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SYNTHESIS OF LIQUID CRYSTALLINE CONTAINING MALEIMIDE 
COPOLYMERS 

SUMMARY 

In the last decade, the ability to synthesize macromolecules with complex and 
controlled architectures is becoming an increasingly important aspect of polymer 
science by being able to control the radical polymerization. It is seen a considerable 
increase in new controlled radical polymerization techniques. Specifically, controlled 
architectures possess some characteristics which are molecular weight control, low 
polydispersity, end group control and a living nature. 

In 1995, Matyjaszewski et al. developed an alternative living radical polymerization 
process using a copper (I)-catalyzed atom transfer process (ATRP). Meanwhile,     
N-substituted maleimides have become interesting monomers because of the 
superiority of their polymers or copolymers in thermal stability.  

In this thesis, free radical polymerization (FRP) and atom transfer radical 
polymerization (ATRP) was applied to copolymerize liquid crystalline acrylate 
monomer and N-substituted maleimide monomer. Spectral and thermal properties of 
resultant copolymers were investigated.   
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SIVI KRİSTAL İÇEREN MALEİMİD KOPOLİMERLERİNİN SENTEZİ 

ÖZET 

Son yıllarda radikal polimerizasyon üzerinde kontrol sağlanmasıyla kompleks ve 
kontrollü mimariye sahip makromoleküllerin sentezi üzerine yapılan çalışmalar, 
polimer biliminde gittikçe artan bir öneme sahiptir. Yeni kontrollü radikal 
polimerizasyon tekniklerinin gelişmesinde gözle görülür bir artış gözlenmektedir. 
Kontrollü mimari denilince, molekül ağırlığı kontrolü, düşük polidispersite, uç grup 
kontrolü ve yaşayan karakter akla gelmektedir. 

1995 yılında Matyjaszewski ve grubu atom transfer radikal polimerizasyonu’nu 
(ATRP) gerçekleştirmişlerdir. ATRP, Cu(I) / Ligand sistemi ile katalizlenen yaşayan 
serbest radikal polimerizasyon sistemidir. Termal kararlılığa sahip polimer ve 
kopolimerlerinin üstünlüğünden dolayı, N-sübstitüe maleimid’lerin radikal 
kopolimerizasyonları şimdiye kadar pek çok kez uygulanmıştır. 

Bu çalışmada; N-sübstitüe maleimid monomeri ile bir sıvı kristal akrilat monomerin, 
serbest radikal polimerizasyon (FRP) ve atom transfer radikal polimerizasyon 
(ATRP) yöntemleri ile kopolimerizasyonu gerçekleştirilmiş, sonuç kopolimerlerin 
termal ve yapısal özellikleri incelenmiştir.  
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1. INTRODUCTION 

Free radical polymerizations are generally poorly controlled, producing high 

molecular weight polymers at the early stages of polymerization and ultimately 

poorly defined polymers with high polydispersity. Recently Matyjaszewski and 

coworkers [1] reported an efficient way of performing radical polymerization [atom 

transfer radical polymerization (ATRP)] in a living controlled manner to overcome 

the disadvantages of classical radical polymerization. The latest developments in the 

area of controlled radical polymerization have opened new synthetic possibilities for 

the synthesis of vinyl polymers with controlled molecular weights and narrow 

molecular weight distributions.  

ATRP has been used to copolymerize monomers that will undergo radical 

homopolymerization as well as combinations of these monomers with olefins that 

will not undergo radical homopolymerization such as N-Cyclohexylmaleimide [2-4].  

Maleimide and its N-substituted derivates are 1,2-disubstituted ethylenes.                   

N-substituted maleimides have become interesting monomers that can be either 

radically copolymerized with other vinyl monomers [5,6] or homopolymerized [7] by 

radical and anionic initiators despite their 1,2-disubstituted ethylene structure. Many 

works on their radical polymerization and copolymerization have been performed so 

far because of the superiority of their polymers or copolymers in thermal stability 

[8]. The incorporation of rigid polar maleimide units in the backbones increases the 

backbone rigidity and molecular interactions, so the glass transition temperature of 

the copolymer is increased greatly.  

Liquid crystals (LCs) signify a state of aggregation that is intermediate between the 

crystalline solid and the amorphous liquid. A substance in this state is strongly 

anisotropic in some of its properties as crystals and yet exhibits a certain degree of 

fluidity like liquids. Polymer liquid crystals are a class of material that combines the 

properties of polymers with those of LCs. Liquid crystalline polymers are excellent 

structural materials for engineering applications because of their excellent chemical 
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and heat resistance, high mechanical properties, high dimensional stability, low 

viscosity during processing, low thermal shrinkage, and electro optic and rheological 

properties [9]. 

In this study, to get thermally stable alternating copolymers, radical 

copolymerization of liquid crystalline acrylate monomer (LC6) with                        

N-Cyclohexylmaleimide has been performed via ATRP and FRP mechanisms.  



 3 

2. THEORETICAL PART 

2.1 Free Radical Polymerization (FRP) 

Free radical polymerization has been a very important industrial process because of 

its distinct advantages over other polymerization methods, such as tolerance to trace 

impurities, less stringent conditions, and also to be able to polymerize a wide range 

of monomers [10]. The polymers obtained via this method are used in the 

manufacture of numerous products such as fabrics, surface coatings, plastics, paints, 

packaging, and contact lenses [11]. 

In step-growth polymerization reactions it is often necessary to use multifunctional 

monomers if polymers with high molar masses are to be formed; this is not the case 

when addition reactions are employed. Long chains are readily obtained from 

monomers such as vinylidene compounds with the general structure CH2=CR1R2. 

These are bi-functional units, where the special reactivity of π-bonds in the carbon to 

carbon double bond makes them susceptible to rearrangement if activated by free 

radical initiators. The active center created by this reaction then propagates a kinetic 

chain which leads to the formation of a single macromolecule whose growth is 

stopped when the active centre is neutralized by a termination reaction. The complete 

polymerization proceeds in three distinct stages: (i) Initiation, when the active center 

which acts as a chain carrier is created; (ii) Propagation, involving growth of the 

macromolecular chain by a kinetic chain mechanism and characterized by a long 

sequence of identical events, namely the repeated addition of a monomer to the 

growing chain; (iii) Termination, whereby the kinetic chain is brought to a halt by the 

neutralization or transfer of the active center. Typically the polymer formed has the 

same chemical composition as the monomer, i.e. each unit in the chain is a complete 

monomer and not a residue as in most step-growth reactions. [12] 
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2.1.1 Initiators and Monomers Fitted for Free Radical Polymerization  

2.1.1.1 Initiators 

An effective initiator is a molecule which, when subjected to heat, electromagnetic 

radiation, or chemical reaction, will readily undergoes homolytic fission into radicals 

of greater reactivity than the monomer radical. These radicals must also be stable 

long enough to react with a monomer and create an active centre. Particularly useful 

for kinetic studies are compounds containing an azonitrile group as the 

decomposition kinetics is normally first order and the rates are unaffected by the 

solvent environment.  

Typical radical producing reactions are [12-14]: 

(1) Thermal decomposition can be usefully applied to organic peroxides or azo 

compounds, e.g. benzoyl peroxide when heated eventually forms two phenyl radicals 

with loss of CO2 (2.1) and azobisisobutyronitrile (AIBN) is decomposed by giving 

cyanoisopropyl radicals (2.2). 

