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SUMMARY

The transmission of 3D objects models over thermeteand their representation to
the end users have drawn considerable interesatiertion. Some standards such as
VRML (Virtual Reality Modeling Language) and MPEG{Mlotion Picture Expert
Group) have been developed for 3D object representdDne of another choice, for
implementing it is hierarchical mesh compressiarpif@gressive transmission.

In the hierarchical mesh decimation the Delaunagnfulation is a building block.

The Delaunay Triangulation is considered optimaltfee visualization of 2D data,

and has many characteristics such as automatic emggitation, unique in

implementation etc., but has some degeneracy fdikaation of needles, Caps and
Slivers when are applied for the visualization & 8ata. Additionally the alpha

value implementation on the Delaunay triangulatpdays a major role for better

visualization. The alpha can be classified asdlobal and the local. The global
alpha can be considered as the average edge lehgtieas the local refers to the
different averages of length of edges in the ddiféregions of the data. The visual
results can be improved if combination of bothgpleed on the data.

The hierarchical mesh compression is based upendiassifying the given vertex
data into boundary and interior vertices. Both bése vertices are decimated
according to different parameters which are progdsethis work. The boundary
vertices are decimated according to the natureegfon and the density of the
vertices. The interior vertices are decimated a@nlthsis of neighbor counts and the
volume of tetrahedron formed. The process is peréar iteratively on the data to
reach from finest to coarsest level. While transngt the coarsest is sent first as the
base data and then remaining data is added proglyss

While decimation it is important verify whether tata is capable being visualized.
To ascertain it we have proposed another techrtigneeigh which we continuously
monitor the quality of tetrahedral mesh being gatest at each hierarchy level.
Those tests are like radius ratio tests, the inagius to maximum edge length test,
volume to edge lengths ratio etc.

Xiii



OZET

Uc boyutlu (3B) nesnelerin internet Uzerinden itetive gorsellgtiriimeleri son
yillarda ilgi ceken konular arasinda yer almakta@igknoloji ve altyapi olanaklarin
gelismesi sayesinde uygulama alanlarida artmaktadir. VRMMPEG-4 bu tar
veriler icin gelitiriimis stadartlarin banda yer almaktadir. Siradiizensel telfile
godsterimi ve sadejgrme yontemleri bu standartlarin igerisinde yenaktadir.

Siradlizensel telfile gosterimi ve sagalenesi bilgisayarla grafikte 3B nesnelerin
uyarlamali detay seviye kaplamasinda kullaniimaktadadelgtirme metodu
kullanarak her seviyedeki telfilelerin Delaunay aéépisini korumasi ve telfilelerin
istenen geometrik Ozelliklere sahip olmasilaair. Delaunay tU¢genlemesi uzaydaki
digumlerin birletiriimesini sglamak amach kullaniingtir. Delaunay Ucgenlemesi
2 Boyutlu uzayda uygulangii zaman tekil sonuclar vermesinegmen 3 Boyutlu
uzayda tekil sonu¢ vermegli gibi ayni zamanda bozuk dortytzlilerde
olusturmaktadir. 3B Delaunay Ucgenlemesi yapilirkena alparametresinden
yararlaniimaktadir. 3D Delaunay dortyluzlemesi ikullanilan alfa parametresi her
dortylzliyt cevreleyen kurenin yaricapini belirlémedir. Sadece cevreleyen bu
kire icinde kalan dortyuzla kullanilabilir. Alfa mametresi genel ve yerel olarak 2
farkli sekilde secilebilir. Genel alfa d@erini kullanildginda sekil tzerindeki bazi
bblgelerin doldurulamagdi gozlenmgtir. Bunun yaninda diiim araliklari genel
alfadan kucuk olan bolgelerde ise detaylarin kaylasina istenmeyen bigl@elerin
olusmasina sebep olmgtwr. Buradaki hatali ve istenmeyen doértyuzlileopdlojide
bulunmasini engellemek icin nesnelerigdin yozunluguna gore farkl bdlgelere
ayirarak, her bolge icin ayr alfa parametresi eldiémesi ve boélgelerin kendi i¢inde
delaunay algoritmasi uygulanmasi gerekmektedir.

Siradiizensel telfile sadeteme yonteminde nesneninsdseklini kaybetmemesini
salamak icin sinir ve i¢ diiimler farkli yontemler kullanilarak sadgiiellmektedir.
Sinir digim sadelgtirme algoritmasi uzaklik parameteresi kullanilagakkabuktaki
sekil bozukluklar kontrol altina alinmasi ganmstir. Ic digim sadelgirme
algoritmasinda dtiimler énem kriterine gore siralanmakta ve satieteeye en az
onemli olan dgimden bglanmaktadir. Siradizensel telfile sadgtene yontemi
sonucunda en detayll seviyedeki veriden en kabgeseki veri adim adim elde

edilmektedir.Iletim ise en kaba seviyedenskemarak ve ardil olarak iyilestirme

Xiv



seviyelerinin eklenmesi ile gercekie Telfile sadelgtirme algoritmasinda her adim
da oluturulan telfilelerin gosterebilir 6zefli kontrol altinda olmasi gerekmektedir.
Yuzey telfile nesnelerine iki hacim telfile neserghe ise dort farkli test yontemi
uygulanarak gosterebilir 6zedlikontrol altina alinir.
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1. INTRODUCTION

The last half of twentieth century can be trulyaogmized as the era of development
of communication. If one element has to be choseorgst all the inventions in the
era then computers can be regarded as the mosirgnare. The last decade has
exacerbated the field of communication with theadtiction of laser scanners and
satellites it is possible to generate data at treloes rates. To visualize this data is
one of the most important aspects of applicatiome Visualization of 3D data is
facilitated by three dimensional polygonal meshd®ey are now considered as the
fundamental block for the implementation of VirtuReality Modeling Language
(VRML), a standard for storing and interacting wighaphic objects and virtual
world over the World Wide Web (WWW). Additionallyidrarchical representation
of 3D meshes has caught the attention becaus¢ firovides rendering at various
levels of detail; 2) allows progressive/ scalalbEnsmission. Whereas by the term
scalability it is meant that terminals of differeadmplexity can extract data of
different quality levels from the single bit streanThe term hierarchical
representation in computer literature refers tongetoic method for fine to coarse 3D
mesh simplification. Meshes of tetrahedra have mapyplications, including
interpolation, rendering, compression and numerioathods such as the finite
element methods. To ascertain the correct visualizahe tetrahedra must be well
shaped. In this research work we propose a nevarclgy of 3D Delaunay meshes
and we only remove vertices in the fine to coaessgh strategy.

The proposed method can be regarded as a tool wihiicfacilitate the progressive
transmission on internet. The application areahef technology is in the WWW,
telemedicine, architecture and design, militarjdie games etc. The method is based
upon considering the fundamental issues of desigh £ncoding for progressive
transmission on a channel then taking output froenahannel, decoding and in the
last as visualization which is clearly depictedha Figurel.1.



Dresign Encoding

Product | Decoding

Figure 1.1: Explaining the basis of Coding Scheme.

The proposed method takes the 3D data in the stfapertices which are processed
for 3D Delaunay Triangulation, the data is thenidkd between boundary vertices
and inner vertices by applying a vertex differamig technique as explained in
section

B
I Dec1m&tmn:{>
a0 .| Differentiate hlerge
§$ Delaunay | ] of vertices \-'eﬂr:?ces :b
WVertic b :Vn Vertizes
I.:‘.-'E].ils *| Inner Level ntl
Decimation

Figure 1.2: Explaining the different processes applied forigi@tion of data in each
level.

Different decimation methods are applied over whgldealt in the Section 3, the
vertices are then merged together and processéaufagshe next level of hierarchy.



At each decimation level the final output from pirecess discussed above is sent for
compression techniques to be applied on it. We liagd the Scalar quantization
and Vector quantization also the output of whiclhisn Huffman Coded and at the
end Bitstring is also generated.

Vertices CDE.rlnIIJ:II‘:IE;ESi’Dn m— Ecnntgfﬁg — Bitstring

Figure 1.3 Block diagrams of the applied compression scheme.

When looking at the Decoding process of the progp@dgorithm, which is depicted
in Figure 1.4, it is clear that it is more or lesgersal of encoding process. Initially
bit string is received at the decoder receiverwhith applies the Entropy decoding
process over it. The decoded data is then fed ¢ordpression decoder where the
reverse of compression algorithm is applied. Thigersal process produces the data
in vertex format with the information about innenda boundary vertices
accompanying a global alpha. The data is then @ede¢launay triangulation
algorithm for visualization which is supplied teettisplaying device.

. Entropy D ecotnptession d
Bitstring —> D — Dengnder —> Vertices

Figure 1.4 Block diagrams of the applied Decoder.



2. THE FUNDAMENTALS

There are various types of data sets which areusered while carrying out the

research for three dimensional data visualizat®me of their important types are
illustrated in Figure 2.1. A dataset consists af pieces which are the structure and
the attributes. The structure of the dataset ispom®d of two parts topology and

geometry. The structured data has regular struatuiegology and in attributes. The

examples are structured points, rectilinear gritj atructured grid. Whereas, the
unstructured dataset has an irregular structurelwban not be expressed by any
mathematical expression, the examples are polygidetal, unstructured points and
unstructured grid.

. " @ » [ S—
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Structured Points Rectlinear Grid Polygonal Data
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- - - .c":' A
' s Lt Iy » | R
[ 11 . * e N P
LI | . . "y | A
Structured Grid Unstructured Points Unstructured Grid

Figure 2.1 lllustration depicting various types of data sets



Continuous physical systems, such as the airfloourad an aircraft, the stress
concentration in a dam, the electric field in aregnated circuit, or the concentration
of reactants in a chemical reactor, are generalbgeted using partial differential
equations. To perform simulations of these systema computer, these continuum
equations need to be discretised, resulting imigefnumber of points in space (and
time) at which variables such as velocity, denatyl, electric field are calculated.
The usual methods of discretisation are finiteed@hces, finite volumes and finite
elements, use neighboring points to calculate devies, so there is the concept of a
mesh or grid on which the computation is performed.

