ui+1

Bi+1,p−1(t) (3.22)

These basis functions are defined as the function of the knot vectors:

τ = [u0, ...,um] (3.23)

We used uniform knot vector which could also be presented as:

τ = [a, ...,a, tp+1, ..., tm−p−1,b, ...,b] (3.24)

23

The length of the knot vector is m+1 where m = n+ p+1 [49]. We assume that a = 0

and b = 1 for the unity knot vector, and the first and last knots have multiplicity p+1.

We define a knot vector τ = [t0, ..., tm] is uniform if all interior knots are equally spaced

such that d = ti+1− ti for all p ≤ i ≤ m− p− 1. The algorithm of the B-Spline [49]

curve is represented in 3.

Algorithm 1: FindSpan
Input: n, p,u,τ
Output: mid

1: if u == τ[n+1] then
2: return n
3: end if
4: low = p
5: high = n+1
6: mid = (low+high)/2
7: while u <U [mid] ||u≥U [mid +1] do
8: if u <U [mid] then
9: high = mid

10: else
11: low = mid
12: end if
13: end while
14: return mid

Algorithm 2: BasisFunc
Input: i,u, p,U
Output: N

1: N[0] = 1.0
2: for j = 0, j ≤ p, j++ do
3: le f t[j] = u−U [i+1− j]
4: right[j] =U [i+ j]−u
5: saved = 0.0
6: for r = 0, r ≤ j, r++ do
7: temp = N[r]/(right[r+1]+ le f t[j− r])
8: N[r] = saved + right[r+1]∗ temp
9: saved = le f t[j− r]∗ temp

10: end for
11: N[j] = saved
12: end for
13: return N

Property 1. Endpoint interpolation

The trajectory p(t) with control point array [P0, ...,Pn] consisting of n + 1 control

24

Algorithm 3: B-Spline Curve Point
Input: n, p,τ,P,u
Output: pos: Position in time t

1: span = FindSpan(n, p,u)
2: N = BasisFunc(span,u, p,τ)
3: pos = 0
4: for i = 0, i≤ p, i++ do
5: pos = pos+N[i]P[span− p+ i]
6: end for
7: return pos

points, and by assuming first and last knots have multiplicity p+ 1 where a = 0 and

b = 1, then it holds endpoint interpolation property such that P0 = p(0) and Pn = p(1).

The p(t) curve has a strong relationship between the instantaneous positions of the

vehicle as the p(t) curve is the normalized form of the generated trajectory. The

endpoint interpolation ensures that the first and last control points are the initial and

final states of the aerial vehicle.

Let p(k)i denote the kth-derivative of pi. Then p(t) said to be C j continuous at the

break-point ti if p(k)i (ti) = p(k)i+1(ti) for all 0≤ k ≤ j.

Property 2. Continuity

The trajectory p(t) is infinitely differentiable in the interior of knot intervals, and it is at

least p− k times continuously differentiable at a knot multiplicity k. Then, typically a

pth-degree B-Spline curve includes piecewise polynomials of degree p and have Cp−1

continuity. The derivatives of p(t) curve enables to define the velocity, acceleration,

jerk and snap of the trajectory, and can be expressed as follows:

p(k)(t) =
n

∑
i=0

PiB
(k)
i,p (t)t ∈ [0,1] (3.25)

where k represents the order of derivatives. B-spline curve is a linear combination of

the basis function Bi,p(t),therefore the differentiability and continuity of the B-spline

depends on their basis functions Bi,p(t). The Eq. (4.12), allow us to obtain velocity and

acceleration vectors of the trajectory through first and second derivatives respectively,

and an example trajectory with velocity and acceleration vectors is given in Fig.

3.4. Considering the agility in generated flight trajectories, in addition to velocity

and acceleration continuity, we have included jerk and snap continuity as well while

25

Figure 3.4 : An example B-spline trajectory agility with instantaneous velocities(red)
and accelerations (green), where the velocity vectors shows the motion direction of

the aerial vehicle.

defining flat outputs to track; therefore, we have chosen to represent flat output

trajectories with p = 6-degree B-splines to ensure at least C4 continuity.

The B-spline curves have a strong convex hull property that the curve is constrained in

the convex hull of its control polygon.

Property 3. Strong convex hull

The curve is contained in the convex hull of its control polygon. If t ∈ [ti, ti+1] where

p ≤ i ≤ m− p− 1, then p(t) is in the convex hull of the control points Pi−p, ...,Pi. In

other words, the generated trajectory remains within certain limits, which are formed

by control points Pi and as a result of this known beforehand. Knot insertion or

breaking uniformity, therefore, does not change these limits of this convex form. This

property is depicted in Fig. 3.5 with an example.

The other property that we exploit is local support.

Property 4. Local support

Relocating Pi changes p(t) trajectory only interval of [ti, ti+p+1) due to the fact that

Bi,p = 0 for t /∈ [ti, ti+p+1). In other words, relocating one of control points changes the

curve’s position and derivatives only locally [49]. This property allows us to relocate

the control points, without repetitively checking the collision and dynamical feasibility

of the whole trajectory with its positions and derivatives.

26

Figure 3.5 : An example of B-spline curve defined by five control points P0,..,4 which
are shown as blue dots. The curve is completely enclosed within the convex hull

created by its control points.

One can note that there is a strong relationship between the knots t and the time

allocations over the generated trajectory as ti ∈ [0,1] ∀i ∈ R is the normalized time

parameter. In the other words, considering the knot vector ητ = η [t1, ..., tk], the

η factor does not change the geometry of generated trajectory while scaling the

derivatives of it.

3.3.2 Trajectory modification with control point relocation and knot insertion

The trajectory replanning strategy is based on control point relocation and knot

insertion to the generated B-spline curve. Through exploiting the following properties

of the B-splines, we can achieve this replanning with knowing the limits and the local

interest of the modification over the trajectory.

After defining the trajectory with a uniform B-spline, through control point and knot

insertion, one can replan the trajectory only changing the geometry of local interest

for certain intents such as dynamic collision avoidance, re-optimization, etc. Let us

assume that the collision over the trajectory around t̄ sensed, meaning that immediate

replanning is required, which is depicted in Fig. 3.6.

Control Point Relocation

To express the relocation of the control point, Eq. (4.7) can be written in the following

form :

p(t) = P0B0,p(t)+ ...+PiBi,p(t)+ ...+PnBn,p(t) (3.26)

27

... ...

Figure 3.6 : Collision sensing over trajectory around t̄ knot point.

... ...

Figure 3.7 : Control point relocation over the trajectory.

Where 0 < i ≤ n. Let us assume to relocate the Pi, then the new control point and

location become P̄i:

P̄i = Pi +V (3.27)

Where V presents the relocation vector. After relocation, the B-spline curve equation

becomes:

p̄(t) = P0B0,p(t)+ ...+(Pi +V)Bi,p(t)+ ...+PnBn,p(t) (3.28)

or

p̄(t) = p(t)+V Bi,p(t) (3.29)

The relocation process, due to the local support, only effects the curve within the

t ∈ [ti, ti+p+1) interval where Bi,p(t) 6= 0 and this is depicted in Fig. 3.7.

Knot Insertion

Relocating existing control points gives us a limited behavior for replanning and in

some cases, might cause additional agility, almost breaking dynamic feasibility. By

addressing this problem, the knot insertion methodology shown in Fig. 3.8, enables an

increasing number of control points; in other words, more flexibility, without changing

the geometry of the trajectory.

28

Let us assume that p(t̄) is the closest point to the sensed obstacle or mean of the sensed

obstacles pso on the trajectory. t̄ is starting from the current time t0 when the aerial

vehicle sense any object with its sensor. Then, it uses the knot insertion method to add

this new Pnew control point.

Pnew = p(t̄)t̄ = min(‖p(t̄)− pso‖2)t̄ ∈ [t0,1]

As we already know the location of Pnew from (3.30), we need to insert t̄ inside the

knot interval from the knot vector. We assign l = ti, where t̄ ∈ [ti, ti+1]. Then, we

utilize following Eq. (3.30) and Eq. (3.31):

αi =

1 i≤ l− p+1
0 i≥ l +1

t̄−ti
tl+p+1−ti

l− p+2≤ i≤ l
(3.30)

P̂i = (1−αi)Pi−1 +αiPi (3.31)

(a) Initial Trajectory (b) Knot insertion method

(c) New control points replaced

Figure 3.8 : Replacing control points with the new ones through knot insertion
method is presented. (a) is a simple trajectory defined by P0, ...,P9 control points. (b)

shows knot insertion method and the output of the method is shown as Q3, ...,Q7
control points. (c) presents the result of the knot insertion method where P3, ...,P6 are

replaced with Q3, ...,Q7 control points.

Through the knot insertion, we find the knots correspond to the required control point

positions. We replace control points Pl−k+1, ...,Pl−1 with Ql−k+1, ...,Ql; hence, the

29

new control point vector is defined as P̂i, and the new B-spline curve can be found with

following Eq. (3.32).

p(t) =
n+1

∑
i=0

P̂iB̂i,p(t)t = [0,1] (3.32)

An example control point vector modification through knot insertion is depicted in

Fig. 3.8. It should be noted that an increasing number of control points does not cause

geometric change over the trajectory.

3.3.3 Replan decision point

In trajectory planning problems, mostly global and local planning/replanning runs

together to achieve safe navigation in a highly dynamic environment. In addition to

geometric and dynamic feasibility, local planners require computational feasibility that

considers computational and time complexity of the utilized algorithms. To achieve

real-time fast replanning, the algorithm should consider calculation time as the vehicle

flies over the trajectory. Through the local support property as we know already, which

segment of the trajectory to be reformed, it is essential to consider the backpropagation

of this modification over the planned trajectory.

Now suppose that t̄ is the knot vector value with t̄ ∈ [tk, tk+p+1) and p(t̄) = Pi is

the control point where a modification requires and the obstacle detection occurred

at p(t0). Recall that knot values over the trajectory has a direct scaling relationship

between the time as the knot vector t ∈ [0,1] is the normalized time value. It is possible

to define an algorithm run-time and transform into a knot value, let it be δt . Due to

the translation of Pi to P̄i, all trajectory points outside the t̄ ∈ [tk, tk+p+1) interval are

to be unaffected. Therefore following safety rule should be satisfied always while

replanning;

tk ≥ t0 +δt , t̄ ∈ [tk, tk+p+1) (3.33)

This rule guarantees that any possible replanning trajectory has a chance to provide

an evasive maneuver. As the replanning [t0, tp+1) span over the trajectory depends on

the size of the knot vector, the scope of the replanning segment shows a difference

with the number of control points. There is a trade-off here between the trajectory

description resolution and the number of fails in replanning algorithm run: the more

control points providing more flexibility in trajectory modification means possibly

more fails in dynamic feasibility check; while fewer control points give smoother

30

trajectory modifications, unlikely breaking the dynamic feasibility over the trajectory.

Fig.3.9 demonstrates these effects with different trajectory description resolutions.

Figure 3.9 : Replanning scopes over the trajectories with different number of control
point representations.

3.4 Optimal Replanning with Deep Reinforcement Learning

Since the air vehicle tracks the trajectory at high speeds, the collision avoidance

algorithm should be able to respond immediately. An algorithm that does not work

with sufficient performance causes the high-speed aircraft to get into the inevitable

collision state. In addition, global optimality is not expected from the new generated

trajectory, since the environment is partially known by the air vehicle. However, it is

desired to produce the local optimum escape maneuver.

As a solution to these requirements which is shown in Alg. 4, first, a new control point

is added to the closest point to the obstacle by using one of the features of B-spline

called knot insertion method. This method provides more flexibility without breaking

dynamic feasibility or changing geometry and progression of the trajectory. Then, the

position of this control point is shifted according to the output of the pre-trained deep

reinforcement learning agent. The output of the algorithm is a new route that avoids

the obstacle detected by local knowledge with the re-positioned control point. Deep

Reinforcement Learning (DRL) is a tool that can provide an optimal decision based on

what it has learned in certain situations. The purpose of this tool, which uses Markov

decision processes (MDP), is to produce an action based on the state of the agent in

a particular environment. After taking any action, the agent receives a reward for the

action and the next state. Through estimating/learning the rewards corresponding to

the state, the agent develops its policy.