Ph C O

O

O C

O

Ph Ph C

O

O⋅2  (2.1a) 

 

Ph C O⋅

O

Ph⋅   + CO2                                                                 (2.1b) 

 

H3C C N N C CH3

CH3H3C

CNNC

2 H3C C⋅          +   Ν2

H3C

NC                (2.2) 

(2) Photoinitiators are usually classified as type I and type II initiators according to 

the mechanism by which primary radicals are generated. Photoinitiators of type I 

decompose via a direct unimolecular photofragmentation process, usually α-

fragmentation (i.e., bond breakage occurs at a bond adjacent to the carbonyl group, 

as for benzoin ethers and acyl phosphine oxides) or β-fragmentation (α-haloketones). 
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Examples of type I photoinitiators include benzoin derivates such as benzoin ethers, 

α-aminoalkylphenones, and acyl phosphine oxides. Benzoin ethers readily undergo 

α-fragmentation on exposure to near UV light (2.3) in a process that is not quenched 

by oxygen, thereby making them suitable for curing in air.  

 

C

O

CPh

OR

Ph

R'

hυ
C•        +        •

O

Ph C Ph

R'

OR

                              (2.3) 

Aromatic ketones such as benzophenone and thioxanthone are typical photoinitiators 

of type II. Type II photoinitiators normally generate radicals by abstracting hydrogen 

from the environment or undergoing photoinduced electron and hydrogen transfer 

with a coinitiator resulting in radical ions that fragment to generate radicals (2.4). 

The most commonly employed coinitiators for aromatic ketones are tertiary amines.  

hυ
C

O

Ph Ph    +   R2N CH2R' C

O−

Ph Ph
•

CH2R'R2N
+•

C

OH

Ph Ph        +    R2N
•

CHR'
•

                     (2.4) 

(3) Redox reactions, e.g. the reaction between the ferrous ion and hydrogen peroxide 

in solution produce hydroxyl radicals (2.5). 

H2O2 + Fe2+                             Fe3+ + OH- + . OH                                              (2.5) 

Alkyl hydroperoxides may be used in place of H2O2. A similar reaction is observed 

when cerium (IV) sulphate oxidizes an alcohol (2.6): 

RCH2OH + Ce4+                            Ce3+  + H+ + RC(OH)H .                            (2.6) 
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(4) Persulphates (2.7) are useful in emulsion polymerizations where decomposition 

occurs in the aqueous phase and the radical diffuses into a hydrophobic, monomer 

containing, droplet.  

S2O8
2-                     2[SO4

.]-
                                                                                 (2.7) 

(5) Ionizing radiation such as α, β, γ or X-rays (2.8) may be used to initiate a 

polymerization, by causing the ejection of an electron followed by dissociation and 

electron capture to produce a radical.  

Ejection:           C                       C+   +  e-

Dissociation :   C+                      A.   +  Q+

e- Capture:        Q                       Q.
                                                             (2.8) 

2.1.1.2 Monomers  

Most of the vinylic, acrylic and dienic monomers (2.9) can undergo free radical 

polymerization [13]. 

 

N

O

NH2  
Styrene                                  4-Vinyl pyridine          Acrylamide  

 
 

                                                                          (2.9)           

 
Acrylonitrile               Vinyl chloride           

 
 
 
 
 
 

Ethylene                    Methyl methacrylate               Tetrafluoro ethylene     

 

CN Cl

F

F

F

FH2C CH2 O

O
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R.  +  .R                      R-R

R.  +  .R                      R-R

R.  +                                                   R.

Some potential monomers (2.10) do not form polymers under usual free radical 

polymerization conditions. Such as α-methyl styrene is involved in polymerization-

depolymerization equilibrium above a ceiling temperature. Maleic anhydride and 

dimethyl fumarate are symmetrically substituted ethylenes therefore; they can not be 

polymerized by free radical polymerization. [13]                      

O

O

O

O

O

O

O

(2.10)                  

  Dimethyl fumarate                          α-methyl styrene                Maleic anhydride  

 

2.1.2 Mechanism of Free Radical Polymerization  

2.1.2.1 Initiation 

The initiation reaction is the attack of a monomer molecule by a primary radical 

originating from the initiator. This process involves two reactions (2.11): 

• Decomposition of the initiator to form primary radicals: 

            I         2R∙                                                                               (2.11a) 

• The actual initiation reaction: 

            R∙    +  M       M1∙     or                                                          (2.11b) 

           

R.  + H2C CH

R'

CH2 CH.R

R'   

Not all primary radicals formed react with the monomer. In the above possible fates 

of initiator radicals are summarized (2.12): 

• Primary combination (within the cage): 

      (2.12a) 

• Secondary combination (outside the cage): 

      (2.12b) 

• Reaction with polymeric radicals: 

       (2.12c) 
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R.  +  R'-R'                        R-R'  +  R.

R.  +  H-R'                        R-H  +  .R'

R.  +  CCl4                       R-Cl +  .CCl3

R.  +  Monomer                       R-Monomer .

• Reaction with initiator: 

      (2.12d) 

• Radical abstraction: 

      (2.12e) 

• Reaction with solvent: 

      (2.12f) 

• Chain initiation: 

      (2.12g) 

The initiator efficiency factor f is defined as the probability for a primary radical to 

react with a monomer and to initiate a chain; thus (1-f) is the probability that it will 

react with another primary radical, to form a dead product. [13]                     

2.1.2.2 Propagation 

This reaction is repeated many thousands of times for each chain formed, as already 

stated; it can be written as (2.13):  

M1∙  +  M       M2 ∙                                                                              (2.13a)                            

Mn∙  +  M        Mn+1∙                                                                           (2.13b) 
 
The most likely form of monomer addition is head to tail addition (2.14). 

Alternatively head to head (2.15) and tail to tail (2.16) additions are possible. [14] 

CH2R C.

X

H2C C

X

+ CH2R C

X

CH2 C.

X

H HH H

head to tail

    (2.14) 

 

CH2R C.

X

C CH2+ CH2R C

X

C CH2
.

HH

head to head

H

X X

H

 (2.15) 
 

CR CH2
. H2C C

X

+ CR CH2 CH2 C.

X

HH

tail to tail

X

H

X

H

    (2.16) 
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2.1.2.3 Termination 

In theory the chain could continue to propagate until all the monomer in the system 

had been consumed but for the fact that free radicals are particularly reactive species 

and interact as quickly as possible to form inactive covalent bonds. This means that 

short chains are produced if the radical concentration is high, because the probability 

of radical interaction is correspondingly high, and the radical should be kept small if 

long chains are required. Termination of chains can take place in several ways [12]: 

(1) the interaction of two active chain ends; 

(2) the reaction of an active chain end with an initiator radical; 

(3) termination by transfer of the active center to another molecule which may be 

solvent, initiator, or monomer; 

(4) interaction with impurities (e.g. oxygen) or inhibitors. 

The most important termination reaction is the first, a bimolecular interaction 

between two chain ends. Two routes are possible (2.17): 

(a) Combination where two chain ends couple together to form one long chain. 

(b) Disproportionation with hydrogen abstraction from one end to give an 

unsaturated group and two dead polymer chains. 

 

 

                                                                                     (2.17) 

 
 

X

Y
H CH2 CH2

X

Y

R

n
+

 
 

One or both processes may be active in any system depending on the monomer and 

polymerizing conditions. Experimental evidence suggests that polystyrene terminates 

predominantly by combination whereas poly(methyl methacrylate) terminates 

exclusively by disproportionation when the reaction is above 333 K but both 

mechanisms below this temperature. The mechanism can be determined by 

CH2R
X

Y

CH2

n

X

Y

ktc

combination
CH2R

X

Y
CH2

m

X

Y

X

Y
CH2

X

Y
CH2 R

n

CH2R
X

Y
CH

m

X

Y

ktd disproportionation
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measuring the number of initiator fragments per chain using a radioactive initiator. 