There are two mesh types, characterized by theemtinity of the points. Structured
meshes have a regular connectivity, which meant éheh point has the same
number of neighbors (for some grids a small nundfgroints will have a different

number of neighbors). Unstructured meshes havgulae connectivity: each point
can have a different number of neighbors.

Vertex Line Polyline
M <>
Trangle Triangle Strip Quad
QA
Pixel Polygon Tetrahedron
]
Hexahedron Voxel

Figure 2.2: Unstructured Grid Data Set



2.1 Unstructured Points and Unstructured Grid

Unstructured points [1] are a simple but importeypte of data set. Normally they
possess no inherent structure, and part of theaMrstion task is to create it.
Combination of these unstructured points via umstmed cells forms the
unstructured grid data type. In unstructured gathdoth the topology and geometry
is unstructured. All cell types can be combinedanbitrary combinations in an
unstructured grid. Hence the topology of the celisges from 0-D (vertex) to 3-D
(tetrahedron). Any dataset can be expressed asstructured grid.

= Delaunay * * * Voronod
Triangmilations Driagram
Yoronoi Diagmm

Figure2.3: (a) Showing the unstructured points (b) ShowingaDeay Triangulation
(c) its dual the Voronoi or Dirichlet tessellatifm®) showing both simultaneously.



2.2 Delaunay Triangulation

To visualize the unstructured points the Delaunagngulation [16] is the fastest
and the cheapest if the load on computer is coramidd he Delaunay triangulation
of a set of points has a well developed theory ghetangulation includes

‘tetrahedralisation’' in 3D). The techniques usedyeaerate the triangulation can
obviously be used to generate unstructured meshes.

A Delaunay triangulationX of V (points) is a triangulation of V such thateth
circum-circle of any triangle belonging ®© does not contain points of V in its
interior. The Delaunay triangulation of a set Vpaiints isuniqueprovided that no
four or more points of V are co-circular. The Delay triangulation is proven to be
the dual of another algorithm known as Voronoi grattwhich is also drawn on the
data. Let V be a finite set of points in the pla@&en a point e V, the Voronoi
regionof p in V, denoted as RV(p), is the locus of thnpof R? defined as follows:

RV(p) ={q | & R? d(p,q)X de (W,q),

for every w |¢ | V-{p}}, where d= denotes the Euclidean distance. the collection of
the Voronoi regions of the points of V defines Weronoi diagramof V, denoted
Vor (V).

Under the assumption that any four or more poiritd/ care not cocircular, the
Delaunay triangulationS(V) and theVoronoi diagramVor(V) are dual as plane
graphs:

* Every point p of V corresponds to a Voronoi regivi(p)
* Every triangle of S(V) correspond to a vertex inrX

* Every edge e=(p,q) in S(V) corresponds to an edgemesl by the two
Voronoi regions RV(p) and RV(Qq)

If any four or more points of V are cocircular, mhne dual of the Voronoi diagram
is a cell complex (but not a simplical complex)lje aDelaunay diagramwhich is
clearly illustrated in Figure 2.3.



2.2.1 Properties of Delaunay Triangulation

Delaunay Triangulation has some very important erogs:

2.2.1.1 Empty Circle Property

If points p1, p2, p3 constitutes a triangle thear¢ghshould be no point inside that
triangle. This property in fact enunciates the edtc implementation of Delaunay
triangulation. Lete be an internal edge of a triangulati@satisfies thdocal empty
circle property if the circum-circle of any of the twoatnigles sharing edge does not
contain the vertex of the other triangle in itsehmr.

Figure 2.4: Edge e satisfies the empty-circle property

2.2.1.2 Maximum and Minimum Angle Property

Let e be an internal edge of a triangulation then acogrdo theMax-min angle
property e satisfies themax-min angleproperty only if either the quadrilateral Q
formed by the two triangles sharing edgés not strictly convex (strictly convex
guadrilateral= each internal angle < 180°kas the diagonal of Q which maximizes
the minimum of the six internal angles associateth wach of the two possible
triangulations of Q.



P
q _
P
5
q

Figure 2.5: pq is the diagonal that maximizes the min. ofdixeinternal angles; the
two minimum size angles corresponding to the pdss$itangulations are shown

Figure 2.6: Explaining the minimum angle property

2.2.1.3 Local Optimality Property

Any edge in a triangulation which satisfies eithiex local empty circle or the max-
min angle properties is callédcally optimal. The local empty-circle and the max-
min angle properties are locally equivalent. Tksue was previously addressed and
explained in Figure 2.4.

If we consider four co-circular points, then the otwproperties give both
Subdivisions; in this case anglesb= adb= g. By movingpoint doutside the circle,
the size of angledbdecreases, and, thus, diagoaatatisfies both empty-circle and
max-main angle properties. Resultantly a triangutaiof a set V of points is a
Delaunay triangulation only if all of its internadédges arelocally optimal



Conversely, if an edge connecting two points of V is locally optima,does not
necessarily belong to a Delaunay triangulation of V

Figure 2.7: Empty-circle and max-min angle properties

2.2.2 Watson’s Algorithm for Delaunay Triangulation

The Delaunay triangulation can be manipulated liygudifferent algorithms [1]. In
this project Delaunay triangulation is realized the vtkDelaunay 3D class of
Visualization Toolkit (VTK).

Figure 2.8:3D Delaunay Triangulation of Volumetric data

VTK uses Bowyer and Watson’s algorithm which isatdsed for two dimensions
but it can be easily realized to three dimensiohhé algorithm can be described as
under:

* A Delaunay triangulation is computed by incremdptatiding a single point
to an existing Delaunay triangulation

 LetV, U Vand letZ (V) be a Delaunay triangulation uf. Letp ¢ V-Vi
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*  We want to comput® (Vi+1) from X (Vi) whereVis, = Vi {p}

The algorithm although optimal for 2D data but ¢enextended to 3D data easily.
And the resultant 3D examples can be explainedhéy-tgure 2.8.

2.2.3 Problems of 3D Delaunay

The optimality of the Delaunay triangulation 2-D & proven matter. In 2-D

Delaunay triangulation minimum interior angle ofrangle is greater or equal than
any other possible triangulation. But in the 3-Dldd@ay triangulation is not

optimal. In 3-D it is only optimal with respect smallest containing spheres of
tetrahedra. To generate meshes of well shapedéetrans in 3-D is more difficult

than in 2-D.

Caps

Blivret

Heedles

Figure 2.9: Showing different degeneracies in Delaunay Trideigon like Needles,
Caps and Sliver.

The basic problem in 3D Delaunay arise when newtpare injected and the result
maybe a formation of tetrahedrons with poor anglégs. main amongst them are:

11



* Needles and Wedges: Needles and wedges have edgesatly disparately
length.

» Caps have a large solid angle.

» Slivers have neither large edges nor large solglesn but can have good
circumradius-to-shortest edge ratios, so it wilt be possible to compute a
valid centre for the circumcirle of a triangle dretcentre of sphere for a
tetrahedron.

If two or more tetrahedrons or triangles are edeiva there will occur a
computational confusion in the algorithm and thi#l wause numerical problems
when circumcenters are calculated. For exampleytpdying at the vertices of a
square, rectangle or hexagon can be triangulated than one possible way.

2.3 Alpha Shapes

The concept of alpha shapes [4] formalizes thdtiméunotion of "shape” for spatial
point set data, which occurs frequently in the cataponal sciences. An alpha shape
is a concrete geometric object that is uniquelyngef for a particular point set. It
thus stands in sharp contrast to many common cémaegomputer graphics, such
as isosurfaces, which are approximated by defmiéiod the exact form depends on
the algorithm used to construct them.

Alpha shapes are generalizations of the convex GiNien a finite point set S, and a
real parameter alpha, the alpha shape of S isyaopel which is neither necessarily
convex nor necessarily connected. The set of allmembers alpha leads to a family
of shapes capturing the intuitive notion of "crugetsus "fine" shape of a point set.
For sufficiently large alpha, the alpha shape entttal to the convex hull of S. As
alpha decreases, the shape shrinks and gradualglope cavities. These cavities
may join to form tunnels and voids. For sufficignsimall alpha, the alpha shape is
empty. As can be observed in the Figure 2.10 tietconvex hull of the data is the
shape that is formed with value of Alpha as in&nénd with Alpha Zero it just
becomes the point data since no triangulation egpeformed.

12
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Figure 2.10: Showing the effect of Alpha values while triandida.

A related combinatorial concept is the alpha compl&ven a point set S, it consists
of vertices, edges, triangles, and tetrahedra ecespFor each alpha, the alpha
complex is a subcomplex of the 3-dimensional Dedgusimplicial complex.

They are specially used for shape reconstructiomrsftructured data points and
determined according to a parameter called alphd. (This alpha parameter
represents the level of detail of the shape. Thezdwo types of alpha shapes

1. Global (unweighted) Alpha

2. Local (weighted) Alpha

In this project we have addressed both of the Algiigpes for better visualization
and facilitating the data for better transmission.