31

Algorithm 4: Aggressive Collision Avoidance Algorithm
Input: C′obs: Sensed obstacle position
Output: p∗(t): Locally optimal, collision-free trajectory

1: if C′obs 6= { /0} then
2: P̂, τ̂ = KnotInsertionMethod(P, τ , C′obs, k)
3: ∆x, ∆y = RLAgent(ObservationMatrix)
4: P̂k = P̂k +[∆x,∆y]
5: end if
6: return P̂, τ̂

In reinforcement learning, the maximization of the accumulated reward is the main

goal of the agent. Therefore, In each episode, the agent learns to self-adjust policies to

maximize the accumulated reward. The agent learns these policies through interaction

with the unknown environment, which is formulated as an MDP by a tuple M =

(S,A,T,R,γ). S is a set of agent states, and A is a set of actions. This representation

assumes that the next state st+1 is only conditional on the current state st and action

at which is derived from Markov property. T is a transition probability function

T : SxA ∈ [0,1], which maps the transition to probability.R : SxA ∈ R is the reward

function represents the amount of reward or punishment that the environment will pass

in for a state transition. γ is the discount factor γ ∈ (0,1], which is used to receive the

return from the process as a sum of the discount rewards. Further thought, the agent is

at state st , and it takes action at and receives a reward rt based on predefined reward

function. Then, the environment transitions to state st+1 according to the T .

Reinforcement learning applies this MDP formulation and modifies it to use for

learning. The technique that we use is defined under policy-based reinforcement

learning. This policy represents a function mapping a state to action, and the agent

aims to optimize the policy to maximize the accumulated reward.

3.4.1 Proximal policy optimization

The Proximal Policy Optimization (PPO) is one of the policy gradient methods for

reinforcement learning. It uses the first-order algorithm to utilize the benefits of trust

region policy optimization (TRPO) such as reliable performance and data efficiency

[50]. The TRPO aims to maximize the surrogate objective function LCPI (conservative

policy iteration) [51]. Let rt(θ) is the probability ratio shown as follows:

rt(θ) =
πθ (at |st)

πθold(at |st)
r(θold) = 1 (3.34)

32

LCPI(θ) = Êt
[
rt(θ)Ât

]
(3.35)

CPI refers to conservative policy iteration. [50] proposes new objective function, which

is presented in below:

LCLIP(θ) = Êt
[

min(rt(θ)Ât ,clip(rt(θ)),1− ε,1+ ε)Ât)
]

(3.36)

where epsilon ε is a hyperparameter that we have chosen as 0.2. The difference

between TRPO and PPO based on the clip(θ),1− ε,1+ ε)Ât term, which allows us

to adjust the surrogate objective by saturating the probability ratio. The reason for this

clip function is to avoid extensive updates by the maximizing LCLIP. Clipping function

also depends on the interval [1− ε,1+ ε] term, where we can change the size of the

update rate by changing the ε .

For the training part of the DRL, first, we need to define observation, reward, and

action vectors. In order to start the learning process, random scenarios where the agent

to be trained are generated. In Fig.3.10, some possible scenarios are depicted. In each

scenario, Poisson distributed random numbers are generated to create the number of

obstacles encountered by air vehicles through the distribution equation given by Eq.

(3.37), and the position of the obstacles is randomly assigned according to a uniform

distribution.

Pois(x; µ) = (e−µ)(µx)/x! (3.37)

Figure 3.10 : Depiction of scenarios with random obstacle generation and limited
FOV.

Considering the small region of interest due to limited FOV, we only produce one

collision situation in each scenario during the training. Instead of running the training

algorithm depending on the cumulative rewards where there are too many obstacles,

we have created specific scenarios that only locates one or more obstacles once, and

tries to generate solution locally. This modification simplifies the collision avoidance

in the cluttered environment and allows the DRL agent to learn faster.

33

In DRL, we defined observation, reward and action as follows:

Observation Space:

We assume that the air vehicle can obtain the state measurements via inertial

measurement unit (IMU) sensor and GPS. The trajectory plan, defined through

B-spline curve, involves initial and future states and their derivatives. For describing

a collision state, the observation state also includes the states of the obstacles that are

sensed, and the new inserted control point location. Observation space tuple is given

as follows:

Ω = {p(t), ˙p(t), ¨p(t), pobs,Pnew} (3.38)

where {p(t), ˙p(t), ¨p(t)} are the current state and its derivatives of the aerial vehicle

over the generated trajectory; pobs is the closest point to collision with the obstacles;

and Pnew is the newly inserted control point.

Action Space:

Action space consists of the relocation position with respect to the newly inserted

control point. After the DRL agent generates a new action based on the observation

space, this action values are added to this new control point, and the B-spline curve is

updated. Action space tuple is given with relocation of newly inserted control point

A = {Pnew}.

Reward Function:

In this local re-planning problem, DRL agent’s learning is directly depends on how to

define the reward function.

Considering agile flight enabling fast collision avoidance, we have chosen to use the

agility metric for the reward function. Given the definition, agility can be a positive

reward or penalty to obtain aggressive or smooth flight under the dynamical constraints

enabling a feasible trajectory. These constraints limit the search space for the training

of the agent for re-planning.

The definition of the agility metric is a well-studied topic on many different vehicles.

In [52, 53] many of the agility metrics are summarised. [53] especially focuses on

maneuverability and agility for rotary unmanned aerial vehicles, and defines the

attitude quickness as Q = ˙αpeak/∆α where ˙αpeak = {ppeak,qpeak,rpeak} and ∆α =

{θ ,φ ,ψ}. Considering these definitions, we have chosen the agility metric based-on

34

Instantaneous-rates, which are also proposed in [54–56]. Hence, the reward function

R can be defined with the agility metric as a second derivative of the generalized state

variables, as given below:

R =∓
ti+p+1

∑
t=ti

m

∑
j=1

ω jẍjt (3.39)

where x ∈ Rm represents the generalized state variables and ω j is the weight value for

each state. By setting these weight values, we have chosen to use the agility definition

with high dominance at angular velocities.

Dynamic Feasibility:

To make sure the generated trajectory is feasible, we must ensure that velocity,

acceleration, jerk, and Euler angles at each state of the trajectory remain bounded, and

guarantee that the newly generated trajectory remains within the collision-free space

with small safety volume, as depicted in Fig.3.11. Note that relocating one of control

point Pi changes p(t) trajectory only interval of [ti, ti+p+1), and requires collision check

over this segment of the trajectory only. To meet the dynamical feasibility, we included

constraints inside the reward function. If at any point, the generated trajectory respect

to the action breaks the following constraints, then the reward function takes a big

negative constant value.

‖p(t)− pso‖2 ≤ dobs,r +dsa f e (3.40)

vmin ≤ ṗ(t)≤ vmax t ∈ [ti, ti+p+1) (3.41)

amin ≤ p̈(t)≤ amax t ∈ [ti, ti+p+1) (3.42)

jmin ≤
...p(t)≤ jmax t ∈ [ti, ti+p+1) (3.43)

θmin ≤ θ(t)≤ θmax t ∈ [ti, ti+p+1) (3.44)

φmin ≤ φ(t)≤ φmax t ∈ [ti, ti+p+1) (3.45)

35

Figure 3.11 : Safety volume around the vehicle.

3.5 Fast Replanning Software Implementation Results

To generate a DRL agent, we used OpenAI gym environment [57] with proximal

policy optimization. After defining the required spaces, we trained the DRL agent

approximately 1200 episodes. Because of the number of CPU and scenario number for

each episodes, the DRL agent trained with approximately 30 million scenarios. The

reward results can be seen in Fig.3.12. The initial point Ginit and the goal point Ggoal

Figure 3.12 : Reward performance, each episode includes 5120 randomly generated
scenarios.

are randomly generated with a specific distance between them shown in Fig.3.13. From

very start, because there are not any known-obstacles, the minimum distance trajectory

between Ginit and Ggoal is a simple straight line. Because of randomly generation of

these points, the lines heading also changes. This is very important for the scenario

generation allows the generalization of the DRL agent. Another important point to

mention is encountering obstacles situations.

36

Figure 3.13 : Replanning algorithm in 20m×20m environment with an obstacle
density of 0.1 obstacles/m2.

The on-board sensor model [26] is used to detect obstacles and find their relative

positions respect to the air vehicle’s location. We used a sensor model on the air

vehicle with a 20◦ field of view (FOV) and 4 meters range. Whenever sensor finds

any obstacle, the local re-planning algorithm starts, which consists of adding new

control point with knot insertion algorithm, generating observation for DRL agent,

action generated by DRL agent and with new location for the new control point is used

to update the trajectory. The schematics for the scenario is shown in Fig.3.13.

In the cluttered environment simulations, the scenarios are designed through randomly

cluttered forests with different obstacle density where the vehicle must fly from Ginit to

Ggoal in 20m×20m environment. Before the flight, the air vehicle generates a B-spline,

which is an almost straight flight trajectory between Ginit and Ggoal , which can be seen

in Fig.3.13.

We have conducted several scenarios at different complexities for testing our DRL

agent. The results from three randomly generated scenarios can be seen in Fig.3.14,

37

3.15 and 3.16 such that the obstacle densities are higher than 0.05 obstacles/m2 and

0.1 obstacles/m2.

(a) Scenario

(b) Acceleration (c) Jerk

(d) Pitch (e) Roll

Figure 3.14 : The cluttered environment simulation, randomly generated obstacles in
20m×20m environment with an obstacle density of > 0.05obstacles/m2.

3.5.1 Batch simulation results

Considering the dynamic feasibility of replanning, through the proposed methodology,

we have full control authority over the defined dynamical constraints. The

38

(a) Scenario

(b) Acceleration (c) Jerk

(d) Pitch (e) Roll

Figure 3.15 : The cluttered environment simulation, randomly generated obstacles in
20m×20m environment with an obstacle density of > 0.1obstacles/m2.

methodology allows us to define the constraints and generate the trajectories to comply

with them. To test the ability of the algorithm, e.g., in the training phase of DRL agent,

we have defined upper bound constraint at 11m/s and lower bound constraint at 8.5m/s

in velocity; upper bound at 15m/s2 in acceleration, and upper bound 50m/s3 in jerk.

This set of constraints has been chosen for a small UAV to track a trajectory at high

speeds based on the strict dynamic limits. Through a batch run with 500 randomly

39

(a) Scenario

(b) Acceleration (c) Jerk

(d) Pitch (e) Roll

Figure 3.16 : The cluttered environment simulation, randomly generated obstacles in
20m×20m environment with an obstacle density of > 0.1obstacles/m2.

generated scenarios, the velocity, acceleration, and jerk profiles generated by the

algorithm, are shown in Fig. 15. As seen in the figure, the algorithm does not break the

constraints, even though hits the limits in some cases. In addition to these results, there

were only three scenarios terminated by pre-defined safety rules, demonstrating that

the RL agent can not generate a dynamically feasible collision-free trajectory because

of the deficiency of enough time to maneuver. Furthermore, another 500 randomly

40

Table 3.1 : Comparisons with other similar trajectory replanning methodologies.

Liu et al. [3] 160ms 3.4 GHz dual-core i7 Intel NUC
Burri et al. [14] > 40ms AscTec Firefly 2.4 GHz Controller
Chen et al. [17] > 34ms 3.20 GHz Intel Core i5-4570 CPU
Lopez et al. [8] ≤ 5.06ms 2.70GHz Intel Core i7-2620M
CL-RRT* [58] ≥ 650ms Intel Xeon 2.4GHz
Our method 1.2ms Intel Xeon 2.4GHz

generated scenarios are generated, with increased control point numbers to define a

B-spline trajectory. In this case, five scenarios were terminated due to no solution

found under dynamical limitations. From a practical point of view, It is possible to

foresee these situations and hold the action to avoid possible crash situations.

(a) Velocity (b) Acceleration

(c) Jerk

Figure 3.17 : 500 different flight scenarios where all the obstacles are positioned
randomly on the map are tested. The result of the flight tests are shown for the

following metrics (a) velocity m/s, (b) acceleration m/s2,and (c) jerk m/s3.

3.5.2 Performance comparison with other algorithms

Considering the real-time applicability, we have measured the computation times,

which are conducted on Intel Xeon 2.4 GHz. For the worst case scenario, we have

observed that it takes 0.512ms to produce a new location for the control point of the

41

(a) CL-RRT* solution at 650ms (b) Our methodology at 1.2 ms

Figure 3.18 : Comparison with Closed-loop RRT* solution for trajectory replanning.

DRL agent. And with the knot insertion method, generating and updating the trajectory

takes 1.2ms. The computation time table with other reference methodologies with their

computational power is given below, and it is worth noting that 1.2ms computation time

starts from after obstacle detection to the end of the trajectory updating. The reported

computation times in the table might include the point cloud processing to detect the

obstacles in the environment, which typically has utilization around %5−10.

Then we have concentrated on the RRT* algorithm, as it is a well-known and

well-studied sampling-based trajectory planning methodology assuring asymptotic

optimality [58]. Considering the dynamical feasibility, we applied the closed-loop

modification of RRT* (CL-RRT*) algorithm to compare with the presented method.