One fragment per chain is counted when disproportionation is operative and two 

when combination occurs. [12] 

2.1.2.4 Chain Transfer Reactions 

Atom (often hydrogen) abstraction from saturated molecules is a well-known 

reaction of free radicals and, as would be expected, is important in free radical 

polymerization. It leads to the chain-transfer process, which brings about the 

cessation of growth of a propagating radical and at the same time produces a new 

small radical which may propagate. A great variety of species can participate in 

chain transfer, act as transfer agents. Chain transfer, therefore, occurs widely; it 

commonly involves reaction of growing chains with monomer or solvent (2.18) or 

other additive and is well established for polymers and some initiators. Atoms other 

than hydrogen, notably halogens (except fluorine), may be transferred. Transfer to 

carbon tetrachloride is illustrated in 2.19.  

Chain transfer to monomer or solvent:                                                                                         (2.18a) 

Mn∙  +  M″      Mn   +  M″∙ 

Mn∙  +  S         Mn   +  S∙                                                                                      
 

Reinitiation by transfer radicals:                                                                                  (2.18b) 

M″∙  +  M       M″  —  M∙ 

S∙     +  M       S     +  M∙           

Rn∙   +  CCl4   Rn - Cl +  ∙CCl3                 (2.19)  

2.2 Free Radical Chain Copolymerization 

The demand for new and improved materials often can be achieve as a result of 

altering the properties of existing polymeric materials. For example, the use of 

additives can incorporate desirable properties into an existing polymer material that 

is to be used for specialized applications. Common additives include plasticizers, 

stabilizers, flame retardants, fillers, colorants, processing aids, and impact modifiers 

[15]. Another approach is to combine the beneficial properties of different known 

polymer structures. One known technique to achieve this is to simply blend two 

individual blend components (i.e. synergism). A few advantages of blending include 
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reducing the cost of expensive high performance polymers, improving the process 

ability of a high temperature material, and improving impact resistance of materials. 

However, because few polymers are miscible, their blends form immiscible phase 

separated materials. These immiscible blends often have poor physical properties due 

to inadequate interfacial strength between the phases [16]. A desirable alternative is 

to copolymerize different monomer structures into a single polymeric material 

(Figure 2.1) [17]. Prime examples include the important commercial materials 

produces from vinyl chloride/vinyl acetate and styrene/butadiene copolymers. 

Careful consideration of such factors as the selection of the comonomers and the 

copolymerization reaction conditions allows one to precisely tailor the properties of 

the resulting copolymer and provides a useful method of synthesizing an almost 

unlimited number of polymeric structures with a wide range of properties and 

applications.  

   

H2C CH

A

+ H2C CH

B

R
CH2 CH

A

CH2 CH

Bx y
z

 

Figure 2.1: Generalized free radical chain copolymerization reactions 

Copolymer structures can be described in a variety of ways. Different types of 

copolymers include random, alternating, block, and graft copolymers (Figure 2.2). 

Random copolymers result from a single process where the incorporation of the 

comonomers follows some statistical law that is due solely to kinetic factors [18]. 

Alternating copolymerization is an example of chain copolymerization where each of 

the monomers adds preferentially to the other and homopropagation is effectively 

nonexistent [19]. Block and graft copolymers differ in that they contain long 

sequences of each comonomer either along the backbone or as side chains (grafts) 

and are often the result of multi-step process [20].  
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Figure 2.2: Types of copolymer topologies.  

The manner in which comonomer repeat units are incorporated into the polymer 

backbone is determined from the reactivities of the monomers and radicals involved 

in the reaction. Reaction conditions such as solvent and temperature can also have a 

marked effect on the monomer reactivities and will contribute to the copolymer 

composition. 

2.2.1 Copolymer Equation 

Some observations are relevant to the consideration of copolymerization kinetics are: 

• The number of reactions involved in copolymerization of two or more monomers 

increases geometrically with the number of monomers. Consequently, the 

propagation step in the copolymerization of two monomers involves four reactions. 

• The number of radicals to be considered equals the number of monomers. The 

terminal monomer unit in a growing chain determines almost exclusively the reaction 

 
 
 
 
 
 
 
 
 
 

Alternating Copolymer                                                Random Copolymer 

 
 
 
 
 
 
 
 
 
 
 
 

Block Copolymer                                                        Graft Copolymer 
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characteristics; the nature of the preceding monomers has no significant influence on 

the reaction path. 

• There are two radicals in the copolymerization of two monomers. Consequently, 

three termination steps need to be considered. 

• The composition and structure of the resulting copolymer are determined by the 

relative rates of the different chain propagation reactions. 

By designating the two monomers as M1 and M2 and their corresponding chain 

radicals as M1· and M2·, the four propagation reactions and the associated rate 

equations in the copolymerization of two monomers may be written as follows (2.20) 

[21]: 

M1 + M1
k11

M1

M1 + M2
k12

M2

M2 + M1
k21

M1

M2 + M2
k22

M2                                                            (2.20) 

The Mayo-Lewis equation (2.21), which is derived from the terminal model using 

the assumption of the steady-state radical approximation, can be used to describe the 

instantaneous copolymer composition: 

 

                                                                          (2.21) 

Where r1 and r2 are the respective monomer reactivity ratios defined by r1=k11/k12 and 

r2=k22/k21.The quantity r1r2 represents the ratio of the product of the rate constants for 

the reaction of a radical with its own kind of monomer to the product of the rate 

constants for the cross-reactions. Copolymerization may therefore be classified into 

three categories depending on whether the quantity r1r2 is unity, less than unity, or 

greater than unity. In the case of r1r2 = 1; ideal copolymerization, r1 = r2 = 0; 

alternating copolymerization, r1>1 r2>1; block copolymerization. [21] 

 

 

d[M1]  [M1](r1[M1] + [M2])

d[M2] [M2]([M1] + r2 [M2])
=
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2.2.2 Alternating Copolymerization 

Monomers that are difficult to homopolymerized are often found to be capable of 

alternating copolymerization. When r1 = r2 = 0 (or r1r2 = 0), each radical reacts 

exclusively with the other monomer; that is neither radical can regenerate itself. 

Consequently, the monomer units are arranged alternately along the chain 

irrespective of the feed composition. 

Polymerization continues until one of the monomers is used up and then stops. 

Perfect alternation occurs when both r1 and r2 are zero. As the quantity r1r2 

approaches zero, there is an increasing tendency toward alternation. This has 

practical significance because it enhances the possibility of producing polymers with 

appreciable amounts of both monomers from a wider range of feed compositions. 

An alternating copolymer can easily be obtained by copolymerization of an electron-

rich monomer and an electron-deficient monomer through the formation of charge 

transfer complexes. Extensively studied systems of this type are maleic anhydride 

(MA) / styrene or maleimide (MI) / styrene. [22] 

2.3 Controlled/ “Living” Radical Polymerization (CRP) 

Conventional free radical polymerization (FRP) has many advantages; the procedure 

can be used for the (co)polymerization of a very large range of vinyl monomers 

under undemanding conditions; requiring the absence of oxygen, but tolerant to 

water, and can be conducted over a large temperature range (-20 to 250°C). Many 

additional vinyl monomers can be copolymerized via a radical route leading to an 

infinite number of copolymers with properties dependent on the proportion of 

incorporated comonomers. The major limitation of FRP is poor control over some of 

the key structural elements that allow the preparation of well defined 

macromolecular architectures such as molecular weight, polydispersity, end 

functionality, chain architecture and composition. [23] 
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Figure 2.3: Comparisons between FRP and CRP  

In all of the CRP processes developed to date there is a low occurrence of side 

reactions (e.g., termination or chain transfer) due to creation of a dynamic 

equilibrium between a dormant species present in large excess and a low 

concentration of active radical sites. By reducing the instantaneous concentration of 

active radicals, and hence the number of side reactions, polymerization is able to 

proceed in a controlled manner. This results in the formation of (co)polymers having 

predictable molecular weight and controllable polydispersity with molecular weight 

increasing as a function of time in a batch polymerization process, all the while 

maintaining a narrow polydispersity. CRP is also able to produce materials with 

well-defined block lengths, complex architecture, and functionalized chain ends. [23] 

A major difference between conventional radical and controlled radical 

polymerizations is the lifetime of the propagating radical during the course of the 

reaction (Figure 2.3). In conventional radical processes, radicals generated by 

decomposition of the initiator undergo propagation and bimolecular termination 

reactions within a second. In contrast, the lifetime of a growing radical can be 

extended to several hours in a CRP, enabling the preparation of polymers with well-

defined properties as shown Figure 2.4 [24,25].  
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Figure 2.4: The general features of controlled radical polymerization 

2.3.1 Classification of CRP  

Currently three approaches generally appear to be successful at controlling radical 

polymerization and the major processes will be discussed in historical order [23]. 

