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STRUCTURAL ANALYSIS OF THIN/THICK COMPOSITE BOX BEAMS 

USING FINITE ELEMENT METHOD 

SUMMARY 

The aim of this master's thesis is to evaluate thin and thick composite box beams, 

which are accepted as folded plates, using the finite element method in terms of 

vibration and to develop a computer code. In order to make this assessment, folded 

plates and box beams were analyzed with certain plate theories using different 

materials, boundary conditions and variable plate thicknesses. This thesis consists of 

introduction, equation of motion and vibration, finite element method, plate theories, 

composite plates and folded plates and box beam formulation sections. 

The introduction part is about general information of plates, box beams, vibration, 

materials and the use of finite elements method and the historical process of these 

studies. The literature studies on the emergence and development of plate theories are 

intended to provide the reader with a preliminary knowledge of their different uses. In 

addition, a general framework has been attempted to use Kirchhoff-Love and Reissner-

Mindlin plate theories based on the length to thickness ratio of the plates. 

Vibration is an important phenomenon in terms of structural integrity, strength and 

efficiency for box beams, shells and panels that make up the majority of aircraft today. 

It is therefore significant that natural frequencies can be obtained and evaluated. 

Especially, accepting composite beams as folded plates in obtaining process of natural 

frequency values will be a basic and different approach for composite thin walled beam 

theories. 

The equation of motion and vibration section includes that the equation of motion 

(EOM) of different systems, the extraction of the characteristic equation that provides 

the frequencies of the systems from the EOMs, the phenomenon of vibration and its 

types. Thus, the necessity of using energy equations to find the mass and stiffness 

matrices which are required to obtain the natural frequency is explained through 

formulations. In this thesis, free vibration is discussed and structures are evaluated in 

this context. 

Finite element method section describes the element selection, creating nodes and 

determining degrees of freedom to obtain the shape functions of the elements. Shape 

functions are defined as the displacement relationship between an element and the 

nodes. The displacements are expressed with polynomials based on the dimensionless 

coordinates of the element. In this study, the finite element method (FEM) was applied 

to the structure by selecting a four-node quadrilateral element. Besides, this element 

type was evaluated as a membrane, thin bending or thick bending element with 

different degree of freedom (DOF) and shape functions were found for them. 
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The plate theories form the basis of the finite element code and analysis in this study. 

Kirchhoff-Love Plate Theory (KLPT) is applied to thin plates, which has a length-to-

thickness ratio greater than 10, comes more suitable form for isotropic homogeneous 

materials, since shear effects are neglected. According to KLPT, the in-plane 

displacements of material particles in the plate middle surface are smaller than the 

displacements in other direction. At the same time, the normal of the middle surface 

remains on the same curve and perpendicular to the plane throughout the movement. 

So, this theory is applied using a thin bending element and rotational displacements 

are dependent on vertical displacement.  

The shape functions have been used to equalize the potential energy, which includes 

strain formulas of the bending element, and the classical energy equation from EOM. 

The same method was followed to equalize two different form of kinetic energy 

equations. Thus, the stiffness and mass matrices of an element are derived from the 

potential energy and kinetic energy expressions. A thin metal flat plate was considered 

as a case study and divided into elements, matrices for one element were transformed 

into general matrices with the summation method of the finite element method, and 

the stiffness and mass values of the entire structure were obtained. Then, boundary 

conditions were applied to these matrices and a reduction was made. The reduced 

global matrices were solved by applying Modal Analysis and the results obtained were 

compared with the experimental, analytical and FEM results in the literature to confirm 

the accuracy of the applied finite element formulation and the results were seen to 

converge. 

Reissner-Mindlin plate theory (RMPT) takes into account the transverse shear effects 

and rotary inertia, unlike KLPT, so it is applied to thick plates which have length-to-

thickness ratio is less than 10. As a reflection of transverse shear effects, it is as good 

in orthotropic material as in isotropic homogeneous materials. RMPT assumes that the 

normal of the mid surface is not perpendicular to the surface throughout the movement. 

This assumption makes rotational displacements independent from vertical 

displacement. The shape functions of the thick bending element have been used to 

obtain stiffness and mass matrices from energy equations. 

While the structure becomes thinner, it is seen that a case called as shear locking, which 

makes the shear stiffness dominant, occurs in RMPT application. To overcome this 

case, shear stiffness must be reduced by methods such as Gauss reduced integration or 

use of Quadrilateral, Bilinear Deflection, Bilinear Rotations and Linear Transverse 

Shear Strain Fields (QLLL) elements that are based transverse shear strain fields. This 

makes the Mindlin theory applicable to thin plates. In the comparison study, the global 

matrices of a metal flat plate were obtained by adding two different stiffness matrices 

(bending and shearing) for one element, and the QLLL method was applied prior to 

the shear stiffness term. With the application of boundary conditions, the natural 

frequencies were found using the achieved code and the dimensionless results are 

compared with the analytical and FEM results in literature, and the commercial finite 

element program ABAQUS results where the same mesh size was used with the 

achieved code. It has been seen that the results are very close in this comparison. 
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The composite plates section mentioned the necessity of membrane effects in plate due 

to its material properties. Due to the existence of axial displacement, the DOF is taken 

to be 5. Thus, it was observed that bending, shear and membrane stiffness appeared to 

be depending on the layouts and angular orientations. In cases where the sequence is 

not balanced and symmetrical, the axial and bending forces act on each other and may 

form the membrane bending coupling stiffness. 

Both Kirchhoff and Mindlin theories have been applied to the composite plates by 

adding in-plane stiffness and mass matrices. It was compared with the dimensionless 

frequency values in the literature and it was seen that Mindlin theory gave good results 

for thick plates but Kirchhoff was not sufficient. Similarly, close results were obtained 

from both theories in comparison of thin plate, but the code applied based on Mindlin 

theory converged more due to the shear effect along the cross section of the layers. 

In the last part, thin/thick metal and composite folded plates and the box beams which 

are accepted as 4-folded plates, were analyzed with the codes obtained by the finite 

element method in the light of the information from the previous sections. The data 

were compared with the studies in the literature in order to verify and if the study was 

not found, it was modeled with the help of ABAQUS and compared with the results 

obtained here. The crank angle is considered as 90 ° in this thesis. The local axes of 

each face of the folded plates should be converted to a global axis to analyze easily. In 

order to get a suitable transformation, in-plane displacements and rotational movement 

on the vertical axis (drilling degree) are also considered as DOF. Thus, the structure 

had 6 degrees of freedom and their elements were transformed so that their stiffness 

and mass matrices were on the global axis. Thin/thick one and two folded composite 

and metal plates were evaluated, mode shapes and natural frequency values were 

calculated. Then, two theories were compared on different sizes of thin/thick 

composite and metal box beams.  

As a result, it has been revealed that the frequency values decrease with decreasing 

thickness, the restricted degrees of freedom increase the frequency values and the 

different sequences affect the frequency values. Moreover, the membrane effects and 

the transverse shear effects are important in the folded and composite structures. In 

several comparisons, it was seen that these codes, which were created based on the 

finite element method in the Mathematica program, converge as ABAQUS package 

program. Thus, it has been shown that beams can be considered as folded plates and 

the main purpose of this thesis is to be able to analyze the structures with different 

plate theories and to obtain better results in terms of vibration. Many computer code 

have been written on this subject with different theories and application methods. 
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İNCE/KALIN KOMPOZİT KUTU KİRİŞLERİN SONLU ELEMANLAR 

YÖNTEMİ İLE YAPISAL ANALİZİ 

ÖZET 

Bu yüksek lisans tezinin amacı katlanmış plaka olarak kabul edilen ince ve kalın 

kompozit kutu kirişlerinin plaka teorileri ile titreşim açısından sonlu elemanlar 

yöntemi kullanılarak değerlendirilmesi ve bunu yapmayı sağlayan bir bilgisayar 

kodunun geliştirilmesidir. Bu değerlendirmenin yapılabilmesi için farklı malzemeler, 

sınır koşulları ve değişken plaka kalınlıkları kullanılarak öncelikli olarak plakalar, 

katlanmış plakalar ve kutu kirişler belirli plaka teorileri ile analiz edilmiştir. 

Bu çalışmada; giriş bölümü, hareket denklemleri ve titreşime genel bakış, sonlu 

elemanlar formülasyonları, plaka teorileri yapısal formülasyonu, kompozit plaka 

formülasyonları ve katlanmış plakalar ile kutu kiriş formülasyonları olmak üzere altı 

ana bölüm yer almaktadır. 

Giriş bölümünde genel olarak plakalar, kutu kirişler, titreşim, malzemeler ve sonlu 

elemanlar yönteminin kullanımından ve bu çalışmaların tarihsel süreci hakkında bilgi 

verilmektedir. Plaka teorilerinin ortaya çıkışı ve geliştirilmesi ile ilgili literatür 

çalışmalarına yer verilerek farklı kullanımları hakkında okuyucunun ön bilgiye sahip 

olması amaçlanmıştır. Ayrıca bu bölümde, plakaların kalınlıklarına göre 

sınıflandırılması ve bu sınıflandırmaya bağlı olarak farklı deplasman teorilerine ihtiyaç 

duyulduğu, Kirchhoff-Love ve Reissner-Mindlin plaka teorileri olarak bilinen 

teorilerin kullanım alanları hakkında genel bir çerçeve oluşturulmaya çalışılmıştır.  

Günümüzde hava araçlarının büyük bir kısmını kutu kirişler, kabuklar ve paneller 

oluşturmaktadır. Bu nedenle, bunlar gibi özellikle kontrol yüzeylerinde ve 

aerodinamik yüzeylerde kullanılan yapılarda titreşim yapısal bütünlük, dayanım ve 

verimlilik açısından önemli bir olgudur. Titreşim yorulmaya ve çatlaklar gibi yapısal 

zararlara neden olabildiği için çoğunlukla hava aracında kaçınılmak istenen bir olay 

olarak kendini gösterebilir. Doğal frekansların elde edilerek değerlendirilebilmesi bu 

nedenle önem taşımaktadır. Özellikle ince/kalın cidarlı kompozit kirişlerin plakalar 

gibi değerlendirilerek sonlu elemanlar yöntemi ile bir bilgisayar kodu kullanılarak 

doğal frekans değerlerinin elde edilmesi ince cidarlı kompozit kiriş teorilerine temel 

ve alternatif bir yaklaşım olacaktır. 

Hareket denklemleri ve titreşim bölümünün, ilk alt bölümünde enerji denklemlerinin 

bir cismin hareketine bağlı olarak elde edilmesi ve farklı serbestlik dereceli sistemlerin 

Hamilton prensibi ile hareket denklemlerinin çıkarılması gösterilmiştir. İkinci alt 

bölümünde ise sistemlerin frekanslarının elde edilmesini sağlayan karakteristik 

denklemin hareket denklemlerinden çıkartılması, titreşim olgusu ve tipleri 

anlatılmıştır.  
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Böylece doğal frekansı sonlu elemanlar yöntemi mantığına uygun olarak elde 

edebilmek için gereken kütle ve katılık matrislerinin sistemin hareketinden kaynaklı 

meydana geldiği ve bu değerlerin bulunabilmesi için enerji denklemlerinin 

kullanılması gerekliliği formülasyonlar aracılığıyla anlatılmıştır. Bu tez içerisinde 

serbest titreşim ele alınmış ve yapılar bu bağlamda değerlendirilmiştir. 

Sonlu elemanlar yöntemi bölümünde eleman seçimi, düğüm noktalarının 

oluşturulması ve serbestlik derecelerinin belirlenmesi ile elemanların şekil 

fonksiyonlarının elde edilmesine yer verilmiştir. Şekil fonksiyonları bir elemanın 

deplasmanlarının düğüm noktalarındaki deplasman değerleri ile ilişkisini ifade eder. 

Bunu yaparken de elemanın boyutsuz eksenini baz alan polinomlarla deplasmanları 

tanımlar. Böylece daha önceki kısımlarda bahsedilen potansiyel ve kinetik enerji 

denklemlerinden çıkarılan katılık ve kütle matrislerinin, düğüm noktalarındaki 

değerlere göre açılımı sağlanmış olur ve seçilen elemanın matrisleri oluşturulabilir. Bu 

çalışmada, dört düğüm noktalı dörtgen eleman seçilerek yapıya sonlu elemanlar 

yöntemi uygulanmıştır. Ancak bu eleman farklı serbestlik dereceleri için membran, 

ince eğilme ve kalın eğilme elemanı olarak değerlendirilip şekil fonksiyonları 

bulunmuştur. 

Plaka teorilerinin yapısal formülasyonları bu çalışmadaki sonlu elemanlar kodunun ve 

analizin temelini oluşturmaktadır. Kirchhoff-Love Plaka Teorisi (KLPT) yanal kayma 

deformasyonu etkileri ihmal edildiği için ince plakalara uygulanan bir plaka teorisidir 

ve bu ihmalden dolayı daha çok izotropik homojen malzemelere uygundur. 

Uzunluğunun kalınlığına oranı 10 dan büyük olan plakalar ince plaka olarak 

adlandırılmaktadır. Öncelikli olarak Kirchhoff-Love plaka teorisine (KLPT) göre 

plakanın orta yüzeyindeki malzeme tanecikleri dikey yönde hareket etmekte ve 

eksenel hareketleri diğer yöndeki hareketine göre küçük olduğu için ihmal 

edilmektedir.  

Aynı zamanda hareket boyunca orta yüzeyin normalinin aynı eğri üzerinde ve yüzeye 

dik olarak kaldığı varsayılır. Bu yüzden, teori ince eğilme elemanı kullanılarak 

uygulanır ve dönme deplasmanları dikey yöndeki deplasmana bağlı olarak tanımlıdır. 

Eğilme elemanının şekil fonksiyonları ve düğüm noktalarındaki deplasmanları, 

gerinim formüllerini içeren potansiyel enerji denklemi ile hareket denklemlerinden 

gelen klasik potansiyel enerji denkleminin eşitlenmesinde kullanılmıştır. Kinetik 

enerji denklemlerinin eşitlenmesinde de aynı yöntem izlenmiştir. Böylece bu teori için 

bir elemanın katılık ve kütle matrisleri çıkartılmıştır. İnce, metal ve düz bir plaka örnek 

çalışma olarak ele alınarak elemanlara bölünmüş, bir eleman için tanımlanan matrisler 

sonlu elemanlar yönteminin toplama metodu ile global matrisler haline getirilmiş ve 

tüm yapının katılık ve kütle değerleri elde edilmiştir. Ardından sınır koşulları bu 

matrislere uygulanarak indirgeme yapılmıştır. İndirgenmiş global matrisler Modal 

Analiz uygulanarak çözülmüş ve elde edilen sonuçlar, uygulanan sonlu elemanlar 

yönteminin doğruluğunu teyit etmek amacıyla literatürdeki deneysel, analitik ve FEM 

sonuçları ile karşılaştırılmıştır ve sonuçların yakınsadığı görülmüştür. 

Diğer bir plaka teorisi olan Reissner-Mindlin plaka teorisi (RMPT), KLPT den farklı 

olarak yanal kayma deformasyonu etkilerini ve dönme ataletini de hesaba katar bu 

nedenle de yanal kayma deformasyonu etkisinin kalınlık boyunca önemli olduğu kalın 

plakalara uygulanan bir plaka teorisidir. Kayma deformasyonu etkilerinin bir 

yansıması olarak ortotropik malzemede de izotropik homojen malzemelerde olduğu 

kadar iyi sonuç vermektedir. Uzunluğunun kalınlığına oranı 10 dan küçük olan 

plakalar kalın plaka olarak adlandırılmaktadır. 
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RMPT, Kirchhoff teorisindeki ana özellikleri aynen kabul etmesi ile birlikte, hareket 

boyunca orta yüzeyin normalinin yüzeye dik kalmadığını varsayar. Bu varsayım 

dönme deplasmanlarını dikey yöndeki deplasmandan bağımsız hale getirir. Bu teoride 

kalın eğilme elemanı kullanılmıştır. Kalın eğilme elemanının şekil fonksiyonları ve 

düğüm noktalarındaki deplasmanları, eksenel ve kayma gerinim formüllerini içeren 

potansiyel enerji denklemi ile hareket denklemlerinden gelen klasik potansiyel enerji 

denkleminin eşitlenmesinde kullanılmıştır. Kütle matrisinin eldesi için de kinetik 

enerji denklemleri eşitlenmiş ve bu kez dönme deplasmanından kaynaklanan etkiler 

de ortaya çıkmıştır. Böylece bu teori için bir elemanın hem eğilme hem de ve göz 

önünde bulundurulan yanal kayma deformasyonu etkilerinden dolayı oluşan katılık ve 

kütle matrisleri çıkartılmıştır.  

Aynı zamanda yapı inceldikçe RMPT uygulamasında sorunlar oluştuğu ve frekans 

değerlerinin iyi sonuçlar vermediği görülür. Bunun nedeni kayma kilitlemesi olarak 

adlandırılan bir durumdur. Bu durum, azalan plaka kalınlığı sonucunda kayma 

katılığının dominant hale gelmesinden kaynaklanmaktadır.  

Bu durumu engellemek için kayma katılığının indirgenmesi gerekir. Kayma 

kilitlemesini aşmak için Gauss integral indirgeme yöntemleri ya da QLLL adı verilen 

yanal kayma gerinim alanlarına bağlı eleman yapısı metodu kullanılmıştır. Böylece 

Mindlin teorisi ince plakalara da uygulanabilir hale getirilmiştir. Karşılaştırma 

çalışmasında metal düz bir plakanın global matrisleri KLPT ile aynı şekilde elde 

edilmiştir. Ancak bu sefer bir eleman için iki farklı katılık matrisi (eğilme ve kayma) 

bulunarak toplanmıştır ve kayma katılığı için öncesinde QLLL metodu uygulanmıştır. 

Aynı şekilde bağımsız dönme deplasmanları da kütle matrisini farklılaştırmıştır. Sınır 

şartlarının bu matrislere uygulanarak indirgenmesi ile yapının doğal frekansları 

hazırlanan modal analiz kodu uygulanarak bulunmuş ve boyutsuzlaştırılmış sonuçlar, 

literatürdeki analitik, FEM sonuçları ve ticari sonlu elemanlar programı ABAQUS ile 

aynı ağ boyutunda modellenerek buradan da alınan boyutsuz frekans değerleri ile 

karşılaştırılmıştır ve sonuçların çok yakın olduğu görülmüştür. 

Kompozit plakalar bölümünde; kompozit malzemelerin özelliklerinden, katmanların 

diziliminden ve kompozit malzeme yapısından kaynaklı olarak membran etkilerinin 

görüldüğünden yani eksenel yer değiştirmenin ihmal edilemediği ve eğilme etkisinin 

daha baskın olmadığından bahsedilmiştir. Böylece katman dizilimlerine ve açısal 

yönelimlerine bağlı olarak eğilme, kayma, eksenel katılıklarının ortaya çıktığı 

görülmüştür. Dizilimin dengeli ve simetrik olmaması gibi durumlarda eksenel ve 

eğilme kuvvetleri birbirleri üzerine etki ederler ve membran eğilme birleşik katılığını 

oluşturabilirler. Bu katılıklar katman dizilimlerine bağlı olarak hem eğilme hem de 

membran elemanının beraber kullanılması ile elde edilmişlerdir. Serbestlik derecesi, 

eksenel yer değiştirme kabulü nedeniyle diğer plakalardan farklı olarak 5 olarak 

alınmıştır. Hem Kirchhoff hem de Mindlin teorileri, bu plakalara eksenel katılık ve 

kütle matrisleri de hesaplanıp toplanarak uygulanmıştır. Bunun sonucu olarak 

değişken kalınlıklarda kompozit plakalar iki teori ile modal analiz yapılarak 

değerlendirilmiştir. Literatürdeki boyutsuz frekans değerleri ile karşılaştırılmış ve 

kalın plakalar için Mindlin teorisinin iyi sonuç verdiği ancak Kirchhoff ’un yeterli 

olamadığı görülmüştür. Aynı şekilde ince plaka için yapılan kıyaslamada da iki 

teoriden de yakın sonuçlar alınmış ancak katmanların yanal kesiti boyunca kayma 

etkisinden dolayı Mindlin teorisine bağlı uygulanan kod daha fazla yakınsamıştır.  
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Son bölümde ince/kalın metal ve kompozit katlanmış plakalar ve 4 katlamalı plaka 

gibi kabul edilmiş olan kutu kirişler daha önceki bölümlerden elde edilen bilgiler 

ışığında sonlu elemanlar yöntemi ile elde edilen kodlarla analiz edilmiştir. Veriler 

doğrulamak amacı ile literatürdeki çalışmalarla karşılaştırılmış, çalışma bulunamadığı 

takdirde ABAQUS yardımı ile modellenerek buradan alınan sonuçlarla kıyaslanmıştır. 

