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CONSTRUCTION OF PRE-ENRICHED METAGENOMIC LIBRARY FOR 
ISOLATING NOVEL HYDROLASE ENZYMES FOR LIQUID/ 
SUPERCRITICAL CO2 

SUMMARY 

Liquid CO2 (LCO2) is obtained when pressure is increased. When both temperature 
and pressure exceed the critical point supercritical CO2 (SCCO2) is formed. LCO2/ 
SCCO2 is used in industrial cleaning and in food preservation applications. It is 
advantageous because it is not toxic and can replace many hazardous chemicals used 
in cleaning application. However, LCO2/ SCCO2 is not so effective against 
hydrophilic dirt. To increase the efficiency of LCO2/ SCCO2, it can be supplemented 
with hydrolase enzymes such as lipase and protease. Due to the extreme nature of 
LCO2/ SCCO2 such as low pH level and no water content, enzymes to be applied in 
this system should be active at low pH and in non-aqueous medium. Hydrolase 
enzymes with such extreme properties can be isolated from acidophiles (low pH) and 
halophiles (low available water due to high salt content) by metagenomic approach. 
Metagenomics is defined as the total genome analysis of microbial population 
present in an environment. A high percentage of microorganisms on earth have not 
been cultured yet and metagenomics make analysis of those microorganisms possible 
without any dependence on culturing techniques.Therefore, various novel 
biotechnologically important products from uncultivable organisms have been 
isolated by this approach.  

In this study, environmental sediment samples were collected from extreme acid 
mine drainage (AMD) environments. Those samples were subjected to direct DNA 
isolation, but high quality DNA could not be obtained. To overcome this problem, 
samples were enriched in an elemental sulfur containing medium (0.1 g of NH4Cl, 3 
g of KH2PO4, 0.1 g of MgCl2x6H2O, 0.14 g of CaCl2x2H2O, 10 g of UV sterilized 
sulfur per liter, pH 4.2). Microbial flora enriched in this culture was determined by 
16S rDNA PCR method. It was found that flora was dominated by Acidithiobacillus, 
Sulfobacillus and uncultered microorganisms. Presence of uncultured bacterium in 
enrichment culture indicates that this culture may serve as a source for genetic 
material which have not been discovered or defined yet. Considering this, the 
enrichment culture was used to construct a fosmid library to screen for lipase and 
protease enzymes. Firstly, genomic DNA was isolated and ligated into high capacity 
DNA vectors called fosmids. Ligation products were transferred to phage resistant  
Escherichia coli cells by phage particles and a library that is composed of about 
12,000 clones was constructed. 12,000 individuals, each carrying a genome fragment 
of bigger than 21 kb; generated a library containing microbial genetic information 
more than 252 Mbp. Screening for protease and lipase enzymes were conducted 
using skim milk and tributyrin LB agar plates, respectively. Unfortunately, none of 
the clones showed protease activity but three of the screened clones showed lypolytic 
acitivity on agar plate. Further studies will be carried out to characterize these fosmid 
clones carrying potential lipase coding genes.  
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SIVI/SUPERKRĐTĐK CO2 ORTAMINA UYGUN YENĐ HĐDROLAZ 
ENZĐMLERĐNĐN ĐZOLASYONU ĐÇĐN ÖN-ZENGĐNLEŞTĐRME 
UYGULANMIŞ METAGENOMĐK KÜTÜPHANE KURULMASI 

ÖZET 

CO2 normal şartlarda gaz halindedir ve basınç yükseldikçe sıvılaşır (LCO2). Sıcaklık 
ve basınç kritik noktayı geçtiği zaman ise superkritik CO2 (SCCO2) edilir. 
LCO2/SCCO2 uygulaması endüstriyel olarak temizleme işlemlerinde ve gıdalarda 
koruma amaçlı kullanılmaktadır. Toksik olmaması ve temizleme işlemlerinde 
kullanılan zararlı kimyasalların yerine kullanılabilmesi LCO2/SCCO2’in 
avantajlarındandır. Fakat LCO2/SCCO2 hidrofilik maddelere karşı etkinliği tatmin 
edici boyutta değildir. Bu sistemin etkinliğinin arttırılabilmesi için lipaz ve proteaz 
gibi hidrolaz enzimleri ile zenginleştirilmesi gerekmektedir. LCO2/SCCO2 sisteminin 
biyolojik olarak ekstrem bir ortam olması sebebiyle kullanılacak enzimlerin düşük 
pH’da ve düşük su içeriği olan ortamda çalışabilmeleri gerekmektedir. Bu tip 
enzimler asidofilik (düşük pH) ve halofilik (yüksek tuz konsantrasyonuna bağlı 
olarak düşük su içeriği) mikroorganizmalardan metagenomiks yaklaşımı ile izole 
edilebilir. Metagenomiks belirli bir çevrede bulunan mikrobiyal populasyonun 
toplam genom analizi olarak tanımlanmaktadır. Yeryüzündeki mikroorganizmaların 
çok büyük bir bölümü henüz kültüre edilememektedir ve metagenomiks kültür 
tekniklerine bağlı kalmadan bu mikroorganizmaların genomu üzerinde 
çalışılabilmeyi sağlamaktadır. Bu şekilde, kültüre edilemeyen mikroorganizmalardan 
endüstriyel açıdan önemli bir çok ürün elde edilebilmiştir.  
 
Bu çalışmada, ekstrem asit maden sahalarından örnekler toplanmıştır. Bu 
örneklerden direk genomik DNA eldesi yapılmaya çalışılmış fakat yüksek kalitede 
DNA elde edilememesi sebebiyle örnekler zenginleştirme kültürüne (0.1 g NH4Cl, 3 
g KH2PO4, 0.1 g MgCl2x6H2O, 0.14 g CaCl2x2H2O, 10 g sülfür, 1 lt, pH 4.2) inoküle 
edilmiştir. Bu zenginleştirme kültüründe gelişen flora 16S rDNA PCR yöntemi ile 
belirlenmiş ve florada Acidithiobacillus, Sulfobacillus ve kültüre edilememiş 
bakterilerin baskın olduğu görülmüştür. Zenginleştirme kültürlerinde kültüre 
edilememiş bakterilerin de bulunması bu kültürün henüz tanımlanmamış ya da 
keşfedilmemiş genetik materyaller için bir kaynak olabileceğini göstermiştir. Bunu 
göz önünde bulundurarak, zenginleştirme kültüründen fosmid kütüphanesi kurulmuş 
ve oluşturulan kütüphane lipaz ve proteaz enzimleri için taranmıştır. Đlk olarak, elde 
edilen yüksek kalitede genomik DNA fosmid adı verilen yüksek kapasiteli DNA 
vektörlerine aktarılmıştır. Ligasyon ürünü faj ekstraktları aracılığı ile faja dirençli 
Escherichia coli hücrelerine aktarılmış ve yaklaşık 12,000 klon içeren bir kütüphane 
oluşturulmuştur. 12,000 birey 21 kb’dan büyük bir genom fragmenti taşımaktadır ve 
kütüphanenin 252 Mbp’den büyük bir genetik bilgiyi içermektedir. Proteaz ve lipaz 
enzimlerinin taranması için sırası ile yağsız süt tozu ve tributirin içeren LB agar 
besiyerleri kullanılmıştır. Kolonilerin hiçbiri proteaz aktivitesi göstermezken, taranan  
kolonilerden üç tanesi agar besiyeri üzerinde lipolitik aktivite göstermiştir. Đleriki 
çalışmalarla bu potansiyel lipaz enzimlerini kodlayan genler karakterize edilecektir. 



 xviii 

 

 

 



 1 

1.  INTRODUCTION 

1.1 Metagenomics 

1.1.1 Definition and history 

At the beginning of the twentieth century, it was believed that microorganisms could 

not be characterized without being cultured. In the second half of the twentieth 

century, scientists realized that genomes of microorganisms can be obtained, 

archived and characterized without using pure culture of the organisms [1]. Today, 

we know that there are many microorganisms, which are not amenable to culturing 

[2]. Statistics show that 99 % of the microorganisms present in many environments 

are not culturable [3]. The percentage of microorganisms in soil that are isolated and 

proliferated in laboratory conditions is found to be 0.3 % and this value is 0.0001 % 

for water-associated microorganisms [4]. Despite the fact that we cannot culture all 

the microorganisms present on the earth, we still know that they exist and this 

situation brought a new research field out called environmental genomics, or more 

commonly used metagenomics.  

The first definition of metagenomics was made by Handelsman in 1998 as “Habitat 

based investigation of mixed microbial populations at the DNA level” [5]. In 

addition, some other definitions made by different scientists can be found in the 

literature. According to Leveau and his friends, metagenomic libraries are databases 

of bacterial clones, usually Escherichia coli carrying DNA fragments that originate 

from collective genomes of all the organisms present in the particular environment, 

habitat and assemblage [6]. According to Reinsfeld and his group, metagenomics 

decribes the functional and sequence based analysis of collective microbial genomes 

contained in environmental samples and metagenome approach is the culture 

independent genomic analysis of microbial communities in the environment [7]. The 

main principle in metagenomics is that “all of the microorganisms are not discovered 

yet but this does not mean we cannot make use of them, especially of their DNAs”. 

In general, metagenomics analyze complex genomes of microbial niches [3]. 
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In the literature, some other terms defining metagenomic cloning, such as soil DNA 

library, e(nvironmental)DNA library, microbial population genomics, recombinant 

environmental genomics, community genomics, whole genome shotgun sequencing, 

environmental genomics and ecogenomics, can be found [1].   

Metagenomics, as can be interpreted from its definition, is in a compact relationship 

with many other disciplines as shown in the Figure 1.1.  

 

Figure 1.1 : Metagenomics and its relationship with other basic disciplines 

     [Modified from 8]. 

1.1.2 Applications and tools of metagenomics 

The biological sources for a metagenome can be a wide variety of samples such as 

soil, lake sediments, seawater, air and ancient remnants. In addition, studies on 

human microbiome are also metagenomic studies in which human body is considered 

as an environmental system.  

The oldest application of metagenomics is the microbial community determination in 

a given population. The most common method is the 16S rRNA sequencing to 
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determine the taxa and species of microorganisms. However, this method cannot 

provide enough information about the functional role of different microbes within the 

community, genetic information they contain and the physiology, biochemistry or 

ecological function of these microorganisms [3]. Metagenomics can be applied to 

understand those mechanisms in an expended way.  

 

Figure 1.2 : Applications of metagenomics [9]. 

As summarized in Figure 1.2, there are various applications of metagenomics. 

However, in the rest part of this text, it will be focused on construction of genomic 

DNA libraries from soil and sediment samples and on novel biotechnological 

applications of metagenomics. Comparison of experimental steps in routine 

approaches and metagenomics approach for isolating microbial genes is shown in 

Figure 1.3.  

General steps in a metagenomic study are DNA isolation from microbial niches, 

construction of DNA libraries and mining clones and DNA sequence of interest. 

Those steps will be explained for metagenomic studies mainly focused on soil and 

sediment samples. In metagenomics, it is a prerequisite to obtain high molecular 

weight and large quantity of DNA. Widely used experimental steps for DNA 

isolation and library construction are listed below [9].  

Source of the metagenome 

Choosing the right environmental samples for targeted genes is a critical step in 

metagenomic studies. For example, when a gene coding for an enzyme, which may 
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be a candidate to be used in bioremediation, is targeted, it is reasonable to collect the 

environmental sample from a polluted area. Samples should be collected carefully to 

minimize contamination and it is useful to proceed to next steps such as DNA 

isolation immediately to ensure the quality of DNA.  