(1) Thermal homolytic cleavage of a weak bond in a covalent species which 

reversibly provides a growing radical and a less reactive radical (a persistent or stable 

free radical) (2.22). There are several examples of persistent radicals but it seems that 

the most successful are nitroxides, triazolinyl radicals, bulky organic radicals, e.g., 

trityl or compounds with photolabile C–S bonds and some organometallic species. 

                                  (2.22) 

A subset of this process is the transition metal catalyzed, reversible cleavage of the 

covalent bond in the dormant species via a redox process (2.23). Since the key step in 

controlling the polymerization is transfer of an atom (or group) between a dormant 

chain and a transition metal catalyst in a lower oxidation state forming an active 
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chain end and a transition metal deactivator in a higher oxidation state, this process 

was named atom transfer radical polymerization (ATRP). 

       (2.23) 

(2) The second approach to CRP is based on a thermodynamically neutral exchange 

process between a growing radical, present at very low concentrations, and dormant 

species, present at much higher concentrations (generally three to four orders of 

magnitude) (2.24). This degenerative transfer process can employ alkyl iodides, 

unsaturated methacrylate esters, or thioesters. The latter two processes operate via 

addition-fragmentation chemistry. 

           (2.24) 

(3) Finally, there is a third approach that has not yet been as extensively examined as 

the above systems. This process is the reversible formation of persistent radicals, by 

reaction of the growing radicals with a species containing an even number of 

electrons, which do not react with each other or with monomer (2.25). Here, the role 

of a reversible radical trap may be played by phosphites or some reactive, but non-

polymerizable alkene, such as tetrathiofulvalenes, stilbene or diphenylethylene. 

                        (2.25) 
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2.3.2 Atom Transfer Radical Polymerization (ATRP) 

As a novel precision polymerization, atom transfer radical polymerization (ATRP) 

has received rapidly increased interest recently, since it furnishes control over the 

resulting polymers, which posses narrower molecular weight distributions. The merit 

of the ATRP system is that it can be performed by an ordinary polymerization 

procedure. The name atom transfer radical polymerization (ATRP) comes from the 

atom transfer step, which is the key elementary reaction responsible for the uniform 

growth of polymeric chains. ATRP originates in atom transfer radical addition 

(ATRA) reactions. It employs atom transfer from an organic halide to a transition- 

metal complex to generate the reacting radicals, followed by back transfer from the 

transition metal to a product radical to form the final product. The general 

mechanism of ATRA can be seen in Figure 2.5. [26] 

 

Figure 2.5: The general mechanism of ATRA 

ATRP was developed by designing a proper catalyst (transition metal compound and 

ligands), using an initiator with an appropriate structure and adjusting the 

polymerization conditions, such that the molecular weights increased linearly with 

conversion and the polydispersities were typical of a living process. This allowed for 

an unprecedented control over the chain topology, the composition and the end 

functionality for a large range of radically polymerizable monomers [14]. 
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2.3.2.1 Mechanism and Kinetics of ATRP 

An ATRP system consist of an initiator, a copper(I) halide complexed with some 

ligand(s), and of course, monomer. ATRP occurs as a repetitive addition of a 

monomer to a growing radicals generated from dormant alkyl (pseudo) halides by a 

reversible redox process catalyzed by transition metal compounds complexed by 

amine ligand. A general mechanism for ATRP is shown in Figure 2.6 [1].   

 

Figure 2.6: A general mechanism for ATRP 

This process occurs with a rate constant of activation, ka, and deactivation kd, 

respectively. Polymer chains grow by the addition of the free radicals to monomers 

in a manner similar to conventional radical polymerizations, with the rate constant of 

propagation, kp. 

Termination reactions (kt) also occur in ATRP, mainly through radical coupling and 

disproportionation; however, in well-controlled ATRP, no more than a few percent 

of the polymer chains undergo termination. 

Higher activation energy for the radical propagation than for the radical termination, 

higher kp/kt  ratios and better control may be observed at higher temperatures. 

The rate of polymerization is first order with respect to monomer, alkyl halide 

(initiator), and transition metal complexed by ligand. The reaction is usually negative 

first order with respect to the deactivator (CuX2 / Ligand). The rate law of ATRP is 

formulated in discussed conditions and given in equation (2.26) [1]. 

    (2.26)  

As in typical living polymerization, the average molecular weight of the polymer can 

be predetermined by the ratio of consumed monomer and the initiator 

(DPn=Δ[M]/[I0]) while maintaining a relatively narrow molecular weight distribution 

(1.0<Mw/Mn<1.5) [14]. In addition, precise control over the chemistry and the 
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structure of the initiator and active end group allows for the synthesis of end-

functionalized polymers and block copolymers.  

The molecular weight distribution or polydispersity Mw/Mn is the index of the 

polymer chain-length distribution. In well-controlled polymerization, Mw/Mn is 

usually less than 1.10. [1] 

2.3.2.2 Components Used in ATRP 

Monomers 

ATRP can be used for many vinyl monomers including styrenes, acrylates, 

methacrylates, acrylonitrile and dienes. Even under the same conditions using the 

same catalyst, each monomer has its own unique atom transfer equilibrium constant 

for its active and dormant species. In the absence of any side reactions other than 

radical termination by coupling or disproportionation, the magnitude of the 

equilibrium constant (Keq=ka/kd) determines the polymerization rate [1]. 

The most commonly used monomers are styrene (St) and methyl methacrylate 

(MMA) and acrylates. Also ATRP has been used to copolymerize that will undergo 

radical homopolymerization as well as combinations of these monomers with olefins 

that will not undergo radical homopolymerization (such as maleic anhydride,          

N-cyclohexylmaleimide). [26] 

Initiators 

The main role of the initiator is to determine the number of growing polymer chains. 

Two parameters are important for a successful ATRP initiating system. First, 

initiation should be fast in comparison with propagation. Second, the probability of 

the side reactions should be minimized. 

In ATRP, alkylhalides (RX) are typically used as initiator and the rate of 

polymerization is first order with respect to the concentration of RX. To obtain well-

defined polymers with narrow molecular weight distributions, the halide group X 

must rapidly and selectively migrate between the growing chain and the transition 

metal complex. When X is either bromine or chlorine, the molecular weight control 

is the best [26]. Fluorine is not used because the C-F bond is too strong to undergo 

homolytic cleavage [1]. 
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Initiation should be fast and quantitative with a good initiator and proper selection of 

group R. Any alkyl halide with activating substituents on the α-carbon, such as aryl 

carbonyl, or allyl groups, can potentially be used as ATRP initiators, 

polyhalogeneted compounds (CCl4 and CHCl3), and compounds with a week R-X 

bond, such as N-X, S-X and O-X, can also be used as ATRP initiators. 

When the initiating moiety is attached to a macromolecule macroinitiators are 

formed, and can be used to synthesize block or graft copolymers [27].  

