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GENETI K ALGORi TMA VE ARTI K DUZELTME YONTEM YLE

PROFIi L TERS TASARI M

OZET

Hava-uzay alamnda tasari nhanan kanat profil sekilleri perfor nans ve ihtiyaglarin
karsilannmast acisindan hayati rol oynar. Bu nedenle bu konuda bir ¢ok c¢aba
harcannaktadir. Yen bir kanat profil sekli tasarlarken arastir nacilar genellikle
opti mzasyon veya ters tasart mtekniklerini kullamrlar. Opti mzasyonda tagsi na,
stiriiklene ve nonent gibi profile ait bazi parametreler mni mze veya maksi mze
edil neye calisilir. Halbuki, ters tasari nda ise verilen bir paranetre icin (bu
genellik e basing dagli mdr) o paranetreyl sagayan profil sekli buunnaya calisilir.

Bu calisnada, verilen hedef degerleri sagayan bir profil geonetrisi ik farkli ters

tasarim yontem ile elde edil mstir. Iki yontemin sahip ol dugu al gorit malarda

farklidir. 11k yontem genetik al gorit ma kullannmektadir. Bu yonte mle ayrica, sekil

paranetrelerin azalt nak i¢cin B-spline egrilerinden yararlanl mstir. Bu yonte mn
n

amacl 3. —|(Tcp. )2 —(Cp, )2 degerini maksimize et nektir. Buradaki Tc,. hedef
i=1

basing dagli m ve Cp, tasarlanan basing dagli mdir. Tasarlanan profil geonetrisinin

analizinde, Smth- Hess panel yonte m kullaml mstir.

Ikinci ters tasart myonteni nde, artik diizelt ne algorit nas1 kullanil mstir. Belli bir

profil geonetrisi ile baslayarak ( NACA 0012), her adi mida hesaplanan AY ’lerin

yard myla hedef profil geometrisine ul agilir. AY ’ler
AY ’AY i : .
AAY + de +Cdd —=V?-V?* diferansiyel  denkleni  kulamlarak
X X

hesaplanirlar. 11k ol arak bu diferansi yel denkle msonlufarkar yaklast m kull anilarak
ayrikastirilir. aha sonra, elde edilen {i¢c-bant katsayilar mnmatrisi Thonms
al gorit masimn yardi myla ¢ozil ir ve AY ’ler el de edilir. Bu yonte nde birincisi gibi
analizigin Smth- Hess panel yontemn kullanr.



GENETI C ALGORI THM AND RESI DUAL CORRECTI ON METHOD
FOR I NVERSE DESI GN OF A RFA LS

SUMMARY

Inthe field of aerospace, designed airfal shapes play a crucia rdeinterns of
perfor mance and neetingthe requirenents. So, many efforts are put onthis subject
in aerospace. Wiile designing a new airfal shape, researchers generaly use
opti mzation or inverse design techniques. In opti mzation some paraneters ( lift,
drag nonent, etc) of the airfal aretriedto be m ni mzed or maxi mzed. However,
ininverse design an airfal shape is designed for a given paraneter (generaly
pressure distribution).

Inthis work, t woinverse design nmethod with different al gorithns are usedt o design
an airfal geonetrythat fitsto giventarget values. Hrst nethod utilizes a genetic
algorithm which is a search method Inthe first method, also B-spline curves are

used to decrease shape paraneters. This nethod’s purpose is to naxim ze the

n

Z—(cpi —Tc,[,i)2 . \Where Tcp, is the target pressure distribution and Cp, is the

i=1
designed pressure distribution To anal yze the designed airfaill geonetries, Smth-

Hess panel nethodis used.

In second i nverse design nethod, residual correction al gorithmis utilized. Sarting

withaninitid airfoil geometry ( NACA 0012), target airfal geonetryisreached wth

2
the help of AY ’s comng fromt he AAY+BdAY+Cd AZY

=V?-V?. Frs, this
dx dx

differential equationis discritized wthfinite differences. Then obtai nedtri-dagonal
coeffident nmatrixissolved wththe Thomas A gorithmtogive AY ’s. This met hod
also uses Smth Hess panel nethod to anal yze the airfails.



1 INTRODUCTI ON

Wththe advent of successfu poweredflight at theturnof thet wentieth century, the
i nportance of aerodynami cs rose suddenly. So, interest grewinthe understandi ng of
the aerodyna mc action of suchlifting surfaces as fixed w ngs on airpanes and later,
rators on helicopters [1]. Consider a wng as drawn in perspectivein Fgure (1 1).

FHgure 11 Definition of an airfal

The wngextendsinthe y direction The free streamvel ocity V_ is paralle tothe xz
plane. Any section of the wng cut by a plane parallel tothe xz plane is called an
airfal. The lift and monents on the airfal are due mainly to the pressure
di stri buti on

The first Patented airfal shapes were devel oped by Horatio F Phillipsin 1884 [ 1].
Qearly, inthe early days of powered flight, airfoil design was basically customzed

and



personalized Just nmentioned above, the aerodynamc forces and nonents on the
airfal are due to onlytwo basic sources:

a) Pressure distribution over the body surface

b) Shear stress distribution over the body surface

The net effect of the pand t distributions i ntegrated over t he conpl ete body surface
is aresutant aerodynamc force Rand noment Monthe body (Fgure 12

FHgure 12 Aerodynamc force and nonent onthe body

Thenthe resutant Rcan be splitirto conponents. (R gure 1 3)

Hgure 1 3 Aerodynamc force and its conponents

The angle of attack ais defined as the angle bet ween c and V_. FFomgeonetrical

rel ations:



LINC?SOL—ASIHOL (11)
D =Nsiha +Acosa

As this for mulation shows, L and D values of an airfal are deter mned by directly
pressure distribution 1f we use di nensionless quartities, they are defined as fdlovs:
Li ft coeffidert;

L

0C
Drag coeffident;
cg=—2- (13
q_.c
Pressure coefficient
cp =P (14
Uoo
Mo ment coeffidcient
M
Cm = 2 (15)
0C
where q,, = p,,V2 (16)

Since lift and nmonents cone fromthe pressure distribution onthe airfal, to create
the required lift or monent, airfal geonetry nust form a specified pressure
distribution Therefore, for many years researchers have studied hard on airfal
desi gn techni ques.

The aerodynamc design of aircraft conponentsis often carried by nmeans of one of
the fdlowng four approaches:

““Gx and Try’ anal ysis
Indirect Mt hods
Opti mzation Techni ques

A w N P

Inverse Design Techni ques

This workincludes nainly inverse design and partly opti mzation
Hrst part of this workis conposed of find ng suitable airfal shape, which gives a
specified pressure distribution by the help of an opti mzation algorithm This



constitutes aninverse design problem Insol uwion of this problem opti mzation wth
a genetic algorithmis used That is, inverse problemis transforned into an
opti mzation problem Wth the help of genetic algorithm the opti num set of 20
contrd pointsisfound Thenthissetis usedtofor mthe airfal shape by utilizing an
al gorithmfor drawng a B-spline curve [2].

Genetic algorithns are search nethods used in recent years. They differ in
conception from ot her search methods, including traditional opti mzation methods
and ot her stochastic search et hods. The basic differenceisthat while other et hods
al ways process single poirnts in the search space, genetic algorithns maintain a
popul ation of patentia sol wions [3].

Shape opti mzation based on genetic algorithm [4], or based on evol wionary
algorithns in general, is a relatively young and potertia field of research The
interest towards researching evol utionary shape opti mzation techni ques appears to
be just startedto grow rather than reached a stable and nature state.

Currently the nost popular application area of genetic al gorithns-based shape
opti mzation seens to be the shape opti mzationin connection wth computati onal
flud dynamecs (CFD), especialy aerodynamc shape opti mzation in the field of
aircraft design for example [5-12].

Wsing B-splinesinan opti mzation problemis very hel pfu ina waythat it lessensthe
design parameters. As aresult of this, cost of the algorithmis also lessened This

kind of application of Bsplines may be seeninliterature, for exanple [13 14].

Another part of this work includes an inverse design nmethod in which a residual
correctional gorithmis used Wththisal gorithm anairfal shapethat givesthetarget
pressure distributionis reached Inverse design methodis a very popular nethodin

aerospace, for exanple [15-18].



2 GENETI C ALGORI THMS

Genetic al gorithns constitute a class of search methods especialysuited for sol ving
conplex opti mzation problens [3]. Search algorithns in general consist of
systenatically walking through the search space of possibe sol uions until an
acceptable soluion is found Genetic al gorithns transpose the notions of natural
evol wion to the world of conputers, and i mtate natural evol wion They were
intidly introduced by John Holland [4] for explaining the adaptive processes of
natural systens and for creating newartifidal systens that work onsi mlar bases. In
nature, new organisns adapted to their environnent devel op through evol uion
Genetic al gorithns evolve soluions tothe given problemin a si mlar way. They
maintain a collection of sol uions-—a popul aion of individuals-—and so perfor ma
multidirectional search The individuals are represented by chronbsones conposed
of genes. Genetic algorithns operate on the chronosomes, which represent the
inheritable properties of the individuals. By analogy with Nature through selection
the fit individuals-—potertia souions to the opti mzation problem—live to
reproduce, andthe weak individuals, which are not so fit, die off. New individuals
are created fromone or two parents by nutation and crossover, respectively. They
replace ol dindividualsinthe populationandthey are usuallysi nilar tot heir parerts.
In other words, ina new generationthere will be individuals that resenmble the fit
ind viduals fromt he previous generation Theindividualssurviveifthey arefittedto
the given environ nent.