 

Figure 1.3 : Approaches for isolation of novel genes from microbial sources 
    [Modified from 2] 

In constrast to the advantages of metagenomics such as collection of high proportion 

of genome present in environment and possibility to reach genomes of uncultured 

microorganisms, one of the major problems in metagenomic library construction is 

disability in obtaining high quality DNA. Because soil is a complex system, it 

involves various materials that can degrade or inhibit isolation of DNA [9]. When 

targeted gene represents a small proportion of total nucleic acid fraction present in 

the sample, it is possible to overcome this problem by enriching the samples in 

medium containing specific substances related to targeted genes [2]. Genomic 

material isolated from enrichment culture is usually more pure and qualified to be 

used in library production procedures. Some examples for pre-enriched 

environmental libraries are listed in Table 1.1. 

Cell lysis 

There are various nucleic cell lysis methods to extract genomic material from cells. 

Cell lysis is carried out as by using direct or indirect methods. In direct methods, 

microbial cells in soil can be lysed chemically or by enzymatic reactions. Those are 

usually gentle methods and penetration into the soil particles is not possible. In 

mechanical methods such as thermal shocks, bead mill homogenization, microwave 

heating and ultrasonication, yield of cell lysis increase. Beside the effectiveness of 
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mechanical methods, shearing of the DNA is the major limiting factor for this 

application.  

Table 1.1 : Examples for biotechnologically important products isolated using pre- 
        enriched metagenomic libraries. 

Gene Vector Environmental sample Ref 

Glycerol dehydratase Plasmid River sediment 10 

Diol dehydratase Plasmid Sugar beet field 10 

Biotin Plasmid Forest soil 11 

Cellulase Cosmid Enriched on dehydrated grasses 12 

Carboxylesterase Plasmid Mining area 13 

Magnetosome islands Fosmid Aqueous environments 14 

Possible drugs Fosmid Plant microbiota 15 

 

Because the efficiency of DNA extraction method depends on the type of soil, there 

is inconsistency between results of studies on comparison of soil DNA extraction 

methods [16-19]. However, sodium dodecyl sulphate is the most widely used 

chemical for direct cell lysis [20].  

In indirect lysis procedures, cells are separated from soil matrix with cation-

exchange resins or by gradient centrifugation using gradient makers such as 

Nycodenz®. Indirect lysis methods reveal purer and undamaged DNA but because 

cells usually adhere to soil particles, extracted DNA usually does not represent whole 

community.  

DNA Extraction 

After cell crude is obtained, sample is deproteinased by salting out method or by 

organic solvents. Salts such as sodium chloride, sodium acetate, ammonium acetate 

are used for salting out. The main principle in this method is the decreased solubility 

of proteins in the presence of high salt contents. Phenol, phenol-chloroform and 

chloroform-isoamylalcohol extractions are widely used organic solvents. Those 

organic solvents cause a phase formation between aqueous and organic solutions. 

DNA in the crude lysate remains in the water-based phase while proteins are 

collected at the interphase. Aqueous phase containing metagenomic DNA can further 

be purified with isopropanol, ethanol or polyethylene glycol precipitation.  
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Quantification of the DNA 

Once the metagenomic DNA is extracted, its concentration should be determined for 

further applications. For this purpose, spectrophotometric, electrophoretic and 

fluorometric analysis can be carried out.  

Purification of the DNA 

In addition to the concentration, the purity of the DNA is one of the important 

markers for DNA quality. Metagenomes extracted from soil samples usually 

contaminated with humic compounds such as humic acid, fulvic acid and humin. 

Those substances give a brownish colour in solution and interfere with enzymatic 

reactions such as PCR and cloning. The electrophoretic mobility of humic substances 

resembles DNA and they   co-migrate in the electrical field. For removal of humic 

substances from DNA solution, agarose gels supplemented with polyvinylpyrolidone 

(PVP) are used.  PVP decreases the mobility of humic compounds and DNA can be 

further extracted from uncontaminated gel matrix. Some inhibitory materials can be 

removed by treatment with multivalent cations such as Mg2+, Ca2+, Fe3+, activated 

charcoal and resin. Gel filtration and electroelution are also useful methods for 

purification of metagenomic DNA solutions. In addition, to remove humic acids 

from crude cell extracts, hexadecyltrimethylammonium bromide (CTAB), caesium 

chloride density gradients, polyvinylpyrrolidone (PVPP), various gel filtration resins 

and ion-exchange and size exclusion chromatography are also used [21]. 

Construction of the library 

In construction of metagenomic DNA libraries, choosing vector systems is a critical 

step. Plasmids, bacterial artificial chromosomes (BAC) cosmids, fosmids are widely 

used vector systems in library production. 

Plasmids: Plasmids are used for libraries with small inserts (<10 kb). While 

expression of the insert is relatively much easier in plasmids, excellent number of 

clones makes screening studies tedious. Most widely used plasmids are pZErO, 

pBlueScript, pUC [22-26]. 

BAC: Those vectors are preferred for very large inserts up to 200 kb. BAC is a 

modified plasmid that contains an origin of replication derived from the E. coli F 

factor. It is frequently used for large insert cloning experiments. It exists within the 

cell very much like a cellular chromosome. The size of one insert is about 10 % of 

bacterial genome. Advantages of BAC are large insert size, controlled replication (2 
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copy per cell), low chimerism level [27]. Requirement for high amount of sample 

and being expensive in terms of time and screening are the disadvantages of BACs. 

Cosmids and fosmids: Cosmids also have a large insert capacity. They include cos 

sequences originated from lambda phage. Cos sequences are essential for DNA to be 

packaged into the phage capsids. Phage capsids allow foreign genes to be transferred 

to host cells by transduction. Fosmids can accept inserts about 40 kb in size. Fosmids 

are vectors based on bacterial F plasmids. They also include cos sequences that are 

essential for being packaged into phage capsids. Advantages of fosmids over BAC 

and cosmid are that library can be constructed in a few days and fosmids can stay in 

low copy number while they can be induced to high copy numbers when needed 

[28]. This property is especially important for clone stability. When large insert 

vectors are used, the number of clones decreases and more importantly, large gene 

clusters and operons are not separated. So, genes do not lose their function.  

Screening library for targeted genes 

Screening the metagenomic library can be sequence driven or function driven. In 

sequence driven approach, colonies in the library are screened for specific targeted 

sequences using oligonucleotide probes. In function based approach, members of the 

library are screened for the required activity. For example, when targeted enzyme is 

an amylase, colonies are plated on agar medium containing starch, an amylase 

substrate, and starch hydrolysis activity of the clones are analyzed.  

Metagenomics studies have already resulted in discovery of novel biocatalyzers 

including lipases, agarases, alpha-amylases, beta-glucanase, esterases, amidases, 

oxidoreductases, dehydratases, chitinases and aldehyde dehydrogenases. In addition 

to discovery of new enzymes, novel antimicrobial peptides, drug precursors and 

bioactive components have been identified [29]. Among these products, there are 

some enzymes showing extremophilic characteristics which have been discovered by 

metagenomic approach.   

1.2 Extremophilic Microorganisms and Industrial Importance 

Extremophiles are organisms that can thrive under a variety of extreme 

environments. They live and proliferate under harsh conditions. They are categorized 

according to their “extreme” characteristic and they fall into classes such as 

thermophiles, psychrophiles, piezophiles, alkaliphiles, acidophiles and halophiles. 

Thermophilic microorganisms are usually found in hot springs and volcanic areas. 
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They live at a optimum temperature range from 60 to 80 °C. Some 

hyperthermophiles can also grow higher temperatures than 80 °C [30]. High 

temperature processes provide increased solubility of substances and decreased 

contamination risk in biotechnological applications and enzymes isolated from 

thermophilic microorganisms are advantageous in those biotechological applications. 

The mostly known example for thermophilic enzymes is Thermus aquaticus Taq 

DNA polymerase which is stable at 90 – 95 °C. Thermophilic proteins have a high 

structural stability and this is achieved by excluding thermo-sensitive aminoacids, 

increasing surface charge and increasing hydrophobicity of the protein core [30].   

Psychrophilic microorganisms thrive under cold temperatures in contrast to 

thermophiles. They are usually found in deep sea, upper atmosphere or caves and 

have an optimum growth temperature of about 15 °C. Enzymes obtained from those 

microorganisms used in laundary applications that can be done at low temperatures. 

Food industry, pulp and paper industry also get benefit from those cold-adapted 

enzymes. Psychrophilic adaptation of enzymes to low temperatures is thought to be 

gained by flexible structure which is achieved by reduced protein core 

hydrophobicity, reduced charge of surface residues and additional surface loops rich 

in pyroline and glycine aminoacids and low kinetic energy of molecules is 

compensated owing to these characteristic features  [31]. 

Piezophiles, previously called barophiles, are organisms that can survive under high 

pressures. Those usually live in deep oceans under pressures up to about 100 MPa 

with an optimum of 40 – 60 MPa. While piezophilic microorganisms can survive 

under those pressures, monomeric proteins can be denatured under pressures higher 

than 400 MPa. Pressure-resistant proteins are considered to be useful in food 

processing applications. Because of the difficulties in cultivating piezophiles in 

laboratory conditions, studies on piezophiles are not so wide and are mainly focused 

on determination of the effect of pressure on stability and activity of the proteins. 

The design of biotechnological applications based on piezophiles has still been on 

progress [32]. 

Acidophilic and alkaliphilic microorganisms live under extreme pH conditions. 

Acidophiles have an optimum pH of less than 3.0 while this value is higher than 9.0 

for alkaliphiles. Acidophiles are usually found in acidic soils and acid mine drainage 

environments. Alkaliphiles grow in soda lakes or carbonate rich soils. These 
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microorganisms usually maintain their cytoplasmic pH very close to neutral values. 

So, intracellular proteins do not need to adapt to extreme pH values but this is not the 

same case for extracellular proteins. They have been evolved with some mechanisms 

to adapt extreme H+ or OH- ion concentration outside of the cell [33-34]. In contrast 

to the acception that intracellular proteins of acidophiles do not need to adapt acidic 

environment, a study made on acidophilic Ferroplasma acidiphilum (pH optimum of 

1.7), a chemolithoautrophic archeon hat gains energy by oxidizing iron, revelaed that 

many intracellular enzymes have an optimum pH much lower than the intracellular 

pH of 5.6. Main metabolic enzymes such as glycosidase, glycosyltransferase and 

carboxylase were isolated from this microorganisms and their optimum pH range 

was between 1.7 and 4.0 [35].  

Halophiles are adapted to high salt concentrations and live in hypersaline 

environments. They can survive by maintaining osmotic balance and they 

accumulate sodium or potassium salts inside of their cytoplasm [36]. Both 

intracellular and extracellular proteins from halophiles can maintain their stability 

and activity in 4 M KCl and >5 M NaCl [37]. It is known that halophilic proteins 

have more acidic residues and less basic residues compared to mesophilic proteins. 

In addition, they replace large hydrophobic residues with small and less hydrophobic 

residues so they require higher salt concentrations for appropriate folding and 

gaining function [38]. Halophilic enzymes are usually exploitable in organic solvents 

because of their ability to maintain their activity in low water content mediums.  

Classification of extremophiles and some industrially important products of these 

microorganisms are shown in Table 1.2. 

In addition to those mentioned microorganisms, some other extremophiles such as 

metallophiles, radiophiles and microaerophiles have been defined. Metallophiles, 

those are resistant to high metal concentrations, are used for ore-bioleaching, 

bioremediation and biomineralization. Radiophiles, which thrive under high radiation 

levels, are used in bioremediation of radionuclotide contaminated soils [39]. 