Table 2.1: The most frequently used initiator types in ATRP systems 

Initiator Monomer 

Br

                     1-Bromo-1-phenyl ethane 

Styrene 

Cl

                     1-Chloro-1-phenyl ethane 

Styrene 

C O
OCH3

CH3 Br         
                                     Ethyl-2-bromo isobutyrate 

Methylmethacrylate 

H
C O

Br

CH3 O

     
                                     Ethyl-2-bromo  propionate 

Methylacrylate and other acrylates 

S
O

O
Cl

 
                                   p-toluene sulphonyl chloride 

Methylmethacrylate 

 

Catalysts 

Perhaps most important component of ATRP is the catalyst. It is the key to ATRP 

since it determines the position of the atom transfer equilibrium and the dynamics of 

exchange between the dormant and active species. The catalyst is based on a 
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transition metal which regulates the polymerization rate and polydispersities. There 

are several prerequisites for an efficient transition metal catalyst. [1] 

a) The metal center must have at least two readily accessible oxidation states 

separated by one electron 

b) The metal center should have reasonable affinity toward a halogen. 

c) The coordination sphere around the metal should be expandable on oxidation 

to selectively accommodate a (pseudo) halogen. 

d) The ligand should complex the metal relatively strongly. 

e) The position and dynamics of the ATRP equilibrium should be appropriate 

for the partical system.  

Ligands 

The main role of the ligand in ATRP is to solubilize the transition metal salt in the 

organic media and to adjust the redox potential of the metal center for the atom 

transfer. There are several guidelines for an efficient ATRP catalyst. First, fast and 

quantitative initiation ensures that all the polymer chains start to grow 

simultaneously. Second, the equilibrium between the alkylhalide and the transition 

metal is strongly shifted toward the dormant species side. This equilibrium position 

will render most of the growing polymer chains dormant and produce a low radical 

concentration. As a result, the contribution of radical termination reactions to the 

overall polymerization is minimized. Third, fast deactivation of the active radicals by 

halogen transfer ensures that all polymer chains are growing at approximately the 

same rate, leading to a narrow molecular weight distribution. Fourth, relatively fast 

activation of the dormant polymer chains provides a reasonable polymerization rate. 

Fifth, there should be no side reactions such as β-H abstraction or 

reduction/oxidation of the radicals [1]. 

 
Figure 2.7: Nitrogen based ligands 
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Figure 2.8: Derivatives of 2,2-bipyridine 

Solvents 

ATRP can be carried out either in bulk, in solution or in a heterogeneous system 

(e.g., emulsion, suspension). Various solvents such as benzene, toluene, anisole, 

diphenyl ether, ethyl acetate, acetone, dimethyl formamide (DMF), ethylene 

carbonate, alcohol, water, carbon dioxide and many others have been used for 

different monomers. Solvents are often used to reduce viscosity at high conversion 

Chain transfer to solvent should be minimal [1]. 

Temperature and Reaction Time 

The rate of polymerization in ATRP increases with increasing temperature due to the 

increase of both the radical propagation rate constant [1]. The energy of activation 

for radical propagation is appreciably higher than that for termination by radical 

combination and disproportionation. Consequently, at higher temperatures the ratio 

kp/kt will be higher and therefore better polymerization control will be observed [26].  

The most important effect of reaction time in ATRP occurs at high conversions. At 

high monomer conversions, the rate of propagation is very slows down considerably; 

however, the rate of any side reaction does not change significantly, as most of them 

are monomer concentration independent. 

N NN NN NN

NN

Bipy dTBipy dHBipy

dNBipy
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2.4 Liquid Crystals 

The liquid crystalline (LC) phase is a genuine, thermodynamically stable state of 

matter, exhibiting the properties of both a crystalline solid and a liquid. The LC state 

was observed initially by Reinitzer who found that pure cholesteryl benzoate, when 

melted, produced an iridescent, opaque fluid that on further heating cleared to give 

an isotropic liquid. These transitions occurred at reproducible temperatures and the 

phenomenon was found to be present in other systems by Lehmann, who introduced 

the term ‘liquid crystal’ to describe this intermediate phase. The nomenclature was 

further refined by Friedel, who suggested that the generic term, mesophase, should 

replace ‘liquid crystalline phase’, and who also introduced nematic and smectic to 

describe observed differences in the liquid crystal behavior of various compounds 

[28-30]. 

The main reasons for the formation of liquid crystalline phases are:  

• A simple geometrical form of the molecule: rods, discs or ball, which allow 

closer packing in mesophase  

• An intramolecular contrast, which cases microseperation of different parts of 

the molecules  

 

Figure 2.9: Arrangement of molecules in different states 

In the crystalline solid state, as represented in Figure 2.9, the arrangement of 

molecules is regular, with a regularly repeating pattern in all directions. (Molecules 

of substances with a liquid crystal state are generally oblong and rigid, that is, rod- 

shaped.) The molecules are held in fixed positions by intermolecular forces. As the 

temperature of a substance increases, its molecules vibrate more vigorously. 

Eventually, these vibrations overcome the forces that hold the molecules in place, 

and the molecules start to move. In the liquid state, this motion overcomes the 
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intermolecular forces that maintain a crystalline state, and the molecules move into 

random positions, without pattern in location or orientation, as represented in Figure 

2.9. 

In materials that form liquid crystals, the intermolecular forces in the crystalline solid 

are not the same in all directions; in some directions the forces are weaker than in 

other directions. As such a material is heated, the increased molecular motion 

overcomes the weaker forces first, but its molecules remain bound by the stronger 

forces. This produces a molecular arrangement that is random in some directions and 

regular in others. The arrangement of molecules in one type of liquid crystal is 

represented in Figure 2.9. The molecules are still in layers, but within each layer, 

they are arranged in random positions, although they remain more or less parallel to 

each other. Within layers, the molecules can slide around each other, and the layers 

can slide over one another. This molecular mobility produces the fluidity 

characteristic of a liquid. [31] 

Liquid crystals can be classified according to the physical parameters controlling the 

existence of the liquid crystalline phases. The corresponding classes of liquid crystals 

are referred to as lyotropics and thermotropics respectively [32].  

2.4.1 Classification of Liquid Crystals 

2.4.1.1 Lyotropic liquid crystals 

Lyotropic liquid crystals are multi component systems formed in mixtures of 

amphiphilic molecules and a polar solvent. Amphiphilic molecules are consisted of a 

hydrophilic polar head attached to a hydrophobic hydrocarbon tail containing one or 

two alkyl chains [33]. The most common systems are those formed by water and 

amphiphilic molecules as illustrated in Figure 2.10 such as soaps, detergents and 

lipids. Here the most important variable that is controlling the existence of liquid 

crystalline phase is amount of solvent (or concentration). There are quite a number of 

phases observed in such water-amphiphilic systems, as the composition and the 

temperature varied; some appear as spherical micelles, and others posses ordered 

structures with one-, two-, or three-dimensional positional order. Lyotropic liquid 

crystals are mainly of interest in biological studies [34]. 
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                                               hydrophilic /         hydrophobic / apolar tail  
                                                polar head  

 

Figure 2.10: Lyotropic liquid crystals 

2.4.1.2 Thermotropic Liquid Crystals 

Thermotropic liquid crystals are obtained by partial melting of solid crystals of 

certain materials. These systems are consisted of single components and most known 

substances are organic compounds. These materials are isotropic liquid at higher 

temperatures and crystalline solids ate lower temperatures. Liquid crystalline phase 

can be distinguished from isotropic liquid by its turbid appearance and from solid 

crystals from its flow properties [33].  

