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DYNAMIC AND AEROELASTIC ANALYSIS OF A HELICOPTER BLADE 

WITH ACTIVELY CONTROLLED TRAILING EDGE FLAP IN FORWARD 

FLIGHT 

SUMMARY 

The main focus of the present research is on the development of a computer code that 

carries out the dynamic and aeroelastic analysis of a hingeless helicopter blade under 

hover and forward flight conditions. The blade has a trailing edge flap to reduce 

blade vibration and the flap mechanism is actuated by a piezoelectric bender type 

actuator that is connected to the flap by a linkage arm. 

The present dissertation is organised in four main sections, i.e. introduction part, 

structural formulation, aerodynamic formulation and aeroelastic formulation. 

In the introduction part, information is given about smart structures, smart materials, 

rotor types, rotor aerodynamic environment, rotor vibration control techniques, smart 

rotors, and actuators. Additionally, blade and actuator types that are preferred in this 

research are introduced and objectives of the dissertation are mentioned about. 

Moreover, a brief literature review is given. The aim of the Introductionsection is to 

introduce smart structures, vibration reduction techniques, helicopter rotor systems, 

etc. to the reader so it is going to be easier and more meaningful for the reader to 

understand all the derivations carried out in the following sections.  

In the first part of the structural formulation, some information is given about the 

mechanics of a piezolaminated beam and expressions of the mechanical and the 

electrical loads that act on this beam model are derived in detail. The resulting 

expressions of this subsection are used in the analytical formulation of the bender 

type piezoelectric actuator. In the second part of the structural formulation, analytical 

beam models are developed both for the piezoelectric actuator and for the helicopter 

blade, seperately. Since the actuator is modeled as a short beam, Timoshenko beam 

theory is used for the actuator while Euler-Bernoulli beam theory is used for the 

helicopter blade that is modeled as a long, slender beam. Both the bender type 

actuator and the hingeless blade are modeled as cantilever beams that have fixed-free 

end conditions. Related strain fields and the energy expressions are derived step by 

step by introducing several explanatory tables and figures. Afterwards, Hamilton’s 

principle is applied to these energy expressions to obtain the governing differential 

equations of motion and the boundary conditions. An efficient semi-analytic, 

mathematical technique called the Differential Transform Method (DTM), is applied 

to these equations as a solution procedure. Effects of several parameters, i.e. 

rotational speed, vibration coupling, ply orientation, boundary conditions, voltage, 

etc. on the natural frequencies or tip deflection are investigated and whenever it is 

possible, the calculated results are validated by making comparisons with the studies 

in open literature. When the related results are not available in open literature, the 

examined beam model is modeled in the commercial finite element programme 

ABAQUS and validation is made by using the results calculated by ABAQUS. After 
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the validation of the analytical models, finite element method is applied to these 

models to get the element matrices, i.e. element stiffness and mass matrices. 

Depending on the number of elements used in the structural modeling code, all the 

element matrices are assembled by considering the finite element rules to obtain the 

global matrices. The boundary conditions at the fixed end are applied to the global 

matrices to get the reduced matrices and the matrix systems of equations are obtained 

for the structural models.Modal analysis is used to solve the matrix equations and the 

results that are obtained by solving these matrix equations of motion are compared 

with the previously validated analytical ones to check the accuracy and the 

correctness of finite element formulation and a very good agreement between the 

results is observed. After the validation of the structural models, length of the linkage 

arm between the piezoelectric bender type actuator and the flap mechanism is 

calculated and this length is used in the aeroelastic part for the calculations made to 

examine the effect of the applied voltage on the tip deflection. 

In the aerodynamic formulation, Theodorsen’s unsteady aerodynamic theory for a 

two dimensional thin airfoil with a trailing edgeflap is used. Firstly, the flap 

mechanism is discarded to model the aerodynamic loads on a plain helicopter blade. 

Secondly, the terms of the Theodorsen formulation that are related only to the flap 

deflection are considered to model the flap aerodynamics. Variation of the flap 

induced aerodynamic moment coefficient and flap induced aerodynamic lift 

coefficient with respect to time are plotted and the calculated results are compared 

with the ones in open literature for validation and a good agreement between the 

results is observed. Lastly, the two aerodynamic formulation, i.e. plain blade 

aerodynamics and trailing edge flap aerodynamics, are combined to model the 

aerodynamic loads on a helicopter blade with a trailing edge flap. Afterwards, 

several steps including coordinate transformations are performed to adapt the 

Theodorsen’s theory to the aerodynamic environment of the helicopter blade.  

In the aeroelastic formulation part, the aerodynamic loads that act on the helicopter 

blade with a trailing edge flap are applied on the structural model of the hingeless 

helicopter blade. Aerodynamic matrices are assembled with the structural ones to 

obtain the aeroelastic matrix system of equations. Both hover and forward flight 

conditions are considered. Runge Kutta method is applied to the system of equations 

and the effects of several parameters, i.e. advance ratio, rotor disk angle of attack, 

trailing edge flap deflection angle, voltage applied to the piezoelectric actuator, on 

the vibration characteristics of the helicopter blade are inspected. Consequently, all 

the effort succeeded and the blade tip vibration is reduced in forward flight by 

deflecting the trailing edge flap.  
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AKTİF OLARAK KONTROL EDİLEN FİRAR KENARI FLABINA SAHİP 

BİR HELİKOPTER PALİNİN İLERİ UÇUŞTA DİNAMİK VE 

AEROELASTİK İNCELEMESİ 

ÖZET 

Bu doktora tezinin asıl amacı, askıda kalma ve ileri uçuş koşulları altında menteşesiz 

bir helikopter palinin dinamik ve aeroelastik incelemesini yapan bir bilgisayar 

programı geliştirmektir. Helikopter palinin firar kenarında pal titreşimlerinin 

azaltılması için kullanılacak flap yer almaktadır ve flap, flap mekanizmasına bir 

bağlantı kolu ile etki eden piezoelektrik eyleyici yardımıyla hareket ettirilmektedir.  

Bu çalışmada; giriş bölümü, yapısal formülasyon, aerodinamik formülasyon ve 

aeroelastik formülasyon olmak üzere dört ana bölüm yer almaktadır.  

Giriş bölümünde, akıllı yapılar, akıllı malzemeler, helikopter rotor tipleri, rotor 

çevresi aerodinamik ortamları, titreşim kontrol teknikleri, akıllı rotorlar ve eyleyici 

tipleri, vb. konularda bilgi verilmektedir. Ayrıca, bu çalışmada kullanılması tercih 

edilen eyleyici ve rotor tipinden bahsedilmekte ve literatürde yapılan çalışmalar 

hakkında bilgi verilmektedir. Bu Giriş bölümünün amacı; akıllı malzemeler, rotor 

sistemleri, titreşim azaltma yöntemleri, vb. konularda okuyucuya gerekli bilgileri 

vererek daha sonraki bölümlerde yapılan formül çıkarımlarının ve anlatılan konuların 

okuyu tarafından daha kolay anlaşılmasını ve daha anlamlı olmasını sağlamaktır. 

Yapısal formülasyon, piezoelektrik katmanlı kiriş mekaniği, analitik formülasyon ve 

sonlu elemanlar formülasyonu olmak üzere iki alt bölümden oluşmaktadır. Yapısal 

formülasyonun ilk kısmında, piezoelektrik katmanlı kirişlerin mekaniği hakkında 

temel bilgilerin verilmesinin yanısıra bu kirişlere etkiyen yük ifadelerinin çıkarımı 

detaylı bir biçimde yapılmıştır. Bu alt bölümden elde edilen sonuçlar, eğilen kiriş tipi 

piezoelektrik eyleyici için oluşturulan kiriş modelinin analitik formülasyonunda 

kullanılmaktadır. Yapısal formülasyonun ikinci alt bölümü olan analitik formülasyon 

kısmında, piezoelektrik eyleyici ve helikopter pali için kiriş modelleri ayrı ayrı 

geliştirilmiştir. Piezoelektrik eyleyici,kısa bir kiriş olarak modellendiği için eyleyici 

için eğilme-uzama etkileşimli Timoshenko kiriş modeli kullanılırken uzun bir kiriş 

olarak modellenen helikopter pali için düzlemiçi eğilme-düzlemdışı eğilme ve 

burulma etkileşimli Euler-Bernoulli kiriş modeli kullanılmaktadır. Ayrıca hem 

piezoelektrik eyleyici hem de helikopter pali, ankastre kirişler olarak modellenmiştir. 

İlgili birim uzama alanları, potansiyel enerji ve kinetik enerji ifadeleri, çeşitli ve 

açıklayıcı tablolar ve grafikler kullanılarak adım adım elde edilmiştir. Elde edilen 

enerji ifadelerine bir sonraki adımda Hamilton prensibi uygulanarak diferansiyel 

hareket denklemlerinin ve sınır şartlarının çıkarımı yapılmıştır. Literatürde var olan 

çalışmalarla karşılaştırma yapabilmek amacıyla boyutsuz parametreler tanımlanmış 

ve elde edilen denklemler boyutsuz hale getirilmiştir. Etkin bir matematiksel teknik 

olan yarı-analitik Diferansiyel Dönüşüm Yöntemi, elde edilen boyutsuz hareket 

denklemlerine ve sınır şartlarına uygulanarak çözüm yapılmıştır. Dönme hızı, 

titreşim etkileşimleri, katman düzeni, sınır şartları ve voltaj gibi çok çeşitli 
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değişkenlerin, doğal frekanslar ve kiriş uç deplasmanları üzerindeki etkileri 

incelenmiş ve mümkün olduğunca literatürde var olan sonuçlar ilekarşılaştırmalar 

yapılmıştır. Elde edilen sonuçların doğrulanması için ilgili örnekler literatürde 

bulunamadığı taktirde kiriş modelleri, ticari sonlu elemanlar programı ABAQUS ile 

modellenmiş ve hesaplanan sonuçlar ile ABAQUS’ten alınan sonuçların 

karşılaştırması yapılmıştır. Analitik olarak elde edilen sonuçların, hem literatür hem 

de ABAQUS sonuçları ile oldukça uyumlu olduğu gözlenmiştir. Analitik modellerin 

doğrulaması yapıldıktan sonra, yapısal formülasyonun son bölümü olan sonlu 

elemanlar modellemesine başlanmıştır. İlk olarak deplasman alanları, polinomlar ile 

tanımlanmıştır. Tanımlanan deplasman alanları, eleman düğüm noktalarındaki 

deplasman ifadeleri cinsinden yazılarak şekil fonksiyonları elde edilmiştir. Bu şekil 

fonksiyonları, daha önce analitik kısımda elde edilen potansiyel ve kinetik enerji 

ifadelerinde kullanılarak sırasıyla eleman katılık ve eleman kütle matrisleri gibi 

eleman seviyesindeki matrislerin çıkarımı yapılmıştır. Eleman matrislerinin, sonlu 

elemanlar yöntemine uygun olarak toplanması ile tüm yapıya ait global matrisler elde 

edilmiş ve bu matrislere gerekli sınır şartları uygulanarak indirgeme yapılmıştır. 

İndirgenmiş global matrislerin oluşturduğu denklem sistemleri Modal Analiz 

uygulanarak çözülmüş ve elde edilen sonuçlar, uygulanan sonlu elemanlar 

formülasyonunun doğruluğunu teyit etmek amacıyla daha önce analitik kısımda elde 

edilen sonuçlar ile karşılaştırılmıştır ve sonuçlar arasında çok iyi bir uyum olduğu 

gözlenmiştir. Piezoelektrik eyleyici ve helikopter pali için kurulan yapısal modellerin 

doğrulanması tamamlandıkan sonra, eyleyiciyi flap mekanizması ile ilişkilendiren 

baglantı kolunun olası uzunluğu hesaplanmıştır. Hesaplanan bağlantı kolu uzunluğu 

daha sonra aeroelastik kısımda incelenen voltaj etkisi ile ilgili hesaplamalarda 

kullanılmıştır. 

Aerodinamik formülasyon bölümünde, iki boyutlu, flaplı, ince kanat profili için 

geliştirilmiş Theodorsen teorisi kullanılmıştır. Bu teoride kanat profili kanat çırpma, 

burulma ve flap sapması olmak üzere üç titreşime maruz kalmaktadır. İlk olarak, flap 

mekanizması hesaba katılmayarak sade bir helikopter palinin üzerine etkiyen 

aerodinamik yüklerin çıkarımı yapılmıştır. İkinci olarak, Theodorsen teorisinde yer 

alan ve sadece flap titreşimini içeren terimler göz önüne alınarak flap aerodinamiği 

modellenmiştir. Flap taşıma katsayısı ile flap moment katsayısının zamanla 

değişimini gösteren grafikler çizilerek literatürdeki sonuçlar ile karşılaştırma 

yapılmıştır. Sonuçlar arasındaki uyum, uygulanan formülasyonun doğruluğunu 

kanıtlamıştır. Aerodinamik formülasyonun son bölümünde, flapsız pal aerodinamiği 

ile flap aerodinamiği birleştirilerek hem askıda kalma hem de ileri uçuş koşulları 

altında flaplı helikopter paline etkiyen aerodinamik yüklerin hesabı yapılmıştır. Daha 

sonra, Theodorsen teorisini helikopter aerodinamiğine uygun hale getirebilmek 

amacıyla çeşitli adımlar gerçekleştirilmiştir. Bu uygulama çerçevesinde; pal 

üzerindeki hız ifadesi bileşenlerine ayrıldıktan sonra, teoride tanımlanan taşıma ve 

moment ifadeleri bu hız bileşenleri cinsinden yazılmıştır. Çeşitli koordinat 

dönüşümleri yapıldıktan sonra pal üzerine etkiyen taşıma ve moment ifadeleri; ileri 

uçuş oranı, önkoniklik açısı, yunuslama kontrol açısı, azimut açısı ve pal 

deplasmanları cinsinden ifade edilmiştir.  

Aeroelastik formülasyon bölümünde, flaplı helikopter paline ait aerodinamik 

formülasyon sonucu elde edilen aerodinamik yükler, helikopter palinin 

modellenmesinde kullanılan eğilme-eğilme-burulma etkileşimli Euler-Bernoulli 

kirişine uygulanmıştır. Aerodinamik matrisler ile yapısal matrislerin birleştirilmesi 

sonucunda aeroelastik denklem sistemlerine ulaşılmıştır. Denklem sistemlerinin 
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çözümünde Runge Kutta yönteminden yararlanılmıştır ve hem askıda kalma hem de 

ileri uçuş durumları göz önünde bulundurulmuştur. Yapılan çözümler sonucunda 

askıda kalma durumunda yapının kendi kendini sönümlediği ve bu nedenle flap 

mekanizmasının, askıda kalma durumunda titreşim sönümleme amacıyla 

kullanılmasının anlamsız olacağı görülmüştür. Ancak, ileri uçuş koşulları altında 

zamana bağlı ek terimlerin varlığı sebebiyle yapının kendi kendini sönümlemesi 

engellendiğinden firar kenarı flabı hareket ettirildiğinde helikopter pal ucu 

titreşiminin azaldığı gözlenmiştir. Daha önce yapısal kısımda piezoelektrik eyleyici 

ile flap mekanizması arasında yer alan bağlantı kolunun boyutlandırılmasında göz 

önünde bulundurulan flap açısının pal titreşiminin azaltılmasında yeterli olduğu, 

aeroelastik hesaplamalarda görülmüştür. İlerleme oranı, rotor diski hücum açısı, flap 

sapma açısı ve piezoelektrik eyleyiciye uygulanan voltaj gibi parametrelerin 

helikopter pal titreşimine nasıl etki ettiği incelenmiştir.  

Sonuçta, bu tezin asıl amacı olan pal titreşiminin firar kenarı flabı ile azaltılması 

konusunda başarılı olunmuştur ve bu konuda çok sayıda yapısal, aerodinamik ve 

aeroelastik bilgisayar kodu yazılmıştır.  
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1.  INTRODUCTION 

Helicopters experience large vibration because of the unsteady aerodynamic 

environment acting on highly flexible rotating blades soin forward flight, periodic 

aerodynamic loading of the blades is the primary source of vibratory loads. Since 

vibration has several important effects, i.e. poor performance, short fatigue life of 

onboard equipment, passenger and crew discomfort, high maintenance cost, etc. on a 

helicopter; designers are required to model structures and control surfaces that have 

more acceptable vibration levels (Viswamurthy and Ganguli, 2008). Various passive 

vibration reduction techniques were suggested by the early studies in this field 

(Loewy, 1984).Nevertheless, these traditional passive techniques, i.e. absorbers and 

isolators, blade structural optimization, etc., have not been effective and/or efficient 

enough to maintain the desired comfort level. Therefore, active approaches that have 

relative advantages on the traditionl passive techniques have received considerable 

attention in the last two decades (Lee and Chopra, 1999; Friedmann et al.,2001; 

Wilber et al., 2002). 

In this section, brief information is given about intelligent structures, smart materials, 

active vibration reduction techniques, smart helicopter blade configurations,smart 

actuator types, rotor types and rotor aerodynamic environment. Additionally, the 

concept downselection, literature survey and roadmap of the disserttaion are 

presented. 

The aim of this section is to introduce some basic information smart 

materials/structures and helicopter rotor to the reader so it is going to be easier and 

more meaningful for the reader to understand all the derivations carried out in the 

following sections. 

1.1 Intelligent Structures 

Intelligent structuresare a subset of a much larger field of research,as shown in 

Figure 1.1. 
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Figure 1.1: Intelligent structures as a subset of controlled and 

activestructures,adapted from (Crawley, 1994). 

1.1.1 Adaptive structures 

Adaptive, in other words actuated structures have distributed actuators. Leading- and 

trailing-edge control surfaces on a wing or articulated manipulators of a robotic 

system are good examples for adaptive structures.  

1.1.2 Sensory structures 

Sensory structures have distributed sensors which detect mechanical states such as 

displacements, strains, etc. or electromagnetic states, temperature, heat flow, etc. 

Damage detection is one of the application areas of sensory structures.  

1.1.3 Controlled structures 

Structures that have both distributed sensors and actuators linked by closed-loop 

control are called controlled structures.  

1.1.4 Active structures 

Active structures take place in the subset of controlled structures and distinguished 

from the controlled structures by distributed actuators that have structural 

functionality and that are part of the load bearing system.  

1.1.5 Intelligent structures 

Intelligent structures,are a subset of active structures and they have highly distributed 

actuator and sensor systems with structural functionality. Additionally, distributed 

Controlled 

Active 

Sensory Adaptive 
I 
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control functions and computing mechanism are present in the intelligent structures 

(Crawley, 1994). 

In Table 1.1, which is adapted from (Loewy, 1997), subsets of smart structures are 

defined briefly in a table format which makes it easier to understand their 

differences. 

Table 1.1:Subsets of smart structures. 

Subset Classification Function Implementation 

(Self-) Adaptive Sensor Nonstructural 

Controller Nonstructural, external 

Actuator Embedded, integrated 

(Self-) Sensing Sensor Load carrying, embedded, 

integrated 

Controller Nonstructural, external 

Actuator Traditional, concentrated, 

external to structure 

Active Sensor Embedded, integrated 

Controller Nonstructural, external 

Actuator Embedded, integrated 

Intelligent Sensor Embedded, integrated 

Controller Load carrying, embedded, 

integrated 

Actuator Embedded, integrated 

The interest in intelligent structures has steadily increased during the last 20 years 

due to the fact that this new generation of structural systems has special 

functionalities, i.e. sensing, actuation, shape morphing, health monitoring, vibration 

control, etc. Moreover, these structures have the capability of developing special 

stiffness and strength characteristics which are generally not present in other 

materials (Gaudenzi, 2005).Key elements in the application of intelligent structures 

technology to a system are actuators, sensors, control methodology and hardware, i.e. 

computer and power electronics (Chopra, 2002). Sensors, actuators and controllers of 

these systems are seamlessly integrated with structural materials at the macroscopic 

or mesoscopic level (Tani and Qui, 1998). 

Due to the following reasons, intelligent structures are becoming feasible: 

 Commercial availability, 

 Easily embeded in laminated structures, 

 Utility of material couplings such as between mechanical and electrical properties,  

  Potential of a substantial jump in performance improvement at a small price, 

 Advances in microelectronics, information processing and sensor technology. 
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1.2 Smart Materials 

Components of smart structures, i.e sensors, controllers and actuators, are made of 

smart materials which are functional materials and fluids such as piezoelectric 

materials, magnetostrictive materials, shape memory alloys, electro-and magneto-

rheological fluids and so on. In this section, some brief information is given about 

some of the outstanding ones of these materials. 

1.2.1 Piezoelectric materials 

Piezoelectricmaterials are one of the most popular smart materials. Mechanically 

strained piezoelectric materials become polarized and electrical charge is produced 

on the surface of the material. This property is called the “direct piezoelectric effect” 

and makes piezoelectric materials to beavailable as sensors. On the other hand, when 

an electric field is applied across the material, the material deforms and strain is 

produced. This property is called the “converse piezoelectric effect” and makes 

piezoelectric materials to beavailable as actuators.Quartz, Rochelle salt and 

Tourmaline are some of the naturally occurring piezoelectric materials. Two of the 

most popular man-made piezoelectric materials are PZT (Lead Zirconate Titanate), a 

ceramic, and PVDF (Polyvinylidine Fluoride) a polymer. The most widely used 

piezoceramicssuch as leadzirconatetitanate are in the form of thin sheets that can be 

readily attached or embedded in composite structures or stackedto form 

discretepiezostackactuators. Piezoelectric materials are relatively linear at low fields 

and bipolar,but exhibit hysteresis. 