2.3.1 Global (Unweighted) Alpha

In the original (unweighted) definition, a piece thfe polytope disappears when
alpha becomes small enough so that a ball withusadipha, or several such balls,
can occupy its space without enclosing any of thietp of S. Let a Rfilled with

Styrofoam and the points of S made of solid roawNmagine an eraser in the form
of a ball with radius alpha. It is omnipresenthie sense that it carves out Styrofoam

13



at all positions where the Styrofoam particle does contain any of the sprinkled
rocks, that is, points of S. The resulting objectcalled the alpha hull. For good
reasons we straighten the surface by substitutnagght edges for circular arcs and
triangles for spherical caps. The resulting objecthe alpha shape of S. It is a
polytope in a fairly general sense: it can be ceacand even disconnected, it can
contain two-dimensional patches of triangles and-@imensional strings of edges,
and its components can be as small as single points

2.3.1.1 Determination of Global (unweighted) Alpha

In implementing algorithm of VTK 3D Delaunay thr&ahgulation is closely related
to alpha shapes. For a simplex in the Delaunagdtikation there is a single interval
of alpha values for which it will be alpha-exposdthch shape in space has a
different value of alpha so alpha should be catedldrom the given unstructured
data set. In order to calculate an alpha value#&oh shape, let E denote the class of
edges and |, denote the length of each edge. Alpha is detemnine using the

average edge length of the convex hull.

Fems Orginal =1

OL={r

Figure2.11 The figure showing convex hull and then alph&8G@ad 0.14 on the cat
data which is inherently a surface data.
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Slaall Orginal =001

o= {0

Figure 2.12: The figure showing effects of Alpha value appiicaton volumetric
data of skull starting from zero resultantly shogvjast the point data till it becomes
a convex hull when the value of Alpha reaches ityfin

We have implemented the visualization while caltngadifferent alpha values on
fetus data, which is a surface data, and the seatdtevident the in the Figure2.11.
Similarly the different Alpha values are appliedvaumetric data of skull and the
results are shown in Figure 2.12

2.3.2 Local (weighted) Alpha

Since the global unweighted alpha [3] is implemdnitg calculating the average
length of the edges. But the implementation of gl@dpha only results in some parts
being unfilled.

For calculating the weighted alpha we have employedv and learn [21] on the
data. According to which the data is clustered aitherror constrained applied while
processing. It is similar to nearest neighbor impatation but can be further
elaborated in the manner which is given below:

* First entries from the data are considered asltister centre.

* To induce the new entry, the error is calculatemvben the new point and all
the cluster centers.

» If the error is within range then the point is &#al in that cluster.

» If the larger than the threshold then it is labeded placed between the two
clusters according to its location.

15



Similarly whole of the data is traversed and cluseal. If the error criterion is very
low then we will end up having large number of tdus with small size. Conversely

if error threshold is kept high then we will hawsvier numbers of clusters with large
size.

o <= (001584 o == L4204

o <= (LIHT452 == 0011628 o <= .029726

Head

Figure 2.13:Visualization result after implementation of lo¢akeighted) Alpha.

It is due to the fact that Delaunay triangulatismpt optimal in 3D some vertices
whose distance is more than the alpha value armclotled so a hole is left behind.
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To address this issue we have been able to devismicue algorithm that is
composed of different filters which are being apgliover the data to produce the
desired results for visualization. The Figure 2shws the block diagram of the
algorithm being applied.

. 3D Delaunay || Eefinements 30 Delaunay
Verices == Thanoulation [ Filters > Meshed Data

Figure 2.14:The Block Diagram of Local Alpha Implementation

Initially whole of the data, which is in unstruatdgr point data form, is induced and in
the first phase 3D Delaunay Triangulation is amgpiMth alpha equals to infinity the

resultant is the convex hull visualization of thetal Then there are five filters in line
which are applied on the Delaunayed data to renactsts surface and volume.

» Circle Radius Filter

* Min/Max Edge Filter

* Density Filter

» Calculating Neighbor Count

* Gaps Control Filter.

The logic of these filters is applied globally ohetdata initially. For further
refinement in visualization similar types of filseare applied locally on the data.

2.3.2.1 Circle Radius Filter

The radius of all the circles forming due to thelddeay triangulation and
tetrahedralization are calculated. An average kerteof all those radii. A filter is
then introduced in the algorithm which employs stietion that if radius of the
sphere formed by the tetrahedron is less tharhtiestiold, it let the tetrahedron to be
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included but if not then it divides the tetrahedromther and analyze the four
triangles which constitutes that tetrahedron. bt imalysis the triangle are assessed
in the manner that their longest edge is takemasadius and if that is less than the
threshold then those triangles are kept withindht and are discarded otherwise.
This also eliminates those tetrahedrons such sliver better visualization. The
effects of the filter can very easily be noticednir the Figure 2.15 in which before
the implementation of the filter, some points werangulated which actually
distorts the original shape of the data. But aftex filter employment we have
improved visual results.

Circular
Eadius Filter

Figure 2.15: Effect of Circular radius filter on the visualigai of the data.

But if the applied data is volumetric then the aidpon only deals with tetrahedron
and do not further divide them into triangles.

2.3.2.2 Min/Max Edge Ratio Filter

This filter also calculates the min/max edge rafiall the triangles and tetrahedrons
and provides a threshold accordingly. The Filtés & manner that if the min/max
ratio is less than the threshold then it discaldg triangle. Similarly when being
applied over tetrahedrons it assesses the tetramedirst and if the tetrahedrons
have lesser min/max edge ratio then it furtherds#sithe tetrahedrons into triangle
and analyzes them separately. While conducting dhalysis it also discards all
those triangles which have their value less thanntin/max edge ratio and keep
those who are lying within the range. The effedtghe filter can very easily be
noticed from the Figure 2.16 in which before thelementation of the filter, some
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points were triangulated which actually distorte thriginal shape of the data. But
after the filter employment we have improved filtesults.

MinTJax Edge
ReaboEilter | =7

Figure 2.18 lllustration of Min/Max Edge Ratio Filter

But if the applied data is volumetric then the aidpon only deals with tetrahedron
and do not further divide them into triangles.

2.3.2.3 Density Threshold Filter

This filter calculates the density of points in part area and also the neighboring
points of each tetrahedron. Then, it calculatesattezage density and the neighbor of
the tetrahedrons and triangles. It employs a tlmidshihich is based upon the density
of the neighboring points. If the triangle has dgniess than the threshold then it is
discarded but is kept otherwise. For tetrahedrke the above discussed filters it
initially analyze them as an entity but if one ist religible to be filtered then it
further divide the tetrahedron into triangle andcgkte the density individually.
While carrying out the analysis those triangles ckhhave density less than the
threshold are discarded. The effects of the fittam very easily be noticed from the
Figure 2.17 in which before the implementation bé ffilter, some points were
triangulated which actually distorts the originabpe of the data. But after the filter
employment we have improved visual results.

Here an important point is to be noted that siheedensity also is dependent upon
the size of the tetrahedron also, so this featiedsio kept in view.
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Drensity Filter

Figure 2.17 Implementation of Density Filter on the data.

But if the applied data is volumetric then the ailfpon only deals with tetrahedron
and do not further divide them into triangles.

2.3.2.4 Removal of Lone Triangle

This filter is activated in the case when it notic&iangle with least of the neighbors
or whose only one point has neighbor and the rfetftectwo do not have any. In that
case it removes that triangle. The effects of ilber fcan very easily be noticed from

the Figure 2.18 in which before the implementatdrihe filter, some points were

triangulated which actually distorts the originhlape of the data. And there were
some lone triangles connecting those points whiemat to be connected. But after
the filter employment we have improved filter resul

Alone Triangle
Filter

Figure 2.18: Alone Triangle Filter is implemented on the data.

20



2.3.2.5 Gaps Control

While applying all the filers over the data it iscessary to continuously check the
over all topology and care must be taken that sea# deletion of a triangle hole is

not produced. To solve that problem we have applads control method which is

continuously assessing the number of neighbor, lwifitess than two suggests that
the hole has appeared so the deletion of thatgleas not executed. Figure 2.19 is
clearly showing the appearance of those holes wiidagulation and then illustrates

that after the implementation of Gaps control filteose hole were refilled and the
triangles were not deleted at that particular pl& if the data is of an open type
then we have the list of all those triangles whach forming at the boundary of the
data so that exception is handled logically.

Crap Filter

Figure 2.19: lllustration of Gaps Control Filter Implementation the data.

After the implementation of these four global fiteve have two more filters in our
algorithm which are based upon local calculatiohgtv are:

* Neighbor Circle Radius

* Neighbor Min/Max Edge Ratio.

2.3.2.6 Neighbor Circle Radius Ratio

This local filter is applied on every tetrahedramddriangle to assess its over all
standing and affirmative with its neighbors. If tb&cle radius of a triangle or
tetrahedron is within the range in the averagdeciradius of its neighbors then it is
kept within the data otherwise discarded. In simitaits global counterpart it also
assesses the tetrahedrons initially as the simgity éut break them further down, if
the radius is greater than the average of its beigh into triangles and then discard
that triangle which has the value greater thanaberage. Figure 2.20 shows the
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effect of localized neighbor circle radius ratitiei when applied over the data. The
improvement in the visualization can be noticed/\aasily.

Meighour
Circular Badius

Figure 2.20: Effects of Neighbor Circle Radius Ratio Filter & tvisualization of
the data.

2.3.2.7 Neighbor Min/Max Edge Ratio

This filter is also applied on every triangle aretrahedron with its neighbor
perspective. If the Min/Max Edge ratio is greateart the average of its neighbor
then it is kept in the data otherwise discardedsitnilar to its global counterpart it
also assesses the tetrahedrons initially as trgdesentity but break them further
down if the Min/Max is less than the average oingsghbors into triangles and then
discard that triangle which has the value lessan tihhe average. Figure 2.21 shows
the visualization results of the data before andrahe implementation of this filter
and the improvement is clearly depicted.

Meighour
WlinTulas Fdae
FatioFilter

Figure 2.21:Effects of Min/Max Edge Ratio filter on the visuadtion of the
data.

By the term local density we tend to refer the @mi@ation of the points in a given
area. It is calculated by the length of the edgesa region. Shorter the length of
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edges in the region implies that the vertices éweety located and this proves the
our point of higher density values.