2.4.2 Phases of Liquid Crystals 

Liquid crystals are generally classified according to their basic molecular 

organization. Three main types are widely recognized: smectic, nematic, (Figure 

2.11) and cholesteric. There are several methods used to identify liquid crystalline 

phases. Differential Scanning Calorimetry (DCS) can be used to determine transition 

temperatures, therefore to distinguish phases. But one can not identify the phases 

itself by this method. Polarizing microscope is the most widely used method in 

identifying different phases. One can look at a thin layer of liquid crystal substances 

placed in between two glass cover plates. Depending on the boundary condition and 

the type of phase, varies textures which are characteristics of a phase are observed. 

Usually the textures change while going from one phase to the other. Polarizing 

microscopy is powerful too when used in combination with miscibility of binary 

mixtures. Most precise techniques in identifying phases and arrangements of 

molecules are X-ray and neutron scattering technique. These techniques provide 

direct information of the positional and orientation characteristics of liquid crystals 

[33]. 
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Figure 2.11: Thermotropic liquid crystal phases 

2.4.2.1 Nematic phase 

The nematic liquid crystal, N phase, is the only liquid crystal phase without any long 

range translational order. Nematics are the most important member in the family of 

the liquid crystals and are widely used in the display industry. In nematics, the 

molecules tend to be parallel to each other. The preferred direction of parallel 

orientation is characterized by the director. The nematic liquid crystal is shown in 

Figure 2.11 [35].  

2.4.2.2 Smectic phase 

As the temperature is further cooled, the molecules begin to segregate into planes 

giving rise to a smectic A or smectic C phase. In addition to the orientational order 

that the nematic phase shows, the smectic A and C phases exhibit a one-dimensional 

translational order, and can therefore form layered structures [35]. In smectic-A in 

each layer the molecules are positionally random, but directionally ordered with heir 

long axis normal to the plane of the layer. If this director tilts away from the layer 

normal the smectic C phase is formed at lower temperatures. 

2.4.2.3 Cholesteric phase  

The cholesteric liquid crystal is the first discovered liquid crystal and is an important 

member of the liquid crystal family. In some of the literature, it is denoted as the N* 

phase, the chiral nematic liquid phase. The molecules in that phase are arranged as 

thin layers. The molecules lie in the layers and are parallel to each other, but the 

director rotates along the helical axis continuously and uniformly. A schematic of 

cholesteric liquid crystals is illustrated in Figure 2.12 [35].  
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Nematic phase                                                  (Chiral nematic) cholesteric phase 

 

 
 

          
 
 

 
 
 
 
 
 

 
 
 
 
 

Figure 2.12: Nematic and Cholesteric phases 

2.5 Liquid Crystalline Polymers  

Liquid crystalline polymers (LCPs) are a class of materials that combine the 

properties of polymers with those of liquid crystals. These "hybrids" show the same 

mesophases characteristic of ordinary liquid crystals, yet retain many of the useful 

and versatile properties of polymers. In order for normally flexible polymers to 

display liquid crystal characteristics, rod-like or disk-like elements (called mesogens) 

must be incorporated into their chains. The placement of the mesogens plays a large 

role in determining the type of LCP that is formed. Main-chain polymer liquid 

crystals or MC-LCPs are formed when the mesogens are themselves part of the main 

chain of a polymer. Conversely, side chain polymer liquid crystals or SC-LCPs are 

formed when the mesogens are connected as side chains to the polymer by a flexible 

"bridge" (called the spacer) (Figure 2.13). [36] 
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Figure 2.13: General templates for MC-LCP and SC-LCPs 

Other factors influencing the mesomorphic behavior of polymers include the 

presence of long flexible spacers, a low molecular weight, and regular alternation of 

rigid and flexible units along the main chain. 

2.5.1 Main-chain liquid crystalline polymers (MC-LCPs)  

Main chain liquid crystalline polymers are formed when rigid elements are 

incorporated into the backbone of normally flexible polymers. These stiff regions 

along the chain allow the polymer to orient in a manner similar to ordinary liquid 

crystals, and thus display liquid crystal characteristics. There are two distinct groups 

of MC-LCPs, differentiated by the manner in which the stiff regions are formed. 

The first group of main chain polymer liquid crystals is characterized by stiff, rod-

like monomers. These monomers are typically made up of several aromatic rings 

which provide the necessary size. The following diagram (2.27) shows an example of 

this kind of MC-LCP. 

 

 
 

                                                 
 

(2.27) 
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In a semi-flexible MC-LCP, the mesogenic groups are separated by flexible spacers 

such as alkyl chains (2.28); this enhanced molecular flexibility reduces the melting 

points of these polymers and renders the liquid crystallinty accessible [36]. 

                                                                                                                       

 

 

                    

(2.28) 

                            

 

2.5.2 Side-chain liquid crystalline polymers (SC-LCPs) 

Side-chain liquid crystal polymers have attracted considerable research interest since 

their discovery in the late seventies, because of their considerable application 

potential in a range of advanced electro-optic technologies, including optical 

information storage and non-linear optics, and they challenge our understanding of 

the molecular factors that promote self-organization in polymeric systems. [37] 

 

                                                                                                    

         (2.29) 

 
                                            

  
Side-chain liquid crystal polymers comprise three essential structural components: a 

polymer backbone, a mesogenic unit, and a flexible spacer (2.29). The flexible 

spacer plays a critical role because it decouples, to some extent, the ordering 

tendencies of the mesogenic units from those of the backbones to adopt random coil 

conformations. Its presence endows upon the polymer a unique duality of properties. 

Thus, side-chain liquid crystal polymers exhibit macromolecular characteristics, such 

as ease of processability and mechanical integrity, coupled with the electro-optic 

properties of low molar mass mesogens, albeit on a much slower time-scale.             

It is this unique combination of properties that forms the basis of the proposed      

applications. [38] 
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2.5.2.1 The Backbone 

The backbone of a side chain polymer liquid crystal is the element that the side 

chains are attached to. The structure of the backbone can be very important in 

determining if the polymer shows liquid crystal behavior. Polymers with rigid 

backbones typically have high glass transition temperatures, and thus liquid crystal 

behavior is often difficult to observe. In order to lower this temperature, the polymer 

backbone can be made more flexible [36]. 

2.5.2.2 The Mesogen 

Perhaps the most important part of a side chain polymer liquid crystal is the 

mesogen. It is the alignment of these groups that causes the liquid crystal behavior. 

Usually, the mesogen is made up of a rigid core of two or more aromatic rings joined 

together by a functional group. The following diagram (2.30) is a typical repeating 

unit in a side chain polymer liquid crystal. Notice the spacer of methylene units and 

the mesogen of aromatic rings. [36] 

                                                                                                                              
                              
 
                           (2.30)  
                     

 

2.5.2.3 The Spacer 

Like their main chain counterparts, mesogens attached as side groups on the 

backbone of side chain polymer liquid crystals are able to orient because the spacer 

allows for independent movement. Notice in the following diagram (2.31) that even 

though the polymer may be in a tangled conformation, orientation of the mesogens is 

still possible because of the decoupling action of the spacer. 

                                                                                                                                  
  
 

(2.31) 
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The structure of the spacer is an important determining factor in side chain polymer 

liquid crystals. Generally, the spacer consists of two to four methylene (CH2) groups 

attached together in a line. Accordingly, the spacer length has a profound effect on 

the temperature and type of phase transitions. Usually, the glass transition 

temperature decreases with increasing spacer length. Short spacers tend to lead to 

nematic phases, while longer spacers lead to smectic phases. 

 

 

 



 33 

3. EXPERIMENTAL WORK 

3.1 Materials 

3.1.1 Purification of Materials 

3.1.1.1 Monomer 

N-Cyclohexylmaleimide (NCMI) (Aldrich) 

Recrystallized twice from dry acetone, it was dried under vacuum before use. 