Belirli bir açı ile katlanmış plakalarda, plakalar farklı lokal eksenlerde yer aldıkları 

için sonlu elemanlarla analiz yöntemi uygulanırken açık bir zar gibi düşünülerek 

katlanmış plakanın açıldığı var sayılmalı ve global bir eksen baz alınarak katlanmış 

plakaların her yüzünün lokal eksenlerinin bu global eksene dönüşümü yapılmalıdır. 

Bu dönüşümün sağlıklı olabilmesi açısından düzlem içi yer değiştirmeleri ve dikey 

eksendeki dönme hareketi de serbestlik derecesi olarak dikkate alınmıştır. Bu dönme 

hareketi beraberinde tekillik problemi getirse de sıfır olan ve z ekseni etrafındaki 

dönme etkisinden gelen köşegen elemanlarının çok küçük değerlere eşitlenmesi ile bu 

durum giderilmiştir. Böylece yapı 6 serbestlik derecesine sahip olmuş ve plakalar 

arasındaki açıyla ilişkilendirilen bir dönüşüm matrisi yardımı ile plaka elemanlarının 

katılık ve kütle matrisleri global eksende olacak şekilde dönüştürülmüştür. Ardından, 

yukarıda bahsedilen düz plakalarda izlenen yol izlenmiştir.  

Bu tezde katlama açısı 90°olarak kabul edilmiş ince/kalın tek ve çift katlamalı 

kompozit ve metal plakalar değerlendirilmiş, mod şekilleri ve doğal frekans değerleri 

çıkartılmıştır. Ardından farklı boyutlarda ince/kalın kompozit ve metal kutu kirişler 

üzerinde iki teori de kıyaslanmıştır. Farklı sınır koşulları, malzeme özellikleri, katman 

dizilimleri ve kalınlık değişiminin titreşime etkisi gösterilmiştir. Farklı boyutlardaki 

kutu kirişlerin mod şekilleri değerlendirildiğinde, kısa kirişlerin daha erken burulma 

moduna girdiği ve yapısının bozulduğu gözlemlenmiştir. 

Sonuç olarak, yapı inceldikçe frekanslarda düşüş olduğu, kısıtlanan serbestlik 

derecelerinin frekansı arttırdığı, farklı dizilimlerin frekans değerlerini etkilediği, 

membran etkilerinin ve yanal kayma etkilerinin katlanmış yapılarda önemli olduğu 

ortaya çıkmıştır. Birçok kıyaslamada Mathematica programında sonlu elemanlar 

yöntemine dayalı olarak oluşturulan bu kodların, ABAQUS paket programı kadar iyi 

yakınsadığı görülmüştür. Böylece, kirişlerin katlanmış plakalar olarak kabul edilerek 

değerlendirilebildiği gösterilmiş ve bu tezin asıl amacı olan yapıların farklı plaka 

teorileri ile analiz edilebilmesi ve titreşim açısından daha iyi sonuçlar elde edilebilmesi 

konusunda başarılı olunmuştur. Bu konuda çok sayıda farklı teori ve uygulama 

yöntemleri ile bilgisayar kodu yazılmıştır. 
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1. INTRODUCTION 

Plates are flat structures which has thickness is smaller than other dimensions. They 

are used for many structure by folding such as skins or boxes and panels of air vehicle. 

All plate theories provide help to understand thin or thick walled frameworks.  

Box beams can be considered as a four-fold plate or four plates joined by their edges. 

The box beam structures are generally used in aviation especially in terms of wings 

and helicopter blades. 

The changeable structural properties of composites provide them privilege to be 

elected in terms of performance. It has been possible to gain advantage about weight 

and strength in fiber reinforced layer composite applications by controlling the layer 

angle and order, and with this adaptive structure, the folded plate structure applications 

have increased. The use of lighter and higher-strength structures, by evaluating the 

strength and vibration aspects of the structures in aircraft, has gained more importance 

from the past to the present. 

1.1. Purpose of Thesis and Overview  

The main purpose of this study is to examine the box beams structurally and evaluate 

them in terms of vibration using a folded plate approach by FEM coding. In this study, 

a box beam is considered as a four folded plate and vibration properties were examined 

with the use of different materials. Frequencies are used when describing dynamic 

properties of structure and efficiency is connected these values. Therefore, mode 

shapes and natural frequencies are evaluated in this study. 

Thickness to length ratios and material properties of plates play an important role in 

deciding which theory to choose. Noor (1972) suggested Reissner-Mindlin method for 

composite structures especially in the case of thick plates. At the same time, Oñate 

(2013) classify plates according to their length-to-thickness ratio and while Kirchhoff-

Love assumptions are suitable for thin plates, Reissner-Mindlin assumptions are 

suitable for thick ones. 
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In this thesis, Kirchhoff-Love plate theory (KLPT) is applied to thin isotropic 

homogenous and to composite plates. Also, Reissner-Mindlin plate theory (RMPT) is 

applied to plates that have different thicknesses and materials. These plate theories are 

used to analyze the box beam structures. The Reissner-Mindlin theory is actually 

suitable for thick plates and box beams because shear locking problems begin to appear 

as the plate becomes thinner. It is aimed to get better results by using some reduction 

methods like shear strain area assumptions. Examining the vibration characteristics of 

both thin and thick box beams was a priority. Since these structures are used at key 

points in an aircraft, they may be exposed to various aero elastic effects such as flutter. 

For this reason, it is important to obtain the vibration values. 

Both plate theories are assumed to have three DOF, since the middle surface accepts 

the reference plane as homogeneous and isotropic plates and the axial stresses at this 

surface are accepted to be zero for flat plates (Oñate, 2013).  

Folded plates lie at different planes in space. Due to the use of different local axes in 

the folded or joined plates, it has been observed that the in-plane effects should also 

be taken into account and axial stresses are also taken into consideration. As a result, 

a system with 5 DOF was reached and the general mass and stiffness matrices were 

expanded to 6 DOF by adding the degree of rotation, which is the rotation about the 

vertical axis. The flat, one folded, two folded plates and box beam natural frequencies 

are obtained for isotropic, homogeneous material. Then, the same procedure is 

repeated for composite laminated plate.  

A FEM approach code is written by using Wolfram Mathematica program to calculate 

natural frequencies of the different models of plates and box beams. Besides, the 

structures are modeled and analyzed by using ABAQUS package program. Obtained 

results from present code are compared with ABAQUS results and literature data. 

1.2. Literature Review 

The first studies are about vibration of thin plates by Euler at the 17th century and this 

studies have been improved by Bernoulli with only considered membrane effects. The 

first theory of plate bending is developed by Gustav R. Kirchhoff at the 18th century 

using Bernoulli’s beam approaches.  
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Also, Love was working about elasticity theory at the same time. Reissner improved 

these studies by the shear effects, when Mindlin added a rotary inertia. Generation to 

generation, these theories tried to be developed with different solution methods such 

as finite difference, finite strip etc. (Szilard, 2004). 

According to Nguyen-Van, et al. (2008), dynamic characteristics are very significant 

for structures in aerospace applications especially for control surfaces of air vehicles. 

The plates play increasingly significant role, so their natural frequencies also need to 

be analyzed and evaluated for proper design. Petyt (1990), performed vibration 

analysis of stiffened plates and folded plate structures, which include box beam 

structure. 

Vibration is the mechanical oscillation of a body from equilibrium condition. It is a 

very significant phenomena for engineering structures. Especially, extreme values of 

vibration create devastating cases. So, most of the vibration studies are tend to reduce 

vibration. Under these conditions, engineers need vibration data of the systems before 

finalizing the design of the structures to achieve appropriate structure designs 

(Chakraverty, 2009). 

Actually plates vibrate in-plane and also out of plane (flexural), although the plate 

theories neglect membrane effects. This is because bending is more dominant than 

membrane effects created by in-plane vibration (Petyt, 1990). 

Thin walled cantilever folded plates are studied by Irie, et al. (1984) according to Love 

theory and compare Ritz method by the way of mode shapes. Besides, Niyogi, et al. 

(1999) studied on folded laminated plates and their vibration characteristics based on 

Irie and friends’ results. They analyzed by using finite element method with first order 

shear deformation theory which is called as Reissner-Mindlin approach.  

The Reissner-Mindlin approach has some deviations which is called as shear locking 

problem on thin structures owing to domination of shear and over stiffness. In another 

study, splines were used to apply the used elements, but it was observed that the shear-

locking problem continued. In order to overcome this problem, some kind of 

stabilization technique has been applied in theory. This technique is a study with 

reduced integrations (Thai, et al., 2012). 
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It has been observed in studies with different materials that mechanics of composites 

effect the behavior of plates or shells and the theories that are currently in use need to 

be arranged and studied accordingly. The laminated structures are formulated different 

from isotropic and homogenous materials. Because the points of plate middle plane 

can move in the plane direction and this creates membrane results and coupling 

between bending and axial effects. So, in-plane displacements are taken into account 

(Oñate, 2013). 

In different work, the Kirchhoff-Love theory, is called as classical plate theory, has 

been compared with the FSDT according to accuracy of fundamental frequencies of 

skew-symmetric laminations. Different thickness ratios are evaluated and Reissner 

method was found to be better because of shear deformations on lamina (Noor, 1972). 

All of these studies can be based on different solution and analysis methods but 

generally, finite element method is the most widely used in engineering problems. 

Finite element method (FEM) is a numerical process used in engineering studies such 

as fluid mechanics, solid mechanics etc. It is used to obtained approximate solutions 

or forces and displacements of frameworks with respect to discrete and continuum 

elements. This method provides so many advantages for asymmetrical shaped, 

different materials or complex boundary conditions to reduced simple works 

(Segerlind, 1984).  

FEM, separate the region which are finite elements between nodes. Then, equation of 

system specified, developed and solved. According to Petyt (1990) studies, the plate 

divided into finite elements are triangles, rectangles and quadrilaterals to analyze 

frequencies of complex structures such as aircraft and ships. These elements are used 

to synthesize axial forces and dynamic loads normal to middle plane. 
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2. EQUATIONS OF MOTION AND VIBRATION 

2.1. Equations of Motion 

The equations of motion are obtained from Newton’s second law where the rate of 

change of momentum of a body is directly proportional to the force acted and it is 

given by  

𝑚
𝑑2𝑢

𝑑𝑡2
= 𝑓             (2.1a) 

𝑓 − 𝑚�̈� = 0             (2.1b) 

where, u is the displacement, the is a mass, t is the time and f is the force. The system 

is represented in Figure 2.1. 

According to Hamilton's principle, the work is to move a body of mass m from one 

point to another. If this work is done with a conservative force, it depends on the 

position of the two location points, but if it is done with non-conservative forces, it 

depends on the path of the body. The conservative force work is obtained by potential 

energy change of a system like shown in equations (2.2), (2.3) and (2.4); 

𝑈(𝑟) = ∫ 𝑓. 𝑑𝑟
𝑟0⃗⃗⃗⃗⃗

𝑟
                 (2.2) 

𝑊𝑐 = ∫ 𝑓. 𝑑𝑟
𝑟2⃗⃗⃗⃗⃗

𝑟1⃗⃗⃗⃗⃗
= ∫ 𝑓. 𝑑𝑟

𝑟0⃗⃗⃗⃗⃗

𝑟1⃗⃗⃗⃗⃗
− ∫ 𝑓. 𝑑𝑟

𝑟0⃗⃗⃗⃗⃗

𝑟2⃗⃗⃗⃗⃗
= −(𝑈(𝑟2) − 𝑈(𝑟1))         (2.3) 

𝛿𝑊𝑐 = −𝛿𝑈                  (2.4) 

where U is the potential energy, Wc is the conservative work and r0, r1 and r2 are 

position vectors (Petyt, 1990). If an elastic spring stretched to enough to displace by a 

force,  

𝑓 = −𝑘𝑢                (2.5) 

         𝑈 = ∫ 𝑓. 𝑑𝑢
0

𝑢
              (2.6a) 

𝑈 = ∫ −𝑘. 𝑢. 𝑑𝑢 =
1

2
𝑘𝑢2

0

𝑢
                                 (2.6b) 
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where k is the stiffness of spring. 

 

 

Figure 2.1 : Mass motion and its path. 

The equilibrium condition is defined by Newton’s first law as an object which is rest 

will be at rest or if it is in motion, it will continue moving. So, external forces on body 

are balanced. Petyt (1990) mentioned that if the system is in equilibrium condition, 

based on virtual displacements principle, total work will be zero. When applying the 

principle of virtual displacements to the system in Figure 2.1, and the following 

equations are obtained  

         𝑓𝛿𝑢 −𝑚�̈�𝛿𝑢 = 0              (2.7) 

                        𝑚�̈�𝛿𝑢 = 𝑚
𝑑

𝑑𝑡
(�̇�𝛿𝑢) −𝑚�̇�𝛿�̇� = 𝑚

𝑑

𝑑𝑡
(�̇�𝛿𝑢) − 𝛿 (

1

2
𝑚𝑢2̇)           (2.8) 

  𝑇 =
1

2
𝑚𝑢2̇                (2.9) 

where T is the kinetic energy of the system. So,  

                                              𝛿𝑊 −𝑚
𝑑

𝑑𝑡
(�̇�𝛿𝑢) + 𝛿𝑇 = 0                      (2.10) 

                                                 𝛿𝑢 = 0  𝑎𝑡 𝑡 = 𝑡1 = 𝑡2                       (2.11) 

∫ (𝛿𝑊 + 𝛿𝑇)𝑑𝑡
𝑡2

𝑡1
= ∫ 𝑚

𝑑

𝑑𝑡
(�̇�𝛿𝑢)𝑑𝑡

𝑡2

𝑡1
= 0         (2.12a) 

     ∫ (𝛿𝑊 + 𝛿𝑇)𝑑𝑡
𝑡2

𝑡1
= ∫ (𝛿𝑊𝑐 + 𝛿𝑊𝑛𝑐 + 𝛿𝑇)𝑑𝑡

𝑡2

𝑡1
               (2.12b) 

where Wnc is the work done by non-conservative forces.  

                       𝛿𝑊𝑛𝑐 = (𝑓 − 𝑐�̇�)𝛿𝑢            (2.13) 

         ∫ (−𝛿𝑈 + 𝛿𝑊𝑛𝑐 + 𝛿𝑇)𝑑𝑡
𝑡2

𝑡1
= 0                  (2.14) 

It gives the equations of motion of the system when c is the damping coefficient. If 

equation 2.14 is combined with energy equations, 

∫ (−
𝜕𝑈

𝜕𝑢
𝛿𝑢 + (𝑓 − 𝑐�̇�)𝛿𝑢 +

𝜕𝑇

𝜕�̇�
𝛿�̇�)𝑑𝑡

𝑡2

𝑡1
= 0            (2.15) 
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   ∫
𝜕𝑇

𝜕�̇�
𝛿�̇� 𝑑𝑡

𝑡2

𝑡1
= [

𝜕𝑇

𝜕�̇�
𝛿𝑢]

𝑡1

𝑡2
− ∫

𝑑

𝑑𝑡
(
𝜕𝑇

𝜕�̇�
) 𝛿𝑢 𝑑𝑡

𝑡2

𝑡1
= −∫

𝑑

𝑑𝑡
(
𝜕𝑇

𝜕�̇�
) 𝛿𝑢 𝑑𝑡

𝑡2

𝑡1
          (2.16) 

∫ (−
𝜕𝑈

𝜕𝑢
+ (𝑓 − 𝑐�̇�) −

𝑑

𝑑𝑡
(
𝜕𝑇

𝜕�̇�
) )𝛿𝑢𝑑𝑡

𝑡2

𝑡1
= 0            (2.17) 

Total work equations turn, 

       
𝜕𝑈

𝜕𝑢
+ (𝑐�̇�) +

𝑑

𝑑𝑡
(
𝜕𝑇

𝜕�̇�
) = 𝑓             (2.18) 

Lagrange equation and it gives 

         𝑚�̈� + 𝑐�̇� + 𝑘𝑢 = 𝑓             (2.19) 

as equation of system. 

At multi-DOF system, the displacements are described as independent generalized 

coordinates q and kinetic energy and strain energy (potential energy) can be written in 

matrix format as shown  

   𝑇 =
1

2
[𝑞]̇𝑇[𝑀][𝑞]̇             (2.20) 

               𝑈 =
1

2
[𝑞]𝑇[𝐾][𝑞]                       (2.21) 

                  𝛿𝑊𝑛𝑐 = ([𝐹] − [𝐶][𝑞]̇)𝛿𝑞               (2.22) 

where [q], [𝑞]̇, [F], [M] and [K] are displacement vector, velocity vector, external 

forces, mass and stiffness matrices, respectively (Petyt, 1990). Lagrange equation of 

multi DOF system is expressed as  

   [𝑀][�̈�] + [𝐶][�̇�] + [𝐾][𝑞] = [𝐹]                      (2.23) 

2.2. Vibration 

If the system vibrates after the first disturbance without any external force effect, 

vibration type is called as free vibration. If any external force acts on the system 

repeatedly, this type is called as forced vibration. Depending on the energy lost during 

oscillation, vibration is classified as two types, damped and undamped. It is also 

classified according to whether it is linear or random (Rao, 1993). 
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The analysis of vibration begins with mathematical modelling and then continues with 

evaluating governing equations. Generally, the vibration systems are modelled as 

spring-mass-damper systems because modeling complex systems with simple 

approaches is important in terms of ease of solution. 

The multi DOF systems are shown as Figure 2.2 and equations of motion 2.9, 2.6b and 

2.13 are obtained as mentioned in the previous chapter. 

 

Figure 2.2 : Multi degree of freedom spring-mass-damper system (Rao, 1993). 

The equations of motion can be written as follows 

       𝑇 =
1

2
𝑚1u̇1

2 +
1

2
𝑚2u̇2

2 +⋯+
1

2
𝑚𝑛u̇𝑛

2                     (2.24) 

                              𝑈 =
1

2
𝑘1u̇1

2 +
1

2
𝑘2u̇2

2 +⋯+
1

2
𝑘𝑛u̇𝑛

2                     (2.25) 

         𝛿𝑊𝑛𝑐 = ((𝑓1 − 𝑐1�̇�1) + (𝑓2 − 𝑐2�̇�2) + ⋯+ (𝑓𝑛 − 𝑐𝑛�̇�𝑛))𝛿𝑢                     (2.26) 

Lagrange equation and it gives 

  ∑𝑚𝑖�̈�𝑖 + 𝑐𝑖�̇�𝑖 + 𝑘𝑖𝑢𝑖 = ∑𝑓𝑖                              (2.27) 

as equation of system.  

In this thesis, undamped free vibration is examined to obtain natural frequencies of 

system. Lagrange equation of multi DOF system under free vibration is converedt from 

equation 2.23 to  

[𝑀][�̈�] + [𝐾][𝑞] = 0                          (2.28) 

Laplace transforms are used for this equation to obtain natural frequency and 

characteristic equation of system. The displacement is assumed to be 

     𝑞(𝑡) = 𝐴𝑒𝑠𝑡                        (2.29) 
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where A and s are constants. Substitution of assumption into EOM (equation of 

motion) gives characteristic equation 

                     𝐴𝑒𝑠𝑡([𝑀]𝑠2 + [𝐾]) = 0                        (2.30a) 

                 ([𝑀]𝑠2 + [𝐾]) = 0                           (2.30b) 

The natural frequencies are ωn  (Rao, 1993); 

   𝑠 = ∓𝑖 𝜔𝑛 𝑎𝑛𝑑 𝑠
2 = − 𝜔𝑛

2                                 (2.31) 

        |[𝐾] − [𝑀] 𝜔𝑛
2| = 0                                          (2.32a) 

    [𝐾]−1[𝑀] =  𝜔𝑛
2   𝑎𝑛𝑑 𝜔𝑛 = √[𝐾]−1[𝑀]                              (2.32b) 

The n DOF  brings  n natural frequency and a mode shape will be obtained for each 

natural frequency.
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3. FINITE ELEMENT METHOD 

Finite element displacement method has more common usage field in engineering 

applications when compare with analytical methods because of defining complex 

structures easily. Especially, vibration problems often use this method to obtain mode 

shapes and natural frequencies.  

