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(509022057)

Date of submission : 26 December 2008

Date of defence examination : 22 May 2009

Supervisor (Chairman) : Prof. Dr. Mahmut HORTAÇSU

Members of the Examining Committee : Prof. Dr. Ömer Faruk DAYI (I.T.U.)
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NON PERTURBATIVE INVESTIGATION OF A FERMIONIC MODEL

SUMMARY

To find a nontrivial field theoretical model is one of the outstanding problems in
theoretical high energy physics. The perturbatively nontrivial φ 4 in four dimensions
was shown to go to a free theory as the cut-off is lifted a while ago. During the
last twenty years, many papers were written on making sense out of "trivial models",
interpreting them as effective theories without taking the cutoff to infinity. One of
these models is the Nambu Jona-Lasinio model, hereafter NJL. Although this model is
shown to be a trivial in four dimensions, since the coupling constant goes to zero with
a negative power of the logarithm of the ultraviolet cut-off, as an effective model in
low energies it gives us important insight to several processes.

There were also attempts, by Bardeen et al., to couple the NJL model to a gauge field,
the so called gauged NJL model, to be able to get a non-trivial field theory. It was
shown that if one has sufficient number of fermion flavors, such a construction is
indeed possible.

There are other models, made out of only spinors, which were constructed as
alternatives of the original Heisenberg model, the first model given as "a theory of
everything", using only spinors. The Gürsey model was proposed, before the NJL
model, as a substitute for the Heisenberg model, which could not be renormalized
using standard methods. The Gürsey model had the conformal symmetry, when the
model is taken in a classical sense. It had classical solutions, which were interpreted
as instantons and merons, much like the solutions of the Yang-Mills (YM) theories.
It had one important defect, though. Its non-polynomial Lagrangian made the use of
standard methods in its quantization not feasible.

M.Hortaçsu, with collaborators, tried to make quantum sense of this model a while
ago. He concluded that the result was a "trivial model", which means that the processes
involving the constituent spinors resulted in the free result.

Using a new interpretation of the model and taking hints from the work of Bardeen
et al., we studied a model, which classically simulates the Gürsey model, by coupling
constituent U(1) gauge field to the spinors. We investigated whether this new coupling
makes this new model a truly interacting one. We found that we are mimicking a gauge
Higgs Yukawa (gHY) system, which had the known problems of the Landau pole, with
all of its connotations of triviality.

Then we studied our original model, coupled to a SU(N) gauge field, instead. We
derived the renormalization group (RG) equations in one loop, and tried to derive the
criteria for obtaining nontrivial fixed points for the coupling constants of the theory.
Finally we showed that the renormalization group equations give indications of a
nontrivial field theory when it is gauged with a SU(N) field.
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BİR FERMİYONİK MODELİN NON PERTÜRBATİF İNCELENMESİ

ÖZET

Teorik yüksek enerji fiziğinin çözülememiş bir problemi triviyal olmayan alan teorisi
bulmaktır. Yakın bir zaman önce pertürbatif olarak triviyal olmayan φ 4 teorisinin
cut-off kaldırıldığında serbest teoriye gittiği dört boyutta gösterilmiştir. Son yirmi
yıl içerisinde, triviyal modelleri cut-off u sonsuza götürme gereği duyulmadan etkin
teoriler olarak açıklayan modeller birçok makalenin konusu olmuştur. Bu modellerden
biri Nambu Jona-Lasanio modelidir. Her ne kadar dört boyutta bu modelin triviyal
olduğu, morötesi cut-off da kuplaj sabitinin logaritmanın negatif kuvveti olarak sıfıra
gittiği, gösterilse de bu modelin düşük enerjilerde etkin model olarak önemli süreçlere
ışık tutabileceği düşünülmektedir.

Triviyal olmayan bir alan teorisi elde etmek için bir takım çalışmalardan
bahsedilebilinir. Bunlardan biri Bardeen ve arkadaşları tarafından denenen NJL
modeline bir ayar alanı bağlanmasıdır. Ayar NJL (gNJL) modeli de denilen bu
modelin, yeteri kadar fermiyon çeşnisi bulunması durumunda triviyal olmadığı
gösterilmiştir.

Sadece spinörlerden oluşan başka modeller de vardır. Bu modeller Heisenberg’in "her
şeyin teorisi" olarak sunduğu, yalnızca fermiyonlardan oluşan modele alternatif olarak
sunulmuştur. Bu modellerden biri de Gürsey modelidir. Bu model NJL modelinden
önce ortaya konulmasına rağmen standart metodlarla renormalize edilememektedir.
Klasik olarak incelendiğinde Gürsey modelinin konformal simetrisi vardır. Klasik
çözümleri Yang-Mills (YM) teorilerinin çözümlerine benzemektedir. Bu çözümler
insantonik ve meronik çözümler olarak adlandırılmıştir. Modelin önemli sorunu
ise standart yöntemlerle kuantizasyonuna olanak vermeyen polinomik olmayan
lagranjiyen ifadesidir.

Bir süre önce M.Hortaçsu ve arkadaşları modelin kuantum anlamlandırması üzerine
çalışmalar yapmışlardır. Ulaştıkları sonuca göre salt spinorlerden oluşan süreçler
etkileşmemektedir. Dolayısıyla model triviyaldir.

Bu doktora tezinde, Bardeen ve arkadaşlarının çalışmalarından da esinlenerek Gürsey
modelinin yeni bir yorumu üzerine çalıştık. Buna göre U(1) ayar alanını spinörlere
bağlayarak ayar Gürsey modeli üzerinde durduk. Bu bağlanmanın modeli gerçekten
etkileşen bir model yapıp yapmadığını araştırdık. Modelin ayar Higgs-Yukawa (gHY)
sistemini taklit ettiğini bulduk. Triviyallik anlamında ise bu modelin Landau kutbu
olarak da bilinen sorunlara sahip olduğunu gördük.