It should be noted that, in the agile collision avoidance problem, the goal is to generate

a solution as fast as possible; therefore, we have chosen to use the first feasible

trajectory of CL-RRT*. In sampling-based algorithms, while the number of samples

goes to infinity, the algorithm’s solution converges to the optimal solution [59]. Hence,

they need to use large samples to generate nearly optimal solutions.

When we compare our solution with the CL-RRT* algorithm, while our algorithm

provides a re-planned trajectory in 1.2 ms, the CL-RRT* algorithm generates a feasible

trajectory after 650 ms. This result is expected, as the CL-RRT* has no ability to

use existing (but compromised) flight trajectory, while our methodology exploits it, in

addition to offline training. As seen in Fig. 3.18, the first product of the closed-loop

RRT* algorithm, which presents after 50− 75 samplings on average, is far from the

optimal trajectory.

42

3.6 Fast Replanning Hardware Implementation Results: Under VICON System

We have applied the methodology integrating with agile trajectory tracking controller

to a small UAV hardware platform flying under motion capture system. A video

including explanation of the algorithm and a couple of random scenarios can bee seen

in the following link: https://youtu.be/8IiLQFQ3V0E.

The air vehicle used in this work is Crazyflie 2.1 [60]. Fig. 3.19 shows the architecture

used in the implementation. The fastest route from start point to end point with

no obstacles assumption is a straight line. Therefore, first we generate straight

differentially flat trajectory from starting point to end point. The initial desired B-spine

trajectory reference is sent to the trajectory tracking controller by the navigation

system. This system run inside one of the desktop computer with Intel i7 CPU. Also

inside, sensor emulator which is explained in Section 3.2.2 is used as a on-board sensor

which has 1 m range and 20deg FOV. Sensor emulator also obtain position data of

the Crazyflie and the obstacles from VICON in 100Hz. After any situation appears

where any obstacles inside the FOV, sensor emulator sends obstacles position to the

algorithm. Knot insertion method is used to add new control point on the sensed

obstacle and DRL agent generates delta distances for this new control point. After this,

trajectory is generated in that knot interval. Even sensor emulator finds any obstacle or

not, trajectory references are independently sent to the trajectory tracking controller,

where this controller also get position and orientation data from the VICON. Trajectory

tracking controller generates desired roll, pitch and yaw references and these values

are sent to the Crazyflie by RF radio. These processes are running inside the desktop

computer.

Crazyflie obtains these reference values and also its own angular states from sensor

fusion which only uses gyro and accelerometer data. The desired PWM values are

generated inside Crazyflie by using attitude controller, attitude rate controller and

control mixer.

Trajectory Tracking Controller:

Aggressive trajectories is really hard to track with classic controller methods. With

using LQR, because of the steady state error, the tracking performance was very poor.

To the state-space representation to include the integration of the position states in

43

Differential Flat
Trajectory

Initialize: B-spline(Pinit , τinit)

DRL AgentP̂, τ̂

P, τ

Sensor Emulator VICON

Trajectory Tracking
Controller

On-board Attitude
Controller

IMU Data

Position Data

ROS

VICONROS

State Estimator

Sensed
Obstacles

ROS

Td, Φd, θd, rd

States

Navigation System

Flat Outputs

Figure 3.19 : The system architecture for hardware implementations.

order to minimize the tracking error in agile maneuvers, as follows:

X =
[
x y z ẋ ẏ ż ψ

∫
x
∫

y
∫

z
]T (3.46)

And the state-space model becomes:

ẋ = Ax+Bu−bg (3.47)

Where

A =

03×3 I3×3 03×1 03×3
03×3 03×3 03×1 03×3
01×3 01×3 01×1 01×3
I3×3 03×3 03×1 03×3

B =

03×3 03×1
I3×3 03×1
01×3 1
03×3 03×1

and

b =
[
0 0 0 0 0 1 0 0 0 0

]′
The Fig.3.20 shows the controller architecture. The error in the quad-rotor position is

integrated in the LQI block and combined with the position and the velocity errors.

This error is then driven to zero by finding the control input u = −K ∗ error that

44

minimizes the quadratic cost function,

J =
∫

∞

0
XT QX +uT Ru dt (3.48)

where Q and R are the symmetric positive-definite weighting matrices.

Differentially
Flat Trajectory f -1+

LQI

+

+ -

Attitude
controller

Air
Vehicle

m otors
PWM

Position and VelocityDesired Trajectory

FF
Acceleration

Figure 3.20 : Differentially flat trajectory tracking architecture.

Differential Flat Trajectory is corresponds to the B-spline trajectory generation.

Before the flight, straight trajectory is defined which starts from [0,0] point to [3.5,3.5]

point for testing. Also, the defined trajectory is ensured to be aggressive that even it is

straight line, the forward acceleration is at nearly its limits. The output of this block is

the desired position, velocity and acceleration values.

The reason not to be exactly at its limits is that to leave enough control space to avoid

the obstacles. Another solution might be changing the know vector coefficient to earn

enough time to avoid. This topic will be discussed at the last section.

LQI and inverse function is used to generate the inputs for attitude controller. First,

the error of position and velocity values are found and used in LQI. Acceleration

values are feed forwarded to the output of the LQI block. The output of adding

block are corresponds to the desired acceleration values. Attitude controller inputs

are υ = [Td,φd,θd,ψd]. To achieve these values, we need to use this inverse function

for getting attitude controller inputs. The input of the inverse function is u= [ux,uy,uz],

where these are in inertial frame. Constant yaw angle command is used for this case.ux
uy
uz

m = RT (ψ)RT (θ)RT (φ)

0
0
T

 (3.49)

Td = m
√

u2
x +u2

y +u2
z (3.50)

45

By solving for φ and θ [61], we get,z1
z2
z3

= R(ψ)

ux
uy
uz

m
T

(3.51)

φd = arcsin(−z2) (3.52)

θd = arctan(
z1

z3
) (3.53)

Attitude Controller is already implemented on-board Crazyflie 2.1 [60], which is

shown in Fig. 3.23. A two cascaded proportional-integral-derivative (PID) control

architecture is used for low level controller. The attitude controller frequency is 250Hz

and the attitude rate controller frequency is 500Hz. For common missions such as way

point tracking, there is no need to use high frequency controllers. But for aggressive

trajectory tracking, the frequency of the low level controller has a significant effect

upon trajectory tracking performance. Even though these frequencies are already

set, these frequencies also would be efficient enough for achieving desired tracking

performance.

Figure 3.21 : Attitude controller inputs and outputs.

Figure 3.22 : Attitude rate controller inputs and outputs.

Inside attitude controller which is shown in Fig. 3.22, PI controllers are used for roll

and pitch control. The desired pitch and roll values are obtained after calculation of

46

Eq. 3.53,3.52. As feedback, on-board gyro and accelerometer sensors are used to find

angle states. Even the tests are performed under VICON motion capture system, the

orientation outputs of the VICON are not used inside the sensor fusion. In summary,

roll φ and pitch θ estimates compared with desired roll φd and pitch θd values, and

proportional-integral (PI) controllers are used to find desired attitude rate values pd,qd ,

as it is shown in Eq. 3.54, 3.55.

pd(t) = KP,φ (φd(t)−φ(t))+KI,φ

∫
τ=t

τ=0
(φd(τ)−φ(τ))dτ (3.54)

qd(t) = KP,θ (θ(t)−θ(t))+KI,θ

∫
τ=t

τ=0
(θ(τ)−θ(τ))dτ (3.55)

For both roll and pitch attitude controllers, The controller coefficients are assigned as

KP,φ = KP,θ = 3.5, KI,φ = KI,θ = 2.0 [60].

Figure 3.23 : Low level controller architecture.

After obtaining desired attitude rate commands, attitude rate controller is used to find

required angular momentum. Attitude rate controller inputs and outputs are shown in

Fig. 3.22. The inputs of the controller are desired roll rate pd , desired pitch rate qd , roll

rate state p and pitch rate state q. Inside attitude rate controller, proportional controller

Eq. 3.56,3.57 are used for roll and pitch control, and PI controller 3.58 is used for yaw

control.

∆φ (t) = KP,p(pd(t)− p(t)) (3.56)

∆θ (t) = KP,q(qd(t)−q(t)) (3.57)

∆ψ(t) = KP,ψ(r(t)− r(t))+KI,r

∫
τ=t

τ=0
(r(τ)− r(τ))dτ (3.58)

For attitude rate controllers, The controller coefficients are assigned as KP,p = KP,q =

KP,r = 70, KI,r = 16.7 [60].

Control mixer is used after obtaining desired input variation of the motors. These

values corresponds to the desired torque values in the desired direction of movement.

47

To describe the movement relative to the motors, these ∆φ (t),∆θ (t),∆ψ(t) values

should be distributed to the motor outputs by using control mixer. Crazyflie is designed

as "X" frame, therefore, control mixer is used as Eq. 3.59 [60].

PWMm1 = ωbase−∆φ (t)/2−∆θ (t)/2−∆ψ(t)

PWMm2 = ωbase +∆φ (t)/2−∆θ (t)/2+∆ψ(t)

PWMm3 = ωbase +∆φ (t)/2+∆θ (t)/2−∆ψ(t)

PWMm4 = ωbase−∆φ (t)/2+∆θ (t)/2+∆ψ(t)

(3.59)

Where ωbase is the base PWM signal value for hovering.

In test environment, pipes are positioned randomly to provide ρ = 1.2 obstacle/m2

obstacle density in Fig. 3.24. Two randomly created flight test results are shown in Fig.

3.25,3.26, and we can see the margin of error between the commanded and the actual.

This performance metrics are also used in decision of safety distance from the obstacles

and the Crazyflie. The trajectory tracking performance RMS error is approximately

20cm. If the error caused by tracking performance is not added to the safety distance,

even though the system has actually produced a trajectory that will avoid the obstacles,

collisions still may occur due to the error in the tracking performance. Therefore, this

RMS error is added to the reward function for DRL agent to come up with proper

raplanned trajectory where it also compensate the trajectory tracking errors.

The velocity, acceleration, roll angle, pitch angle, roll rate angle and pitch rate angle

graphs of these two scenarios are also shared in Fig. 3.27, 3.28. The velocity and

acceleration data are obtained from VICON system, and other attitude and attitude

rate data are gathered from on-board sensor fusion.

In Scenario 1, the achieved maximum velocity is 3.74m/s, and the maximum

acceleration is 11.08m/s2. A peak roll angle of 30.5deg and a peak pitch angle of

38.1deg was achieved during flight. A peak roll rate of 248.23deg/s and a peak pitch

rate of 409.8deg/s was achieved during flight.

In Scenario 2, The achieved maximum velocity is 4.21m/s, and the maximum

acceleration is 10.19m/s2. A peak roll angle of 17.1deg and a peak pitch angle of

32.2deg was achieved during flight. A peak roll rate of 185.84deg/s and a peak pitch

rate of 309.23deg/s was achieved during flight.

48

(a) First Scene (b) Second Scene

(c) Third Scene

Figure 3.24 : Frames from the flight test. The obstacles density in the environment is
ρ = 1.2 obstacle/m2.

0 0.5 1 1.5 2 2.5 3 3.5 4

X (m)

0

0.5

1

1.5

2

2.5

3

3.5

4

Y
 (

m
)

Command

Actual

Figure 3.25 : Scenario 1: The reference trajectory is given in blue and the actual
trajectory flown is given in red.

49

0 0.5 1 1.5 2 2.5 3 3.5 4

X (m)

0

0.5

1

1.5

2

2.5

3

3.5

4

Y
 (

m
)

Command

Actual

Figure 3.26 : Scenario 2: The reference trajectory is given in blue and the actual
trajectory flown is given in red.

Table 3.2 : The aerial vehicle specifications.

Weight without any payload 620g
Maximum Speed 30m/s
Propeller radius 5inch
Nominal motor power 530W
Battery Cell 4
Battery Capacity 1550mAh
Battery discharge 95C
ESC nominal current 40A
ESC peak current 60A

3.7 Fast Replanning Hardware Implementation Results: Outdoor Test

We also wanted to investigate the performance of the system with outdoor tests. We

built a drone with 1:7.65 thrust weight ratio, because we are expecting to see our system

performance when the aerial vehicle while performing aggressive maneuvers. This

ratio is not as high as the racer drones, because of the additional avionics placed on the

aerial vehicle. But still, the motor, the ESC and the battery performances are the same

that has been used in racer drones. The specifications for the designed aerial vehicle is

shown in Table 3.2.