3.1.1.2 Solvents 

Tetrahydrofuran (THF) (J.T.Baker) 

Dried and distilled over CaH2, then it was let mixing over sodium/benzophenon 

ketyl, and was distilled prior to use. 

Dimethyl sulphoxide (DMSO) (Lab Scan) 

Dried and distilled over CaH2, then it was let mixing over sodium/benzophenon 

ketyl, and was distilled prior to use. 

Ethanol (J.T.Baker) 

Predried over magnesium sulfate and then distilled from calcium hyride before use.  

Methanol (Lab Scan) 

It was used without further purification. 

Benzene (Merck) 

It was used without further purification. 

Toluene (Merck) 

Refluxed over CaH2 for 24 hours, then distilled over sodium prior to use. 

Anisole (Acros) 

It was used without further purification. 
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3.1.1.3 Other Chemicals and Reagents 

4’-Hydroxy-4-biphenylcarbonitrile (Aldrich) 

It was used without further purification. 

6-Chloro-1-hexanol (Aldrich) 

It was used without further purification. 

Potassium carbonate (J.T.Baker) 

It was used without further purification. 

Acryloyl chloride (Aldrich) 

It was used without further purification. 

Triethylamine (TEA) (Acros) 

It was used without further purification. 

Sodium hydroxide (Acros) 

It was used without further purification. 

2-Bromopropionyl bromide (Aldrich) 

It was used without further purification. 

Copper (I) bromide (Aldrich) 

It was used without further purification. 

Pentamethyldiethylenetriamine (PMDETA) (Aldrich) 

It was used without further purification. 

Azobisisobutyronitrile (AIBN) (Aldrich) 

It was used without further purification. 

3.2 Equipments 

3.2.1 Nuclear Magnetic Resonance Spectroscopy (NMR) 

1H-NMR analyses were recorded on a Bruker 250 MHz Spectrometer. 
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3.2.2 Gel Permeation Chromatography (GPC) 

Molecular weights were analyzed using GPC. GPC analyses were carried out with a 

set up consisting of the Agilent pump and refractive index detector and three Agilent 

Zorbax Columns (1000S, 300S, and 60S). THF was used as the eluent at a flow rate 

of 0.5 ml/min at 30°C. The molecular weights of the polymers were calculated with 

the aid of polystyrene. 

3.2.3 Differential Scanning Calorimeter (DSC) 

The glass transition temperatures of the copolymers were measured by differential 

scanning calorimetry (TA DSC Q10) in a flowing nitrogen atmosphere at heating 

rate 100C / min. 

3.2.4 Thermogravimetrical Analysis (TGA) 

Thermal gravimetrical analysis was performed on a TA TGA Q50 instrument.  

3.3 Synthesis of Chemical Compounds 

3.3.1 Synthesis of 6-(4-Cyanobiphenyl-4’-oxy)hexyl acrylate (LC6) 

3.3.1.1 Synthesis of 6-(4-Cyanobiphenyl-4’-oxy)hexane-1-ol 

Under nitrogen 6-chloro-1-hexanol (20 mmol, 2.25 ml) was added dropwise to a 

stirring mixture of  4’-hydroxy-4-biphenylcarbonitrile (15.1 mmol, 3 g) and 

anhydrous K2CO3 (14.5 mmol, 2 g) in 200 ml of anhydrous DMSO. The reaction 

mixture was heated at 110°C for 2 hours. After this process, the reaction mixture was 

added dropwise to 400 ml of 10% NaOH solution at room temperature and filtered. 

The resultant was dried at 40°C in vacuum. It was recrystallized from benzene. 

White crystalline product was obtained and dried under vacuum (yield 75%). 

3.3.1.2 Synthesis of LC6 

Under nitrogen atmosphere acryloyl chloride (16.69 mmol, 1.36 ml) in 20 ml of dry 

THF was added to dropwise to a stirring mixture of triethylamine (21.03 mmol, 2.93 

ml) and 6-(4-cyanobiphenly-4’-oxy)hexane-1-ol (10.12 mmol, 2.99 g) in 20 ml of 

dry THF at 0°C. The reaction mixture was stirred for 15 hours at room temperature. 

Then it was added dropwise to 300 ml of 5% HCl solution. After neutralizing the 
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mixture, it was filtered and dried in vacuum. The resulting product was recrystallized 

from ethanol. White crystals were obtained and dried under vacuum (yield 75-80%) 

[39,40]. 

3.3.2 General Copolymerization Procedure for FRP of NCMI with LC6 

A schlenk flask with a stirring bar was cycled between vacuum and nitrogen three 

times to remove the oxygen. While the nitrogen was passing through the reaction 

system, required amounts of monomers (NCMI, LC6) and initiator (AIBN) were 

introduced into the flask and dissolved in solvent (toluene). The flask sealed and then 

was immersed in an oil bath held by a thermostat at required temperature. After 

reacting for determined time periods, the polymer was precipitated by addition of 

excess of methanol with rapid stirring to precipitate the product. The precipitated 

polymer was filtered and washed thoroughly with methanol, purified by 

reprecipitation from the THF solution into excess methanol. The polymer was then 

dried in vacuum for several hours. The amounts of monomers NCMI and LC6, 

initiator AIBN, reaction time and conversions are collected in Table 4.1.  

3.3.3 General Copolymerization Procedure for ATRP of NCMI with LC6 

A schlenk tube with a stirring bar was cycled between vacuum and nitrogen for three 

times. While the nitrogen flow was passing through the schlenk tube, required 

amounts of LC6 (2.86 mmol, 1.0 g) and NCMI (0.5 g, 2.86 mmol) was dissolved in 

anisole (3 ml). Then PMDETA (0.114 mmol, 24 µl), Cu(I)Br (0.057 mmol, 8.2 mg) 

and 2-bromopropionyl bromide (0.057 mmol, 6 µl) were introduced into tube 

respectively. The schlenk tube was then heated to 110°C and left for a determined 

time. After the reaction was complete, the product mixture was dissolved in THF 

after it was cooled to room temperature; the mixture was passed through a short 

alumina column and then concentrated with evaporation. Afterwards, it was 

precipitated into methanol. A white precipitate was isolate and dried in vacuum oven 

for 24 h. The conversion was determined gravimetrically. Copolymerization 

conditions are given in the Table 4.3. 
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4. RESULTS AND DISCUSSION 

4.1 Synthesis of 6-(4-Cyanobiphenyl-4’-oxy)hexyl acrylate (LC6) 

Liquid crystalline acrylate monomer (LC6) was synthesized according to the 

procedure [39,40] by reacting  4’-hydroxy-4-biphenyl carbonitrile with                    

6-chloro-1-hexanol to yield   6-(4-Cyanobiphenyl-4’-oxy)hexane-1-ol in the first 

stage (Figure 4.1) . 

4'-hydroxy-4-biphenyl carbonitrile 6-chloro-1-hexanol

HO CN + HO CH2(CH2)4CH2 Cl

HO CH2(CH2)4CH2 O CN

6-(4-cyanobiphenyl-4'-oxy)hexane-1-ol

K2CO3 , 120oC

 

Figure 4.1: Synthesis of 6-(4-Cyanobiphenyl-4’-oxy)hexane-1-ol 

In the second stage, LC6 was obtained by reacting acryloyl chloride with                        

6-(4-Cyanobiphenyl-4’ oxy)hexane-1-ol as shown in Figure 4.2.                                 
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Figure 4.2: Synthesis of 6-(4-Cyanobiphenyl-4’-oxy)hexyl acrylate (LC6) 

The structure of resulting product was confirmed by 1H-NMR spectrum. 1H-NMR; 

(in CDCl3): δ = 6.9-7.6 ppm; aromatic protons of LC6 (d), 6.4-5.8 ppm; vinyl 

protons of LC6 (a), 3.9-4.2 ppm; -OCH2 protons of LC6 (b), 2.1-1.2 ppm; aliphatic 

protons of LC6 (c) (Figure 4.3). 