2.3.2.8 Calculating Neighbor Count

After the first 3D Delaunay triangulation of theginal data lot of tetrahedrons and
triangles are formed. So a single vertex must Iaeeneighbors at least but there is
no upper bound for that and a vertex may have rtmae twenty neighbors. The
neighbor count is very important for a vertex. There neighbor it has higher is its
importance value. Additionally the neighbor coufsoahelps in defining a certain
area of the data. For calculating the neighbor totithe data we have developed an
algorithm which was based upon vtk libraries. Whdeunting neighbors of a
tetrahedron we traverse all of its triangles arehtfind the cell count. If it is two
then it is registered as the other cell I1d. We thgevtk library function Unstructured
Grid GetCellNeighboi.

By keeping an account of both the local density déimel Neighbor count and
implementing it iteratively for each vertex we filyaare able to divide any 3D data
into different regions. Through utilizing the radiwf the circumsphere of the
constructed tetrahedrons and the value of global@ighted) Alpha of the data we
deduce a new alpha value for that particular regidence we calculate different
Local (weighted) Alpha for various regions. Eaclyioa is then retriangulated
separately. At the end, all regions are combinddnm the complete visualization of
the whole data.

We have applied the unweighted Alpha values orSindace data of Head which is
being shown in figure 2.13 and on volumetric ddthand, which is shown in figure
2.22 and 2.23. The figure 2.13 depicts the impleéaten of the weighted Alpha on
the surface data, starting from the value of Al@emo the result of which can
intuitively guessed as point data and then progrelysincreasing its value till all
traverses all the data.

Similarly 2.22 and 2.23 manifests the weighted Alpimplementation on the
volumetric data of hand, the Figure 2.14 explalmes different values of weighted
Alpha applied to different regions whereas in 2th& same routine as of 2.13 is
taken that is to start from zero and then a pregresapplication of weighted Alpha
till whole of the data is traversed.

23



o =0.000199

= 0000398

a = 0.000596

o =0.000795

o =0.000994

o =0001391

o =0.001988

o = 0007951

o =0.019877

Figure 2.22: Starting with the weighted value of Alpha by zerme have just shown
the different values of weighted Alpha being apgplie different regions according to
the density of points.
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o <= 0000199

o <= 0.000398

o <= 0000596

o <= 0.000795

o <= 0.000994

o < 0001391

o <= 0.001988

o <= 0007951

o <= 0.019877

Figure 2.23 Similarly starting from the zero value of the gleied Alpha value
progressively adding the last levels till wholetloé data is being triangulated.
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3. DATA DECIMATION

Hierarchical representation [12] of meshes providasdering at various LODs,
implying quality scalability in order to render tlodject at a reduced quality or to
reduce the rendering time of objects and allowgm@ssive/scalable transmission or
storage of the object geometry. A hierarchical meastel that is compressed in an
embedded format thus enables different users tdognmpeshes of varying level of
detail to represent the same content dependindi®@rcamputational resources and
channel/storage bandwidth available to them.

3.1 Hierarchical Mesh Representation

The Hierarchical mesh compression method is arrighgo which implements both
the decimation techniques and we perform it iteedyi till the quality of the mesh is
maintained within some bounds.

The idea is to perform decimation from fine to seans shown in Figure3.1. The
different levels of hierarchy are clearly depicted-igure 3.1 when implemented on
SkelHand data. It can be observed that at levéleOvisualization is very fine and
then the decimating steps are being visualized ftbat very fine level O to the
coarsest level 2.

The method can be explained graphically if we takample of a 2D mesh as in
Figure 3.2 and we can observe that by applying lebtthe techniques we have
reduced the amount of vertices in the data withmaking an imperceptible visual
change.
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Dretail 0

Lewel 2 Dietail 1

Figure 3.1:Block Diagram of Hierarchical Mesh Modeling

The size reduction is achieved by removing an ieddpnt set of vertices at each
level starting from the finest resolution mesh. iAdependent set is a set of vertices
among which no two vertices are adjacent to ealsroWhile an independent point
is removed the neighboring points are marked asanbé removed. In the following
figures a fine resolution mesh is decimated twaeetrhy removing independent set of
points.

In the first figure meshM, has the finest resolution; the independent poames

situated in the regions enclosed with dark edgesmdthese points independent at

the second hierarch they can be removed from thehrard the sub sampled mesh
will construct the second mebh,,. After determining the independent points for

the meshM ,, the second sub sampled figure will be formed.
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Lewel 0 Lewel 1

Lewel 2 Lewel 3

Figure 3.2 Expressing the data decimation

3D data decimation is a special type of compresgohnique in which the original
data is reduced by reducing the number of vertwi#is different constraint being
implemented. To start with decimation we have tstfdifferentiate between the
boundary and the inner vertices. Since for propsuvalization of the data the
boundary bear far more importance than the innéer@fore we employ some

constraint on the decimation and resultant is dlemaata with the least harm to its
visualization.
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3.2 Extraction of Boundary Vertices and Inner Vertices

While implementing Delaunay triangulation [8] crectetrahedrons generally do not

intersect each other, so the boundary verticedeatetermined by adding the space
angles of each node (i.e. vertex)t., ,t,,t,) being a tetrahedron, the space angle

of a nodet; is the projection of the remaining surface, whisha triangle of the
remaining nodes, on the unit sphere centerdd at

Solid Angle

Figure 3.3:the calculation of space angle of a vertex

We have deduced following results and constramtsdéparating the vertices.
» If the sum of angles is less thamtfen it is a boundary vertex.
» If the sum of angles is equal ta then it is an inner vertex.

* The sum of angles can never exceed 4

The space angel of a tetrahedront] tf, t, t3) can be calculated for each node by
using the following formulas:

4[/to = etotl + etciz + et63_n
wﬁ = Otlto +Ot1t2 + Otis -

wtz :Otzto +Ot2tl+et£3_n-
wts = Otsto +Ot§1 +Ot§2_ 4

T
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Here © represents the dihedral angle between two surfat&asected on a common
edge.

dihedral
angle

Dihedral angle can be calculated by using the Wahg formula:

— al
O, = 7 -‘cos face,, * facg,,

A
J

3.3 Extraction of Boundary and Inner Vertices Usingvtk Library

Apart from the algorithm described above we hawe @amployed the vtk library
functions for the extraction of boundary vertic€his is only applied when the data
is volumetric. This algorithm traverses all theabedrons which have formed due to
the 3D Delaunay triangulation. Then it observesnéighbor of each triangle of the
tetrahedron. If any of the triangles has neighbmunt less than one then it is a
triangle which is located at the surface of theadaind all the points of that triangle
are then registered as the surface vertices. Weasathe effects in Figure 3.5 which
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Total Solid Angle Total Solid Angle
Inner Vertex Boundary Verlex

Figure 3.4: Figure showing the Extraction of Boundary and hviertex.

Cylindir - Sphere

Figure 3.5: Implementation of Boundary Extraction Algorithm

is showing the implementation on the Cylinder-Sphdaita. It has two surfaces, one
at the outside and the other at the inside of #ite.dAfter applying the boundary
extraction algorithm on the data both of the boupdarfaces can clearly be noticed.
For clarifying the visual results the horizontaldavertical cross sections are also

taken of the data.
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3.4 Decimation Algorithms

As we have mentioned that since boundary verticesrere important for a data to
be visualized then an inner vertex. So we haveemphted different algorithms for
each type of the vertices.

3.4.1 Decimation of Boundary Vertices

The algorithm was designed to implement the deeonaif the boundary vertices of
the data. It begins with classifying each vertexthe mesh and is inserted into the
gueue regarding the priority, which is based ugmnédrror to delete the vertex and
retriangulate the hole. Those vertices which carbetdeleted are skipped while
analyzing. The candidate vertices are queued acgptod the priority values are
assigned to them. The process continues until hal vtertices in the queue are
processed. In the second phase all the remainige® are processed, and the mesh
is split into separate pieces along sharp edges won-manifold attachments points
and reinserted into the priority queue. The vestiege reprocessed if the desired
result is not obtained in the first phase.

B oundary Vertex
Drecirnation Criteria

Boundary Vertex
Decitnation Critetia

Figure 3.6: Representing the distance measurement technigqe, fo
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In the decimation of boundary vertices [8] the p®imre deleted according to
decimation criteria from the vertex cloud. It isimple error measurement technique
which not only preserves the general shape but la$os in the reduction of the

insignificant vertices. The error measurement isuaty a distance measuring
algorithm known a® .

For each boundary vertex a candidate edge segreemitaivn between an initial
boundary vertex and the vertex under considerati@chord vertex, the distande

from the vertex under consideration to the candiéalge segment is computed. Each
vertex, whose distanakis less tha®,, is a candidate for removal. The first vertex

for which d is greater tharD_,, becomes the new initial vertex. This procedure is

repeated until all the vertices have been processed

We have implemented the, _, criteria in three different ways which are
* ConstantD,,,

* Linearly IncreasingD

max

* Adaptive D, ,

3.4.1.1 ConstantD,,,

By the term constant implementation we refer tortte¢hod that the value @, is
kept constant in each decimation level. The valtieDg,, is calculated over the

original data and then is implemented at each lelvklerarchical decimation.

3.4.1.2 Linearly IncreasingD

max

By the term linearly increasin@®,,, value we imply to the fact that after the
calculation of D_,, on the original data we increase the value@f, at each

X
hierarchical decimation step. This is with the refeee to the fact that since after the
decimation some of the vertices are discarded kyptogram so ultimately the

average distance between the boundaries tends tendexso implementing a
linearD,,,, seems more logical than the Cons@yy,.
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3.4.1.3 AdaptiveD,,,

Since both the constant and the lingay,, are a parameters which employed in a

general terms and the case can be really thougim asmilar equivalence with
Global (weighted) Alpha. So a best choice woulddealculate a separate value of
D...x for each region and for each decimation steps $aems to be the most logical

choice of constraining parameter for the decimatibtihe boundary vertices.