This method models the structure by following these steps respectively; 

 Divide the structure into equal parts called elements and create points which 

are called nodes on the structure. Number the elements and nodes on the 

structure. An example of dividing and numbering the plate and box-beam 

elements for a 4-noded quadrilateral element is given in Figure 3.1. 

 Assign a certain DOF to each node to specify displacement and rotations of the 

structure. 

 Define functions for each of DOF. Each displacement of the structure will have 

been expressed using these defined functions at node points. These expressions 

are called shape functions. 

 Solve the problems by applying shape functions to the energy expressions. 

This method also forms the basis of various computer package programs such as 

ABAQUS, NASTRAN/PATRAN etc. For instance, in ABAQUS after modeling the 

structures the values such as vibration, displacement and stresses can be obtained by 

dividing them into elements. 

At the same time, in this thesis, while the frequencies are obtained through the 

mentioned package programs, the code is developed in Mathematica program based 

on the finite element method and the model is analyzed in the light of these 

information. For the modelling of the plates, 4-noded quadrilateral 2D elements are 

used and their shape functions are obtained based on types of elements.  
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Following the steps of the finite element method, stiffness and mass are obtained by 

taking an element as a reference. After that, the summation method helps adding the 

matrices calculated for an element as reference for each element in the same plane and 

adding them to each other with the necessary operations so that the matrices turn into 

the global stiffness and mass matrix of the entire structure.   

 

Figure 3.1 : Element and node numbering on box beam and plate. 

3.1. Process of Obtaining Shape Functions 

In this thesis, one of the 4-noded-quadrilateral element is used for analysis of the plates 

fundamentally like in Figure 3.2. It is called Q4 element and has four nodes which are 

placed at the corners and rectangular shape. When the X axis is associated with 

dimensionless ξ axis, the Y axis is associated with dimensionless η axis and the 

relationship between these axes can be given in equation 3.1. Also, different types of 

elements use different polynomials while describing DOF at dimensionless axes like 

given in Figure 3.3. 

          𝜉 =
𝑥

a
   𝑎𝑛𝑑   𝜂 =

𝑦

𝑏
                          (3.1) 

 

Figure 3.2 : 4-node quadrilateral element and node numbering (Augarde, 2004). 
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Different types of quadrilateral elements are also used in special cases of plates such 

as shear locking phenomena. For this study, QLLL (quadrilateral, bilinear deflection, 

bilinear rotations and linear transverse shear strain fields) method and Gauss 

integration method are chosen for application on Q4 element during reduced 

integration process of shear element stiffness for isotropic and composite structures 

respectively. Detailed information on the use of this element will be described in 

Section 4. 

 

Figure 3.3 : Polynomial coefficients of different type elements (Cook, et al., 2001). 

3.2. Shape functions for membrane element 

Firstly, when the element is considered in-plane, it can easily be seen that the 

membrane effects are dominant. There are 2 DOF which are 𝑢 and 𝑣 displacements, 

on each node for in-plane plate analysis and it can be seen in Figure 3.4 for membrane 

element.  

 

Figure 3.4 : Membrane element (Petyt, 1990). 

Cook, et al. (2001) stated that for the 4-node quadrilateral element, total  DOF is eight 

and it requires functions that have 8 unknowns. Each displacement must have bilinear 

functions with 4 terms as equations 3.2a and 3.2b. 
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𝑢 = 𝑎1 + 𝑎2𝜉 + 𝑎3𝜂 + 𝑎4𝜉𝜂 = [ 1 𝜉 𝜂 𝜉𝜂 ] {

𝑎1
𝑎2
𝑎3
𝑎4

}                     (3.2a) 

𝑣 = 𝑎5 + 𝑎6𝜉 + 𝑎7𝜂 + 𝑎8𝜉𝜂 = [ 1 𝜉 𝜂 𝜉𝜂 ] {

𝑎5
𝑎6
𝑎7
𝑎8

}                     (3.2b) 

Equations can be expanded for 4 node displacements as follows, 

 {

𝑢1
𝑢2
𝑢3
𝑢4

} = [

1 𝜉1 𝜂1 𝜉1𝜂1
1 𝜉2 𝜂2 𝜉2𝜂2
1 𝜉3 𝜂3 𝜉3𝜂3
1 𝜉4 𝜂4 𝜉4𝜂4

] . {

𝑎1
𝑎2
𝑎3
𝑎4

}                             (3.3a) 

   {𝑢} = [𝑅𝑚]. {𝑎}                          (3.3b) 

{𝑎} = [𝑅𝑚]−1. {𝑢}                               (3.3c) 

  𝑢 = [ 1 𝜉 𝜂 𝜉𝜂 ][𝑅𝑚]−1{𝑢}                       (3.3d) 

where ξ = -1 and η =-1 at node 1, ξ = 1 and η =-1 at node 3, ξ = 1 and η =1 at node 3, 

ξ = -1 and η =1 at node 4. Rm coefficient matrix can be obtained as, 

 [𝑅𝑚] = [

1 −1 −1 1
1 1 −1 −1
1 1 1 1
1 −1 1 −1

]                                (3.4) 

Secondly, the displacements u and v can be written using Ni shape functions, 

 𝑢 = ∑ 𝑁𝑖
4
𝑖=1 𝑢𝑖    𝑎𝑛𝑑  𝑣 = ∑ 𝑁𝑖

4
𝑖=1 𝑣𝑖                       (3.5) 

If these expressions are expanded to matrix forms, 

     𝑢 = [ 𝑁1 𝑁2 𝑁3 𝑁4 ] {

𝑢1
𝑢2
𝑢3
𝑢4

}                     (3.6a) 

     𝑣 = [ 𝑁1 𝑁2 𝑁3 𝑁4 ] {

𝑣1
𝑣2
𝑣3
𝑣4

}                     (3.6b) 
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                  {
𝑢
𝑣
} = [ 

𝑁1 0 𝑁2 0 𝑁3 0 𝑁4 0
0 𝑁1 0 𝑁2 0 𝑁3 0 𝑁4

]

{
 
 
 

 
 
 
𝑢1
𝑣1
𝑢2
𝑣2
𝑢3
𝑣3
𝑢4
𝑣4}
 
 
 

 
 
 

                    (3.6c) 

Shape function relations are obtained and it can be seen that the displacements use the 

same shape functions. Combining u expressions give the shape functions as, 

   [ 𝑁1 𝑁2 𝑁3 𝑁4 ] = [ 1 𝜉 𝜂 𝜉𝜂 ][𝑅𝑚]−1                      (3.7) 

So, general shape function terms can be given like below. 

   𝑁𝑖 =
1

4
(1 + 𝜉𝑖𝜉 )(1 + 𝜂𝑖𝜂 )                                  (3.8) 

Finally, if dimensionless coordinates of nodes at X and Y axis are substituted into 

general equation, shape functions for each node can be seen like 

       𝑁1 =
1

4
(1 − 𝜉 )(1 − 𝜂 )                                 (3.9a) 

                  𝑁2 =
1

4
(1 + 𝜉 )(1 − 𝜂 )                            (3.9b) 

     𝑁3 =
1

4
(1 + 𝜉 )(1 + 𝜂 )                                 (3.9c) 

          𝑁4 =
1

4
(1 − 𝜉 )(1 + 𝜂 )                                    (3.9d) 

where ξ1 = -1 and η1 =-1 at node 1, ξ2 = 1 and η2 =-1 at node 3, ξ3 = 1 and η3 =1 at 

node 3, ξ4 = -1 and η4 =1 at node 4. 

[𝑁] = [ 
𝑁1 0 𝑁2 0 𝑁3 0 𝑁4 0
0 𝑁1 0 𝑁2 0 𝑁3 0 𝑁4

]                    (3.10) 

3.3. Shape functions for thin plate bending element 

The KLPT, depending on thin plate bending elements, aims to evaluate rotation free 

plates. The thin plate element is assumed to have only out of plane displacements, 

because in-plane displacements are less than displacements in other direction. So, it 

can easily be seen that the bending effects are dominant in Figure 3.5. There are 3 DOF 

which are w, θx and θy displacement and rotations respectively, on each node for out 

of plane plate analysis.  
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Figure 3.5 : Thin plate bending element (Oñate, 2013). 

When a and b are dimensions of element shown in Figure 3.5 and rotations are given 

in equation 3.11 in terms of displacement relationships, 

𝜃𝑥 =
𝜕𝑤

𝜕𝑦
=

1

b

𝜕𝑤

𝜕𝜂
  𝑎𝑛𝑑  𝜃𝑦 = −

𝜕𝑤

𝜕𝑥
= −

1

a

𝜕𝑤

𝜕𝜉
                      (3.11) 

Cook, et al. (2001) stated that for the 4-node quadrilateral element, total DOF is 12 

and it requires functions have 12 unknowns. The displacement, w, must has cubic 

functions depend on Figure 3.3 with 12 terms as following situations because of 

rotations are dependent to displacement at Z axis. 

   𝑤 = 𝑎9 + 𝑎10𝜉 + 𝑎11𝜂 + 𝑎12𝜉
2 + 𝑎13𝜉𝜂 + 𝑎14𝜂

2 + 𝑎15𝜉
3 + 𝑎16𝜉

2𝜂 + 𝑎17𝜉𝜂
2 +

              𝑎18𝜂
3 + 𝑎19𝜉

3𝜂 + a20𝜉𝜂
3                              (3.12a) 

    𝜃𝑥 =
1

𝑏
 (𝑎11 + 𝑎13𝜉 + 2𝑎14𝜂 + 𝑎16𝜉

2 + 2𝑎17𝜉𝜂 + 3𝑎18𝜂
2 + 𝑎19𝜉

3 + 3a20𝜉𝜂
2)  (3.12b) 

𝜃𝑦  = −
1

a
 (𝑎10 + 2𝑎12𝜉 + 𝑎13𝜂 + 3𝑎15𝜉

2 + 2𝑎16𝜉𝜂 + 𝑎17𝜂
2 + 3𝑎19𝜉

2𝜂 + a20𝜂
3)  (3.12c) 

   {

𝑤
𝑏𝜃𝑥
a𝜃𝑦

} = [ 

1 𝜉 𝜂 𝜉2 𝜉𝜂 𝜂2 𝜉3 𝜉2𝜂 𝜉𝜂2 𝜂3 𝜉3𝜂 𝜉𝜂3

0 0 1 0 𝜉 2𝜂 0 𝜉2 2𝜉𝜂 3𝜂2 𝜉3 3𝜉𝜂2

0 −1 0 −2𝜉 −𝜂 0 3𝜉2 −2𝜉𝜂 −𝜂2 0 −3𝜉2𝜂 −𝜂3
]

{
 
 
 
 
 

 
 
 
 
 
𝑎9
𝑎10
𝑎11
𝑎12
𝑎13
𝑎14
𝑎15
𝑎16
𝑎17
𝑎18
𝑎19
a20}

 
 
 
 
 

 
 
 
 
 

 

(3.12d) 

Equations can be expanded for 4 node displacements, 

      {𝑤} = [ 𝑤1 𝑏𝜃𝑥1 a𝜃𝑦1 𝑤2 𝑏𝜃𝑥2 a𝜃𝑦2 𝑤3 𝑏𝜃𝑥3 a𝜃𝑦3 𝑤4 𝑏𝜃𝑥4 a𝜃𝑦4]
𝑇       (3.13a) 
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{𝑤} = [𝑅𝑏]{𝑎}                             (3.13b) 

        {𝑎} = [𝑅𝑏]−1{𝑤}                            (3.13c) 

where ξ = -1 and η =-1 at node 1, ξ = 1 and η =-1 at node 3, ξ = 1 and η =1 at node 3, 

ξ = -1 and η =1 at node 4. Rb coefficient matrix can be obtained as, 

[𝑅𝑏] =

{
 
 
 
 
 

 
 
 
 
 
1 −1 −1 1 1 1 −1 −1 −1 −1 1 1
0 0 1 0 −1 −2 0 1 2 3 −1 −3
0 −1 0 2 1 0 −3 −2 −1 0 3 1
1 1 −1 1 −1 1 1 −1 1 −1 −1 −1
0 0 1 0 1 −2 0 1 −2 3 1 3
0 −1 0 −2 1 0 −3 2 −1 0 3 1
1 1 1 1 1 1 1 1 1 1 1 1
0 0 1 0 1 2 0 1 2 3 1 3
0 −1 0 −2 −1 0 −3 −2 −1 0 −3 −1
1 −1 1 1 −1 1 −1 1 −1 1 −1 −1
0 0 1 0 −1 2 0 1 −2 3 −1 −3
0 −1 0 2 −1 0 3 2 −1 0 −3 −1}

 
 
 
 
 

 
 
 
 
 

     (3.14) 

The displacements w can be written using Ni shape functions. 

        𝑤 = ∑ 𝑁𝑖
4
𝑖=1 𝑤𝑖                                (3.15a) 

If these expression is expanded to matrix forms, 

       𝑤 = [ 𝑁1 𝑁2 𝑁3 𝑁4 ]{𝑤}                           (3.15b) 

shape function relation is obtained and it can be seen that the displacements use the 

same shape functions. Combining u expressions give the shape functions as, 

      [ 𝑁1 𝑁2 𝑁3 𝑁4 ] = [ 1 𝜉 𝜂 𝜉2 𝜉𝜂 𝜂2 𝜉3 𝜉2𝜂 𝜉𝜂2 𝜂3 𝜉3𝜂 𝜉𝜂3][𝑅𝑏]−1   (3.16) 

Finally, general shape function terms for w displacement can be given like below. 

      [𝑁𝑖]
𝑇 =

[
 
 
 
 
1

8
(1 + 𝜉𝑖𝜉 )(1 + 𝜂𝑖𝜂 )(2 + 𝜉𝑖𝜉 + 𝜂𝑖𝜂 − 𝜉2 − 𝜂2)

𝑏

8
(1 + 𝜉𝑖𝜉 )(𝜂𝑖 + 𝜂 )(𝜂

2 − 1)
a

8
(𝜉𝑖 + 𝜉 )(1 + 𝜂𝑖𝜂 )(𝜉

2 − 1) ]
 
 
 
 

               (3.17) 

If dimensionless coordinates of nodes at X and Y axis are substituted into general equation, 

shape functions for each node can be seen like 

      𝑁1
𝑇 =

[
 
 
 
 

1

4
−
3𝜂

8
+
𝜂3

8
−
3𝜉

8
+
𝜂𝜉

2
−
𝜂3𝜉

8
+
𝜉3

8
−
𝜂𝜉3

8

𝑏

8
−
𝑏𝜂

8
−
𝑏𝜂2

8
+
𝑏𝜂3

8
−
𝑏𝜉

8
+
𝑏𝜂𝜉

8
+
1

8
𝑏𝜂2𝜉 −

1

8
𝑏𝜂3𝜉

−
𝑎

8
+
𝑎𝜂

8
+
𝑎𝜉

8
−
𝑎𝜂𝜉

8
+
𝑎𝜉2

8
−
1

8
𝑎𝜂𝜉2 −

𝑎𝜉3

8
+
1

8
𝑎𝜂𝜉3]

 
 
 
 

        (3.18a) 
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      𝑁2
𝑇 =

[
 
 
 
 

1

4
−
3𝜂

8
+
𝜂3

8
+
3𝜉

8
−
𝜂𝜉

2
+
𝜂3𝜉

8
−
𝜉3

8
+
𝜂𝜉3

8

𝑏

8
−
𝑏𝜂

8
−
𝑏𝜂2

8
+
𝑏𝜂3

8
+
𝑏𝜉

8
−
𝑏𝜂𝜉

8
−
1

8
𝑏𝜂2𝜉 +

1

8
𝑏𝜂3𝜉

𝑎

8
−
𝑎𝜂

8
+
𝑎𝜉

8
−
𝑎𝜂𝜉

8
−
𝑎𝜉2

8
+
1

8
𝑎𝜂𝜉2 −

𝑎𝜉3

8
+
1

8
𝑎𝜂𝜉3]

 
 
 
 

         (3.18b) 

     𝑁3
𝑇 =

[
 
 
 
 

1

4
+
3𝜂

8
−
𝜂3

8
+
3𝜉

8
+
𝜂𝜉

2
−
𝜂3𝜉

8
−
𝜉3

8
−
𝜂𝜉3

8

−
𝑏

8
−
𝑏𝜂

8
+
𝑏𝜂2

8
+
𝑏𝜂3

8
−
𝑏𝜉

8
−
𝑏𝜂𝜉

8
+
1

8
𝑏𝜂2𝜉 +

1

8
𝑏𝜂3𝜉

𝑎

8
+
𝑎𝜂

8
+
𝑎𝜉

8
+
𝑎𝜂𝜉

8
−
𝑎𝜉2

8
−
1

8
𝑎𝜂𝜉2 −

𝑎𝜉3

8
−
1

8
𝑎𝜂𝜉3 ]

 
 
 
 

        (3.18c) 

     𝑁4
𝑇 =

[
 
 
 
 

1

4
+
3𝜂

8
−
𝜂3

8
−
3𝜉

8
−
𝜂𝜉

2
+
𝜂3𝜉

8
+
𝜉3

8
+
𝜂𝜉3

8

−
𝑏

8
−
𝑏𝜂

8
+
𝑏𝜂2

8
+
𝑏𝜂3

8
+
𝑏𝜉

8
+
𝑏𝜂𝜉

8
−
1

8
𝑏𝜂2𝜉 −

1

8
𝑏𝜂3𝜉

−
𝑎

8
−
𝑎𝜂

8
+
𝑎𝜉

8
+
𝑎𝜂𝜉

8
+
𝑎𝜉2

8
+
1

8
𝑎𝜂𝜉2 −

𝑎𝜉3

8
−
1

8
𝑎𝜂𝜉3]

 
 
 
 

          (3.18d) 

where ξ1 = -1 and η1 =-1 at node 1, ξ2 = 1 and η2 =-1 at node 3, ξ3 = 1 and η3 =1 at 

node 3, ξ4 = -1 and η4 =1 at node 4. 

        [𝑁] = [ 𝑁1 𝑁2 𝑁3 𝑁4 ]                     (3.19) 

3.4. Shape functions for thick plate bending element 

Initially, the thick plate element is assumed to have only out of plane displacements, 

because in-plane displacements are less than displacements in other direction. But also, 

the bending and shear effects work together on this element and this element 

represented in Figure 3.6. There are 3 DOF which are w, θx and θy displacement and 

rotations respectively, for each node for out of plane plate analysis like thin plate but 

these deformations are not dependent to each other.  

 

Figure 3.6 : Thick plate bending elements representation (Oñate, 2013). 

The θx and θy rotations are independent variables with ϕx and ϕy rotation angles. This 

assumption can be seen as below. 
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𝜃𝑥 =
𝜕𝑤

𝜕𝑥
+ 𝜙𝑥   𝑎𝑛𝑑  𝜃𝑦 =

𝜕𝑤

𝜕𝑦
+ 𝜙𝑦                      (3.20) 

According to Cook, et al. (2001) for the 4-node quadrilateral element, total DOF is 12  

and it requires functions have 12 unknowns. Each of displacement must have bilinear 

functions with 4 terms as following equations 3.21a, 3.21b and 3.21c depending on 

Figure 3.3. 