However, possible biotechnological applications exploiting enzymes obtained from 

those microorganisms are not clear yet. Among those industrially important 

extremophilic enzymes, lipases and proteases are of major concern within this study. 
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Table 1.2 : Major categories of extremophilic microorganisms and applications of    
               biomolecules isolated from them [modified from 30, 39, 40, 41]. 
 

Type of the extreme 
microorganisms 

Growth 
characteristic 

Enzymes Applications  

Thermophiles 50 – 110 °C 

Protease 
 

Detergents, hydrolysis in food 
and feed, brewing, baking 
Starch, cellulose, chitin, pectin 
processing, textiles 

Amylase 
Pullulanase 
Glucoamylase 
Glucosidase 
Cellulase 
Xylanase 

Paper bleaching 
Chitin modification for food 
and health products 
 

Lipase 
Esterase 

Detergents, stereo-specific 
reactions 

DNA polymerase Genetic engineering 

Dehydrogenase Oxidation reactions 

Psychrophiles 0 – 20 °C 

Protease Detergents, food applications 
such as cheese maturation and 
dairy production 

Dehydrogenase Biosensors 

Amylase  Detergents and bakery 
Cellulase Detergents, feed and textiles 

Lipases Detergents, food and 
cosmetics 

Polyunsaturated 
fatty acids 

Pharmaceuticals 

Piezophiles 
Pressure up to 

130 MPa 

To be defined or 
whole organism 
can be used 

Food processing, antibiotic 
production and formation of 
gels and starch granules 

Alkaliphiles pH > 9 

Lipase Food additives, detergents 

Cyclodextrin Stabilization of volatiles 

Antibiotic  
 

Pharmaceuticals 

Cellulase, 
protease 

Polymer degradation agents 

Acidophiles pH < 2 – 4 

Amylase Starch processing 
Protease  Feed component 
Sulfur oxidation 
 

Desulphurization of coal 

Chalcopyrite 
concentrate 

Valuable metals recovery 

Halophiles 
3 – 20 % or 2 – 

5 M NaCl 

Membranes Cosmetic additives 

Carotene 
 

Food colouring 
 Glycerol Pharmaceuticals 

Protease 
 

Peptide synthesis 
 Dehydrogenase Biocatalysis in organic media 
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1.3 Lipase and Protease 

Lipases are triacylglycerol ester hydrolases (3.1.1.3) and catalyze the hydrolysis of 

fats and oils with release of fatty acids, diacylglycerols, monoacyglycerols and 

glycerol. They are required as digestive enzymes for many organisms. They are also 

involved in the metabolism of intracellular lipids such as biological membranes and 

considered as present in all organisms. Lipases are widely studied for several 

reasons. Their catalytic function serves as a model for the regulation of interfacial 

enzyme catalyzed reactions because lipases have a characteristic helical oligopeptide 

that behaves like a lid and takes different positions when faced with hydrophobic 

molecules such as lipid. Lipases are also important in terms of medical concerns 

because they have important roles in metabolism and are related to diseases such as 

atherosclerosis and hyperlipidemia [42]. Reactions catalyzed by lipases are shown in 

Figure 1.4. 

 

Figure 1.4 : Reactions catalyzed by lipases [42]. 
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Lipases are widely used in many industrial applications. Fat hydrolysis in milk, 

analysis of fatty acid compositions in fats and oil, blood triglyceride assays, synthesis 

of esters, transesterification of natural oil and removal of stains are some of the 

examples for lipase exploitation in industry.  

Proteases catalyze the breakdown of peptide bonds. They are ubiquitous because 

they are found in every organism. Proteases are categorized according to their 

catalytic mechanisms: serine (EC.3.4.21), cycteine or sulfhydryl (EC.3.4.22), 

aspartic (EC.3.4.23) and metalloproteases (EC.3.4.24). Proteases are important 

enzymes in maintaining hemeostatis because they are involved in cell growth, cell 

death, blood clotting and immune defense. Furthermore, pathogenic microorganisms 

and some viruses used proteases for infection and life cycles. For this reason, they 

are targeted molecules in drug design. In addition to their metabolic importance, 

proteases have attracted biotechnological area and account for 40 % of total enzyme 

sales in various industries. Proteases have been exploited by detergent, food, 

pharmaceutical, leather, diagnostic and leather industries. Detergent industry, the 

major user of proteases, widely utilizes alkaline proteases which are active at high 

pH values. Alkaline proteases usually have a serine in active site or they are 

metalloproteases [43-45]. 

1.4 Liquid and Super Critical Carbondioxide 

CO2 is in gas form under standard pressure and temperature (STP). Liquid CO2 

(LCO2) is obtained when pressure is increased and when temperature and pressure 

exceed the critical point, which is about 30 °C and 80 bar, supercritical CO2 (SCCO2) 

is formed as shown in the Figure 1.5. Some important characteristics of 

LCO2/SCCO2 make it attractive in biotechnological researches. LCO2/SCCO2 is inert, 

non-toxic and not flammable. It works under low temperatures and prevents 

oxidation. In addition, LCO2/SCCO2 has high diffusivities and when applied to a 

surface it can evaporate with no residual substance at the end of the process. It is 

known that LCO2/SCCO2 has good cleaning activity against hydrophobic dirt. High 

pressure dry cleaning using compressed CO2 has been applied at industrial scale [47-

49].  When it is used for cleaning, disinfection and sterilization purposes, the amount 

of water used is decreased. LCO2/SCCO2 can also replace hazardous organic 
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substances such as formaldehyde, glutaraldehyde and ethylene oxide which are 

highly toxic and suspected to be mutagenic. 

 

Figure 1.5 : Phase diagram of CO2 [46]. 

The antimicrobial effect of LCO2/SCCO2 has been showed in many studies. Those 

studies are mainly focused on inactivation of microorganisms in liquid or solid 

culture mediums and in food products [50-54]. In addition, compressed CO2 has been 

evaluated for its disinfection property on fabrics used in medical applications [55]. 

LCO2/SCCO2 is also prospected to be advantageous in cleaning, sterilization and 

disinfection of thermo-labile medical devices such as endoscopes and implants.  

However the performance of LCO2/SCCO2 on hydrophilic substances is not so 

satisfactory. To enhance this property, LCO2/SCCO2 can be enriched with extreme 

hydrolase enzymes such as protease and lipase that can exhibit activity at low pH and 

at low water activity. While there is only a few study in the literature about lipase 

utilization in SCCO2, the activity of lipases isolated from Pseudomonas fluorescens, 

Rhizopus javanicus, R. niveus and Candida rugosa were not so promising when used 

in SCCO2 [56]. 

1.5 Aim of The Research 

As mentioned above, liquid or supercritical CO2 is effective in terms of cleaning 

applications and its activity can be enhanced by using extremophilic enzymes which 

provides great advantages in biotechnological processes. LCO2 or SCCO2 is an 
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extreme medium with no water content and acidic pH. So, enzymes applicable in 

LCO2 or SCCO2 should be active both in low water content and acidic pH. Enzymes 

having these extreme characteristics can be isolated from halophiles and acidophiles. 

Halophilic enzymes are adapted to high salt content, thus reduced water activity and 

usually active in many processes based on organic solvents. In addition, acidophilic 

enzymes have evolved to maintain their activity under low pH conditions. 

The aim of this study was to construct genomic libraries of acidophilic 

environmental samples and to screen those libraries for lipase and protease enzymes. 

Those enzymes will further be candidates to be used in LCO2 or SCCO2 

cleaning/disinfection system. 
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2. MATERIALS & METHODS 

2.1 Materials 

2.1.1 Bacterial strains 

E. coli TOP10 strains; F- mcrA∆ (mrr-hsdRMS-mcrBC) φ 80lacZ ∆M15 ∆lacX74 

recA1 araD139∆ (araleu) 7697 galU galK rpsL (StrR) endA1 nupG (One Shot 

TOP10Electrocompotent cells, Catalog #C4040-10, Invitrogen) strain was used in 

cloning 16S ribosomal genes. EPI300TM  - T1R 
E. coli strain. 

F- mcrA ∆(mrr-hsdRMS-mcrBC) (StrR) φ80dlacZ ∆M15 ∆lacX74 recA1endA1 

araD139 ∆(ara, leu)7697 galU galK λ- rpsL nupG trfA tonA dhfr (EPI300™-T1R 

Phage T1-resistant E. coli Plating strain, Epicentre) also was used in genomic library 

production. 

2.1.2 Cloning vectors 

2 different vectors were used in cloning studies. pCR®2.1.-TOPO® vector  (given in 

Appendix A) was used in cloning 16S ribosomal genes (Catalog #K4560-40, 

Invitrogen). This vector is linearized with single 3’ - thymidine (T) end and 

covalently bound to Topoisomerase I enzyme. The second vector is CopyControl 

PCC1FOSTM Fosmid Vector (given in Appendix B) which is linearized at the unique 

Eco 72 I site and dephosphorylated. It has chloramphenicol resistance gene as 

antibiotic selectable marker and oriV – high copy replication origin that is activated 

when induced. 

2.1.3 Enzymes 

The used enzymes are listed below. 

Taq DNA polymerase 

Taq DNA polymerase is a standard enzyme for the amplification of DNA fragments 

up to 3 kb by polymerase chain reaction (Catalog # 04738241001, Roche).  
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Proteinase K 

This enzyme is an endolytic protease that cleaves peptide bonds at the carboxylic 

sides of aliphatic, aromatic and hydrophobic amino acids (Catalog #EO0491, 

Fermentas). It is classified as serine protease. It was used in genomic DNA isolation 

from cultures. 

Not I  

Not I is a restriction endonuclease that specifically recognizes the sequence shown 

below (Catalog #ER0591, Fermentas). This enzyme cuts the PCC1FOS vector from 

position 2 and 643 which includes the cloning site.  

 

Figure 2.1 : Not I restriction site. 

2.1.4 DNA molecular weight markers 

DNA molecular weight standards were purchased from Fermantas. 

2.1.5 Oligonucleotides 

Oligonucleotides, listed in the following, were synthesized by Genova (Alpha DNA) 

using Applied Biosystems 308A DNA synthesizer.  

pA – F  5’- AGAGTTTGATCCTGGCTCAG 3’ 

pH – R  5’- AAGGAGGTGATCCAGCCGCA 3’ 

M13 – F 5’- GTAAAACGACGGCCAG 3’ 

M13 – R  5’- CAGGAAACAGCTATGAC 3’ 

2.1.6 Culture medium 

LB (Luria-Bertani)  

10 g tryptone (Merck), 5 g yeast extract (Labo) and 5 g NaCl (Carlo Erba) were 

dissolved in distilled water up to 1 lt and the pH is adjusted to 7.0 with 10 M NaOH. 

Medium was sterilized by autoclaving for 15 min at 121 °C. 

LB Agar Medium 

10 g tryptone, 5 g yeast extract, 5 g NaCl and 15 g agar (Merck) were dissolved in 1lt 
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distilled water and the pH is adjusted to 7.0 with10 M NaOH. Medium was sterilized 

by autoclaving for 15 min at 121 °C.  For protease acitivity screening, 1 % skim milk 

(Sigma Aldrich) was added to the LB agar mixture and autoclaved. After sterilization 

appropriate amount of 500X induction solution and chloramphenicol (Applichem) 

were added to the warmed solution and poured onto plates. For lipase activity 

screening, 1 % tributyrin (Sigma Aldrich) and 1 % gum arabic (Fluka) were added to 

the LB agar mixture and autoclaved. After sterilization, mixture was cooled, 

supplemented with 0.0001 % rhodamine B (Sigma Aldrich) and sonicated during 2 

min with 10 sec/10sec pulse on/off periods to yield a homogenous emulsion. Mixture 

gaining a milky appearance after sonication indicates tributyrin miscelles getting 

small. After sonication, appropriate amount of 500X induction solution and 

chloramphenicol were added to the warmed solution and poured onto plates. 