Intable 1the anal ogy of ter ns bet ween nature and artifica evol wionary systens in

general.



Table 2 1 The correspondence of ter ns bet ween natural and artificial evd ution

Nat ure Eval utionary conputation

I ndi vi dual Solutiontoa problem

Popul ation Collection of sd ution

Htness Quality of sd uion

Chronosone Representation of a sd uion
Gene Part of represertation of a sol uion
O ossover B nary search operat or

Mut ation Unary search operator

Re production Reuse of sd utions

Sel ection Keepi ng good sub-sd utions

Evol wionis an e mergent property of artificia evoluionarysystens. The conputeris
onlytddto (1) maintaina population of sol uions, (2) allowt he fitter individualsto
reproduce, and (3) let the less fit individuals die off. The newi ndividualsinherit the
properties of their parents, and the fitter ones survive for the next generation The
final sduions wll be much better thantheir ancestars fromthe first generation

This evol uionis directed by fitness. The evol wionary searchis conducted t owar ds
better regi ons of t he search space ont he basis of the fitness neasure. Each sal utionin
a population is evaluated based on how well it soves the given problem
Correspondi ngly, each me mber of the popul ation is assi gned a fitness val ue. Genetic
algorithns use a separate search space and sol ution space. The search space is the
space of coded sdl uions, i.e genctypes or chromosones consisting of genes. Mre
exactly, a genatype may consist of several chromosones, but in nost practical
applications genctypes are nade of one chronosome. The sol uionspaceist he space
of actual sduions, i.e phenatypes. Any genotype nust be transformed into the
correspondi ng phenat ype before its fitness is eval uated




2 1 The outline of agenetic dgorithm

When solving a proble musing genetic al gorithms, first a proper representati on and
fitness measure must be designed Many representations are possible, and will work
Some are better thanthe ot hers, however. Devising the ter mnation criterion should
be the next step. The termi nation criterion usually allows at nost sone predefined
nuber of iterations and verifies whet her an acceptabl e sol ution has been found The

genetic a gorithmthen works as fdlows (also shown in Fgure 2 1):

Create initial random

pepulation

Y
Ewvaluate cach member

of the population

Termination
criterion
satisfied?

Designate solution

Create new population

by reproduction,

CIOSSOVET, mulation

|

FHgure 2 1 Genetic a gorithmflowchart

1 The initial population is filled wth individuals that are generally created at
random Soneti nes, the individualsinthe initial population arethe so uions found
by sonme nethod deter mned by the problemdomain Inthis case, the scope of the

genetic agorithmisto obtain nore accurate sd uions.

2 Eachindvidual inthe current populationis evaluated usingthe fitness neasure.

3. Ifthe ter mnation criterionis net, the best sd uionis returned

4. Fomthe current population individuals are selected based on the previously

computed fitness values. A new population is forned by applying the genetic



operators (reproduction crossover, mutation) to these individuals. The selected
indvduals are called parents and the resuting individuals offspring
I nplementations of genetic al gorithns differ inthe way of constructing the new
popul ation Sone i nplenmentations extendthe current popul aion by adding the new
indvduals and then create the new popul ation by omttingthe least fit indi v duals.
G her i nplenentations create a separate popul ation of newindividuals by appl ying
the genetic operators. Moreover, there are genetic algorithns that do not use

generations at al, but continuous repl ace nent.

5 Actions startingfromstep 2 arerepeated until the ter mnation criterionis satisfied

An iterationis called generation

2 2 Gnetic operators

Ineach generation the genetic operators are appliedto selectedindividuals fromt he
current populationin order to create a new population Cenerally, the three main
genetic operators of reproduction crossover and mutation are e nployed By using
different probabilities for appl yingthese operators, the speed of convergence can be
contrdled Q ossover and mutation operatars must be carefully designed, sincetheir
choice highly contributes tothe perfor nance of the whol e genetic a gorithm

Reproduction: A part of the new populaion can be created by si nply copying
without change selected individuals fromthe present population This gives the
possi hbility of survival for dready devel oped fit sduti ons.

Crossover: Newindividuals are generally created as offspring of t wo parents (as
such, crossover being a binary operator). One or more so-called crossover points are
selected (usuall yat random) wthinthe chronmosone of each parert, at t he sane place
ineach The parts deli mted by the crossover poirts are theninterchanged bet ween
the parerts.

Mutation A newindividual is created by making modifications to one selected
indvidual. The nodifications can consist of changing one or nore values in the
representation or i nadding/ del eting parts of the representation In genetic al gorithns

mutation is a source of variahlity, and is applied in addition to crossover and



reproduction A different stages of evoluion one may use different mutation
operators. A the beginning nmutation operatorsresultingin bi gger junps inthe search
space mght be preferred Later on, whenthe sol utionis cl ose by, a mut ati on operat or

leading toslighter shiftsin the search space coul d be favored

2 3 FHtness assignnent

The probability of survival of any individual is deter mned by its fitness: through
evol wion the fitter individuals overtake the less fit ones. In order to evol ve good
sol utions, the fitness assignedto a solution nust directlyreflect its ‘ goodness’, i.e.
the fitness function nust i ndicate how well aso utionfulfillsthe require ments of the
given problem Htness assignnent can be perfor medinseveral dfferent ways:

We define afitness functionandincorporateitinthe genetical gorithm When

eval uati ng any individual, this fitness functionis conmputed for the i ndi v dual.

e FHtness evaluation is perfor ned by dedicated separate anal ysis soft ware. In
such cases eval uation can be ti ne-consumng, thus slowng down the whole
evol wionary al gorithm

e Soneti mesthereis noexplict fitness function but a hunan eval uat or assigns
a fitness val ue tothe sd utions presentedto hi miher.

e FHtness can be assigned by conparing the individuals in the current

popul ation

2 4 Selection nethods

Only selectedind viduals of a population are allowed t o have offspring Selectionis
based on fitness: individuals wth better fitness val ues are picked nore frequently
than individuals wth worse fitness values. The nost comnonly used selection

sche mres:

Htness-proportional selection: When using this selection nethod, a solution has a
probability of selection directly proportional to its fitness. The nechanis mt hat
allows fitness proportional selectionis si mlar to aroulette wheel that is partitioned
intoslices. Eachindividual has a share directly proportional toits fitness. Whenthe



roul ette wheel isratated anindividual has a chance of beingselected correspondi ng

toits share

Ranked selection: The proble mof fitness-proportional selectionisthat itis directly
based on fitness. In nost cases, we cannct define anaccurate neasure of goodness of
a soluion so the assigned fitness val ue does not express exactly the quality of a
sauion Sill, anindividual wth better fitness val ue is a better individual. Inrank
based selection, theindividuals are ordered accordingtotheir fitness. The indiv duals

are then selected wth a probahbility based on sone linear function of their rank

Tournanent selection: Intournanent selection a set of nindividuals are chosenfrom
the popul ation at random Thent he best of t he poal isselected For n =1, the net hod
isequivalert torandomselection The higher isthe value of n, the nore directedthe
selectionis towards better ind v duals.

10



3. BSPU NE CURVES

For mula for acubic Bsplineinter ng of paranetric equations whose paramneter is u

Gven the points p, =(x,,y,), 1=01...,n, the cubic Bspline for the interval
(P;,p;y), 1=12,......,n=1,is

2
Bi(U):kZ?kak’ vhere (39
_ 3
b_1:(1 u) |
6
u’ 2
b,=—-Uu’+=, 32
0= 3 (32
uwd ou? ou 1
b =—+—+—-+=,
2 2 2 6
u3
b2:_| OSUS].
6

preferstothe point (%, ¥ ); itisatwo-conponent vectar. The coefficerts, the by’s,
serve as a basis and do nat change as we nove fromone set of pointstothe next.
Observethat they can be considered wei ghting factors appliedt ot he coordi nates of a
set of four points. The weightedsum as u varies from0to 1, generatesthe B-spline
curve.

If ve wite out the equations for x and y from Equation (3 2), we get

11



xi(u)Z%(l—u)SXi—1+%(3U3—GUZ+4)Xi
1 3 2 1,3
+€(—3u +3u +3u+1)Xi+1+gu Xi+2
(33
1 3., 1.3 2 .
yl(u)_g(l—u) y|_1+€(3U —6u +4)yl

+%(—3u3 +3u? +3u +DVYi1 +%u3yi+2

Notethe notation here: % (u) and y; (u) arefunctions of uand x , y are components of
the point p. The u-cubics act as weighting factors on the coordinates of the four
successi ve pointsto generate the curve. For exanple, at u =0, the weights applied
are /6 2/3 V6and 0. A u =1 theyare O V6, 23 and /6 These values vary
throughout the irterval fromu =0tou=1

Now we can examne two B-splines deter mined froma set of exactly four points.
Hgure 3 1aand 3. 1b showt he effect of varyingjust one of the points. A you woul d
expect, when pyis noved upward andtotheleft, the curvetendstofalow, infact, it
is pulledtothe oppositeside of p;. You may be surprisedto see that the curveis
never very cl osetothetwo i nter mediate poirts, thoughit begins and ends at positions
sonewhat adjacent. It will be helpfu to think of the curve generated fromthe
defining equationfor B, as associated wtha curvethat goes fromnear p; top,. Itis
also hel pful torene mber that points p, P, P, and p; are usedto get B.