1.2.2 Magnetostrictive materials 

Magnetostrictive (MS) materials such as Terfenol-D exhibit the dual properties that 

strain is generated in response to a magnetic field and conversely, mechanical stress 

produces domain changes which yield measurable magnetic effects. These materials 

are nonlinear and exhibit hysteresis. Over a wide range of frequency, they generate 

low strains and moderate forces. These actuators are often bulky due to the coil and 

magnetic return path. 
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1.2.3 Shape memory alloys 

Shape memory alloys (SMA) appear attractive as actuators because of the possibility 

of achieving large excitation forces and displacements. These materials undergo 

phase transformation at a specific temperature. When plastically deformed at a low 

temperature, these alloys recover to their original undeformed condition if its 

temperature is raised above the transformation temperature. This process can be 

repeated again. A remarkable characteristic of SMA is its large change of modulus of 

elasticity with heating, typically three to five times of room temperature value. The 

most common SMA material is Nitinol, nickel titanium alloy and is available in the 

form of wires of different diameters. Though heating is carried out internally 

(electrically), response is very slow (less than 1 Hz).  

1.2.4. Electrostrictive materials 

Electrostrictive materials are quite identical to piezoelectric materials, with slightly 

better strain capability, but they are very sensitive to temperature. They are available 

in the form of thin layers and stacks.Electrostrictive materials have a nonlinear 

relation between an applied field and induced strain, but exhibit negligible hysteresis.  

1.2.5. Rheological fluids 

Rheological fluids consist of suspensions of fine dielectric particles in an insulating 

fluid that exhibit controlled rheological behavior in the presence of large applied 

electric fields. Application of an electric field results in a significant change of shear 

loss factor, viscosity that helps to alter damping of the system (Tani and Qiu, 1998). 

In Table 1.2, which is adapted from (Loewy, 1997), brief information is given about 

the energy exchange capabilities of smart structures. Ticks in more than one row per 

column indicate energy-exchange capability for each structure. Additionally, 

response of several materials to different inputs are given in Table 1.3, which is 

adapted from (Preumont, 2006). Here, the smart materials correspond to non-

diagonal cells. 
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Table 1.2: Energy exchange capabilities of smart materials. 

Energy Form Piezoelectric Magnetostrictive 

Shape 

memory 

alloy 

Rheological 

fluid 

Strain √ √   

Stress    √ 

Temperature   √  

Voltage field √   √ 

Magnetic field  √   

Chemical 

(material phase) 
  √  

Table 1.3: Input – output effects in materials. 

INPUT 

OUTPUT 

Strain 
Electric 

Charge 

Magnetic 

Flux 
Temperature 

Stress Elasticity 
Piezo-

electricity 

Magneto-

striction 
 

Electric 

Field 

Piezo-

electricity 
Permittivity   

Magnetic 

Field 

Magneto-

striction 

Magneto-

electric Effect 
Permeability  

Heat 
Thermal 

Expansion 
Pyroelectricity  

Specific 

Heat 

1.3 Rotor Blades 

1.3.1 Rotor blade motions 

The simplest model of a rotating blade involvesa rigid blade that is 

hinged at the root to the rotor hub and that undergoesrotations,i.e. flapping, 

lead-lag and feathering, about the root as shown in Figure 1.2. 

In Figure 1.2(a), flapping motion, i.e. the degree of freedom that produces motion of 

the rotor disk plane, is shown. This motion appears about either a hinge or a region 

of structural flexibility at the root and is represented by the flapping angle, β. The 

flapping angle is positive upwards since the main reason of this motion is the thrust 

force on the blade that is also in the upwards direction.  

In Figure 1.2(b), lead-lag motion, i.e. the degree of freedom that appears in the plane 

of the rotor disk is shown and is represented by the lead-lag angle, ξ. Since lead-lag 

motion is the result of the drag force, it is positive when opposing the direction of 

rotation. 
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In Figure 1.2(c), feathering motion or blade pitching, i.e. the degree of freedom that 

appears about a bearing at the root is shown and is represented by the pitching angle, 

Φ. The axis of the bearing is parallel to the blade spanwise direction and the pitching 

angle is positive when the blade leading edge rotates upwards (Johnson, 1946). 

 

(a) 

 

(b) 

 

(c) 

Figure 1.2: (a) Flapping (flapwise bending) motion(b)Lead-lag(chordwisebending) 

motion, adapted from (Leishman, 2000) (c)Feathering(pitching, torsion)motion of the 

rotor blade, adapted from (Bramwell, 1976). 
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1.3.2 Rotor hinges 

The loads on the rotor blades are large and time variant and the hinges were 

developed to minimize these loads. Additionally, hinges reduce the rate at which the 

rotor blade responds to the controls. A detailed representation of each blade motion 

and the configuration of the hinges areillustrated in Figure 1.3.  

 

Figure 1.3: Rotor blade motions and hinges, adapted from (Bramwell, 1976). 

In 1904, Renard suggested to use hinges to relieve the large bending stresses at the 

blade root and to eliminate the rolling moment that appears in forward flight. 

However in 1920s, Cierva was the first one who practically and successfully applied 

hinges. The hinge axes are not always mutually perpendicular and the sequence of 

the hinges may change . Usually, the flapping hinge is the one that is the most 

inboard and the feathering bearing is the most outboard. However, in some 

configurations the lead-lag hinge is located outside the feathering bearing. 

Additionally, some helicopters have the flapping and the lead-lag hinges at the same 

location as shown in Figure1.4 (Bramwell, 1976).  
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Figure 1.4: Flapping and lead-lag hinges at the same location, adapted 

from(Watkinson, 2004). 

1.3.3 Rotor types 

Commonly there are four types of rotor hub configurations, which are teetering (see-

saw) rotor, fully articulated rotor, hingeless and bearingless rotors. 

1.3.3.1 Teetering (see-saw) rotor 

Teetering rotor whose configuration is given in Figure 1.5 has two blades that are 

hinged on the rotor shaft and that have no independent flapping and lead-lag hinges. 

However, each blade has a separate feathering bearing, which makes the cyclic and 

the collective pitch possible. 
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Figure 1.5:Teetering rotor, adapted from (Bramwell, 1976). 

Advantage of this rotor configuration is its mechanical simplicity due to low part 

count while high parasitic drag in forward flight is the main disadvantage (Leishman, 

2000) 

1.3.3.2 Articulated rotor  

A large number of helicopters have fully articulated rotor configuration where each 

blade has separate flapping hinge, lead-lag hinge and feathering bearing as shown in 

Figure 1.4. Various sequences of hinges and bearings are used by different types of 

helicopters which affect the dynamics of the rotor system. For instance, many 

Sikorsky helicopters use coincident flap and lead-lag hinges with the feathering 

bearing located outboard while the Boeing CH-46 and CH-47 machines use lead-lag 

hinge outside the feathering bearing. Due to high part count, the articulated rotor 

design is complicated and its maintenance is expensive. 

1.3.3.3 Hingeless rotor 

Improvements in blade design and construction have made it possible to eliminate 

the flapping and the lead-lag hinges by using a flexure to accommodate blade 

motion. The hingeless rotor type has blades that are connected to the rotor shaft in a 

cantilevered fashion. The feathering bearing is usually located outboard of the 

flexible root elements. Mechanical simplicity and low aerodynamic drag are the 

main advantages of a hingeless rotor. Moreover, stiffer hub design gives the 

helicopter an outstanding maneuvering capability as a response to control inputs. 

However, design of these rotors is more complicated because of the fact that elastic 
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flexing of a beam structure is used to achive the balde articulation (Leishman, 

2000). In Figure 1.6, the hingeless rotor configuration is compared with a fully 

articulated rotor configuration which examplifies the mechanical simplicity of a 

hingeless rotor (Bramwell, 1976). 

 

(a) 

 

(b) 

Figure 1.6:(a) Hingeless rotor configuration, Lynx (b) Fully articulated 

rotorconfiguration, Sea King, adapted from (Bramwell, 1976). 
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1.3.3.4 Bearingless rotor 

In bearingless hub designs, besides eliminating the flapping and the lead-lag hinges, 

feathering bearing is also eliminated as shown in Figure 1.7. Therefore; flapping, 

lead-lag and feathering motions of the blade are obtained by bending, flexing and 

torsion of the hub structure.  

 

Figure 1.7: Bearingless five-blade rotor configuration, EC 145, adapted from 

(Coppinger, 2006). 

High strength composite materials such as glass, carbon and Kevlar are used in the 

construction of this rotor type to be able to obtain the required stiffness. Additionally, 

these materials can be arranged in such a way that stiffnesses, load paths and 

couplings can be controlled. Thus, designing a bearingless hub is difficult and it 

requires finite element based structural dynamics analysis. Bearingless rotor 

configuration is mechanically simple and the aerodynamic drag is low as a hingeless 

rotor configuration. However, in bearingless rotor configuration the lead-lag 

damping is low which results in aeromechanical instability. 
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1.4 Aerodynamic Environment About A Rotor Blade 

1.4.1 Aerodynamic environmentin hovering flight 

In Figure 1.8, top view of a rotor disk under hover conditins is illustrated.  

 

Figure 1.8: Aerodynamic environment about a rotor disk under hover 

conditions,adapted from (Leishman, 2006). 

As it is seen here, under hover conditions, velocity varies in an azimuthally 

axisymmetric and radially linear manner, i.e.velocity is zero at the hub while it 

reaches a maximum value at the blade tip. Therefore, independent of the azimuth 

angle, Ψ, a blade encounters the same velocity field under hover conditions.  

1.4.2 Aerodynamic environment in forward flight 

In Figure 1.9, top view of a rotor disk in forward flight and variation of the velocity 

field through the rotor disk with respect to the azimuth angle, Ψ,are illustrated.  
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Figure 1.9:Velocity distribution over a rotor in forward flight, adapted from 

(Gunston and Spick, 1986). 

Here, the forward flight velocity, V, of the helicopter is 130 mph and the blade 

rotates in the counter-clockwise direction with a constant angular velocity, Ω. The tip 

speed of the blade is 420 mph.  

As it is seen in Figure 1.9, the forward flight velocity adds to the blade tip velocity 

on the advancing side of the disk, Ψ=90
0
. However, on the retreating side, Ψ=270

0
, 

the forward flight velocity substracts from the blade tip velocity. Therefore, the 

velocity distribution is no longer azimuthally axisymmetric and it varies in 

magnitude with respect to the azimuth angle as it is illustrated in Figure 1.10. 

However, the distribution of velocity along the blade is still linear. 
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Figure 1.10: Aerodynamic environment about a rotor disk in forward flight, 

adaptedfrom (Leishman, 2006). 

Consequently, depending on the azimuth angle, each blade encounters a periodically 

changing aerodynamic environment in forward flight which is the primary reason of 

vibration. 

1.5 Active Vibration Control 

Vibratory loads in helicopters arise mainly from the main rotor system and lead to 

the fatigue damage of structural components, human discomfort and reduced 

effectiveness of weapons systems. The traditional approaches that have been used for 

long years are passive approaches which involve a large weight penalty and poor off-

design performance. Active vibration control allows the vibration system to be able 

to adapt to several flight conditions, at a lower weight than passive devices. In 

contrast to traditional passive systems, active control systems are designed to cancel 

the vibratory loads at their source. On blade actuation mechanisms are much more 

attractive than passive actuation mechanisms such as hydraulics, electric motors,etc. 

Therefore, active actuation of helicopter blades by means of smart materials have 

been a subject of interest for many authors so far. A detailed review of the 
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application of smart materials to helicopters have been presented by Chopra (2000). 

Active rotor controls, which use active materials especially piezoelectric materials, 

directly modify the periodic aerodynamic loads that are present on a helicopter blade. 

In this section, active control techniques are considered. 

Active control techniques generally fall into one of two categories: (1) Active control 

approaches implemented in the fuselage (2) Active control approaches whose 

primary objective is to reduce vibrations in the rotor before they propagate into the 

fuselage. An overview of the active control techniques is given schematically in 

Figure 1.11(Friedmann, 2004). 

 

Figure 1.11: Active vibration control scheme, adapted from (Friedmann, 2004). 

1.5.1 Vibration control in the fuselage 

In the first branch of Figure 1.11, active control of structural response (ACSR), 

which is aimed at vibrations in the fuselage, or the fixed frame takes place. In this 

technique, stiff actuators introduce small-amplitude excitations between the rotor and 

the the fuselage. Therefore, the sum of the airframe response at specified locations 

due to the rotor loads and control excitations is minimized. ACSR is illustrated in 

Figure 1.12(Friedmann, 2004). 
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Figure 1.12: Vibration control on fuselage, adapted from (Friedmann, 2004). 

1.5.2 Vibration control on the blade 

In the second branch of Figure 1.11, there are two outstanding methods, i.e. higher 

harmonic control (HHC) and individual blade control (IBC).  

Before giving information about these vibration control techniques, it is essential to 

mention about the main components of a swashplate which are illustrated in Figure 

1.13.  

 

Figure 1.13:Components of swashplate, adapted from (Liu et al., 2006). 

As it is seen in Figure 1.13, a swashplate has rotating and nonrotating rings which 

have bearings between. The rotating ring is gimballed to the shaft in an arrangement 

that allows an arbitrary orientation of the plane of the swashplate relative to the rotor 

shaft while one ring is stationary and the other is rotating. Pitch control rods are 

attached to the rotating ring while the pilot’s control rods are attached to the 

stationary one. Pilot’s control motion in the nonrotating frame are transmitted to the 
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blades pitch motion in the rotating frame by the mechanical device called the 

swashplate (Johnson, 1980). 

In HHC, the blades are activated in the nonrotating part of the swashplate by 

introducing pitch commands by the pilot. The controller applies pitch inputs through 

a conventional swashplate. All blades experience the same inputs, and the vibratory 

aerodynamic loads are modified at their source, before they propagate into the 

fuselage.  

In IBC, which is a more promising alternative, an actuator is installed in each blade 

so each blade can be controlled independently in the rotating frame and time-varying 

pitch is introduced.This control concept is a more general approach than HHC since 

it removes some of the limitations of active control through a conventional 

swashplate. Besides controlling each blade independently, IBC alsoinvolves a 

feedback loop for each blade in the rotating frame. Three different techniques of IBC 

implementation are possible (1) The conventional or earliest implementation that is 

based on pitch actuation at the root of the blade, (2) the active-twist rotor (ATR), and 

(3) actively controlled flaps (ACF). All of these control mechanisms are illustrated in 

Figure 1.14(Liu et al., 2006). 

 

Figure 1.14:Vibration control on rotor, adapted from (Liu et al., 2006). 

1.6.Smart Rotor Blades 

Advances in smart material technologies has increased the potential to implement 

smart actuation methods for helicopter vibration reduction (Chopra, 2000). Active 

twist rotor (ATR) and actively controlled flaps (ACF) are two of the most 

outstanding active vibration reduction techniques applied to helicopter blades. In this 
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section, some information is given about these smart rotor types and about the 

actuator types used to actively control them. 

1.6.1. Active twist rotor  

A detailed literature review about ATR blades has been prepared by Thakkar and 

Ganguli (2005).Initial proof-of-concept studies on active twist control using 

piezoelectric materials are based on experimental analysis and/or simple analytical 

modeling (Chen and Chopra 1996, 1997; Derham and Hagood, 1996). Later, a 

considerable amount of research has been focused on improving the blade-twisting 

performance to suppress vibrations. One of the promising concepts for the active 

twist rotor is the active fiber composite (AFC) (Ghiringhelli et al., 2000; Rodgers and 

Hagood, 1997) which has been developed by integrating the active fibers into 

composite laminates to induce a twisting moment along the blade as shown in Figure 

1.15(Pawar and Jung, 2009). These specially-cut piezoelectric actuators are attached 

under the skin at an orientation so that a pure twisting of blade occurs when the same 

potential is applied to both top and bottom actuators (Chopra, 2000). Due to the 

opposing polarity, elongation occurs along fibers while there is contraction in the 

transverse direction to the fibers.Despite many advantages, the AFC still needs more 

study to overcome its drawbacks, such as the manufacturing difficulty, higher 

production cost and large power requirement(Wickramasinghe and Hagood, 2004). 

In Figure 1.16, active fiber composite configuration is introduced in detail. 
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Figure 1.15: Active twist rotor, adapted from (Booth and Wilbur, 2004). 

 

 

 

 

 

 

 

 

Figure 1.16: Active fiber composite, adapted from (Wickramasinghe and Hagood, 

2004). 

1.6.2. Actively controlled flaps 

Actively controlled flaps (ACF) whose configuration is given in Figure 1.17is 

another method used to reduce vibration. 
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Figure 1.17:Smart rotor with bender type actuated deflected trailing edge flaps, 

adapted from (Koratkar and Chopra, 2002). 

Here, the trailing edge flap is deflected by a bender type piezoelectric actuator. 

In ACF concept, one or more trailing-edge flaps are actuated by smart actuators to 

induce blade twist or to increase local section lift. Flaps dynamically modify the 

aerodynamic loading along the span which is similar to HHC and conventional IBC. 

However, the advantage of actively controlled flaps over these methods is that there 

is no need to oscillate the entire blade or modify the primary control system 

(Friedmann and de Terlizzi, 2001). Studies indicate that the actively controlled flap 

(ACF) has remarkable potential for reducing vibration at high advance ratios and 

alleviation of vibrations due to blade vortex interaction (BVI) at low advance ratios 

(Yi et al., 2011). Advantages of the ACF approach are low power consumption and 

enhanced airworthiness, since the control system employed for vibration reduction is 

independent of the primary control system, which uses the conventional swashplate. 

A detailed survey paper by Chopra (2000) reviews in detail many studies that have 

attempted to combine piezoelectric actuation with trailing edge flaps for vibration 

reduction. Experimental studies on ACF include the design and development of 

trailing-edge flaps with minimum control efforts (Ben-Zeev and Chopra, 1996), 

stroke improvement of ACF using piezostack-based actuators (Lee and Chopra, 

2001) and full-scale testing of the rotor with ACF (Straub et al. 2001; Koratkar and 

Chopra, 2001). Theoretical analysis on ACF includes simulating the ACF concept 

(Milgram et al., 1998) and optimal configuration of multiple flaps (Viswamurthy and 

Ganguli, 2007).Some of the outstanding actuation mechanisms used to deflect 

actively controlled flaps are bender type actuators and stack type actuators. 

Bimorphs cause larger displacement and smaller force as compared to single piezo 

element. Therefore, bender type actuators consist of two or more layers of 
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piezoelectric material that are poled and activated such that layers on opposite sides 

of the neutral axis have opposing strain. The opposing strain from the piezoelectric 

layers creates an internal bending momentthat causes the entire bender to bend in the 

flapwise directionas shown in Figure 1.18(a)(Christopher et al., 2001). As a result of 

the pure bending of the actuator, tip displacement appears and the tip displacement 

provides the actuation mechanism for the flap as it is seen in Figure 1.18 (b). The tip 

displacement of the bender is amplified using a mechanical leverage mechanism 

whose details are given in Figure 1.19(Koratkar and Chopra, 2002). 

 

Figure 1.18:(a) Bender type bimorph piezoelectric actuator(b) Actuator linkage 

mechanism, adapted from (Christopher et al., 2001). 

 

Figure 1.19: Bender type actuator-trailing edge flap assembly, adapted from 

(Koratkar and Chopra, 2002). 

As it is illustrated in the figures, the bender is cantilevered, Most benders have 

piezoelectric material extending the full length of the beam. One deviation of this 

concept is the tapered bender, Figure 1.19, that staggers the thickness of the material, 

with the thickest portion at the root, to more efficiently utilize the material for 

bending (Christopher et al., 2001). 

Piezoelectric actuators are also available in the form of “stacks,” where a large 

number of thin piezoceramic sheets are bonded together in a series arrangement by 
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means of conducting adhesivesas shown in Figure 1.20.Voltage is applied through 

electrodes attached lengthwise on opposite sides of stack. With an electric field, each 

sheet expands in the thickness direction thus causing stack elongation. Bond layer 

thickness between sheets reduces the effective deflection. It is important to note that 

for a given piezoceramic material, a higher value of transverse displacement (stroke) 

can be obtained by using a large number of piezoceramic sheets and by reducing the 

bond thickness (Chopra, 2002). The stack makes use of the expansion of the 

piezoelectric material in the thickness direction. Stacks are characterized by having 

much larger block forces but smaller free displacements than bimorphs or individual 

piezoelectric sheets (Spencer and Chopra, 1996). Stacks generate large forces but 

small displacements in the direction normal to the top and bottom surfaces. Due to 

the limited displacement capabilities multiple stacks might be used in a series to 

produce desired output. In addition, mechanical amplification devices are used to 

increase actuation displacement by reducing the actuation force (Mitrovic et al., 

1999). Piezoelectric stack actuator and trailing edge flap connection is illustrated in 

detail in Figure 1.21. The stacks are rigidly restrained on theoutboard end while the 

inboard end of the stacks press against the L-arm. Acompression spring is used to 

provide a precompression inthe stack and to provide the restoring force needed to 

keepthe L-arm and stack firmly in contact with each otherwhen the stack contracts. A 

pushrod connects the L-arm to flap hinge tube. The movement of the pushrod causes 

the flap to rotate. 