 

Figure 4.3: 1H-NMR Spectrum of LC6 monomer 

H2C CH

C O

Cl

+ HO CH2(CH2)4CH2 O CN

TEA, 0ºC

H2C CH

C O

O CH2(CH2)4CH2 O CN

LC6

6-(4'-cyanobiphenyl-4-oxy)hexane-1-olacryloyl chloride
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4.2 Synthesis of Alternating Copolymers of N-Cyclohexylmaleimide with LC6 
by FRP 

The synthesis of alternating copolymers of 6-(4-Cyanobiphenyl-4’-oxy)hexyl 

acrylate (LC6) and N-Cyclohexylmaleimide (NCMI) were achieved by conventional 

free radical copolymerization in toluene using AIBN as initiator (Figure 4.4). The 

polymerization conditions and results are summarized in Table 4.1.  

Figure 4.4: Synthesis of poly(LC6)-alt-poly(NCMI) by FRP 

The obtained copolymers were characterized by  1H-NMR; (in CDCl3): δ = 6.9-7.6 

ppm; aromatic protons of LC6, 3.9-4.1 ppm; -OCH2 protons of LC6, 3.7-3.9 ppm; 

methine proton of NCMI, 2.1-1.2 ppm; aliphatic protons of LC6 and methylene 

protons of the alicyclic ring of NCMI (Figure 4.5). Ratio of the monomer units in 

alternating copolymer was determined by the integral areas in the 1H-NMR 

spectrum. 
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Figure 4.5: 1H-NMR Spectrum of poly(LC6)-alt-poly(NCMI) 
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Table 4.1: Synthesis of poly(LC6)-alt-poly(NCMI) by FRP 

a [LC6]:[NCMI]:[AIBN]:100:100:1 at 70°C in toluene 
b [LC6]:[NCMI]:[AIBN]: 200:100:1 at 70°C in toluene 
c Calculated from 1H-NMR spectrum of resultant copolymers 
d Determined by GPC based on PSt standards 

 

Under the identical polymerization condition and after the same reaction time, high 

reaction conversion occurring near the equimolar feed composition indicates the 

formation of charge transfer complexes (CTC) between LC6 (electron-donor) and 

NCMI (electron-acceptor).  

The thermal properties of resultant copolymers were evaluated by means of 

Differential Scanning Calorimeter (DSC) and Thermogravimetric Analysis (TGA) 

measurements. DSC measurements were conducted with a heating rate of 10 0C/min 

under nitrogen. The DSC curve of M1 is shown in Figure 4.6.  

 

Figure 4.6: DSC thermogram of M1  
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The thermal stability of resultant copolymers was investigated by TGA. The sample 

was heated from 30°C to 500°C at a scan rate of 20°C/min under nitrogen 

atmosphere. Figure 4.7 shows the thermal stability and the weight loss.  

 
Figure 4.7: TGA curves of M1 and M2 

The glass transition temperature (Tg), the initial decomposition temperature (Ti), the 

half-weight loss temperature (T50) and the residual weights obtained are summarized 

in Table 4.2. All of these values increased with increasing content of NCMI. It is 

concluded that the thermal stability of the polymeric materials could be improved 

through copolymerization with NCMI.  

Table 4.2: Thermal properties of copolymers obtained by FRP 

 fNCMI
 a FNCMI

 b Tg (°C) Ti (°C) T50 (°C) 
Residue at 

500°C (%) 

       

M1 0,50 0,57 61,6 306 389 4,8 

M2 0,33 0,48 58,5 310 394 3,7 
a  The initial molar composition of the comonomer feed. 
b  The molar fraction of NCMI in the copolymer. 
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4.3 Synthesis of Alternating Copolymers of N-Cyclohexylmaleimide with LC6 
by ATRP 

Atom Transfer Radical Polymerization (ATRP) was applied to copolymerize liquid 

crystalline acrylate (6-(4-cyanobiphenyl-4’-oxy)hexyl acrylate) (LC6) monomer and 

N-Cyclohexylmaleimide (NCMI) monomer (Figure 4.8). Copolymerization of LC6 

and NCMI in the presence of Cu(I)Br / PMDETA catalyst system using anisole as a 

solvent at 110°C initiated by 2-bromopropionyl bromide afforded well-defined 

copolymers. The conditions and results of the polymerization reactions are 

summarized in Table 4.3.  

The structure of the alternating copolymers was assigned by means of 1H-NMR 

spectral measurements recorded in CDCl3. Spectrums represents characteristic 

signals of both segments as also represented for the  copolymers obtained by FRP 

(Figure 4.5). Similarly ratio of the monomer units in alternating copolymer was 

determined by the integral areas in the 1H-NMR spectrum. 

 Figure 4.8: Synthesis of poly(LC6)-alt-poly(NCMI) by ATRP 
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Table 4.3: Synthesis of poly(LC6)-alt-poly(NCMI) by ATRPa  

a [LC6]:[NCMI]:[I]:[CuBr]:[PMDETA]:50:50:1:1:2  at 110°C in anisole 
b Initiator: 2-bromopropionyl bromide  
c Calculated from H-NMR spectrum of  resultant copolymers 
d Determined by GPC based on PSt standards 

 

Resulting copolymers were analyzed by GPC (Figure 4.9). The monomodal shape of 

the GPC trace of the obtained polymers suggested the formation of copolymers 

without homopolymerization. An increase in the molecular weight by time  without a 

significant increase in polydispersity was observed. 

 

Figure 4.9: GPC traces of resulting copolymers obtained by ATRP 
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The glass transition temperature (Tg) of the copolymers were measured by DSC in a 

flowing nitrogen atmosphere (the heating rate was 10°C/min). The DSC curves of 

copolymers obtained by ATRP are shown in Figure 4.10.  

 

 

Figure 4.10: DSC thermograms of copolymers obtained by ATRP  
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Figure 4.11: TGA curves of copolymers obtained by ATRP 

The thermal data of the copolymers are shown in Table 4.4.  As the molar fraction of 

NCMI in the copolymer increases, the Tg increases and decomposition temperatures 

shifts to the higher temperature range.  

 
Table 4.4: Thermal properties of copolymers obtained by ATRP 

 fNCMI
 a FNCMI

 a Tg (°C) Ti (°C) T50 (°C) 
Residue at 

500°C (%) 

       

M1-2 0,50 0,42 50,7 215 403,6 4,2 

M2-4 0,50 0,57 52,1 261 407,8 3,7 

M3-8 0,50 0,61 67,3 307 417,5 5,0 
a  The initial molar composition of the comonomer feed. 
b  The molar fraction of NCMI in the copolymer. 

The Tg of the homopolymer of LC6 (PLC6, Mn = 10000 g/mol) is about 40°C. So 

the results show us that thermal stabilities of the copolymers improved due to the 

incorporation of NCMI segments into the copolymer.  
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5. CONCLUSIONS  

The liquid crystalline containing maleimide copolymers were synthesized by using 

two polymerization methods namely FRP and ATRP.  

The molar fractions of monomers in the copolymers determined by the 1H-NMR 

spectrum confirmed the alternating structure. Copolymers with controlled molecular 

weight and narrow molecular weight distribution were obtained by ATRP. 

The thermal properties of the resulting copolymers were investigated by DSC and 

TGA measurements. The glass transition temperature and thermal stabilities of the 

copolymers increased by increasing the N-substituted maleimide (NCMI) content. 

As a result thermally stable liquid crystalline polymers were synthesized by 

introducing maleimide segments into the polymer. 

Additionally, further investigations about LC properties of resulting copolymers can 

be developed by using Polarized Optical Microscope (POM) and DSC 

measurements.  
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