Bunun üzerine orijinal modelimize U(1) ayar alanı yerine SU(N) ayar alanı bağladık.
Tek halka için renormalizasyon grup (RG) denklemlerini ve teorinin bağlanma sabitleri
için triviyal olmayan sabit noktalar verme şartlarını türettik. Modelin SU(N) ayar
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alanlarına bağlanması sonucunda, RG denklemlerinden modelin triviyal olmayan alan
teorisi olduğunu gösteren kanıtlar elde ettik.
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1. INTRODUCTION

Quantum field theory(QFT) is a basic mathematical language. It helps us to describe

and analyze the dynamical systems of fields, in other words the physics of the

elementary particles. It has a very long history. It started with the quantization

of the electromagnetic field by Dirac in 1927 [1]. That work, named as quantum

electrodynamics(QED), is the part of QFT that has been developed first. Since

that time, millions of studies had been completed and millions will be done in the

future. Honestly we have to accept that we have a better understanding comparing the

beginning, but surely there is a long way to go. By this study, we want to contribute to

the human beings struggle with a small amount.

1.1 Purpose of the Thesis

Mainly there are two objectives of this study. The first objective of the present

thesis is building a toy model, which is classically equivalent to Gürsey model that

is only constructed by fermions [2]. The second one is constructing a nontrivial field

theoretical model out of our toy model by coupling gauge fields for abelian [3] and

non-abelian cases [4]. We analyze different cases and summarize the criteria which

is required for a nontrivial field theoretical model. To achieve these purposes we use

perturbative and nonperturbative techniques.

1.2 Background

Historically, there has always been a continuing interest in building nontrivial field

theoretical models. The φ 4 theory is a "laboratory" where different methods in

quantum field theory are first applied. A while ago it was shown that perturbative

expansions are not adequate in deciding whether a model is nontrivial or not. Baker et

al. showed that the φ 4 theory, although perturbatively nontrivial, went to a free theory

as the cutoff was lifted in four dimensions [5, 6]. Continuing research is going on

this subject [7]. Alternative methods become popular. RG methods which were first
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introduced by Wilson et al. [8], are the most commonly used one [9]. Another method

is using exact RG (ERG) algorithm which were proposed by Polchinski [10]. Recent

studies gave important insights on both methods [11–13].

Another endeavor is building a model of nature using only fermions. Here all the

observed bosons are constructed as composites of these ingredient spinors. In solid

state physics, electrons come together to form bosonic particles which is known as

Bardeen - Cooper - Schrieffer (BCS) theory of superconductivity [14,15]. This theory

is honored with a Nobel Prize in 1972.

Historically, the first work on models with only spinors goes back to the work of

Heisenberg. He spent years to formulate a "theory of everything" for particle physics,

using only fermions [16]. Two years later Gürsey proposed his model as a substitute

for the Heisenberg model [17]. This Gürsey’s spinor model is important since it

is conformally invariant classically and has classical solutions [18] which may be

interpreted as instantons and merons [19], similar to the solutions of pure YM theories

in four dimensions [20]. This original model can be generalized to include vector,

pseudovector and pseudoscalar interactions.

There are also other four fermion interacting models. The Thirring model is one of

them [21]. In particular, if ψ is a Dirac spinor field, the Lagrangian density is given by

L = ψ (i∂/−m)ψ− g
2

(ψγµψ)
(
ψγµψ

)
(1.1)

where g is the coupling constant, γ is the gamma matrix and m is the mass. Another

one is the Gross-Neveu (GN) model which is a quantum field theoretical model of

Dirac fermions interacting via four fermion interactions in two dimensions [22]. Here

we have N Dirac fermions, ψ1,..., ψN . The Lagrangian density is

L = ψa (i∂/−m)ψa +
g

2N
[ψaψa]2 (1.2)

where g is the coupling constant. If the mass m is nonzero, the model is massive. This

model has an U(N) internal symmetry. GN model is similar to NJL model except for

the presence of chiral symmetry in the latter. In QFT, the NJL model is a theory of

interacting Dirac fermions with chiral symmetry [23]. This model is constructed based

on an analogy with the BCS theory of superconductivity. The Lagrangian density is
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given at the case with N flavors

L = ψai∂/ψa +
λ

4N

[
(ψaψb)(ψbψa)− (ψaγ5ψb)(ψbγ5ψa)

]
(1.3)

where the flavor indices represented by the Latin letters a, b, c... Here chiral symmetry

forbids a bare mass term.

During the last twenty years, many papers were written on making sense out of

"trivial models", interpreting them as effective theories without taking the cutoff to

infinity. One of these models is the NJL model. Although this model is shown to

be a trivial in four dimensions [24–26], since the coupling constant goes to zero with

a negative power of the logarithm of the ultraviolet cut-off, as an effective model in

low energies it gives us important insight to several processes [27]. This model is

sometimes used as a phenomenological model of quantum chromodynamics (QCD) in

the chiral limit. In QCD, the studies of hadron mass generation through spontaneous

symmetry breaking, important clues to results of the nuclear pairing interaction and the

approximate validity of the interacting boson model can be cited as some examples.

There were also attempts to couple the NJL model to a gauge field, gNJL model

[28, 29], to be able to get a non-trivial field theory. It was shown that if one has

sufficient number of fermion flavors, such a construction is indeed possible [30].

Recent attempts to gauge this model to obtain a nontrivial theory are also given in

references [31–35]. Both functional and diagram summing methods were used in these

papers. ERG methods proposed by Wilson and Polchinski, [8,10], are often employed

for this purpose.

1.3 Hypothesis

With this motivation we want to give a new interpretation of the old work of Akdeniz

et al. [36]. First we attempt to write the polynomial form of the original Gürsey

model. We try to show the equivalency of these two models, at least classically. Then

we attempt to quantize the equivalent model and study on some of the fundamental

processes. We investigate whether this model is a trivial one or an interacting one.