SOC Medium 

20 g tryptone, 5 g yeast extract and 0.5 g NaCl were dissolved in distilled water. 10 

ml of 250 mM KCl was added to the solution and the pH was adjusted to 7.0 with 

NaOH. Volume was adjusted to 1 lt with distilled water and the solution was 

autoclaved. 10 mM MgCl2 and 20 mM glucose were added just before the usage.  

35S Medium 

0.1 g NH4Cl (Merck), 3 g KH2PO4 (Merck), 0.1 g MgCl2x6H2O (Merck), 0.14 

CaCl2x2H2O (Merck) were dissolved in distilled water up to 1 lt and pH was 

adjusted to 4.2 with ½ diluted HCl. The solution was autoclaved at 121 °C for 15 

min. 10 g of sulphur (Merck) was soaked with 70 % EtOH and sterilized under UV 

radiation until EtOH is evaporated completely. Sterilized sulphur was aseptically 

layered on to the liquid media.  

2.1.7 Stock solutions 

Ampicilline stock 

1 g of ampicilline sodium salt was dissolved in 10 ml distilled water, filter sterilized 

and stored at -20 °C. 

Chloramphenicol stock 

125 mg of chloramphenicol was dissolved in 10 ml EtOH, filter sterilized and stored 

at -20 °C. 
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X-gal stock  

400 mg of X-gal (5-Bromo-4-Chloro-3-Indolyl-B-D-Galactopyronoside) was 

dissolved in 10 ml dimethyl formamide (DMF). Solution was stored in dark at -20 

°C. 

 Glycerol stock 

80 ml glycerol (Riedel-de-Haen) and 20 ml distilled water were mixed to give a 80 % 

(v/v) solution. It was sterilized for 15 min at 121 °C. 

2.1.8 Buffer solutions 

Sodium Acetate Buffer 

2.46 g sodium acetate (Reidel-de-Haen) was dissolved in 7 ml distilled water and pH 

was adjusted to 5.2. Volume was completed to 10 ml to give a 3M concentration and 

the solution was stored in 4 °C. 

50X TAE Buffer 

242 g Tris base, 57.1 ml glacial acetic acid and 18.6 g EDTA was dissolved in 

distilled water up to 1 lt.  

Phosphate Buffered Saline 

8 g NaCl, 0.2 g KCl, 1.44 g Na2HPO4 and 0.24 g KH2PO4 were dissolved in 800 ml 

distilled water and the pH was adjusted to 7.4. Distilled water was added to adjust the 

volume to 1 lt.  

Phage Dilution Buffer 

Phage dilution buffer was prepared to have a 10 mM Tris-HCl (pH 8.3), 100 mM 

NaCl and 10 mM MgCl2. 

DNA Extraction Buffers 

DNA extraction buffer for soil samples (EB I) were composed of 100 mM Tris-HCl 

(pH 8.0), 100 mM sodium EDTA (pH 8.0), 100 mM sodium phosphate (pH 8.0), 1.5 

M NaCl, 1 % CTAB (w/v). All ingredients were mixed at 65 °C and stored at room 

temperature. DNA extraction buffer for culture samples (EB II) were composed of 50 

ml 0.5 M EDTA (pH 8.0), 5 ml 5M NaCl, 25 ml 20 % SDS (w/v), 20 ml 1 % CTAB 

(w/v). All ingredients were mixed at 65 °C and stored at room temperature.   
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Alkaline Lysis Buffers 

STET solution was prepared with 8 % sucrose, 5 % Triton X – 100, 50 mM EDTA 

(pH 8.0) and 50 mM Tris-HCl (pH 8.0). Resuspension buffer was composed of 50 

mM glucose, 50 mM Tris-HCl (pH 8.0), 10 mM EDTA. Lysis buffer was freshly 

prepared by dissolving 1 % SDS (w/v) in 200 mM NaOH. To prepare the 

neutralizing solution, 29.5 g potassium acetate was dissolved in 88.5 ml distilled 

water and 11.5 ml glacial acetic acid solution was added. STET solution and 

neutralizing solution were stored at room temperature while resuspension buffer was 

stored at 4 °C to prevent contamination. 

2.1.9 Laboratory equipments 

Laboratory equipments are listed in Appendix C. 

12.2 Methods  

2.2.1 Sample collection 

Sediment samples from acid mine drainage were kindly provided by  Assist. Prof. 

Dr. Nurgül Çelik Balcı from Geological Engineering department, ITU. Samples were 

aseptically collected into sterile bags or tubes and stored at -20 °C. 

2.2.2 Genomic DNA isolation from environmental sample 

Direct DNA isolation from sediment samples was carried out according to Zhou et. 

al., 1999 and the procedure is explained below [57]. Soil samples of 5 g were mixed 

with 13.5 g EB I and 100 µl proteinase K (10 mg/ml) and incubated at 37°C by 

horizontal shaking at 225 rpm for 30 min. After the shaking treatment, 1.5 ml of 20% 

SDS was added, and the samples were incubated in a 65 °C water bath for 2 h with 

gentle end-over-end inversions every 15 to 20 min. The supernatants were collected 

after centrifugation at 6,000 g for 10 min at room temperature and transferred into 

clean tubes. The soil pellets were treated with 4.5 ml of the EB I and 0.5 ml of 20% 

SDS, vortexed for 10 s, incubated at 65 °C for 10 min, and centrifuged as before. 

This extra step repeated twice. Supernatants from the three cycles of extractions were 

combined in the same clean tube and mixed with an equal volume of chloroform-

isoamyl alcohol (24:1, vol/vol). The sample was mixed throughly for 5 min and 

centrifuged at 10,000 rpm for 5 min. Aqueous phase is formed on the up side of the 

liquid and it is transferred to a clean tube. About 0.6 volume of isopropanol was adde 
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to the solution and incubated at room temperature for 1 h. The pellet of crude nucleic 

acids (that are precipitated by isopropanol) was obtained by centrifugation at 14,000 

g for 20 min at room temperature, washed with cold 70% ethanol, and resuspended 

in sterile deionized water. 

In addition to the manual DNA isolation method, as a commercial kit Fast DNA Spin 

Kit for Soil (Catalog # 6560-200, MPBio) were also used. DNA isolation protocol is 

described below. About 1 g of soil sample was treated with 500 µl PBS, centrifuged 

at 14000 rpm for 10 min and supernatant was discarded. This washing step repeated 

twice. Up to 500 mg of washed sample added to Lysing Matrix E tube. 978 µl of 

sodium phophate buffer and 128 µl MT buffer was added to the sample in the tube. 

Mixture was homogenized in FastPrep Instrument for 40 seconds at a speed of 6. 

Sample was centrifuged at 14000 g for 5 min. Supernatant was transferred to a clean 

tube and protein precipitation solution was added and mixed by shaking the tube 10 

times. Sample was centrifuged at 14000 g for 5 min. Supernatant is taken to a clean 2 

ml tube. Binding matrix solution was resuspended and 1 ml of it was added to the 

supernatant. Solution was mixed by inverting by hand for 2 min to allow binding the 

DNA. Tube is placed on a rack for 3 min to allow settling the silica matrix. 500 µl of 

the upper solution was discarded and the remaining mixture was resuspended. 600 µl 

of the mixture was transferred to SPIN Filter, centrifuged at 14000 g for 1 min, catch 

tube was empitied, the remaining mixture was added and centrifuged before. 500 µl 

of SEWS-M (+EtOH) was added to the filter and was centrifuged at 14000 g for 1 

min. Catch tubes was changed. A second centrifugation for 2 min was applied to dry 

the matrix completely. SPIN Filter was air dried for 5 min. Binding matrix above the 

filter was resuspended gently in 50 µl DNase-Pyrogen-Free Water. Tube was 

incubated at 55 °C for 5 min to increase the DNA yield. A clean tube was placed 

under spin filter and centrifuged at 14000 g for 1 min. DNA solution in the tube was 

stored at – 20 °C. To increase the DNA amount and concentration, 4 isolation 

processes were carried out simultaneously and the solutions were mixed before 

filtering step to detain the DNA in the same filter. 

2.2.3 Pre-enrichment of sediment samples  

DNA isolation from sediment samples were not successful enough to produce a high 

quality metagenomic library. To overcome this problem, sediment samples were 

inoculated into specific media to enrich the microbial flora.  
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Acid mine drainage are usually composed of sulfur oxidizing bacteria, especially 

Thiobacillus species, whose optimum growth temperature varies about 25 to 35 °C. 

To increase the viable cell number in acid mine drainage sample, 35S media was 

used. 10 g of sediment sample was inoculated into 100 ml liquid media and 

incubated at 30 °C for 30 days by horizontal shaking at 225 rpm.  

2.2.4 Determination of microbial population enriched in 35S medium 

2.2.4.1 Genomic DNA isolation from enrichment culture 

Genomic DNA from enrichment culture was isolated using MoBio UltraCleanTM 

Microbial DNA Isolation Kit (Catalog #12224-50). 1.8 ml of the 35S culture was 

taken into a 2 ml tube, centrifuged at 2000 rpm for 2 min to pellet the sulphur. 

Supernatant was taken to a new 2 ml tube, centrifuged at 10000 rpm for 5 min. 

Supernatant was discarded, cell pellet was resuspended with 300 µl MicroBead 

solution. Resuspended cells were transferred to MicroBead tube. 50 µl of MD1 

solution was added to MicroBead tube. Samples were vortexed for 10 min at 

maximum speed using the special aparatus for microbead tubes. MicroBead tube was 

centrifuged for 30 sec at 10000 g. Supernatant was transferred to a 2 ml collection 

tube. 100 µl of MD2 solution was added, vortexed for 5 sec and incubated at 4 °C for 

5 min. Tube was centrifuged at 10000g for 1 min. Supernatant was transferred to a 

new collection tube. 900 µl of MD3 solution was added, vortexed for 5 sec. 700 µl of 

the solution was transferred to spin filters and centrifuged for 30 sec. Filtrate, 

collected in collection tube, was discarded and remaining solution added to same 

filter, centrifuged again and filtrate was discarded. 300 µl of MD4 solution was 

added to filter and centrifuges at 10000 g for 30 sec. Filtrate was discarded. Empty 

filter was centrifuged at 10000 g for 1 min again to dry. Spin filter tube was replaced 

in a new collection tube. 50 µl of MD5 solution was added and centrifuged at 10000 

g for 30 sec. DNA solution in the collection tube was stored at - 20 °C. 

2.2.4.2 Universal amplified ribosomal region PCR 

To determine the species present in the enrichment culture is important in terms of 

getting access to genomic sequences and targeted enzyme properties. The microbial 

flora enriched in 35S medium is determined by 16s rDNA UARR PCR method. The 

genomic DNA is isolated from culture with MoBio DNA Isolation Kit was used as 
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template DNA. Approximately 1500 bp long part of the 16S rDNA region was 

amplified by PCR using forward pA- F (5’-AGAGTTTGATCCTGGCTCAG-3’) and 

reverse pH-R (5’-AAGGAGGTGATCCAGCCGCA-3’) primers. Reaction 

components and PCR conditions are shown in Table 2.1 and Table 2.2 respectively. 