50

0 1 2 3 4 5

Time (S)

0

0.5

1

1.5

2

2.5

3

3.5

4

V
e
lo

c
it
y
 (

m
/s

)

(a) Velocity

0 1 2 3 4 5

Time (S)

0

2

4

6

8

10

12

A
c
c
e
le

ra
ti
o
n
 (

m
/s

2
)

(b) Acceleration

0 1 2 3 4 5

Time (S)

-30

-20

-10

0

10

20

30

40

R
o

ll
A

n
g
le

 (
d
e
g
)

(c) Roll Angle

0 1 2 3 4 5

Time (S)

-40

-30

-20

-10

0

10

20

30

40

P
it
c
h
 A

n
g
le

 (
d
e
g
)

(d) Pitch Angle

0 1 2 3 4 5

Time (S)

-400

-300

-200

-100

0

100

200

300

R
o
ll

R
a
te

 (
d
e
g
/s

)

(e) Roll Rate

0 1 2 3 4 5

Time (S)

-500

-400

-300

-200

-100

0

100

200

300

400

500

P
ic

th
 R

a
te

 (
d
e
g
/s

)

(f) Pitch Rate

Figure 3.27 : Scenario 1: The dashes indicate the start and the end of the scenario.(a)
The achieved maximum velocity is 3.74m/s, and (b) the maximum acceleration is

11.08m/s2. (c) A peak roll angle of 30.5deg was achieved during flight. (d) A peak
pitch angle of 38.1deg was achieved during flight.(e) A peak roll rate of 248.23deg/s
was achieved during flight. (f) A peak pitch rate of 409.8deg/s was achieved during

flight.

We used Orange Pi Zero Plus2 as a computer on the aerial vehicle. It has Armbian

based operating system that allows us to use our Python based codes to run and

generate desired referances from trajectory and send them to the autopilot. It has

Quad-core Cortex-A7 microcontroller and Mali400MP2 GPU. For autopilot system,

we used Omnibus F4 Pro, which is light-weighted and very small controller card.

It allows us to run ArduCopter autopilot system to control the aerial vehicle. It

51

0 1 2 3 4 5

Time (S)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

V
e
lo

c
it
y
 (

m
/s

)

(a) Velocity

0 1 2 3 4 5

Time (S)

0

2

4

6

8

10

12

A
c
c
e
le

ra
ti
o
n
 (

m
/s

2
)

(b) Acceleration

0 1 2 3 4 5

Time (S)

-25

-20

-15

-10

-5

0

5

10

15

20

R
o

ll
A

n
g
le

 (
d
e
g
)

(c) Roll Angle

0 1 2 3 4 5

Time (S)

-40

-30

-20

-10

0

10

20

30

40

P
it
c
h
 A

n
g
le

 (
d
e
g
)

(d) Pitch Angle

0 1 2 3 4 5

Time (S)

-400

-300

-200

-100

0

100

200

R
o
ll

R
a
te

 (
d
e
g
/s

)

(e) Roll Rate

0 1 2 3 4 5

Time (S)

-400

-300

-200

-100

0

100

200

300

400

P
ic

th
 R

a
te

 (
d
e
g
/s

)

(f) Pitch Rate

Figure 3.28 : Scenario 2: The dashes indicate the start and the end of the scenario.(a)
The achieved maximum velocity is 4.21m/s, and (b) the maximum acceleration is

10.19m/s2. (c) A peak roll angle of 17.1deg was achieved during flight. (d) A peak
pitch angle of 32.2deg was achieved during flight.(e) A peak roll rate of 185.84deg/s
was achieved during flight. (f) A peak pitch rate of 309.23deg/s was achieved during

flight.

has MPU6000 IMU and BMP280 barometer sensors. As a GNSS receiver, we used

mRo SAM-M8Q which includes u-Blox SAM-M8Q module. ALso inside the mRo

SAM-M8Q, there is IST8308 magnetometer sensor. This sensor especially placed

higher level then the motors the power cable level. This ensures that the magnetic

interference from the motors and power cable are as low as possible. And for RC

receiver, we used FrSky FS-A8S product for controlling the aerial vehicle with the

52

remote control. It is placed on the vehicle to instantly intervene in possible problems

that may occur. The avionics schematics are shown in Fig. 3.29, and the power

distribution schematics are presented in Fig. 3.30.

Figure 3.29 : Avionics and the communication interfaces on the aerial vehicle.

OmniBus F4 Pro

OrangePi Zero Plus 2

HobbyWing Xrotor Micro 40A

Tattu Rlines 1550 mAh 4S 95C

PROFI/CNC HERE GPS

Frysky fsa8s

HobbyWing Xrotor Micro 40A

Figure 3.30 : Power distribution schematics.

The same procedure is used as in the tests conducted under VICON system. The

differences between each tests are, the trajectory references are sent in 40Hz. Because

of the expected trajectory tracking performance, GNSS accuracy, wind and gust

effects, the emulated sensor range is modified as 6m and 30deg, which still narrower

than the used sensors in the literature. This modification allows us to perform our tests

53

Figure 3.31 : Ardupilot position control system schematics.

safely. Also, two different high level controller is used to compare the performances

of the trajectory tracking controllers and also monitor the overall system performance.

Differential Flat Trajectory is corresponds to the B-spline trajectory generation.

Before the flight, straight trajectory is defined which starts from [0,0] point to

[40.0,40.0] point for testing.

Ardupilot Controller Architecture is a legacy control system that consists of

nested-loop structure [62]. The simplified version of the controller architecture is

shown in Fig. 3.31. At the beginning, position references in NED frame are sent to the

controller. The error of the position is pass through proportional controller. Then, this

reference and the error of the velocity in NED frame which is calculated by extracting

the reference velocity and the measured velocity are summed. PID controller is used

for velocity controller. The output of the velocity controller is used for the input of the

attitude controller and the input for the attitude rate controller as feed forward element.

Proportional controller for attitude control and PID controller for attitude rate control

is utilized, then the output of this inner-loop rate controller is sent to the mixer to obtain

the required PWM signals. To indicate this outer loop control, we will call "pos+vel

controller".

In this control architecture, position and velocity references generated from the

trajectories can be utilized. The outer loop controller works in 100Hz, and the inner

loop controller works in 400Hz. We tried two different scenarios to analyze the

performans of the overall system.

The velocity, acceleration, roll angle, pitch angle, roll rate angle and pitch rate angle

graphs of the scenario-3 are also shared in Fig. 3.33. The position and velocity data are

54

obtained from Extended Kalman Filter running on-board which utilizes the on-board

sensors data system. Also for outer loop control, pos+vel controller is used.

In Scenario-3 with pos+vel controller in Fig. 3.33, the trajectory tracking and obstacle

avoidance performance can be seen in Fig. 3.32. The RMS error of the trajectory

tracking performance is 3.55m. The achieved maximum velocity in X-Y axis is

12.06m/s, and the maximum acceleration in X-Y axis is 12.36m/s2. A peak roll angle

of 51.46deg was achieved during flight. A peak pitch angle of 45.77deg was achieved

during flight. A peak roll rate of 451.27deg/s was achieved during flight. A peak pitch

rate of 328.26deg/s was achieved during flight.

−45 −40 −35 −30 −25 −20
Y East axis

30

40

50

60

70

80

X
No

rth
 a
xi
s

Start Position
Finish Position
Reference
Measured

Figure 3.32 : Scenario 3: pos+vel controller. The results show the performance of the
controllers for trajectory tracking and obstacle avoidance.

In Fig. 3.32, even though the generated trajectory with RL agent is differentially flat

and dynamically feasbile trajectory, because of the tracking performance, the aerial

vehicle responds late to the references. This phenomenon might cause a collision, even

the RL agent is generating evasive maneuver. Also, the RMS error of this trajectory

tracking is not providing the expected performance. But, to overcome this RMS error

performance, the maximum error faced in other random scenarios is added to the safety

distance that is used in reward function of the RL agent. Therefore, even this lack of

a precision of the tracking is unwanted, the generated trajectory still can avoid the

sensed obstacles. Although this approach guarantees safety, the solution diverges from

the local optimality.

55

0 1 2 3 4 5 6 7 8
Time (s)

0

2

4

6

8

10

12

Ve
lo
cit

y
in
 X
Y
(m

/s
)

(a) Velocity

0 1 2 3 4 5 6 7 8
Time (s)

2

4

6

8

10

12

Ac
ce

le
ra
tio

n
in
 X
Y
(m

/s
^2

)

(b) Acceleration

0 1 2 3 4 5 6 7
Time (s)

−40

−20

0

20

40

Ro
ll
(d
eg

)

(c) Roll Angle

0 1 2 3 4 5 6 7
Time (s)

−10

0

10

20

30

40

Pi
tc
h
(d
eg

)

(d) Pitch Angle

0 1 2 3 4 5 6 7
Time (s)

−400

−200

0

200

400

Ro
ll
Ra

te
 (d

eg
/s
)

(e) Roll Rate

0 1 2 3 4 5 6 7
Time (s)

−200

−100

0

100

200

300

Pi
tc
h
Ra

te
 (d

eg
/s
)

(f) Pitch Rate

Figure 3.33 : Scenario 3: the performance of the flight tests where for outer loop
control, pos+vel controller is utilized.(a) The achieved maximum velocity in X-Y axis
is 12.06m/s, and (b) the maximum acceleration in X-Y axis is 12.36m/s2. (c) A peak
roll angle of 51.46deg was achieved during flight. (d) A peak pitch angle of 45.77deg
was achieved during flight.(e) A peak roll rate of 451.27deg/s was achieved during

flight. (f) A peak pitch rate of 328.26deg/s was achieved during flight.

To overcome this case, we modified the outer loop control of the ArduPilot, and also

added acceleration references of the trajectory as a feed forward input to the output of

the velocity controller. For this controller, we will call "pos+vel+acc controller". The

modified outer loop control schematics can be seen in Fig. 3.41.

The velocity, acceleration, roll angle, pitch angle, roll rate angle and pitch rate angle

graphs of the scenario-4 are also shared as for outler loop control, in Fig. 3.36, pos+vel

56

Figure 3.34 : Ardupilot modified position control system schematics.

controller is used, and in Fig. 3.37 pos+vel+acc controller is used. For each figure, the

same obstacle positions, start point and finish point is used. Also, the generated evasive

trajectory is used for both controller to compare the performances. The trajectory

tracking performance can be seen in Fig. 3.35

−50 −45 −40 −35 −30 −25 −20
Y East axis

30

40

50

60

70

80

X
No

rth
 a
xi
s

Start Position
Finish Position
Reference
PosVelAcc
PosVel

Figure 3.35 : Scenario 3: pos+vel controller vs pos+vel+acc controller. The results
show the peformance of the controllers for trajectory tracking and obstacle avoidance.

In Scenario-4 with pos+vel controller in Fig. 3.36, The RMS error of the trajectory

tracking is 3.65m. The achieved maximum velocity in X-Y axis is 14.42m/s, and the

maximum acceleration in X-Y axis is 21.03m/s2. A peak roll angle of 66.83deg was

achieved during flight. A peak pitch angle of 68.36deg was achieved during flight.

A peak roll rate of 412.23deg/s was achieved during flight. A peak pitch rate of

320.14deg/s was achieved during flight.

57

0 2 4 6 8
Time (s)

0

2

4

6

8

10

12

14

Ve
lo
cit

y
in
 X
Y
(m

/s
)

(a) Velocity

0 2 4 6 8
Time (s)

−20

−15

−10

−5

0

5

10

15

20

Ac
ce

le
ra
tio

n
in
 X
Y
(m

/s
^2

)

(b) Acceleration

0 2 4 6 8 10
Time (s)

−60

−40

−20

0

20

40

60

Ro
ll
(d
eg

)

(c) Roll Angle

0 2 4 6 8 10
Time (s)

−60

−40

−20

0

20

40

60

Pi
tc
h
(d
eg

)

(d) Pitch Angle

0 2 4 6 8 10
Time (s)

−200

−100

0

100

200

300

400

Ro
ll
Ra

te
 (d

eg
/s
)

(e) Roll Rate

0 2 4 6 8 10
Time (s)

−300

−200

−100

0

100

200

300

Pi
tc
h
Ra

te
 (d

eg
/s
)

(f) Pitch Rate

Figure 3.36 : Scenario 4: the performance of the flight tests where for outer loop
control, pos+vel controller are utilized.(a) The achieved maximum velocity in X-Y

axis is 14.42m/s, and (b) the maximum acceleration in X-Y axis is 21.03m/s2. (c) A
peak roll angle of 66.83deg was achieved during flight. (d) A peak pitch angle of

68.36deg was achieved during flight.(e) A peak roll rate of 412.23deg/s was achieved
during flight. (f) A peak pitch rate of 320.14deg/s was achieved during flight.