         𝑤 = 𝑎9 + 𝑎10𝜉 + 𝑎11𝜂 + 𝑎12𝜉𝜂 = [ 1 𝜉 𝜂 𝜉𝜂 ] {

𝑎9
𝑎10
𝑎11
𝑎12

}         (3.21a) 

         𝜃𝑥 = 𝑎13 + 𝑎14𝜉 + 𝑎15𝜂 + 𝑎16𝜉𝜂 = [ 1 𝜉 𝜂 𝜉𝜂 ] {

𝑎13
𝑎14
𝑎15
𝑎16

}      (3.21b) 

        𝜃𝑦 = 𝑎17 + 𝑎18𝜉 + 𝑎19𝜂 + 𝑎20𝜉𝜂 = [ 1 𝜉 𝜂 𝜉𝜂 ] {

𝑎17
𝑎18
𝑎19
𝑎20

}       (3.21c) 

Equations can be expanded for 4 node displacements as follows, 

{𝑤} = [𝑅𝑏]. {𝑎}                             (3.22a) 

         {𝑎} = [𝑅𝑏]−1. {𝑤}           (3.22b) 

         𝑤 = [ 1 𝜉 𝜂 𝜉𝜂 ][𝑅𝑏]−1{𝑤}          (3.22c) 

where ξ = -1 and η =-1 at node 1, ξ = 1 and η =-1 at node 3, ξ = 1 and η =1 at node 3, 

ξ = -1 and η =1 at node 4. Also, the θx and θy are written as w. Therefore, it is possible 

to obtain a Rb coefficient matrix only through one. 

[𝑅𝑏] = [

1 −1 −1 1
1 1 −1 −1
1 1 1 1
1 −1 1 −1

]             (3.23) 

where the w, θx and θy are written using Ni shape functions, 

    𝑤 = ∑ 𝑁𝑖
4
𝑖=1 𝑤𝑖     𝜃𝑥 = ∑ 𝑁𝑖

4
𝑖=1 𝜃𝑥𝑖   𝑎𝑛𝑑    𝜃𝑦 = ∑ 𝑁𝑖

4
𝑖=1 𝜃𝑦𝑖        (3.24a) 

If these expressions are expanded to matrix forms, 
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      {

𝑤
𝜃𝑥
𝜃𝑦
} = [ 

𝑁1 0 0 𝑁2 0 0 𝑁3 0 0 𝑁4 0 0
0 𝑁1 0 0 𝑁2 0 0 𝑁3 0 0 𝑁4 0
0 0 𝑁1 0 0 𝑁2 0 0 𝑁3 0 0 𝑁4

]

{
 
 
 
 
 
 

 
 
 
 
 
 
𝑤1
𝜃𝑥1
𝜃𝑦1
𝑤2
𝜃𝑥2
𝜃𝑦2
𝑤3
𝜃𝑥3
𝜃𝑦3
𝑤4
𝜃𝑥4
𝜃𝑦4}

 
 
 
 
 
 

 
 
 
 
 
 

           (3.24b) 

shape function relations are obtained and it can be seen that the displacements use the 

same shape functions. Combining u expressions give the shape functions as, 

[ 𝑁1 𝑁2 𝑁3 𝑁4 ] = [ 1 𝜉 𝜂 𝜉𝜂 ][𝑅𝑏]−1           (3.25) 

So, general shape function terms can be given like membrane element. 

𝑁𝑖 =
1

4
(1 + 𝜉𝑖𝜉 )(1 + 𝜂𝑖𝜂 )                (3.26) 

If dimensionless coordinates of nodes at X and Y axis are substituted into general 

equation, shape functions for each node can be seen like 

𝑁1 =
1

4
(1 − 𝜉 )(1 − 𝜂 )           (3.27a) 

𝑁2 =
1

4
(1 + 𝜉 )(1 − 𝜂 )            (3.27b) 

𝑁3 =
1

4
(1 + 𝜉 )(1 + 𝜂 )           (3.27c) 

𝑁4 =
1

4
(1 − 𝜉 )(1 + 𝜂 )           (3.27d) 

where ξ1 = -1 and η1 =-1 at node 1, ξ2 = 1 and η2 =-1 at node 3, ξ3 = 1 and η3 =1 at 

node 3, ξ4 = -1 and η4 =1 at node 4. 

[𝑁] = [ 

𝑁1 0 0 𝑁2 0 0 𝑁3 0 0 𝑁4 0 0
0 𝑁1 0 0 𝑁2 0 0 𝑁3 0 0 𝑁4 0
0 0 𝑁1 0 0 𝑁2 0 0 𝑁3 0 0 𝑁4

]   (3.28) 
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4. PLATE TEORIES AND FORMULATIONS 

Flat structures with smaller thickness values than other dimensions are called plates. 

Like beams, plates have some theories about their structural analysis. Szilard (2004) 

mentioned that the plates can have different boundary conditions, support types 

statically or loadings dynamically and these constraints affect their cases. For instance, 

the shear affects can be seen as bending or torsion on plate. The governing equations, 

are obtained from statically or dynamically constraints, are used to analyze of plate 

structures based on elasticity theory. 

While comparing Kirchhoff-Love and Reissner-Mindlin theories, that the two most 

well-known plate theory, the RMPT was emphasized in terms of its use and approach 

on both thick and thin plates with some modifications. Plates with high length-to-

thickness ratio (L / h >10) are called thin plates. If this ratio is lower (L / h <10), they 

are called thick (Petyt, 1990). The KLPT is applicable on thin plates for isotropic and 

composite materials. However, the application of the RMPT produces closer results 

on thick plates and composite materials, because these plates also have transverse 

shear effect cross their thickness. Various transverse shear stress fields are accepted or 

reduced integration method is used to eliminate the shear locking which is the 

disadvantage of using this theory on thin plates (Oñate, 2013).  

The plates can be restricted under different boundary conditions. Basically, these 

conditions affect behavior, natural frequency values and mode shapes of plates. They 

can be applied on plates as restricted some DOF according to their boundary 

conditions. In this thesis, three main boundary conditions are considered with different 

applications and these restrictions are shown in the Figure 4.1 with DOF effects. At 

the same time, the box beams are accepted as folded plates in thick or thin walled 

cases. Due to similarity of plates and thin walled structures, the plate theories are 

suitable for box beams in many cases. Their DOF, boundary conditions and extra 

techniques are mentioned in following sections 5 and 6. 
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Figure 4.1 : Boundary conditions in plates (Oñate, 2013) 

4.1. The Kirchhoff-Love Theory 

The Kirchhoff-Love plate is represented in Figure 4.2 with deformation data and 

KLPT is explained with three assumptions as follows (Oñate, 2013); 

 The particles of middle plane move vertically. Actually, middle plane (z = 0) 

in plane movement is smaller than movement through thickness of plate. 

 The plate middle surface has the identical vertical displacement through the 

normal line.  

 The normal stress 𝜎𝑧 is negligible. 

 The normal line points of the plate middle plane stay same spline as orthogonal 

to middle plane. 

 

Figure 4.2 : Kirchhoff-Love plate representation (Oñate, 2013). 

So, displacement functions for isotropic and homogenous materials, when evaluated 

thin plate element based on first, second and fourth assumptions obtain as in below: 

𝑢(𝑥, 𝑦, 𝑧) = 𝑧𝜃𝑦(𝑥, 𝑦)              (4.1a) 

𝑣(𝑥, 𝑦, 𝑧) = −𝑧𝜃𝑥(𝑥, 𝑦)             (4.1b) 

      𝑤(𝑥, 𝑦, 𝑧) = 𝑤                (4.1c) 
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𝜃𝑥 =
𝜕𝑤

𝜕𝑦
  𝑎𝑛𝑑  𝜃𝑦 = −

𝜕𝑤

𝜕𝑥
             (4.1d) 

From these functions, u and v are in-plane displacements which are parallel to plate 

middle surface and w is normal to the middle surface at z directions. Besides, θx and 

θy are rotations about x and y axis respectively. In Figure 3.5, it can be seen that thin 

plate element has 3 DOF at each node. 

The KLPT refers to thin plate bending element and their displacement and rotations 

with shape functions as mentioned at section 3.3. The Figure 4.3 shows the plate with 

normal to the middle surface direction loads. 

 

Figure 4.3: Bending element of plate (Petyt, 1990). 

For thin plates, transverse shear stress is assumed as zero because of lower thickness 

to length ratio. The energy equations can be expressed as again, 

𝑈 =
1

2
∫{휀}𝑇[𝐷]{휀} 𝑑𝑉               (4.2) 

𝑇 =
1

2
∫ℎ𝜌(�̇�2)𝑑𝐴                       (4.3) 

But, strain matrix is 

      {휀} = −𝑧{𝛸}                (4.4) 

where  

       {𝛸} = [

𝜕2𝑤 𝜕𝑥2⁄

𝜕2𝑤 𝜕𝑦2⁄

2 𝜕2𝑤 𝜕𝑥𝜕𝑦⁄

]                (4.5) 

Combining these equations, the strain energy function is obtained as below. 

    𝑈 =
1

2
∫
ℎ3

12
{𝛸}𝑇[𝐷]{𝛸} 𝑑𝐴               (4.6) 

For isotropic materials, elastic property is 
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[𝐷] = [
𝐸 𝐸𝑣 0
𝐸𝑣 𝐸 0
0 0 𝐺

]               (4.7) 

where, E is the modulus of elasticity, v is the Poisson’s ratio and G=
𝐸

2(1−𝑣)
 is the shear 

modulus. 

If classical equation of kinetic energy becomes equal to obtained thin plate kinetic 

energy function, it gives the mass matrix of the element as, 

            𝑇𝑒 =
1

2
 [𝑀]𝑏{�̇�}𝑒

2
                         (4.8) 

       [𝑀]𝑏 = ∫ℎ𝜌[𝑁]
𝑇[𝑁] 𝑑𝐴 = 𝜌ℎ ∫ ∫ ([𝑁]𝑇[𝑁] det 𝐽  𝑑𝜂) 𝑑𝜉

1

−1

1

−1
            (4.9) 

where N is the shape function matrix that mentioned in section 3.3, Mb is the mass 

matrix for thin bending element from combination of equations 3.15a, 4.3 and 4.8 and 

J is the jacobian matrix of the element which can be formulated as 

det 𝐽 = |

𝜕𝑥

𝜕𝜉

𝜕𝑦

𝜕𝜉

𝜕𝑥

𝜕𝜂

𝜕𝑦

𝜕𝜂

| = |∑ [

𝜕𝑁𝑖

𝜕𝜉

𝜕𝑁𝑖

𝜕𝜂

] [
𝑥𝑖
𝑦𝑖
]4

𝑖=1 | = ab            (4.10) 

The Jocabian matrix is constant for plates, which have 2ax2b dimension, and equals 

ab where x and y is coordinates of corner point of element.  

The mass matrix dimension is 12x12 and its relation with plate properties can be seen 

like below (Petyt, 1990).  

      [𝑀]𝑏 =
ρhab

6300
[
[m11] [m21]𝑇

[m21] [m22]
]             (4.11) 

[𝑀]𝑏 =
ρhab

6300
∗

[
 
 
 
 
 
 
 
 
 
 
 
3454 922𝑏 −922a 1226 398𝑏 548a 394 −232𝑏 232a 1226 −548𝑏 −398a

320𝑏2 −252𝑎𝑏 398𝑏 160𝑏2 168𝑎𝑏 232𝑏 −120𝑏2 112𝑎𝑏 548𝑏 −240𝑏2−168𝑎𝑏
320𝑎2 −548𝑎−168𝑎𝑏−240𝑎2−232𝑎 112𝑎𝑏 −120𝑎2−398𝑎 168𝑎𝑏 160𝑎2

3454 922𝑏 922𝑎 1226 −548𝑏 398𝑎 394 −232𝑏 −232𝑎
320𝑏2 252𝑎𝑏 548𝑏 −240𝑏2 168𝑎𝑏 232𝑏 −120𝑏2−112𝑎𝑏

320𝑎2 398𝑎 −168𝑎𝑏 160𝑎2 232𝑎 −112𝑎𝑏−120𝑎2

3454 −922𝑏 922𝑎 1226 −398𝑏 −548𝑎
𝑆𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 320𝑏2 −252𝑎𝑏−398𝑏 160𝑏2 168𝑎𝑏

320𝑎2 548𝑎 −168𝑎𝑏−240𝑎2

3454 −922𝑏 −922𝑎
320𝑏2 252𝑎𝑏

320𝑎2 ]
 
 
 
 
 
 
 
 
 
 
 

                          (4.12) 
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Generation of the element stiffness matrix has same procedure with mass matrix but 

this time, the strain energy equations are used for obtaining process.  

𝑈𝑒 =
1

2
 [𝐾]𝑒{𝑤}𝑒

2
              (4.13) 

[𝐾]𝑒 = ∫
ℎ3

12
[𝐵𝑒]

𝑇[𝐷][𝐵𝑒] = 𝜌
ℎ3

12
a𝑏 ∫ ∫ ([𝐵𝑒]

𝑇[𝐷][𝐵𝑒]  𝑑𝜂) 𝑑𝜉
1

−1

1

−1
          (4.14) 

where Ke is the stiffness matrix and Be is the strain matrix. The stiffness matrix consists 

of bending part only because of neglected transverse shear stresses. Where Be is given 

by, 

 [𝐵𝑒] =

[
 
 
 
 
𝜕2𝑁

𝜕𝑥2

𝜕2𝑁

𝜕𝑦2

2
𝜕2𝑁

𝜕𝑥𝜕𝑦]
 
 
 
 

=

[
 
 
 
 
 
1

𝑎2
𝜕2𝑁

𝜕𝜉2

1

𝑏2
𝜕2𝑁

𝜕𝜂2

1

2𝑎𝑏

𝜕2𝑁

𝜕𝜉𝜕𝜂]
 
 
 
 
 

                         (4.15) 

The stiffness matrix dimension is 12x12 and its relation with plate properties can be 

seen like below. 

              [𝐾]𝑒 =
Eℎ3

48a𝑏(1−𝜈2)
∗

[
 
 
 
[k11] [k21] [k31] [k41]

[k21] [k22] [k23] [k24]

[k31] [k23] [k33] [k34]

[k41] [k24] [k34] [k44]]
 
 
 

                    (4.16a) 

 [k11] =

[
 
 
 
 2.8  + 4𝛽2 + 4ϱ2 − 0.8𝜈    4βa + 𝑏(0.4  + 1.6𝜈)   −4ϱ2𝑎 + 𝑎(−0.4 − 1.6𝜈)

16

3
𝑎2 +

16

15
𝑏2(1.  − 𝜈) −4. 𝑎𝑏𝜈

𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐𝑎𝑙
16

3
𝑏2 +

16

15
𝑎2(1.  − 𝜈)

]
 
 
 
 

     (4.16b) 

[k21] =

[
 
 
    −2.8 + 2𝛽

2 − 4ϱ2 + 0.8𝜈   2βa − 𝑏(0.4 + 1.6𝜈)    −4ϱ2𝑎 + 𝑎(−0.4 + 0.4𝜈)

2βa − 𝑏(0.4 + 1.6𝜈)
8

3
𝑎2 +

16

15
𝑏2(−1 + 𝜈) 0.

4ϱ2𝑎 + 𝑎(0.4  − 0.4𝜈) 0.
8

3
𝑏2 +

4

15
𝑎2(−1 + 𝜈) ]

 
 
 

 (4.16c) 

  [k31] =

[
 
 
 2.8  − 2𝛽2 − 2ϱ2 − 0.8𝜈    −2βa + 𝑏(0.4 − 0.4𝜈)    2ϱ2𝑎 − 𝑎(0.4  − 0.4𝜈)

 2βa + 𝑏(−0.4 + 0.4𝜈)
4

3
𝑎2 +

4

15
𝑏2(1. − 𝜈) 0.

−2ϱ2𝑎 + 𝑎(0.4  − 0.4𝜈) 0
4

3
𝑏2 +

4

15
𝑎2(1. − 𝜈) ]

 
 
 

      (4.16d) 

 [k41] =

[
 
 
 −2.8  + 2𝛽2 − 2ϱ2 + 0.8𝜈 −2βa + 𝑏(−0.4 + 0.4𝜈) −2ϱ2𝑎 + 𝑎(0.4 + 0.4𝜈)

2βa + 𝑏(0.4 − 0.4𝜈)
4

3
𝑎2 ±

4

15
𝑏2(1. − 𝜈) 0.

−2ϱ2𝑎 + 𝑎(0.4 + 0.4𝜈) 0
4

3
𝑏2 −

4

15
𝑎2(1.  − 𝜈) ]

 
 
 

    (4.16e) 

β =
𝑏

a
, ϱ =

a

𝑏
                    (4.16f) 
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     𝐼1 = [
−1 0 0
0 1 0
0 0 1

] , 𝐼2 = [
1 0 0
0 −1 0
0 0 1

] ,  𝐼3 = [
1 0 0
0 1 0
0 0 −1

]         (4.16g) 

[k22] = 𝐼3
𝑇[k11]𝐼3 , [k32] = 𝐼3

𝑇[k41]𝐼3 , [k33] = 𝐼1
𝑇[k11]𝐼1 , [k42] = 𝐼3

𝑇[k31]𝐼3 ,

[k43] = 𝐼1
𝑇[k21]𝐼1 , [k22] = 𝐼2

𝑇[k11]𝐼2                        (4.16h) 

The first six natural frequencies of square plate which is point supported at its corners 

are validated with 16x16 mesh code developed in Mathematica and Q4 element. Its 

material and dimension properties are shown in Table 4.1 and code results compare 

with analytical, experimental and FEM results in Table 4.2. 

Table 4.1 : The square plate properties (Petyt, 1990). 

Plate Properties Values 

E 73.084*109 N/m2 

ρ 2821 kg/m3 

ν 0.3 

h 0.0032766 m 

2a 0.3048 m 

Table 4.2 : Comparison of natural frequencies (Hz) of the square plate. 

Modes Present 
FEM 

 (Petyt, 1990) 

Analytical  

(Reed, 1965) 

Experimental  

(Reed, 1965) 

1 61.58 62.09 61.40 62 

2 (a) 136.44 138.5 136 134 

2 (b) 136.44 138.5 136 134 

3 169.47 169.7 170 169 

4 333.15 340.0 333 330 

5 382.98 396.0 385 383 

4.2. The Reissner-Mindlin Theory 

Transverse shear and rotation effects are important for thick plates and deep beams. 

Therefore, changes in thickness must be taken into account as differ from thin plates. 

Figure 4.3 also shows a thick plate bending element but the Reissner-Mindlin plate 

shape and their deformation can be seen in Figure 4.4. The RMPT has same first three 

assumptions with KLPT but fourth assumption is differentiated classical theory in the 

following statement; 
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 The normal line points of the plate middle plane stay same spline but does not 

have to orthogonal under deformation. 

 

Figure 4.4 : RMPT displacements and rotations (Oñate, 2013). 

For thick plates, transverse shear and rotary effects are taken into account because of 

higher thickness to length ratio. So, displacement functions for isotropic and 

homogenous materials, when evaluated thick plate element based on transverse shear 

deformations, obtain as follows: 

          𝑢(𝑥, 𝑦, 𝑧) = 𝑧𝜃𝑦(𝑥, 𝑦)            (4.17a) 

        𝑣(𝑥, 𝑦, 𝑧) = −𝑧𝜃𝑥(𝑥, 𝑦)           (4.17b) 

    𝑤(𝑥, 𝑦, 𝑧) = 𝑤           (4.17c) 

         𝜃𝑥 =
𝜕𝑤

𝜕𝑥
+ 𝜙𝑥   𝑎𝑛𝑑  𝜃𝑦 =

𝜕𝑤

𝜕𝑦
+ 𝜙𝑦              (4.17d) 

From these functions, u and v are in-plane displacements which are parallel to plate 

middle surface and w is normal to middle surface at z directions. Besides, θx and θy are 

rotations about x and y axis respectively.  