2
°

7 ﬁ'
[ ]

1) Py

4 Py

° 3
Po

Hgure 3 1 Bfects of varyingjust one of the paints on B-splines

Because a set of four pointsisrequiredto generate onlya portion of the B-spline, t hat

associated withthe t wo inner points, we nust consider howto get the B-spline for

12



more than four points as well as howto extend the curve intothe region outside of
the mddle pair. For thiswe can marchal ong one point at ati ne, for mng newsets of
four. V& abandonthe first of the dd set when we add the new one.

The conditions that we want toi npose onthe B-spline are: continuty of the curve
andits first and second derivatives. It turns out that the equations for the wei ghting
factors (the u-polynomals, the by) are suchthat these require nents are met. Hgure

3.2 shows howthree successive parts of a Bspline mght ook

®pi_

eli+4

)

e/ +13

FHgure 32 Successive B-splines ja nedtoget her

We can sumnarize the properties of B-splines as foll ovs:

1 B-splines are pieced together sothey agree at their jarntsinthree ways:

a B;=B,,(0)= b +4pi6+1 +Piss

h B,(1)=B,,(0) =%

C B| (1) = Bli'+1(0) =P - 2pi+l +Pis

2 The portion of the curve deter mned by each group of four paintsis wthin
the convex hull of these poi ris.

Now we consider howt o generatethe ends of thejoined B-spline. If we have poirts

frompoto p,, We already can construct B-splines B through B,... V¢ need B and

13



B..1. Qur problemis that, using the procedure already defined we would need
additional poirts outside the donain of the g ven poi nts.

Hrst, we can add nore points wthout artifidality by making the added points
coincide wththe given extrene points. If we add not just a single fictitious point at
each end of the set, but two at each end we wll findthat the newcurves nat only
janproperly wththe portions already made, but start and end at the extreme points
as we wanted Insummary, we add fictitious points pa, P1, Ph+1, and pn+2, Wththe
first two identical wth py andthe last two idertical wth p,.

The matrixfor mulation for cubic B-splineis:

-1 3 -3 1[p.,]
3 -6 3 0 : T
Bi(u)zl[w”' u> u 1] P uMyp (39
6 3 0 3 0|p., 6
1 4 1 0]|pi,]
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4. POTENTI AL FLOW AND PANEL METHOD

4.1 Gvern ng Equations

Conservation of nass (continuity equation):

V-V=0 (4 1)
For anirraational flow
V=Vo (42

Therefore, for aflowt hatis bathinconpressible andirraational equation1and 2 can
be conbinedto yield

V-(V$)=0 then

V=0 (43

Equation 31is Laplace’s equation

For at wo di mensional i nconpressibeflow astreamfunction y can be defined such

t hat

u :8—\" (449
oy
oy
V=—-— 4
p (49
The cortinuity equation V-V =0, expressed in cartesian coor di nates, is
v.v=2u, 0v_g (46)
oX 0y

Substituting equation (44) and (45 into equation (4 6) we obtain
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) o) P oy wr
ox\oy) oy\ ox) oxoy oyox '

Since the flowis irratational:

N U, (498

ox oy
Substituting equation (44) and (4 5) into equation (4 8):

i(_@_\p}_i 8_\|} =0 then

ox\ ox) oyl\oy

2 2

A I (49
ox® oy

This is also Laplace’s equation So, the stream function also satisfies Laplace’s

equation

4.2 Hss-Smith Panel Mthod

There are many choices asto howtofor mulate a panel et hod (singul arity sol utions,
variation wthina panel, singularity strength and distribution etc.) The sinmplest and
first trudy practical nethod was due to Hess and Smth [19]. It is based on a
distribution of sources and vortices onthe surface of the geornetry. Intheir met hod:

¢=0¢. +o, +9, (4 10)

where, ¢ isthetaa patentia function anditsthree conponernts are the paterntials
correspondi ngtothe free stream the source distribution andthe vortex distributi on
These l ast t wo di stributions have patertialylocally varyingstrengths q(s) and y(s),
wheresis anarc-length coord nate whichspans the conpl ete surface of the airfal in

any way you vart.
The patertials created by the distribution of sources/sinks and vortices are given by:

o, = J? In rds
T

¢V::—J%$Qeds (411)
TT
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where the various quartities are definedinthe Hgure bel ow

Y

{x, 3}

R
%

Z' 5/4///////////{{%"” '_
& FWI

Fgure 41 Arfal Analysis Nonenclature for Panel Mt hods

Noticethat inthese for mulae theintegrationistobe carried out alongthe conplete
surface of the airfal. Using the superposition principle, any such distribution of
sources/sinks and vortices satisfies Laplace’s equation, but we Wl need to find

conditions for g(s) and v (s) suchthat the flowtangency boundary condition and t he

Kutta conditi on are satisfied

Notice that we have multipe options. Intheory, we coul d
e ke the source strength distribuionto satisfy fl owtangency and t he vortex
distributionto satisfythe Kutta condition

e ke arbitrary combinations of bath sources/sinks and vortices to satisfy
bot h boundary conditions si multaneously.

Hess and Smth nmade the fdlowng valid si nplification:
Take the vortex strength to be constart over the whole airfal and use the Kutta
conditionto fixits value, while allowng the source strengthto vary from panel to

panel so that, together with the constant vortex distribution the flow tangency

boundary condition is satisfied everywhere.
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Alternativestothis choice are possible andresult in different types of panel nethods.
Askif you want to know nore about them singthe panel deconpositionfromt he
figure bel ow

Fanel/_/

Nnodes

b
Hgure 4 2 Definition of Nodes and Panels

we can‘ ‘dscretize * Equation (10) inthe fdlowng way.

¢:Vw(x003a+ysinoc)+i I [@Inr—le}ds (412

= panel; 27'C 27[

Since Equation (4 12) invol ves i ntegrations over each discrete panel onthe surface of
the airfal, we nust somehow paraneterize the variaion of source and vortex
strength within each of the panels. S ncethe vortex strength was consideredto be a

constant, we only need worry about the source strength distribution within each

panel.

Thisisthe naj or approximation of the panel nethod However, you cansee howt he
i nportance of this approxi mation should decrease as the number of panels,
N — oo (of course this wil increase the cost of the computation considerably, so

there are nore efficent alternatives.)

If we take the si nplest possible approxi nation that is, totakethe source strengthto
be constant on each of the panels:

q(s) =q, on panel I, i=1...N

18



Therefore, we have N+ 1 unknownstosad vefor inour problem the Npanel source

strengths g, andthe constant vortexstrength y. Consequertly, we will need N + 1

independent equations which can be obtained by for mulating the flow tangency
boundary condition at each of the N panels, and by enforcing the Kutta condition
discussed previously. The soluion of the problem wll require the inversion of a
matrix of size  (N+1) x (N+1).

The final question that renains is: where should we i npose the flow tangency

boundary condition? The fdlow ng options are availabl e:

e The nodes of the surface panelizati on

e The points onthe surface of the actual airfal, halfway bet ween each adjacent
pair of nodes.

e The pointslocated a the m dpoint of each of the panels.

We will see in a noment that the velocities are infinte at the nodes of our

panelization which nmakes thema poor choice for boundary conditioni nposition

The second optionis reasonable, but rather dfficuttoi nplenent in practice.

The last optionisthe one Hess and Snith chose. Athough it suffers from a slight
alteration of the surface geonetry, itis easytoimplenent and yiel ds fairly accurate
resuts for a reasonable numnber of panels. This location is also used for the
i mposition of the Kutta condition (onthe last panels on upper and | ower surfaces of
the airfal, assumngthat their mdpointsrenain at equal distances fromthe trailing
edge as the nunber of panels isincreased).

If we want toi nplenent the et hod, consider the ith panel to belocated bet weenthe

ithand (i +2)th nodes, withits arientationtothe x-axis gven by
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S in ei — yi+1l_ yi

X. . —X.
cos6, :% (413

where l; isthe length of the panel under consideration The nor mal and tangertial

vectars tothis panel, are then gven by

fj = —sinB;i+cos 6;j
(419

tj = cos 0;i +sin 0;

The tangential vectoris orientedinthe direction fromnodei tonodei +1, whilethe

nor mal vector, if the airfoil istraversed dockwse, pontsintothe flud

FHgure 4 3 Local Panel Goordinate System

Furt her nore, the coordinates of the mdpoint of the panel are gven by

= Xi +Xi+l
! 2

_YitYia (4 15

Yi 5

and the vel ocity conponerts at these midpoints are given by
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u; :u(iﬂyi)
v, =Vv(X;,Y;)

The flowtangency boundary condition canthen be si nply written as (ﬁﬁ) =0, or,

for each panel
—u,sin®, +v,cosO, =0 fooi=1 ....N (4 16)
whilethe Kuttta conditionis si nply gven by

u, coso, +v, sinB, =—-u, cosO, —Vv, Sino,

(417)

wherethe negative signs are due tothe fact that thetangentia vectors at the first and
last panels have nearly opposite directions.