Table 2.1 : Chemicals used for UARR PCR. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2.2 : UARR PCR Conditions. 

Temperature Duration 

95 °C 5 min 

95 °C 45 sec 
35 

cycle 
55 °C 45 sec 

72 °C 60 sec 

72 °C 5 min 

4 °C ∞ 

 

2.2.4.3 Agarose gel electrophoresis and gel extraction 

Presence of PCR products were confirmed by 1 % agarose gel electrophoresis. 0.4 g 

of agarose was boiled in 40 ml of TAE buffer in a microwave oven for 30 sec. After 

that, agarose solution was poured onto horizontal gel system and let to solidify. DNA 

samples were mixed with 5X Amesco DNA Loading Dye & Buffer and loaded into 

wells. PCR products were electrophoresed under 8V/cm and visualized by UV 

Chemical Amount 

 10 X PCR Buffer 5 µl 

 10 mM dNTP 1 µl 

 Forward Primer pA-F 1 µl 

 Reverse Primer pH-R 1 µl 

 Taq Polymerase 1 µl 

 25 mM MgCl2 6 µl 

 Template DNA 1 µl 

 Water 34 µl 

 Total Volume 50 µl 
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Transilluminator. After the presence of DNA band about 1500 bp long, all of the 

PCR reaction loaded into the gel to purify the PCR product. After electrophoresis, 

corresponding band was cut and transferred to a 2 ml tube. Extraction was performed 

by QIAGEN – QIAquick Gel Extraction Kit (Catalog # 28604, Qiagen) as described       

below. Weight of the gel slice was determined. 3 volumes of Buffer QG was added 

to 1 volume of gel. 100 mg gel was considered as approximately 100 µl. Sample was 

incubated at 50 °C until gel was completely molten. 1 gel volume of isopropanol was 

added to the sample and mixed by inverting the tube several times. Samples were 

transferred to MinElute column and cetrifuged at 13000 rpm for 1 min. 500 µl of 

Buffer QG was added to the column and centrifuged at 13000 rpm for min. Filtrate 

was discarded. 750 µl of Buffer PE was added to the column and centrifuged at 

13000 rpm for min. Filtrate was discarded. MinElute column was centrifuged again 

at 13000 rpm for 1 min to dry completely. Column was placed on a clean tube and 10 

µl of EB Buffer was added to center of the membrane. Assembly was centrifuged at 

13000 rpm for 1 min after 1 min incubation to increase the dissolved DNA amount. 

DNA solution was stored at – 20 °C until usage. 

2.2.4.4 Cloning and transformation of PCR products 

TOPO TA® Cloning Kit was used for cloning PCR products. Chemicals used in 

cloning reaction are given in Table 2.3. 

Table 2.3 : Chemicals used in clonnig reaction. 

 

 

 

 

 

 

All chemicals were mixed in a 1.5 ml tube and incubated at room temperature for 15 

min. 2 µl of the cloning reaction was added into a vial of (50 µl) One Shot 

Electrocompetent E. coli and mixed gently avoiding formation of bubles. Mixture 

was transfered to electroporation cuvette and 1800 V was applied. After 

electrotransformation, 250 µl SOC medium was added and the mixture was 

transfered to a sterile 2 ml tube. Mixture was incubated at 37 °C for 20 min to allow 

Chemicals Amount  

Salt solution 1 µl 

TOPO TA Vector 1 µl 

PCR Product 2 µl 

Water µl 
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the antibiotic resistance genes to be expressed. Cells were spread into LB agar plates 

containing 100 µg/ml ampicilline and 40 µl of X-gal stock solution. Agar plates were 

incubated at 37 °C for 16 hours. 

2.2.4.5 Blue/White screening and plasmid isolation 

White colonies grown on LB agar plates were selected and transfered to 15 ml tubes 

containing 3 ml of LB broth and 3 µl of amplicilline stock solution. Cells were 

incubated at 37 °C for 16 hours. Roche High Pure Plasmid Isolation Kit was used for 

plasmid isolation (Catalog #1754785). LB culture was centrifuged at 6000 rpm for 1 

min to pellet the cells. Supernatant was discarded. Cell pellet was resuspended with 

250 µl of Suspension+Rnase Buffer. 250 µl of Lysis Buffer was added to the 

mixture. Tubes were inverted 6 – 8 times and incubated for 5 min at RT. 350 µl of 

pre-chilled Binding Buffer was added and mixture was incubated on ice for 5 min 

after mixing gently. Samples were centrifuged at 13000 g for 10 min. Collection 

tubes were assembled under High Pure Filter tubes and supernatant from step 5 was 

transferred to the filter. Samples were centrifuged at 13000 g for 10 min. Liquid in 

the collection tube was discarded. Filter was washed with 500 µl of Wash Buffer I 

and with 700 µl of Wash Buffer II, respectively. Sample was centrifuged at 13000 g 

for 1 min after each wash. Empty filter tube was centrifuged at 13000 for 2 min to 

dry completely. Filter tube was transferred to a clean 1.5 ml tube. 100 µl of Elution 

Buffer was added to the filter tube and centrifuged at 13000 g for 1 min. Plasmids 

were stored at – 20 °C until usage. 

2.2.4.6 Sequence PCR and sequence PCR purification 

Sequence PCR was set to amplify the insert region within the plasmid vector. Big 

Dye Terminator Sequencing Kit was used for this purpose. Chemicals used in 

sequence PCR reaction  and the PCR conditions are shown in Table 2.4 and Table 

2.5, respectively.  

After completion of sequence PCR, products were purified according to the 

procedure below. PCR reaction were transferred to a 1.5 ml tube. 1 µl sodium acetate 

(3 M, pH 5.2) and 25 µl ice-cold 95 % EtOH were added. Tubes were incubated on 

ice for 15 min. At the end of the incubation, samples were centrifuged at 14000 rpm 

for 15 min. Supernatant was discarded. Pellets were washed with ice-cold 70 % 

EtOH, centrifuged at 14000 rpm for 15 min. Supernatant was discarded. Excess 
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EtOH was evaporated at 95 °C. Pellets were dissolved in 20 µl formamide. DNA was 

denatured at 95 °C for 3 min. Tubes were wrapped with aluminum foil and stored at 

4 °C until loading into sequence analyzer. Sequence analysis was performed by ABI 

3100 Avant automized sequencer. 

Table 2.4 : Sequence PCR components. 

Chemicals Amount  

ABI-RR100 Dye 2 µl 

ABI 5X PCR Buffer 2 µl 

M13 Forward/Reverse Primer 3.2 pmole (1 µl ) 

Template 1 µl 

Water 4 µl 

Table 2.5 : Sequence PCR conditions. 

Temperature Duration 

95 °C 5 min 

95 °C 10 sec 

30 cycle 55 °C 5 sec 

72 °C 4 min 

4 °C ∞ 

2.2.4.7 Phylogenetic analysis 

Sequence results obtained from sequence analysis were compared in NCBI database 

using Basic Local Alignment Search Tool (BLAST). Results with the best similarity 

were accepted.  

2.2.5 Genomic library construction 

2.2.5.1 High molecular weight DNA extraction 

High High molecular weight and high quality genomic DNA isolation from 

enrichment culture was carried out according to Zeng et al., 2008 with some 

modifications [58]. The procedure is described below. The culture media was 

centrifuged at 2000 rpm for 2 min to pellet the sulfur. Supernatant was transferred to 

a clean tube and centrifuged at 10000 rpm for 10 min. Cell pellet was washed with 
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PBS buffer and pelleted by centrifugation as before. Pellet of the cell (about0.1 g) 

was re-suspended in 2 ml of EB II and incubated in boiling water for 8 min with 

inversions every 2 min. Then, the suspension was further incubated at 65 °C for 30 

min followed by incubation at 75 °C for 30 min with gentle inversions every 10 min. 

After that incubation period, an equal volume of phenol/chloroform/isoamylalcohol 

(25:24:1) was added and mixed gently for 5 min. Mixture was centrifuged at 10000 

rpm for 5 min and the aqueous phase formed at the up side of the tube transferred to 

a clean tube. DNA in the aqueous phase was precipitated by adding 2.5 volumes of 

ice-cold ethanol and incubating at -20 °C overnight. After overnight incubation, 

sample was centrifuged at 14000 rpm for 15 min and washed with 70 % ethanol 

twice. DNA pellet was left to dry for 15 min at room temperature and dissolved in 

distilled water.  

2.2.5.2 Genomic library production 

For the construction of genomic library of the microorganisms grown in 35S media, 

CopyControl™ Fosmid Library Production Kit (Epicentre, Catalog # CCFOS110) 

was used. The overall steps in fosmid library production is shown in Figure 2.2. 

 

Figure 2.2 : Overview of steps in fosmid library production [28]. 

Fosmid library production kit allows an insert size of approximately 40 kb. When it 

was confirmed that the genomic DNA is big enough, end repair reaction was 

performed. In the end-repair reaction, phosphate groups were added to the free DNA 

ends. End-repair of the purified genomic DNA was carried out using components 

listed in Table 2.6. Reaction components were mixed on ice and incubated at RT for 

45 min. At the end of the incubation period, sample was hold at 70 °C to inactivate 

the enzyme. End repaired DNA was loaded to a 20 cm 1 % low melting point 

agarose gel and electrophoresed with 3V/cm during 8 hours. Long-time 
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electrophoresis ensures that high molecular weight DNA fragments separate better 

on the gel. 

Table 2.6 : Components used in end-repair reaction 

 

 
 
 
 
 
 
 
 
 
 
 
 
To avoid DNA damage cause of UV light, DNA to be cloned was only mixed with 

loading dye and not visualized in trans-illuminator. Only a small aliquot of it was 

mixed with DNA dye, visualized by UV light and according to its position, 

corresponding site on the gel that includes main DNA portion, which is about 25 - 40 

kb, were cut out of the gel at the end of electrophoresis process. Gel extraction was 

performed using an enzyme based procedure because other methods that include spin 

filters usually damage DNA. In this procedure the advantage earned by low melting 

point agarose usage was used. After the gel slice was taken, its weight was 

determined. Gel was incubated on a heat block at 70 °C until molten. GELase 50X 

buffer was warmed to 45 °C. Appropriate volume of warmed buffer and GELase 

enzyme (1U per 100 µl agarose) was added to the molten agarose. Reaction was 

incubated at 45 °C for 1 hour. After incubation period, the reaction was transferred to 

70 °C for 10 min to inactivate the GELase enzyme. Solution was aliquoted into 500 

µl volume and chilled on ice for 5 min. Tubes were centrifuged at 10000 g for 20 

min to pellet any insoluble components. Supernatant was taken into a clean tube, 

1/10 volume of sodium acetate and 2.5 volumes of ice-cold absolute ethanol were 

added. Mixture was incubated on ice for 1 hour. It was centrifuged at the end of 1 

hour at 14000 rpm for 15 min. DNA pellet was washed with 70 % ethanol twice. 

DNA was left to dry for 15 min and dissolved in 8 µl sterile water. DNA was stored 

at – 20 °C until usage. A small aliquot (1 µl) of the DNA solution was loaded into 

agarose gel and concentration of the DNA was determined. After determination of 

Chemical Amount 

Sterile water 2 µl 

10X End Repair Buffer 8 µl 

2.5 mM dNTP 8 µl 

10 mM ATP 8 µl 

DNA 50 µl 

End Repair Enzyme Mix 4 µl 

Total volume 80  µl 
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the concentration, DNA and fosmid vector were ligated by ligation reaction whose 

components are shown in Table 2.7. 