 

Figure 1.20: Stack type actuator, adapted from (Lee and Chopra, 2000). 
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Figure 1.21: Stack type actuator-trailing edge flap assembly, adapted from (Spencer 

and Chopra, 1996). 

1.7 Present Study 

1.7.1 Rotor configuration 

One of the new generation rotor configurations, hingeless rotor, is preferred to be 

used in the analyses carried out in this dissertation because of the following reasons 

 Mechanical simplicity, 

 Low aerodynamic drag, 

 Outstanding maneuvering capability.  

Since flapping and lead-lag hinges are discarded from this rotor configuration, in the 

structural formulation of the rotor, Section 2.4, the blade is modeled as a cantilevered 

beam with fixed-free end conditions.  

1.7.2 Active vibration reduction technique 

Among the concepts of active vibration reduction of a helicopter blade, actively 

controlled trailing-edge flaps are chosen to be useddue to the following advantages 

of this concept (Zhang et al., 2004) 

 Compact size 

 Light weight 

 Enhanced airworthiness 

 Low power consumption 

 High adaptation 
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1.7.3 Actuator concept 

After the selection of trailing edge flap concept for vibration reduction, selection of 

the actuation mechanism is made and bender type piezoelectric actuators are 

considered to deflect the trailing edge flaps. The advantages of this type of actutaors 

are (Koratkar and Chopra, 2000) 

 The compact actuator assembly property makes it possible to locate flaps at optimal 

points along the blade.  

 Almost all the energy stored in the piezoelectric structure is directly used to deflect 

the flap mechanism with small loses. Thus, the mechanical efficiency of the 

actuator is high.  

 Addition of the actuator to the blade makes a moderate increase in blade mass. 

 Low voltage values which are less than 400V are enough for this actuator 

 The actuator is discrete and has no embedded or surface bonded components. 

Therefore, maintanence of the actuator mechanism is easy. 

1.8 Objectives of The Thesis 

The primary motivation for the present thesis is that a noncommercial analysis code 

that can be used for the dynamic and aeroelastic analysis of a helicopter blade under 

hover conditions or in forward flight is not available in the Istanbul Technical 

University. The commercial codes are either too expensive to be used as a licensed 

product or too difficult to be used without technical and/or academic support. 

Therefore, for a long time it has been a necessity to write our own computer code to 

be able to carry out aeroelastic studies about helicopters.The purpose of the present 

thesis is to develope the necessary computer code to carry out the mentioned 

analyses. The code is written for one blade that has a trailing edge flap which is 

actively deflected by a piezoelectric actuator to reduce the vibration of the 

blade.Additionally, during the development of the computer code; a huge 

formulation is carried out for the structural, aerodynamic and aeroelastic 

sections.Considering all of these, the objectives of the present thesis can be defined 

as follows 
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 Both the structural and the aerodynamic formulas are derived in detail and they are 

combined for the aeroelastic analysis. 

 A basic computer code is developed for the aeroelastic analysis and vibration 

reduction of a helicopter blade under hover conditions and in forward flight. 

 This basic computer code is organised in such a way that it can be modified easily. 

Therefore, adding new modules to the present code is going to give us the 

opportunity to develop the code according to our needs in the future.  

1.9 Literature Review 

Since the 1990’s, the advancement of smart materials opens a new domain of active 

trailing-edge flap systems driven by smart material actuators. The emergence of 

these compact, lightweight, high bandwidth, and low power requirement actuators 

has revived the interest in active trailing-edge flap rotors (Chopra, 2000). Several 

small scale rotors with a trailing-edge flap system actuated by embedded smart 

materials have been developed by various researchers, including Bernhard and 

Chopra (1999) and Fulton and Ormiston (2001). A full scale rotor with a smart 

trailing-edge flap system has been designed by Straub, et al. (2001). Wind tunnel 

experiments (Koratkar and Chopra, 2001) have shown that helicopter hub vibratory 

loads can be successfully minimized with actively controlled, trailing-edge flaps with 

smart actuators. In analytical simulation, Millott and Friedmann (1994) investigated 

servo-flaps using a flexible blade model and modified Theodorsen aerodynamics. 

The servo flap system was found to be as effective as conventional multicyclic 

control, but with greatly reduced power requirements. The study included parametric 

studies of flap size, flap location, and blade torsional stiffness. The flap location was 

determined to be a significant design parameter. Viswamurthy and Ganguli presented 

optimal locations of dual trailing-edge flaps to achieve minimum hub vibration levels 

in a helicopter, while incurring low penalty in terms of required trailing edge flap 

control power (Viswamurthy and Ganguli, 2007). Kim et al.(2007) developed a 

resonant trailing edge flap actuation system (includes the piezoelectric actuator and 

the related mechanical and electrical elements for actuation) for helicopter rotors and 

evaluated experimentally. Myrtle and Friedmann (1998) presented a rotor code for 

the active flap using an unsteady aerodynamic model (Myrtle and Friedmann, 1997) 

for airfoil/flap based on a rational function approximation approach. Similar levels of 
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vibration reduction are obtained when using quasi-steady Theodorsen aerodynamics 

and the new unsteady aerodynamic model. Zhanget al.(1999) presented an 

active/passive hybrid method for vibration reduction by integrating active flap design 

with blade structural optimization. The study concluded that hybrid design could 

achieve more vibration reduction with less control efforts compared to retrofit or 

sequential design. Other vibration reduction studies using the ACF were also 

conducted (Straub and Charles, 1999; Chopra et al. 1996). Additional information on 

vibration reduction using the ACF can be found in a recent survey paper (Friedmann, 

2001). 

1.10 Road Map 

The present dissertation is organized in 5 chapters and 4 appendices.  

In Chapter 1 (Introduction), the reader is informed about smart structures, smart 

materials, rotor types, rotor aerodynamic environment, rotor vibration control 

techniques, smart rotors, and actuators. Additionally, blade and actuator types that 

are preferred in this research are introduced and objectives of the dissertation are 

mentioned about. Moreover, a brief literature review is given. The aim of Chapter 1 

is to introduce smart structures, vibration reduction techniques, helicopter rotor 

systems, etc. to the reader so it is going to be easier and more meaningful for the 

reader to understand all the derivations carried out in the following sections. 

In Chapter 2 (Structural Formulation), structural models built for the piezoelectric 

actuator and the helicopter blade are introduced. Detailed description of the formula 

derivations are presented and the obtained results are validated. Additionally, length 

of the linkage arm between the actuator beam and the flap mechanism is calculated. 

In Chapter 3 (Aerodynamic Formulation), aerodynamic formulation is given for a 

plain nonrotating blade, for trailing edge flaps and for a rotatinghelicopterblade with 

a trailing edge flap both under hover and forward flight conditions. Whenit 

ispossible, the results of this section are also validated.  

InChapter 4 (Aeroelastic Formulation), the structural model developed in Chapter 2 

and the aerodynamic models developed in Chapter 3 are combined for aeroelastic 

analysis. Flutter speed of the Goland wing is calculated and validated with the results 

in open literature. Moreover, effects of several parameters, i.e. advance ratio, rotor 
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disk angle of attack, flap deflection angle, voltage applied to the piezoelectric 

actuator on the vibration characteristics of the rotor blade are inspected. 

In Chapter 5 (Conclusion and Recommendations), a summary of the previous 

chapters are given and a conclusion is presented for all the results. Additionally, new 

titles are given for future studies. 

In Appedix A, expressions of the constants used in Theodorsen’s theory, i.e. T1, 

T2,....,T14, are given. 

In Appendix B, components of the aerodynamic matrix that are assembled with the 

structural matrices to be used in the flutter speed calculation of a nonrotating blade, 

Goland wing, are introduced. 

In Appendix C, components of the aerodynamic matrix that are assembled with the 

structural matrices to be used in the aeroelastic analysis of the helicopter blade that 

has a trailing edge flap underhoverconditions are introduced. 

In Appendix D, components of the aerodynamic matrix that are assembled with the 

structural matrices to be used in the aeroelastic analysis of the helicopter blade that 

has a trailing edge flap in forward flight are introduced. 
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2.  STRUCTURAL FORMULATION 

2.1 Overview 

The purpose of the present section is to build the structural modelsfor both the 

piezoelectric actuator and the helicopter blade and to make the related formula 

derivations correctly and accurately. The results of this section are going to be 

assembled with the results of the aerodynamic formulation to be used in the 

aeroelastic section.  

In the first part of the structural formulation, some information is given about the 

mechanics of a piezolaminated beam.Expressions of the mechanical and the 

electrical loads that act on this beam model are derived in great detail. The resulting 

expressions are used in the analytical formulation of the bender type piezoelectric 

actuator. In the second part of the structural formulation, analytical beam models are 

developed both for the bender type piezoelectric actuator and for the helicopter 

blade, seperately. The structural formulation of the beam models starts by 

introducing the displacement fields before and after the deformation of the 

beams.Related strain fields and energy expressions are derived step by step by 

introducing several explanatory tables and figures. Afterwards, Hamilton’s principle 

is applied to these energy expressions to obtain the governing differential equations 

of motion and the boundary conditions. An efficient, semi-analytical mathematical 

technique called the Differential Transform Method (DTM), is applied to these 

equations as thesolution procedure. Effects of several parameters, i.e. rotational 

speed, vibration coupling, lamina orientation, voltage, etc. on the natural frequencies 

or tip deflection are investigated and whenever it is possible, the calculated results 

are validated by making comparisons with the studies in open literature. When the 

related results are not available in open literature, the examined beam model is 

modeled in the commertial finite element programme, ABAQUS and validation is 

made by using the results calculated by ABAQUS. After the validation of the 

analytical models, finite element method is applied to these models to get the 
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element level structural matrices, i.e. element stiffness and mass matrices. Depending 

on the number of elements used in the developed structural modeling code, element 

matrices are assembled by considering the finite element rules to get the global 

matrices. Boundary conditions are applied to the global matrices to get the reduced 

global matrix expressions. Results that are obtained by solving these matrix 

equations of motion are compared with the previously validated semi-analytical ones 

to check the accuracy and the correctness of finite element formulation and a very 

good agreement between the results are observed.  

This section includes derivations that have been achieved step by step in the previous 

studies of the doctorate student and his advisor through several years. These studies 

include uncoupled/coupled Euler Bernoulli or Timoshenko beam models (Ozdemir 

and Kaya (2006a, 2006b); Ozdemir Ozgumus and Kaya (2007c, 2008, 2010, 2012a); 

Kaya and Ozdemir (2010)), composite beams (Kaya and Ozdemir (2007)) and 

piezolaminated composite beams (Ozdemir Ozgumus and Kaya (2012b)). 

2.2 Piezolaminated Composite MaterialsEquation Chapter 2 Section 1 

Well known advantages of composite materials over other traditional materials have 

increased the utility of these materials in the design of rotating structures such as 

turbine and helicopter blades, tilt rotors, robotic manipulator arms, etc. Some of these 

advantages are given below. 

 Composite materials have better damage tolerance. 

 The manufacturing processes of composite blades provide the designer with the 

freedom to incorporate more refined platforms and airfoil geometries. 

 These materials provide opportunities for structural simplicity of hingeless and 

bearingless rotor blade designs and structural couplings. 

 Composite rotor blades also offer the potential for aeroelastic tailoring since they 

enable the introduction of favorable structural couplings to improve the aeroelastic 

stability and response of hingeless and bearinglessrotor blade configurations. 

2.2.1 Piezoelectric effects 

Piezoelectric materials are one of the most popular subset of intelligent materials. As 

mentioned in the Subsection 1.2.1., due to their “direct piezoelectric effect” property, 
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these materials are used as sensors and due to their “converse piezoelectric effect”, 

they are used as actuators which gives a designer the opportunity to utilize these 

materials in the control of rotor blades. 

Poling process of the piezoelectric materials is shown in Figure 2.1 as three stages, 

i.e. before, during and after polarization. During polarization, dipoles are formed and 

similarly oriented dipoles start grouping together. Application of a high electric field 

and a high temperature makes these dipoles align and in the absence of the electrical 

field, these dipoles remain roughly aligned even after cooling the material to room 

temperature (Moheimani and Fleming, 2006). 

 
Figure 2.1:Stages of polarization of a piezoelectric material (a)before 

polarization(b) during polarization (c) polarized, adapted from (Moheimani and 

Fleming, 2006). 

Piezoelectric properties, size and shape of the material and the direction in which 

forces or electrical fields are applied relative to the material axis are some of the 

properties that determine the relationship between the applied forces and resultant 

responses of a piezoelectric material. Figure 2.2 shows an element of piezoelectric 

material. 

 

Figure 2.2: Poling direction and the coordinate axes for a piezoelectric element. 
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As it is seen in Figure 2.2,three axes which are set during the poling process are used 

to identify directions in the piezoelectric element.The z  axis is parallel to the 

direction of polarization. The polarization vector points from the positive to negative 

poling electrode or in the negative z  direction (Fuller et al., 1996). 

Properties of a poled piezoelectric element can be explained by the series of images 

in Figure 2.3 and Figure 2.4. Mechanical compression or tension on the element 

changes the dipole moment associated with that element which creates voltage. 

Compression along the direction of polarization or tension perpendicular to the 

direction of polarization, generates voltage of the same polarity as the poling voltage, 

i.e. Figure 2.3(a). Tension along the direction of polarization, or compression 

perpendicular to that direction, generates a voltage with polarity opposite to that of 

the poling voltage, i.e. Figure 2.3(b).When operating in this tension/compression 

mode, the device is used as a sensor which means that the piezoelectric element 

converts the mechanical energy of compression or tension into electrical energy. 

 

Figure 2.3:Utility of piezoelectric materials as sensors(a) under compression 

(b)under tension, adapted from (Moheimani and Fleming, 2006). 

If the applied voltage and the polarization voltage of the piezoelectric material have 

opposite signs, the element will become shorter and broader, i.e. Figure 

2.4(a).However, if the applied voltage and the polarization voltage of the 

piezoelectric material have the same sign, the element will lengthen and its diameter 

will become smaller, i.e. Figure 2.4(b). If an alternating voltage is applied to the 

device, the element will expand and contract cyclically, at the frequency of the 

applied voltage.  
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When operated in this mode, the piezoelectric material is used as an actuator. That is, 

electrical energy is converted into mechanical energy (Moheimani and Fleming, 

2006). 

 

Figure 2.4:Utility of piezoelectric materials as actuators(a) voltages with 

oppositesigns (b) voltages with the same sign,adapted from (Moheimani andFleming, 

2006). 

2.2.2 Constitutive equations for a piezoelectric layer 

Up to a specific stress value, the relation between the stress that is applied to the 

piezoelectric material and the voltage that is generated as a result of this stress is 

linear. The same linear relationship exists between the applied voltage and the strain 

that is generated as the result of this voltage. Therefore, when the applied electric 

field and the generated stress are not large, the constitutive equations for a linear 

piezoelectric material can be written as follows  

 mmij

E

iji EdS    (2.1) 

 kikimim EdD  
 

(2.2) 

where  is the strain,   is the stress, D  is the electrical displacement (charge per 

unit area), E  is the electrical field (volts per unit length), S  is the elastic compliance 

(the inverse of elastic modulus), d  is the piezoelectric strain constant and   is the 

permittivity of the material respectively (Fuller et al., 1996). Eq.(2.1)expresses the 

converse piezoelectric effect, which describe the situation when the piezoelectric 

layer is being used as an actuator. Eq.(2.2)expresses the direct piezoelectric effect, 

which deals with the case when the piezoelectric layer is being used as a sensor. 
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2.2.3 Stress and moment resultants on a piezoelectric layer 

In this study, piezoelectric materials are used as actuators to deflect the trailing edge 

flap on the helicopter blade. Therefore, Eq.(2.1)is used and it can be written in its full 

form as follows 
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(2.3) 

where k refers to the thk  lamina as illustrated in Figure 2.5. 

 

Figure 2.5: Lamina coordinates and distribution of the laminates. 

Here, kz and 1kz   represent the location of the upper and the lower surfaces of the thk  

layer with respect to the middle plane, respectively and   is the total number of the 

layers. 

Plane stress: When inplane loading is applied to a thin structure, the stresses with 

respect to the thin surface are zero and the structure is said to be under plane stress.  

Piezolaminated beams have thin piezoelectric layers and these layers are under either 

compression or tension. Therefore, plane stress assumption is appropriate for this 

study and for a thin piezoelectric layer that is under a plane stress, the following 

equalities can be written. 

3 4 5 0      (2.4) 
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Referring Eq.(2.4), the constitutive equation , Eq.(2.3), can be written as follows 
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 (2.5) 

In this dissertation, bending type actuator is used. Therefore, it is enough to consider 

only extension and flapwise bending displacements. In the extension-flapwise 

bending vibration analysis, it is enough to consider only the electric field that is 

applied in z-direction, i.e. 0 yx EE , so Eq.(2.5)can be simplified as follows 
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 (2.6) 

As mentioned before,  S is the inverse of the stiffness matrix, i.e.     1
 QS  so 

Eq.(2.6) can be rewritten as follows 
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 (2.7) 

where ijQ  are the reduced stiffness constants, 0

x , 0

y , 0

xy  are the uniform strains and

x , y , xy are the curvatures (Gibson, 2007). 

Local and global coordinate axis of a laminate is shown in Figure 2.6.  

 

Figure 2.6: Local and global coordinate systems. 
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Here, xyz coordinate axes are referred to as global coordinates while xyz  coordinate 

axes are referred to as local coordinates that depend on the fiber orientation of each 

lamina of the laminate. Additionally,  , i.e. skew angle, is the fiber orientation angle 

of each lamina. 

In local coordinates, Eq.(2.7) can be written as follows 
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 (2.8) 

A lamina has several laminates each of which may have different fiber orientations 

that are defined in the local coordinates of the laminate. In order to incorporate 

arbitrary fiber directions in the considered plane, a coordinate transformation is 

necessary. Therefore, transformation from local lamina coordinates to global 

laminate coordinates has to be considered. Stress transformation matrix,  R


and 

strain transformation matrix,  R

, are given by(Kollar and Springer, 2003) 
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(2.10) 

Transformation from the local coordinates to the global coordinates is performed by 

substituting Eq.(2.9) and Eq.(2.10) into Eq.(2.8)which gives 
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 (2.11) 

where  
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The axial force, N , the bending moment, M and the shear force, sQ that act on a 

laminate at the midplane are expressed as follows (Kollar and Springer, 2003) 
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where b  and h  are the width and the thickness of the laminate, respectively. 

Substituting Eq.(2.11) into Eqs.(2.14)-(2.16) gives  
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In the analysis of a laminate, lamina level stiffness matrix [ ̅]  is used to calculate 

the laminate level stiffness matrices whose components can be defined as 

follows(Vinson and Sierakowski, 2002) 
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(2.21) 

Referring the definitions in Eqs.(2.19)-(2.21), forces and moments acting on a 

laminate, i.e. Eq.(2.17)and Eq. (2.18)can be given as follows 

 

 

0

11 12 16 11 12 16

0

12 22 26 12 22 26

0

16 26 66 16 26 66

1

31

32

36

p

x x x

y y y

xy xy xy

n

k z kk
k

k

A A A B B B

A A A B B B

A A A B B B

Q

N

N

N

d

b d h E

d

 

 

 



       
       

          
        

      

 
 

    
 
 



 
(2.22) 

 

 

0

11 12 16 11 12 16

0

12 22 26 12 22 26

0

16 26 66 16

31

32

26 66

0

1

36

p

x x x

y y y

xy xy xy

n

k k z kk
k

k

B B B

B B B

B B B

Q

M D D D

M D D D

M D D D

d

b d z h E

d

 

 

 



       
       

          
        

       

 
 

    
 
 



 
(2.23) 

where pn  represents the number of the piezoelectric layers. 

In the analysis of a beam problem, it is enough to consider only the xN and xM

components. Therefore, Eq.(2.22) and Eq.(2.23) can be simplified as follows 
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where the applied voltage, (  )  and the   coordinate of the midplane of the     

layer,  
  are defined as follows 
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Terms of Eq.(2.24)and Eq.(2.25)can be classified as mechanical terms and 

piezoelectric terms which are given by 
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where 11E  and 11F  are the actuator induced axial force and bending moment, 

respectively(Edery-Azulay and Abramovich, 2006). However, during the calculation 

of the stiffness coefficients, i.e. ijA , ijB  and ijD , properties of the piezoelectric 

material are also used. 
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In the analysis of extension-flapwise bending vibrations, 0

y , 0

xy , y  and xy  can be 

taken to be zero. Thus, Eq.(2.28) and Eq.(2.30)can be simplified as follows 
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(2.33) 

Where 11A , 11B  and 11D are the extension, coupled extension-bending and bending 

stiffness coefficients. 

Piezoelectric actuator is modeled as a short beam. Therefore, using Timoshenko 

beam formulation is more appropriate for the structural formulation of the actuator. 

Thus, shear effect is included and the shear force is expressed as follows 

 55xz xzQ A 
 

(2.34) 

where 55A  is the transverse shear stiffness coefficient given by 
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Here, k is the shear correction factor. 