We try to extend the model by coupling with vector fields for abelian and non-abelian

cases. For both cases we seem to get different processes which are varying wildly from
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the latter one. These new models may give the indications of a nontrivial field theory

under certain conditions.

For the analysis, we use perturbative and non-perturbative techniques.
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2. THE MODEL

Gürsey proposed a four dimensional conformal invariant spinor model in mid-fifties

[17]. This model is defined by the Lagrangian density

LG = ψ i∂/ψ +g4/3 (ψψ)4/3 . (2.1)

This is the only possible conformally invariant spinor model which contains no

derivatives higher than the first. A class of exact solutions of this model was found

by Kortel on the same year [18]. Later they are shown to be instanton and meron

solutions by Akdeniz [19].

2.1 Equivalent Model

The Gürsey model, as it stands classically, does not make sense in the context of

quantum theory because the composite operator (ψψ)4/3 does not exist in perturbation

theory for the fermion field ψ . Therefore, a transformation is needed to turn it into

an equivalent polynomial form. In their study, Akdeniz et al. inspired by the work

of Gross-Neveu [22] and introduced auxiliary scalar fields to linearize the nonlinear

spinor interaction [36]. This can be shown as follows:

LG = ψi∂/ψ +gψψ (gψψ)1/3 . (2.2)

By introducing

gψψ = aφ 3, (2.3)

we can write an equivalent Lagrangian density as

Leq = ψi∂/ψ +ga1/3ψψφ +a1/3λ
(
gψψ−aφ 3) , (2.4)

= ψi∂/ψ +ga1/3ψψφ +λ
(

ga1/3ψψ−a4/3φ 3
)

. (2.5)

Renaming the coupling constants g
′
= ga1/3 and a

′
= a4/3, we get

Leq = ψi∂/ψ +g
′
ψψφ +λ

(
g
′
ψψ−a

′
φ 3

)
. (2.6)
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From now on we will call our dimensionless coupling constants as g and a, instead of g
′

and a
′
. Before ending this section we have to mention that at classic level one auxiliary

field φ is enough to generate the nonlinear fermion interaction. But in quantum level,

an additional auxiliary lagrange multiplier field λ is needed to impose the constraint

on the model.

2.2 Equivalence of the Models

The equivalence of the models, namely this equivalent Lagrangian

Leq = ψi∂/ψ +gψψφ +λ
(
gψψ−aφ 3) , (2.7)

to the original Gürsey Lagrangian equation given (2.1), at the classical level, can be

seen with the help of the Euler-Lagrange equations for the φ and λ fields, which are

constraint equations

gψψ−3aλφ 2 = 0, (2.8)

gψψ−aφ 3 = 0. (2.9)

They impose the following conditions classically,

λ =
φ
3

, (2.10)

φ =
(

g
a

ψψ
)1/3

. (2.11)

For the proof we start from the equivalent Lagrangian density and try to show that it

can be rewritten as the Gürsey Lagrangian density.

Leq = ψi∂/ψ +gψψφ +λ (gψψ−aφ 3), (2.12)

= ψi∂/ψ +gψψφ +
φ
3

(gψψ−aφ 3), (2.13)

= ψi∂/ψ +
4g
3

ψψφ − a
3

φ 4, (2.14)

= ψi∂/ψ +
4g
3

ψψ
(

g
a

ψψ
)1/3

− a
3

(
g
a

ψψ
)4/3

, (2.15)

= ψi∂/ψ +g
(

g
a

)1/3(
ψψ

)4/3
. (2.16)
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Recalling the redefinition of the coupling constants which are given above as g = ga1/3

and a = a4/3, we get the Gürsey Lagrangian denstity

Leq = ψi∂/ψ +g4/3(ψψ
)4/3

. (2.17)

At least classically, this shows us that both Lagrangian densities can be treated as they

are equal.

2.3 γ5 Symmetry

In the previous section we claim the equivalency of the systems. If so, they should

obey the same symmetries. In this section we will check a discrete symmetry. We

know that under the γ5 symmetry the fields transform as

ψ → γ5ψ ,

ψ → −ψγ5,

ψi∂/ψ → ψi∂/ψ,

ψψ → −ψψ.

We see that the γ5 invariance of the Gürsey Lagrangian equation (2.1) is retained in the

equivalent Lagrangian written in equation (2.7). In this polynomial Lagrangian form,

when ψ is sent to γ5ψ , the scalar fields φ and λ are sent to their negatives

φ → −φ ,

λ → −λ .

This discrete symmetry prevents ψ from acquiring a finite mass in higher orders.

2.4 Constraint Analysis

To quantize the system consistently we proceed through the path integral method.

Since we introduced two auxiliary fields to turn Lagrangian into an equivalent

polynomial form naively, we end up in a constrained system. The only non-trivial

part in the quantization of constrained system is the calculation of the Faddeev-Popov

determinant [37, 38]. Due to the recipe given by P.Senjanovic, originally it is given by

Dirac [39], we start the analysis with the Lagrangian density

L = ψi∂/ψ +gψψφ +λ (gψψ−aφ 3). (2.18)
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The conjugate momenta are

π ψ̄ =
∂L

∂ (∂0ψ)
= 0, (2.19)

πψ =
∂L

∂ (∂0ψ)
= i ψγ0, (2.20)

πφ =
∂L

∂ (∂0φ)
= 0, (2.21)

πλ =
∂L

∂ (∂0λ )
= 0. (2.22)

The canonical Hamiltonian density is

HC = i ψγ i∂iψ−gψψφ −λ
(
gψψ−aφ 3) . (2.23)

This canonical Hamiltonian generates the wrong Hamiltonian equations of motion.

Namely, it generates the time derivative of the φ and λ fields as zero due to the absence

of the πφ and πλ . Therefore we need to define the true Hamiltonian density. Before

introducing that Hamiltonian density, we want to remark the constraints in the model.