3.4.2 Decimation of Inner Vertices

The simplification of interior nodes of the meshaagiven level of the hierarchy was
performed by using an iterative optimization algom [22] with the constraint that
only non-neighboring and less important nodes dhalremoved. Once a node is
selected for removal, its neighbors are markedraidemoved at that level of the
hierarchy. The approach for selection of the ndddse removed, together with this
constraint, poses a drawback for the interior-nsidgplification. To this effect, we
propose a dynamic programming-type optimization ttee simplification of the
interior nodes at each level of the hierarchy. &ma is to remove the maximum
number of independent nodes from a mesh, whilaniatha set of nodes that is
optimal in the sense that it contains most impariaformation going from one
hierarchical level to the next coarser level, tlalgs to retain the nodes that are
expected to be important in mesh-based three dioeaisdata visualization, as well
as highly connected nodes, removal of which woulshstrain subsequent
simplification stages. The flow of the algorithmfisst initialization to form layers
then cost calculation for each nodes and placeofereimoved and retained nodes on
a layer basing on which we calculate the placemaftnodes on the next
neighboring layer. Then the optimization algorithsnemployed which has three
different algorithms. According to the maximum dketratio of the total cost of
remained nodes over the total number of remainettsonve choose the algorithm
according to the performance.
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3.4.2.1 Initialization

First, we form layers of nodes in the mesh, whex@hdayer is defined by the nodes
that are immediately adjacent to a node in a pushodefined layer. Layer
formation can be given as:

a) The first layer of nodes is defined by the noaleshe mesh boundary;

b) The next layer of nodes is defined by all nodethe interior of the mesh
that are immediately adjacent to a node in theiptesvayer;

c) Successive layers are formed by repeating step b)

Further, we assign a cost value to each node ofmt&h, in order to determine an
optimal removal strategy. The set of interior nottebe removed while going from
one hierarchy level to the next is determined ugmgplogy-based criteria. The
degree determines how much this node is conneoté&d surrounding region. The
average degree of a Delaunay mesh is approximaidly. latter requirement is
imposed by the desire to remove a maximum numbaodés from one hierarchical
level to the next under the independence constrawitile preserving local
connectivity. The set of interior nodes to be restbwhile going from one hierarchy
level to the next can be determined using conniégtibased criteria. Therefore, we
define the cost of removing a node n by the follmyuneasure of its importance (IP),
which we call the importance value function. A regimportance value will indicate
the indispensability of the vertex for visualizatioThe general formula for
calculating that constraint is defined as the mléation of its degree with the ratio
of the sum of its neighbor’s volume to its volume.

MaxDegree- Degre(e)n. TotalLayerNumber Nodeléyk (3.1)
MaxDegree TotalLayerNumber '

IP(n) =
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Where,

MaxDegree = maximum number of neighbors of ande

Degred 1) number of neighbors of tresest node
TotalLayerNumber = the number of total layers according to degtthe date
NodeLayer = the layer of the node being ¢raed

The degree of the vertex is the number of edgegedices connected to it. The
number of connectivity for a vertex indicates thgportance of that node. It is same
for the volume ratio. If the volume of a tetrahednacluding this node is smaller
than the volumes of the neighboring tetrahedronmetins that this tetrahedron
belongs to a detailed region in the shape, so rergavnode in this tetrahedron will

cause us to less information to be lost. So we llag@arameter MaxDegree which
denotes the integral value of node connected wakimum number of vertices, we
take the difference of the degree of the traversmtk, and then normalize it with the
maximum degree. This ensures the routine that rfode has large number of
neighbors attached to it then its IP value willibereased and it will be ultimately a
candidate node to be discarded. The other parartietecontrols the IP function is

the depth of the node. The proximity to the surfata node is responsible for the
tetrahedrons which are forming at the surface winclurn becomes responsible for
the shape of the data. So closer the node to ttiacsulower is its IP function and

deeper the location of the node higher will belltfunction. Hence this parameter
transforms the nodes at the depth with higher itibaof being removed from the

data.

3.4.2.2 The Optimization Algorithm

The dynamic programming-type interior-node simpéfion algorithm can be
explained as below.

1) For each separate layer, a set of nodes whiehcandidate to be removed is
obtained as follows. Iteratively label the nodehwtite smallest IP value in the layer
as to be removed and label its neighbors in tlyatrlas to be fixed. Nodes labeled as
to be fixed may not be considered for removal latethis stage. Continue labeling
nodes on this layer until a node with importanceu@aequal to IP is found. Note
there may be free nodes left that are labeled exeithbe removed nor to be fixed.
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2) Each node layer obtained in step 1) is now dmmed for employing the three
different importance value assigning algorithmsichtare:

* Forward Optimization Algorithm
» Backward Optimization Algorithm

» Greedy Optimization Algorithm

E-=E?-‘ ®

] . @]

. o] —>A ®  vertex
o] —-A o (@]  removed vertex
¢ . IEI ‘ keep vertex

o [o]—4A

[ol—>A

LD L1 L2

Figure 3.7: lllustration of forward optimization algorithm.

In the forward optimization algorithm, consideritige decimation of layer 1, the

neighbors of those which are decimated from bouynkdger are fixed, the IP values

are calculated according to the given formula inaggpn 3.2, the candidate vertex
are then labeled. Similarly then moving on to lagethe neighbors of those vertices
which are labeled as the candidates for removalfigeel and the same process is
employed on the rest of the nodes, as clearly tegpin Figure 3.7. In this manner

we proceed till the last or the inner most leved and up removing the best possible
vertices according to this algorithm.

In the backward optimization algorithm, we stadnir the inner most layer, label the
vertices as candidate for removal according touifttion calculated as above and
proceed till the layer 1. Now in layer 1, we endhgving two types of constraints,
one those vertices which are the neighbors of émelidate nodes from layer 2 and
secondly those vertices which are neighbors ofctiredidates for removal in the
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boundary layer, as shown in Figure 3.8. In this wag up assigning the IP function
from inner to boundary layer that is why it is texnas backward algorithm.

(o] —>A .

e AJe

e IEI ® e vertex

o] —-A o [®]  removed vertex
. A—[e] A keep vertex

(o] —A

L0 L1 L2

Figure 3.8: lllustration of backward optimization algorithm.

. .
[o]—- A .
e [ 1A
. o] —>A ®  vertex
o] —> A . [®]  removed vertex
e ‘.‘CTJ='E| A keep vertex
o [s]—A
[o]—> A

L0 L1 L2

Figure 3.9: lllustration of greedy optimization algorithm.
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In the greedy optimization algorithm, we only calesithose vertices of layer 1, the
neighbors of those which are decimated from bountayer are fixed, and the IP
values of rest of whole of the vertices are cakedlaaccording to the given formula
in equation 3.2. The vertices are then decimatedrding to the threshold provided.
The process is clearly explained in Figure 3.9.

This means we use the node labeling of the cetdy@r as a constraint on the
labeling of nodes in other layers. The neighborsth@ nodes labeled as to be
removed must be labeled to be fixed. This procesgirues until the last layer in

forward and backward direction is processed. Thaomance values of all nodes that
are labeled fixed in this stage are averaged.

3) The process in step 2) is performed using eagérlas a central layer, each time
computing an average IP value for that layer asrie=sd above. This average value
for layer is denoted by IP.

4) The overall labeling for the layer with the maxim IP is retained; any free nodes
left are labeled to be fixed. Finally, the noddselad to be removed in the optimal
labeling are now actually removed from the meshhsd a new mesh for the next
coarser level is formed.

3.5 Quality of Tetrahedron and Triangles Meshes

Since we reduce the amount of the vertices in edmtimation level so it is
inherently necessary to put a constant check ansfti@nt over the quality of newly
generated. Tetrahedron and triangle meshes. Therenamerous tests [17] for
accomplishing that target. The important onesrangles are discussed below:

3.5.1 Angle Test for Triangles

Since an equilateral triangle, if formed while implenting the Delaunay
triangulation is considered the healthiest for alming. So we have introduced an
angle test which traverses the whole data, cakutatminimum angles and at the
end we employ the following formula which is takiag average of whole data.
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0= Onin =60

Figure 3.10: Angle Test for Triangles.

Quality 1= Sir[w * j

s

n_tetra

Avg quality 1=

n_tetra

3.5.2 Min/Max Edge Ratio Test For Triangles

This was another test which was introduced for yaiad) the overall quality of the
formed triangles which were constructed after thelementation of 3D Delaunay
triangulation. The test is actually a ratio betwé®n shortest and the longest edge of
the triangle. Since the desired triangle while iempénting the algorithm is
equilateral when the ratio becomes 1. But in woeste scenarios it is very low. So
the results are considered satisfactory if the ageevalue remains unchanged after
the decimation is implemented.

min_edge _ lengtl
max_edge _lengt

Quality 2=

The average quality is given by

min_edge _lengtt

Quality 2= 2 max_ edge _ lengtl
n“tetra n_tetra
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Figure 3.11: Min/Max Edge Ratio Test For Triangles

3.5.3 Radius Ratio Test

There are two kinds of different spheres whichfaremed regarding our decimation
technique, the inner sphere of the tetrahedron lwisiactually a sphere connecting
the tangents of the tetrahedron edges from ingidieam outer sphere which is the
sphere formed by connecting the points of the hetleon. The quality of the

generated tetrahedron is considered optimal ifréie of the radius of outer sphere
is equal to three times of the radius of the irspdrere.

3.0= r./ Ro.u

Figure 3.12:Manifesting the Radius Ratio Test

Quality_1 =3.01, R,

The average quality of the total mesh of the tedabn formed is given by their sum
as under:
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. 3.0%r IR,
Avg quality 1 = ——n__out
g-9 Y- néra n_tetra

Where,

n_tetra = number of tetrahedron
r = radius of the inscribed sphere

n

R = radius of the circumscribsphere

3.5.4 The Inner Radius to Maximum Edge Length Test.

Similarly the second test is again a ratio betwerradius of the inner sphere to that
of the length of the longest edge. According ts test the length of the longest edge
of the tetrahedron should be equal 16 2imes the radius of inner sphere.