The piezoelectric strain constant, d ,is defined as the ratio of developed free strain to 

the applied electric field. The subscripts of ijd imply that the electric field is applied 

or charge is collected in the i direction for a displacement or force in the j direction 

(Moheimani and Fleming, 2006). In this study, extension-flapwise bending vibration 

analysis is performed. When electrical field is applied in the z direction, zE , 

extension and flapwise bending deflections occur as a result of elongation of the 

piezoelectric layers in the x directions. Thus, all the piezoelectric strain constants 

except 
31

d  are neglected in Eq.(2.29)and Eq.(2.31). Consequently, the resulting 

force and moment expressions are 
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(2.36) 
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2.3 Piezoelectric Actuator Structural Model 

In this section, structural model for a bender type piezoelectric actuator is built and 

results are obtained analytically. Both the potential and the kinetic energy 

expressions are derived step by step using explanatory tables and figures. The 

parameters for the ply orientation and voltage are incorporated into the energy 

expressions. The governing differential equations of motion and the related boundary 

conditions are obtained by applying the Hamilton’s principle. In order to solve the 

derived equations, a semi-analytical technique called the Differential Transform 

Method (DTM) is used.After the validation of the analytical model, finite element 

formulation is carried out by using the analytically derived energy expressions. 

Effects of the applied voltage and ply orientation on the actuator tip deflection and 

on the natural frequencies are inspected (Ozdemir Ozgumus and Kaya, 2012). 

2.3.1 Beam model 

The bender type actuator is modeled as a cantilever, solid-cross section 

piezolaminated composite beam that is shown in Figure 2.7. The beam has a 

composite core and two piezoelectric layers. The piezoelectric layers are continuous 

along the beam and they are located on the top and bottom faces of the composite 

core.  

Governing differential equations of motion and the boundary conditions are derived 

for this solid cross-sectionbeam model that undergoes extension and flapwise 

bending displacements. 
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Figure 2.7: Bender type piezoelectric actuator. 

Here, L is the length, b is the width and   is the thickness of the beam. The xyz axes 

represent a global orthogonal coordinate system with its origin at the root of the 

beam. 

2.3.2 Energy expressions 

The cross-sectional and the longitudinal views of a Timoshenko beam that undergoes 

extension and flapwise bending vibrations are introduced in Figure 2.8 and Figure 

2.9, respectively. Here, a reference point is chosen and is represented by 0P  before 

deformation and by P after deformation. 

 

Figure 2.8: Cross-sectional view of the actuator beam. 
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Figure 2.9: Longitudinal view of the actuator beam. 

Here, is the offset of the reference point from the z- axis,  is the offset of the 

reference point from the middle plane, x is the offset of the reference point from the 

z-axis, 0u is extension, w is the flapwise bending displacement,  is the rotation due 

to bending and  is the shear angle. 

Considering Figure 2.8 and Figure 2.9, the coordinates of the reference point can be 

written as follows  

Before deformation (coordinates of 0P ):  

 0x x  (2.38) 

 0y 
 

(2.39) 

 0z 
 

(2.40) 

After deformation (coordinates of P ):  

 1 0x x u     (2.41) 

 1y 
 

(2.42) 
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 1z w  
 

(2.43) 

The position vectors of the reference point are represented by   ⃗⃗  ⃗ and   ⃗⃗⃗   before and 

after deformation, respectively. Therefore,    ⃗⃗  ⃗ and    ⃗⃗⃗   can be written as follows 

 
0dr dxi d j d k     (2.44) 
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where ( )  denotes differentiation with respect to the spanwise coordinate,  . 

The classical strain tensor     may be obtained as follows (Eringen, 1980) 
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Substituting Eq. (2.44) and Eq. (2.45) into Eq. (2.46), the components of the strain 

tensor     are obtained as follows 
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(2.48) 

 0x 
 

(2.49) 

   0x w u         
 (2.50) 

Where xx , x and x  are the axial strain and the shear strains, respectively. 

In order to obtain simpler expressions for the strain components given by Eqs.(2.48)-

(2.50), higher order terms can be neglected so an order of magnitudeanalysis is 
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performed by using the ordering scheme, given by Hodges and Dowell (1974) and 

introduced inTable 2.1.  

Table 2.1: Ordering scheme for the Timoshenko beam model. 

Term Order 

w
 

 O   

   O   

w    2O   

0u   2O   

   2O   

Hodges and Dowell (1974) carried out a formulation for an Euler-Bernoulli beam so 

in this study, their formulation is modified for a Timoshenko beam and a new 

expression,  2w O    is added to their ordering scheme as a contribution to 

literature.  

ConsideringTable 2.1, Eqs. (2.48)-(2.50) are simplified as follows 

 
 

2

0
2

xx

w
u  


   

 
(2.51) 

 0x 
 (2.52) 

 x w  
 (2.53) 

The potential energy expression is given by 

    
2

0 0
2

1
   

2 2

h
L L

xx xx x x xx xx x x

hA

b
U dAdx d dx           



       (2.54) 

Substituting Eq. (2.51)and Eq. (2.53)into Eq. (2.54)and considering the definitions in 

Eqs. (2.14)-(2.16), the following expression is obtained. 

 
 

 
2

0

0

1
 

2 2

L

x x xzU N u M Q dx
w

w 
   

       
 



  



  
(2.55) 
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Substituting Eqs. (2.32)-(2.34) into Eq. (2.55)gives  

 

       

 

2

0

0

2

2 2
11 11 5511 0

1 101 1

2
1

2

2

L

U B u D A w

E u

A

dxF

u

w

  



    



   


 

 
    

    



 
(2.56) 

ReferringEq.(2.56),variation of the potential energy is obtained as follows 

 
   

    

11 11 11 55

1

0 0

0

1 11 11 11 55

1

2

L

U A u B E u A w

E w dB w xw u D F A

   

   

       

        


 

(2.57) 

The position vector of point   shown in Figure 2.9 is given by 

  0r x u i wk   
 

(2.58) 

The velocity vector of this point is obtained as follows  

  0 k
r

V i w
t

u 


   
  

(2.59) 

Hence, the velocity components are 

 0xV u  
 

(2.60) 

 0yV 
 (2.61) 

 zV w
 

(2.62) 

The kinetic energy expression is given by 

    
2

2 2 2 2 2 2

0 0 2

1
     

2 2

hL L

x y z x y z

A h

b
T V V V dAdx V V V d dx  



          (2.63) 

where   is the material density. 
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Substituting the velocity components into Eq.(2.63)and taking the variation of the 

kinetic energy give 

     1 0 0 2 0 0 3

0

L

T I I Iu u w w u u dx            
(2.64) 

where  ,    and    are the inertial characteristics of the beam given by 

 

/2

1

/2

 

h

h

I b d 


   
(2.65) 

 

/2

2

/2

 

h

h

I b d 


   
(2.66) 

 

/

3

2

2

/2

 

h

h

I b d 


   
(2.67) 

2.3.3 Governing equations of motion and boundary conditions 

The Hamilton’s principle is expressed as follows 

  
2

1

0

t

t

U T dt    (2.68) 

Eq.(2.57)and Eq.(2.64)are substituted into Eq.(2.68)to obtain the equations of motion 

and the boundary conditions. 

Equations of motion: 

 11 0 11 1 0 2IBu IA u    
 

(2.69) 

  55 11 55 1 A E Aw I w   
 (2.70) 

  11 11 0 55 2 0 3D B uu A w I I        
 (2.71) 

 



48 

Boundary conditions: 

 At x=0      0 0, 0, 0, 0u t w t t  
 

(2.72) 

 At x=L    11 0 11 11, , 0A u L t B L t E   
 (2.73) 

       55 11 55, ,  0A E w L t A L t  
 (2.74) 

     11 0 11 11, , 0B u L t D L t F   
 (2.75) 

2.3.4 Simple harmonic motion and dimensionless parameters 

In order to investigate the free vibration of the beam model considered in this study, 

a sinusoidal variation of  0 ,u x t ,  ,w x t and  ,x t with a circular natural 

frequency,  , is assumed and the functions are approximated as 

    0 , i tu x t u x e 
 

(2.76) 

    , i tww x t x e 
 (2.77) 

    , i tx t x e  
 (2.78) 

Substituting Eqs. (2.76)-(2.78)into Eqs. (2.69)-(2.75) gives 

Equations of motion: 

  2

11 11 1 2 0A u B uI I     
 

(2.79) 

   2

55 11 55 1 0 A E A I ww      
 (2.80) 

    2

11 11 55 2 3 0u A w I uD B I          
 (2.81) 
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Boundary Conditions: 

 At x=0      0, 0, 0, 0u t w t t  
 

(2.82) 

 At x=L    11 11 11, , 0A L B Eu t L t   
 (2.83) 

       55 11 55, ,  0A E w L t A L t  
 (2.84) 

     11 11 11, , 0B u L t D L t F   
 (2.85) 

In order to simplify the equations of motion and to make comparisons with open 

literature, the dimensionless parameters,introduced in Table 2.2,are used. 

Table 2.2 : Dimensionless parameters for the actuator beam model. 

Dimensionless Parameters 
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2 11
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A L
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2 11
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A L
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11
0

11

E L
e

D
  

u
u

L
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2 3

2

1

I
r

I L
  

11
0

11

F L
f

D
  

x
x

L
  

4 2
2 1

11

I L

D


    

where λ  is the frequency parameter and r is the inverse of the slenderness ratio. 

Substituting the dimensionless parameters into Eqs. (2.79)-(2.85)gives 

Equations of motion: 

  2 ** 2 ** 2 2γ α λ   0u u     
 (2.86) 

 
** 2 *

02 2

1 1
e λ 0

τ τ
w w 

 
    

   
(2.87) 

  2 2 ** 2 2 2 2 2 2 2** *α τ τ τ λ r τ λ 1 0u u w      
 (2.88) 
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Boundary Conditions: 

 At x=0      0, 0, 0, 0u t w t t  
 

(2.89) 

 At x=L    2 * 2 *γ , α , 0u L t L t 
 (2.90) 

     *

02 2

1 1
e , , 0

τ τ
w L t L t

 
   

   
(2.91) 

     2 * *

0, , f 0u L t L t   
 (2.92) 

where  
*
denotes differentiation with respect to the dimensionless spanwise position, 

x . 

2.3.5 Application of the differential transform method 

The differential transform method is a transformation technique based on the Taylor 

series expansion and is a useful tool to obtain semi-analytical solutions of the 

differential equations. In this method, certain transformation rules are applied and the 

governing differential equations and the boundary conditions of the system are 

transformed into a set of algebraic equations in terms of the differential transforms of 

the original functions and the solution of these algebraic equations gives the desired 

solution of the problem.  

Consider a function  xf  which is analytic in a domain D and let 0xx   represent 

any point in D. The function  xf is then represented by a power series whose center 

is located at 0x . The differential transform of the function  xf  is given by 

  
0

)(

!

1

xx

k

k

dx

xfd

k
kF













 
(2.93) 

where  xf  is the original function and  kF  is the transformed function. The 

inverse transformation is defined as 



51 

  





0

0 )()(
k

k kFxxxf
 

(2.94) 

Combining Eq. (2.93)and Eq. (2.94), we get 

 


 











0

0

0

)(

!

)(
)(

k xx

k

kk

dx

xfd

k

xx
xf

 
(2.95) 

Referring Eq.(2.95), it is noticed that the concept of differential transform is derived 

from Taylor series expansion. However, the method does not evaluate the derivatives 

symbolically. 

In actual applications, the function  xf  is expressed by a finite series and Eq. (2.95) 

can be written as follows 

 
 











m

k xx

k

kk

dx

xfd

k

xx
xf

0

0

0

)(

!

)(
)(

 
(2.96) 

which means that the rest of the series  

 


 











1

0

0

)(

!

)(
)(

mk xx

k

kk

dx

xfd

k

xx
xf

 
(2.97) 

is negligibly small. Here, the value of m  depends on the convergence of the natural 

frequencies. 

Theorems that are frequently used in the transformation of equations of motion are 

introduced inTable 2.3 and theorems that are used for boundary conditions are 

introduced inTable 2.4 (Ozdemir Ozgumus and Kaya, 2007). 
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Table 2.3: DTM theorems used for equations of motion. 

Original Function Transformed Function 

     xhxgxf        kHkGkF   

   xgxf      kGkF   

     xhxgxf        



k

l

lHlkGkF
0

 

 
 
n

n

dx

xgd
xf    

 
 nkG

k

nk
kF 




!

!
 

  nxxf      









nkif

nkif
nkkF

1

0
  

Table 2.4: DTM theorems used for boundary conditions. 

0x   1x   

Original 

B.C. 
Transformed B.C. 

Original 

B.C. 
Transformed B.C. 

0)0( 
dx

df
 0)0( F  0)1( f  
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


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0)(
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kF  

0)0( 
dx

df
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 
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
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0

0)(
k

kkF  

0)0(
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2


dx

fd

 

0)2( F  0)1(
2

2


dx

fd
 






0

0)()1(
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kFkk  

0)0(
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3


dx

fd
 0)3( F  0)1(

3

3


dx

fd
 






0

0)()2)(1(
k

kkFkk  

After applying the differential transform method to Eqs.(2.86)-(2.92), the 

transformed equations of motion and boundary conditions are obtained as follows 

Equations of motion: 

 
         

    

2 2

2 2

1 2 2 1 2 2

   0

k k U k k k k

U k k

  

  

       

   
(2.98) 

           2

02 2

1 1
1 2 2 1 1 0e k k W k W k k k 

 

 
         

 
 

(2.99) 
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           

     

2 2 2

2 2

2 2

1 2 2 1 2 2

1 1
1 1 0

k k U k k k k U k

r k k W k

   

 
 

        

 
     

   

(2.100) 

Boundary Conditions: 

 At x=0       0U k W k k  
 

(2.101) 

 At x=L    2 2

k 0 k 0

γ k α k 0U k k
 


 

    
(2.102) 

     02 2
k 0 k 0

1 1
e k 0

τ τ
W k k

 


 

 
   

 
   

(2.103) 

     2

0

k 0 k 0

k k f 0U k k
 

 
 

     
(2.104) 

2.3.6 Semi-analytical results and discussions 

Effects of ply orientation and voltage on the natural frequencies and the tip deflection 

of the piezolaminated beam are investigated and the results are presented in related 

graphics and tables. In order to validate the calculated results, comparisons with the 

studies in open literature are made and a very good agreement between the results are 

observed which proves the correctness and accuracy of the developed beam model. 

2.3.6.1 Bimorph beam example 

A bimorph piezoelectric beam which consists of two layers of KYNAR piezofilm, 

illustrated in Figure 2.10, is considered to validate the piezoelectric beam model 

developed in this section. In the present example, an external voltage is applied to the 

beam and the induced strain generates control forces that bend the bimorph beam. As 

shown in Figure1.18(a), the bimorphbender consists of two piezoelectric thin plates 

with opposite polarities. When the electric field is applied, one layer expands while 

the other contracts. Due to the constraint at the interface of these two layers,bending 

deformation occurs in the whole structure. 

In Table 2.5, the material and geometrical properties of the beam model that is 

studied in this example are introduced.  
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Figure 2.10:Bimorph beam model. 

Table 2.5: Material and geometric properties of the bimorph beam, analytical model. 

Material and Geometrical Properties 

 2

1E N m  96.85 10   L m  0.08  

 2

2E N m  96.85 10   b m  0.01  

 2

12G N m  90.078 10   h m  0.00011  

 2

13G N m     31d m V  1222.99 10  

 2

23G N m     32d m V  94.6 10  

12  0.29    
 

Variation of the bimorph beam tip deflection with respect to the applied voltage is 

given in Figure 2.11. The calculated results are validated with the ones of 

Donthireddy and Chandrashekhara(1996) who used finite element method in their 

study. 

 

Figure 2.11: Variation of the tip deflection of the bimorph beam with respect to the 

appliedvoltage( : Present Study, : Donthireddy and Chandrashekhara). 
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As illustrated in Figure 2.11, when the voltage that is applied to the piezoelectric 

layers increases, the piezolaminated composite beam has a larger tip deflection.  

2.3.6.2 Piezolaminated composite beam example 

A composite Timoshenko beam with one layer of piezoelectric material bonded to 

the top and bottom faces is considered to validate the derived piezolaminated 

composite beam formulation. The beam model is illustrated in Figure 2.12 and the 

layer distribution of the beam is  PZTPZT /0/90/90/0/ . 

 
Figure 2.12:Piezolaminated composite beam model. 

In Table 2.6, the material and geometrical properties of the piezolaminated 

composite Timoshenko beam model are given. 

Table 2.6:Material and geometrical properties of the piezolaminated composite 

Timoshenko beam model. 

Material and Geometrical Properties Graphite Epoxy PZT-5H 

 2

1E N m  9144.8 10  
963 10  

 2

2E N m  99.65 10  
963 10  

 2

12 13G G N m  97.1 10  
924.8 10  

 2

23G N m  95.92 10    

12  0.3  0.28  

 3kg m  1560  7600  

k  5 6  5 6  

 L m  0.254  0.254  

 b m  0.0254  0.0254  

 h m  41.27 10  
42 10  

 31 32d d m V    12166 10   
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Firstly, natural frequencies are calculated for clamped-free boundary conditions and 

in Table 2.7, the calculated results are conpared with the ones given by Fridman and 

Abramovich(2008) who worked analytically in their study.  

Table 2.7:Natural frequencies calculated for clamped-free boundary conditions. 

Natural Frequencies (Hz) 

Present Reference

 

9.831 9.78 
61.6012 61.11 
172.452 171.17 


 Fridman and Abramovich(2008)

 

In Table 2.7, it is seen that there is a very good agreement between the calculated 

results and the ones in open literature. Additionally, in Ozdemir Ozgumus and Kaya 

(2012), natural frequencies are also calculated and validated for the other boundary 

conditions, i.e. clamped-simply supported (CS) and simply supported (SS). 

Secondly, effect of the ply orientation of piezolaminated composite beam on the first 

three natural frequencies is studied. The example is restricted to symmetric and 

nonsymmetric lay-up configurations and the results are given inTable 2.8. 

Table 2.8:Variation of the first three natural frequencies with respect to ply 

 orientation. 

Ply Orientations 

PZT/0/30/30/0/PZT PZT/0/60/60/0/PZT PZT/0/90/90/0/PZT 

9.9377 9.8456 9.8309 

62.2441 61.6701 61.6015 

174.1320 172.5370 172.4520 

PZT/0/30/0/30/PZT PZT/0/60/0/60/PZT PZT/0/90/0/90/PZT 

9.6966 9.2620 9.1815 

60.7664 58.0426 57.5330 

170.1410 162.5150 161.0650 

Considering Table 2.8, it is noticed that when the composite core beam has 

symmetric ply configuration, the beam is stiffer and the natural frequencies are 

higher than the ones of nonsymmetric ply configuration. Additionally, it is noticed 

that increasing the value of the ply angle of the laminas has the same decreasing 

effect in both symmetric and nonsymmetric laminates. However, changing the ply 

angle in a nonsymmetric laminate makes a more dominant change in the beam 

frequencies.  
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In Figure 2.13, effect of ply orientation on the tip deflection is illustrated. 

 

Figure 2.13:Effect of ply orientation on the tip deflection. 

Here, it is noticed that symmetric laminates have smaller tip deflections than 

nonsymmetric laminates. 

2.3.7 Finite element formulation 

Finite element formulation of the piezoelectric actuator beam that undergoes 

extension and flapwise bending deflections is carried out in this section. The finite 

element model of the beam that is used for the formulation is illustrated in Figure 

2.14. 

 

Figure 2.14:Piezoelectric actuator beam finite element model. 

Here, it is seen that a two noded simple beam element that has eight degrees of 

freedom is preferred to model the piezoelectric actuator.  

Polinomials of appropriate order are used to define the displacement field as follows 
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 0 1u a a x   (2.105) 

 
2 3

2 3 4 5w a a x a x a x   

 

(2.106) 

 6 7a a x  

 

(2.107) 

   2

3 6 4 7 52 3y w a a a a x a x       

 

(2.108) 

where   is the elongation, w is the flapwise bending, y  is the angle due to bending 

and   is the shear angle. 

The nodal displacements are determined as the displacement values at the first node 

of the beam element, 0x  and at the second node, x L , respectively. These are 

given in matrix form as follows 

 

01

11

21

31

42

2 3

52

2

62

72

1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 1 0

0 0 0 0 0 0 1 0

1 0 0 0 0 0 0

0 0 1 0 0

0 0 0 1 2 3 1

0 0 0 0 0 0 1

y

y

au

aw

a

a

au L

aw L L L

aL L L

aL









    
    
    
    
    

        
    
    
         
        

 (2.109) 

Expressing the displacement field in terms of the nodal displacements gives 

     eq N q  (2.110) 

where  q is the displacement field, eq is the nodal displacements and [N] is the 

matrix of shape functions whose expressions are given as follows 

    
T

yq u w    (2.111) 

    1 1 1 1 2 2 2 2

T

e y yq u w u w   

 

(2.112) 
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    
T

u w yN N N N N 

 

(2.113) 

Components of the matrix of shape functions are  

   1 0 0 0 0 0 0u

x x
N

L L

 
  
 

 (2.114) 

 

 
2 3 2 3 2 3

2 3 2 2

2 3 2 3 2 3

2 3 2 2

3 2 2 2
0 1

3 2
0

w

x x x x x x
N x x

L L L L L L

x x x x x x

L L L L L L


      



     

  

(2.115) 

 

2 2 2

2 3 2 2

2 2 2

2 3 2 2

6 6 4 3 3 3
0 1

6 6 2 3 3 3
0

y

x x x x x x
N

L L L L L L

x x x x x x

L L L L L L




         




     

  

(2.116) 

 0 0 0 1 0 0 0
x x

N
L L



 
     

 

 

(2.117) 

where uN ,  wN , 
yN

    and N
    are the shape functions associated with 

elongation, u , flapwise bending, w , rotation due to bending, y and the shear angle 

 , respectively. 