In Scenario-4 with pos+vel+acc controller in Fig. 3.36, The RMS error of the trajectory

tracking is 2.93m. The achieved maximum velocity in X-Y axis is 13.62m/s, and the

maximum acceleration in X-Y axis is 20.82m/s2. A peak roll angle of 69.84deg was

achieved during flight. A peak pitch angle of 70.29deg was achieved during flight.

A peak roll rate of 386.80deg/s was achieved during flight. A peak pitch rate of

346.22deg/s was achieved during flight.

58

0 2 4 6 8
Time (s)

0

2

4

6

8

10

12

14

Ve
lo
cit

y
in
 X
Y
(m

/s
)

(a) Velocity

0 2 4 6 8
Time (s)

−15

−10

−5

0

5

10

15

20

Ac
ce

le
ra
tio

n
in
 X
Y
(m

/s
^2

)

(b) Acceleration

0 2 4 6 8
Time (s)

−60

−40

−20

0

20

40

60

Ro
ll
(d
eg

)

(c) Roll Angle

0 2 4 6 8
Time (s)

−60

−40

−20

0

20

40

60

Pi
tc
h
(d
eg

)

(d) Pitch Angle

0 2 4 6 8
Time (s)

−300

−200

−100

0

100

200

300

400

Ro
ll
Ra

te
 (d

eg
/s
)

(e) Roll Rate

0 2 4 6 8
Time (s)

−400

−300

−200

−100

0

100

200

300

Pi
tc
h
Ra

te
 (d

eg
/s
)

(f) Pitch Rate

Figure 3.37 : Scenario 4: the performance of the flight tests where for outer loop
control, pos+vel+acc controller is utilized.(a) The achieved maximum velocity in X-Y
axis is 13.62m/s, and (b) the maximum acceleration in X-Y axis is 20.82m/s2. (c) A

peak roll angle of 69.84deg was achieved during flight. (d) A peak pitch angle of
70.29deg was achieved during flight.(e) A peak roll rate of 386.80deg/s was achieved

during flight. (f) A peak pitch rate of 346.22deg/s was achieved during flight.

When we compare these two controllers, the significant response time difference draws

the attention. Also, pos+vel+acc controller performance is better when we compare the

controllers with RMS errors.

We conducted another scenario with pos+vel+acc controller. This trajectory however

far more aggressive than the previous scenarios. Because of capturing desired

59

responses with pos+vel+acc controller, we wanted to force the aerial vehicle at its

limits. The flight named as scneario-5 which can be seen in Fig. 3.38.

The RMS error of the trajectory tracking performance is 3.41m. The achieved

maximum velocity in X-Y axis is 18.43m/s, and the maximum acceleration in X-Y

axis is 19.10m/s2. A peak roll angle of 77.02deg was achieved during flight. A peak

pitch angle of 70.22deg was achieved during flight. A peak roll rate of 522.01deg/s

was achieved during flight. A peak pitch rate of 365.59deg/s was achieved during

flight. The results can be seen in Fig. 3.39.

−50 −45 −40 −35 −30 −25 −20
Y East axis

30

40

50

60

70

80

X
No

rth
 a
xi
s

Start Position
Finish Position
Reference
Measured

Figure 3.38 : Scenario 5: pos+vel+acc controller. The results show the performance
of the controllers for trajectory tracking and obstacle avoidance.

In this scenario, It can be seen that acceleration values through to trajectory is almost

at its limits. This also indicates the aggressiveness of the vehicle, where it also can

be observed from the roll angle plot, where the aerial vehicles reaches to the 70deg

roll angle and stays there almost more than 1 second. After exceeding 70deg roll

angle, the aerial vehicle can not maintain its altitude level, which is also observed from

the previous flights. Therefore, the limits for the attitude and also the limits for the

acceleration in X-Y axis are hard coded before the flight tests. So, the results indicates

that the vehicle during the flight time, it flies almost around its dynamical limits.

In the proposed collision avoidance system, with the utilization of the B-Spline

trajectory representation and using its knot insertion properties to only change the

60

0 1 2 3 4 5 6
Time (s)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Ve
lo
cit

y
in
 X
Y
(m

/s
)

(a) Velocity

0 1 2 3 4 5 6
Time (s)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Ac
ce

le
ra
tio

n
in
 X
Y
(m

/s
^2

)

(b) Acceleration

0 1 2 3 4 5 6
Time (s)

−80

−60

−40

−20

0

20

40

60

Ro
ll
(d
eg

)

(c) Roll Angle

0 1 2 3 4 5 6
Time (s)

−60

−40

−20

0

20

40

60

Pi
tc
h
(d
eg

)

(d) Pitch Angle

0 1 2 3 4 5 6
Time (s)

−400

−200

0

200

400

Ro
ll
Ra

te
 (d

eg
/s
)

(e) Roll Rate

0 1 2 3 4 5 6
Time (s)

−400

−300

−200

−100

0

100

200

300

400

Pi
tc
h
Ra

te
 (d

eg
/s
)

(f) Pitch Rate

Figure 3.39 : Scenario 5: the performance of the flight tests where for outer loop
control, pos+vel+acc controller is utilized. (a) The achieved maximum velocity in

X-Y axis is 18.43m/s, and (b) the maximum acceleration in X-Y axis is 19.10m/s2.
(c) A peak roll angle of 77.02deg was achieved during flight. (d) A peak pitch angle of
70.22deg was achieved during flight.(e) A peak roll rate of 522.01deg/s was achieved

during flight. (f) A peak pitch rate of 365.59deg/s was achieved during flight.

trajectory around the sensed obstacle, we formulated a new collision avoidance

approach based on deep reinforcement learning. By only changing the control point

which is located on the obstacle with knot insertion property, this proposed method

replans the trajectory. Because of the search space for the control point is continues, the

generated new trajectory ensures the local optimality. Moreover, B-spline trajectory

representation allows us to take the derivative of each point to obtain the position

61

Figure 3.40 : One of the outdoor flight tests scene with using pos+vel controller.

Figure 3.41 : One of the outdoor flight tests scene with using pos+vel+acc controller.

derivatives of each point on curve, which allows us to use differential flat controllers to

track the trajectory. Since the problem is reduced to just changing the location of the

control point, the trained RL agent can generates new location in 400us, which is the

fastest solution in the literature to the best of our knowledge and research.

However, the trajectory tracking performance also has significant effect on optimality.

In VICON system, we used LQI differential flatness controller to track the trajectory.

By using Crazyflie aerial vehicle, we achived 20cm RMS error where we used VICON

system outputs for feedback which has millimeter accuracy and there is no wind or gust

effects on the aerial vehicle. To capture these effects, we designed a aerial vehicle,

which has 1:7.6 thrust-to-weight ratio that indicates the level of agility. We utilized

62

ArduPilot autopilot on the aerial vehicle, where it already has a trajectory tracking

controller, which only utilizes position and velocity references. Because it could not

give the desired performance, the controller on the ArduPilot is modified by adding

feed forward acceleration references. This controller shows better performance, when

we compare it with the existing controller on the ArduPilot. The trajectory tracking

controller precision has a significant effect on all high level operational missions. The

preciseness of the controller could increase action set for the search space, and this

could provide finding more optimal solutions for collision avoidance. Therefore, this

thesis also focused on the trajectory tracking controller with proposing a new approach,

which is mentioned in Section 4.

63

64

4. AGGRESSIVE TRAJECTORY TRACKING CONTROLLER BASED ON
DEEP REINFORCEMENT LEARNING

0 0.5 1 1.5 2 2.5 3 3.5 4

X (m)

0

0.5

1

1.5

2

2.5

3

3.5

4

Y
 (

m
)

Command

Actual

Figure 4.1 : The reference trajectory is given in blue and the actual trajectory flown is
given in red.

After conducting trajectory replanning flight tests, trajectory tracking performance has

proved to be a crucial element for obstacle avoidance. Because if it is assumed that

there is no trajectory tracking error and the safety distance is only defined by adding

the radius of the aerial vehicle and the radius of the obstacle, then avoidance maneuver

is expected to be very close to the obstacle. If this approach is followed, then as it can

be seen in Fig. 4.1, there is 21cm RMS error that will definitely cause a collision. To

overcome this problem, this RMS error is also added to the safety distance to guarantee

the avoidance.

In the training phase of the RL agent, trajectory tracking error is added to the safety

distance which ensures the evasive distance from the sensed obstacle. This solution

guarantees collision avoidance, on the other hand, the performance takes us away

from the locally optimal solution. Also, this phenomenon increase the safety time that

is decided to ensure computational feasibility that considers computational and time

65

complexity of the utilized algorithms. Therefore, It is imperative to find a solution to

achieve a precise trajectory tracking performance.

4.1 Proposed Architecture

Proposed system architecture which utilizes deep reinforcement learning agent to

generate pitch and roll references to track the desired trajectory is shown in Fig. 4.2.

The trajectory generation block generates many random agile trajectories consisting

of position and velocity references that meet the aerial vehicle dynamical constraints

given in section 4.3.2. The trajectory reference is then given to the agent along with the

observation vector and the reward as defined in Eq. 4.20-4.22 respectively. The agent

then generates outputs for the desired roll and the pitch angles while the desired yaw

angle is kept fixed as zero. The agent’s commanded roll and pitch angles are achieved

by a PID attitude controller. The aerial vehicle altitude was handled by a separate PID

controller which along with the attitude controller outputs the forces and moments

acting on the aerial vehicle. Eq. 4.2-4.6 are then used to simulate the aerial vehicle

dynamics and outputs the reward and the observation vector to close the training loop.

action
Agent

Aerial Vehicle
Dynnamics

Reward

Observation

Attitude Controller

Trajectory
Generation

Pos and
Vel ref

Altitude Controller Altitude
ref

+

+

Forces
and

 Moments

Figure 4.2 : Proposed system architecture.

4.2 Aerial Vehicle Model

Before giving the non-linear equations governing the motion of the air-vehicle, it is

important to define the transformation matrix used to transform from the inertial frame

to the body frame and it is given as follows:

Rb
o =

 cosθcosψ cosθsinψ −sinθ

sinφsinθcosψ− cosφsinψ sinφsinθsinψ + cosφcosψ sinφcosθ

cosφsinθcosψ + sinφsinψ cosφsinθsinψ− sinφcosψ cosφcosθ

 (4.1)

66

The acceleration of the air-vehicle is then defined in the body-fixed frame as follows

[63]: u̇
v̇
ẇ

=

 0
0

Fz/m

−Rb
o

0
0
g

−
p

q
r

×
u

v
w

 (4.2)

And the position of the air-vehicle in the inertial frame is expressed by integrating the

output of the following equation [63]:ẋ
ẏ
ż

= Ro
b

u
v
w

 (4.3)

where Ro
b = (Rb

o)
−1 = (Rb

o)
T .

From the theorem of angular momentum, the angular velocities are expressed as [63]:ṗ
q̇
ṙ

= (J)−1

Mx
My
Mz

−
p

q
r

× J

p
q
r

 (4.4)

where J is the inertia matrix given as:

J =

Ixx 0 0
0 Iyy 0
0 0 Izz

 (4.5)

and Mx, My, Mz are the moments acting on the body of the air-vehicle around the x,y,z

axes respectively.

Finally, the Euler angles are given as [63]:φ̇

θ̇

ψ̇

=

1 sinφ tanθ cosφ tanθ

0 cosφ −sinφ

0 sinφ/cosθ cosφ/cosθ

p
q
r

 for θ 6= π

2
(4.6)

4.3 Trajectory Generation

4.3.1 Trajectory representation

The B-Spline representation is used to define a flight trajectory, which enables

parameterizing of a flat output through the generation of several joined polynomials

and ensures the trajectory to be continuously differentiable. In order to meet with the

trajectory requirements, We have chosen to represent flat output trajectories with p = 5

degree B-splines to ensure at least C4 continuity. Generally, a pth-degree B-Spline

curve is defined as follows:

P(t) =
n

∑
i=0

PiBi,p(t)a≤ t ≤ b (4.7)

67

Where P(t) denotes the curve at t which also could be represented as P(t) =

[Px(t),Py(t),Pz(t)] and the Pi are the control points. The Bi,k(t) are basis functions

that can be computed using the De Boor-Cox recursive formula [47, 48, 64].