The strain matrix is 

    {휀} = −𝑧{χ}             (4.18) 

{χ} = [

−𝜕𝜃𝑦 𝜕𝑥⁄

𝜕𝜃𝑥 𝜕𝑦⁄

−𝜕𝜃𝑦 𝜕𝑦⁄ + 𝜕𝜃𝑥 𝜕𝑥⁄
]          (4.19a) 

      {𝛾} = [
𝜃𝑦 + 𝜕𝑤 𝜕𝑥⁄

−𝜃𝑥 + 𝜕𝑤 𝜕𝑦⁄
]                 (4.19b) 
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where γ is the shear strains and combination of these equations give the new potential 

energy equation as, 

       𝑈 =
1

2
∫{휀}𝑇[𝐷]{휀} 𝑑𝑉 +

1

2
∫{𝜏}𝑇{𝛾} 𝑑𝑉           (4.20) 

where τ is the shear stresses and shear stress-strain relationship according to Hooke’s 

law can be given by 

          {𝜏} = 𝜅[𝐷𝑠]{𝛾}             (4.21) 

where κ is the shear correction factor and for isotropic materials elastic property is, 

          [𝐷𝑠] = [
𝐺 0
0 𝐺

]             (4.22) 

Finally, the energy equations can be expressed as, 

𝑇𝑒 =
1

2
∫ 𝜌(�̇�2 + �̇�2 + �̇�2)𝑑𝑉 =

1

2
∫𝜌 (ℎ�̇�2 +

ℎ3

12
𝜃�̇�

2
+
ℎ3

12
𝜃�̇�

2
) 𝑑𝐴      (4.23a) 

       𝑈𝑒 =
1

2
∫
ℎ3

12
{χ}𝑇[𝐷]{χ} 𝑑𝐴 +

1

2
∫𝜅ℎ{𝛾}𝑇[𝐷𝑠]{𝛾} 𝑑𝐴       (4.23b) 

ρ, h, Te and Ue are density of material, thickness of plate, kinetic energy and potential 

energy formulations respectively. Te and Ue have classical formulations so, these are 

used for stiffness and mass matrix obtain process with energy formulas based on 

displacement. 

RMPT refers thick plate bending element and their displacement and rotations are 

explained in section 3.4. Combination of classical equation 2.20 of kinetic energy and 

obtained thick plate energy function give the mass matrix of the element as, 

    𝑇𝑒 =
1

2
 [𝑀]𝑏𝑠{�̇�}𝑒

2
             (4.24) 

   [𝑀]𝑏𝑠 = ∫𝜌[𝑁]
𝑇

[
 
 
 
ℎ 0 0

0
ℎ3

12
0

0 0
ℎ3

12]
 
 
 
[𝑁] 𝑑𝐴           (4.25) 

where N is the shape function matrix that mentioned in section 3.4 and Mbs is the mass 

matrix for thick bending element.  
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        [𝑀]𝑏𝑠 = 𝜌ℎa𝑏

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4

9
0 0

2

9
0 0

1

9
0 0

2

9
0 0

0
ℎ2

27
0 0

ℎ2

54
0 0

ℎ2

108
0 0

ℎ2

54
0

0 0
ℎ2

27
0 0

ℎ2

54
0 0

ℎ2

108
0 0

ℎ2

54
2

9
0 0

4

9
0 0

2

9
0 0

1

9
0 0

0
ℎ2

54
0 0

ℎ2

27
0 0

ℎ2

54
0 0

ℎ2

108
0

0 0
ℎ2

54
0 0

ℎ2

27
0 0

ℎ2

54
0 0

ℎ2

108
1

9
0 0

2

9
0 0

4

9
0 0

2

9
0 0

0
ℎ2

108
0 0

ℎ2

54
0 0

ℎ2

27
0 0

ℎ2

54
0

0 0
ℎ2

108
0 0

ℎ2

54
0 0

ℎ2

27
0 0

ℎ2

54
2

9
0 0

1

9
0 0

2

9
0 0

4

9
0 0

0
ℎ2

54
0 0

ℎ2

108
0 0

ℎ2

54
0 0

ℎ2

27
0

0 0
ℎ2

54
0 0

ℎ2

108
0 0

ℎ2

54
0 0

ℎ2

27 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

           (4.26) 

The stiffness matrix of the element is generated by combination of classical equation 

of 2.21 strain energy with obtained thick plate energy function and given by 

𝑈𝑒 =
1

2
 [𝐾]𝑒{𝑤}𝑒

2
             (4.27) 

       [𝐾]𝑒 = ∫[𝐵𝑒]
𝑇[𝐷𝑒][𝐵𝑒]             (4.28) 

where De represents the elastic property matrices. The stiffness matrix has two part: 

bending stiffness and shear stiffness matrices. This result can be seen in strain energy 

function. 

 [𝐾]𝑒 = [𝐾𝑏] + [𝐾𝑠]              (4.29) 

    [𝐾𝑏] = ∫
ℎ3

12
[𝐵𝑏]𝑇[𝐷][𝐵𝑏] 𝑑𝐴          (4.30a) 

    [𝐾𝑠] = ∫ 𝜅ℎ[𝐵𝑠]𝑇[𝐷𝑠][𝐵
𝑠] 𝑑𝐴          (4.30b) 

When Bb and Bs are bending and shear strain matrices respectively and given by,  

         [𝐵𝑏] =

[
 
 
 
 0 0 −

𝜕𝑁

𝜕𝑥

0
𝜕𝑁

𝜕𝑦
0

0
𝜕𝑁

𝜕𝑥
−
𝜕𝑁

𝜕𝑦]
 
 
 
 

           (4.31a) 
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          [𝐵𝑠] = [

𝜕𝑁

𝜕𝑥
0 𝑁

𝜕𝑁

𝜕𝑦
−𝑁 0

]           (4.31b) 

Petyt (1990) states that both bending and shear stiffness matrices can be created using 

2x2 Gauss quadrature. Also, this technique is called as full integration for 4-noded 

quadrilateral elements and helps to evaluate integral of strain and elasticity matrices 

with summation method.  

Gauss integration schemes can be grouped under three main heading as full, selective 

and reduced integrations like seen in the Figure 4.5 where Kf and Ks are bending and 

shear stiffness respectively. The full integration application on Mindlin plates gives 

exact result with integral of matrices because of constant jacobian value. Generally 

reduced integration usage is preferred to improve element for different cases and 

prevents some problems on element. But, if 4 noded element is chosen, selective 

integration is suggested instead of reduced (Hinton & Bicanic, 1979). 

 

Figure 4.5 : Gauss integration schemes based on elements (Hinton & Bicanic, 1979). 

Nevertheless, as the plate becomes thinner, taking transverse shear terms into account 

makes the element and plate over-stiff. This called as the shear locking. The shear 

locking is occurred while h goes to zero, equation 2.5 combining with equations 4.29, 

4.30a, 4.30b and stiffness are written with elastic properties, 

          𝑓 = ([𝐾𝑏] + [𝐾𝑠])𝑢 = (
𝐸ℎ3

12(1−𝑣2)
[𝐾𝑏̅̅ ̅̅ ] + 𝐺ℎ[𝐾𝑠̅̅̅̅ ]) 𝑢          (4.32a) 

    𝑘𝛽 =
𝐸ℎ2

12(1−𝑣2)𝐺
           (4.32b) 

        𝑓 = ([𝐾𝑏̅̅ ̅̅ ] +
1

𝑘𝛽
[𝐾𝑠̅̅̅̅ ]) 𝑢                    (4.32c) 
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kβ goes zero also, but 1/kβ goes to infinity and this causes dominant shear stiffness on 

plate. If u should not be equal to zero, the term of shear stiffness becomes singular. 

The shear locking problem converts singularity problem and reduced integrations can 

be used to overcome it. Different solution methods are used to eliminate shear locking 

effect such as; assumed shear strain fields, reduced integration of stiffness and linked 

interpolation (Oñate, 2013). The one point Gauss quadrature may be used for shear 

stiffness term like suggested in Figure 4.5 selective integration to handle this problem. 

According to Cook, et al (2001), gauss quadrature application expressed by 

    𝐼 = ∫ 𝑓 𝑑𝐴
𝑥2

𝑥1
= ∬ 𝜙(𝜉, 𝜂) det 𝐽 𝑑𝜂𝑑𝜉

1

−1
= ∑ ∑ 𝑊𝑖𝑊𝑗𝜙(𝜉𝑖, 𝜂𝑗)𝑗𝑖           (4.33) 

where W is the weight factor, ξ and η are sampling points which are given in Figure 

4.6. 

 

Figure 4.6 : Gauss sampling points and weight factors (Cook, et al., 2001). 

Oñate (2013), aims that achieve exact solution on thin plates with RMPT based on 

assumed shear strain fields method. Four noded plate quadrilateral element with linear 

shear field is named as QLLL method. From shear strain equation, 

𝛾𝑥𝑧 = −𝜃𝑥 + 𝜕𝑤 𝜕𝑦⁄ = ∑
𝜕𝑁𝑖

𝜕𝜉

𝜕𝜉

𝜕𝑥

4
𝑖=1 𝑤𝑖 − 𝑁𝑖𝜃𝑥𝑖 = 𝑎1(𝑤𝑖, 𝜃𝑖) + 𝑎2(𝑤𝑖, 𝜃𝑖)𝜂 +

                𝑎3(𝜃𝑖)𝜉 + 𝑎4(𝜃𝑖)𝜉𝜂                           (4.34) 

If γxz = 0 assumes based on KLPT, this gives α1 = α2 = α3 = α4 = 0 from equation 4.34. 

This leads θxi = 0 as a result of its coefficients α3, α4 are equal to zero. But this causes 

to wi = 0 for α1 = α2 = 0. So, this brings the locking. To overcome problem, for γxz, ξ=0 

and for γyz, η=0 assumed and α3 = α4 = 0 condition is obtained respectively,  

       휀𝑠 = 𝐵𝑠̅̅̅̅ 𝑎𝑒 = 𝛾 = {
𝛾𝑥𝑧
𝛾𝑦𝑧
} = {

𝑎1(𝑤𝑖, 𝜃𝑖) + 𝑎2(𝑤𝑖, 𝜃𝑖)𝜂

𝑎1̅̅ ̅(𝑤𝑖, 𝜃𝑖) + 𝑎2̅̅ ̅(𝑤𝑖, 𝜃𝑖)𝜉
}       (4.35) 

where the 𝐵𝑠̅̅̅̅  new shear strain term based on assumed strain fields. Assumed shear 

strain field are represented in Figure 4.7 for one 4-noded element. 
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Figure 4.7 : Assumed shear strain field (Oñate, 2013). 

The quadrature points are used along the lines ξ = 0 and η = 0 as seen in the Figure 4.7 

and states 

           휀𝑠 = 𝐵𝑠̅̅̅̅ 𝑎𝑒 = ∑ 𝑁𝛾𝑘𝐵𝑘
𝑠𝑎𝑘

𝑚
𝑘=1 = ∑ 𝑁𝛾𝑘𝛾𝑘

𝑚
𝑘=1            (4.36) 

                  𝛾 = 𝐽−1𝛾′ = 𝐽−1 {
𝛾𝜉
𝛾𝜂
}            (4.37) 

where Nγk is the interpolation function matrix, m is the shear strain points, γξ and γη 

are shear strains at natural system and 𝛾𝜉�̅� is the shear strains at middle points of plate 

in Figure 4.7. 

          𝛾′ = {
𝛾𝜉
𝛾𝜂
} = {

𝑎1 + 𝑎2𝜂
𝑎3 + 𝑎4𝜉

} = 𝐴𝑎          (4.38a) 

   𝐴 = [
1 𝜂 0 0
0 0 1 𝜉

]           (4.38b) 

    𝛾𝜉�̅� = (𝑎1 + 𝑎2𝜂)𝑐𝑜𝑠𝛽𝑖 + (𝑎3 + 𝑎4𝜉)𝑠𝑖𝑛𝛽𝑖;      𝑖 = 1, . .4           (4.39) 

where βi is the angle between the ξi and ξ axis. So, 

                   [𝑃]{𝑎} = [

1 −1 0 0
0 0 1 1
−1 −1 0 0
0 0 1 −1

]{

𝑎1
𝑎2
𝑎3
𝑎4

} = {

𝛾𝜉1̅̅ ̅
𝛾𝜉2̅̅ ̅
𝛾𝜉3̅̅ ̅
𝛾𝜉4̅̅ ̅

}           (4.40) 

   {

𝛾𝜉1̅̅ ̅
𝛾𝜉2̅̅ ̅
𝛾𝜉3̅̅ ̅
𝛾𝜉4̅̅ ̅

} = [

1    0 … … 0
⋮ 0    1 ⋮ ⋮
⋮ ⋮ −1    0 ⋮
0 … … 0    1

]

{
 
 
 

 
 
 
𝛾𝜉1
𝛾𝜂1
𝛾𝜉2
𝛾𝜂2
𝛾𝜉3
𝛾𝜂3
𝛾𝜉4
𝛾𝜂4}
 
 
 

 
 
 

= [𝑇]{𝛾 ′̂}         (4.41) 
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         {𝛾 ′̂} = [

𝐽1 … … 0
⋮ 𝐽2 ⋮ ⋮
⋮ ⋮ 𝐽3 ⋮
0 … … 𝐽4

]

{
 

 
𝛾1̂

⋮
⋮

𝛾 4̂}
 

 
= [𝐶]𝛾 = [𝐶]𝐵𝑠𝑎𝑒 = [𝐶] {

𝐵𝑠1

⋮
⋮
𝐵𝑠4

}𝑎𝑒          (4.42) 

All equations from 4.35 to 4.42 inserting each other shear strain occurs as, 

         𝛾 = 𝐽−1𝐴𝑃−1𝑇𝐶𝛾 = 𝑁𝛾𝛾            (4.43) 

                𝑁𝛾 = 𝐽
−1𝐴𝑃−1𝑇𝐶             (4.44) 

        𝛾 = 𝐽−1𝐴𝑃−1𝑇𝐶𝐵𝑠𝑎𝑒 = 𝐵𝑠̅̅̅̅ 𝑎𝑒            (4.45) 

         𝐵𝑠̅̅̅̅ = 𝑁𝛾𝐵
𝑠             (4.46) 

The 𝐵𝑠̅̅̅̅  new shear strain term can be used instead of Bs in Ks and provides to prevent 

locking like one point gauss integration. When these steps are applied on Q4 element 

new shear strain term is found equal to below term, 

𝐵𝑠̅̅̅̅
𝑇
=

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

−1+𝜂

4𝑎

−1+𝜉

4𝑏
1

4
(−1 + 𝜂) 0

0
1

4
(−1 + 𝜉)

−
−1+𝜂

4𝑎
−
1+𝜉

4𝑏
1

4
(−1 + 𝜂) 0

0
1

4
(−1 − 𝜉)

1+𝜂

4𝑎

1+𝜉

4𝑏
1

4
(−1 − 𝜂) 0

0
1

4
(−1 − 𝜉)

−
1+𝜂

4𝑎
−
−1+𝜉

4𝑏
1

4
(−1 − 𝜂) 0

0
1

4
(−1 + 𝜉)]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

            (4.47) 

All these methods are made applicable RMPT to thin plates. In this thesis, QLLL 

method and Gauss method are applied separately on thin plates during usage of RMPT. 

The first six non-dimensional natural frequencies of square plate which is simply 

supported at four side are validated with 16x16 mesh developed code in Mathematica 

and 4 noded quadrilateral-QLLL element.  
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At the same time, the natural frequencies of plate are obtained from 16x16 mesh 

mathematical modal on ABAQUS package program. Its material and dimension 

properties are shown in Table 4.3 and code results compare with ABAQUS, analytical 

and FEM results in Table 4.4. 

Table 4.3 : The simply supported plate properties (Petyt, 1990). 

Plate Properties Values 

E 10920 N/m2 

ρ 1 kg/m3 

ν 0.3 

h 0.1 m 

2a 1 m 

Table 4.4 : Comparison of non-dimensional λ0.5 =hω√(ρ/G)natural frequencies of the 

square plate. 

Modes Present 
Present-

ABAQUS 

HTK element-FEM 

(Petyt, 1990) 

Analytical 

(Petyt, 1990) 

(1,1) 0.0934 0.0933 0.0945 0.0930 

(2,1) 0.2250 0.2247 0.2347 0.2218 

(2,2) 0.3456 0.3443 0.3597 0.3402 

(3,1) 0.4286 0.4279 0.4729 0.4144 

(3,2) 0.5347 0.5318 0.5746 0.5197 

(3,3) 0.6894 0.6882 0.7520 0.6821 

The non-dimensional natural frequencies converge with increasing number of used 

elements for this plate example and it can be seen in Figure 4.8. 

 

Figure 4.8 : The non-dimensional frequency convergence (Petyt, 1990).
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5. COMPOSITE PLATES 

Fundamentally, composite is combination of different type materials in a specific form 

to obtain new improved properties than singular usage. Its type is called as the 

anisotropic material due to have different material properties in all directions of body. 

Composite structures are more popular than isotropic materials in aviation especially 

in consequence of their higher stiffness and strength characteristics. 

In contrast to plate bending theories, in plane displacements on mid plane of composite 

plates are effective more than the homogeneous materials because of axial forces 

which are named as membrane effects. This change brings the membrane element 

effect on mass and stiffness of the plate. Besides, membrane effect creates coupling 

with bending element depending on stacking and sequence of laminas. This coupling 

can cause some problems are called as membrane locking like shear locking 

phenomena.  

The laminated plates have in plane and out of plane elongations so, there are 5 DOF, 

u, v, w, θx and θy for each node of the accepted element. So, for 4-noded quadrilateral 

element, total DOF is twenty and this requires twenty unknowns for five displacement 

equations. As a result, dimensions of the mass and stiffness matrices are 20x20. The 

laminated composite plates have cross section area as seen in Figure 5.1. 

Niyogi, et. al. (1999), states that the relationship between displacements can be 

expressed as follow. 

         

{
 
 

 
 
𝑢
𝑣
𝑤
𝜃𝑥
𝜃𝑦}
 
 

 
 

= ∑ 𝑁𝑗[𝐼5]
4
𝑗=1

{
 
 

 
 
𝑢𝑗
𝑣𝑗
𝑤𝑗
𝜃𝑥𝑗
𝜃𝑦𝑗}

 
 

 
 

                         (5.1) 
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Figure 5.1 : Lamination representation with thicknesses (Oñate, 2013). 

Initially, if the composite plates are investigated in terms of their stiffness and elastic 

properties, the necessary matrices are obtained as  

         𝐷𝑒 =  

[
 
 
 
 
 
 
 
𝐴11 𝐴12 𝐴16
𝐴21 𝐴22 𝐴26
𝐴16 𝐴26 𝐴66

𝐵11 𝐵12 𝐵16
𝐵21 𝐵22 𝐵26
𝐵16 𝐵26 𝐵66

𝐵11 𝐵12 𝐵16
𝐵21 𝐵22 𝐵26
𝐵16 𝐵26 𝐵66
0 0 0
0 0 0

𝐷11 𝐷12 𝐷16
𝐷21 𝐷22 𝐷26
𝐷16 𝐷26 𝐷66
0 0 0
0 0 0

0
0
0
0
0
0
𝐴44
𝐴45

0
0
0
0
0
0
𝐴45
𝐴55]

 
 
 
 
 
 
 

                  (5.2) 

       [𝐴𝑖𝑗] = ∑ [�̅�𝑖𝑗]
𝑘
(𝑧𝑘 − 𝑧𝑘−1) 

𝑛
𝑘=1     𝑖, 𝑗 = 1,2,6             (5.3a) 

[𝐴𝑖𝑗] = ∑ [�̅�𝑖𝑗]
𝑘
𝜅(𝑧𝑘 − 𝑧𝑘−1) 

𝑛
𝑘=1     𝑖, 𝑗 = 4,5    𝜅 = 5/6           (5.3b) 

   [𝐵𝑖𝑗] =
1

2
∑ [�̅�𝑖𝑗]

𝑘
(𝑧𝑘

2 − 𝑧𝑘−1
2)𝑛

𝑘=1     𝑖, 𝑗 = 1,2,6              (5.3c) 

  [𝐷𝑖𝑗] =
1

3
∑ [�̅�𝑖𝑗]

𝑘
(𝑧𝑘

3 − 𝑧𝑘−1
3)𝑛

𝑘=1     𝑖, 𝑗 = 1,2,6             (5.3d) 

where �̅�𝑖𝑗  is the stiffness matrix of lamina depends of angles of layers, Aij is the in 

plane stiffness, Bij is the axial bending coupling stiffness, Dij is the bending stiffness, 

De is the elastic property matrices of laminate respectively. The 𝜅 is the laminate 

curvature, z is the distance from middle plane, k is the number of layer and n is the 

total number of layer in laminate. Aij, Bij, Dij and �̅�𝑖𝑗 matrices are symmetric for 

laminate (Nettles, 1994). 