Quality 2 =2/ 671 L __

2 y qqﬂ { ﬁ -’ * Til'. I.I.I"Hlilx
Figure 3.13 Manifesting Inner Radius to Maximum Edge Leng#sil

Whereas the average quality test can be giveneasatio of the sum of the both the
quantities in the generated tetrahedron mesh.

- 2J6*r, IL
Avg_quality 2 = £° n" “max
n;ra n_tetra
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where

n_tetra = number of tetrahedron
radius of the inscribed sphere
length of longest side oktketrahedro

rin

L

max

3.5.5 Volume to Edge lengths Ratio

The third test is also a ratio between the voluméheftetrahedron and the sum of
squared sum of all the length of edges of the ietteon. The generated tetrahedron
may be considered as an optimal if this ratio ésef to 1.

12 % (3 * volume y**(2/3)/
{sum of edge length)

Figure 3.14 Showing the Volume to Edge lengths Ratio
2

*(2* 3
Quality 3 =22 (32\/3'5”‘9
6

For considering data as a whole, it is the raticuwh of whole volume of all the
tetrahedrons to their respective length of edges.
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2
12%3*Volumg?
2L

6

n_tetra

Avg_quality 3 =)

n_tetra

n_tetra = number of tetrahedron
Volume = volume of the tetrahedr
L = i edge length

n

3.5.6 Minimum Solid Angle Test
In this method for testing the shape of tetrahedtib@ minimum solid angle of the
tetrahedron is calculated and then Sin of haltiitgle gives the value.

. . min(SolidAnglg .
Quality 4 = sin{ ( > QQA

Sin {min SolidAngle / 2)

Figure 3.15:Manifesting Minimum Solid Angle Test

For calculating the tetrahedral mesh quality therage of the Sin of all minimum
solid angles is calculated for all the tetrahedrons

Sin{mln(SolldAngIe)
2
n_tetra

Avg_quality 4 =)

n_tetra

n_tetra = number of tetrahedr
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3.6 Data to be sent To Decoder.

When whole of the data is tested and processedittsould be coded and sent to
the decoder. Since we have processed differentstgbedata, different type of
information is needed for decoding each data tyye have two cases for data types.

« The Surface Data

* The Volumetric Data

3.6.1 The Surface Data

If the surface data is to be sent then we requilleviing information to be sent to
the decoder:

= Sequental Vertices List
= Ilax Fdge Length

= Ilax Edge Centers

3D De . . .
Meshac?%lgt% Corface ? = Dlinimmom Wlinlax Edge Fatio

(Wertices and Topology ) Encoder » MWinimum Meighbar
IMaxz Edge Ratio

= Windroun Meighbor
LlinTulas Edge Fatio

Figure 3.16:Block Diagram of Surface Encoder

* List of vertices in the data.
e The Maximum Edge length.

e The maximum edge formed by each vertex is calcdlaed then KNN
algorithm is applied to which calculates the d#éfer classes for the
increasing alpha values of the data and thoseerlgshtres are needed to be
sent. The vertices are also sent according tolgi@aalues they are attached
to.

e Minimum min/max Edge Ratio.

¢ Minimum Neighbor Maximum Edge Ratio of the data.
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e Minimum Neighbor Minimum/Maximum Edge Ratio.

If the data is open type surface data then apamt the information above a list of all
those vertices which are found at the boundarh@furface is also sent.

Hand
open type surface data

Figure 3.17:An Example of Open type surface data.

3.6.2 The Volumetric Data

If the volumetric data is to be sent then we reg@idlowing information to be sent
to the decoder.

= B oundary Vertices List

» Innet Vertices List

3D Delaunay = Ivlax. Circular Eadius

Meshed Data =3 Wolume ——> « Minitrum Min/ax Edge Ratio
(Wertices and Topology ) Encoder . _
= Minirouen Meighbor

Circular Eadius Batio

= hlinimum MNeighbor
Llind llax Edge Ratio

Figure 3.18:Block Diagram for Volume Encoder.
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» List of Boundary Vertices.

» List of Inner Vertices.

* Maximum Circular Radius.

e Minimum Neighbor Circular Radius Ratio.

e Minimum Neighbor Minimum / Maximum Edge Ratio

The reason we are sending the information apamn fvertices is to have the same
level of visualization impact at the decoder oreieer level.

3.7 The Decoder.

To assess the performance of our algorithm we lads@ designed a decoder which
employs whole of the process in the reverse mariier.decoder was designed for
surface and volumetric data separately.

3.7.1 Surface Data Decoder.

e Initially 3D Delaunay triangulation is applied ovéire vertex data by using
maximum edge length. That results in the formatbrines, triangles and
tetrahedrons.

* All lines deleted.

« The triangles formed by every vertex are traversed the boundary points
are assessed with maximum bound of Maximum Edgegthenf lengthier
than the upper bound is found then it will be dedet

e If tetrahedrons are formed then the triangle ofatetdron possessing
maximum perimeter is deleted so the tetrahedrorakisrento or three
triangles. So that there is volumetric informatiesiding within the 3D
surface visualization.
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» Different vertices are connected according to thgha values that are
assigned to them.

e Minimum Neighbor Maximum Edge ratio is taken as tbeer bound and
any triangle possessing less than this bound etetkl

e Minimum Neighbor minimum/maximum edge ratio is takas the lower
bound again and any triangle having less thanbibisd is deleted.

The whole process is done with the Gap control puetheing activated so
that we may not have any inconclusive end at darisoalization.

3.7.2 Volumetric Data Decoder.

» Initially 3D Delaunay triangulation is applied ovéite vertex data by using
maximum circular radius. That results in the forioratof lines, triangles and
tetrahedrons.

* Alllines and triangles are deleted.

* Then we register the temporary boundary verticegchwlare found while
visualization. Those vertices of the tetrahedrortsclv are located at the
boundary list and as well as in the list being dgnthe encoder are never
deleted. But if they are only found in the receilistithen those tetrahedrons
are to be deleted. This protects all the verticeshe tetrahedron in the
convex formation but help deleting those whichfatend at the concave side
of the data.

* Minimum Neighbor circular radius ratio is takenthe lower bound and any
tetrahedron possessing less than this bound isedele

e Minimum Neighbor minimum/maximum circular radiudioais taken as the
lower bound again and any tetrahedron having tems this bound is deleted.
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4. RESULTS

The proposed decimation scheme was implementedemifferent types of data.
Since two different encoders were created, theasarand the volumetric so we had
two different types of data those were surfacethed/olumetric.

4.1 Results for the Surface Data

To assess the performance of the surface data ene@dhave tested three different
types of surface data. Since the surface data @myains the boundary vertices so
the D, criteria was used to decimate the vertices. Itdpesated in the manner that,
the percentage of the vertices to be deleted, Vigesl initially and then the
algorithm was implemented. The data is visualize@ach decimation level from
finest to coarsest. In addition with the visualiaat the different tetrahedral mesh
guality tests were also performed to continuousbnitor the mesh quality at each
decimation level. The QT 1 is the minimum/maximudge ratio and the QT2 is the
angle test.

4.1.1 Results for Torus Data.

The visualization results for the surface dataoofi$ is given in figure 4.1. We can
observe that the quality of the visualization thaligh getting coarser as we proceed
from levelO to level5.

49



Table 4.1: Showing the number of vertices, global Alpha, a@uglity tests being
performed at each level of hierarchy from finesttarsest, Min/Max Edge Ratio,
Neighbor Max Edge Ratio and Neighbor Min/Max Edgdi®

Tl Il &t M. Wax M WMumhax

NV Crdy T1 T2 . : .
@ @ Edge Fatio Edge Eatio Edge Ratio

Lewel 0 36450 0.0657 03628 08174 02832 09573 0.9540
Lewel 1 7290  0.0140 01625 0.1729 0.0085 0. 1656 00192
Lewel 2 1822 0.014% 014613 0.1719 00033 0.20449 0.0128
Level 3 233 00155 014601 01715 0.0034 02956 0.02559

Table 4.2 The different values of local (weighted Alpha) iat is denoted by
maximum edge centre (MEC), at each level the valueespond to the MEC'’s of
that level and MC denotes the member count associaith that MEC of the data
given in table 4.1 at each level of decimation fiewel O to level 3.

Lewel 0 Lewel 1 Lewel 2 Lewel 3
MEC Value M Value M Value M Value LIC

1 0047511 ) 1918 | 0098156 13 | 0163432 15 0364445 5
2 0047842 | 48502 0,1068771 ) 233 | 0,134997 0 34 0412204

3 0048541 | 2120 | 0,110978 | 823 | 0224053 5% 0555745 8
4 0049645 | 24352 0117257 332 ) 0240631 120 0607612 14
5 00510077 3068  0,122315 0 241 | 0,255658 | 180 | 0656085 13
] 0052735 2978 0128220 0 206 | 0269019 160 | 0680123 6
7 0054598 | 2464 0,133801 866 | 0,284826 | 147  0,720125 0 14
] 0056549 1800 | 0141004 | 450 | 03010400 159 0787808 | 12
g 0058338 | 1620 01466851 685 | 0310429 ) 112 | 0,839954 15
10 0060368 | 1620 | 0,156322 | 600 | 0319156 85 | 0872387 21
11 0062192 ) 1668 | 0,170223 | 542 | 0329354 57 0904235 4
12 0063640 | 1336 | 0,158140 | 5480 | 0342315 51 | 0,943009 0 7
13 0064585 | 1436 0211083 | 577 | 0358054 | 110 | 0996432 77
14 00653489 | 2584 0,238747 | 441 | 0378244 95 103809 12
15 0065568 | 2830 0271267 397 | 0408759 ) 124 1105707 11
16 0065783 1694 0,314320 0 178 | 0461988 120 | 1158051 13
17 ---- 03714420 390 05307000 51 1191481 7
15 ---- 0432584 | 10 | 0618041 2§ 1,299084 14
19 ---- 0432355 10 | 068979 4 1406665 10
20 ---- 0514224 ; 0764422 | 7 1653243 7
21 - --- - 0341112 4 1503431 &
22 s = = s ---- 2009205 6
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Level D

Level 1

Level 2

Level 3

Figure 4.1 The different hierarchical levels of Torus Data.
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4.1.2 Results for Cat Data.