Now the vel ocity at the m dpoi nt of each panel can be conputed by superposition of
the contributions of all sources and vortices | ocated at the mdpoint of every panel
(includi ng itself). Since the vel ocity induced by the source or vortex on a panel is

proporti onal tothe source or vortexstrengthinthat panel, g,and y can be pulled out

of theintegral in Equation (4 12) toyield

N N
Uj =V COSa+ X 0jUsij +7 X Uyij
j=1 =1
(4 18)
- N N
Vi =Vgsino+ 2 qjVsij + v 2 Vij
j=1 =1

where W;j, \&ij arethe velocity conponents at the mdpoirt of panel i induced by a
source of unit strength at the mdpoint of panel j. Asi mlar interpretation can be
found for wij, wij. Ina coord nate syste mtangentia and nor nal tothe panel, we can
perform the integrals in Equation (412) by noticing that the local velocity
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conponents can be expanded into absoue ones according to the followng

transfor mati on:

u=u*cosej—v*sin9j
(419

V= u*sinej +V cos0,

Now the I ocal velocity conponents at the mdpoint of theith panel dueto a unit-

strength source distribution onthisjth panel can be witten as

l; *_
Usij =i_[ X 1 dt
Zno(x*—t)2+y*
(4 20)
| *
* 1) Yy
VSij Z—I > dt

27 Ox" —t)2 +y"
where (X”,y")arethe coordinates of the midpoirt of panel i inthelocal coordinate

systemof panel j. Garrying out the irtegrals in Equation (4 20) we findthat

tilj

* _1 * *2 :
ug; =—In|(x" =t)*+y"
Slj 27_[: [( ) y ]>t0

(421)

t=I

*

V., = itan‘1 Y

Y 2n X —t

i

t=0

Theseresults have a si nple geonetricinterpretationt hat can be discerned by | ooki ng

at the figure below Qne can say that

« =1 T
Uy =—In—2=
21 r;
(422)
V:i' =0T —ﬁ
g 21 21
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(¥, ¥
?’"j+ 1

e}

j*

i

FHgure 44 Geonetric Interpretation of Source and \ortex Induced \&l ocities

rijisthe distance fromthe nidpoint of panel i to thejin node, while B isthe angle
subtended by the jin panel at the mdpoirt of panel i. Noticethat u;, =0, but the
val ue of Vv, isnat soclear. Whenthe poi rt of i nterest approaches the midpoint of t he
panel fromthe outside of the airfal, this angle . — m. However, when the
mi dpoint of the panel is approached fromthe inside of the airfal, B, — —mn.Snce

we areirterestedinthe flow outside of the airfal only, ve wil d ways take 3, = .

S nmlarly, for the vel ocity fiel dinduced by the vortex on panel j at the mi dpoint of

panel i we can si nply see that

i "
T/IJ__i Y Zdt_ﬁ
ZTCO(X —t)°+y’ 21
(423
I *
N :_ij x —t dt—il i

and finally, the flow tangency boundary condition using Equation (4.18), and

undoi ng the local coordinate transfor mation of Equation (4 19) can be written as

N
ZAiqu' +ANLY =D, (424)
1

23



where

Aij =—Ug;Sin0; + Vv coso,

(cose sin®, —sin©, coso, )+ Vv

su sij

whi ch yiel s

I.
2nA; =sin(6, - 6,)In ';” +cos(, —0,)B,
i

S mlarly for the vortex strengt h coeffidert

2nA. .., Zcos(e —0,)In ”*1—S|n(6 -0,)B;
r.

=1 ij
The right hand side of this natrix equationis gven by

b, =V,_sin(®, —a)

(sin©,;sin®; +cos0, coso,)

(4 25)

(4.26)

(4 27)

(4 28)

The flowtangency boundary condition gives us N equations. VW need an additional

one provided by the Kuttaconditionin order to obtaina systemthat can be sal ved

Accordingto Equation (4.17)

N
ZAN+1,jqj +AN+1,N+1y = bN+l
j=1

After si mlar nani pul ations we findthat

e
Ay = 2, sin®,—6,)B,—cos®, —6,)In :‘1

k=1,N Kj

21A

k=1,N j=1 Kj

24

N
N+LN+ ZSII’](@ -6, )In :Hl +COS(ek _Gj)Bkj

(429)
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by, =—-V, cos@, —a)—-V, cos®, —a) (431)

wherethe sum Z o arecarried out only over the first andlast panels, and not the

range [1, N]. These various expressions set up a natrix proble mof the kind

AXx=Dhb

where the matrix Ais of size (N + 1)x(N + 1). This systemcan be sketched as

fdlows:

i All Ali AlN Al,N+l __ql_ i bl ]
Ail Aii AiN Ai,N+1 qi — bi (4 32)
ANl ANi ANN AN,N+1 O bN

_AN+1,1 AN+1,i AN+1,N AN+1,N+1__ y _ L~ N+1_|

Noticethat the cost of inversion of a ful matrixsuch as this oneis O(N + 1)%, so
that, as the nunber of panelsincreases wthout bounds, the cost of solvingthe panel

probl e mi ncreases rapi dy.

H nally, once you have sol vedt he syste mfor t he unknowns of the problem it is easy
to construct the tangential vel ocity at the mdpoint of each panel accordingto the

fdlowng for mila

=1 i

N qj| . lij+1
Vi = Vir 00S(0; —00) + X - L sin(9; ;) —cos(6; ;)
i T |

(433
ij+1

Tj=1 ij

N
+2l > |:Sin(9i —9j)|n + cos(0; —OJ)B|J:|

And knowng the tangential vel ocity conponent, we can conpute the pressure
coefficent (no approxi mationsince W, =0) at the mdpoint of each panel according

tothe fdlowng for mula
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2

v U Vi
Cp(xi’yi): _W

from whichthe force and nonent coefficents can be conputed assumng that this

val ue of Qpis constant over each panel and by perfor mingthe discrete sum
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5 INVERSE DESI GN OF Al RFA LS

Ininverse design purpose isto find a proper airfal shape, which gives the pre-
specified pressure distribution Inthis worktwo methods usedtoi nplenent inverse
design Hrst nmethod usedis based on a genetic al gorithm Second nethod is based
on aresidual correction algorithm

5. 1 Inverse design wth Genetic Agorithm

Inthis method, Fortran code of a genetic al gorithm written by David L Carrdl
(Uni versity of Illinais) is used. Inverse design problemis sol ved as an opti mizati on
proble msuch that, the value of the bel owequation is naxi mzed

Funcval = > - (c, —Tc, )’ (51
i=1l

So an inverse problem may transforminto an opti mzation problem wth this
for mulation This genetical gorithmcodeis conpiledtogether wth Smth-Hess Panel
Method Code and B-spline Curve Generatar Code. How chart of this code is as
fdlow
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Input Tc,

A 4
> Popul ati on generation

\4
Airfal shape generationwith Bspline

\ 4

Conputation of ¢,’s wth panel nethod

\ 4

Co nparison of ¢, and Tcy,

v Yes
IMaxi mum generati on number Exit
is reached

\ 4

No

FHgure 5 1Inverse design wth genetic a gorithmflow chart

5.2 Inverse Design wthResidual Gorrection Agorithm

Inthis method, aresidual correction nethodis used[17]. Corresponding differertial
equation:

2
AAY+BdAY+Cd AY=V2—V2 (52
dx dx? ‘

A B Care arhitrary constants deter mini ng the rate of change of the airfail.