Basically we have four primary constraints as

ϕ1 = π ψ̄ , (2.24)

ϕ2 = πψ − i ψγ0, (2.25)

ϕ3 = πφ , (2.26)

ϕ4 = πλ . (2.27)

We add the primary constraints and define the new Hamiltonian density. We name it

as total Hamiltonian density.

HT = HC +umϕm(q, p), (2.28)

= i ψγ i∂iψ−gψψφ −λ (gψψ−aφ 3)+u1π ψ̄ +(πψ − i ψγ0)u2

+u3πφ +u4πλ . (2.29)

where u1 and u2 are four component spinor coefficients and u3 and u4 are scalar

coefficients. The constraints that should be consistent with this condition, can be given

by

ϕ̇n = {ϕn,
∫

HT}= 0. (2.30)
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Here, we use the Poisson brackets convention

{A,B}=
∂A
∂qi

∂B
∂ pi −

∂A
∂ pi

∂B
∂qi

. (2.31)

In our model we obtain

ϕ̇1 = {π ψ̄ ,

∫
HT},

= −1
(

i γ i∂iψ−g(φ +λ )ψ− i γ0u2

)
. (2.32)

The consistency condition can be satisfied if we choose the spinor coefficient such as

i γ0u2 =
[
i γ i∂i−g(φ +λ )

]
ψ. (2.33)

Next

ϕ̇2 = {πψ − i ψγ0,
∫

HT}

= −i u1γ0−1
(
− i ∂iψγ i−gψ(φ +λ )

)
. (2.34)

The consistency of the second constrainted can be satisfied by choosing

−i u1γ0 = ψ
[− i γ i←−∂i −g(φ +λ )

]
. (2.35)

But the third and fourth primary constraints produce new constraints. Such as

ϕ̇3 = {πφ ,

∫
HT},

= gψψ−3aλφ 2, (2.36)

ϕ̇4 = {πλ ,
∫

HT},

= gψψ−aφ 3. (2.37)

We call them as secondary constraints. Let

ϕ5 = gψψ−3aλφ 2, (2.38)

ϕ6 = gψψ−aφ 3. (2.39)

Their consistency condition gives

ϕ̇5 = {gψψ−3aλφ 2,

∫
HT},

= u1(gψ)+(gψ)u2−6aλφu3−3aφ 2u4, (2.40)

ϕ̇6 = {gψψ−3aφ 3,
∫

HT},

= u1(gψ)+(gψ)u2−3aφ 2u3. (2.41)
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which can be satisfied if

u3 =
u1(gψ)+(gψ)u2

3aφ 2 , (2.42)

u4 =
u1(gψ)+(gψ)u2

3aφ 2

(
1− 6aλφ

3aφ 2

)
. (2.43)

We can find all the coefficients. After some algebra we can give the exact solution of

them as

u1 = −i ψ
[

i γ i←−∂i +g(φ +λ )
]

γ0, (2.44)

u2 = i γ0
[
− i γ i−→∂i +g(φ +λ )

]
ψ , (2.45)

u3 =
−i g
3aφ 2 ψ

[
i γ iγ0←−∂i + i γ0γ i−→∂i

]
ψ, (2.46)

u4 =
−i g
3aφ 2

(
1− 6aλφ

3aφ 2

)
ψ

[
i γ iγ0←−∂i + i γ0γ i−→∂i

]
ψ . (2.47)

Then we can write the Hamiltonian density such as

HT = −i ψ
[

i γ i←−∂i +g(φ +λ )
]

γ0π ψ̄

+πψ i γ0
[
− i γ i−→∂i +g(φ +λ )

]
ψ

+πφ −i g
3aφ 2 ψ

[
i γ iγ0←−∂i + i γ0γ i−→∂i

]
ψ (2.48)

+πλ −i g
3aφ 2

(
1− 6aλφ

3aφ 2

)
ψ

[
i γ iγ0←−∂i + i γ0γ i−→∂i

]
ψ

+aλφ 3.

This Hamiltonian density can be derived in a classical sense without using the

P.Senjanovic’s recipe. That derivation is given in the Appendix A. Although in this

thesis Hamiltonian systems are out of our scope, we want to give briefly the right

Hamilton equations of motion. They are produced by

q̇i = {qi,
∫

HT}=
∂HT

∂ pi , (2.49)

ṗi = {pi,

∫
HT}=−∂HT

∂qi
. (2.50)

10



They are

ψ̇ = −i ψ
[

i γ i←−∂i +g(φ +λ )
]

γ0, (2.51)

ψ̇ = i γ0
[
− i γ i−→∂i +g(φ +λ )

]
ψ, (2.52)

φ̇ =
−i g
3aφ 2 ψ

[
i γ iγ0←−∂i + i γ0γ i−→∂i

]
ψ , (2.53)

λ̇ =
−i g
3aφ 2

(
1− 6aλφ

3aφ 2

)
ψ

[
i γ iγ0←−∂i + i γ0γ i−→∂i

]
ψ, (2.54)

π̇ ψ̄ = i
[
− i γ i−→∂i +g(φ +λ )

]
γ0π ψ̄

+
(

i g
3aφ 2

)[
πφ +πλ

(
1− 6aλφ

3aφ 2

)][
2i γ0γ i−→∂i

]
ψ, (2.55)

π̇ψ = −πψ i γ0
[

i γ i←−∂i +g(φ +λ )
]

+
(

i g
3aφ 2

)[
πφ +πλ

(
1− 6aλφ

3aφ 2

)]
ψ

[
2i γ iγ0←−∂i

]
, (2.56)

π̇φ = ig
(

ψγ0π ψ̄ −πψγ0ψ
)
−3aλφ 2

− 2ig
3aφ 4

[
φπφ +(φ −3λ )πλ

]
ψ

[
i γ iγ0←−∂i + i γ0γ i−→∂i

]
ψ, (2.57)