The visualization results for the surface data aif is given in figure 4.2. We can
observe that the quality of the visualization thalgh getting coarser as we proceed
from levelO to level3. The QT1 represents the mummy maximum Edge Ratio and
the QT2 the angle test being performed over tha. dat

Table 4.3: Showing the number of vertices, global Alpha, a@uglity tests being
performed at each level of hierarchy from finesttarsest, Min/Max Edge Ratio,
Neighbor Max Edge Ratio and Neighbor Min/Max Edgdi®

MinTlax | M Wax | N WMiwTdax
Edge Fatio Edge Eatio Edge Ratio
Level 0| 10000 @ 0.3494 | 0.3097 04773  0.000027 0.0190 0.o0o042
Lewvel 1 3001  0.34%4 02738 06134 0.000065 0.0734 0.000235
Level 2| 1501 | 0.3426 | 02554 | 04750 | 0.00006% 0.0692 0.000262
Level 3 594 03647 02526 | 05735 0 0.001661 0.1000 0.004013

NV | GAa QT QT2
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Level

Level 2

Level 3

Figure 4.2 The different hierarchical levels of Cat Data.
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Table 4.4 The different values of local (weighted Alpha) iat is denoted by
maximum edge centre (MEC), at each level the valueespond to the MEC'’s of
that level and MC denotes the member count associaith that MEC of the data
given in table 4.3 at each level of decimation fiewel O to level 3.

Lewel 0 Lewel 1 Lewel 2 Lewel 3
LIEC Value LIC Value LIC Value LIC Value LIC

1 0.006010 43 0010415 27 0.010991 19 0016709 15
2 0007545 1438 0.012729 90 0.013585 47 0.025651 30
30009425 404 0016366 195 0018121 93 0.034274 39
4 001076 S04 0.019243 233 0.021328 86 0.042359 36
5 0011606 SO0 0.022308 270 0.024661 114 0.050257 37
6 0.012373 400 0025777 311 0.028381 96 | 0.058203 48
70013192 581 0029316 258 0.031852 84 0.067236 65
g 0.014185 742 0032178 216 0.035157 66 0.076930 47
o 0015133 756 0.035548 219 0.038610 7% 0.084892 40
10 0.016081 767  0.038756 190 0.042280 63 0.091796 30
11 0016984 740 0.042103 174 0.046618 75 0.100889 30
12 0.017875 666  0.047389 204 0051436 91 0.114730 45
13 | 0.018829 666  0.055670 224 0.056305 &6  0.131184 33
14 | 0019852 630 0.068324 193 0061108 70 0.151519 47
15 | 0020924 606  0.0%7563 116  0.065503 69  0.184379 27
16 | 0022157 536 0117719 47 0.0714% 73 0.220161 5

17 | 0.0240019 531 0163249 14 0.081057 &5 0.245914 4

15 | 0.027739 538 0209454 4 0094794 79 (.299334 3

19 0.03958% 191 0259682 1 0117719 65 0314434 1

20 0.06943% 13 0326906 4 0.146024 34 0367250 3

21 0.112405 9 0351144 6 0182911 16 | oo oee-
2z 0147207 11 e | e 0.216677 4 | oo e
23 0.174299 3 | - | 026809662 1 ceeee | e
24 0.208567 3 | - | 0299548 2 e oo
25 0.259682 1| | 0345010 & | cceew | oo
26 0.307585 2N N I I I R
27 0.352843 " T S I
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4.1.3 Results for Bimba Data

The visualization results for the surface data aif is given in figure 4.5. We can
observe that the quality of the visualization thaligh getting coarser as we proceed
from levelO to level3. The QT1 represents the mummy maximum Edge Ratio and
the QT2 the angle test being performed over tha.dat

Table 4.5: Showing the number of vertices, global Alpha, auglity tests being
performed at each level of hierarchy from finesttarsest, Min/Max Edge Ratio,
Neighbor Max Edge Ratio and Neighbor Min/Max Edgi®

MinTlax | M Wax | N WMiwTdax
Edge Fatio Edge Eatio Edge Ratio
Level 0| 74744  0.0101 07876 09834 0014712 | 0485188 0.023054
Level 1 22430 0.2456 04475 07573 0.001265 @ 0.037042 0.001434
Level 2| 11216  0.2918 | 03678 06872  0.000366 | 0.023206 0.000539
Level 3 4146 03647 02718 05984 0.000366 | 0.025547  0.000653

NV | GAa QT QT2
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Table 4.6 The different values of local (weighted Alpha) iat is denoted by
maximum edge centre (MEC), at each level the valueespond to the MEC'’s of
that level and MC denotes the member count associaith that MEC of the data
given in table 4.5 at each level of decimation fiewel O to level 3.

Lewel 0 Lewel 1 Lewel 2 Lewel 3
LIEC Value LIC Value LIC Value LIC Value LIC

1 0.004983 90  D.004674 5 0003820 1 0005364 22
2 0004986 1018 0.005054 227 0.005226 117 0.006616 59
3 0005125 2831 0005480 1562 0006522 %4 0011417 154
4 0005287 3239 0.006083 1773 0.008979 405 0.014819 391
5 0005415 3240 0007094 694 0010191 1235 0019626 635
6 0005517 3032 0008433 703 0.012027 972 0.024901 723
7 0005589 2663 0.009159 1515 0.014253 1597 0.030736 540
5 0005651 2573 0010168 | 2241 0.016393 1016 0.037278 394
9 0005710 2590 0011423 1437 0013601 887 0.046305 294
10 0005786 3819 0012792 1121 0.021189 649 0.060204 303
11 0005885 4737 0013826 1232 0024463 609  D.081452 225
12 0.005987 4647  0.014905 1072  0.028646 555 0110047 206
13 0006091 4313 0016144 964 0034357 648 0148429 115
14 0006197 3977 0.017313 882 0.042510 652  0.193008 76
15 | 0006309 3683 0018563 885 | 0.054269 565 | 0219148 13
16 0006427 3451 0019950 974 0.070064 309 | 0.242711 13
17 | 0006548 3082 0.021980 920 | 0.090145 176 | 0291832 15
18 000674 2797 0024821 1128 0118588 69 | 0.325519 10
19 | 0006813 2927 0028748 1037 | 0.153479 25 | 0.3508%4

20 0006982 3219 0.034931  #40  0.195933 22 0372977 6
21 | 0007197 3468 0.043775 | 631 | 0227370 3| - | -
22 0007472 3573 0057356 & 026930 3 e o
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Figure 4.3 The different hierarchical levels of Bimba Data.
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4.2 Volumetric Data.

To assess the performance of the volumetric datmdam we have tested three
different types of volumetric data. Since the vodirit data contains the boundary
vertices as well as interior vertices so both of formulated algorithms were

implemented. To implement the decimation of therfataury vertices, it has operated
in the manner that, the percentage of the verticdse deleted, were fixed initially

and then the algorithm was implemented. The de@maif inner vertices is under

taken in the manner which has been explained irséiotion 3.4.2. The volumetric

nature of data specifies that we have differeneiayf data if considered from point
of depth. Therefore, the data is divided into ddfe layers to employ optimization

algorithm. The data is visualized at each decimaligwel from finest to coarsest. In

addition with the visualization, the different datat is required to be sent for proper
visualization at the receiving end. The Global Adps also registered.

4.2.1 Sphere Data

The visualization results for the volumetric dataphere are given in figure 4.4. We
can observe that the quality of the visualizatisraithough getting coarser as we
proceed from levelO to level3. The first columnwiahe complete hierarchy of the
data, the central column shows the hierarchy ofctbes section of the volume data
and the last column depicts the hierarchical detonaf the surface of the volume
data.
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Figure 4.4: The different hierarchical levels of Sphere Data
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Table 4.7: Showing the number of vertices VN, CN denotesrtmnber of cells or
tetrahedrons, LO denotes boundary layer verticds,tie next to the boundary
vertices as layer 1 and similarly L2, L3 and L4vwaes proceed inside the sphere data
at each successive level of hierarchy from finesioarsest.

VH
[
% Original 587
—1
- Forwrard 452
g Baclkward 470
= Greedy 463
i Fatrward 396
% Backward 381
= Greedy 368
s Forwrard 346
g Backward | 326
—1

Greedy 319

N L0
2TTS 2477
231 173
2325 173
2314 173
2050 116
2010 114
1347 116
1543 102
1736 103
1458 102

Ll L2
171 110
165 101
164 93
290 oo
161 90
158 83
252 | -----
147 | &6
149 66
217 e

L3
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Table 4.8: The tables shows the quality test (QT1) 1 referRadius Ratio Test, test
2 (QT2) refers to The Inner Radius to Maximum Edgagth Test, test 3 (QT3)
points to Volume to Edge lengths Ratio and tesQ#4) indicates Minimum Solid

Angle Test results when three different methodswiaod backward and greedy
algorithm of optimization are employed on the sgsoe hierarchy levels of sphere
data as we proceed from finest to coarsest.