Table 2.7 : Chemicals used in ligation reaction.  

Chemical  Amount 

10X Ligation Buffer 1 µl 

10 mM ATP 1 µl 

CopyControl pCC1FOS vector 1 µl 

DNA 6 µl 

Fast-Link DNA Ligase 1 µl 

Total Volume 10 µl 

Ligation was performed at RT for 4 hours. Reaction was stopped by incubating at 70 

°C for 10 min. Immediately after ligation reaction, packaging the fosmid clones was 

performed. For this reaction, 25 µl of MaxPlax Lambda Packaging Extracts, which 

were stored at – 70 °C, was thawed on ice and mixed with ligation reaction product 

without formation of bubbles. Mixture was incubated at 30 °C for 2 hours. A second 

25 µl of MaxPlax Lambda Packaging Extracts was thawed and added to the mixture 

and incubation was continued for 2 more hours. At the end of incubation, 940 µl 

phage dilution buffer and 25 µl chloroform were added and stored at 4 °C. 

EPI 300 T1 (R) E. coli cells were spread on LB plates containing no antibiotic before 

library production and incubated at 37 °C overnight. Before the day of packaging 

reaction, one single colony was transferred to 50 ml of LB Broth containing 10 mM 

MgSO4 and 0.2 % maltose and incubated at 37 °C overnight. On the day of 

packaging reaction, 5 ml culture was inoculated into the same medium and incubated 

at 37 °C until OD600 reached at 0.8 ~ 1.0. This culture was further used for plating 

the cells. For plating the cells, 10 µl of this reaction was mixed with 90 µl of E. coli 

culture and incubated at 37 °C for 1 hour. Mixture (100 µl) was spread out onto LB 

agar plates containing 12.5 µg/ml chloramphenicol were incubated at 37 °C 

overnight. At the end of the incubation period, grown colonies were observed. To 

confirm the construction of the library and to check the average insert size, 15 

colonies were selected and transferred to 3 ml of LB broth containing 3 µl 

chloramphenicol stock solution. Cells were grown overnight at 37 °C. Fosmid 

isolation from culture was carried out using the alkaline lysis method according to  
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Sambrook, [59]. 1.5 ml of the culture was centrifuged at 14000 rpm for 2 min to 

pellet the cells. Cells were washed with 0.25 volume of STET and centrifuged again. 

Cell pellet was resuspended with 100 µl of resuspension buffer. 200 µl of freshly 

prepared lysis buffer was added and the tubes were inverted 5 times gently. 150 µl of 

ice-cold neutralizing solution was added to the mixture and incubated on ice for 5 

min. Cell debris was pelleted by centrifugation at 14000 rpm for 5 min. The 

supernatant was transferred to a clean tube, an equal volume of P:C:I (25:24:1) was 

added. Sample was mixed by vortexing and centrifuged at 14000 rpm for 2 min. 

Aqueous phase was transferred to a clean tube and two volumes of ethanol was 

added. Mixture was incubated at RT for 2 min, centrifuged at 14000 rpm for 15 min. 

Pellet was washed with 1 ml 70 % ethanol twice and centrifuged as before. Fosmid 

DNA was left to dry for 15 min at RT, dissolved in sterile water. To determine the 

average insert size, extracted fosmids were subjected to NotI enzyme digestion. 

Digestion reaction components are shown in Table 2.8. 

Table 2.8 : Enzyme digestion reaction of fosmids 

Chemicals  Amount 

Nuclease free water 16 µl 

10X Buffer O 2 µl 

DNA 1 µl 

NotI 1 µl 

Reaction was performed at 37 °C for 1 hour and enzyme was inactivated by 

incubation at 80 °C for 20 min. Isolated fosmids and products of digestion reaction 

were loaded onto 1 % agarose gel and electrophoresed to confirm the presence of 

insert DNA and to determine its average size.  

2.2.6 Screening of the genomic library 

After the library production was confirmed, the remaining packaged phage solution 

was mixed with appropriate amount of cell culture, incubated at 37 °C for 1 hour and 

spread out onto LB agar plates containing 12.5 µg/ml chloramphenicol, 1 % skim 

milk and induction solution for direct screening of fosmid library. Skim milk was 

used as a substrate for protease activity. Colonies were also replicated into LB + 

tributyrin plates for lipase screening.  
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3. RESULTS AND DISCUSSION 

The major purpose of this research was to construct a library of a pre-enriched 

metagenome. Sediment sample from acid mine drainage environment were collected 

and used as a template for environmental genomic library. In the first part of the 

study, it was attempted to isolate total genomic DNA directly from environmental 

sample. However, some obstacles that are probably associated with low cell number, 

presence of nucleases and other inhibitory compounds caused failing in high-quality 

metagenomic DNA isolation. To overcome this problem, environmental sample was 

inoculated into a medium designed for sulphur oxidizing acidophilic bacteria which 

are mainly found in AMD.  

3.1 Direct DNA isolation from sediment sample 

DNA isolation from environmental sample was conducted using both Fast DNA Spin 

Kit and a manual isolation procedure according to Zhou et al, 1999 [57]. Isolated 

DNA were electrophoresed in 1 % agarose gel and visualized under UV radiation. In 

the isolation by using Fast DNA Spin Kit, a total amount of 4 g sample.  

 

Figure 3.1 :  Results of DNA isolation from environmental sample. Lane 1: DNA 
isolated with commercial kit, Lane 2, Lane 3 and Lane 4: DNA 
isolated manually from same samples collected at different time 
intervals; Lane M2: Molecular marker 2 (23130, 9416, 6557, 4361, 
2322, 2027, 564, 125 bp). 



32 

Agarose gel electrophoresis show (Figure 3.1) that, the amount of the DNA was not 

high enough to construct a metagenomic library by using the commercial kit. In 

manual isolation method, isolated DNA was over-sheared and a reddish cloud caused 

by humic substances was observed on the agarose gel.  

3.2 Enrichment culture 

Enrichment cultures containing sulphur were used to enrich the acidophilic microbial 

population. Samples, obtained from acid mine drainage environments are known to 

be habitats for iron and sulfur oxidizing bacteria. For this reason, 35S medium 

containing elemental sulfur was inoculated with samples. 

During incubation period, 35S enrichment culture was sampled and pH was 

measured regularly. The changes in acidity are shown in Figure 3.2. pH of the 

medium was decreased due to the oxidation of sulfur to yield sulfuric acid according 

to the equation given below: 

 

 

Figure 3.2 : pH changes in 35S enrichment culture during incubation. 

The subculturing point shown in the figure indicates the time that 20 ml of the first 

enrichment culture was taken and inoculated into 200 ml fresh media with a pH of 

4.2. As shown in the figure, pH was decreased during the incubation period and this 

indicates the oxidation of sulfur.  
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3.3 Determination of Enriched Microbial Population 

16S rDNA method was used to determine the microbial population present in 35S 

medium, For this purpose, genomic DNA from culture was isolated with MoBio 

UltraCleanTM Microbial DNA Isolation Kit according to manufacturer’s instructions. 

Isolated DNA was analyzed on agarose gel and shown in Figure 3.4. 

Targeted 16S rDNA region of about 1500 bp was amplified by PCR using pA-F and 

pH-R primers. After confirmation of the presence of PCR products, they were 

purified by gel extraction. Purified PCR products were electrophoresed on agarose 

gel and amplification of the region with expected size was confirmed as shown in 

Figure 3.3.  

 

Figure 3.3 : Purified PCR product. Lane M3: Molecular marker 3 (21226, 5148,   
                         4973, 4268, 3530, 2027, 1904, 1584, 1375, 947, 831, 564 bp), Lane      
                         ML: DNA Ladder, Lane 1: Purified PCR product. 

Purified PCR products were ligated to TOPO TA vector. This is a plasmid DNA 

which includes ampicilline resistance gene that enables selection of transformed 

hosts. In addition, when poly(A) added insert is ligated to the vector, β-galactosidase 

coding gene called lacZ which is present within the original vector is inactivated. 

Because of this property, colonies having no insert can produce β-galactosidase and 

gain a blue colour with the hydrolysis of X-gal present in the medium. As a result, 

white and ampicilline resistant colonies which are formed after transformation 

constitute the cloning library. Plasmids were isolated from sixteen colonies and 

targeted region was amplified by PCR using M13-F and M13-R primers. Pure DNA  
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samples were sequenced using the ABI Prism 3100-Avant automated sequencer at 

the Molecular Biology and Genetics Dept., ITU. Sequence results were compared in 

NCBI database using Basic Local Alignment Search Tool (BLAST). Results of 

sequence analysis are listed in Table 3.1. 

Table 3.1 : Microorganisms found in enrichment medium. 

Microorganism 
Query 

Recoverage 

Sequence 

Similarity 

Frequenc

y* 

Acidithiobacillus thiooxidans strain 

OGCS3 
100 % 100 % 

33.3 % 

Acidithiobacillus thiooxidans strain LYS 100 % 100 % 

Acidithiobacillus sp. SH 99 % 100 % 

Acidithiobacillus sp. lsh-01 94 % 98 % 

Acidithiobacillus ferrooxidans 99 % 98 % 

Sulfobacillus sp. RIV14 100 % 100 % 
40 % 

Sulfobacillus sp. L15 94 % 99 % 

Uncultured Sulfobacillus sp. clone D47 100 % 97 % 

26.7 % Uncultured bacterium clone M19bMb7 95 % 100 % 

Uncultured bacterium clone BS-C11 91 % 99 % 

*Frequency is the percentage of genus found in total analysis. 

As shown in the table, major species found in enrichment culture belongs to two 

different genuses, Acidithiobacillus and Sulfobacillus, while uncultured clones also 

constitute a significant proportion of the flora. Acidithiobacillus species are gram 

negative and belong to γ-proteobacteria. A. caldus, A. ferrooxidans and A. 

thiooxidans, which are mesophilic chemolithoautrophic bacteria, are the most studied 

microorganisms due to their industrial importance [60]. Those bacteria are used in 

bioleaching or biomining processes in which they oxidize insoluble metal sulfides 
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and produce soluble metal sulphates [61]. Sulfobacillus species are gram positive 

bacteria belonging to Clostridiales order and are known to assist metal extraction 

during bioleaching of sulfide ores [62]. Considering the acid mine drainage 

environment where sediment samples were collected from, it is reasonable for those 

species to grow in the enrichment culture. According to the records accessed through 

NCBI database, uncultured clones found in enrichment culture have been defined in 

various environments. Those are listed in Table 3.2. 

Table 3.2 : Sources of 16S rRNA sequences of uncultured bacteria found in         
enrichment culture 

Uncultured clone Source  Reference 

Uncultured Sulfobacillus sp. clone D47 low-grade copper 
bioleaching heap 

63 

Uncultured bacterium clone M19bMb7 andesitic hydrothermal      
environments and 
acidic, hydrothermally 
modified volcanic soil 

64 

Uncultured bacterium clone BS-C11 thermophilic microflora 
enriched by different 
energy sources 

65 

Presence of uncultured bacterium in enrichment culture indicates that this culture 

may serve as a source for genetic material which have not been discovered or defined 

yet. Considering this, the enrichment culture was used to construct a genomic library 

to screen for targeted enzymes such as lipase and protease. 