Displacement field of a Timoshenko beam that undergoes extension and flapwise 

bending deflections is given by 

 0u u z   (2.118) 

 0w w

 

(2.119) 

Strain expressions are obtained as follows 

 0x

u
u z

x
 


   


 (2.120) 
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 xz y

w u
w

x z
  

 
    

 

 

(2.121) 

Considering Eq.(2.120) and Eq.(2.121), the finite element formulation of the strain 

field is given by 

  
 

    ux e e

xz
y

N z N
q B q

N










            
      

 (2.122) 

where 

  

2

2 3

2

2

2

2

2

2 3

2

2

2

2

1
0

6 6
0

4 3
1 0

3 3

1
0

6 6
0

2 3
0

3 3

T

L

x x

L L

x x

L L

x x z

L L L
B

L

x x

L L

x x

L L

x x z

L L L

 
 

 
  
 
 
  
 
 
  
 


 
 
 
 

 
 
 
  

 
 
      

(2.123) 

The constitutive equations for a linear piezoelectric material, Eq.(2.1) and Eq.(2.2), 

can be written in matrix form as follows 

        D e      (2.124) 

        
T

Q e     

 

(2.125) 

where  D  is the electric displacement vector,  e is the piezoelectric constant 

matrix,   is the strain vector,   is the permittivity matrix,  E is the electric field 

vector,   is the stress vector and  Q  is the elastic stiffness matrix (Fuller et al., 
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1996).Eq.(2.124) and Eq. (2.125)express the direct piezoelectric effect used for 

sensors and the converse piezoelectric effect used for actuators, respectively. 

In this section structural model for a piezoelectric actuator is built so Eq.(2.125) is 

going to be used for the finite element formulation.The first term in Eq.(2.125) is the 

mechanical part while the second term is the piezoelectric part. For the displacement 

field given by Eqs. (2.105)-(2.108), the stress-strain relationship related to the 

mechanical part isgiven by 

 
1 111

5 555

0

0

Q

Q

 

 

    
    

    
 (2.126) 

Matrix form of the potential energy, Eq.(2.54), is  

    
1

2

T

A x

U dxdA     (2.127) 

Substituting Eq.(2.125) into Eq.(2.127) gives 

          
1 1

2 2

T T T

A x A x

U Q dxdA e dxdA           (2.128) 

The first term of Eq.(2.128) gives the element stiffness matrix while the second term 

contributes to the equation of motion as a damping term. Thus, the first term is 

considered to obtain the element stiffness matrix. Substituting Eq.(2.122) and 

Eq.(2.126) into the first part of Eq.(2.128) gives 

       11

55

01

2 0

T T

e e

A x

Q
U q B B q dxdA

Q

 
  

 
   (2.129) 

ReferringEq.(2.129), the element stiffness matrix that includes both mechanical and 

piezoelectric effects is obtained as follows 

    11

55

0

0

Te

A

Q
K B B dA

Q

 
     

 
  (2.130) 

Considering the definitions given in Eqs.(2.19)-(2.21), the element stiffness matrix 

can be written in terms of the stiffness coefficients 11A , 11B , 11D  and 55A  as follows 
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11 11 11 11
0 0 0 0

6 55 55 3 55 6 55 55 3 55
0 0

5 10 5 5 10 5

55 2 55 55 55 55 55
0 0

10 15 20 10 30 20

11 3 55 55 11 3 55 11 3 55 55 11 3 55

5 20 10 5 20 10

11 11 11 11
0 0 0 0

6 55 55 3 5
0

5 10

e

A B A B

L L L L

A A A A A A

L L

A A L A L A A L A L

B A A L D A L B A A L D A L

L L L L
K

A B A B

L L L L

A A A

L

 



 

    

   
 

  
5 6 55 55 3 55

0
5 5 10 5

55 55 55 55 2 55 55
0 0

10 30 20 10 15 20

11 3 55 55 11 3 55 11 3 55 55 11 3 55

5 20 10 5 20 10

A A A

L

A A L A L A A L A L

B A A L D A L B A A L D A L

L L L L

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
 
  
 
 
     
  

 

(2.131) 

Matrix form of the kinetic energy, Eq.(2.63), is  

    
1

2

T

A x

T q q dxdA    (2.132) 

Substituting Eq.(2.110) into Eq.(2.132) gives 

 

 

      
1

2

T T

e e

A x

T q N N q dxdA    (2.133) 

Referring Eq.(2.133), the element mass matrix is obtained as follows 

    
1

2

Te

A

M N N dA      (2.134) 

Considering the definitions given in Eqs. (2.65)-(2.67), the element mass matrix can 

be written in terms of the inertial terms 0I , 1I  and 2I  as follows 

 

0 1 0 1

0 0 0 0 0 0

2 2 2 2

0 0 0 0 0 0

2 2 2 2

1 0 0 0 2 1 0 0 0 2

0 1 0 1

0 0 0

140 0 0 140 70 0 0 70

0 156 22 22 0 54 13 13

0 22 4 4 0 13 3 3

140 22 4 4( 35 ) 70 13 3 3 70

70 0 0 70 140 0 0 140420

0 54 13 13 0 156

e

I I I I

I LI LI I LI LI

LI L I L I LI L I L I

I LI L I L I I I LI L I L I IL
M

I I I I

I LI LI

 

 

 

     
     

0 0 0

2 2 2 2

0 0 0 0 0 0

2 2 2 2

1 0 0 0 2 1 0 0 0 2

22 22

0 13 3 3 0 22 4 4

70 13 3 3 70 140 22 4 4( 35 )

I LI LI

LI L I L I LI L I L I

I LI L I L I I I LI L I L I I

 
 
 
 
 
 
 
 

  
    
 
         

 

(2.135) 

Depending on the number of elements used in the structural modeling code, all the 

element matrices are assembled by considering the finite element rules to obtain the 
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global matrices. The boundary conditions at the fixed end of the actuator, Eq.(2.72), 

are applied to the global matrices to get the reduced matrices and the following 

matrix system of equations are obtained for the structural model of the bender type 

piezoelectric actuator. 

        0M q K q   (2.136) 

Modal analysis is applied to Eq.(2.136) to calculate the natural frequencies. Firstly, 

the modal matrix,   , is calculated by using the eigenvectors obtained by solving 

the following determinant 

    2       0M K  
 

(2.137) 

Premultiplying Eq.(2.136) by the transpose of the model matrix and postmultiplying 

it by the modal matrix give  

    2 2      0I       
(2.138) 

where   I  is the identity matrix, 2  
 is the diagonal matrix of natural frequencies. 

2.3.8 Finite element results and validation 

2.3.8.1 Bimorph beam example 

Voltage is applied across the thickness of a bimorph beam and the tip deflection is 

calculated by the finite element method. The tip deflection of the beam is calculated 

for various voltage values from 0 to 100 V. Material and geometrical properties of 

the beam is given in Table 2.9. 

Table 2.9:Material and geometrical properties of the bimorph beam model,finite 

element model. 

Material and Geometrical Properties 

 2

1E N m  92 10  
 

12  0.29  

 2

2E N m  92 10  
  L m  0.1  

 2

12G N m  90.775 10  
  b m  0.005  

 2

13G N m    
  h m  0.0005  

 2

23G N m    
  31d m V  112.3 10  
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Mode shape of the bimorph beam that is plotted for V = 0.5 is shown in Figure 2.15 

and variation of the tip deflection with respect to the applied voltage is shown in 

Figure 2.16. Both of the figures reveal that there is a very good agreement between 

the calculated results and the results of Hwang and Park (1993)who used afour-node, 

12-degree-of-freedom quadrilateral plate bending element for finite element 

formulation. 

 

Figure 2.15 : Mode shape of the piezoelectric PVDF bimorph beam (input V=0.5), 
(.......: Present, : Hwang and Park). 

 

Figure 2.16: Tip deflection of the piezoelectric PVDF bimorph beam with respect to 

the input voltage, (.......: Present, :Hwang and Park). 
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2.3.8.2 Piezolaminated composite beam example 

Dimensionless natural frequencies of the piezolaminated composite timoshenko 

beam whose properties are given in Table 2.6 are calculated for clamped-free 

boundary conditions and are given in Table 2.10. The ply orientation of the beam is 

 PZTPZT /0/90/90/0/ .  

The calculated results are compared with ones that are obtained semi-analytically in 

Section 2.3.5 and that have already been validated with the ones of Fridmen and 

Abramovich (2008) who worked analytically in their study. 

Table 2.10: Natural frequencies of graphite epoxy beam with two 

piezoelectriclayers. 

Natural Frequencies (Hz) 

Present 

(FEM) 

Present 

(Semi- 

Analytical) 

Reference

 

9.83564 9.83088 9.78 

61.8103 61.6015 61.11 

173.851 172.72 171.17 

 Fridman and Abramovich(2008)

 

2.4 Rotor Blade Structural Model 

In this section, structural modeling of a rotating bending-bending-torsion coupled 

Euler-Bernoulli beam is carried out for the helicopter blade. Both the potential and 

the kinetic energy expressions are derived step bystep using explanatory tables and 

figures. The parameters for the hub radius, rotationalspeed and bending- bending-

torsion coupling are incorporated into the energy expressions. The governing 

differential equations of motion and the related boundary conditions are obtained by 

applying the Hamilton’s principle. In order to solve the derived equations, the 

Differential Transform Method (DTM) whose details are given in Section 2.3.5 is 

used. After the analytical part is completed, finite element formulation starts by 

considering the energy expressions that are derived analytically. A displacement field 

is defined for the coupled beam and the shape functions are obtained. These shape 

functions are substituted into the energy expressions to get the element matrices 

which are assembled to obtain the global matrices. This system of equations are 

solved to get the results of finite element formulation. Moreover, rotation is added to 
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both the analytical and the finite element formulation. At the end of this section, 

validation of both formulations, i.e. sei-manalytical and finite element, is made by 

comparing the results with open literature and it is noticed that there is a very good 

agreement between the results.  

2.4.1 Beam model 

When the cross-sections of an isotropic beam have two symmetry axes, the shear 

center and the centroid of the cross-sections coincide. Therefore, flapwise bending 

and chordwise bending vibrations are not coupled with the torsional vibration. 

However, for a monosymmetric cross-section, the shear center and the centroid do 

not coincide and the bending vibration that is in the direction of the symmetry axis is 

independent of the other vibrations while the bending vibration that is perpendicular 

to the symmetry axis is coupled with the torsional vibration (Li et al., 2004). Thus, 

for structures with asymmetric cross-section, bending vibrations, i.e., flapwise 

bending and chordwise bending, get coupled with the torsion vibration. 

The governing differential equations of motion are derived for a beam model that has 

such an asymmetric cross-section and that undergoes coupled flapwise bending-

chordwise bending-torsion vibrations. The beam that is illustrated in Figure 2.17, is 

modeled as anEuler-Bernoulli beam since helicopter blades are long and slender 

structures. 

 

Figure 2.17:Helicopter blade with asymmetric cross-section. 
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Here, a cantilever beam of length L , with hub radius R , is shown. The xyz  axes 

represent a global orthogonal coordinate system.The beam is assumed to be rotating 

at a constant angular velocity, . In the right-handed Cartesian coordinate system, 

the z-axis is parallel to the axis of rotation, but not coincident and the y-axis lies in 

the plane of rotation.The principal axes of the beam cross-sections are, therefore, 

parallel to y and z directions, respectively. Since the beam has an asymmetric cross-

section, the center of flexure and the centroid are not coincident. The 
1e  and 

2e  

represent the offsets of the center of flexure from the centroid in the y and z 

directions, respectively.  

2.4.2 Energy expressions 

The cross-sectional view, longitudinal views in the x-y and x-z planes of the 

bending- bending-torsion coupled motion of the Euler-Bernoulli beam model are 

given in Figure 2.18, Figure 2.19 and Figure 2.20, respectively. 

 

Figure 2.18:Cross-sectional viewof bending-bending-torsion coupled Euler-

Bernoulli beam. 
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Figure 2.19: Longitudinal view of bending-bending-torsion coupledEuler-Bernoulli 

beam in the x-y plane. 

 

Figure 2.20:Longitudinal view of bending-bending-torsion coupled Euler-Bernoulli 

beam in the x-z plane. 

Here, a reference point is chosen and is represented by 0P  before deformation and by 

P  after deformation. The beam undergoes flapwise bending, chordwise bending and 

torsion vibrations, respectively. Thus, 1x  is the spanwise coordinate of the reference 

point after the flapwise bending displacement and 1x  is the spanwise coordinate of 
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the reference point after the chordwise bending displacement. In other words, 1x has 

all the terms of 1x  and it also has additional terms. 

Considering Figures 2.18-2.20, the coordinates of the reference point are obtained 

Before deflection (coordinates of 0P ): 

 xRx 0  
(2.139) 

 0y
 

(2.140) 

 0z
 

(2.141) 

After deflection (coordinates of P ):  

 1 0 ( )x R x u Sin Cos Sinw        
 

(2.142) 

 
 

1 0 ( )x R x u Sin Cos Sinw

Cos Sin Sinv

   

   

     

  (2.143) 

 1y v Cos Sin     
 

(2.144) 

 1z w Sin Cos     
 

(2.145) 

where x  is the offset of the reference point, 0P , from the hub, 0u  is the axial 

displacement due to the centrifugal force,   is the offset of the reference point from 

the axis of rotation,   is the offset of the reference point from the middle plane, v  is 

the chordwise bending displacement, v  is the rotation due to chordwise bending, w  

is the flapwise bending displacement, w is the rotation due to flapwise bending and 

  is the torsion angle. 

The rotations due to chordwise and flapwise bending displacements, v  and w , are 

small so it is assumed that Sinv v   and Sinw w  . The torsion angle   is also 

small so Sin   but in order to investigate the torsional stability, the second order 

terms are kept for Cos  so it is assumed that 
2

1
2

Cos


   (Hodges and Dowell, 
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1974). Considering these assumptions, Eqs. (2.143)-(2.145) can be rewritten as 

follows 

 
2 2

1 0 (1 ) (1 )
2 2

x R x u w v
 

   
   

            
   

 
(2.146) 

 
2

1 (1 )
2

y v


    
 

(2.147) 

 
2

1 (1 )
2

z w


    
 

(2.148) 

The position vectors of the reference point before and after deformation are 0r


 and 1r


, 

respectively and the differentials of these position vectors are given by 

      kdzjdyidxrd


0000 
 

(2.149) 

      kdzjdyidxrd


1111 
 

(2.150) 

where the derivatives of the coordinates are  

 dxdx 0  
(2.151) 

 ddy 0  
(2.152) 

 ddz 0  (2.153) 

 

2

1 0

2 2

1 (1 ) ( ) ( )
2

(1 ) d (1 )
2 2

dx u w w v

w v v w d


     

 
   

   
                  

   

   
          

   

 

(2.154) 

 
2

1 ( ) (1 )
2

dy v dx d d


             
(2.155) 

 
2

1 ( ) (1 )
2

dz w dx d d


             
(2.156) 
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Here, dx , d  and d  are the increments along the deformed elastic axis and two 

cross sectional axes, respectively. 

Substituting Eqs. (2.151)-(2.156) into Eq. (2.46), the components of the strain tensor 

ij  are obtained as follows 

 

   

  

2 2

0

22 2

2 2

1

2

xx

v w
u v w v

w

   

   

 
         

  
 

(2.157) 

 02 x u v v v v w                

 

(2.158) 

 02 x u w w w w v               

 

(2.159) 

In order to obtain simpler expressions for the strain components, Eqs.(2.157)-(2.159), 

higher order terms can be neglected so an order of magnitude analysis is performed 

by using the ordering scheme, used by Hodges and Dowell (1974) and introduced in 

Table 2.11. 

Table 2.11: Ordering scheme for bending-bending-torsion coupled Euler-

Bernoullibeam formulation. 

Term Order 

0u  2( )  

v  ( )  

w  ( )  

  ( )  

  2( )  

v  
2( )  

w  
2( )  

Referring Table 2.11, Eqs.(2.157)-(2.159) can be simplified as follows 

 
   

2 2

0
2 2

xx

v w
u v w  

 
      

 
(2.160) 

 2 x  

 

(2.161) 
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 2 x 

 

(2.162) 

The uniform strain, 
0 , and the associated axial displacement, 

0u , due to the 

centrifugal force,  CFF x , are related to each other as follows 

 
 

0 0

CFF x
u

EA
  

 

(2.163) 

where the expression of the centrifugal force,  CFF x , is given by 

     2Ω

L

CF

x

F dx A R x x   
(2.164) 

The potential energy expression is given as follows 

 

 

 

0

2 2 2

0

1

2

1

2

L

xx xx x x x x

A

L

xx x x

A

U d d dx

E G d d dx

   

 

       

    

   

  
 

 

   

(2.165) 

where A  is the cross-sectional area, E  is the Young’s modulus and G is the shear 

modulus.  

The area integrals that are frequently used in the derivation of energy expressions are 

given in Table 2.12(Hodges and Dowell, 1974). 

Table 2.12: Area integrals for energy expressions. 

Area Integrals 

 
A

ddI  )( 22
 2

z

A

I d d     

 
A

ddJ  )( 22
 2

y

A

I d d     


A

ddAe 1  
yz

A

I d d     


A

ddAe 2   

where I is the mass moment of inertia about the elastic axis, 
zI , yI and yzI  are the 

second moments of inertia.  
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Substituting Eqs. (2.157)-(2.159)into Eq.(2.165), taking integration over the blade 

cross-section and referring to the definitions given inTable 2.12, the following 

expression for the potential energy is obtained. 

 
        

  

2 2 2 2

0

2 2

1
( )

2

( )

L

CF z

y

I
U F x v w EI v

A

EI w GJ dx

 




 
        

 

 



 

(2.166) 

where 
zEI  and yEI  are the bending rigidities and GJ  is the torsional rigidity of the 

beam cross section. 

Variation of the potential energy, Eq.(2.166), is given by 

 



0

( )

L

CF z

y

I
U F x v v w w EI v v

A

EI w w GJ dx

     


  

 
            

 

   



 

(2.167) 

In order to obtain the kinetic energy expression, the velocity field has to be 

determined. The velocity vector of the point P  due to rotation of the beam is given 

by  

 rk
t

r
V







  

 

 

 

(2.168) 

where  

 

2 2

0

2 2

(1 ) (1 )
2 2

(1 ) (1 )
2 2

r R x u w v i

v j w k

 
   

 
   

    
              

    

   
         

   
 

(2.169) 

Substituting Eq. (2.169)into Eq.(2.168), the total velocity vector expression can be 

obtained as follows 

 x y zV V i V j V k  

 

(2.170) 

where the velocity components are  

 

2

0

2

( ) (1 ) ( )
2

(1 )
2

xV u w v v

v


     


 

 
           

 

 
    

 
 

(2.171) 
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 
2

0

2

(1 )
2

(1 )
2

yV v R x u w

v


    


 

  
           

  

  
   
  

 
(2.172) 

  zV w     
 

(2.173) 

Here,  
.

 represents derivation with respect to time, t . 