         𝑄11 =
𝐸𝐿

1−𝜈𝐿𝑇∗𝜈𝑇𝐿
                         (5.4a) 

      𝑄12 = 𝜈𝑇𝐿 ∗
𝐸𝑇

1−𝜈𝐿𝑇∗𝜈𝑇𝐿
                       (5.4b) 
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𝑄22 =
𝐸𝑇

1−𝜈𝐿𝑇∗𝜈𝑇𝐿
                       (5.4c) 

𝑄66 = 𝐺𝐿𝑇       𝑄44 = 𝐺𝐿𝑧    𝑄55 = 𝐺𝑇𝑧                            (5.4d) 

  �̅�11 = 𝑄11(𝐶𝑜𝑠[𝜃])
4  + 2(𝑄12 + 2𝑄66)(𝑆𝑖𝑛[𝜃])

2(𝐶𝑜𝑠[𝜃])2 ) + 𝑄22(𝑆𝑖𝑛[𝜃])
4           (5.4e) 

�̅�12 = ((𝑄11 + 𝑄22 − (4𝑄66))(𝑆𝑖𝑛[𝜃])
2(𝐶𝑜𝑠[𝜃])2) + 𝑄12((𝑆𝑖𝑛[𝜃])

4 + (𝐶𝑜𝑠[𝜃])4)  (5.4f) 

�̅�22 = 𝑄11(𝑆𝑖𝑛[𝜃])
4 + 2(𝑄12 + 2𝑄66)(𝑆𝑖𝑛[𝜃])

2(𝐶𝑜𝑠[𝜃])2 +𝑄22(𝐶𝑜𝑠[𝜃])
4            (5.4g) 

�̅�16 = ((𝑄11 − 𝑄12 − 2𝑄66)𝑆𝑖𝑛[𝜃](𝐶𝑜𝑠[𝜃])
3)  + ((𝑄12 − 22 + 2𝑄66)𝐶𝑜𝑠[𝜃](𝑆𝑖𝑛[𝜃])

3)        (5.4h) 

�̅�26 = ((𝑄11 − 𝑄12 − 2𝑄66)𝐶𝑜𝑠[𝜃](𝑆𝑖𝑛[𝜃])
3) + ((𝑄12 − 𝑄22 + 2𝑄66)𝑆𝑖𝑛[𝜃](𝐶𝑜𝑠[𝜃])

3)        (5.4i) 

�̅�66 = ((𝑄11 + 𝑄22 − (2𝑄12) − (2𝑄66))(𝑆𝑖𝑛[𝜃])
2(𝐶𝑜𝑠[𝜃])2) + 𝑄66((𝑆𝑖𝑛[𝜃])

4 + (𝐶𝑜𝑠[𝜃])4) (5.4j) 

�̅�44 = 𝑄55(𝑆𝑖𝑛[𝜃])
2 + 𝑄44(𝐶𝑜𝑠[𝜃])

2          �̅�45 = (𝑄55 − 𝑄44)(𝑆𝑖𝑛[𝜃])(𝐶𝑜𝑠[𝜃]) 

 �̅�55 = 𝑄44(𝑆𝑖𝑛[𝜃])
2 + 𝑄55(𝐶𝑜𝑠[𝜃])

2                          (5.4k) 

where Qij terms represent reduced stiffness, EL, ET, GLT, GLz, GTz, νLT, νTL and θ are L 

direction elastic modulus, T direction elastic modulus, LT direction shear modulus, Lz 

direction shear modulus, Tz direction shear modulus, LT direction Poisson’s ratio, TL 

direction Poisson’s ratio and layer fiber orientation angle respectively. The L expresses 

the direction of the longitudinal fibers and T is opposite direction. 

Both of the plate theories can be applicable for composite laminated plate out of plane 

displacements and rotations. In composite plate examination process, the KLPT and 

the RMPT converge by membrane element adding. But, the RMPT approach more 

precise as a result of considering of transverse shear effect cross the thickness of 

laminate. 

Second part is achieving membrane element energy functions to add bending elements. 

Figure 5.2 shows a plate with in-plane direction loads and h is the thickness of the 

plate. When u, v, σ and ε represent displacement components of x and y directions, 

plane stress and strains respectively, energy equations can be expressed as 

𝑈 =
1

2
∫{𝜎}𝑇{휀} 𝑑𝑉                         (5.5a) 

        𝑇 =
1

2
∫ℎ𝜌(�̇�2 + �̇�2)𝑑𝐴                         (5.5b) 

where stress-strain relationship is given by 
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{𝜎} = [𝐷]{휀}                    (5.6) 

     {휀} = [

𝜕𝑢 𝜕𝑥⁄

𝜕𝑣 𝜕𝑦⁄

𝜕𝑣 𝜕𝑥⁄ + 𝜕𝑢 𝜕𝑦⁄
]                         (5.7) 

from Hooke’s law.  

 

Figure 5.2 : Membrane element of plate (Petyt, 1990). 

So, strain energy is 

        𝑈 =
1

2
∫{휀}𝑇[𝐷]{휀} 𝑑𝑉 =

1

2
∫ℎ{휀}𝑇[𝐷]{휀} 𝑑𝐴                        (5.8) 

This theory refers membrane element and their displacement and rotations are 

explained in section 3.2. Combining classical equation of kinetic energy with obtained 

membrane element energy function gives the mass matrix of the element as, 

     𝑇𝑒 =
1

2
 [𝑀]𝑚{�̇�}𝑒

2
                          (5.9) 

         [𝑀]𝑚 = ∫𝜌ℎ[𝑁]𝑇[𝑁] 𝑑𝐴 = 𝜌ℎab ∫ ∫ ([𝑁]𝑇[𝑁]  𝑑𝜂) 𝑑𝜉
1

−1

1

−1
           (5.10) 

where N is the shape function matrix that mentioned in section 3.2 and Mm is the mass 

matrix for membrane element and �̇� is the in plane velocity vector.  

      [𝑀]𝑚 = 𝜌ℎ𝑎𝑏

[
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                       (5.11) 
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The stiffness matrix of the element is generated with combination of classical strain 

energy equation with obtained membrane element energy function given by 

     𝑈𝑒 =
1

2
 [𝐾]𝑚{𝑢}𝑒

2
                       (5.12) 

When u is the in plane displacements, Km is the membrane element stiffness and Bm is 

the in plane strain matrices respectively and for isotropic homogeneous plates given 

by,  

      [𝐾]𝑚 = ∫ℎ[𝐵𝑚]
𝑇[𝐷][𝐵𝑚]                      (5.13) 

            𝐵𝑚 =  

[
 
 
 
 
𝜕𝑁

𝜕𝑥
0

0
𝜕𝑁

𝜕𝑦

𝜕𝑁

𝜕𝑦

𝜕𝑁

𝜕𝑥]
 
 
 
 

                        (5.14) 

  [𝐾]𝑚 =
Eh

6a𝑏(1−𝜈2)
[
[𝑘11] [𝑘12]

[𝑘12] [𝑘22]
]                       (5.15) 

 [𝑘11] =

     

[
 
 
 
 
2𝑏2 + 𝑎2(1  − 𝜈) 𝑎𝑏(0.75  + 0.75𝜈) −2𝑏2 + 𝑎2(0.5  − 0.5𝜈) 𝑎𝑏(−0.75 + 2.25𝜈)

2𝑎2 + 𝑏2(1  − 𝜈) 𝑎𝑏(0.75  − 2.25𝜈) 𝑎2 + 𝑏2(−1 + 𝜈)

𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 2𝑏2 + 𝑎2(1  − 𝜈) 𝑎𝑏(−0.75 − 0.75𝜈)

2𝑎2 + 𝑏2(1  − 𝜈) ]
 
 
 
 

(5.16a) 

[𝑘12] =

[
 
 
 
 
−𝑏2 + 𝑎2(−0.5 + 0.5𝜈) 𝑎𝑏(−0.75 − 0.75𝜈) 𝑏2 + 𝑎2(−1 + 𝜈) 𝑎𝑏(0.75  − 2.25𝜈)

−𝑎2 + 𝑏2(−0.5 + 0.5𝜈) 𝑎𝑏(−0.75 + 2.25𝜈) −2𝑎2 + 𝑏2(0.5 − 0.5𝜈)

𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 −𝑏2 + 𝑎2(−0.5 + 0.5𝜈) 𝑎𝑏(0.75  + 0.75𝜈)

−𝑎2 + 𝑏2(−0.5 + 0.5𝜈)]
 
 
 
 

                          (5.16b) 

[𝑘22] =

[
 
 
 
 
2𝑏2 + 𝑎2(1  − 𝜈) 𝑎𝑏(0.75  + 0.75𝜈) −2𝑏2 + 𝑎2(0.5  − 0.5𝜈) 𝑎𝑏(−0.75 + 2.25𝜈)

2𝑎2 + 𝑏2(1 − 𝜈) 𝑎𝑏(0.75  − 2.25𝜈) 𝑎2 + 𝑏2(−1 + 𝜈)

𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 2𝑏2 + 𝑎2(1  − 𝜈) 𝑎𝑏(−0.75 − 0.75𝜈)

2𝑎2 + 𝑏2(1 − 𝜈) ]
 
 
 
 

 

                   (5.16c) 

After that, out of plane displacement case is calculated and added to membrane effect. 

The coupling between membrane and bending also takes into account. According to 

chosen plate theory mass matrices can be expanded to 5 DOF. For the KLPT 

application to composite plates element mass matrix is given by 

   [𝑀]𝑒 = [𝑀]𝑚 + [𝑀]𝑏                       (5.17) 
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[𝑀]𝑒 = ∫𝜌ℎ[𝑁𝑚]𝑢
𝑇[𝑁𝑚]𝑢 + 𝜌ℎ[𝑁𝑚]𝑣

𝑇[𝑁𝑚]𝑣 + 𝜌ℎ[𝑁𝑏]
𝑇[𝑁𝑏] 𝑑𝐴         (5.18) 

Where Nm is the expanded version of membrane element shape functions which are 

mentioned in section 3.2, Nb is the expanded version of thin plate bending element 

shape functions mentioned before in section 3.3. The coefficient matrices of membrane 

and thin bending element are combined as R matrix, 

[𝑅] =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1 −1 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 −1 −1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 −1 −1 1 1 1 −1 −1 −1 −1 1 1
0 0 0 0 0 0 0 0 0 0 1 0 −1 −2 0 1 2 3 −1 −3
0 0 0 0 0 0 0 0 0 −1 0 2 1 0 −3 −2 −1 0 3 1
1 1 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 −1 1 −1 1 1 −1 1 −1 −1 −1
0 0 0 0 0 0 0 0 0 0 1 0 1 −2 0 1 −2 3 1 3
0 0 0 0 0 0 0 0 0 −1 0 −2 1 0 −3 2 −1 0 3 1
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 1 0 1 2 0 1 2 3 1 3
0 0 0 0 0 0 0 0 0 −1 0 −2 −1 0 −3 −2 −1 0 −3 −1
1 −1 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 −1 1 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 −1 1 1 −1 1 −1 1 −1 1 −1 −1
0 0 0 0 0 0 0 0 0 0 1 0 −1 2 0 1 −2 3 −1 −3
0 0 0 0 0 0 0 0 0 −1 0 2 −1 0 −3 2 −1 0 −3 −1]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                              (5.19) 

𝛿 = [ 1 1 1 𝜉 𝜂 𝜉 𝜉 𝜉2 𝜉𝜂 𝜂2 𝜂 𝜂 𝜉3 𝜉2𝜂 𝜉𝜂2 𝜉𝜂 𝜉𝜂 𝜂3 𝜉3𝜂 𝜉𝜂3]

                              (5.20) 

       [𝑁𝑏] = [ 𝑁1 𝑁2 𝑁3 𝑁4 ] = 𝛿[𝑅]
−1                        (5.21) 

      [𝑁𝑚] = [𝑁𝑚]𝑢 = [ 𝑁1 𝑁2 𝑁3 𝑁4 ]    𝑓𝑜𝑟 𝑢 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡                   (5.22a) 

      [𝑁𝑚] = [𝑁𝑚]𝑣 = [ 𝑁1 𝑁2 𝑁3 𝑁4 ]   𝑓𝑜𝑟 𝑣 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡                     (5.22b) 

Finally, the mass matrix is obtained as, 

 [𝑀]𝑒 = 𝜌ℎab ∫ ∫ ([𝑁𝑚]𝑢
𝑇[𝑁𝑚]𝑢 + [𝑁𝑚]𝑣

𝑇[𝑁𝑚]𝑣 + [𝑁𝑏]
𝑇[𝑁𝑏]  𝑑𝜂) 𝑑𝜉

1

−1

1

−1
       (5.23)    

[𝑀]𝑒 =
ρhab

6300
[
[𝑚11] [𝑚12]

[𝑚21] [𝑚22]
]                       (5.24) 
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[𝑚11] =

[
 
 
 
 
 
 
 
 
2800 0 0 0 0 1400 0 0 0 0
0 2800 0 0 0 0 1400 0 0 0
0 0 3454 922b -922a 0 0 1226 398b 548a
0 0 922b 320b2 -252ab 0 0 398b 160b2 168ab
0 0 -922a -252ab 320a2 0 0 -548a -168ab   -240a2

1400 0 0 0 0 2800 0 0 0 0
0 1400 0 0 0 0 2800 0 0 0
0 0 1226 398b -548a 0 0 3454 922b 922a
0 0 398b 160b2 -168ab 0 0 922b 320b2 252ab
0 0 548a 168ab -240a2 0 0 922a 252ab 320a2 ]

 
 
 
 
 
 
 
 

         (5.25a) 

[𝑚21] =

[
 
 
 
 
 
 
 
 
 
700 0 0 0 0 1400 0 0 0 0
0 700 0 0 0 0 1400 0 0 0
0 0 394 232b -232a 0 0 1226 548b 398a

0 0 -232b -120b2 112ab 0 0 -548b -240b2 -168ab
0 0 232a 112ab -120a2 0 0 398a 168ab 160a2

1400 0 0 0 0 700 0 0 0 0
0 1400 0 0 0 0 700 0 0 0
0 0 1226 548b -398a 0 0 394 232b 232a

0 0 -548b -240b2 168ab 0 0 -232b -120b2  -112ab
0 0 -398a -168ab 160a2 0 0 -232a -112ab   -120a2]

 
 
 
 
 
 
 
 
 

            (5.25b) 

[𝑚21] =

[
 
 
 
 
 
 
 
 
700 0 0 0 0 1400 0 0 0 0
0 700 0 0 0 0 1400 0 0 0
0 0 394 -232b -232a 0 0 1226 -548b -398a
0 0 232b -120b2 112ab 0 0 548b -240b2 -168ab
0 0 -232a 112ab -120a2 0 0 -398a 168ab 160a2

1400 0 0 0 0 700 0 0 0 0
0 1400 0 0 0 0 700 0 0 0
0 0 1226 -548b 398a 0 0 394 -232b -232a
0 0 548b -240b2 168ab 0 0 232b -120b2  -112ab
0 0 398a -168ab 160a2 0 0 232a -112ab   -120a2]

 
 
 
 
 
 
 
 

          (5.25c) 

[𝑚22] =

[
 
 
 
 
 
 
 
 
2800 0 0 0 0 1400 0 0 0 0
0 2800 0 0 0 0 1400 0 0 0
0 0 3454 -922b 922a 0 0 1226 -398b -548a
0 0 -922b 320b2 -252ab 0 0 -398b 160b2 168ab
0 0 922a -252ab 320a2 0 0 548a -168ab   -240a2

1400 0 0 0 0 2800 0 0 0 0
0 1400 0 0 0 0 2800 0 0 0
0 0 1226 -398b 548a 0 0 3454 -922b -922a
0 0 -398b 160b2 -168ab 0 0 -922b 320b2 252ab
0 0 -548a 168ab -240a2 0 0 -922a 252ab 320a2 ]

 
 
 
 
 
 
 
 

        (5.25d) 

For the RMPT application on composite plates element mass matrix is given by 

[𝑀]𝑒 = ∫𝜌[𝑁]𝑇

[
 
 
 
 
 
ℎ 0 0 0 0
0 ℎ 0 0 0
0 0 ℎ 0 0

0 0 0
ℎ3

12
0

0 0 0 0
ℎ3

12]
 
 
 
 
 

[𝑁] 𝑑𝐴                       (5.26) 

The coefficient matrices of membrane and thick bending element are combined as R 

matrix, 
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      [𝑅] =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1−1−1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1−1−1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1−1−1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1−1−1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1−1−1 1
1 1 −1−10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 −1−10 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 −1−10 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 −1−10 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 −1−1
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
1−1 1 −10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1−1 1 −10 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1−1 1 −10 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1−1 1 −10 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1−1 1 −1



]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

            (5.27) 

𝛿 = [ 1 1 1 1 1 𝜉 𝜉 𝜉 𝜉 𝜉 𝜂 𝜂 𝜂 𝜂 𝜂 𝜉𝜂 𝜉𝜂 𝜉𝜂 𝜉𝜂 𝜉𝜂]     (5.28) 

[ 𝑁1 𝑁2 𝑁3 𝑁4 ] = 𝛿[𝑅]
−1                      (5.29a) 

[𝑁] =

[
 
 
 
 

 

𝑁1 0 0 0 0 𝑁2 0 0 0 0 𝑁3 0 0 0 0 𝑁4 0 0 0 0
0 𝑁1 0 0 0 0 𝑁2 0 0 0 0 𝑁3 0 0 0 0 𝑁4 0 0 0
0 0 𝑁1 0 0 0 0 𝑁2 0 0 0 0 𝑁3 0 0 0 0 𝑁4 0 0
0 0 0 𝑁1 0 0 0 0 𝑁2 0 0 0 0 𝑁3 0 0 0 0 𝑁4 0
0 0 0 0 𝑁1 0 0 0 0 𝑁2 0 0 0 0 𝑁3 0 0 0 0 𝑁4]

 
 
 
 

        (5.29b) 

Finally, the mass matrix is obtained as 

[𝑀]𝑒 = 𝜌ab

[
 
 
 
 
 
ℎ 0 0 0 0
0 ℎ 0 0 0
0 0 ℎ 0 0

0 0 0
ℎ3

12
0

0 0 0 0
ℎ3

12]
 
 
 
 
 

∫ ∫ ([𝑁]𝑇[𝑁] 𝑑𝜂) 𝑑𝜉
1

−1

1

−1
           (5.30) 

[𝑀]𝑒 =
ρhab

9
[
[𝑚11] [𝑚12]

[𝑚12] [𝑚11]
]                                (5.31) 
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[𝑚11] =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
4 0 0 0 0 2 0 0 0 0
4 0 0 0 0 2 0 0 0
4 0 0 0 0 2 0 0
ℎ2

3
0 0 0 0

ℎ2

6
0

ℎ2

3
0 0 0 0

ℎ2

6

𝑠 𝑦𝑚. 4 0 0 0 0

4 0 0 0
4 0 0
ℎ2

3
0

ℎ2

3 ]
 
 
 
 
 
 
 
 
 
 
 
 
 

       [𝑚12] =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
1 0 0 0 0 2 0 0 0 0
1 0 0 0 0 2 0 0 0
1 0 0 0 0 2 0 0
ℎ2

12
0 0 0 0

ℎ2

6
0

ℎ2

12
0 0 0 0

ℎ2

6

1 0 0 0 0
𝑠 𝑦𝑚. 1 0 0 0

1 0 0
ℎ2

12
0

ℎ2

12]
 
 
 
 
 
 
 
 
 
 
 
 
 

      (5.32a) 

The first step at stiffness achieving, these isotropic formulations of stiffness matrices 

are converted for orthotropic material properties. 