3.4 Genomic Library Production 

To construct the genomic library of enrichment culture, high quality genomic DNA 

was isolated manually according to Zeng, et al, 2007 [58]. In this high temperature 

and SDS based procedure, genomic DNA was sheared minimally and amount of the 

DNA was satisfactory for library production as shown in Figure 3.4. As indicated in 

the figure, manual isolation method produced much high quality DNA compared to 

the DNA isolated with commercial kit.  

Because of the methods used in genomic DNA isolation, DNA molecules are often 

sheared. Repairing the ends of DNA molecules is required for ligation reaction. End-

repair is the reaction in which 5’-phophorylated and blunt ended DNA molecules 

was generated for this purpose. After that, DNA was electrophoresed on LMP 
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agarose gel for 8 hours to ensure resolution of large DNA fragments. DNA 

molecules with average size of 40 kb were recovered from agarose gel and small 

aliquot of the solution was electrophoresed to confirm the presence of the DNA in 

the correct size.  

 

Figure 3.4 : Genomic DNA isolated from enrichment culture. Lane 1: DNA isolated         
  by manual method, Lane M19: Molecular marker 19, Lane 2: DNA 
  isolated using commercial kit, Lane M3: Molecular marker 3 (21226,     
  5148, 4973, 4268, 3530, 2027, 1904, 1584, 1375, 947, 831, 564). 

Figure 3.5 show the size of DNA after recovery from LMP agarose gel. The 

concentration of end-repaired DNA was calculated as 0.05 µg/µl. Required amount 

of DNA solution was used in ligation reaction and products were packaged by phage 

extracts. After treating the E. coli cells with phage extracts, they were spread on LB 

agar plates containing 12.5µg/µl chloramphenicol.  

 

Figure 3.5 : Genomic DNA after size selection and gel purification. Lane M: Fosmid 
              control DNA (40 kb), Lane 1: Size selected and gel purified genomic DNA. 
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To confirm the ligation of insert, fosmids were extracted from selected clones and 

digested with NotI which has two restriction sites within the fosmid vector including 

insert ligation region. As shown in Figure 3.6, insert ligation was successful and 

average insert size is higher than 21 kb. All of the infected cell solution was spread 

on relevant agar plates and about 12,000 of clones were obtained. 12,000 individuals, 

each carrying a genome fragment of bigger than 21 kb; generate a library containing 

microbial genetic information more than 252 Mbp. 

 

Figure 3.6 : Control of insert presence and size by fosmid digestion. Odd Numbered 
Lanes: Undigested fosmids; Even Numbered Lanes: Digested Fosmids; 
Lane M: Molecular marker 3 (21226, 5148, 4973, 4268, 3530, 2027, 
1904, 1584, 1375, 947, 831, 564 bp). 

3.5 Screening the genomic library 

After construction of the library, clones were screened separately for protease and 

lipase activity. LB agar plates containing 1% skim milk as protease substrate were 

used to screen the protease activity,. Induction solution was also added into the agar 

medium to induce the fosmids to high copy numbers.. All of the clones were 

screened but unfortunately, none of the clones showed protease activity. LB agar 

plates containing 1% tributyrin was emulsified by sonication. In addition, medium 

was supplemented with 1% gum arabic to stabilize the emulsion. In Figure 3.7, the 

difference in agar medium before and after sonication is shown. After sonication, it 

was observed that medium gains a milky appearance. 
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Figure 3.7 : Appearance of LB agar medium containing tributyrin before (a) and 
                        after (b) sonication treatment. 

Clones were manually arrayed on agar plates by sterile toothpicks and incubated at 

37°C for about 7 days. Among screened clones, 3 of them formed a clear halo around 

colony and these clones were streaked out again using same agar plates for control. 

Lipase activity on agar plate was confirmed and shown in Figure 3.8. 

 

Figure 3.8 : Clones showing lypolytic activity on agar plate. 
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4. CONCLUSION  

Today it is known that a great majority of the microorganisms on earth have not been 

cultivated in standard laboratory conditions. Despite this fact, which eventually 

seems to be preventing scientists to reach unculturable microorganisms, a new field 

called metagenomics or environmental genomics directly get access to genomic 

material present in any environmental sample. This approach overcomes the 

obligations such as culturing and allows direct isolation of environmental DNA. By 

this technique, many novel biopharmaceuticals, drug precursors, enzymes and so 

other industrially important products have been isolated so far. Environmental 

samples, especially extreme environments such as hot springs and acidic mine 

drainages constitute the major sources of metagenomic studies. Enzymes isolated 

from extremophilic microorganisms provide advantages in industrial operations in 

terms of process conditions such as temperature, substance solubility, pressure, water 

content and pH. Enzymes from halophilic microorganisms are adapted to low water 

activity due to high salt content and this feature makes them exploitable in organic or 

non-aqueous solvents. Acidophilic microorganisms are alternative sources for acidic 

enzymes which can catalyze reactions under high H+ ion concentration.  

Here, we aimed  producing genomic library to isolate novel hydrolase enzymes from 

acidophilic samples. Those hydrolase enzymes are good candidates tobe used in 

LCO2/SCCO2 system for cleaning/disinfection and sterilization purposes. Because of 

the nature of LCO2/SCCO2, enzymes to be used in such a system should be active at 

low pH and low salt concentration. For this purpose, environmental samples from 

acid mine drainage environment were collected as a first step. Those samples were 

enriched in elemental sulfur containing medium to increase the microbial population. 

Microorganisms found in enrichment culture were determined using 16S rDNA 

method. Acidithiobacillus and Sulfobacillus, are the dominant genuses together with 

uncultured bacteria which represents the whole community present in enrichment 

culture. To produce a library, high quality of genomic DNA was isolated and 

genomic library which containing 12000 clones with an average insert size of >21 
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kb, was constructed using fosmids as vectors. The library was screened for protease 

and lipase activities. While none of the clones showed proteloytic activity, 3 of the 

clones showed clear halos around colonies in agar plates which contain tributyrin as 

a lipase substrate. Those zones produced by colonies were confirmed.  

Following the subcloning of these 3 clones, , lipase enzymes will be characterized 

and evaluated in terms of activity in acidic conditions. In addition, the genomic 

library of the acidophilic community can be used in screening for other important 

enzymes. Beside acidophilic samples, studies on library production from halophilic 

samples are on progress. When lipase and protease enzymes from these two extreme 

environments will have been isolated, their potential application in LCO2/SCCO2 

system will be evaluated.  

 

 
 
 
 



 41 

REFERENCES  

[1] Vakhlu, J., Sudan, A. K. and Johri, B. N., 2008. Metagenomics, Future of 
microbial gene mining. Indian J. Microbiol., 48,202-215. 

[2] Laurent, F. M., Phlippot, L., Hallet, S., Chaussod, R., Germon, J. C., Solulas, 
G. and Catroux, G., 2001. DNA extraction from soils, old bias for 
new microbial diversity analysis methods. Applied and Environmental 

Microbiology, 67,2354-2359. 

[3] Streit, W., 2004. Metagenomics – the key to the uncultured microbes. Current 

opinion in microbiology, 7, 492-498.  

[4] Lefevre, F., Jarrin, C., Ginolhac, A., Auriol, D. and Nalin, R., 2007. 
Environmental metagenomics: An innovative resource for industrial 
biocatalysis. Biocatalysis and Biotransformation, 25, 242-250. 

[5] Handelsman, J., 2004. Metagenomics, Application of genomics to uncultured 
microorganisms. Microbiol Mol Biol Rev 68,669-685 

[6] Leveahu,  J. H., Gerards, S., Voer, W. and VanVeen,  J. A., 2004.  Phylogeny 
– function analysis of (Meta) genomic libraries, screening for 
expression of ribosomal RNA genes by large-insert library fluorescent  
situ hybridization (lil-fish). Environmental Microbiology, 6,990–998. 

[7] Riesenfeld, G. S., Schloss, P. D. and Handelsman,  J., 2004. 
METAGENOMICS, Genomic analysis of microbial communities. 
Annual Review of Genetics, 38,525–552. 

[8] DeLong, E., 2009. The microbial ocean from genomes to biomes. Nature, 459, 
200-206. 

[9] Rajendhran, J. and Gunasekaran, P., 2008. Strategies for accessing soil 
metagenome for desired applications. Biotechnology Advances, 
26,576-590. 

[10] Knietsch, A., Waschkowitz, T., Bowein, S., Henne, A. and Daniel, R., 2003. 
Construction and screening of metagenomic libraries derived from 
enrichment cultures, Generation of a gene bank for genes conferring 
alcohol oxido reductase activity E. coli. Applied Environmental 

Microbiology, 69,1408–1416.  

[11] Entcheva, P., Liebl, W., Johann, A., Hartsch, T. and Streit, W. R., 2001.  
Direct cloning from enrichment cultures a reliable strategy for 
isolation of complete operons and genes from microbial consortia. 
Applied Environmental  Microbiology,  67,89–99. 



 42 

[12] Healy,  F. G., Ray, R. M., Aldrich, H. C., Wilkie, H. C. and Shanmugam, K. 
T., 1995. Direct isolation of functional genes encoding celluloses from 
the microbial consortia in hemophilic anaerobic digester maintained 
on lignocelluloses. Applied Microbiology and  Biotechnology, 43,667–
674. 

[13] Rashamuse, K., 2008. Discovery of a novel carboxylesterase through 
functional screening of a pre-enriched environmental library. Journal 

of Applied Microbiology, 106,1532-1539. 

[14] Jogler, C., Lin, W., Meyerdierks, A., Kube, M., Katzman, E., Flies, C.,  Pan, 
Y., Amann, R., Reinhardt, F. and Schüler, D., 2009. Towards 
cloning the magnetotactic metagenome: Identification of 
magnetosome island gene clusters in uncultivated magnetotactic 
bacteria from different aquatic sediments. Applied Environmental 

Microbiology, 75,3972-3979.  

[15] Wang, H. X., Geng, Z. L., Zeng, Y. and Shen, Y. M., 2008. Enriching plant 
microbiota for a metagenomic library construction. Environmental 

Microbiology, 10,2684-2691 

[16] Wikstrom, P., Wiklund, A., Andersson, A. and Forsman, M., 1996. DNA 
recovery and PCR quantification of catechol 2,3-dioxygenase genes 
from different soil types. Journal of Biotechnology, 52,107-120. 

[17] Jackson, C. R., Harper, J. P., Willoughby, D., Roden, E. and Churchill, P. 
F., 1997. A simple, efficient method for the separation of humic 
substances and DNA from environmental samples. Applied 

Environmental Microbiology, 63,4993–4995. 

[18] Cullen, D. W. and Hirsch, P. R., 1998. Simple and rapid method for direct 
extraction of microbial DNA from soil for PCR. Soil Biol Biochem, 
30,983-993. 

[19] Kauffmann, I. M., Schmitt, J. and Schmid, R. D., 2004. DNA isolation from 
soil samples for cloning in different hosts. Appl Microbiol Biotechnol, 
64,665–670. 

[20] Thakuria, D., Schmidt, O., Siurtain, M. M., Egan, D. and Doohan, F., M., 
2008. Importance of DNA quality in comparative soil microbial 
community structure analysis. Soil Biology and Biochemistry, 
40,1390-1403. 

[21] Lakay, F. M., Botha, A., and Prior, B. A., 2007. Comparative analysis of 
environmental DNA extraction and purification methods from 
different humic acid rich soils. Journal of Applied Microbiology, 
102,265-273.  

[22] Tirawongsaroj, P., Sriprang, R., Harnpicharnchai, P., Thongaram, P., 
Champreda, V., Tanapongpipat, S., Pootanakit, K. and 
Eurwilaichitr, L., 2008. Novel thermophilic and thermostable 
lipolytic enzymes from a Thailand hot spring metagenomic library. 
Journal of Biotechnology, 133,42-49. 