π̇λ = ig
(

ψγ0π ψ̄ −πψγ0ψ
)
− 2igφ

3aφ 4 πλ ψ
[

i γ iγ0←−∂i + i γ0γ i−→∂i

]
ψ. (2.58)

We find that there are six constraints in our model. Four of them are primary, two of

them are secondary constraints. Years ago Dirac showed that these constraints can be

classified into two classes [39, 40]. There he defined a function R(q, p) as a first class

quantity if

{R,ϕa} ≈ 0, a = 1, ...,T. (2.59)

R(q, p) as a second class quantity if

{R,ϕa} ≈/ 0, a = 1, ...,T. (2.60)

for at least one a.
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In our model we find the non zero poisson brackets among all constraints as follow:

{ϕ1,ϕ2} = iγ0, (2.61)

{ϕ1,ϕ5} = −gψ , (2.62)

{ϕ1,ϕ6} = −gψ , (2.63)

{ϕ2,ϕ5} = −gψ, (2.64)

{ϕ2,ϕ6} = −gψ , (2.65)

{ϕ3,ϕ5} = 6aλφ , (2.66)

{ϕ3,ϕ6} = 3aφ 2, (2.67)

{ϕ4,ϕ5} = 3aφ 2. (2.68)

All our constraints are second class constraints. Dirac has proven that the second class

constraints will give rise to a nonsingular N×N matrix of Poisson brackets which we

write [39]

Cαβ = {ϕα ,ϕβ}. (2.69)

Next we find the matrix.

Cαβ =




0 iγ0 0 0 −gψ −gψ
−iγ0 0 0 0 −gψ −gψ

0 0 0 0 6aλφ 3aφ 2

0 0 0 0 3aφ 2 0
gψ gψ −6aλφ −3aφ 2 0 0
gψ gψ −3aφ 2 0 0 0




.

The Faddeev-Popov determinant is defined by the square root of the determinant of

the matrix Cαβ . In our model we find that the spinor-Dirac constraints, resulting from

the canonical momenta of the spinor fields have no field dependent contribution to the

Faddeev-Popov determinant. This determinant is given as

4F = |det{ϕα ,ϕβ}|1/2 = det
(
9a2φ 4) . (2.70)

Here we have omitted the delta functions in space-time. Thus, up to an irrelevant

constant factor, we obtained the field dependent contribution coming from the

constraints in equations (2.8) and (2.9).
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2.5 Functional Integral Quantization with Second Class Constraints

To quantize the system consistently we proceed via the path integral method. Using

the Senjanovic’s formula, we can write the path integral transition amplitude as

< out | S | in >≡U =
∫

DΠDχδ (ϕi)∆F exp
[

i
∫

(Πχ̇−Hc)d4x
]
. (2.71)

Here χ is the generic symbol for all the fields, Π is the generic symbol for all momenta

and ϕ is the generic symbol for all the constraints in the model. Explicitly we can write

the path integral amplitude as

U =
∫

DπψDπ ψ̄DπφDπλ Dψ̄DψDφDλ det
(
9a2φ 4)

×δ (π ψ̄)δ (πψ − iψγ0)δ (πφ )δ (πλ )δ (gψψ−3aλφ 2)δ (gψψ−aφ 3)

×ei
∫

d4x
(

πψ ∂0ψ+∂0ψπ ψ̄+πλ ∂0λ+πφ ∂0φ−i ψγ i∂iψ+gψψφ+λ(gψψ−aφ 3)
)
. (2.72)

Performing all the momenta integrals we obtain

U =
∫

Dψ̄DψDφDλ det
(
9a2φ 4)δ (gψψ−3aλφ 2)δ (gψψ−aφ 3)

×exp
[

i
∫

d4x
(

ψi∂/ψ +gψψφ +λ (gψψ−aφ 3)
)]

. (2.73)

From the evaluation of λ integral we get a factor,

U =
∫

Dψ̄DψDφ
det

(
9a2φ 4)

det(3aφ 2)
δ (gψψ−aφ 3)

×exp
[

i
∫

d4x
(

ψ i∂/ψ +gψψφ
)]

, (2.74)

=
∫

Dψ̄DψDφDλdet
(
3aφ 2)

×exp
[

i
∫

d4x
(

ψi∂/ψ +gψψφ +λ (gψψ−aφ 3)
)]

. (2.75)

Here we raised the delta function by introducing λ field. On the other hand there is

one more contribution left in the functional integral. This contribution can be inserted

into the Lagrangian by using ghost fields c and c∗

det
(
3aφ 2) =

∫
Dc∗Dc exp

[
−

∫
c∗

(
3aφ 2)c d4x

]
. (2.76)
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Hence, we find the path integral amplitude as

U =
∫

Dψ̄DψDφDλDc∗Dc · ei
∫

d4x[ψ i∂/ψ+gψψφ+λ (gψψ−aφ 3)+ic∗(3aφ 2)c]. (2.77)

Since

U =
∫

Dχ · eiS. (2.78)

The resulting action reads

S =
∫

d4x
[
ψi∂/ψ +gψψ(φ +λ )−aλφ 3 +3ia

(
c∗φ 2c

)]
(2.79)

Note that the spinor field couples to λ and φ fields in the same manner by the same

coupling constant g. We can rewrite the action by redefining the fields

Φ = φ +λ , (2.80)

Λ = φ −λ . (2.81)

This redefinition changes the transition amplitude with some awkward phase, but it

does not mean anything physically. The action becomes

S =
∫

d4x
[

ψi∂/ψ +gψψΦ− a
16

(Φ2−Λ2)(Φ+Λ)2 +
3ia
4

c∗ (Φ+Λ)2 c
]
. (2.82)

Note that by this transformation the Λ field is decoupled from the spinor sector of the

Lagrangian.