So, for membrane stiffness Aij matrix from equation 5.3a is used in equation 5.13, 

     [𝐾]𝑚 = ∫[𝐵𝑚]
𝑇[𝐴𝑖𝑗][𝐵𝑚]𝑑𝐴         𝑖, 𝑗 = 1,2,6                        (5.33) 

for bending stiffness Dij matrix from equation 5.3d is used in bending stiffness matrix, 

                [𝐾]𝑏 = ∫[𝐵𝑏]
𝑇[𝐷𝑖𝑗][𝐵𝑏]𝑑𝐴        𝑖, 𝑗 = 1,2,6                      (5.34) 

for bending stiffness Aij matrix from equation 5.3b is used in shear stiffness matrix, 

[𝐾]𝑠 = ∫[𝐵𝑠]
𝑇[𝐴𝑖𝑗][𝐵𝑠]𝑑𝐴        𝑖, 𝑗 = 4,5                      (5.35) 

and for membrane bending stiffness coupling effect Bij matrix from equation 5.3c is 

used for coupling stiffness matrix, 

[𝐾]𝑚𝑏 = ∫[𝐵𝑚]
𝑇[𝐵𝑖𝑗][𝐵𝑏] + [𝐵𝑏]

𝑇[𝐵𝑖𝑗][𝐵𝑚]𝑑𝐴         𝑖, 𝑗 = 1,2,6           (5.36) 

are found. The stiffness matrix of the element varies according to applied the theory. 

If the KLPT is applied, 

[𝐾]𝑒 = [𝐾]𝑚 + [𝐾]𝑏 + [𝐾]𝑚𝑏                        (5.37) 

     𝐵𝑚 =   

[
 
 
 
 
𝜕𝑁𝑚𝑢

𝜕𝑥
0 0 0 0

0
𝜕𝑁𝑚𝑣

𝜕𝑦
0 0 0

𝜕𝑁𝑚𝑢

𝜕𝑦

𝜕𝑁𝑚𝑣

𝜕𝑥
0 0 0]

 
 
 
 

   𝑎𝑛𝑑    [𝐵𝑏] =

[
 
 
 
 0 0

𝜕2𝜕𝑁𝑏

𝜕𝑥2

0 0
𝜕2𝜕𝑁𝑏

𝜕𝑦2

0 0 2
𝜕2𝜕𝑁𝑏

𝜕𝑥𝜕𝑦 ]
 
 
 
 

    (5.38) 

or the RMPT is applied, 

[𝐾]𝑒 = [𝐾]𝑚 + [𝐾]𝑏 + [𝐾]𝑠 + [𝐾]𝑚𝑏           (5.39) 
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𝐵𝑚 =  

[
 
 
 
 
𝜕𝑁

𝜕𝑥
0 0 0 0

0
𝜕𝑁

𝜕𝑦
0 0 0

𝜕𝑁

𝜕𝑦

𝜕𝑁

𝜕𝑥
0 0 0]

 
 
 
 

                        (5.40) 

[𝐵𝑏] =

[
 
 
 
 0 0 0 0 −

𝜕𝑁

𝜕𝑥

0 0 0
𝜕𝑁

𝜕𝑦
0

0 0 0
𝜕𝑁

𝜕𝑥
−
𝜕𝑁

𝜕𝑦]
 
 
 
 

                      (5.41) 

[𝐵𝑠] = [
0 0

𝜕𝑁

𝜕𝑥
0 𝑁

0 0
𝜕𝑁

𝜕𝑦
−𝑁 0

]                       (5.42) 

are used for element. In this thesis, a flat square composite plate non-dimensional 

natural frequencies are calculated with Mathematica 32x32 mesh size codes which are 

depending on the Kirchhoff and Mindlin’s theories respectively. The composite flat 

plate is simply supported at four side. For the material, which has elastic properties as; 

E1/E2=40, G12=G13=0.6 E2, G23=0.5 E2, v12=0.25, calculated first non-dimensional 

frequency values are compared with Reddy & Phan (1985), in Table 5.1. For the thin 

plates, QLLL method is applied on RMPT. 

According to comparisons of CPT and FSDT with HSDT, for thick plates FSDT 

frequencies are actual levels of structures (Reddy & Phan, 1985). In examination of 

present study with FEM plate codes, if the KLPT is applied on composite thick plates 

in code, it can be seen that high differences from the other results and it is not suitable 

for thick plates in terms of neglecting transverse shear deformations. But modified 

Mindlin theory and the Kirchhoff FEM codes give very close results for thin composite 

plates. 

Table 5.1 : Comparison of non-dimensional λ= ω (L2 /h)√(ρ/E2)  natural frequencies 

of the composite simply supported square plate with [0°/90°]s. 

2a/h Present-Kirchhoff  
Reddy & Phan-CPT 

(1985) 
Present-Mindlin  

Reddy & Phan-

FSDT (1985) 

2 15.828 15.830 5.528 5.492 

5 18.317 18.215 10.989 10.820 

10 18.595 18.652 15.469 15.083 

20 18.990 18.767 17.830 17.583 
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6. FOLDED PLATES AND BOX BEAM 

The folded plates are obtained by wrenching a plate or attaching end-to-end plates with 

a certain crank angle. The box beams are evaluated as 4 joining plate or 4 folded plates 

and can be analyzed same methods. These structures have widely applicable area on 

air vehicles like skins with wide crank angles, box beams in wing and empennages, 

helicopter blades etc. So, their vibration characteristics play more important role with 

used approaches in term of aerodynamic and structural integrity of air vehicles. 

These plates are not located in the same plane as a result of crank angle effect. 

Therefore, this case creates difference between the global axes and the plate axes. The 

plate axes are called as local axes of the plates. The folded plates and box beams must 

undergo some processes before it can be analyzed using the finite element method.  

Initial step is transformation of local axes to global axes. If considering the placement 

of the plates, when converting the local axes to the global axes, the plates should be 

relocated so that they are in one plane (ie, a kind of open dice). It shows necessity of 

the axial displacements consideration. Because 3 out of plane DOF on one face of plate 

may be in plane direction at global axes system. So, the structure examined with 5 

DOF including 2 is in plane, 3 is out of plane like composite structures. Likewise, this 

transformation process reveals drilling DOF which is the rotation about the normal 

axis of plate, θz. It can be evaluated as transformation of one rotation of plate local axis 

to global axes system.  

Secondly, adding of drilling DOF blows up the 5 DOF system to 6 DOF system and 

also blows up stiffness and mass matrix to 24x24 dimensions for 4 noded quadrilateral 

elements. Niyogi, et al. (1999), mentioned the θz terms in off-diagonal term is equal to 

zero but diagonal terms should be equaled to at least 1000 times smaller than the 

smallest term of diagonals at mass matrix in order to singularity does not occur. In this 

study diagonal terms of drilling degree are accepted as 0.0000001 and thus, singularity 

errors are avoided. 



46 

 

{
 
 

 
 
𝑢
𝑣
𝑤
𝜃𝑥
𝜃𝑦}
 
 

 
 

= ∑ 𝑁𝑗[𝐼5]
4
𝑗=1

{
 
 

 
 
𝑢𝑗
𝑣𝑗
𝑤𝑗
𝜃𝑥𝑗
𝜃𝑦𝑗}

 
 

 
 

→

{
 
 

 
 
𝑢
𝑣
𝑤
𝜃𝑥
𝜃𝑦
𝜃𝑧}
 
 

 
 

                                   (6.1) 

Finally, after the above operations are done separately for each face of folded plate, 

the elements of the plate are combined with the summation method and made into an 

assembly. General stiffness and mass matrices are obtained as if the folded plates are 

in a single flat plate on global axes with help of transform and they are used as the 

main matrices to find natural frequencies from eigenvalue problem. These matrices 

given by 

[𝐾]𝑔 = [𝑇]
𝑇[𝐾]𝑝[𝑇]                                    (6.2) 

[𝑀]𝑔 = [𝑇]𝑇[𝑀]𝑝[𝑇]                                    (6.3) 

where Kg and Mg are stiffness and mass matrices at global axes system when Kp and 

Mp are local ones and T is the transformation matrix that depends on crank angle. For 

4-noded quadrilateral element, transformation data is shown as 

[𝑇] = [

𝑅 0 0 0
0 𝑅 0 0
0 0 𝑅 0
0 0 0 𝑅

]                                    (6.4) 

[𝑅] =

[
 
 
 
 
 
Cos[X, x] Cos[Y, x] Cos[Z, x] 0 0 0
Cos[X, y] Cos[Y, y] Cos[Z, y] 0 0 0
Cos[X, z] Cos[Y, z] Cos[Z, z] 0 0 0

0 0 0 Cos[X, x] Cos[Y, x] Cos[Z, x]
0 0 0 Cos[X, y] Cos[Y, y] Cos[Z, y]
0 0 0 Cos[X, z] Cos[Y, z] Cos[Z, z]]

 
 
 
 
 

        (6.5) 

where X, Y and Z are global axes, and x, y and z are local axes of the plate, their side-

by-side use represents the angle between them (X, x). The R is the transformation 

submatrix. This matrix and angle relationship comes from vector calculation (Petyt, 

1990). 

�⃗⃗� = 𝑈�̂� +  𝑉�̂� +𝑊�̂�      𝑎𝑛𝑑        �̂��̂� = cos [𝐴, 𝑎]                        (6.6) 

   𝑢 = �̂��⃗⃗� = �̂�(𝑈�̂� +  𝑉�̂� +𝑊�̂�) = 𝑈𝑐𝑜𝑠[𝑋, 𝑥] + 𝑉𝑐𝑜𝑠[𝑌, 𝑥] +𝑊𝑐𝑜𝑠[𝑍, 𝑥]       (6.7) 

𝜃𝑥 = �̂��⃗⃗�, 𝑣 = �̂��⃗⃗�, 𝜃𝑦 = 𝑣�⃗⃗�, 𝑤 = �̂��⃗⃗�, 𝜃𝑧 = �̂��⃗⃗�                         (6.8) 
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6.1. Folded Plates and Results 

In this thesis, folded plates have 90° crank (folding) angle as β or α and different 

materials which are categorized by isotropic and orthotropic. Each fold length is equal 

to 2b dimension of rectangular plate and these edges are clamped. Plate length L is 

equal to 2a dimension of plate and these edges are free.  

At the transformation submatrix, the angle between global and local axis is taken as 

90° for first fold and 180° for the second fold. Since, the first face of folded plate is 

assumed at global axes. The transformation submatrices are given by 

[𝑅1] =

[
 
 
 
 
 
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1]

 
 
 
 
 

                     (6.9a) 

[𝑅2] =

[
 
 
 
 
 
1 0 0 0 0 0
0 0 −1 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 −1
0 0 0 0 1 0 ]

 
 
 
 
 

                    (6.9b) 

[𝑅3] =

[
 
 
 
 
 
1 0 0 0 0 0
0 −1 0 0 0 0
0 0 −1 0 0 0
0 0 0 1 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1]

 
 
 
 
 

                    (6.9c) 

where R1 is transformation submatrix of first face, R2 is transformation submatrix of 

first fold (second face) and R3 is transformation submatrix of second fold (third face).  

The folded plates are shown in Figure 6.1. Their dimensions and boundary conditions 

are represented as one folded and two folded plates for both isotropic, orthotropic, thin 

and thick plates. 
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Figure 6.1 : Clamped one and two folded plate with crank angle α/β (Liu & Huang, 

1992). 

When the isotropic plates are considered, the KLPT and the RMPT can be applicable 

depending on length-to-thickness ratio of plate. For thin plates, the KLPT is preferred 

but if QLLL method is used on RMPT approach, these makes RMPT is applicable. 

Although RMPT is applicable for both of thin and thick plates, the KLPT is not suitable 

for thick ones because of neglecting shear effects which are through thickness of plate. 

The orthotropic plates have composite laminated structure in this thesis. The KLPT 

and the RMPT are applied on different stacking sequenced composite plates with 

membrane effects which are mention in section 5. 

6.1.1. The isotropic plates 

The non-dimensional natural frequencies of one and two folded plates which are 

clamped at one side (x=0) and crank angle 90° are validated with developed FEM code 

in Mathematica. The folded plates are given in Figure 6.1. Two code studies are 

developed as one of these is based on the KLPT and the other one is RMPT with QLLL 

method. 

At the same time, the natural frequencies of plate are obtained from mathematical 

modal in ABAQUS package program. For thin isotropic ones, its material and 

dimension properties are shown in Table 6.1. The one folded thin plate non 

dimensional frequency (λ=Lω√(ρ(1-ν2)/E) results are compared with ABAQUS, 

Niyogi, et al., (1999) and Liu & Huang, (1992) results in Table 6.2 with L=1.5m and 

the comparison for two folded plate is given in Table 6.3 with L=2m. Mode shapes of 

first 5 modes are represented in Figure 6.2 and Figure 6.3 for one folded and two folded 

cantilever isotropic thin plates respectively (L/h>10). 
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Table 6.1 : The thin plate properties (Niyogi, et al, 1999).  

Plate Properties Values 

E 10.92*109 N/m2 

ρ 1000 kg/m3 

ν 0.3 

h 0.02*L 

2a L 

2b 
L/2 for one fold 

L/3 for two fold 

κ 5/6 

Table 6.2 : Comparison of non-dimensional λ=Lω√(ρ(1-ν2)/E)  natural frequencies          

of the 90° one folded thin clamped plate (L=1.5m). 

Modes 

Present-

Kirchhoff 

(16x8) 

Present-

Mindlin 

(16x8) 

Present-

ABAQUS 

(16x8) 

Liu & Huang 

(1992) 

Niyogi, et al. 

(1999) 

1 0.049 0.049 0.0487 0.0491 0.049 

2 0.0972 0.0966 0.0970 0.0971 0.0971 

3 0.1785 0.1792 0.1782 0.1786 0.1881 

4 0.2089 0.2094 0.2085 0.2084 0.2183 

5 0.3471 0.3566 0.3454 0.3558 0.3505 

 

Figure 6.2 : Mode shapes of the cantilever one folded isotropic thin plate. 

 



50 

 

Table 6.3 : Comparison of the non-dimensional λ=Lω√(ρ(1-ν2)/E) natural 

frequencies of the 90° two folded thin clamped plate (L=2m). 

Modes 

Present-

Kirchhoff 

(6x4) 

Present-

Mindlin 

(6x4) 

Present-

ABAQUS 

(6x4) 

Liu & Huang 

(1992) 

Niyogi, et al. 

(1999) 

1 0.1249 0.1238 0.1234 0.1249 0.1249 

2 0.1257 0.1252 0.1271 0.1252 0.1260 

3 0.2579 0.2599 0.2678 0.2697 0.2579 

4 0.2691 0.2727 0.2781 0.2830 0.2892 

5 0.3277 0.3284 0.3165 0.3266 0.3286 

 

Figure 6.3 : Mode shapes of the cantilever two folded isotropic thin plate. 

It can be seen from the above results that the Kirchhoff approach FEM code for an 

isotropic thin plate works better than others, even ABAQUS results. In addition, when 

shear locking is prevented by making necessary applications, the RMPT can also be 

used in thin folded plate FEM codes.  

Then, in order to see the effect of thickness change on the natural frequency easily, the 

non-dimensional frequency values are given in terms of Hz in the Table 6.4. 
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Table 6.4 : Comparison of natural frequencies (Hz) of the folded thin plates. 

Description of plate Modes 
Present-

Kirchhoff 

Present-

Mindlin 

Present-

ABAQUS 

90° one folded 

(L=1.5m) 

1 18.02 17.76 17.91 

2 35.74 35.53 35.64 

3 65.63 65.91 65.51 

4 76.79 77.00 76.63 

5 127.58 131.08 126.94 

90° two folded 

(L=2m) 

1 34.43 34.13 34.03 

2 34.67 34.51 34.96 

3 71.10 71.66 71.88 

4 74.18 75.17 74.98 

5 90.33 90.54 87.25 

Secondly, for the thick plates which have lower thickness ratio (L/h=<10) the code is 

prepared based on RMPT. The isotropic thick plate material and dimension properties 

are same with thin plate shown in Table 6.1 except the thickness of plate h. The plate 

thicknesses equal to 0.2*L for the thick folded plates. The thick folded plate code 

natural frequencies are compared with ABAQUS results in Table 6.5.  

Table 6.5 : Comparison of natural frequencies (Hz) of the folded thick plates. 

Description of plate Modes Present-Mindlin Present-ABAQUS 

90° one folded (L=1.5m) 

1 119.3 118.98 

2 134.14 134.23 

3 233.31 233.15 

4 361.37 360.38 

5 469.62 469.16 

6 476.71 475.78 

90° two folded (L=2m) 

1 87.752 87.126 

2 95.619 94.665 

3 188.70 188.68 

4 281.78 280.12 

5 350.27 346.80 

6 396.78 395.54 
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Both of Mathematica code and ABAQUS solutions of the one folded plate use 32x16 

mesh size and for two folded plate 12x8 mesh size is used. Mode shapes of first 5 

modes are represented in Figure 6.4 and Figure 6.5 for one folded and two folded 

cantilever isotropic thick plates respectively. It can be seen that the Mindlin approach 

FEM code for an isotropic thick plate gives almost same results with ABAQUS 

program from the above results.  

 

Figure 6.4 : Mode shapes of the cantilever one folded isotropic thick plate. 

 

Figure 6.5 : Mode shapes of the cantilever two folded isotropic thick plate. 
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6.1.2. The composite laminated folded plates 

The natural frequencies of one and two folded composite plates which are clamped at 

one side and crank angle 90° are validated with developed code in Mathematica. The 

composite laminated folded plates have same representation in Figure 6.1. Firstly, two 

code studies are developed as one of these is based on composite application of the 

KLPT and the other one is RMPT composite application with gauss integration 

method, for thin folded composite plates. At the same time, the natural frequencies of 

the plate are obtained from mathematical model on ABAQUS.  

Table 6.6 : The composite plate properties with Material Ⅰ (Niyogi, et al, 1999).  

Plate Properties Values 

E1 60.7*109 N/m2 

E2 24.8*109 N/m2 

G12=G13=G23 12*109 N/m2 

ν12= ν21 0.23 

ρ 1300 kg/m3 

tp h/3 

h 0.02*L 

2a L 

2b L/2 

κ 5/6 

For Material Ⅰ, its material and dimension properties are shown in Table 6.6. Stacking 

sequence of the laminated plates is [30°/-30°/30°] and it can be seen in Figure 6.6. The 

composite laminated folded plate code results are compared with Niyogi, et al., (1999) 

non-dimensional frequencies (λ=Lω√(ρ(1-ν12
2)/E1) in Table 6.7. The composite 

laminated folded plate code natural frequencies compare with ABAQUS results in 

Table 6.8. All solutions of the one folded composite plate use 32x16 mesh size and for 

two folded plates, 12x8 mesh size is used. Mode shapes of first 6 modes are 

represented in Figure 6.7 and Figure 6.8 for one folded and two folded cantilever 

composite plates respectively. 
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Figure 6.6 : Ply stacking [30°/-30°/30°] of one fold and two folded composite thin 

plate with reference surface (z=0) and thickness respectively. 

Table 6.7 : Comparison of non-dimensional natural frequencies of the composite 

[30°/-30°/30°] clamped thin plate with Material Ⅰ. 

Description of plate Modes 
Present-

Kirchhoff 

Present-

Mindlin 

Present-

ABAQUS 

Niyogi, et al. 

(1999) 

90° one folded 

(L=1.5m) 

1 0.0416 0.0408 0.0412 0.0390 

2 0.0712 0.0712 0.0710 0.0712 

3 0.1500 0.1456 0.1476 0.1473 

90° two folded 

(L=2m) 

1 0.0915 0.0896 0.0896 0.0887 

2 0.1000 0.0977 0.0980 0.0992 

3 0.2116 0.2027 0.2073 0.2008 

Table 6.8 : Comparison of natural frequencies (Hz) of the composite clamped thin 

plate with Material Ⅰ [30°/-30°/30°] stacking sequence. 

Description 

of plate 
Modes 

Present-

Kirchhoff 

Present-

Mindlin 

Present-

ABAQUS 

90° one 

folded 

(L=1.5m) 

1 31.018 30.457 30.684 

2 53.084 53.037 52.943 

3 111.770 108.503 110.020 

4 123.220 123.780 124.53 

5 191.560 190.224 190.76 

6 211.340 212.107 211.41 

90° two 

folded 

(L=2m) 

1 51.125 50.071 50.092 

2 55.884 54.635 54.770 

3 118.26 113.298 115.88 

4 123.267 119.82 121.38 

5 149.847 148.845 146.83 

6 154.054 153.358 151.12 
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Figure 6.7 : Mode shapes of the one fold composite plate with Material I. 