QTI
]
T Orignal 0,853620
—
—  Forward 0,785068
£ Backward 0760470
= Greedy 0,743532
~ Forward 0,689000
= Backward = 0,669247
= Greedy 0,659275
© Forward 0,639740
= Backward = 0,616352
= Greedy 0623277

QT2
0,755234

0634653
0662699
0648058
06029846
0526601
0,574347
0540500
0541770
0,544040

60

QT3
0,879613

0327727
0,508354
0,794 158
0, 754335
0736922
0726901
0711294
0691250
0,683256

T4
0675545

05807754
0,553689
0535641
04757138
0458515
0443711
0422772
0400450
0398546



The over all results indicate that the algorithnvisked for volumetric decimation
produce satisfactory and desired visualization.

4.2.2 Skull Data.

The visualization results for the volumetric dataphere are given in figure 4.4. We
can observe that the quality of the visualizatisraithough getting coarser as we
proceed from levelO to level3. The first columnsidhe complete hierarchy of the
data, the central column shows the hierarchy ofctbes section of the volume data
and the last column depicts the hierarchical dettanaof the surface of the volume
data. The table 4.9 and 4.10 show the numericaltsesf the data.

Table 4.9: Showing the number of vertices VN, CN denotesrmnber of cells or
tetrahedrons, LO denotes boundary layer verticds,tie next to the boundary
vertices as layer 1 and similarly L2 and L3 aspeceed inside the skull data at
each successive level of hierarchy from finestaarsest.

W .y L0 L1 Lz | L3
=
% Original 37813 L57a00 | 235972 0 12557 ) 1206 | 7
—
- Forward 29343 130051 167792 11659 | 887 | 18
% Bacloward 29089 125866 16779 11573 725 0 12
- Greedy 28977 127450 17258 | 11719
o Forward 21947 1055885 10064 | 11205 | 675 3
E Bacloward 21607 104314 | 10064 | 11057 | 488
= Creedy 21201 100295 11213 | 9983
o Forward 16393 B640% | 3024 | 10560 | 8035 ;
% Bacloward 16023 24357 | L3026 | 10405 582
- Greedy 15255 TI239 | 6720 | 8535
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Table 4.10: The tables shows the quality test (QT1) 1 referRadius Ratio Test,

test 2 (QT2) refers to The Inner Radius to Maximiadge Length Test, test 3 (QT3)
points to Volume to Edge lengths Ratio and tesD#4) indicates Minimum Solid

Angle Test results when three different methodswiaod backward and greedy
algorithm of optimization are employed on the sgsoee hierarchy levels of skull
data as we proceed from finest to coarsest.

QT QT2 QT3 QT4
]
E Original ~ 0,808271 0703310 0,838863 (0,558288
—1
—  Forward | 0743310 (0646017 0790561 0499523
= Backward  0,79835 0638544 0783668 (0451047
= Greedy 0718785 0624066 0771140 0474772
© Forward  (,682997  0,598005  (,745149 0450617
5 Backward  0,673285 (0,589578 (0736559 0,440920
= Creedy 0645212 0,561909  0,710395 0407650
©v Forward | 0607511  0,542297  (0,686838  0,394967
5 Backward  0,596290 0,533254 0677161 0,384799
= Creedy 0,58267% 0512419 | (0,657353  0,355133
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Figure 4.5: The different hierarchical levels of Skull Data
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4.2.3 Hand Data.

The visualization results for the volumetric datehand are given in figure 4.6. We
can observe that the quality of the visualizatisraithough getting coarser as we
proceed from levelO to level3. The first columnsikdhe complete hierarchy of the
data, the central column shows the hierarchy ofctbes section of the volume data
and the last column depicts the hierarchical dettanaof the surface of the volume
data. The table 4.11 and 4.12 show the numerisaltseof the data.

Table 4.11: Showing the number of vertices VN, CN denotesninmber of cells or

tetrahedrons, LO denotes boundary layer verticds,tie next to the boundary
vertices as layer 1 and similarly L2, L3, L4 and &% we proceed inside the hand
data at each successive level of hierarchy froestito coarsest.

VN
-

% Original 28796
—1

- Forward 19980
g Bacloward | 19696
= Greedy 19901
o Forwrard 12941
E Backward 12554
= Greedy 13337
s Forward a813
g Backward | 5429
—1

Greedy ATA3

CH

125127

83541
25432
a4

ST
55415
SE407

39043
36902
37802
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15152

10633
10633
10633

T39I
F396
TIEE

5135
5137
4300

L1

L

L3

1708

985S

L4 | LA

432 | 10



Table 4.12: The tables shows the quality test (QT1) 1 referRadius Ratio Test,

test 2 (QT2) refers to The Inner Radius to Maximiadge Length Test, test 3 (QT3)
points to Volume to Edge lengths Ratio and tesD#4) indicates Minimum Solid

Angle Test results when three different methodswiaod backward and greedy
algorithm of optimization are employed on the sgsoee hierarchy levels of hand
data as we proceed from finest to coarsest.

QT QT2 QT3 QT4
]
E Original 0836796 0730324 0,863616 0,533864
—1
—  Forward | 0722913 (0,629561 (0,771002 (0482526
= Backward 0708009 0616411 0758651 0467963
= Greedy 0,697245 0600177 0724280 0,453327
© Forward | (636595  0,553857 (692750 0,395857
5 Backward  0,620672 0533570 (0677880 0,378585
= Creedy 0619378 0,523213  0,654877 0,375240
©v Forward | 0583259  0,506749  0,640646 0,341079
5 Backward | 0,564261 0490312 0,622057 0,323103
= Creedy 0,562590 0476330 (0,601169 0,3134%4
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Level 1

Figure 4.6: The different hierarchical levels of Hand Data
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4.3 Conclusions

By thoroughly observing the results of implementiedign it can be concluded that
the hierarchical mesh decimation can prove a vémg falternative for better
transmission of 3D Surface and Volumetric data dlerinternet and can also find
its application in the field of telemedicine.

Although there are lot of degeneracies producednwBE Delaunay method is
implemented over Surface and Volumetric data, brdraful algorithm can deal with
that and can produce satisfactory results.

The adaptive Alpha values facilitates in betterualgzation of 3D Surface and
Volumetric data. It is also noticed that while deation of the data, since the
topology of the data is least harmed so the vabiggobal alpha increases in the
process.

The proposed method for Boundary and Inner veremindation produce satisfactory

results in the sense that they not only reducedtite according to the partameters
those are chosen, but also the quality of the letleal mesh generated after each
step of decimation remains within permissible Isnibecause the topology of the
data is kept under control. It can also be notited even reducing the data to mere
ten percent of its original size the general toggloemains same and no perceptible
change can be detected.

Forward optimization algorithm provides the besuits in terms of quality of the

tetrahedrons as well as with regard to decimatibims due to the fact that while

implementing the forward algorithm each layer ismgeawarded the IP value and is
being chosen as a candidate for decimation with dmsstraints. While in backward

algorithm the decimation of inner layers have ledghe constraint whereas at first
layer after the boundary layer have the maximumstiamt so it results in lesser
decimation. On the contrary greedy is complex aagke to remove the vertices so
implementation of greedy results in more vertiaede decimated but the quality of
tetrahedrons is being compromised.

For future work it is suggested that IP functionyni@rmulized which may be data
and application dependent.

The adaptive Alpha and the Decimation criteria haaasformed the implemented
design into a system which is capable of sendiregddita with least amount of bits
and with minimum error in visualization.
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The tests implemented for constantly monitoring téteahedral mesh quality are in
conformity with the visualization of data.

Since the system is based upon Delaunay triangalatthose dual is Voronoi
diagram, therefore the designed system has théyatnl implement the Robust
Mesh Watermarking as proposed by Hoppe [15] byzutd the concept of Adaptive
Alpha and Voronoi diagram.

For evaluation we may compare our algorithm withltesolution analysis. MRA
or wavelets provide useful and efficient tools fepresenting functions at multiple
levels of detail. A new class of wavelets, basedwpdivision surfaces, that radically
extends the class of representable functions iggsed in [7].

1. The complexity of both algorithms is theoretigdligh.

2. Quality of triangles at successive hierarchyelewith respect to the original ones
is approximately similar for both methods. Deviatiangle is increased for some
degrees in the multiresolution method while it iecbased in the proposed
simplification method.

3. The main difference between these two methodkeidype of meshes that they
can be used for. For multiresolution based one rhashto be conformable to 1 to 4
subdivisions, case which is not always possibleppg4o[3] have developed and
applied algorithms and methods to convert meshesngf topology to 1 to 4

subdivided meshes. This implies that one has towkboth mesh vertices and
triangles. In the proposed method only verticesehtv be known, triangles are
determined by Delaunay triangulation.

4. The main difficulty with Delaunay triangulatios that optimality for 3D meshes
is not proven. There may be non connected regimee & value does not guarantee
a connected mesh. This is overcome with use of ealues

5. Comparison in terms of removed number of vesticghows that for the

multiresolution based method there is a reductio®4o5%-25.5% of vertices when

passing from one finer hierarchy level to the ceame. Thus there is a removal of
75% of vertices for one decimation level. But tHgoathm implemented can

decimate from one percent to eighty percent of diatthe successive hierarchy
levels.

6. For the multiresolution approach based decimatiethod when transmitting a
mesh, one needs to transfer beside vertices amtgles of the base mesh, wavelet
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coefficients In the proposed method, one only nebdsvertices and a very small
amount of other data like global alpha, around talues of local alpha and the
information about the topology of the data is nekette be transmitted so a higher
transmission rate is possible. This extra dataesrgyound 9-10 alpha values as
givenin Table 4.2, 4.4, 4.6, 4.8, 4.10, 4.12.

So the criteria for the formation of hierarchy @ &eshes in the proposed method
are to remove the maximum number of independenticesr This will help in
handling huge amount of volume data. The tradeeffivben maximum removal of
vertices and quality of the so formed hierarchy mssis accomplished by allowing
removal of maximum number of vertices so that thented coarser mesh has an
acceptable value for the mesh performance criteria.
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