Bi,0(t) =

{
1 if ti ≤ u < ui+1

0 otherwise
(4.8)

Bi,p(t) =
u−ui

ui+p−ui
Bi,p−1(t)+

ui+p+1−u
ui+p+1−ui+1

Bi+1,p−1(t) (4.9)

These basis functions are defined as the function of the knot vectors:

τ = [u0, ...,um] (4.10)

We used uniform knot vector which could also be presented as:

τ = [a, ...,a, tp+1, ..., tm−p−1,b, ...,b] (4.11)

The length of the knot vector is m+ 1 where m = n+ p+ 1 [64]. We assume that

a = 0 and b = 1 for the unity knot vector, and the first and last knots have multiplicity

p+1. Used knot vector is uniform if all interior knots are equally distanced such that

d = ti+1− ti for all p≤ i≤m− p−1. The derivatives of P(t) can be used to define the

velocity and acceleration of the trajectory, and can be expressed as follows:

P(k)(t) =
n

∑
i=0

PiB
(k)
i,p (t)a≤ t ≤ b (4.12)

where k represents the order of derivatives.

4.3.2 Aerial vehicle dynamical constraints

Before giving a trajectory to the agent to track, we had to make sure it is dynamically

feasible. Therefore, we optimized all provided B-spline trajectories to ensure not

exceeding the dynamical limits of the aerial vehicle. The vehicle used for this work is

the Crazyflie 2.1 [60]. Based on Newton’s second law of motion, we get the following

classical mechanics equation:

Fthrust−Fgravity−FAirDrag = mv̇ (4.13)

In the vertical climbing case, Eq. 4.13 can be written as:

T −mg− ρ

2
CDAe f f v2 = mv̇ (4.14)

68

And in the forward flight case, Eq. 4.13 can be written as:√
1− (

mg
T

)2 T − ρ

2
CDAe f f v2 = mv̇ (4.15)

The aerial vehicle will reach a limit speed without further acceleration due to air drag.

We can then calculate the maximum possible rate of climb and the maximum forward

flight speed from the following two equations:

Tmax

m
−g− ρ

2m
CDAe f f v2

max = 0 (4.16)√
1− (

mg
Tmax

)2 Tmax

m
− ρ

2m
CDAe f f v2

max = 0 (4.17)

Table 4.1 shows the parameters used in solving Eq. 4.16 to find the maximum rate

of climb and the maximum forward flight speed. By solving Eq. 4.16, the maximum

climb rate is found as vclimb,max = 2.96 m/s. And by solving Eq. 4.17, the maximum

forward velocity is found as v f orward,max = 7.36 m/s. Fig. 4.3 shows the maximum

forward acceleration as a function of the Crazyflie’s velocity.

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

Figure 4.3 : Forward acceleration limits.

Table 4.1 : Crazyflie aerial vehicle parameters.

Parameter Description Value
m Mass of the drone 0.034 [Kg]
Tmax Maximum available thrust 0.41202 [N] [60]
g Gravitational acceleration 9.81 [m/s2]
ρ Density of air 1.225 [kg/m3]
CD Drag coefficient 0.9 [65]
Ae f f Effective area of the Crazyflie 8.1 × 10−3 [m2] [60]

69

4.4 Deep Reinforcement Learning - Proximal Policy Optimization Approach

Reinforcement learning main objective is to maximize the accumulated reward by

learning how to adjust the policy after each episode. The problem is formulated as a

Markov Decision Process (MDP) and the agent learns the optimal policy by interacting

with the unknown environment.

The approach used in this paper is based on generating commands for pitch and roll

angles by Proximal Policy Optimization (PPO) algorithm [50]. PPO is one of the

policy gradient methods in deep reinforcement learning which is easy to use and

has good performance. In order to make use of the benefits of trust region policy

optimization (TRPO) such as reliable performance and data efficiency, PPO uses the

first-order algorithm [50]. Define the probability ratio, rt(θ), as follows:

rt(θ) =
πθ (at |st)

πθold(at |st)
r(θold) = 1 (4.18)

The work in [50] proposes a new objective function defined as follows:

LCLIP(θ) = Êt
[

min(rt(θ)Ât ,clip(rt(θ),1− ε,1+ ε)Ât)
]

(4.19)

where epsilon ε is a hyper free parameter that we chose as 0.2. The term clip(rt(θ),1−

ε,1+ε)Ât allows us to adjust the surrogate objective by saturating the probability ratio.

The reason this clip function is used is to prevent overdoing good actions and prevent

giving zero future probability to actions that are considered bad in the current step.

For the training part of the DRL, observation, action, and reward, vectors are defined

as follows:

In order to track an agile trajectory, both the position and velocity error were

considered in the observation space. The difference between the previous two actions

was also added to the observation space in order to minimize the rate of change of the

agent’s actions. If the rate of change is not considered in the observation vector and

in the reward function, the agent will output the commanded pitch and roll angles at a

very high angular velocities which cannot be achieved by the attitude controller.

In our solution, altitude is handled by a PID controller, and we are expecting high

performance from the agent to track the trajectory in the x and y-axes. The observation

70

space is described as follows:

Ω1 = {Px(t)− x(t), Py(t)− y(t), Ṗx(t)−u(t), Ṗy(t)− v(t)} (4.20)

Ω = {Ω1,A (t−1)−A (t−2), x(t), y(t), z(t)} (4.21)

Where A (t−1) is the action given by the agent one time step ago and A (t−2) is the

action given by the agent two time step ago.

Action space consists of commands of roll and pitch angles. The agent’s action is then

given as A = {φcmd,θcmd}.

In this trajectory tracking problem, we need to reward or penalize the agent by a reward

function. Each action decision results in a new state, which also needs to depend on

these parameters. Therefore, to achieve high performance in trajectory tracking, we

defined the reward function as the following:

R = 2
5

∑
i=1

(e−αiΩ(i)−1) (4.22)

Where Ω is the observation vector defined in Eq. 4.21 and α is a coefficient that

determines the curvature of the reward function and helps in deciding when the agent

gets a positive reward based on the error between the defined trajectory and the aerial

vehicle state. Table 4.2 shows the selected α values and the corresponding error value

that determines when the agent gets a high positive reward.

Table 4.2 : α values.

αi Value Positive reward when
α1 0.027 Ω(1) < 4 cm
α2 0.027 Ω(2) < 4 cm
α3 0.0085 Ω(3) < 50 cm/s
α4 0.0085 Ω(4) < 50 cm/s
α5 4 Ω(5) < 600 deg/s

In training, generated trajectories are limited by x = [0.0,3.5] and y = [0.0,3.5].

Therefore, in order to save extra unneeded training time, the environment boundaries

were set as follows:

0.0 < x(t)< 4.0 m

0.0 < y(t)< 4.0 m

0.0 < z(t)< 2.0 m

71

If the aerial vehicle exceeds any of these boundaries, the agent gets a reward of−100.0

in the following step and then the episode is terminated.

4.5 Simulation Experiments

For training a DRL agent, we used OpenAI gym and stable-baseline environment [57]

[66]. The training was done for approximately 335 thousands episodes (≈ 100 M

steps) and it was done on a 20 core CPU workstation which took around 3 days.

We used LQR and LQI differential flatness based controllers to compare performances

with our solution.

4.5.1 LQR differential flatness based controller

The Crazyflie comes equipped with a PID attitude rate controller and a PI attitude

controller that accepts the inputs as the total desired thrust Td , roll angle φd , pitch

angle θd , and body yaw rate rd and the control input is defined as:

v =

Td
φd
θd
rd

 (4.23)

The work in [38] implemented differential flatness based controller in order to

minimize the error in tracking agile trajectories. Assuming that the given trajectory

is a flat output [67] and can be written as:

P(t) =
[
Px Py Pz Ṗx Ṗy Ṗz P̈x P̈y P̈z ψre f ψ̇re f

]T (4.24)

The state and control inputs are then defined as:

X r =
[
Px Py Pz Ṗx Ṗy Ṗz ψre f

]T (4.25)

and

ur =
[
P̈x P̈z P̈z +g ψ̇re f

]T (4.26)

Figure 4.4 shows the architecture of the LQR based differentially flat controller as

implemented in [38] where the LQR controller block is used as a feedback controller

that derives the deviation between the state vector X and the reference state X r to zero.

This deviation is defined as:

X̃ = X−X r

72

And the error state equation becomes:

˙̃X = AX̃ +Bũ (4.27)

A full state feedback controller is used where ũ = −KX̃ . By using Bryson’s rule [68]

and lqr command in Matlab, the K matrix that minimizes [68]

J =
∫

∞

0
XT QX +uT Ru dt (4.28)

is found. Where the Q and R are the symmetric positive-definite weighting matrices.

Differentially
Flat Trajectory

 +

LQR

+

+ -

Attitude
controller

Air
Vehicle

Motors
PWM

Figure 4.4 : Architecture of LQR Differentially Flat based Controller.

4.5.2 LQI differential flatness based controller

In order to further improve the tracking performance of the high-level controller, the

state-space representation can be modified to include the integration of the position

states to further minimize the tracking error in agile maneuvers, as follows:

X =
[
x y z u v w ψ

∫
x
∫

y
∫

z
]T (4.29)

And the state-space model becomes:

Ẋ = AX +Bu−bg (4.30)

Where

A =

03×3 I3×3 03×1 03×3
03×3 03×3 03×1 03×3
01×3 01×3 01×1 01×3
I3×3 03×3 03×1 03×3

B =

03×3 03×1
I3×3 03×1
01×3 1
03×3 03×1

and

b =
[
0 0 0 0 0 1 0 0 0 0

]′
73

The LQR block shown in Figure 4.4 is replaced with an LQI block. In the LQI block,

the integral of the position error is combined with the position and the velocity errors.

This error is then driven to zero by finding the control input u = −K ∗ error that

minimizes the cost function shown in Eq. 4.28.

4.5.3 Performance comparison

We modeled the aerial vehicle using Eq.4.2 - 4.6 and by using the physical parameters

defined in [63], we modelled the CrazyFlie in Matlab/Simulink environment. This

model accepts the forces and moments acting on the Crazyflie in the body-fixed frame,

which is calculated by a low-level controller consisting of a PI controller in attitude

and a PID controller in attitude rate. The altitude of the Crazyflie was controlled by

a PID controller to keep it at a fixed altitude. We also build a separate model for

the LQR/LQI differential flatness based controllers in order to compare the tracking

performance between these two approaches and our approach.

Fig. 4.5 shows the simulation results and the controllers position tracking performance,

and Fig. 4.6 shows the results for velocity tracking performance. The trajectory shown

in Fig.4.5 and 4.6 is one of the randomly generated trajectories and the maximum

achieved acceleration while tracking it is 6.2 m/s2 which was achieved at a velocity

of 0.7m/s. From Fig. 4.3, we see that the maximum feasible acceleration for the

Crazyflie at a velocity of 0.7m/s is 7m/s2. 500 Monte Carlo simulations are conducted

to compare the rms error of the proposed solution with LQR/LQI differential flatness

based controllers which is shown in Table 4.3.

Table 4.3 : Error RMS values as a result of 500 Monte-Carlo analysis.

RMS Value LQR based Diff Flatness LQI based Diff Flatness Our approach
|Px− x| [cm] 35.4 21 2.5
|Py− y| [cm] 33.1 20 5.8
|Ṗx−u| [m/s] 1.14 0.6 0.25
|Ṗy− v| [m/s] 1.04 0.65 0.16

74

0 0.5 1 1.5 2 2.5 3

Time (s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
a
g
n
it
u
d
e
 (

m
)

(a) LQR Position Errors

0 0.5 1 1.5 2 2.5 3

Time (s)

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

M
a
g
n
it
u
d
e
 (

m
)

(b) LQR X-Axis Tracking

0 0.5 1 1.5 2 2.5 3

Time (s)

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

M
a
g
n
it
u
d
e
 (

m
)

(c) LQR Y-Axis Tracking

0 0.5 1 1.5 2 2.5 3

Time (s)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

M
a
g
n
it
u
d
e
 (

m
)

(d) LQI Position Errors

0 0.5 1 1.5 2 2.5 3

Time (s)

-0.5

0

0.5

1

1.5

2

2.5

3

M
a
g
n
it
u
d
e
 (

m
)

(e) LQI X-Axis Tracking

0 0.5 1 1.5 2 2.5 3

Time (s)

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

M
a
g
n
it
u
d
e
 (

m
)

(f) LQI Y-Axis Tracking

0 0.5 1 1.5 2 2.5 3

Time (s)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

M
a
g
n
it
u
d
e
 (

m
)

(g) RL Position Errors

0 0.5 1 1.5 2 2.5 3

Time (s)

0

0.5

1

1.5

2

2.5

3

3.5

M
a
g
n
it
u
d
e
 (

m
)

(h) RL X-Axis Tracking

0 0.5 1 1.5 2 2.5 3

Time (s)

0

0.5

1

1.5

2

2.5

3

3.5

M
a
g
n
it
u
d
e
 (

m
)

(i) RL Y-Axis Tracking

Figure 4.5 : Comparison between three different trajectory tracking controllers
(position).