 

Figure 6.8 : Mode shapes of two fold composite plate with Material I. 

For Material Ⅱ, its material and dimension properties are shown in Table 6.9. The 

composite laminated one folded cantilever plate code results are compared with Haldar 

& Sheikh (2005) and ABAQUS non-dimensional frequencies in Table 6.10. Stacking 

sequences of the laminated plates are [0°/90°] and [45°/-45°] respectively. All 

solutions of the one folded Material Ⅱ composite plate use 16x8 mesh size is used. 
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Table 6.9 : The composite plate properties with Material Ⅱ (Haldar & Sheikh, 2005). 

Plate Properties Values 

E1 25 E2 N/m2 

E2 - 

G12=G13 0.5 E2 N/m2 

G23 0.2 E2 N/m2 

ν12= ν21 0.25 

ρ - 

tp h/2 

h 0.01*L 

2a L 

2b L/2 

κ 5/6 

Table 6.10 : Comparison of non-dimensional natural frequencies (λ=L2ω√(ρ/E2)/h) 

of the one folded cantilever scomposite plate with Material Ⅱ. 

Description of 

plate 
Modes 

Present-

Kirchhoff 

Present-

Mindlin 

Present-

ABAQUS 

Haldar & 

Sheikh 

(2005) 

90° one folded 

[0°/90°] 

1 3.647 3.601 3.601 3.598 

2 9.976 9.901 9.681 9.663 

3 16.237 16.098 15.894 15.776 

4 19.394 19.194 18.894 18.771 

5 39.942 40.060 39.618 39.141 

6 41.830 41.615 41.159 40.186 

90° one folded 

[45°/-45°] 

1 5.876 5.666 5.518 5.527 

2 9.723 9.476 9.086 9.281 

3 19.459 18.585 17.887 18.216 

4 22.423 21.6 20.369 21.117 

5 33.338 32.447 31.404 31.695 

6 40.702 39.3327 36.842 38.141 

It can be seen from the above results that the Mindlin approach FEM code for 

composite thin folded plates works better than others.  
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Secondly, for the thick folded composite plates which have lower thickness ratio (L/h< 

10) the code is prepared based on RMPT with Material I again. Besides, the thickness 

of plate h equals to 2b/5 and it consists of 6 ply which is [30°/-30°/30°/30°/-30°/30°] 

stacking sequence and tp equals to h/6.  

The thick folded plate Mathematica FEM code natural frequencies are compared with 

ABAQUS results at Table 6.11. All solutions of the one folded cantilever composite 

plate use 32x16 mesh size and for two folded plates, 24x8 mesh size is used.  

The following results gives that the Mindlin approach FEM code for the composite 

thick plate converges ABAQUS program in terms of natural frequencies values. The 

Kirchhoff FEM code, which diverges from the actual natural frequency values when 

the thickness ratio of the plate is higher, is not applied on the plate. 

Table 6.11 : Comparison of natural frequencies (Hz) of the composite cantilever 

thick plate with Material Ⅰ [30°/-30°/30°/30°/-30°/30°] sequence. 

Description of plate Modes 
Present-

Mindlin 

Present-

ABAQUS 

90° one folded 

(2a=1.5 m, 2b=0.75 

m, h=0.15 m) 

1 140.71 139.79 

2 180.99 178.27 

3 335.51 331.00 

4 377.61 373.46 

5 496.19 494.39 

6 551.07 546.85 

90° two folded 

(2a=2 m, 2b=0.667 

m, h=0.133 m) 

1 95.99 93.89 

2 157.69 154.18 

3 175.83 167.79 

4 286.04 281.99 

5 323.97 307.42 

6 363.35 350.72 
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6.2. Box Beams and Results 

In this thesis, each of fold length is equal to 2b or 2c of rectangular plate dimension, 

box length is equal to 2a dimension of plate and plate thickness is equal to h. The box 

beam and their dimensions are represented in Figure 6.9. Property tables are given in 

related sections for both isotropic and orthotropic box beams with different materials 

and boundary conditions. 

 

Figure 6.9 : The box beam representation. 

At the transformation submatrix, the angle between global and local axis are is taken 

as 90° for first fold, 180° for the second fold and 270° for the third fold. Because the 

first face of folded plate is assumed on global axes. The transformation submatrices 

R1, R2 and R3 are given in equations 6.9a, 6.9b and 6.9c. The transformation submatrix 

for 270° given by 

[𝑅4] =

[
 
 
 
 
 
1 0 0 0 0 0
0 0 1 0 0 0
0 −1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1
0 0 0 0 −1 0]

 
 
 
 
 

                    (6.10) 

where R4 is transformation submatrix of bottom face (third fold) of box.  

The isotropic box beam study is considered both the KLPT and the RMPT. For thin 

boxes Gauss integration scheme method is used on RMPT. The composite laminated 

box beams, the RMPT are applied on different stacking sequenced composite plates 

with membrane effects which are mention in section 5 due to consideration of 

transverse shear deformation effects through composite laminate. 
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6.2.1. The isotropic box beam 

The non-dimensional natural frequencies of box beams which are clamped at one side 

and also have crank angle 90° are validated with developed code in Mathematica. Two 

code studies are developed as one of these is based on the KLPT and the other one is 

RMPT with Gauss selective integration scheme method. At the same time, the natural 

frequencies of box beams are obtained from mathematical modal in ABAQUS.  

First study is examination of the thin isotropic box beams which have Material III. Its 

material and dimension properties are shown in Table 6.12.  

Table 6.12 : The isotropic thin box beam properties with Material III (Ramkumar & 

Kang, 2013). 

Plate Properties Values 

E 210*109 N/m2 

ρ 7850 kg/m3 

ν 0.3 

h 0.004 m 

2a 0.75m 

2b=2c 0.15m 

κ 5/6 

The comparison of Mathematica code results, ABAQUS results and Ramkumar & 

Kang (2013) for Material III can be seen in Table 6.13. Two different type boundary 

conditions are applied on box beams: clamped-free (cantilever) and clamped-clamped. 

The mesh size 32x8 is used for all the face of box. 

Mode shapes of first 6 modes are represented in Figure 6.10 and Figure 6.11 for 

cantilever and clamped-clamped isotropic box beams with Material III respectively. 

The mesh size is used as 150x30 at ABAQUS and deformed shapes are shown with 

undeformed shape of box beam in order to realize of changing. 
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Table 6.13 : Comparison of natural frequencies (Hz) of the thin isotropic box beam 

with Material III. 

Boundary 

Condition 
Modes 

Present-

Kirchhoff 

(32x8) 

Present-

Mindlin 

(32x8) 

Present-

ABAQUS 

(32x8) 

Present-

ABAQUS 

(150x30) 

Ramkumar 

& Kang 

(2013) 

Clamped-

Free 

1 277.36 277.68 277.09 276.78 277 

2 277.36 277.68 277.09 276.78 277 

3 309.69 311.30 311.45 308.86 309 

4 438.92 444.50 449.35 438.37 438 

5 475.18 479.52 485.54 474.84 475 

6 546.33 548.74 556.86 546.26 547 

Clamped-

Clamped 

1 457.31 463.20 466.62 457.48 457 

2 518.01 522.48 527.60 518.66 518 

3 617.25 621.20 628.28 618.84 618 

4 647.34 658.00 665.59 647.02 646 

5 647.34 658.00 665.59 647.02 646 

6 730.97 743.88 753.97 732.19 730 

The result tables give The Kirchhoff FEM code works better than the modified Mindlin 

FEM code for the thin box beam and converges ABAQUS program which is divided 

into more elements in terms of actual Ramkumar & Kang (2013) natural frequencies 

values. The modified Mindlin FEM code also closes the 32x8 mesh ABAQUS results 

and almost as good as the Kirchhoff. Besides, the different boundary condition effects 

on vibration of box beams can be seen.  

 

Figure 6.10 : Mode shapes of the clamped-free thin Material III isotropic box beam 

with deformed and undeformed shapes. 
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Figure 6.11 : Mode shapes of the clamped-clamped thin isotropic box beam with 

Material III. 

After that, the thick isotropic box beam which has Material III is analyzed h taken as 

0.04 m. Only RMPT is applied on it because of thickness to length ratio of plate 

(L/h<10). The comparison of Mathematica code results and ABAQUS results are 

compared each other in Table 6.14. The mesh size is used as 16x4 for all of the box 

faces. Their mode shapes that obtained by ABAQUS can be seen in Figure 6.12 and 

Figure 6.13. 

Table 6.14 : Comparison of natural frequencies (Hz) of the thick isotropic box beam 

with Material III. 

Boundary 

Condition 
Modes 

Present-Mindlin 

(32x8) 

Present-ABAQUS 

(32x8) 

Present-ABAQUS 

(75x15) 

Clamped-

Free 

1 291.45 290.30 290.46 

2 291.45 290.30 290.46 

3 958.50 958.52 957.86 

4 1294.98 1291.1 1288.2 

5 1294.98 1291.1 1288.2 

6 1728.75 1728.5 1728.2 

Clamped-

Clamped 

1 1203.98 1202.1 1196.9 

2 1203.98 1202.1 1196.9 

3 1926.42 1929.2 1924.2 

4 2497.13 2498.0 2472.9 

5 2497.13 2498.0 2472.9 

6 2581.07 2541.2 2513.0 
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Figure 6.12 : Mode shapes of the thick clamped-free Material III isotropic box beam. 

 

Figure 6.13 : Mode shapes of thick clamped-clamped Material III isotropic box beam. 

6.2.2. The composite laminated box beam 

The composite laminated plate thickness is equal to h while one ply thickness is equal 

to tp. The different stacking sequences and boundary conditions are evaluated for 

examination of composite box beam vibration characteristics. The natural frequencies 

of composite laminated box beams which have crank angle 90° are validated with 

developed code in Mathematica.  
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Two code studies are developed as one of these is based on the KLPT and the other 

one is RMPT with Gauss selective integration scheme method for thin composite box 

beams. For the thick composite box beam, only one FEM code developed based on 

RMPT. 

Table 6.15 : The composite laminated thin box beam properties with Material Ⅳ 

(Ramkumar & Kang, 2013). 

Plate Properties Values 

Material Glass/Epoxy 

E1 37.78 GPa 

E2 10.9 GPa 

G12=G13= G23 4.91 GPa 

ν12= ν21 0.3 

ρ 1870 kg/m3 

tp h/5 m 

h 0.004 m 

2a 0.75m 

2b=2c 0.15m 

κ 5/6 

The composite box beam, which is made with Material Ⅳ, is examined with different 

stacking sequences and compared. Its material and dimension properties are shown in 

Table 6.15. The comparison of Mathematica code results, ABAQUS FEM results and 

Ramkumar & Kang (2013) for Material Ⅳ can be seen in Table 6.16.  

Two different type boundary conditions are applied on box beams. One of them is 

clamped-free ends and the other is clamped at both ends. The mesh size has 2 type as 

16x4 and 32x8 for all the face of box. 

The first 5 ABAQUS mode shapes of thin box beams, which has material Ⅳ, are 

examined as using Figure 6.14, Figure 6.15, Figure 6.16 and Figure 6.17 at different 

boundary conditions and stacking sequence. For instance, the first and second modes 

of cantilever box beam column bending which have the same natural frequency 

because of the symmetry. The third mode is column torsion, fourth mode is a first plate 

bending mode and the rest of the modes are higher plate bending modes. 
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Table 6.16 : Comparison of natural frequencies (Hz) of the composite thin box beam 

with Material Ⅳ. 

Stacking 

Sequence 

Boundary 

Condition 
Modes 

Present-

Kirchhoff 

(16x4) 

Present-

Mindlin 

(16x4) 

Present-

Mindlin 

(32x8) 

Present-

Abaqus 

(32x8) 

Ramkumar 

& Kang 

(2013) 

[45/45/45/ 

45/45] 

Clamped-

Free 

1 147.81 148.65 146.02 146.7 146.7 

2 147.81 148.65 146.02 146.7 146.7 

3 168.63 172.65 166.22 170.25 168.68 

4 251.13 267.08 252.19 260.91 255.71 

5 286.00 297.87 285.32 295.44 289.19 

Clamped-

Clamped 

1 267.61 283.75 269.70 279.68 274.27 

2 317.25 329.06 317.05 328.53 321.56 

3 360.19 398.32 365.51 378.85 368.69 

4 360.19 398.32 365.51 378.85 368.69 

5 392.59 402.76 390.75 405.41 395.52 

[90/90/90/ 

90/90] 

Clamped-

Free 

1 135.61 135.84 134.97 133.41 133.5 

2 135.61 135.84 134.97 133.41 133.5 

3 228.05 234.93 227.39 228.34 226.1 

4 367.67 392.34 370.78 373.56 366.49 

5 374.69 400.66 379.22 383.89 376.85 

Clamped-

Clamped 

1 370.75 396.30 374.44 378.63 371.61 

2 382.89 410.17 389.24 396.44 389.48 

3 405.83 437.13 416.59 428.21 421.08 

4 442.59 473.98 451.73 456.58 449.36 

5 442.59 473.98 451.73 456.58 449.36 

The modified Mindlin FEM code for thin composite box structure gives closer results 

to Ramkumar & Kang (2013) natural frequencies values than ABAQUS results and 

the Kirchhoff FEM code when divided into more elements. In addition, the different 

boundary conditions and angle orientation of plies affect vibration of box beams. The 

45° ply laminates have more natural frequency in first bending modes but other modes 

are higher for 90°. As a result of this, bending coupling effects are estimated in terms 

of angle ply or cross ply usage. 
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Figure 6.14 : Mode shapes of the [45/45/45/45/45] composite clamped-free box beam. 

 

Figure 6.15 : Mode shapes of the [45/45/45/45/45] composite clamped-clamped box 

beam. 

 

Figure 6.16 : Mode shapes of the [90/90/90/90/90] composite clamped-free box beam. 
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Figure 6.17 : Mode shapes of the [90/90/90/90/90] composite clamped-clamped box 

beam. 

The cantilever thin composite box beam which is made with Material V is examined 

according to its material and dimension properties are shown in Table 6.17. The 

stacking sequence of this cantilevered composite box beam is [03/902/03]. 

 The comparison of Mathematica code results and ABAQUS results for Material Ⅵ 

can be seen in  

 

Table 6.18. The mesh size is 16x4 for all the face of box. 

Table 6.17 : The composite laminated box beam properties with Material V. 

Plate Properties Values 

Material Graphite/Epoxy 

E1 23.69 GPa 

E2 7.63 GPa 

G12=G13= G23 3.37 GPa 

ν12 0.26 

ρ 1985 kg/m3 

tp 0.00025 m 

2a 0.655 m 

2b 0.057 m 

2c 0.019 m 

κ 5/6 
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Table 6.18 : Comparison of natural frequencies (Hz) of the composite thin box beam 

with Material V [03/902/03]. 

Modes 
Present-Kirchhoff 

(16x4) 

Present-Mindlin 

(16x4) 

Present-ABAQUS 

(16x4) 

1 35.50 35.50 35.14 

2 80.97 80.97 80.20 

3 206.67 207.58 202.73 

4 313.44 314.67 309.82 

5 461.25 461.88 458.75 

The modified Mindlin FEM code and the Kirchhoff FEM code for thin cantilever 

composite box structure give closer results each other and their tolerances are better 

than ABAQUS. The mode shapes of first 6 modes are represented in Figure 6.18  for 

cantilever composite box beams with Material V. 

 

Figure 6.18 : Mode shapes of the thin cantilever Material V composite box beam 

with undeformed and deformed shapes. 

After that, the thick composite box beam, which has material V, properties and 

stacking sequence are shown in Table 6.17 except tp equals to 0.0005 m. The RMPT 

is applied as a result of higher thickness to length ratio. The Mathematica code results 

and ABAQUS results are compared each other in Table 6.19. The mesh size is 24x6 

for all of the box faces. 
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Table 6.19 : Comparison of natural frequencies of the composite thick box beam 

with Material V [03/902/03]. 

Modes Present-Mindlin (Hz) Present-ABAQUS (Hz) 

1 34.74 35.42 

2 79.20 81.11 

3 203.53 204.13 

4 325.51 324.96 

5 451.42 459.19 

6 519.85 509.85 

The RMPT FEM code is used for thick cantilever composite box structure due to better 

tolerances on composites and high thicknesses. For the same lattice sizes, Mathematica 

FEM code appears to work better than ABAQUS when comparing box beam results. 

Their mode shapes that obtained by ABAQUS can be seen in Figure 6.19. 

 

Figure 6.19 : Mode shapes of the thick cantilever Material V  composite box beam 

with undeformed and deformed shapes. 
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7. CONCLUSIONS AND RECOMMENDATION 

In this thesis, the flat plates, folded plates and box beams are examined to know the 

influence of altered thickness and boundary conditions on behavior of structures in 

terms of frequency. Examination of the vibration is evaluation process of the isotropic 

and composite plates that have different length-to-thickness ratio under different 

boundary conditions. However, the plates and plate theories are specified according to 

changed length to thickness ratio. In order to obtain more precise results, research is 

made on folded plates and box sections with the same geometric parameters or material 

properties based on the comparison factor. 

From the studies on folded plates and box beams, the following conclusions can be 

drawn about effect on frequencies, such as: 

 For plates, folded plates and box beams which have low length to thickness 

ratio (L/h<10-thick), the RMPT approach FEM code is better than the other 

compared theories. The KLPT FEM code diverges from the actual natural 

frequency for this plates. 

 For thin plates (L/h>10) the KLPT approach FEM code is more applicable but 

the modified Mindlin can be used and gives almost close results. 

 It can be seen from the comparing results that the RMPT approach FEM code 

works better than others as a result of taking into account the changing 

transverse shear deformation effects across the laminate for composite folded 

plates. 

 The isotropic box beams are investigated, for thick ones RMPT FEM gives 

closer to actual natural frequencies of structure. Also, for thins modified RMPT 

FEM code and the KLPT FEM code are almost at same accuracy. 

 The composite laminated box beams are considered, the RMPT FEM gives 

best results. In addition, for thins modified RMPT FEM code and the KLPT 

FEM have better tolerances than ABAQUS. 
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 The different boundary condition effects on vibration of box beams can be seen 

that clamped condition increases the natural frequencies when compared 

clamped-clamped and cantilever box beam frequencies. So, it can be concluded 

that the increase in the restricted DOF affects the frequency to increase the 

frequency because of the effect of altered stiffness, inertia terms. These effects 

can also be examined on the mode shapes. 

 The stacking sequence and angle orientations affect the natural frequency. For 

this evaluation, it can be compared that angle ply and cross ply orientations. 

The angle ply laminates have more natural frequency in first bending mode as 

a result of bending coupling like 45° plies. 

 Especially, ABAQUS diverges at high modes of box beams. For the same 

lattice sizes, Mathematica FEM code appears to work better on the composite 

boxes. 

 There is a frequency fall with decreasing thickness of plate which means the 

slender structure would have failure at lower vibration levels like local 

vibrations. 

 The variances between the theories rely on many parameters such as angle 

orientations, stacking sequences, thickness, and BCs. 

 The transverse shear terms play significant role in analyzing folded and box 

structures especially composite ones to achieve better accuracy. At the same 

time, the membrane effects cannot be neglected for this type structures owing 

to the fact that the stiffness and mass matrices are transformed as planar.  

Consequently, the various end conditions, lay-ups and materials have been appeared 

to response differently as above. Folding is observed with little differences by both of 

the theories for isotropic structures but for composites, RMPT can be preferred to 

obtain better accuracy on behavior.  

It may be recommended to consider aeroelastic effects in future studies. Aerodynamic 

formulations can be implemented in this work. Also, Circumferentially Asymmetric 

Stiffness/Circumferentially Uniform Stiffness Configuration thin walled beams 

examination with above methods can be another recommendation.  The rotation can 

be added to evaluate vibration characteristics of structures such as helicopter blades.
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