2.6 Perturbation Expansion of Correlation Functions

Our model consists spinor and composite scalar fields as given in action. To understand

the features of the model, we have to derive how these fields propagate or interact with

each others. In other words in the following subsections we will find their correlation

functions

< Ω | T{χ1(x1) · · ·χN(xN)} |Ω > . (2.83)

Here | Ω > denotes the ground state where T means "time ordered operator"

corresponds to Wick’s theorem.
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2.6.1 Fermion propagator

The fermion propagator is the usual Dirac propagator in lowest order, as can be seen

from the Lagrangian.

ip/
p2 + iε

(2.84)

Remark that the propagator is massless.

2.6.2 Composite scalar propagator

The model does not consist a kinetic term for the scalar fields. It can be induced

dynamically. We start with performing the gaussian integration over the spinor fields

in the functional.

∫
DψDψ exp

[
i
∫

d4x
(

ψ [i∂/+gΦ]ψ
)]

= det(i∂/+gΦ) . (2.85)

Here we can the standard identity from linear algebra. That is, a matrix B which has

eigenvalues bi, can be written as

detB = ∏
i

bi = exp
[
∑

i
logbi

]
= exp

[
Tr(logB)

]
(2.86)

where the logarithm of a matrix is defined by its power series. We use "Tr" to

denote operator trace, while later we will use "tr" to denote Dirac traces. Applying

this identity the path integral amplitude gets the final form such as

U =
∫

DΦDΛDc∗Dc eTrln(i∂/+gΦ)−i
∫

d4x[ a
16 [Φ4+2ΦΛ(Φ2−Λ2)−Λ4]+ 3ia

4 c∗(Φ+Λ)2c](2.87)

This yields the action which is expressed in terms of Φ, Λ and c, c∗ fields only. We

name it as "effective action".

Se = −iTrln(i∂/+gΦ)

−
∫

d4x
[

a
16

[
Φ4 +2ΦΛ

(
Φ2−Λ2)−Λ4]+

3ia
4

c∗ (Φ+Λ)2 c
]
. (2.88)

But we can not perform Gaussian functional integrals because of the higher order

terms in the effective action. Therefore we need an approximation. Here we use saddle

point approximation.
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According to this approximation, up to the second order the effective action can be

written as

Se[χi] ' Se[χi0]+
〈

(χi−χi0)
∂Se

∂ χi

∣∣∣∣
χi=χi0

〉

+
1
2

〈
(χi−χi0)

∂ 2Se

∂ χi∂ χ j

∣∣∣∣
χi, j=χi, j0

(χ j−χ j0)
〉

. (2.89)

The vacuum expectation values of the fields Φ and Λ will be expressed as −v and s

respectively while they are set to zero for the ghost fields. The tadpole contributions

are the first derivative of the effective action with respect to the Φ and Λ fields and

should be killed by setting them to zero. This gives

Tr
∫ d4 p

(2π)4
(−ig)
p/−gv

− a
8
(−2v3 +3v2s− s3) = 0, (2.90)

− a
8
(−v3 +3vs2−2s3) = 0. (2.91)

From now on we will use the short notation
∫

p for
∫ d4 p

(2π)4 A consistent solution

satisfying both equations is

s = v = 0, (2.92)

which sets the vacuum expectation value of both fields to zero. In this symmetric phase,

the γ5 symmetry is not dynamically broken and no mass is generated for the fermion

dynamically. In this respect this model differs from the famous GN model [22], where

this dynamical breaking takes place. It also differs from the NJL model [23]. In those

models in a broken phase, mass is induced for the fermion due to the existence of a

cutoff function. In our model because of the conformal invariance we do not get the

same behavior. This can be explained in the Gürsey’s original intention in constructing

a conformal invariant model, at least classically. As a conclusion we find that upon

quantization of our approximate model at least one phase exists which respects the γ5

symmetry.

The second derivative of the effective action with respect to the Φ field gives us the

induced inverse propagator for the Φ field.

DΦ
−1(q) = i

∂ 2Se

∂Φ∂Φ

∣∣∣∣
Φ=0

, (2.93)

= (−ig)2Tr
∫

p

1
p/(p/+q/)

. (2.94)
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Diagrammatically it can be expressed as in figure 2.1.

Figure 2.1. The induced composite scalar field propagator.

Before giving the detailed calculation, remark that in this thesis we use the dimensional

regularization techniques and study in D = 4− ε dimension in Minkowski space.

The induced inverse propagator can be written as

= −g2
∫

p

1
p2

1
(p+q)2 Tr [p/(p/+q/)] (2.95)

After Feynman parametrization, using the equation (C.12), we find

=−g2 Γ(2)
Γ(1)2

∫ 1

0
dα

∫

p

1
[(p+αq)2 +α(1−α)q2]2

Tr
[

p/(p/+q/)
]

(2.96)

we shift the fields by P = p+αq, then

= −g2 Γ(2)
Γ(1)2

∫ 1

0
dα

∫

P

1
[P2 +α(1−α)q2]2

Tr [(P/−αq/)(P/+(1−α)q/)] , (2.97)

= −g2 Γ(2)
Γ(1)2

∫ 1

0
dα

∫

P

1

[P2 +α(1−α)q2]2
Tr [P/P/−α(1−α)q/q/] . (2.98)

We dropped writing the linear term proportional to P/, because it is odd in P/ momenta

which integrates to zero. Using the definition given in equation (C.10), we get

= −Dg2 Γ(2)
Γ(1)2

∫ 1

0
dα

∫

P

1

[P2 +α(1−α)q2]2
[
P2−α(1−α)q2] (2.99)

= −Dg2 Γ(2)
Γ(1)2

∫ 1

0
dα

∫

P

[
1

P2 +α(1−α)q2 −
2α(1−α)q2

(P2 +α(1−α)q2)2

]
(2.100)

We evaluate the integrals due to the equations given in (C.18), we find
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= −Dg2 Γ(2)
Γ(1)2