The kinetic energy expression is given by 

  2 2 2

0

1

2

L

x y z

A

T V V V d d dx       (2.174) 

Substituting Eqs. (2.171)-(2.173)into Eq. (2.174)and using the definitions given in 

Table 2.12, the following kinetic energy expression is obtained  

 

  

 

   

        

2

1

0

2 2

2

2 22 2 2 2

22 2 22

2

2

2

L

yz z y

T Ae w R x w

Ae v v R x v

I v w I v I w

A v w v I dx

  

   

   

 

     

     

          
 

    
 



 (2.175) 

Variation of the kinetic energy, Eq.(2.175), is given by 

 

     

   

  

   

 

2

1

0

2

2

2 2

2 2

2

L

z

y yz

T Ae w w R x w w

Ae v v v v

R x v v I v v

I w w I v w w v

A v v w w v v I

     

    

   

     

    

       
 

    


        

          

   



 

(2.176) 

2.4.3 Governing equations of motion and boundary conditions 

The equations of motion and the associated boundary conditions are obtained by 

applying the Hamilton’s principle given in Eq. (2.68). Substituting Eq.(2.167) and 

Eq.(2.176)into Eq. (2.68), the equations of motion and the related boundary 

conditions are obtained as follows 
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Equations of motion: 

    

2 2 2 2

2

2

2 2

( ) 2

0

ıv

z CF z yzEI v F v I v A v I w A e

A e R x A v e

    

   

            

    

 

(2.177) 

 
   

2 2 2

1

2

1 1

( )

0

ıv

y CF y yzEI w F w I w I v A e

A e R x A w e

   
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          

    
 

(2.178) 

 
    

 

2

1 2 2

2

1 2 0

CF

y

I
F GJ A R x e w e v e v

A

I A e w e v I





  

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
            

      

(2.179) 

Boundary conditions: 

 At x=0          0, 0, 0, 0, 0, 0v t w t t v t w t      
 

(2.180) 

 At x=L  2 2 2

2 0CF z z yzF v EI v A e R x I v I w               
 

(2.181) 

   2 2 2

1 0CF y y yzF w EI w A e R x I w I v               
 

(2.182) 

  0v w    
 (2.183) 

The boundary conditions expressed by Eq. (2.181) and Eq. (2.182) can be written in 

a simpler form by noting that the centrifugal force is zero at the free end of the beam, 

  0CFF L  . Thus, 

  2 2 2

2 0z z yzEI v A e R x I v I w            
 

(2.184) 

  2 2 2

1 0y y yzEI w A e R x I w I v            
 

(2.185) 

2.4.4 Simple harmonic motion and dimensionless parameters 

In order to investigate the free vibration of the beam model considered in this study, 

a sinusoidal variation of ),( txv , ),( txw and ( , )x t  with a circular natural frequency, 

 , is assumed and the functions are approximated as  
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     tiexvtxv ,  (2.186) 

     tiexwtxw ,
 

(2.187) 

    , i tx t x e  
 

(2.188) 

Substituting Eqs. (2.186)-(2.188) into Eqs. (2.177)-(2.179) and into the boundary 

conditions results in the following expressions 

Equations of motion: 

 
   
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 (2.189) 
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(2.190) 
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    
 (2.191) 

Boundary conditions: 

 At x=0          0, 0, 0, 0, 0, 0v t w t t v t w t      
 

(2.192) 

 At x=L  2 2 2

2 0z z yzEI v A e R x I v I w            
 

(2.193) 

   2 2 2

1 0y y yzEI w A e R x I w I v            
 

(2.194) 

  0v w    
 

(2.195) 

In order to simplify the equations of motion and tobe able to make comparisons with 

open literature, dimensionless parameters are defined as given in Table 2.13. 
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Table 2.13: Dimensionless parameters for bending-bending-torsion 

coupledhelicopter blade. 

Dimensionless Parameters 
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Substituting the dimensionless parameters into Eqs.(189)-(195), the dimensionless 

equations of motion and the dimensionless boundary conditions are expressed as 

follows 

Equations of motion: 

 

 

 

**** 2 2 ** *1
12

2 2
2 ** *

2 2 22 2

1
(1 ) (1 )

2

1 2 0

v x x r v x v

v r w e e x

 


 
  

 

  
          

 

   
          

   

 
(2.196) 

 

 

 

**** 2 2 ** *

2

2 2
2 ** *

2 1 22 2

1 1
(1 ) (1 )

2

1 0

w x x r w x w

w r v e e x

 


 
  

 

 
         

 

 
       
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(2.197) 
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          
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(2.198) 
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Boundary conditions: 

 At x=0          * *0, 0, 0, 0, 0, 0v t w t t v t w t    
 

(2.199) 

 At x=L    
2

*** 2 2 * *

2 3

1

0v e x r v w


       
  

(2.200) 

     *** 2 2 2 * *

1 2 0w e x r w v        
 

(2.201) 

  * ** ** 0v w   
 

(2.202) 

where  
 
xd

d


*
. 

2.4.5 Application of the differential transform method 

After applying the differential transform method whose details are given in Section 

2.3.5 to Eqs.(2.196)-(2.202) the transformed equations of motion and boundary 

conditions are obtained as follows 

Equations of motion: 

 

   

       

     

 
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
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







  
       

 

  
         

  

      

 
    

 

 
(2.203) 
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14 122
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2

2
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
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







 
       

 

 
      

 

      

 
    

 

 (2.204) 
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       

       

     
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

  
            

 

   
          

  

 
      

 

 
(2.205) 

where   12 1 2k k k   and     14 1 2 3 4k k k k k    
 

Boundary conditions: 

 At x=0           0y zV k W k k k k     
 

(2.206) 

 At x=L 

   

     
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(2.207) 

  
   
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
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

   

       


 

(2.208) 

           
0 0 0

1 1 0
k k k

k k k kV k k kW k
  

  

         (2.209) 

2.4.6 Finite element formulation 

Finite element formulation of the rotor blade that undergoes chorwise bending, 

flapwise bending and torsion is carried out in this section.  

The finite element model of the beam that is used for the formulation is illustrated in 

Figure 2.21. Here, it is seen that a two noded simple beam element that has ten 

degrees of freedom is preferred to model the helicopter blade. 

 

Figure 2.21:Rotor blade finite element model. 
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where v is the chorwise bending, w is the flapwise bending, y  is the angle due to 

flapwise bending, z is the angle due to chordwise bending and   is the torsion 

angle. 

Polinomials of appropriate order are defined for the displacement field as follows 

 
2 3

0 1 2 3v a a x a x a x     (2.210) 

 
2 3

4 5 6 7w a a x a x a x   

 

(2.211) 

 
2

1 2 32 3z v a a x a x    

 

(2.212) 

 
2

5 6 72 3y w a a x a x    

 

(2.213) 

 8 9a a x  

 

(2.214) 

The nodal displacements are determined as the displacement values at the first node of the 

element,     and at the second node,    , respectively. These are given in matrix form as 

follows 
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 (2.215) 

Relation between the displacement field and the nodal displacements is obtained as 

in Eq.(2.110). For the present beam model, expressions of the displacements, { }, the 

nodal displacements, {  }and the matrix of the shape functions,  N  are  

    
T

z yq v w   
 

(2.216) 

    1 1 1 1 1 2 2 2 2 2

T

e z y z yq v w v w     
 

(2.217) 

        v w z yN N N N N N  
           (2.218) 
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Components of the matrix of shape functions are 
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 0 0 0 0 1 0 0 0 0
x x

N
L L



 
      

 

 

(2.223) 

where  vN ,  wN , zN , yN
   , N

    are the shape functions associated with 

chordwise bending, v , flapwise bending, w , angle due to chordwise bending, θz, 

angle due to flapwise bending,θyand torsion , respectively. 

Substituting the obtained shape functions into analytically derived energy 

expressions, Eq.(2.166) and Eq.(2.175), the element stiffness and mass matrices are 

found as follows 
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(2.224) 
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(2.225) 

where eK    is the element stiffness matrixobtained from the kinetic energy and 

eM    is the element mass matrix obtained from the potential energy. 

Depending on the number of elements used in the structural modeling code, all the 

element matrices are assembled by considering the finite element rules to obtain the 

global matrices. The boundary conditions at the fixed end of the helicopter blade, 

Eq.(2.206), are applied to the global matrices to get the reduced matrices and the 

following matrix system of equations are obtained for the structural model of the 

helicopter blade. 

      0S SM q K q         (2.226) 

In the case of a rotating beam, additional terms appear in the element matrices due to 

the centrifugal force. These terms are considered by using finite element formulation 

for the centrifugal force. Thus, finite element representation of a rotating beam that is 

given in Figure 2.22 can be used. 

 
Figure 2.22:Finite element representation of a rotating beam, adapted from (Yang et 

al., 2004). 
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where iL  is the offset of each element from the rotational axis, XYZ is the global 

coordinate system while x y z    is the local coordinate system.  

Referring Figure 2.22, the centrifugal force given by Eq.(2.164) can be expressed in 

finite element form as follows  

       2 1

2
CF i i iF x A R L L x L L x L L x

 
           

 
 (2.227) 

where  

  1i

L
L i

n
   (2.228) 

and n  is the number of elements.  

After addingthe rotation effect to the finite element formulation, modal analysis is 

applied to Eq.(2.226) to calculate the natural frequencies. Firstly, the modal matrix, 

  , is calculated by using the eigenvectors obtained by solving the following 

determinant 

 
2       0S SM K           

(2.229) 

Premultiplying Eq.(2.226) by the transpose of the model matrix and postmultiplying 

it by the modal matrix give  

    2 2      0I       
(2.230) 

where   I  is the identity matrix, 2    is the diagonal matrix of natural frequencies. 

2.4.7 Validation of the structural model 

2.4.7.1 Nonrotating bending-bending-torsion coupled beam example 

An illustrative example that studies a rotating bending-bending-torsion coupled Euler 

Bernoulli beam is not present in open literature. Therefore firstly, a nonrotating 

coupled beam example that is available in open literature is solved to validate the 
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built structural model. The material and the geometrical properties of this beam 

model are given in Table 2.13. 

Table 2.14:Material and geometrical properties of the nonrotatingbending- 

bending-torsion coupledbeam model. 

Property Value Property Value 

E
 

213.9×10
9
N/m

2
 2e

 

1.1938×10
-3

 m 

yI
 

34.96×10
-12

m
4
 A

 

58.97×10
-6

 m
2
 

zI
 

2.7928×10
-9

m
4 L

 
0.1524 m 

GJ
 

9.14 N/m
2
 

 
7.859×103 kg/m3 

1e

 

0.1930×10
-3

 m   

The calculated results are compared with the results of Rao and Carnegie (1970) and 

Carnegie and Dawson (1971)in Table 2.15 for validation.The results are given as 

coupled, i.e. 1 0e   and 2 0e   and uncoupled, i.e. 1 0e   and 2 0e  , natural 

frequencies. When Table 2.15 is examined, it is seen that there is a very good 

agreement between the results. 

Table 2.15:Coupled and uncoupled bending-bending-torsion frequencies. 

Mode 

Shapes 

Present (Hz) Analytical Process

 Galerkin’s Process


 

Uncoupled Coupled Uncoupled Coupled Uncoupled Coupled 

1st ZZ 

Bending 
96.7816 96.7813 96.9 96.9 96.9 96.9 

2nd ZZ 

Bending 
606.52 606.504 607 606.5 607.3 607.3 

1st YY 

Bending 
865.022 844.354 869 841.2 868.4 845.8 

Torsion 1052.02 1093.08 1048.5 1072.9 1048.23 1074.8 

3rd ZZ 

Bending 
1698.27 1698.18 1699 1699 1701.7 1701.6 

      
 Rao and Carnegie (1970), 


Carnegie and Dawson (1971) 

In Table 2.15, it is noticed that coupling does not have a significant effect on the first 

three flapwise bending modes, ZZ Bending, because 1e  has a very small value while 

it has a significant reducing effect on the first chordwise bending mode, YY Bending 

since    is much larger than   . Additionally, the coupled torsion mode is larger than 

the uncoupled mode. Consequently, coupling has a reducing effect on the bending 

modes while it has an increasing effect on the torsion modes(Rao and Carnegie, 

1970). 
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2.4.7.2 Helicopter rotor blade example 

As mentioned before, any paper that studies a rotating coupled Euler-Bernoulli beam 

is not present in open literature. Therefore, such a beam model is built in ABAQUS 

to validate the results of the present research. The material and the geometrical 

properties of this beam model are given in Table 2.16. 

Table 2.16:Material and geometrical properties of the rotating bending-bending-

torsion coupled beam model. 

Property Value Property Value 

E
 

70×10
9
N/m

2
 1e

 

9.361×10
-3

 m 

yI  1.172×10
-5

 m
4
 A

 
22.5×10

-3
 m

2
 

zI
 

1.45×10
-9

 m
4
 L

 
3 m 

I
 

0.502 kg m 
 3200 kg/m3 

GJ
 

1.126×10
9
N/m

2   

In Table 2.17, variation of the coupled natural frequencies with respect to the 

rotational speed is introduced and the results are compared with the ones given by 

ABAQUS. 

Table 2.17:Variation of the natural frequencies with respect to the rotational speed. 

Rotational Speed (rad/sec) 

0 50 100 

Natural Frequencies (Hz) 

Present ABAQUS Present ABAQUS Present ABAQUS 

6.63569 6.7163 10.8827 10.88 18.2559 18.274 

23.31 23.355 24.8713 23.835 24.476 24.406 

41.5474 41.603 46.2117 46.256 58.1207 57.181 

116.152 116.46 120.873 121.2 126.744 125.65 

125.679 125.65 125.969 125.65 134.012 134.36 

144.653 145.36 146.03 146.58 150.087 150.09 

227.164 228.21 232.075 233.14 246.137 247.32 

In Table 2.17, it is seen that rotational speed has an increasing effect on the natural 

frequencies due to the increasing centrifugal force that makes the beam stiffer. 

Additionally, it is noticed that there is a very good agreement between the results of 

the present study and the results of ABAQUS which proves the correctness and 

accuracy of the built structural model. 
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2.5 Goland Wing Structural Model 

2.5.1 Energy expressions and element matrices 

In the aerodynamic formulation part; derivations are made for three different cases, 

i.e. a plain blade that has no trailing edge flap, a trailing edge flap and a blade with a 

trailing edge flap. Additionally, in the aeroelastic formulation part, validation of the 

plain blade aerodynamics is carried out by calculating the flutter speed of a Goland 

wing. Therefore, in this section structural formulation of the beam model that is used 

for the Goland wing is carried out. Goland wing is a wing model that is used in 

fixed-wing aircrafts and thisnonrotating wing structure undergoes only flapwise 

bending and torsion deflections since chordwise bending degree of freedom is mostly 

neglected in fixed-wing aircrafts. As a result, the flapwise bending-chordwise 

bending-torsion coupled beam model that is developed in Section 2.4 has to be 

simplified to model the Goland wing structure by eliminating the chorwise bending 

displacement and the rotational effect. This simpler beam model has been developed 

in the previous studies of the doctorate student and her advisor which are Ozdemir 

Ozgumus and Kaya (2007c), Kaya and Ozdemir (2007, 2010). However, 

Timoshenko beam model is studied in these references and in the present study, the 

simpler structural model is developed for an Euler-Bernoulli beam by referring these 

previous studies.The potential and the kinetic energy expressions of the flapwise 

bending-torsion coupled Euler-Bernoulli beam are given as follows 

    
2 2

0

1

2

L

yU EI w GJ dx   
 

 

(2.231) 

  2 2

1

0

1
2

2

L

T Ae w Aw I dx     

 

(2.232) 

The finite element model that is built in the Section 2.4.6 has to be simplified for the 

Goland wing as illustrated in Figure2.23.  

 

Figure 2.23: Goland wing finite element model. 
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Here it is seen that a two noded simple beam element that has six degrees of freedom 

is used for the finite element model of the Goland wing. 

Following the previously mentioned procedure, polinomials of appropriate order are 

defined for the displacement field as given below  

 
2 3

0 1 2 3w a a x a x a x   

 

(2.233) 

 
2

1 2 32 3y w a a x a x    

 

(2.234) 

 4 5a a x  

 

(2.235) 

The nodal displacements are determined as the displacement values at the first node, and the 

second node, , of the beam element, respectively. These are given in matrix form 

as follows 

 

01
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21

2 3

32

2

42

52

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 1 0

1 0 0

0 1 2 3 0 0

0 0 0 0 1
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y
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a

a

aw L L L

aL L

aL









    
    
    
       

     
     
     
     
       

 (2.236) 

Relation between the displacement field and the nodal displacements is obtained as 

in Eq.(2.110). For the present beam model, expressions of the displacements, { }, the 

nodal displacements, {  }and the matrix of the shape functions,  N  are  

   
T

z yq v w   
 

(2.237) 

   1 1 1 1 1 2 2 2 2 2

T

e z y z yq v w v w     
 

(2.238) 

    
T

yq w  
 

(2.239) 

    1 1 1 2 2 2

T

e y yq w w   
 

(2.240) 

    w yN N N N 
          (2.241) 

Components of the matrix of shape functions are 
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 
2 3 2 3

2 3 2

2 3 2 3

2 3 2

3 2 2
1 0

3 2
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w

x x x x
N x

L L L L

x x x x

L L L L


    



   
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(2.242) 
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


       




   
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(2.243) 

 0 0 1 0 0
x x

N
L L



 
      

 

 

(2.244) 

where wN , yN
   and N

    are the shape functions associated with flapwise 

bending, w , angle due to flapwise bending,θyand torsion , respectively. 

Substituting the related shape functions into Eq.(2.231) and Eq.(2.232), the element 

stiffness and mass matrices are obtained as follows for a flapwise bending-torsion 

coupled Euler-Bernoulli beam.   

 

2 2
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TTL

e w w
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dN dNI d N d N
K EI
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        
                     
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(2.245) 
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             

      



 

(2.246) 

Depending on the number of elements used in the developed structural modeling 

code, the element matrices are assembled by considering the finite element rules to 

obtain the global matrices. The boundary conditions at the cantilever end, i.e. 

     0, 0, 0, 0w t w t t   , are applied to the global matrices to get the reduced 

matrix equations of motion that are given below  
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          0S SM q K q         
(2.247) 

Firstly, the modal matrix,   , is calculated by using the eigenvectors obtained by 

solving the following determinant 

 
2       0S SM K           

(2.248) 

Premultiplying Eq.(2.239) by the transpose of the model matrix and postmultiplying 

it by the modal matrix give  

    2 2      0I       
(2.249) 

where   I  is the identity matrix, 2    is the diagonal matrix of natural frequencies. 

2.5.2 Validation of the Goland wing structural model 

In this section, the structural model developed for the Goland wing is validated by 

comparing the calculated natural frequencies with the ones obtained by Eslimy-

Isfahany et al., (1996 ). Properties of the Goland wing is given in Table 2.18 and the 

results are validated in Table 2.19.  

Table 2.18:Goland wing structural properties. 

Property Value 

Chord 
 

6 ft (1.829 m) 

Semispan 20 ft (6.096 m) 

Mass/span  11.249 slug/ft (539.6 kg/m) 

Elastic axis  2 ft (0.6096m) from the LE  

Elastic axis, ah -1/3, relative to the LE  

Centroidal axis 2.6 ft (0.7925m) from the LE 
Mass moment of 

inertia/span, yI  
0.24921 slug-ft

2
/ft (1.111 kg-m

2
/m), about cg 

Mass moment of 

inertia/span, zI  
25.170 slug-ft

2
/ft (112.2 kg-m

2
/m), about cg 

EIy

 
23.647×10

6
 lb/ft

2
 (345.9×10

6
 N/m

2
 ) 

GJ 2. 3899×10
6
 lb/ft

2
 (34.95×10

6
 N/m

2
 ) 
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Table 2.19: Validation of the structural model for flapwise bending – torsion 

coupledEuler Bernoulli beam. 

Natural Frequencies (Hz) 

Present Eslimy-Isfahany et al., (1996 ) 

49.6149 49.6 

97.0391 97.0 

248.943 248.9 

355.657 355.6 

451.858 451.5 

2.6 Piezoelectric Bender Type Actuator – Trailing Edge Flap Connection 

As mentioned before, bender type piezoelectric actuator is chosen to deflect the 

trailing edge flap. In this section, assembly process of the piezoelectric actuator and 

the trailing edge flap mechanism is studied. Locations of the piezoelectric actuator 

and the flap mechanism in the blade are shown in Figure 2.24. 

 
Figure 2.24: Piezoelectric actuator – trailing edge flap connection, adapted from 

(Koratkar and Chopra, 2000).  

The linkage mechanism that connects the bender type actuator to the trailing edge 

flap is shown in Figure 2.25. 
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Figure 2.25:Linkage mechanism between the piezoelectric actuator and the trailing 

edge flap. 

Here, d represents the length of the linkage arm and wtip represents the tip deflection 

of the bender type actuator.  

Considering Figure 2.24, the relation between the flap deflection angle and the 

actuator tip deflection is given by(Koratkar, 2000). 

 
tipw

d
   (2.250) 

The bimorph beam model whose material and geometrical properties are given in 

Table 2.9 can be used as the bending type piezoelectric actuator that deflects the flap 

mechanism. When Figure 2.16 that illustrates the tip deflection of the bimorp beam 

with respect to the voltage is examined, it is seen that 0.066tipw mm  for the voltage 

value of 100 V.  

It is assumed that flap deflection angle of 1
0
 will be enough to reduce the blade 

vibration. Therefore, the tip deflection value of 0.066tipw mm  is substituted into 

Eq.(2.248) and the the length of the linkage arm is found to be 3.78d mm .  

Considering the previously studied bimorph beam example, calculation of the 

linkage arm length is made for the assumed flap deflection angle, β=1
0
. In the 

aeroelastic analysis, it is going to be seen that the assumed flap deflection is enough 

to reduce the blade vibration.  
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3.  AERODYNAMIC FORMULATION 

3.1 Overview 

The purpose of the present section is to build the aerodynamic models and to make 

the related formula derivations correctly and accurately. The results of this section 

are going to be assembled with the results of the structural formulation to be used in 

the aeroelastic analysis.  

Through the whole section, Theodorsen’s theory for unsteady aerodynamics is used 

to model the aerodynamic loads. Firstly, aerodynamic formulation is carried out for a 

plain blade that has no trailing edge flaps and derivation of the aerodynamic loads 

are made. Using the derived aerodynamic loads in the virtual work principle gives 

the components of the aerodynamic matrix, i.e. aerodynamic mass matrix, 

aerodynamic stiffness matrix and aerodynamic damping matrix. Secondly, only 

aerodynamics of the flap mechanism is considered and an illustrative example is 

solved for validation. Thirdly, the aerodynamic loads are obtained for a rotating 

helicopter blade that has a trailing edge flap. In order to apply the Theodorsen’s 

theory to helicopter aerodynamic environment, several steps whose details are given 

in the related sections are performed and several coordinate transformations are 

made. Moreover, the aerodynamic formulation is carried out both for the hover and 

the forward flight conditions.  