If we use finite differencesto discritizethe equation, approxi mation of ddA—Y onthe
X

upper surface:

T

i-1 i+1

OAY  AYj,1—AY;
OX Xj+1 = Xj

(53
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Approxi nation of day onthe lower surface:

dx
i+_//"”i?1
i
OAY  AY; —AYj_ (54
OX Xj —Xj_1
2
Then approxi nmation of 5~ on the upper surface:
dx
/i\
i-1 i+1
AYiy —AY;  AYj-AYi,
GZAY: Xijr1 — Xj Xij —Xj-1 (55)
ox2 (Xi+l_xi—1]
2

Asi mlar equation occurs onthe |l ower surface. Attheleadi ng edges andthe trailing

edges AY is accepted as zera Wththese approxi metions, we can wite follow ng

for mul ati on:
AY,,, —AY, B AY, —AY,
AAY, +BAYaTAYL oo X TXe | XiTXa ey (56)
Xig —X; Xig —Xig4 '

Thenthe coefficierts of the system K.AY, , + LAY, + M.AY, , = Vj -V, ae

K __ B 2C

I Xi+1_X| (Xi+1_xi)(xi+l_xl—l)

L-a_B € ( 1 1 j (57
Xi+1_Xi Xi+1 Xl—l X|+1 XI X|_Xi—l
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2C
(Xi - Xi—1)(Xi+1 - Xi—l)

As aresult of thisfor mulation we canconstituetri-dagonal NxNcoefficient natrix
TosolvethissystemThomas al gorithmis used So we can have a AY for each poi nt

onthe airfail. Then usingthis AY we canfind new Y val ue for each paoint, such that:
Yoo = You T AY (59
A B and Cconstants deter nine the sensitivity of AY ; the bi gger constants leadto

smaller AY values. This algorithmcode is also conpiledtogether wth Smth- Hess
Panel Mthod Code. How chart is as fdlows:

Input \ and starting airfoil shape

A 4

Conmputation of new V with
panel netod

\ 4

A 4

Calcuation of AY,’s

A 4

Obtaining Y,,, =Y, +AY

W old

- - ". - - - Yes -
S oppi ng criteriais satisfied? Exit

A\ 4

Hgure 52 Inverse design wthresidual correctional gorithmflow chart
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6. RESULTS AND CONCLUSI ON

Totest previously nentionedt wo net hods, atest caseis utilized Eppler 361 airfall
that is designed for ratorcraftsis used for test case. Howaround Eppler 361 airfal
with 5-degree angle of attack is analyzed As a resut of this analysis, pressure
distribution and vel ocity distribution onthe airfal are obtained Bel owfigures show
Eppler 261 airfal geonetry and pressure dstribution onthe airfail respectivel y.

Eppler 361
0.1
0.05 Vf \
o
; 0 T T T T T T T T |
-0.05 M 63— 04 05 06 : 08 09 1
-0.1
xlc
x/c versus Cp
x/c
-2
" f\\‘
-1 N‘“‘\
0,5
g 0,2 0,4 ; 0,8 1 | —a—TargetCp
O M.—r“"* ainiaiiininis
0,5
15

Hgure 6 1 Target geonetry and pressure distribution
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6.1 Resuts of Inverse Design wth Genetic Agorithm

Ininverse design with genetic al gorithm results of pressure distribution and airfail

geomnetry obtained from different iteration number are presented wth the target

pressure distribution and airfail geonetry.

For generation nunber 200, results may be seen bel ow

-1.5

x/c versus Cp

x/c

\x

x/c

-0.5
o —— Target Cp
0.2 0.4 0.6 .
o 0 ‘ ‘ ‘ —— New Cp
1
1.5
x/c versus y/c
—=— Target Airfoil

—— New Airfoil

Hgure 6 2 Results of genetic ad gorithmafter generation 200

For generation nunber 200, it is seen that results is nat so good and there are

renarkable differences in pressure distributions and, of course, airfal geonetry.

Whileiteration nunber increases, results obtained start toresenble totarget val ues.

For exanplein generation nunber 1000, resuts may be seen bel ow

32




x/c versus Cp

x/c

—— Target Cp

—— New Cp

15

x/c versus ylc

0.1
0.05
o 0 —— Target Airfoil
;‘ T T T T d . .
—— New Airfoil
-0.05 Wl
-0.1

Hgure 6 3 Results of genetic al gorithmafter generation 1000

Althoughresults see mbetter wthrespect t o generati on nuber 200, differences from
target values are nat neglighe Soif we continuetoiterate, we can come up wth
good results. As an example, obtained results in generation numnber 4000 nay be

seen bel ow
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x/c versus Cp
X/C
-2
1 \\\\
03 Target C
5} 0.2 04 0.6 08 1 getp
0 ‘ ‘ ‘ —— New Cp
s ﬁ,‘
W
15 J'
x/c versus ylc
0,1
0,05
o 0 —— Target Airfoil
> ‘ ‘ ‘ ‘ —— New Airfoll
0,05 04 , 0.8 1 ==
-0,1
xlc

Hgure 6 4 Results of genetic al gorithmafter generation 4000
As it is seeninthe figures above, at the generation number 4000, target pressure
distributions and airfail geonetry are obtained withslight differences. More results
fromdifferent generation nunbers are available inthe appendi x A first, | ooki ng at
generation nunber 4000, cost of this conputation nmay be regarded as high But,
sincetheti me consuned bythe al gorithmfor one generationistoolow actuallyitis

nat so costly.
6.2 Resuts of Inverse Design wth Residual Gorrection Agorithm

Whilei nplermentingthis nethod, different A B and Cconstant val ues are usedto
seet he effects of t hese constants onresults anditerati on nunber. Inaddition, forthis

nmet hod t wo different criteria are defined These are:
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n 2
3 > (Tc, |-[c,|) <15 and
i=1

b) iQTcpi\—\cpi \)2 <1

When these criteria are satisfied a gorithmstops. For exanple, for the case of A=1,
B =1 C=1 obtained resuts for criteria (a), after the iteration nunber 80 are as

fdlows:

x/c versus Cp

x/c

o 7 0.2 0.4 ; 0.8 1 |——TargetCp
0 L | — s | —— Comp. Cp
‘k\:ﬁ:\
05 /MM
1
15

x/c versus y/c

—— eppler 361
—— Comp Airfoil

Fgure 65 Results of residual correction al gorithmafter iteration 80 (AB C=1)

If we applythe second criteria withthe sane A Band C val ues, after 977 iteration

We cone up wth
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x/c versus Cp

x/c

0.5 \’\
g 0.2 0.4 \m\o.s\
0 | L r

=

—— Target Cp
—— Comp. Cp

15

x/c versus y/c

ylc

0.3 0.4 05 06 as—sprae—atgd """ 05"

x/c

—— eppler 361
—— Comp Airfoil

Hgure 6 6 Results of residual correction al gorithm after iteration 977 (AB C=1)

It is seenthat, for this criteria differences occurred about the leading edge in first

criteria nostly disappeared So we can reach nearlythe same pressure distribution

withtarget pressure dstribution

If we takethe A=3 B=3 C=3forthesanetwo criteria pressure distribution,

airfal geonetry and iteration nunber at whichthe criteriais satisfied are presented

bel ow

For the first criteria after 237 iterations, results are;
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x/c versus Cp

x/c

AN
0.5 \\\

o ( 0.2 0.4 . 0.8 1 |~ TargetCp
© N —— Comp. Cp
0.5
1
15
x/c versus y/c
—— eppler 361

ylc

—— Comp Airfoil

Hgure 6 7 Results of residual correction al gorithm after iteration 237 (AB C=3)

For the second criteria after 2931 iterati ons, resuts are:
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x/c versus Cp

x/c

-0.5 \\\
=3 ( 0.2 0.4 . 0.8 1 | TagetCp
© 0 ! | . | —— Comp. Cp

15

x/c versus y/c

M —— epp|er 361

03 04 05 06 as—aspras—atgs """ 05 1 |—*— Comp Airfail

ylc

x/c

Hgure 6 8 Results of residual correction al gorithm after iteration 2931 ( A B C=3)

As expected iteration numbers gets larger, whilethereisanincreasein AB C
To seethis effect nore evidently , it may be beneficia toseethe results of the case
A =10 B=10 C=10 For thefirst criteria after 789 iteration obtained results are:
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x/c versus Cp

x/c

AN
0.5 \\\

o ( 0.2 0.4 . 0.8 1 |~ TargetCp
© N —— Comp. Cp
0.5
1
1.5
x/c versus y/c
—— eppler 361

ylc

—— Comp Airfail

FHgure 6 9 Results of residual correction al gorithm after iteration 789 (AB C=10)

For the second criteria after 9763 iteration, obtai ned resuts are:
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x/c versus Cp

x/c

—~——

0.2 0.4 \m\o.s\
L . | —— Comp. Cp

—— Target Cp

=

15

x/c versus yl/c

—— eppler 361
—— Comp Airfoil

FHgure 6 10 Results of residual correction al gorithm after iteration 9763 ( A B C=10)

By using these three cases, we can see the effects of A B C constants on the

requirediterationto satisfythe criteria Follow ng table shows the trend

Table 6 1 Conparison of results accordi ngto constarts and criteria

Values of A B C

Re qui red iteration number

for the first criteria

Re qui red iteration number

for the second criteria

1 80 977
3 237 2931
10 789 9763
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6.3 Goncl wsion

Bot hinverse design nethods give acceptableresults. Mithod with genetic al gorithm
creates starting generations randonty. Therefore, although obtainedresultsareinthe
acceptableli mts, sone differences fromtarget val ues take attertion But ont he ot her
hand, randommess of the genetic al gorithmalso creates an advantage. That is, since
genetic al gorithm has randommess, accuracy of the al gorithm does not change too
much depending on position on the airfal. Andthis feature of the al gorithm may

create an advantage inthe case of nore conplex geonetries.

The method wth residual correction algorithm seens relatively better than the
method wth genetic algorithm For this test case, because residual correction
algorithmstartsiteraionwitha certainairfoll (NACA0012), it reaches better results.
But since, inthis al gorithm target val ues are reached by using AY ’s, sensitivity of
AYisi nportant for obtainingtarget val ues. So al gorithmaccuracy varies accor di ng

to position onthe airfail.