75

0 0.5 1 1.5 2 2.5 3

Time (s)

0

0.5

1

1.5

2

2.5

3

3.5

M
a
g
n
it
u
d
e
 (

m
/s

)

(a) LQR Velocity Errors

0 0.5 1 1.5 2 2.5 3

Time (s)

-3

-2

-1

0

1

2

3

M
a
g
n
it
u
d
e
 (

m
/s

)

(b) LQR X-Axis Tracking

0 0.5 1 1.5 2 2.5 3

Time (s)

-3

-2

-1

0

1

2

3

4

M
a
g
n
it
u
d
e
 (

m
/s

)

(c) LQR Y-Axis Tracking

0 0.5 1 1.5 2 2.5 3

Time (s)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

M
a
g
n
it
u
d
e
 (

m
/s

)

(d) LQI Velocity Errors

0 0.5 1 1.5 2 2.5 3

Time (s)

-0.5

0

0.5

1

1.5

2

2.5

M
a
g
n
it
u
d
e
 (

m
/s

)

(e) LQI X-Axis Tracking

0 0.5 1 1.5 2 2.5 3

Time (s)

-0.5

0

0.5

1

1.5

2

2.5
M

a
g
n
it
u
d
e
 (

m
/s

)

(f) LQI Y-Axis Tracking

0 0.5 1 1.5 2 2.5 3

Time (s)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

M
a
g
n
it
u
d
e
 (

m
/s

)

(g) RL Velocity Errors

0 0.5 1 1.5 2 2.5 3

Time (s)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

M
a
g
n
it
u
d
e
 (

m
/s

)

(h) RL X-Axis Tracking

0 0.5 1 1.5 2 2.5 3

Time (s)

-1.5

-1

-0.5

0

0.5

1

1.5

2

M
a
g
n
it
u
d
e
 (

m
/s

)

(i) RL Y-Axis Tracking

Figure 4.6 : Comparison between three different trajectory tracking controllers
(velocity).

76

5. CONCLUSIONS AND FUTURE RECOMMENDATIONS

In this thesis, fast trajectory replanning methodology based on B-spline regeneration

with deep reinforcement learning is proposed. The aim was to simplify and accelerate

the replanning problem by providing a rigorous local solution without breaking

continuity over the trajectory. B-spline theory is applied for local support property

and apply it for defining the agile flight trajectory. For regenerating the local trajectory

segments, knot insertion methodology with control point reallocation has been used.

As the geometric and dynamic form of the trajectory based on the location of the

control points and the knot intervals, the control point reallocation problem is turned

into a constrained optimization problem and solved through Deep Reinforcement

Learning (DRL). With Principal Proxy Optimization (PPO), constrained optimization

problem have been solved by enabling to generate dynamically feasible (considering

dynamical constraints) local trajectory segment providing fast collision avoidance.

DRL agent is trained with different environmental complexities, as it is defined through

obstacle number per m2. Through the batch simulations, the proposed methodology

shows that it is enabling to solve fast trajectory replanning problem under given or

hard dynamical constraints, and providing real-time applicability for such fast collision

avoidance applications in agile unmanned aerial vehicles.

Also, to overcome trajectory tracking problem, trajectory tracking algorithm is

proposed based on deep reinforcement learning, using the PPO to train the agent with

dynamically feasible randomly generated trajectories. The error of the position and

velocity, also the previous action differences, are the goal to minimize to achieve high

performance in agile trajectory tracking and generate applicable outputs for real flight

practices. The proposed solution is tested in simulation by comparing it with other

trajectory tracking algorithms through tracking errors.

For future work, in trajectory replanning part, adaptive increment in the number of

control points will be utilized regarding the defined complexities such as obstacle

density, if known/estimated. In practice, this evaluation might be obtained through

77

the algorithm’s number of trials while searching for a dynamically feasible trajectory,

and the knot number might be increased at certain thresholds. Considering the

strong functional relationship between the number of control points and the knot

vector’s dimension, algorithm will have limited control over the number of knots.

Yet, the nonuniform knot vector utilization, enabling to morph the focused region

of interest’s length, will provide additional authority and robustness to generate a

replanned trajectory.

Another natural advancement of the work will be the extension of its implementation

to the 3D environments. On the replanning side, the theory behind the

proposed methodology is intrinsically generic and independent of the work-space

dimension. Obvious requirements will be integrating the control point search over

the additional dimensions and applying higher dimensional Euclidian distances. On

the implementation side, attitude tracking over the generated trajectory at trustworthy

levels will be imperative. This will be further enhance our methodology by supporting

with precise trajectory tracking for an extension to 3D environment implementations.

Also, to utilizing the B-spline representation from start point to end point may become

restrictive to add additional control points and change their positions. In every

relocation of the new control point is adding more action load on the aerial vehicle.

For very long distances and very dense clustered environments, increasing number of

avoidance action may cause the vehicle to exceed its limits. To solve this issue, in

future work, the B-spline trajectory representation will bi utilized not from start point

to stop point, but as a receding horizon definition. This will allow to the vehicle to

change its agility by having more flexible modification. This also allows to not depend

on the past followed trajectory.

Moreover, the algorithm will be extended to use in the environments with dynamic

obstacles through approximate motion estimation.

In trajectory tracking approach, to increase the precision of the tracking performance,

higher derivatives of the positions will also considered to be used in RL agent. Also,

in recent studied shows that the linear rotor drag effects on the vehicle has a significant

impact on tracking performance, where this force becomes crucial when the aerial

78

vehicle is forced to fly in its dynamical limits. So, this effect will also be studied and

conduct real flight tests to confirm the performance effect of the solution.

On the other hand, the robustness of the model uncertainties and integrate

iterative controller training will be studied through online learn-the-limits and

train-the-controller loops. Hence, such a controller will enable us to provide on-policy

learning without giving onset limits for agility as the controller will explore the

dynamics on the fly.

79

80

REFERENCES

[1] Skyward (2018). Industry Report: The State of Drones in Big Busi-
ness, http://go.skyward.io/rs/902-SIU-382/images/
2018%20State%20of%20Drones.pdf.

[2] Richter, C., Bry, A. and Roy, N., (2016). Polynomial trajectory planning
for aggressive quadrotor flight in dense indoor environments, Robotics
Research, Springer, pp.649–666.

[3] Sikang Liu, Watterson, M., Tang, S. and Kumar, V. (2016). High
speed navigation for quadrotors with limited onboard sensing, 2016
IEEE International Conference on Robotics and Automation (ICRA),
pp.1484–1491.

[4] Mellinger, D. and Kumar, V. (2011). Minimum snap trajectory generation and
control for quadrotors, 2011 IEEE international conference on robotics
and automation, IEEE, pp.2520–2525.

[5] Gao, F. and Shen, S. (2016). Online quadrotor trajectory generation and
autonomous navigation on point clouds, in Safety, Security, and Rescue
Robotics (SSRR), IEEE International Symposium on., pp.139–146.

[6] Mehdi, S.B., Choe, R., Cichella, V. and Hovakimyan, N. (2015). Collision
avoidance through path replanning using Bézier curves, AIAA Guidance,
Navigation, and Control Conference, p.0598.

[7] Florence, P., Carter, J. and Tedrake, R. (2016). Integrated perception and
control at high speed: Evaluating collision avoidance maneuvers without
maps, Workshop on the Algorithmic Foundations of Robotics (WAFR).

[8] Lopez, B.T. and How, J.P. (2017). Aggressive 3-D collision avoidance for
high-speed navigation, 2017 IEEE International Conference on Robotics
and Automation (ICRA), pp.5759–5765.

[9] Faessler, M., Franchi, A. and Scaramuzza, D. (2018). Differential Flatness
of Quadrotor Dynamics Subject to Rotor Drag for Accurate Tracking
of High-Speed Trajectories, IEEE ROBOTICS AND AUTOMATION
LETTERS.

[10] Hwangbo, J., Sa, I., Siegwart, R. and Hutter, M. (2017). Control of a quadrotor
with reinforcement learning, IEEE Robotics and Automation Letters,
2(4), 2096–2103.

[11] Hasanzade, M. and Koyuncu, E. (2021). A Dynamically Feasible Fast
Replanning Strategy with Deep Reinforcement Learning, Journal of
Intelligent & Robotic Systems, 101(1), 1–17.

81

[12] Shadeed, O., Hasanzade, M. and Koyuncu, E. (2021). Deep Reinforcement
Learning based Aggressive Flight Trajectory Tracker, AIAA Scitech 2021
Forum, p.0777.

[13] Van Nieuwstadt, M. and Murray, R.M. (1996). Real time trajectory generation
for differentially flat systems, IFAC Proceedings Volumes, 29(1),
2301–2306.

[14] Burri, M., Oleynikova, H., Achtelik, M.W. and Siegwart, R. (2015). Real-time
visual-inertial mapping, re-localization and planning onboard MAVs in
unknown environments, 2015 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp.1872–1878.

[15] Hehn, M. and DAndrea, R. (2011). Quadrocopter trajectory generation and
control, in World Congress, 18(1), 1485–1491.

[16] Charrow, B., Liu, S., Kumar, V. and Michael, N. (2015). Information-theoretic
mapping using cauchy-schwarz quadratic mutual information, 2015
IEEE International Conference on Robotics and Automation (ICRA),
IEEE, pp.4791–4798.

[17] Jing Chen, Tianbo Liu and Shaojie Shen (2016). Online generation of
collision-free trajectories for quadrotor flight in unknown cluttered
environments, 2016 IEEE International Conference on Robotics and
Automation (ICRA), pp.1476–1483.

[18] Usenko, V., von Stumberg, L., Pangercic, A. and Cremers, D. (2017).
Real-time trajectory replanning for MAVs using uniform B-splines
and a 3D circular buffer, 2017 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), http://dx.doi.org/10.
1109/IROS.2017.8202160.

[19] Cichella, V., Choe, R., Mehdi, B.S., Xargay, E., Hovakimyan, N., Trujillo,
A.C. and Kaminer, I. (2014). Trajectory generation and collision
avoidance for safe operation of cooperating UAVs, AIAA Guidance,
Navigation, and Control Conference, p.0972.

[20] Watterson, M. and Kumar, V. (2015). Safe receding horizon control for
aggressive mav flight with limited range sensing, in Intelligent Robots
and Systems (IROS), 2015 IEEE/RSJ International Conference on. IEEE,
pp.3235–3240.

[21] Howard, T.M., Green, C.J., Kelly, A. and Ferguson, D. (2008). State
space sampling of feasible motions for high-performance mobile robot
navigation in complex environments, Journal of Field Robotics, 25(6-7),
325–345.

[22] Mueller, M.W., Hehn, M. and D’Andrea, R. (2015). A Computationally
Efficient Motion Primitive for Quadrocopter Trajectory Generation,
IEEE Transactions on Robotics, 31(6), 1294–1310.

82

[23] Green, C.J. and Kelly, A. (2007). Toward optimal sampling in the space of paths,
In Proceedings of the International Symposium of Robotics Research,
Citeseer.

[24] Daftry, S., Zeng, S., Khan, A., Dey, D., Melik-Barkhudarov, N., Bagnell, J.A.
and Hebert, M. (2016). Robust Monocular Flight in Cluttered Outdoor
Environments, CoRR, abs/1604.04779.

[25] Pivtoraiko, M., Mellinger, D. and Kumar, V. (2013). Incremental micro-UAV
motion replanning for exploring unknown environments, 2013 IEEE
International Conference on Robotics and Automation, pp.2452–2458.

[26] Lopez, B.T. and How, J.P. (2017). Aggressive collision avoidance with limited
field-of-view sensing, 2017 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp.1358–1365.

[27] Dačić, D.B. and Kokotović, P.V. (2006). Path-following for linear systems with
unstable zero dynamics, Automatica, 42(10), 1673–1683.

[28] Do, K.D., Jiang, Z.P. and Pan, J. (2004). Robust adaptive path following of
underactuated ships, Automatica, 40(6), 929–944.

[29] Dacic, D.B., Nesic, D. and Kokotovic, P.V. (2007). Path-following for nonlinear
systems with unstable zero dynamics, IEEE transactions on automatic
control, 52(3), 481–487.

[30] Dačić, D.B., Nešić, D., Teel, A.R. and Wang, W. (2011). Path following for
nonlinear systems with unstable zero dynamics: an averaging solution,
IEEE Transactions on Automatic Control, 56(4), 880–886.