∫ 1

0
dα

[ −i
(4π)D/2

Γ
(
1− D

2

)

Γ(1)
1

[α(α−1)q2]1−D/2

− i
(4π)D/2

Γ
(
2− D

2

)

Γ(2)
2α(1−α)q2

[α(α−1)q2]2−D/2

]
, (2.101)

= −i
Dg2

(4π)2

[
Γ

(
1− D

2

)
−2Γ

(
2− D

2

)]

×
∫ 1

0
dαα(1−α)q2

(
4π

α(1−α)q2

)2−D/2

, (2.102)

= −i
(4− ε)g2

(4π)2

[
Γ

(
−1+

ε
2

)
−2Γ

(ε
2

)]

×
∫ 1

0
dαα(1−α)q2

(
4π

α(1−α)q2

)ε/2

, (2.103)

= −i
(4− ε)g2

(4π)2

[
−2

ε
+(γ−1)− 4

ε
+2γ +O(ε)

]

×
∫ 1

0
dαα(1−α)

(
1− ε

2
ln

α(1−α)q2

4π

)
+ ..., (2.104)

= −i
(4− ε)g2q2

(4π)2

[
−6

ε
+(3γ−1)

]

×
(

1
6
−

∫ 1

0
dαα(1−α)

ε
2

ln
α(1−α)q2

4π

)
, (2.105)

= i
4g2q2

(4π)2

[
1
ε
− 6γ +1

12
−3

∫ 1

0
dαα(1−α) ln

α(1−α)q2

4π

]
. (2.106)

The divergent part gives us the induced composite scalar propagator as

−i
4π2

g2
ε
q2 (2.107)

Here we obtained a massless composite scalar field propagator. This is the crucial

point in our work, because it carries a ε factor with itself. Later we will see that, as

ε goes to zero, many of diagrams where composite operator takes part as an internal

line, becomes convergent.

2.6.3 The other propagators

There is no other propagator in the model, since the linear or quadratic terms in Λ do

not exist in the Lagrangian. In other words, because of the decoupling of the Λ field

to the fermions, one loop contribution is absent. Similarly the mixed derivatives of

the action may lead a mixed composite scalar propagator. But in one loop, they result
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to zero. This means that there is no mixed composite scalar field propagation in the

model. For the ghost fields, we can set the propagators to zero, since they give no

contribution in the one loop approximation similarly. The higher loop contributions

are absent for all these fields.

2.6.4 Interactions

For the interactions in the model, we can express two different correlation functions.

One of them is the three point correlation function which exists between the fermions

and the composite scalar field Φ. The other one is four point correlation function of

the composite scalar fields which means the self interaction among them. We give

the Feynman rules of the model in Appendix (C.1.1). They will be necessary in the

following sections.

2.7 1/N Expansion

Before going on with the analysis, we must clarify one point. If our fermion field had

a color index i where i = 1...N, we could perform an 1/N expansion to justify the use

of only ladder diagrams for higher orders for the scattering processes. Although in our

model the spinor has only one color, we still consider only ladder diagrams anticipating

that one can construct a variation of the model with N colors.

2.8 Dressed Fermion Propagator

In this section we want to justify that no mass is generated for the fermion fields in

higher orders. Using different techniques, Schwinger [41] and Dyson [42] have derived

independently integral equations for Green functions as a consequence of the field

equations. When properly renormalized, the Dyson-Schwinger equations may be used

as an alternative approach to perturbation theory [43].

2.8.1 Dyson-Schwinger equation of the spinor field propagator

The Dyson-Schwinger equation for the spinor field propagator is shown in figure 2.2.

There, a thin solid line corresponds to the free fermion propagator while a bold line

corresponds to the full fermion propagator. We use the one loop result for the scalar

propagator found in equation (3.42).
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Figure 2.2. Graphical representation of the Schwinger-Dyson equation for fermion
propagator.

We can express this representation as

−i
[
A(p2)p/+B(p2)

]
=−ip/+(−ig)2

∫
d4q

4π2

g2
−iε

(p−q)2
i

[A(q2)q/+B(q2)]
.(2.108)

Here −i
[
A(p2)p/+B(p2)

]
is the dressed fermion propagator. To find the functions

A(p2) and B(p2) we first rationalize the denominator,

−i
[
A(p2)p/+B(p2)

]
=−ip/−4π2

∫
d4q

ε
(p−q)2

A(q2)q/−B(q2)
[A(q2)2q2−B(q2)2]

. (2.109)

Remember the trace of odd numbers of γ matrices are zero (C.9). Therefore we can

take the trace of this expression in order to leave the B(p2) function alone. Here we can

study in Euclidean space instead of the Minkowski space. This transformation brings

an extra i, which cancels the others. We immediately find

B(p2) =−4π2ε
∫

d4q
B(q2)

[A(q2)2q2−B(q2)2](p−q)2 . (2.110)

We can divide the integral into two parts as

B(p2) =−4π2ε

[ ∫ p2

0

d4qB(q2)
[A(q2)2q2 +B(q2)2](p−q)2

+
∫ ∞

p2

d4qB(q2)
[A(q2)2q2 +B(q2)2](p−q)2

]
. (2.111)

Then we explicitly separate the angular integration using by the equation (C.24). After

performing the angular integral by the help of the equations (C.27) and (C.32), we get

B(p2) =−4π4ε

[ ∫ p2

0
dq2 q2

p2
B(q2)

[A(q2)2q2 +B(q2)2]

+
∫ ∞

p2
dq2 B(q2)

[A(q2)2q2 +B(q2)2]

]
. (2.112)

If we differentiate this expression with respect to p2 by the general integral rule given

in equation (C.23), we find
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dB(p2)
d p2 = −4π4ε

[
B(p2)

[A(p2)2 p2 +B(p2)2]
p2

p2 −
∫ p2

0
dq2 B(q2)

[A(q2)2q2 +B(q2)2]
q2

(p2)2

− B(p2)
[A(p2)2 p2 +B(p2)2]

]
, (2.113)

= 4π4ε
∫ p2

0
dq2 B(q2)

[A2(q2)q2 +B2(q2)]
q2

(p2)2 . (2.114)

This integral is clearly finite. We get zero for the right hand side as ε goes to zero.