For exanpl e, although obtai nedresults for other part of the airfal fit very well tothe
target val ues, al gorithmaccuracy does not show the sane trendinthe | eadi ng edge.
Inleading edge, renarkable difference is seen To correct this situation, we must

decrease val ue of criteria and this leads to anincrease initerati on numnber.

Inadditiontothese, inthe case of nore conplex problens, first nethodis usedto

create anintid airfail geometry for the second nethod
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APPENDI X A

Al results from both inverse design wth genetic al gorithmand inverse design wth
residual correction al gorithmare presented bel ow

A 1 Resuts of Inverse Design wth Gnetic Agorithm

Ge neration 200:

x/c versus Cp

x/c

N
TR

—— Target Cp

Cp
o
N
©
N
o
(]
o
[N

—— New Cp

x/c versus y/c

—— Target Airfoil

ﬁw 0z e 1 NewAiril

ylc
o
o &

x/c

Hgure A1l Results of genetic al gorithmafter generation 200
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Ce neration 400:

x/c versus Cp

x/c

A

- N

-0.5

—s— Target Cp

Cp

1 ——New Cp

0.2 0.4 0.6
0.5 /

x/c versus ylc

—— Target Airfoll

ylc
o
o ©
o a1 =

-0.05 M 0.6 R | L=—New Airfoil
-0.1

Hgure A2 Results of genetic a gorithmafter generation 400
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Ceneration 800:

x/c versus Cp

x/c

—— Target Cp

—— New Cp

ylc

x/c versus y/c

0.05
0 —— Target Airfolil

‘ ‘ ‘ ‘ - | —— New Airfoil
-0.1

Hgure A3 Results of genetic al gorithmafter generation 800
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Ge neration 1200:

x/c versus Cp

x/c

s I
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1 \
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a —— Target Cp
] ( 0.2 0.4 0.6 1 —— New Cp
0 L I
Ny /
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|

x/c versus y/c

0.1
0.05
0 —— Target Airfolil
‘ ‘ ‘ : - | —— New Airfoil
0.05 ?% 04y o OB——TE T 1
-0.1

x/c

ylc

Hgure A4 Results of genetic a gorithmafter generation 1200
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Ceneration 1800:

x/c versus Cp

x/c

-1.5

N

o —— Target Cp
O 1 0.2 0.4 0.6 0.8 1 —— New Cp
| 7”/—/\:/ - M‘ |
0.5

x/c versus y/c

—— Target Airfoll

ylc

—— New Airfoil

x/c

Hgure A5 Results of genetic a gorithmafter generation 1800
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Ge neration 2500:

x/c versus Cp

x/c

—— Target Cp

—— New Cp

x/c versus y/c

0.1

0.05 V
0 T T T T 1
-0.05 g 0.4 M 1

-0.1

ylc

x/c

—— Target Airfolil
—— New Airfoil

Hgure A6 Results of genetic a gorithmafter generati on 2500
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CGeneration 3500:

x/c versus Cp

x/c

—— Target Cp
——New Cp

15

ylc

x/c versus y/c
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Hgure A7 Results of genetic a gorithmafter generation 3500
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Ge neration 4000:

-1.5

x/c versus Cp

x/c
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Hgure A8 Results of genetic a gorithmafter generation 4000
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A 2 Resuts of Inverse Design wth Residual Gorrection Agorithm
A=B=C=1

For the first criteria iteration 80

x/c versus Cp

x/c

RS
e

—s— Target Cp
—&— Comp. Cp

x/c versus y/c

—s— eppler 361
—a— Comp Airfoil

x/c

FHgure A9 Results of residual correction al gorithm after iteration 80 (A BC=1)
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For the second criteria iteration 977

x/c versus Cp

x/c

—s— Target Cp
—&— Comp. Cp

x/c versus ylc

0.1

0.05

—s— eppler 361
—a— Comp Airfoil

ylc
o

-0.05

-0.1

x/c

Fgure A10 Results of residual correction al gorithmafter iteration 977 (A B C=1)
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A=B=C=4

For the first criteria iteration 316:

x/c versus Cp

x/c

RS
e

—s— Target Cp
—&— Comp. Cp

x/c versus y/c

—s— eppler 361
—a— Comp Airfoil

x/c

Fgure A1l Results of residual correction al gorithmafter iteration 316 (A B C=4)
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For the second criteria, iterati on 3907:

x/c versus Cp

x/c

15 N

NN

1 \“\\\
q
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0.2 04 0.
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0 Pt 1 rr o | |
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—s— Target Cp
—&— Comp. Cp

x/c versus y/c

x/c

—s— eppler 361
—a— Comp Airfoil

Fgure A12 Results of residual correction al gorithmafter iteration 3907 (AB C=4)
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A=B=C=6

For the first criteria iteration 474:

x/c versus Cp

x/c

—s— Target Cp
—&— Comp. Cp

x/c versus y/c

—s— eppler 361
—a— Comp Airfoil

x/c

Hgure A13 Results of residual correction al gorith mafter iteration 474 (A B C=6)
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For the second criteria iterati on 5860

x/c versus Cp

x/c

—s— Target Cp
—&— Comp. Cp

x/c versus y/c

—s— eppler 361
—a— Comp Airfoil

x/c

Fgure A14 Results of residual correction al gorithmafter iteration 5860 (AB C=6)
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A=B=C=15

For the first criteria iteration 1183

x/c versus Cp

x/c

RS
e

—s— Target Cp
—&— Comp. Cp

x/c versus y/c

—s— eppler 361
—a— Comp Airfoil

x/c

Fgure A15 Results of residual correction al gorithmafter iteration 1183 (A B C=15)
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For the second criteria iterati on 14640:;

x/c versus Cp

x/c

—s— Target Cp
—&— Comp. Cp

x/c versus y/c

—s— eppler 361
—a— Comp Airfoil

x/c

Fgure A16 Results of residual correction al gorithmafter iteration 14640 (A B C =15)
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APPENDI X B

The fortran code of inverse design wth residual correction a gorithmis presented bel ow The
fortran code of inverse design wth genetic a gorithmis aso presentedinaCD

PROGRAM RESI DUAL

DI MENSI ON R(82), TVEL(84), DY(82), CVEL(84), BA 43, 43), BU(39, 39)

DI MENSI ON BAA( 43), B 82,82), XA(43), XU 39), DYTOT(82), PANLEN(84)
DI MENSI ON BAU(43), BAD(43), BUA 39), BUU 39), BUD(39), BAR(43), BUR(39)
DI MENSI ON CCP(84), TCP(84)

REAL TOTCP

I NTEGER COUNT

| NCLUDE' COMMONS

OPEN(5, A LE2 NACAD012XY2. DAT)

OPEN 7, A LE2Z TARGET_VEL2. DAT)

OPEN( 9, A LE= Y2 DAT)

OPEN 75, A LE= [2. DAT)

OPEN 90, A LE2 KO2. DAT)

OPEN 91, A LE= TCP2. DAT)

OPEN 92, A LE= CCP2 DAT)

COUNT=0

LDA=82

IPATH=1
KL=15
K2=15
K3=15

DOI=1,82
DYTOT(1) =0
END DO

DOI1=184

READ5 * XI), Y1)
END DO

DO1=1,84
READ(7,% TVEL(I)
TCP(1) =1-( TVEL(1)) **2
END DO

25 CALL PANEL(XY)
DO =1, 84
PANLEN1)=XLENG])
END DO
CCP(1) < CP(1) * XLENGQ 84)+CP(84) * XLENQ 1))/ ( XLENG 1) + XLENQ 84))
DO =2, 84
CCP(1) { CP(I- 1) * XLENG( 1)+ CP(1) * XLENG(1- 1))/( XLENG 1) +XLENGI- 1))

END DO
CVEL(1) =SQRT( 1- CCP(1))

60



END DO

DO1=1,82
IHI.LEQL) THEN
B(I, 1+1) 5 K/ ( X1+2)- X1 +1)))-2* K3/ (( X1 +2)- X1 +1)) *
1(X1+2)- X1)))
B(1, 1) =K1- K2/ ( X1+2)- X1+1)) H2* K3/ ( X1+2)- X)) *
L((Y(X1+2)- X1 +1))) H V(X1 +1)- X1))))

R A(TVEL(1+1))**2)-(( CVEL(1 +1)) **2)

ELSEIR(I. GT. 1 ANDI. LT 43) THEN

B(1, 1+1) = K2/ (X1 +2)- X1 +1)))-2* K&/ (( X1 +2)- X1 +1)) *
L(X1+2)-X1)))

B(1, 1) =KL~ K2/ ( X(142)- X1+1)) {2 K3/ ( X1+2)- X1)))*
L((Y(X1+2)- X1 +1))) { Y (X1 +1)- X1))))

B(1, 1-2) = 2* K3/ (( X1 +1)- X1))( X1+2)- X1)))
RODA(TVEL(1+1)) **2)-((CVEL(1+1))**2)

ELSE IK(I.EQ43) THEN
B(1, 1) =KL~ K2/ ( X(142)- X1 +1)) H 2* K/ ( X1 +2)- X1)))*
L((V(X1+2)- X1 +1))) { Y (X1 +1)- X1))))