 
 



 43 

[23] Henne, A., Daniel, R., Schmitz, R. A. and Gottschalk, G., 1999. Construction 
of environmental DNA libraries in Escherichia coli and screening for 
the presence of genes conferring utilization of 4-hydroxybutyrate. 
Applied and Evnironmental Microbiology, 65,3901-3907. 

[24] Roh, C. and Vilatte, F., 2007. Isolation of a low-temperature adapted lipolytic 
enzyme from uncultivated micro-organism. Journal of Applied 

Microbiology, 105,116-123.  

[25] Wei, P., Bai, L., Song, W. and Hao, G., 2009. Characterization of two soil 
metagenome-derived lipases with high specificity for p-nitrophenyl 
palmitate. Arch Microbiol, 191,233-240. 

[26] Cieslinski, H., Dlugolecka, A., Kur, J. and Turkiewicz, M., 2009. An MTA 
phosphorylase gene discovered in the metagenomic library derived 
from Antarctic top soil during screening for lypolytic active clones 
confers strong pink fluorescence in the presence of rhodamine B. 
FEMS, Microbiol Lett, 299,232-240.  

[27] Beja, O., 2004. To BAC or not to BAC, Marine ecognomics. Current Opinion 

in Biotechnology, 15,187-190. 

[28] CopyControl Fosmid Library Production Kit, Epicentre Biotechnologies, 
Madison, USA. 

[29] Kim, H. K, Chung, E., J., Kim, J. C., Choi, G., J., Jang, K. S., Chung, Y. R., 
Cho, K., Y. and Lee, S., W., 2005. Characterization of a forest soil 
metagenome clone that confers indirubin and indigo production on 
Escherichia coli. Applied and Environmental Microbiology, 71,7768-
7777. 

[30] Burg, V. D. B, 2003. Extremophiles as a source for novel enzymes. Current 

Opinion in Microbiology, 6,213-218. 

[31] Cavicchioli, R., Siddiqui, K. S., Andrews, D. and Sowers, K. R., 2002. Low-
temperature extremophiles and their applications. Current Opinion in 

Biotechnology, 13,253-261.  

[32] Abe, F. and Horikoshi, K., 2001. The biotechnological potential of 
piezophiles. Trends in Biotechnology, 19,102-108 

[33] Matzke, J., Schwermann, B. and Bakker, E. P., 1997. Acidostable and 
Acidophilic Proteins, The example of the α-amylase from 
Alicyclobacillus acidocaldarius. Comparative Biochemistry and 

Physiology, 118, 475-479. 

[34] Austin, C. B. and Dopson, M., 2007.  Life in acid, pH homeostasis in 
acidophiles. Trends in Microbiology, 15,165-171. 

[35] Golyshina, O., Golyshin, P. N., Timmis, K., N. and Ferrer, M., 2006. The 
‘pH optimum anomaly’ of intracelluar enzymes of Ferroplasma 

acidophilum. Environmental Microbiology, 8,416-425. 

[36] Egea, F. C. M. and Bonete, M. J., 2002. Extreme halophilic enzymes in 
organic solvents. Current Opinion in Biotechnology, 13,385-389. 



 44 

[37] Danson, M. J. and Hough, D. V., 1997. The structural bases of protein 
halophilicity. Comparative Biochemistry and Physiology, 117, 307-
312. 

[38] Soppa, J., 2006. From genomes to function, haloarchaea as model organisms. 
Microbiology, 152,585-590. 

[39] Demirjian, D. C., Varas, F. M. and Cassidy, C. S., 2001. Enzymes from 
extremophiles. Current Opinion in Chemical Biology, 5,144-151.  

[40] Schiraldi, C. and Rosa, M. D., 2002. The production of biocatalysts and 
biomolecules from extremophiles. Trends in Biotechnology, 20,515-
521. 

[41] Fujiwara, S., 2002. Extremophiles, Developments of their special functions and 
potential resources. Journal of Bioscience and Bioengineering, 
94,518-525. 

[42] Villeneuve, P., Muderhwa, J. M., Graille, J. and Haas, M. J., 2000. 
Customizing lipases for biocatalysis, a survey of chemical, physical 
and molecular biological approaches. Journal of Molecular Catalysis 

B, Enzymatic 9,113-148.  

[43] Rutten, L. V. and Gros, P., 2002. Novel proteases, common themes and 
suprising features. Current Opinion in Structural Biology, 12,704-708. 

[44] Anvar, A. and Saleemuddin, M., 1998. Alkaline proteases, a review. 
Bioresource Tehnology, 64,175-183. 

[45] Gupta, R., Beg, Q. K. and Lorenz, P., 2002. Bacterial alkaline proteases, 
molecular approaches and industrial applications. Appl Microbiol 

Biotech, 59,15-32. 

[46] Url-1 <http,//www.chemicalogic.com/download/co2_phase_diagram.pdf>, 
accessed at 15.10.2010. 

[47] Url-2   <http,//www.hangerskc.com>, accessed at 12.02.2010. 

[48] General-Electric, 2002. General Electric patents dry cleaning process. Focus 

on Surfactants, 8,5. 

[49] UHPC, 2002. Dry cleaning system patented by Unilever HPC. Focus on 

Surfactants, 8,5. 

[50] Lin, H. M., Cao, N. J. and Chen, L. F., 1994. Antimicrobial effect of 
pressurized carbon dioxide on Listeria monocytogenes. Journal of 

Food Science, 59, 657-659. 

[51] Wei, C. I., Balaban, M. O., Fernando, S. Y. and Peplow, A. J., 1991. 
Bacterial effect of high pressure CO2 treatment on foods spiked with 
Listeria or Salmonella. Journal of Food Protection, 54,189-193. 

[52] Zhong, Q., Black, D. G., Davidson, P. M., Golden, D. A., 2008. Nonthermal 
inactivation of Escherichia coli K-12 on spinach leaves, using dense 
phase carbon dioxide. Journal of Food Protection, 71,1015-1017. 

[53] Erkmen, O., 2001. Kinetic analysis of Listeria monocytogenes inactivation by 
high pressure carbon dioxide. Journal of Food Engineering, 47,7-10. 



 45 

[54] Ballestra, P. and Cuq, J. L., 1998. Influence of pressurized carbon dioxide on 
the thermal inactivation of bacterial and fungal spores. Lebensm Wiss 

u Technol, 31,84-88. 

[55] Cinquemani, C., Boyle, C., Bach, E. and Schollmeyer, E., 2007. Inactivation 
of microbes using compressed carbon dioxide - an environmentally 
sound disinfection process for medical fabrics. Journal of 

Supercritical Fluids, 42,392-397.  

[56] Habulin, M. and Knez, Z., 2001. Activity and stability of lipases from different 
sources in SCO2 and propane. J Chem Technol Biotechnol, 76,1260-
1266. 

[57] Zhou, J., Bruns, M. A., Tiedje, J. M., 1996. DNA recovery from soils of 
diverse compositions. Applied and Environmental Microbiology, 
62,316-322. 

[58] Zeng, L., Huang, J., Zhang, Y., Qiu, G., Tong, J., Chen, D., Zhou, J. and 
Luo, X., 2008. An effective method of DNA extraction for 
bioleaching bacteria from acid mine drainage. Appl Microbiol 

Biotechnol, 79,881-888. 

[59] Sambrook, J. & Russel, D.W., 2001. Molecular Cloning, A Laboratory 
Manual, 3rd Edition Page 1.32. Cold Spring Harbor Laboratory Press, 
Cold Spring Harbor, New York. 

[60] Hallberg, K. B. and Johnson, D. B., 2001. Biodiversity of acidophilic 
prokaryotes. Advanced Applied Microbiology, 49,37-84. 

[61] Rohwerder ,T., Gehrke, T., Kinzler, K. and Sand, W., 2003. Bioleaching 
review part A, progress in bioleaching, fundamentals and mechanisms 
of bacterial metal sulfide oxidation. Applied Microbiol Biotechnology, 
63,239-248. 

[62] Shiers, D. W., Ralph, D. E. and Watling, H. R., 2010. A comparative study of 
substrate utilisation by Sulfobacillus species in mixed ferrous ion and 
tetrathionate growth medium. Hydrometallurgy, 104,363-369. 

[63] Url-3 <http,//www.ncbi.nlm.nih.gov/nucleotide/229486671?report=genban&log 
$=nucltop&blast_rank=22&RID=FNBUPAJ3014>, accesed at 
13.09.2010 

[64] Url-4 <http,//www.ncbi.nlm.nih.gov/nucleotide/169525814?report=genbank&lo 
g$=nucltop&blast rank=1&RID=FMC947U5016>, accesed at 
13.09.2010 

[65] Url-3 <http,//www.ncbi.nlm.nih.gov/nucleotide/110180428?report=genbank&lo 
g$=nucltop&blast_rank=1&RID=FNBWV6GT016>, accesed at 
13.09.2010. 

 
  





 47 

APPENDICES 

 

APPENDIX A :  pCR®2.1.-TOPO® Vector Map 
 
APPENDIX B :  CopyControl PCC1FOSTM Fosmid Vector Map 
 
APPENDIX C :  Laboratory Equipment List 
 
 
 



 48 

APPENDIX A.  

pCR®2.1.-TOPO® Vector Map 

 

Figure A.1 : Vector map of pCR®2.1-TOPO plasmid. 

 

Position (bp)    Element 

LacZ_ fragment   1-547 

M13 reverse priming site  205-221 

Multiple cloning site   234-357 

T7 promoter/priming site  364-383 

M13 forward priming site  391-406 

f1 origin    548-985 

Kanamycin resistance ORF  1319-2113 

Ampicillin resistance ORF  2131-2991 
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APPENDIX B.  

CopyControl PCC1FOSTM Fosmid Vector Map 

 

Figure A.2 : Vector map of pCCFOSTM fosmid. 
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APPENDIX C.  
 
Laboratory Equipment List 
 

Analytical Balances:   Precisa BT 610C 

Autoclave:     2540 ML benchtop autoclave, Systec GmbH   

Labor-Systemtechnik.  

Centrifuges:     Microfuge 18, Beckman Coulter; AvantiJ30I,  

Beckman Coulter.  

Deep freezes and refrigerators:  Ultra low freezer MDF-U4086S, Sanyo; Ultra  

low freezer  MDF-U333, Sanyo; 1061 M 
refrigerator, Arcelik. 

Electrophoresis equipment:  Horizon 11.14, Whatman, Biometra Gel  

Casting System, Horizon 20-25, Whatman, 
Biometra Gel Casting System. 

Electroporator:    Electroporator 2510, Eppendorf 

Gel Documentation System:  UVIpro GAS7000, UVItec Limited. 

Ice machine:     AF 10, Scotsman. 

Laminar flow cabinet:   Faster Laminar Flow BH-EN 2003. 

Magnetic stirrer:    Heidolph Standard 

Orbital shaker:    Forma orbital shaker, Thermo Electron  

Corporation. 

pH meter:     Inolab pH level 1, Wissenschaftlich-Technische  

Werkstätten GmbH & Co KG 

Pipettes:     epResearch Pipettes, Eppendorf. 

Sonicator:     Sonoplus, Bandelin 

Thermal Cycler:    Biometra Thermal Cycler 

Thermomixer:    Thermoshaker Ts1, Biometra. 

Vortex:     SI-D256 Daigger 

Water Bath:     Memert 
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