This section includes derivations that have been achieved step by step in the previous 

studies of the doctorate student and her advisor through several years. These studies 

include Ozdemir Ozgumus and Kaya (2007a, 2007b); Ozdemir Ozgumus et al. 

(2011).  

3.2 Theodorsen’s Theory 

Theodorsen’s theory is widely used for the analysis of fixed-wing aircrafts. However, 

it also takes place among several theories that are used for helicopter analysis. In this 

theory, a large aspect ratio wing is considered to move in an incompressible and 
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inviscid flow.The lift and pitching moment are expressed for a thin airfoil that 

undergoes small harmonic oscillations. 

The wing undergoes three degrees of freedom, i.e. plunging motion, h, pitching 

motion, α and flap deflection, βas illustrated in Figure 3.1.  

 

Figure 3.1:Typical wing cross-section with a trailing edge flap. 

In Figure 3.1,U  is the free stream velocity, b  is the semi-chord length, h  is the 

plunging deflection,   is the pitching angle,  is the flap deflection angle, 
hba , is 

the distance between the semichord and the elastic axis, bc , is the distance between 

the semichord and the flap hinge. Here, h  and   correspond to the flapwise 

deflection, w and the pitching motion,   in the structural formulation, respectively. 

As it is seen in Figure 3.1., the plunging motion is the flapwise bending motion that 

is positive downwards, the pitching motion occurs about the elastic axis and it is 

positive in the nose up direction and the flap angle is positive when the flap deflects 

downwards (Bisplinghoff et al., 1996). 

3.3 Plain Blade Aerodynamics 

3.3.1 Aerodynamic loadsEquation Chapter 3 Section 1 

In this subsection, Theodorsen’s theory for unsteady aerodynamics is used to model 

the plain blade aerodynamics. The trailing edge flap mechanism that is present in 

Figure 3.1 is discarded to model the plain blade as illustrated in Figure 3.2.  
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Figure 3.2:Typical wing cross-sectionof a plain blade. 

Aerodynamic lift, A

bL and aerodynamic moment, A

bM expressions for a plain blade are 

given as follows(Bisplinghoff et al., 1996) 
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b h
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U bC k h U b a

  

  

 

  

     

  
    

  

 
(3.1) 
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(3.2) 

where  is the free stream density and  C k is the Theodorsen deficiency function 

that is a complex valued function of the reduced frequency k  

      
 

   

(2)

1

(2) (2)

1 0

H k
C k F k iG k

H k iH k
  

  
(3.3) 

where  F k  represents the real part and  G k  represents the imaginary part of 

 C k . Moreover, the  (2)

nH k  are Henkel functions of the second kind that are 

defined in terms of first and second kind Bessel functions, given respectively as 

follows 

      (2)

n n nH k J k iY k 
 

(3.4) 
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Here the reduced frequency is given by 

 
b

k
U






 

(3.5) 

where   is the circular frequency. 

Variation of the real and imaginary parts of  C k with respect to the reduced 

frequency, k are plotted in Figure 3.3. 

 

 

Figure 3.3:Variation of the real and the imaginary parts of the Theodorsen function, 

C(k) with respect to the reduced frequency, adapted from Fung (1969). 

In Figure 3.3, it is seen that the real part, F(k) tends to 0.5 while the imaginary part, 

G(k), tends to infinity as the reduced frequency k goes to infinity (Fung, 1969). 

The magnitude of the Theodorsen deficiency function, C(k), varies from 1 at low 

frequency to 0.5 at high frequency which means that C(k) is real and equals to unity 

for the steady case, i.e. k=0 and as the reduced frequency goes to infinity, C(k) 

approaches 0.5 (Hodges and Pierce, 2002). 

The first set of terms in Eq. (3.1) and Eq.(3.2) are the results of flow acceleration and 

they are called noncirculatory terms while the second set of terms arise from the 

circulation about the airfoil and they are called circulatory terms. The Theodorsen’s 
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deficiency function, C(k), takes place in circulatory terms and it accounts for the 

effects of the shed wake on the unsteady airloads (Leishman, 2000).  

3.3.2 Virtual work and aerodynamic matrix 

The virtual work done by the aerodynamic loading is given by(Sivaneri and Chopra, 

1982) 

 
0 0

     

L L

A A

b bW L hdx M dx      
(3.6) 

Substitutingthe shape functions whose expressions are derived in Section 2.5.1 into 

Eq.(3.6), terms of W related to the aerodynamic lift, i.e. LW , and terms of W

related to the aerodynamic moment, i.e MW , are obtained as follows 
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(3.8) 

As mentioned before, h  and   correspond to the flapwise deflection, w and the 

pitching motion,  in the structural formulation, respectively. Therefore, terms that 

are related to h  and  in Eq.(3.1) and Eq.(3.2) are expressed by  wN  and N   , 

respectively as it is seen in Eq.(3.7) and Eq.(3.8).  

Here,thesingle underlined terms belong to the aerodynamic mass matrix, A

eM   , the 

double underlined terms belong to the aerodynamic damping matrix, A

eC    while the 
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terms with no underline are related to the aerodynamic stiffness matrix, A

eK   . 

These matrices can be expressed as one matrix, i.e. the aerodynamic matrix whose 

expression is given as follows 

        2 A A A

e e e e e e eA k M q U C q U K q 
                  

(3.9) 

3.4 Flap Aerodynamics 

Before modeling flapped blade aerodynamics, validation of the flap aerodynamics is 

carried out in this section. Variation of the flap originated lift and moment 

coefficients with respect to time is inspected for validation.  

Firstly, the terms that are related to the flap deflection in Theodorsen theory are 

given as follows (Theodorsen, 1934) 
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(3.11) 

Here, iT are the geometric constants that are defined by Theodorsen (1934) and that 

depend on the chord length, c  and on the offset of the elastic axis from the 

midchord, ha  as introduced in App.A. 

The assumption of simple harmonic motion is made for the flap deflection angle, β as 

follows 

 
i te  

 
(3.12) 

Substituting Eq. (3.12) into Eq.(3.10) and Eq. (3.11) gives 
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(3.14) 

Theflap originated lift and moment coefficients are defined as follows 
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Substituting Eq.(3.13) and Eq.(3.14)into Eq. (3.15)and Eq.(3.16), respectively and 

expressing the resultant expressions in terms of the reduced frequency, Eq.(3.5), give 

    2 10 11
4 1 2

2
L

T T
C ikT k T C k ik


    

 

 
      

   
(3.17) 

 

   

    

11
4 10 1 8 4

2 10 11
7 1

1
 

2 2

1

2 2

M h

h h

T
C T T ik T T c a T

T T
k T c a T a C k ik


 

   
 

 
         

 

              

 
(3.18) 

Referring Eq. (3.17) and Eq. (3.18), an illustrative example that studies the variation 

of the flap originated lift and moment coefficients with respect to time is solved to 

validate the flap aerodynamics. The plotted results are compared with the ones of 

Koratkar ( 2000) inFigure 3.4and Figure 3.5where 2D flap originated sectional lift 

and pitching moment coefficients are compared, respectively. 

In this example, reduced frequency is 0.087, the flap has a 20% chord and is 

deflected by ±5 deg at 67 Hz.  
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Figure 3.4:Variation of the flap originated sectional lift coefficient with respect to 

time, (....... Present,  Koratkar ). 

 

Figure 3.5: Variation of the flap originated sectional moment coefficient with 

respect to time, (....... Present,  Koratkar ). 

3.5 Flapped Blade Aerodynamics 

3.5.1 Aerodynamic loads 

In this section, Theodorsen theory is generalized to include the flap mechanism as 

shown in Figure 3.1. 

Expressions for sectional aerodynamic lift and aerodynamic moment of a flapped 

blade are given as follows (Theodorsen, 1934) 
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(3.20) 

3.5.2 Coordinate systems 

In this study two coordinate systems, i.e. undeformed coordinate system and blade 

fixed coordinate system, are considered and they are illustrated in Figure 3.6.  

 

Figure 3.6:Undeformed and blade fixed coordinate systems, adapted from (Hodges 

and Ormiston, 1976). 

The xyz  axes represent the undeformed coordinate system. In this right-handed 

cartesian coordinate system, the x-axis coincides with the neutral axis of the blade in 

the undeflected position. The blade is rotating at a constant angular velocity  and 

the z-axis is parallel to the axis of rotation (but not coincident) and the y-axis lies in 

the plane of rotation.The principal axes of the beam cross-sections are, therefore, 

parallel to y and z directions, respectively.  
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The xyz axes represent the blade fixed coordinate system. This coordinate system is 

fixed to the blade and moves with the blade as it undergoes bending displacements 

and pitching rotation.  

Projection of the rotor blade cross-section before and after deformation is illustrated 

in Figure 3.7. 

 

Figure 3.7:Rotor airfoil before and after deformation, adapted from (Hodges and 

Ormiston, 1976). 

As it is seen in Figure 3.7, after the elastic axis undergoes flapwise and chordwise 

bending deformations, the blade undergoes pitching rotation which means that 

twisting occurs about the deformed blade coordinate system. 

3.5.3 Application of Theodorsen’s theory to helicopter aerodynamics 

In order to apply the unsteady aerodynamic theory to helicopter blade aerodynamic 

environment, three steps have to be performed (Kaza and Kvaternik, 1981). These 

steps are 

1.Resolving the free stream velocity U into its components, i.e. the radial, UR , the 

tangential, UT , and the perpendicular, UP components. 

2.Expressing the aerodynamic lift, AL and the aerodynamic moment, AM in terms of 

UR , UT , and UP and  . 

3.Deriving explicit expressions for UR , UT , and UP and  in terms of inflow ratio, 

λ, rotor rotational speed, Ω, blade motion variables, w,v,α, etc. 
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The velocity components that are present on an airfoil is shown inFigure 3.8. 

 

Figure 3.8:Velocity components that are present on the blade airfoil. 

The perpendicular velocity, UP  is much smaller than the tangential velocity except 

at the blade root (Leishman, 2006). Additionally, in this section the rotor blade 

aerodynamic forces are formulated from strip theory in which only the velocity 

components perpendicular to the blade spanwise axis, x are considered (Hodges and 

Dowell, 1974). Therefore, the radial velocity component, UR , can be neglected. 

Consequently, the free stream velocity, U can be written as follows 

 2 2 2

TU U U UT P RU    
 

(3.21) 

Expression of the perpendicular velocity component, UP can be obtained by 

referring Figure 3.9.  

 

Figure 3.9:The perpendicular velocity, UP . 
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Here, the blade twists at an angle  with respect to the free stream velocity, U  and 

it plunges with a velocity, h that is positive downwards. Referring the Figure 3.9, the 

expression of the perpendicular velocity component is obtained as follows 

 
P-U Sinα αhCos U h U     

 
(3.22) 

where small angle assumption, i.e. 1Cos   and Sinα α , is made.  

The expression in Eq.(3.22) is the same with the one given by Johnson 

(1980).Substituting Eq.(3.21) and Eq.(3.22) into Eq.(3.19) and Eq.(3.20)gives 
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(3.24) 

where 
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(3.26) 
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(3.27) 

Since the helicopter blade undergoes chordwise and flapwise bending deflections, it 

is desirable to express the aerodynamic forces and moments in the directions that are 

parallel and perpendicular to the airfoil chord line. In this way, the aerodynamic 

loads are transformed from the undeformed axis to the deformed axis, i.e. blade fixed 

axis as it is seen in Figure 3.10.  
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The lifting force has circulatory, CL  and non-circulatory, NCL  terms. The double 

underlined terms in Eq.(3.23) are the circulatory terms while the terms with no 

underline are the noncirculatory ones.The noncirculatory lift is taken to act normal to 

the airfoil chordline, and the circulatory lift is taken to act normal to the resultant 

blade velocity, V which is the resultant of aerodynamic and dynamic velocities at a 

point on the elastic axis. An aerodynamic profile drag force per unit length, acting 

parallel to the resultant blade velocity, is also included (Hodges and Ormiston, 1976). 

All the aerodynamic force components are shown in Figure 3.10. 

 

Figure 3.10: Components of the aerodynamic forces, adapted from (Hodges 

andOrmiston, 1976). 

where   is the angle of attack and D  is the drag force that is in the opposite direction 

of the resulting velocity, V . Here the drag force, D  is given by 

  2 2 20

02

d
T P d T

a c C
D U U C U

a



  

 (3.28) 

where dC  is the drag coefficient and 0a  is the lift curve slope. 
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ReferringFigure 3.10, the normal component of the aerodynamic liftthat acts 

perpendicular to the airfoil chordline, NormL and the tangential componentof the 

aerodynamic lift that act in the direction that is parallel to the airfoil chord line, TanL

are obtained as follows 

 Norm NC CL L L Cos DSin   
 

(3.29) 

 Tan CL L Sin DCos   
 

(3.30) 

Referring Figure 3.10, the following angle relations are obtained 
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Substituting Eq.(3.28), Eq. (3.31) and Eq. (3.32) into Eq.(3.29) and Eq.(3.30) gives 
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(3.34) 

After obtaining the normal and the tangential force components, transformation from 

the “deformed axis” to the “undeformed axis” is performed to resolve the normal and 

tangential components of aerodynamic lift, NormL and TanL into vL  and wL  which are 

the force components parallel to the y and z axis of the the undeformed blade 

coordinate system. Thus considering Figure 3.10, we get 

 w Norm TanL L L  
 

(3.35) 
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 v Tan NormL L L  
 

(3.36) 

Eq.(3.35) and Eq.(3.36) can be written in the extended form as follows 
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(3.38) 

Since there is no transformation about the x-axis, the aerodynamic pitching moment 

is not affected from coordinate transformations. Therefore, the following equality 

can be written 

 
AMM 

 
(3.39) 

where AM  is the aerodynamic pitching moment whose expression is given in 

Eq.(3.20). 
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4.  AEROELASTIC FORMULATION 

4.1 Overview 

The purpose of the present section is to assemble the results of the structural part and 

the aerodynamic part to build the aeroelastic model of the helicopter blade. 

Firstly, the structural model of the flapwise bending-torsion coupled Euler Bernoulli 

beam, developed in Section 2.5, is combined with the aerodynamic model, developed 

in Section 3.3 to build the aeroelastic modelof a plain blade that does not have a 

trailing edge flap. An example that is present in open literature, Goland wing flutter, 

is chosen to validate the correctness and accuracy of this aeroelastic model. After the 

assembly of the structural matrices with the aerodynamic ones, modal analysis is 

carried out first. Afterwards, the flutter speed of the Goland wing and the reduced 

frequency value at which flutter occurs are calculated by applying the U-g method. 

The calculatedresults are in very good agreement with the ones in openliterature 

which is adequate for the validation of the plain blade aeroelastic model.  

Secondly, the flapwise bending-chordwise bending-torsion coupled structural model 

of the helicopter blade, developed in Section 2.4, is combined with the aerodynamic 

formulation of the flapped blade, developed in Section 3.5, to inspect the vibration 

characteristics of the blade.A beam model that undergoes coupled motion is chosen 

and the cross-sectional properties of the beam are found by using a cross-sectional 

analysis program called VABS (Cesnik and Hodges, 1997). The aerodynamic 

characteristics are calculated by considering similar blade models that are present in 

open literature. Both the material and the aerodynamic properties are used in the 

developed aeroelastic computer codes and Runge-Kutta method is applied as the 

solution procedure.The analysis is carried out for both hover and forward flight 

conditions. Effects of several parameters, i.e. flap deflection angle, rotor disk angle 

of attack, advance ratio and voltage applied to the piezoelectric actuator, on the 

vibration characteristics of the blade are studied. 
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4.2 Plain Blade FlutterEquation Chapter 4 Section 1 

Stability problems are the most common problems in aeroelasticity studies. The 

elastic moduli of a given structure is independent of the flight speed while the 

aerodynamic forces are strictly dependent on the speed of the aircraft. Therefore, in 

some cases aerodynamic forces are more powerful than the elastic restoring forces. 

When this occurs in such a way that the inertial forces have little effect, this static 

instability is called “divergence”. However, if the inertial forces are also effective, 

this dynamic instability is called “flutter”. Both instabilities can cause catastrophic 

results which lead to a sudden destruction of the vehicle (Hodges and Pierce, 2002). 

Flutter occurs during flight at a speed called the “flutter speed”. Since flutter may 

cause catastrophic disintegration of the airplane during flight and since it involves 

serious oscillatory distortions of the structural components, it must not occur during 

flight. Thus, the aircraft designers must know how to design lifting surfaces that do 

not undergo such instabilities (Goland, 1945).  

The aim of the present section is to prove the correctness and the accuracy of the 

aeroelastic model that is developed for a plain blade that has no trailing edge 

flaps.Therefore, a numerical example that studies the flutter speed of Goland wing is 

solved in this section. 

4.2.1 Aeroelastic formulation 

In order to build the aeroelastic model for the plain blade, the structural matrices 

given by Eq. (2.243) and Eq.(2.244) are assembled with the aerodynamic matrix 

given by Eq.(3.9). Depending on the number of elements used in the developed 

aeroelasticity code, the element matrices are assembled by considering the finite 

element rules to obtain the global matrices.The boundary conditions at the cantilever 

end, Eq.(2.180), are applied to the global matrices to get the reduced matrices and the 

following governing matrix system of equations of the aeroelastic model are obtained 

for the plain blade. 

            0S SM q K q A k             
(4.1) 
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4.2.2 Simple harmonic motion 

In a classical flutter analysis, simple harmonic motion assumption is made for the 

displacement field as follows 

     i tq q e 
 

(4.2) 

Substituting Eq.(4.2) into Eq.(3.9) gives 

      2   i tA k A k q e          
(4.3) 

where  

  
2

2

A A Aib b
A k M C K

k k
                   

(4.4) 

The expressions of the element level aerodynamic mass matrix, A

eM   ,aerodynamic 

damping matrix, A

eC    and aerodynamic stiffness matrix, A

eK    are given in 

App.B. 

Substituting Eq.(4.2) and Eq.(4.3) into Eq.(4.1) gives  

        2 2      0M K A k         
(4.5) 

4.2.3 Modal analysis 

The modal matrix,   , is obtained by using the eigenvectors obtained by solving 

the following determinant 

    2       0M K  
 

(4.6) 

Premultiplying Eq.(4.5) by the transpose of the model matrix and postmultiplying it 

by the modal matrix give 

      2 2 2      0I A k             
(4.7) 



112 

where   I is the identity matrix, 2   is the diagonal matrix of natural frequencies, 

and  A k 
 

is the aerodynamic matrix after being multiplied by the modal matrix. 

4.2.4 Application of the U-g method 

In the flutter analysis, it is common to include a parameter that simulates the effect of 

structural damping for each degree of freedom. In Theodorsen’s theory, Section 3.2, 

plunging motion, h and pitching motion, α are considered. Therefore, damping 

parameters 
hg and g

 are added to the system for each degree of freedom in this 

example. Depending on the structural configuration, damping parameters take values 

between 0.01 and 0.05. Scanlan and Rosenbaum (1948) suggested that damping 

coefficients, 
hg and g

, can be treated as unknowns as the circular frequency,  . 

Thus, it is possible to remove the subscripts and express both of the damping 

coefficients as g (Hodges and Pierce, 2002). 

A parameter Z  whose expression is given below can be introduced. 
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(4.8) 

Referring Eq. (4.8), the following definitions are made 
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 (4.9) 
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(4.10) 

Adding the Z parameter to the system of equations, Eq.(4.7), gives 

      2 2 2      0I Z A k             
(4.11) 

Referring Eq. (4.11), a set of Z values can be found by solving the following flutter 

determinant. 
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    2 2 2      0I Z A k             
(4.12) 

An iterative procedure is followed in the U-g method to calculate the flutter speed. 

The steps of this iterative procedure are  

1. A set of trial reduced frequency values, k , say from 0.001 to 1 are specified. 

2. For each value of k , the Theodorsen’s deficiency function,  C k is calculated by 

referringEq.(3.3). 

3. The flutter determinant, Eq.(4.12), is solved for Z . 

4. After obtaining the essential Z values, pairs of real numbers, i.e.  1 1, g , 

 2 2, g , etc., are calculated by referring Eq.(4.9) and Eq.(4.10).  

5. Free stream velocity values, U
, are calculated for each circular frequency,  , as 

follows 

 bU
k


 

 
(4.13) 

6. Free stream velocity-virtual damping pairs, i.e.  1 1,U g ,  2 2,U g , etc., are 

obtained for the k value. 

7. After closing the first loop, repeat the steps 2-6 until all the trial   values are used. 

8. When allsets of U and g are obtained, the U g  graph that indicates the 

margins of stability at conditions near the flutter boundary, 0g  , is plotted.  

The numerical values of 
ig  that are obtained for each value of   is interpreted as the 

required damping to achive simple harmonic motion at the circular frequency 
i . 

The damping g  is introduced as an artificial damping. Thus, it does not really exist 

and the value of U at which 0g  is defined as the flutter speed (Hodges and 

Pierce, 2002).  

4.2.5 Validation of the plain blade aeroelastic model 

The flutter speed of Goland wing whose properties are given by Beran et al. (2004) 

and introduced in Table 2.18,is calculated by applying the U g  method whose 
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steps are defined in the previous section.Calculated flutter speed is illustrated in 

Figure 4.1. 