B(1, I-2) = 2* K3/ (( X1 +1)- X1))( X1 +2)- X1)))

RO (TVEL(1+1)) **2)-((CVEL(1+1))**2)

ELSE IKI. EQ44) THEN
B(1, 1+1) < K2/ ( X1 +3)- X(142)))-2* K3/ (( X1 +3)- X1 +2) *
L(X143)- X1 +1)))

B(1, 1) =K1- K2 ( X1+3)- X(1+2)) H2* K3/ ( X1 +3)- X1 +1)))*
L((V (X1 +3)- X1+2))) H U (X1 +2)- X1 +1))))

RN H(TVEL(1+2)) **2)-(( CVEL(1+2))**2)

ELSE IKI. GT. 44 ANDI. LT 82) THEN

B, 1+1) 5 K/ ( X1+3)- X142)))-2* K3/ (( X1+3)- X1 +2))*
1(X1+3)- X1+1)))

B(1,1)=K1- K ( X1+3)- X1+2)) H{2* K3/ ( X1 +3)- X1 +1)))*
L(V(X1+3)- X1+2)H V(X1 +2)- X1+1))))

B(1,1-2) = 2* K3/ (( {1 +2)- X1 +1)) *( X1 +3)- X1+1)))

RN A(TVEL(1+2))**2)-(( CVEL(1 +2)) **2)

ELSE II.EQ82) THEN
B(1, 1) =KL- K2/ ( X1 +3)- X1 +2)) H 2* K3/ ( X1 +3)- X1 +1))) *
L((V(X1+3)- X1+2))) H Y ( X1 +2)- X1+1))))

B(1, 1- D =2* K (( X1 +2)- X1 +1)) (X1 +3)- X1 +1)))

RN =((TVEL(1+2)) **2)-((CVEL(1 +2))**2)

ENDIF
END DO

DO 1=1, 43
DO J=1 43
BA(I,)=0
END DO
END DO

DO1=1,43
DO J=1,43
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BA(1,9)=R1,J)
END DO
END DO

DO =1 39
DO J=1,39
BU(I,J)=H(1 +43 J+43)
END DO

END DO

Z=1

DO1=2 43
BAA(1)=BA, 2
/=7+1
END DO

V=2
DO =1 42
BAU1)=BA(, \j
V=V#1

END DO

DO1=143

BAD(1)=BA(, 1)
END DO

DO1=143

BAR(I)=R)
END DO

Z=1

DO1=2 39
BUA()=BUI, 2
/=7+1

END DO

V=2
DO1=1,38
BUUI)=BU, \J
V=41

END DO

DO1=139

BUD(1)=BU(1, 1)
END DO

DO1=139

BUR(1)=R(I +43)
END DO

CALL TDMA( BAA BAD BAU BAR XA 43)
CALL TDMA( BUA BUD BUU BUR XU 39)

DO1=1,43
DY(1) =XA(TI)
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500

30

END DO

DO 1=1,39
DY(I+43)=XU)
END DO

DO =1 82
DYTOT(I)=DYTOT(1)+DY(I)
END DO

DO I=1,82
| K] LE 43) THEN
Y(1+1) =Y(1 +1) {- DY(1))

ELSEIK]I. GT.43) THEN
Y(1+2) =Y(1+2) +DY(I)
ENDIF

END DO

COUNT=COUNT+1
CONTI NUE

TOTCP=0
DO =184

TOTCP=TOTCP-H( ABS( TCP(1))- ABS( CCP(1)))**2)
END DO

IF(TOTCP. GT. 1) THEN
GOTO 25

ELSE

GOTO 30

ENDIF

DO =1, 84

WRI TE(90, 91, X1), X(1)

WRI TE(91, %1, X1), TCP(1), TOTCP, COUNT
WRI TE(92, %1, X1), CCP(I), TOTCP, COUNT
END DO

DO =1, 82

WRI TE(100, *)I, DYTOT(I)

END DO

END PROGRAM

B s e e S S S S S e o o 2 S 2 2 2 2

SUBROUTI NE PANEL( X Y)
I NCLUDE' COMMONS

OPEN (UN T=6, A LE= PANELXY. OUT)
OPEN(UN T=7,ALE= ARFAO L)

OPEN (UN T=8 H LE= XYVPXY. DAT)
OPEN UN T=10, H LE= B DAT)

OPEN UN T=11, H LE= VELOCI TY. OUT)
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CALL ARFAL

CALL AMAT
CALL GAUSS (1)
CALL VELCP
CALL DLMCAL

C___

CALL OUTPUT

C.--

DO1=5,8
CLOSE (1)
ENDDO

C___

RETURN
END

I CONSTRUCT THE ARFO L

I EVALUATE THE COEFH O ENT MATRI X A
I SOLVE BY GAUSSI AN ELI M NATI ON
! VELOQ TY &PRESSURE DI ST. (CP)
I DRAG UFT & MOMENT COEFFI A ENTS

* *** *k*

SUBROUTI NE ARFA L

C--

G-- SETS WP COORDI NATES

C--

I NCLUDE' COMMONS

P=4, 0*ATAN( 1)
P21 NV=0. 5 P!
ALPHA=5.0

COSALF=COS( ALPHA*PI/180.0)
3 NALF=SI N ALPHA*PI/180.0)

NODTOT=84

X NODTOT+1) =X 1)
Y NODTOT+1)=Y(1)

G--

I TOTAL NQ PANELS

G-- EVALUATE SLOPES OF PANELS

G--

DO 200 1=1, NODTOT

DX=X(1+1)- X1)
DY=Y(1+1)- Y(I)

0O ST=SQRT( DX* DX+ DY* DY)

G--
XLENQ(1)=DI ST
G--

S NTHE(1)=DY DIST
COSTHE(1)=DX D ST

C--
200 CONTI NUE
C--

I PANEL LENGTHS

I PANEL SLOPE | NFQ

G-- SET NODAL CONNECTIM TY OF PANELS

C--

DO K=1, NODTOT
LNODL( K =K
LNOD2( K) =K+1

ENDDO

LNOD2( NODTOT) =1

C--

I NODAL NOS OF EXTREME PTS

I CLOSE THE BOUNDARY

CG-- VWRITE COORD NATES &LENGTHS ON O SCHLE
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G--
REW ND 7
VR TE (7,%) NODTOT
C___
DO1=1, NODTOT
WR TE (7% I, X1), Y1) ! EXTREME PT. COORDINATES
ENDDO
C___
DO K=1, NODTOT
WR TE (7,%) K LNODL( K, LNOD2( K, XLENG K) ! CONNECT. &LENGTH
ENDDO
G--
DO K=1, NODTOT
11=LNODL( K | PANEL S EXTRE ME PA NTS
12=LNOD2( K
XL=X(11) | GOORDI NATES
YL=Y(11)
x=X12)
Y=\Y(12)
XM K) =0, 5% XL+X2) I MD-PQ NT COORD NATES
YM K) =0.5% YL+Y2)
ENDDO
GC--
RETURN
END
KhhkAhhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhkhkhkhkhkhhhhkhkkhkhhhhhhkhhhkhkhhkhkhhkhkhkhkhkiikx
SUBROUTI NE AMAT
C___
G-- SET COEFFIENTS OF LI NEAR SYSTEM
C___
I NCLUDE' COMMONS
C___
KUTTA=NODTOT+1
C--
G-- INTI ALl ZE COEFFI AENTS
C--
DO 90 J=1, KUTTA
90 AKUTTAJ)=0.0
C--
G-- SET VN=O AT MDPQNT OF | TH PANEL
C--
DO 120 | =1, NODTOT
XM D=XM1)
YM D=YMI)
Al, KUTTA =0.0
C--
G-- A ND CONTR BUTI ON OF JTH PANEL
C--
DO 110 J=1, NODTOT
FLOG=0.0
FTAN=PI
C--
IF(J. EQI) GOTO 100
DXI=XM D XJ)
DXIP=XM D XJ+1)
DYI=YM D Y(J)
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DYJP=YM D Y(J+1)
FLOG=0. 5* ALOG( DXI P* DXJ P+DYJ P* DYJ P)/( DXI*DXJ + DYJ * DYJ))
FTAN=ATAN2( DYJ P* DXJ- DX P*DYJ, DX P* DXJ +DYJ P* DYJ)
C___
100 CTI MTJ=COSTHE(1)*COSTHE(J) +SI NTHE(1)*SI NTHE(J)
STI MIJ =S| NTHE(1) *COSTHE(J)- Sl NTHE(J) *COSTHE()
A1,3)=P12l NV¥(FTAN*CTI MTJ+FLOG*STI MTJ)
B=PI 21 NV*( FLOG* CTI MTJ- FTAN*STI MTJ)
Al KUTTA =AI, KUTTA +B
IF(l. GT.1 ANDI. LT. NODTOT) GOTO 110
G--
G-- IFITHPANEL TOUCHES THE TRA LI NG EDGE
G-- ADD CONTRI BUTI ON TO KUTTA CONDI Tl ON
C--
AKUTTAJ)=A KUTTAJ)-B
AKUTTA KUTTA =A KUTTA KUTTA +A1,J)
110 CONTI NUE
C___
G-- ALLINKNOWN S| DES
C___
Al, KUTTA+1) =S| NTHE(I) *COS ALF- COSTHE(1) *SINALF
120 CONTI NUE
A KUTTA KUTTA+1) =(COSTHE( 1) +COSTHE( NODTOT)) *COS ALF
1 -(S NTHE( 1) +SI NTHE( NODT OT)) *SI NALF
G--
RETURN
END
AEAKKAKEAAKA AR A KRR AAA KR AAARAAAREAAA R AAA R AR AARRAAARAAA AR AA AR AAAAAAAAA A XA Ahhh)k
SUBROUTI NE VELCP
G--
G-- EVALUATE VELOO TY &PRESSURE O STR BUTI ONS
G--
I NCLUDE ' COMMONS