[31] Aguiar, A.P. and Hespanha, J.P. (2007). Trajectory-tracking and path-following
of underactuated autonomous vehicles with parametric modeling
uncertainty, IEEE transactions on automatic control, 52(8), 1362–1379.

[32] Do, K.D. and Pan, J. (2006). Global robust adaptive path following of
underactuated ships, Automatica, 42(10), 1713–1722.

[33] Skjetne, R., Fossen, T.I. and Kokotović, P.V. (2004). Robust output
maneuvering for a class of nonlinear systems, Automatica, 40(3),
373–383.

[34] Skjetne, R., Fossen, T.I. and Kokotović, P.V. (2005). Adaptive maneuvering,
with experiments, for a model ship in a marine control laboratory,
Automatica, 41(2), 289–298.

[35] Banaszuk, A. and Hauser, J. (1995). Feedback linearization of transverse
dynamics for periodic orbits, Systems & control letters, 26(2), 95–105.

[36] Nielsen, C. and Maggiore, M. (2006). Output stabilization and maneuver
regulation: A geometric approach, Systems & control letters, 55(5),
418–427.

83

[37] Nielsen, C. and Maggiore, M. (2008). On local transverse feedback
linearization, SIAM Journal on Control and Optimization, 47(5),
2227–2250.

[38] Shadeed, O., Turkmen, H. and Koyuncu, E. (2020). Trajectory-based Agile
Multi UAV Coordination through Time Synchronisation, AIAA Science
and Technology Forum and Exposition.

[39] Ferrin, J., Leishman, R., Beard, R. and McLain, T. (2011). Differential
flatness based control of a rotorcraft for aggressive maneuvers, 2011
IEEE/RSJ International Conference on Intelligent Robots and Systems,
pp.2688–2693.

[40] Cabecinhas, D., Cunha, R. and Silvestre, C. (2009). Rotorcraft path following
control for extended flight envelope coverage, Proceedings of the 48th
IEEE Conference on Decision and Control, held jointly with the 28th
Chinese Control Conference (CDC/CCC), 3460–3465.

[41] Akhtar, A., Waslander, S.L. and Nielsen, C. (2013). Fault Tolerant Path
Following for a Quadrotor, IEEE 52ND ANNUAL CONFERENCE ON
DECISION AND CONTROL (CDC).

[42] Faulwasser, T. and Findeisen, R. (2016). Nonlinear model predictive control
for constrained output path following, IEEE TRANSACTIONS ON
AUTOMATIC CONTROL, 1026–1039.

[43] Rubí, B., Morcego, B. and Pérez, R. (2020). A Deep Reinforcement Learning
Approach for Path Following on a Quadrotor, 2020 European Control
Conference (ECC), IEEE, pp.1092–1098.

[44] Ng, A., Coates, A., Diel, M., Ganapathi, V., Schulte, J., Tse, B., Berger,
E. and Liang, E. (2004). Autonomous inverted helicopter flight via
reinforcement learning, in International Symposium on Experimental
Robotics.

[45] Koch, W., Mancuso, R., West, R. and Bestavros, A. (2018). Reinforcement
learning for UAV attitude control, http://arxiv.org/abs/1804.04154.

[46] Karaman, S. and Frazzoli, E. (2012). High-speed Flight in an Ergodic
Forest, CoRR, abs/1202.0253, http://arxiv.org/abs/1202.
0253, 1202.0253.

[47] Cox, M.G. (1972). The numerical evaluation of B-splines, IMA Journal of
Applied Mathematics, 10(2), 134–149.

[48] De Boor, C. (1972). On calculating with B-splines, Journal of Approximation
theory, 6(1), 50–62.

[49] Piegl, L. and Tiller, W. (2012). The NURBS book, Springer Science & Business
Media.

[50] Schulman, J., Wolski, F., Dhariwal, P., Radford, A. and Klimov,
O. (2017). Proximal policy optimization algorithms, arXiv preprint
arXiv:1707.06347.

84

[51] Kakade, S. and Langford, J. (2002). Approximately optimal approximate
reinforcement learning, ICML, volume 2, pp.267–274.

[52] Dorn, M. (1989). Aircraft Agility: The Science and the Opportunities, Systems
and Operations Conference, AIAA.

[53] Verbeke, J. and Schutter, J.D. (2018). Experimental maneuverability and
agility quantification for rotary unmanned aerial vehicle, International
Journal of Micro Air Vehicles, 10(1), 3–11, https://doi.
org/10.1177/1756829317736204, https://doi.org/10.
1177/1756829317736204.

[54] Herbst, W. (8-10 Mar 1988). Agility, Briefing Presented at the Workshop on
Agility Metrics Held at the AF Flight Test Center, Edwards AFB.

[55] Skow, A. (Jan 1989). Transient Agility Enhancements for Tactical Aircraft,
Eidetics International Report (TR89-001) Prapered Under USAF
Contracts F33615-85-C-0120 and F33657-87-C-2045 for ASD/XRM.

[56] Skow, A. (Jan 1989). Innovative Performance and Maneuverability Measures of
Merit for Air Combat, Eidetics International Report (TR-210) USAF
Contracts F33615-85-C-0120 for ASD/XRM.

[57] Dhariwal, P., Hesse, C., Klimov, O., Nichol, A., Plappert, M. and Radford,
Alec... Zhokhov, P., (2017), OpenAI Baselines, https://github.
com/openai/baselines.

[58] Karaman, S. and Frazzoli, E. (2011). Sampling-based algorithms for optimal
motion planning, The International Journal of Robotics Research, 30(7),
846–894, https://doi.org/10.1177/0278364911406761,
https://doi.org/10.1177/0278364911406761.

[59] Karaman, S. and Frazzoli, E. (2010). Optimal kinodynamic motion planning
using incremental sampling-based methods, 49th IEEE Conference on
Decision and Control (CDC), pp.7681–7687.

[60] Url-1, <https://www.bitcraze.io/crazyflie-2-1/>, date re-
trieved 01.06.2019.

[61] Ferrin, J., Leishman, R., Beard, R. and McLain, T. (2011). Differential
flatness based control of a rotorcraft for aggressive maneuvers, 2011
IEEE/RSJ International Conference on Intelligent Robots and Systems,
Ieee, pp.2688–2693.

[62] Url-2, <http://ardupilot.org/copter/>, date retrieved 05.04.2019.

[63] Luis, C. and Le Ny, J. (2016). Design of a Trajectory Tracking Controller for
a Nanoquadcopter, Technical report, Mobile Robotics and Autonomous
Systems Laboratory, Polytechnique Montreal.

[64] Piegl, L. and Tiller, W. (2012). The NURBS book, Springer Science & Business
Media.

85

[65] Cano, J.M. (2013). Quadrotor UAV for wind profile characterization,
Universidad Carlos III deMadrid.

[66] Hill, A., Raffin, A., Ernestus, M., Gleave, A., Kanervisto, A. and Traore,
Rene... Wu, Y., (2018), Stable Baselines, https://github.com/
hill-a/stable-baselines.

[67] Fliess, M., Levine, J., Martin, P. and Rouchon, P., (January 1994). Flatness and
defect of nonlinear systems: Introductory theory and examples, CAS,
Tech. Rep. A-284.

[68] Franklin, G.F., Powell, J.D. and Emami-Naeini, A. (2020). Feedback control
of dynamic systems, Pearson.

86

CURRICULUM VITAE

Name Surname: Mehmet Hasanzade

EDUCATION:

• B.Sc.: 2014, Istanbul Technical University, Electrical and Electronics Faculty,
Telecommunication Engineering

• M.Sc.: 2016, Istanbul Technical University, Electrical and Electronics Faculty,
Automation and Control Engineering

Professional Experience:

• Leading a team of 14 engineers, developed agile swarm unmanned aerial vehicle
technology - Havelsan

• Managed a team of 4 engineers, developed agile unmanned aerial vehicle
technology - STM

• Supervised unmanned aerial systems team with multi-agent flight project - Aselsan

• Led a team of 9 engineers, developed a localization system with multi-agent
unmanned aerial vehicles - HUGEM

Grants and Rewards:

• Best Presentation Award - International Conference on Mechanical and Aerospace
Engineering (ICMAE)

• Best Presentation Award - Integrated Communications, Navigation and Surveil-
lance Conference (ICNS)

• 25.000 TL grant and a year office award in ITU-Seed incubation - Floradem Startup

• Best solar car design award in 2012 Tubitak-G Solar car racing competition

• Third place award in 2012 Tubitak-G Solar car racing competition

87

PUBLICATIONS, PRESENTATIONS AND PATENTS ON THE THESIS:

• Hasanzade M., Shadeed, O., Koyuncu, E. Deep Reinforcement Learning based
Aggressive Collision Avoidance with Limited FOV under Dynamic Constraints, 5th
IEEE Conference on Control Technologies and Applications (IEEE CCTA 2021),
August 8-11, 2021 San Diego, USA. (submitted)

• Shadeed, O., Hasanzade M., Koyuncu, E. Deep Reinforcement Learning based
Aggressive Flight Trajectory Tracker, AIAA Scitech 2021 Forum, January 11-15,
2021 Virtual, USA

• Hasanzade M., Koyuncu, E. A Dynamically Feasible Fast Replanning Strategy
with Deep Reinforcement Learning. J Intell Robot Syst 101, 13 (2021).
https://doi.org/10.1007/s10846-020-01274-1

OTHER PUBLICATIONS, PRESENTATIONS AND PATENTS:

• Herekoglu, Ö., Hasanzade M., Saldiran, E., Cetin, A., Ozgur, I., Kucukoglu, A.,
Ustun, M. B., Yuksek, B., Yeniceri, R., Koyuncu, E., Inalhan, G., 2019. Flight
Testing of a Multiple UAV RF Emission and Vision Based Target Localization
Method, AIAA Scitech 2019 Forum, January 7-11, 2019 San Diego, California,
USA.

• Hasanzade M., Herekoglu, O., Yeniceri, R., Koyuncu, E., Inalhan, G., 2018. RF
Source Localization using Unmanned Aerial Vehicle with Particle Filter, 2018 9th
International Conference on Mechanical and Aerospace Engineering (ICMAE), pp.
284–289, July 10-13, 2018 Budapest, Hungary.

• Hasanzade M., Herekoglu, O., Ure, N. K., Koyuncu, E., Yeniceri, R., Inalhan, G.,
2017. Localization and tracking of RF emitting targets with multiple unmanned
aerial vehicles in large scale environments with uncertain transmitter power, 2017
International Conference on Unmanned Aircraft Systems (ICUAS), pp. 1058-1065,
June 13-16, 2017 Miami, Florida, USA.

• Yeniçeri, R., Hasanzade M., Koyuncu, E., İnalhan, G. (2017, April). Enabling
Centralized UTM services through cellular network for VLL UAVs. In 2017
Integrated Communications, Navigation and Surveillance Conference (ICNS) (pp.
2E1-1). IEEE.

• Tarhan F., Hasanzade M., Çetin A., Biçer Y., Üre N.K., Koyuncu E., Yeniçeri
R., İnalhan G., "Kampüs İHA: 4G Şebeke Destekli Kampüs Güvenliği Artırma
Projesi," Otomatik Kontrol Ulusal Toplantısı 2017 (TOK 2017) Bildiri Kitabı, sayfa
655-660, İstanbul, 21-23 Eylül 2017. (Turkish)

• Hasanzade M., Herekoğlu Ö., Biçer Y., Üre N.K., Koyuncu E., Yeniçeri R.,
İnalhan G., "Belirsiz Verici Gücünde RF Sinyal Yayan Kaynakların İnsansız Hava
Araçları ile Geniş Ölçekli Ortamda Konumunun Tespiti," Otomatik Kontrol Ulusal
Toplantısı 2017 (TOK 2017) Bildiri Kitabı, sayfa 714-719, İstanbul, 21-23 Eylül
2017. (Turkish)

88

• Hasanzade M., Herekoğlu, Ö., Yeniçeri, R., Koyuncu, E., İnalhan, G., "İnsansız
Hava Aracı ve Parçacık Filtresi ile RF Sinyal Kaynağının Lokalizasyonu," 7.
Ulusal Havacılık ve Uzay Konferansı (UHUK’2018), Samsun, 12-14 Eylül 2018.
Accepted. (Turkish)

• Tarhan, A. F., Koyuncu, E., Hasanzade M., Ozdemir, U., Inalhan, G. (2014, May).
Formal intent based flight management system design for unmanned aerial vehicles.
In 2014 International Conference on Unmanned Aircraft Systems (ICUAS) (pp.
984-992). IEEE.

89