 

Figure 4.1:Flutter speed of the Goland wing. 

Here, each set of  ,i iU g pairs that are calculated for a different reduced frequency 

value creats a brach and the free stream velocity at which one of the 

branchesintersect the U
axis, i.e. 0g  , is called the “flutter speed”. In Figure 4.1, 

one of the branches intersectsthe U
 axis at 447 / secU ft   and in Table 4.1, this 

calculated value is compared with the one found by Lin and Iliff (2000). 

Additionally, the reduced frequency value at which the flutter speed is calculated is 

also obtained and validated in Table 4.1. 

Table 4.1: Validation of plain blade aeroelastic model. 

Flutter Speed (ft/sec) Reduced Frequency 

Present 
Lin and Iliff 

(2000) 
 Present 

Lin and Iliff 

(2000) 

450 447  0.474 0.470 

Here, it is seen that there is a very good agreement between the results which reveals 

that modeling and implementation of the aerodynamic matrix into the structural 

equations are performed correctly.  
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4.3 Aeroelastic Analysis of A Helicopter Blade with A Trailing Edge Flap 

In this section, vibration characteristics of a helicopter blade with a trailing edge flap 

is studied. The structural formulation of the flapwise bending-chordwise bending-

torsion coupled blade is completed in Section 2.4 and derivation of the aerodynamic 

matrices is made in Sections 4.3.3 and 4.3.4. The aerodynamic characteristics that are 

essential for the aerodynamic matrices are calculated in Section 4.3.6 by considering 

similar blade models which are present in open literature. Both the material and the 

aerodynamic properties are used in the developed aeroelastic computer codes and 

Runge-Kutta method is applied as the solution procedure. The analysis is carried out 

for both hover and forward flight conditions, i.e. Sections 4.3.8 and 4.3.9, 

respectively.. Effects of several parameters, i.e. flap deflection angle, rotor disk angle 

of attack, advance ratio and voltage applied to the piezoelectric actuator, on the 

vibration characteristics of the blade are studied. 

4.3.1 Velocity components under hover conditions 

Under hover conditions, the velocity components TU , PU  and  , used in Eqs.(3.37)-(3.39), 

can be expressed in terms of blade motion variables,i.e. v , w and  , in terms of induced flow, 

i  and rotor rotational speed,   as follows (Hodges and Ormiston, 1976). 

 TU x v 
 

(4.14) 

  PU Ωx Ωviv w v w w          
 

(4.15) 

 Ωw wv      
 

(4.16) 

Substituting Eqs.(4.14)-(4.16) into Eqs.(3.37)-(3.39), gives the final expressions of 

aerodynamic loads that affect on a helicopter blade with a trailing edge flap under 

hover conditions. 

4.3.2 Velocity components in forward flight 

In forward flight, the velocity components TU , PU  and  , used in Eqs.(3.37)-

(3.39), can be expressed in terms of blade motion variables,i.e. v , w and   in terms 
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of induced flow, i , azimuth angle,  , pitch control angle,  , precone angle, 
0 , 

rotor rotational speed,   and advance ratio,   as follows (Yoo, 1989). 

 TU v x LSin Lv Cos       
 

(4.17) 

   

   

P 0

0

U

Ωi

w L v Cos L w Cos

vw v v

      

   

        

     
(4.18) 

 
2

0

2

Ωw w + 1
2 2

v w
v  

  
     


  

  
(4.19) 

Substituting Eqs.(4.17)-(4.19)into Eqs.(3.37)-(3.39), gives the final expressions of 

the aerodynamic loads that affect on a helicopter blade with a trailing edge flap in 

forward flight. 

4.3.3 Governing matrix equations of motion 

The virtual work done by the aerodynamic loading is given by (Sivaneri and Chopra, 

1982) 

 
0 0 0

       

L L L

A

w vW L wdx L vdx M dx         
(4.20) 

Substituting the final expressions of wL , vL  and AM , i.e. Eqs.(3.37)-(3.39) into 

Eq.(4.20) gives aerodynamic stiffness, aerodynamic mass and aerodynamic damping 

matrices that are going to be assembled with the structural matrices that are obtained 

in the structural formulation of the rotor blade in Section 2.4. During the assembly 

process of the structural and the aerodynamic matrices to obtain the governing matrix 

equations of motion,Hamilton's principle whose expression is given below is used.  

  
2

1

  0
t

t

U K W dx      
(4.21) 

Here, U , K  and W  are, respectively, the variation of strain energy, the variation 

of kinetic energy and the virtual work. 

Consequently, the matrix equations of motion is obtained for the aeroelastic model of 

the helicopter blade with a trailing edge flap as follows 
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        S A A S A A

e e e e e e e e eM M q C q K K q Q                
(4.22) 

where  
S

 and  
A

present structural and aerodynamic matrices, respectively. 

Additionally, the term  A

eQ  that takes place on the right side of Eq.(4.22) is the 

force vector which is a result of the aerodynamic loads.  

Depending on the number of elements used in the developed aeroelasticity code, the 

element matrices are assembled by considering the finite element rules to obtain the 

global matrices. The boundary conditions at the cantilever end, Eq.(2.180), are 

applied to the global matrices to get the reduced matrices and the following 

governing matrix system of equations of the aeroelastic model are obtained for the 

helicopter blade with a trailing edge flap. 

           AM q C q K q Q  
 

(4.23) 

4.3.4 Aerodynamic matrices under hover conditions 

Under hover conditions, expressions of the aerodynamic matrices, Eq.(4.22), are 

given by 

    1 1 1

TT TA

v wQ f N g N h N
          

(4.24) 

 

   

     

2 3

2 3 2 3

TA

e v w

TT

w w w

K N f N f N

N g N g N N h N h N



  

           

                      

 
(4.25) 

 

      

      

    

4 5 6

4 5 6

4 5 6

TA

e v v w

T

w v w

T

v w

C N f N f N f N

N g N g N g N

N h N h N h N





 

        

    

       

 
(4.26) 

 

    

    

  

7 8

7 8

7 8

TA

e v w

T

w w

T

w

M N f N f N

N g N g N

N h N h N





 

       

   

      

 

(4.27) 

The coefficients of the aerodynamic matrices that are obtained for hover conditions 

are given in App. C. 
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4.3.5 Aerodynamic matrices in forward flight 

Under forward flight conditions, expressions of the aerodynamic matrices, Eq.(4.22), 

are given by 

           1 2 3 4

0

L
T

v v v wLvStiff N m N m N m N m N dx
        (4.28) 

           1 2 3 4

0

L
T

w v v wLwStiff N n N n N n N n N dx
        (4.29) 

 
        1 2 3 4

0

L
T

v v wMomentStiff N p N p N p N p N dx 
          

 

(4.30) 

      A

eK LvStiff LwStiff MomentStiff     
 

(4.31) 

Here,  LvStiff ,  LwStiff ,  MomentStiff  are the components of 
vL , 

wL  and M

,i.e. Eqs.(3.37)-(3.39), that contribute to the aerodynamic part of the element stiffness 

matrix, A

eK   . 

 
            1 2 3 4 5

0

L
T

v v w w vLvDamp N m N m N m N m N m N dx
       

 

(4.32) 

 
            1 2 3 4 5

0

L
T

w v w w vLwDamp N n N n N n N n N n N dx
       

 

(4.33) 

 
          1 2 3 4 5

0

L
T

v w w vMomentDamp N p N p N p N p N p N dx 
           

 

(4.34) 

      A

eC LvDamp LwDamp MomentDamp     
 

(4.35) 

Here,  LvDamp ,  LwDamp ,  MomentDamp  are the components of 
vL , 

wL  and 

M ,i.e. Eqs.(3.37)-(3.39), that contribute to the aerodynamic part of the element 

damping matrix, A

eC   . 
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         1 2 3

0

L
T

v v wLvMass N m N m N m N dx
     

 

(4.36) 

         1 2 3

0

L
T

w v wLwMass N n N n N n N dx
     

 

(4.37) 

       1 2 3

0

L
T

v wMomentMass N p N p N p N dx 
        

 

(4.38) 

      A

eM LvMass LwMass MomentMass     
 

(4.39) 

Here,  LvMass ,  LwMass ,  MomentMass  are the components of 
vL , 

wL  and M

,i.e. Eqs.(3.37)-(3.39), that contribute to the aerodynamic part of the element mass 

matrix, A

eM   . 

     1

0

L
T

vLvConst k N dx 
 

(4.40) 

     2

0

L
T

wLwConst k N dx 
 

(4.41) 

    3

0

L
T

MomentConst k N dx
   

 

(4.42) 

      A

eQ LvConst LwConst MomentConst     
 

(4.43) 

Here,  LvConst ,  LwConst ,  MomentConst  are the components of 
vL , 

wL  and 

M ,i.e. Eqs.(3.37)-(3.39), that contribute to the aerodynamic force vector, A

eQ   . 

The coefficients of the aerodynamic matrices that are obtained for forward flight 

conditions are given in App. D. 

4.3.6 Calculation of the aerodynamic properties 

In this study, aeroelastic analysis of a single blade is carried out. However, most of 

the properties that are present in open literature are given for multi blade helicopters. 

Therefore, some calculations are carried out in this section to find the proper 

aerodynamic values for a single blade rotor. 
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Some geometrical properties of the BO-105 helicopter blade, which are introduced 

byViswamurthy and Ganguli, (2006) and given in Table 4.2, are used as the basic 

values to calculate the essential geometric properties of the blade used in this study.  

Table 4.2 :Geometrical properties of the BO-105 helicopter blade. 

Parameter Value 

R  5 m 

c R  0.055 

fc c  0.20 

TC   0.007 

where R  is the length of the blade, c  is the blade chord length, fc is the flap chord 

length,   is the rotor solidity and TC  is the trust coefficient. 

4.3.6.1 Rotor solidity and thrust coefficient 

Rotor solidity, σ, is defined as the ratio of the total blade area to the rotor disk area 

and for a rectangular blade, it is expressed as follows 

 2

b bN cR N cBlade Area

Disk Area R R


 
  

 

(4.44) 

where 
bN  is the number of the blades. 

Referring Table 4.2, the chord length of the blade is calculated to be 0.273c m  and 

as mentioned before, a single blade rotor is modeled in this study so 1bN   for this 

research. Substituting these values into Eq.(4.44), the rotor solidity is calculated to be 

0.0174  .  

ReferringTable 4.2 and the calculated rotor solidity, the thrust coefficient is found to 

be 0.0012TC  . 

4.3.6.2 Inflow ratio under hover conditions 

Under hover conditions, the relation between the inflow ratio and the thrust 

coefficient is given by (Leishman, 2006) 

 
2

T
h

C
 

 

(4.45) 
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Substituting the calculated thrust coefficient, 0.0012TC  , into Eq.(4.45), the hover 

inflow ratio is found to be 0.024h  . 

4.3.6.3 Inflow ratio in forward flight 

In forward flight, the expression of the inflow ratio is given by (Leishman, 2006) 

 2 22

T
f

f

C
Tan  

 
 

  
(4.46) 

where  is the advance ratio and   is the rotor disk angle of attack which appears 

when the rotor disk is tilted slightly forward to produce a propulsive force for the 

forward flight as seen in Figure 4.2. 

 
Figure 4.2: Rotor disk angle of attack in forward flight, adapted 

from(Leishman,2000). 

In Eq.(4.46), it is noticed that f  appears on both sides of the equation which 

requires a numerical solution for f . However, instead of applying a numerical 

solution, a graphic that illustrates the relationship between 
h  and f  can be used. 

The mentioned graphic is presented by Leishman (2000) andgiven in Figure 4.3. 
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Figure 4.3: Variation of the inflow ratio with respect to the forward speed ratio and 

the rotor disk angle of attack, adapted from Leishman (2000). 

In this study, a moderate forward flight speed is considered so the advance ratio is 

taken to be 0.2  . Considering the hover inflow ratio that has already been 

calculated, 0.024h  , the forward speed ratio is found to be 8.3
h




 .  

Referring Figure 4.3, the following table, Table 4.3, is prepared 

Table 4.3: Forward flight inflow ratios for different values of rotor disk angle attack. 

Rotor disk angle of attack (χ) Forward flight inflow ratio ( f ) 

0
0 

0.003 

2
0
 0.0096 

4
0
 0.0168 

6
0
 0.0235 

8
0
 0.0312 

4.3.7 Blade model 

The studied blade model, whose material and geometrical properties are given in 

Table 4.4, is illustrated in Figure 4.4.  
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Figure 4.4:Helicopter blade configuration used for the vibration analysis. 

Here, it is seen that the trailing edge flap is located at the tip of the blade and the flap 

chord is % 20 of the blade chord length.  

Table 4.4: Material and geometricalproperties of the helicopter blade with a trailing 

edge flap. 

Parameter Value 

E  70 ×10
9
 Pa 

GJ  1.12599×10
6
 Nm

2
 

yI  11.7187×10
-6

 m
4
 

zI  14.5046×10
-5

 m
4
 

1e  9.361×10
-3

 m 

2e  0 m 

  2700 kg/ m
3
 

A  22.5×10
-3

 m
2
 

ha  -0.766 

4.3.8 Vibration analysis under hover conditions 

When the helicopter operates under hover conditions, flapwise bending deflection of 

the rotor tip with respect to time is illustrated in Figure 4.5 where 0.024h  and 

0  .The air density is taken to be 1.225   kg/m
3
 for the vibration analysis. 
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Figure 4.5:Flapping tip deflection under hover conditions. 

 

As it is seen in Figure 4.5, the flapwise tip deflection of the rotor blade is damped 

under hover conditions due to the aerodynamic damping. Since under hover 

conditions vibration is damped on its own, in this case there is no need to study the 

effect of the flap deflection which is aimed to reduce vibration. 

4.3.9 Vibration analysis in forward flight 

In this section, effects of several parameters, i.e. trailing edge flap deflection,  , 

voltage that is applied to the piezoelectric bender type actuator, V,advance ratio,   

and, rotor disk angle of attack,  on the flapwise tip deflection of the helicopter blade 

under forward flight conditions are inspected.  

In Figure 4.6 – Figure 4.9, where   = 2
0
 and β = 0

0
, variation of the blade flapwise 

tip deflection versus several values of advance ratio is illustrated where, it is seen 

that as the forward flight speed of the helicopter gets higher, the blade vibrates more 

and the blade tip deflection gets larger.  
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Figure 4.6 : Flapwise tip deflection of the blade versus time for the advance ratio, μ=0.1. 
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Figure 4.7 : Flapwise tip deflection of the blade versus time for the advance ratio, μ=0.15. 
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Figure 4.8 : Flapwise tip deflection of the blade versus time for the advance ratio, μ=0.2. 
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Figure 4.9 : Flapwise tip deflection of the blade versus time for the advance ratio, μ=0.25. 

 

0 1 2 3 4 5 6 7 8 9

-8

-6

-4

-2

0

2

4

6

8

10

12
x 10

-3

Time (sec)

F
la

p
w

is
e 

T
ip

 D
e
fl

ec
ti

o
n

 (
m

)



129 

In Figure 4.10 and Figure 4.11, where, μ = 0.2 and β = 0
0
, variation of the blade flapwise tip deflection versus several values of the rotor disk 

angle of attack is illustrated.In forward flight, the rotor must always be tilted slightly forward to produce a propulsive force and 00   is not a 

realistic case but here, 00   value is used just to make comparison. In these figures, it is seen that as the rotor disk is tilted more, the blade 

vibrates more and the blade tip deflection gets larger.  

 
Figure 4.10 : Flapwise tip deflection of the blade versus time for the disk angle of attacks, χ=0
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Figure 4.11: Flapwise tip deflection of the blade versus time for the disk angle of attacks,χ=0

0
, 6

0
,8

0
. 

In Figure 4.12 – Figure 4.16, variation of the blade flapwise tip deflection versus several values of the trailing edge flap deflection is illustrated. 

In these figures, vibration levels of the rotor blade with and without trailing edge flap deflection are represented by the green and the red lines, 

respectively and here it is seen that the flapwise tip deflection is not damped on its own in forward flight, i.e. red lines, although under hover 

conditions, blade vibration is damped on its own, i.e. Figure 4.5. In Figure 4.17, flapwise tip deflection is plotted versus several flap angles just 

for comparison.  
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Figure 4.12: Flapwise tip deflection reduction versus time for the trailing edge flap angle, β = 0.2

0
. 
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Figure 4.13: Flapwise tip deflection reduction versus time for the trailing edge flap angle, β = 0.4

0
. 
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Figure 4.14: Flapwise tip deflection reductionversus time for the trailing edge flap angle, β = 0.6

0
. 
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Figure 4.15: Flapwise tip deflection reductionversus time for the trailing edge flap angle, β = 0.8

0
. 
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Figure 4.16: Flapwise tip deflection reductionversus time for the trailing edge flap angle, β = 1

0
. 
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Figure 4.17: Flapwise tip deflection reductionversus time for the trailing edge flap angles, β = 0

0
, 0.4

0
, 1

0
. 

In Figure 4.12 – Figure 4.16, it is noticed that the flapwise tip deflection is suppressed more as the trailing edge flap deflects more. However, the 

trailing edge flap angle has a limit value at which the tip deflection is not suppressed any more since the structure fails as seen in Figure 4.18 

where the flap deflection angle is β = 3
0
 and the rotor disk angle of attack is χ = 2

0
.  
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Figure 4.18: Flapwise tip deflection reduction, μ = 0.2, χ = 2

0
, β = 3

0
. 

In Figure 4.19, the same flap deflection angle as in Figure 4.18, β = 3
0
,is applied but the rotor disk angle of attack is taken to be χ = 6

0
. When 

Figure 4.18 is compared with Figure 4.19, it is seen that the same flap angle, β = 3
0
, makes the structure fail at χ = 2

0
 while it just suppresses the 

tip deflection at χ = 6
0
 which shows that the limit value of the flap deflection angle depends on the rotor disk angle of attack, χ. 
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Figure 4.19: Flapwise tip deflection reduction, μ = 0.2, χ = 6
0
, β = 3

0
. 

In Figure 4.20, percentage reduction in the flapwise tip deflection of the helicopter blade with respect to the voltage value applied to the 

piezoelectric bender type actuator is illustrated. All the calculations are carried out by using the material and geometrical properties given for the 

bimorph beam example in Section 2.3.8.1.In Figure 4.20, it is seen that as the voltage applied to the actuator is increased,flapwise tip deflection 

of the helicopter blade is reduced more since the trailing edge flap is deflected more. The percentage reduction is calculated with respect to the 

tip deflection of the plain blade in forward flight, i.e. red lines in Figure 4.12 – Figure 4.16. 
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Figure 4.20:Voltage effect on the tip deflection of the helicopter blade, 

μ = 0.2, χ = 0
0
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5.  CONCLUSIONS AND RECOMMENDATIONS 

5.1 Present Results 

In the present study, formula derivations are made in great detail for all the sections, 

i.e. structural, aerodynamic and aeroelastic sections. Structural models are built both 

for the bender type piezoelectric actuator and the helicopter blade. The piezoelectric 

bender is connected to the trailing edge flap mechanism by calculating the length of 

the linkage arm. The Theodorsen’s nonlinear aerodynamic theory is applied to rotary 

wing aerodynamic environment by making several transformations to build the 

aerodynamic model. The structural and aerodynamic models are assembled 

accurately to formulate the aeroelastic model. The correctness and accuracy of the 

models are revealed by validating the calculated results in several tables and figures. 

In the aeroelastic section, effects of several parameters, i.e. advance ratio, rotor disk 

angle of attack, trailing edge flap deflection and voltage applied to the piezoelectric 

actuator, on the vibration characteristics of a helicopter blade are investigated. In 

hover case, it is seen that the flapwise tip deflection of the rotor blade is damped due 

to the aerodynamic damping and since the vibration is damped on its own, there is no 

need to inspect the effect of the flap deflection which is aimed to reduce vibration. In 

forward flight case, it is seen that the tip deflection is not damped on its own. The 

flapwise tip deflection of the rotor blade is reduced after the flap is deflected which 

proves that the trailing edge flap has a reducing effect on the vibration characteristic 

of the rotor blade in forward flight which also reveals that the goal of the present 

thesis is achieved. Additionally, it is observed that as the voltage that is applied to the 

actuator is increased, tip deflection of the helicopter blade is reduced more since the 

trailing edge flap is deflected more. Moreover, it is noticed that advance ratio and the 

rotor disk angle of attack have an increasing effect on the blade vibration and that the 

limit value of the flap deflection angle at which the structure is destroyed depends on 

the rotor disk angle of attack, i.e. as the rotor disk angle of attack increases, the flap 

angle has a higher limit value. 
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5.2 Future Work 

The following titles are recommended for the future work  

 The flap deflection angle can be taken as a degree of freedom instead of using a 

prescribed flap angle.  

 Inertial effects of the flap mechanism can be added to the structural formulation. 

 Effects of the aerodynamic loads on the piezoelectric actuator can be inspected. 

 A more advanced aerodynamic theory can be used. 

 Instead of Euler-Bernoulli or Timoshenko beam theories, Geometrically Exact 

Beam theory can be used (Hodges, 2006). 

 Instead of one flap, multiple flaps can be used and effects of flap location, flap 

chord length, number of flaps, etc. can be inspected. 

 Hysteresis effect of the piezoelectric actuator can be included. 
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