C--
O MENSI ON Q300)

C--

G-- RETR EVE SOLUTI ON FROM A MATRI X

C--

DO 50 =1, NODTOT
50 QI)=Al, KUTTA#1)

GAMA=A( KUTTA KUTTA+]) I VORTEX VAL UE
G--
G-- AND VTANG & CP AT M DPQA NT OF | TH PANEL
C--

DO 130 | =1, NODTOT

XM D=XM1)

YM D=YMI)

VTANG=COS ALF* COSTHE(I) +SI NALF*SI NTHE(I)
C--
G-- ADD CONTRI BUTI ONS OF JTH PANEL
G--

DO 120 J=1, NODTOT

FLOG=0.0

FTAN=PI
G--

IF(J. EQI) GOTO 100 I 9 NGULARI TY
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DXI=XM D XJ)
DXIP=XM D XJ+1)
DYJ=YM D Y(J)
DYIP=YM D Y(J+1)
FLOG=0. 5* ALOG(( DXI P* DXJ P+DYJ P* DYJ P)/( DXI*DXJ + DYJ * DYJ))
FTAN=ATAN2( DYJ P* DXJ- DXJ P*DYJ, DX P* DXJ +DYJ P* DYJ)
C_ -
100 CTI MTJ=COSTHE(1)*COSTHE(J) +SI NTHE(1)*SI NTHE(J)
STI MIJ =S| NTHE(1) *COSTHE(J)- Sl NTHE(J) *COSTHE()
AA=PI 21 NV<(FTAN* CTI MTJ +FLOG*STl MTJ)
B=PI 21 NV*( FLOG* CTI MTJ- FTAN*STI MTJ)
VTANG=VTANG B*QJ)+GAMA* AA
120 CONTI NUE
C--
VELOQ(I)=VTANG I TANGENTI AL VELOCI TY
OP(1)=L 0- VTANG* VT ANG I PRESSURE COEFFI A ENT
C_ -
130 CONTI NUE
C_ -
RETURN
END
*hkhkhkhkhkhkhkhkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhkhkhkhhhhhhkhhhkhkhhkhkhhkhkhhkhkikik
SUBROUTI NE DL MCAL
G--
G-- EVALUATE DRAG LIFT AND MOMENT COEFFIC ENTS (CD CL CN)
C--
I NCLUDE ' COMMONS
C_ -
CFX=0.0
CFY=0.0
CM=0. 0
C_ -
DO 100 1 =1, NODTOT
XM D=XM])
YM D=YMI)
DX=X(1 +1)- X1)
DY=Y(I+1)- Y(1)
OF X=CF X+CP(I)*DY
CFY=CF Y- CP(I)*DX
CM=CM#+CP(1) % DX* XM D+DY*YM D)
100 CONTI NUE
C--
CD=CF X* COS ALF+CF Y*SI NALF
CL=CF Y* COS ALF- CFX*S| NALF
C--
RETURN
END
EEAEAAAAAEAAAAAAAAAAAAAAAAAAAAAAAkAAAAkAhkhkhhhhkhkhkhhhkhkhkkhhhhhkhhhhhkhhhkhkhkhkhkhkhkhkikikx
SUBROUTI NE OUTP UT
C--
I NCLUDE ' COMMONS
C--

VR TE (6'(2X Al3)')' NODTOT 2, NODTOT

VR TE (6'(2X Al5)')' NACA =, NACA
VR TE (6'(2X AF6.2')'ALPHA 2, ALPHA
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G--
VR TE (6% ' NODAL CONNECTI M TY AND LENGTHS OF PANELS *'
DO K=1, NODTOT
VR TE (6% K LNODL(K), LNOD2( K, XLENQ K)
ENDDO
C___
VR TE (6% ' COORDI NATES OF PA NTS'
WRTE(6%" | XI) Y1)
DO1=1, NODTOT
VRITE (6 %) 1, XI), Y1)
ENDDO
G--
VR TE (6% ' MD PO NT COORDI NATES *'
DO K=1, NODTOT
WRITE(6%) KXMK,YMK
ENDDO
C___
G-- FOR2- O M POTENTIAL FLOWS, DRAG =0
C___
WR TE (6% ' DRAG LFT AND MONMENT COEFFI CIENTS '
VR TE (6,1000) CQ CL,CM
1000 FORMAT ( CD 2,F852X' CL 2,F8 52X%' CM=,F8.5,/)
GC--
VR TE (6% ' VELOO TY AND PRESSURE O STR BUTI ONS '
DO K=1, NODTOT
VIR TE (6% K VELOC(K), CA( K
ENDDO
DO I =1, NODTOT
WRI TE(11,% VELOQ(I)
END DO
CLOSE(11)
G-- THE CONSTANT VORTEX
C--
VR TE (6'(//,2% AF8 4))' GAMA 2, GAMA
C--
G-- WRITE ONDSCHLE:
C--
REW ND 8
DO1=1, NODTOT
P Me- CP(1)
WR TE (8% XMI), YM1), VELOQ(1), CP M
ENDDO
C--
RETURN
END
SUBROUTI NE GAUSS (NRHS)
C--
G-- SOLUTI ON OF LI NEAR SYSTEM OF EQNS BY GAUUS ELI M NATI ON
G-- BYPARTI AL Pl VOTI NG
C--
G-- A= COEFFIQENT MATR X
G-- NEQNS = NQ OF EQUATI ONS
G-- NRHS = NO OF R GHT- HAND S| DES
C--
G-- R GHT- HAND Sl DES AND SOLUTI ONS STORED IN
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G-- COLUMNS NEQNS+1 THRU NEQNS+NRHS OF "A
G--
INCLUDE' COMMONS

GC--
NEQNS=NODTOT+1 Inegns =190 np=191 ntot=191
NP=NEQNS+1
NTOT=NEQNS+NRHS

G- GAUSS REDUCTI ON

C“-DO 150 1=2, NEQNS

g SEARCH FOR LARGEST ENTRY I N(I-) TH COLUMN
G-- ON OR BELOW MAI ND AGONAL

le MEl -1

| MAX=I M
AMAX=ABS( A1 MI )

DO 110 J=, NEQNS

IF(AMAX GE ABS( AJ,IM)) GOTO 110
| MAX=]
AMAX=ABS( AJ,1 M)

110 CONTI NUE

G-- SWTCH(I-1) TH AND | MAX TH EQUATI ONS
C--

IF( MAX NEIT M GOTO 140
! wite(10 *)' AMAX, anax

DO 130 J= MNTOT
TEMP=A(l MJ)
Al MJ)=A1 MAX J)
Al MAX J)=TEMP
130 CONTI NUE
C--
G-- EU M NATE (I-1) TH UNKNOWN FROM
G-- ITH THRU (NEQNS) TH EQUATI ONS
C--
140 DO 150 J=I, NEQNS
R=A(J 1 N/ AL MIN)
DO 150 K=I, NTOT

150 AJ, K=AJ KB-R*"AIMK

C--
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G-- BACK SUBSTI TUTI ON
G--
DO 220 K=NP, NTOT
ANEQNS, K =A NEQNS, K/ A NEQNS, NEQNS)
DO 210 L=2 NEQNS
I=NEQNS+1- L
1P=l+1
DO 200 J9 P, NEQNS
200 Klr IQ:A(I! |§-A(|,J)*A\], &
210 Al K=A1, K/ A1)
220 CONTI NUE
G--
RETURN
END
B X T T E S S S S e e ey
SUBROUTI NE TDMALD UG XN
INTEGER ND NI, NML
PARAMETER ( ND=900)

REAL L(ND), O{ ND, U ND), @ ND), X ND), F(C: ND), Q0: ND), TEMP

1) =00
UN =00

C* FORWARD ELI M NATION
DO101 =1 N

Tenp = O1) + L(1)*A(I-1)

RI) =-Ul)/ TEMP

Qn =(aln - H*ql-1)/ TEMP
CONTI NUE

QA6

BACK SUBSTI TUTI ON
do201 =N1-1
X1) =RI)*X1+1) + ql)

20 cortinue

C* OUTPUTTI NG THE SOLUTI ON VECTOR
VR TE(6,%) ' THE SOLUTI ON VECTORIS'
VR TE(6,%)
VR TH(6 21) (X1),1 =1N
21 FORMAT(",25xf159)
RETURN
END
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