Since mass is equal to zero in the free case we get this constant equal to zero. This

choice satisfies the equation (2.108).

The similar argument can be used to show that A(p2) is the dressed spinor propagator

is a constant. We multiply equation (2.109) by ip/ we get

p2A(p2)+ p/B(p2) = p2−4π2i
∫

d4q
ε

(p−q)2
A(q2)(p/q/)−B(q2)p/
[A(q2)2q2−B(q2)2]

. (2.115)

We take the trace over the spinor indices. We end up with

p2A(p2) = p2−4π2i
∫

d4q
ε

(p−q)2
A(q2)

[A(q2)2q2−B(q2)2]
Tr(p/q/). (2.116)

where the B(P2) term is absent in the numerator. We can rewrite this term in Euclidean

space as

−p2A(p2) =−p2 + i216π2ε
∫

d4q
p ·q

[A(q2)2q2 +B(q2)2]
A(q2)

(p−q)2 . (2.117)

Similarly to what has done above, we can separate the integral into two terms

p2A(p2) = p2 + 16π2ε

[∫ p2

0
d4q

A(q2)p ·q
[A(q2)2q2 +B(q2)2](p−q)2

+
∫ ∞

p2
d4q

A(q2)p ·q
[A(q2)2q2 +B(q2)2](p−q)2

]
. (2.118)

We divide the integrand to the angular parts by the help of the equation (C.24). Then

the angular integration can be performed by equations (C.29), (C.33). This yields to

p2A(p2) = p2 + 8π4ε

[∫ p2

0
dq2 (q2)2A(q2)

p2[A(q2)2q2 +B(q2)2]

+
∫ ∞

p2
dq2 p2A(q2)

[A(q2)2q2 +B(q2)2]

]
. (2.119)

21



We can divide both sides by p2, this leaves the A(p2) alone.

A(p2) = 1 + 8π4ε

[∫ p2

0
dq2 (q2)2A(q2)

(p2)2[A(q2)2q2 +B(q2)2]

+
∫ ∞

p2
dq2 A(q2)

[A(q2)2q2 +B(q2)2]

]
. (2.120)

We can differentiate with respect to p2. The end result is

dA(p2)
d p2 = 8π4ε

[
A(p2)

[A(p2)2 p2 +B(p2)2]
p4

p4 −2
∫ p2

0
dq2 A(q2)

[A(q2)2q2 +B(q2)2]
q4

p6

− A(p2)
[A(p2)2 p2 +B(p2)2]

]
(2.121)

= −16π4ε
∫ p2

0
dq2 A(q2)

[A(q2)2q2 +B(q2)2]
q4

p6 . (2.122)

This finite integral shows that A(p2) is a constant as ε goes to zero. Since the integral

is finite, it equals unity for the free case, we take A(p2) = 1.

This result shows that no mass is generated for the fermion in higher orders.

2.9 Interactions

In our model there are two interactions. One of them, namely Yukawa interaction,

is between the composite scalar field and two spinors with a dimensionless coupling

constant g. The other one is the self interaction of the composite scalar field with a

dimensionless coupling constant a. In the next section we will analyze these interaction

vertices to understand if they need an infinite coupling constant renormalization. First

we will study the Yukawa vertex in one loop correction. Then we will go to higher

orders and see whether they need a regularization. After that, we will make a similar

analyze the four composite scalar vertex. In the end we will finish the section with the

scattering and production processes including the higher order corrections.

2.9.1 Yukawa vertex

In our model to leading order in 1/N, the contribution to < ψψφ > vertex up to the

first order is given by the diagrams in figure (2.3).
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Figure 2.3. The diagrams of the contribution to Yukawa vertex up to the first order.

The one loop correction to the tree vertex involves two fermion and one composite

scalar field propagators and one integration.

Figure 2.4. The Scalar Correction to the Yukawa vertex in one loop.

Here, we will give some of the basic calculations of these corrections. Then in higher

orders we will give the results without showing the explicit calculations which is just

a repetition of what we do here with more terms. So we can express this correction by

the terms as shown in figure 2.4.

I1[p,q] =
∫

k
(−ig)

i
k/+ p/+q/

(−ig)
i

k/+ p/
(−ig)

4π2ε
g2

−i
k2 , (2.123)

= (−g3)
4π2ε

g2

∫

k

(k/+ p/+q/)(k/+ p/)
(k + p+q)2(k + p)2k2 . (2.124)

Here we need a Feynman parametrization. The general form is given in Appendix

equation (C.12). For two parameters we can use the equation given in equation (C.14)

and we can express

1
(k + p+q)2(k + p)2k2 =

Γ(3)
Γ(1)3 ×

∫ 1

0
dα

∫ α

0
dβ

1

[β (k + p+q)2 +(α−β )(k + p)2 +(1−α)k2]3
. (2.125)

The term in the denominator can be rewritten as

β (k + p+q)2 +(α−β )(k + p)2 +(1−α)k2

= (k +β p+αq)2 +β (1−β )q2 +α(1−α)p2 +2β (1−α)pq, (2.126)

after now we will rename
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M2 = β (1−β )q2 +α(1−α)p2 +2β (1−α)pq. (2.127)

Then we find the vertex correction as

= (−g3)
4π2ε

g2
Γ(3)
Γ(1)3

∫ 1

0
dα

∫ α

0
dβ

∫

k

(k/+ p/+q/)(k/+ p/)[
(k +β p+αq)2 +M2

]3 . (2.128)

We can shift K = k +β p+αq,

= (−g3)
4π2ε

g2
Γ(3)
Γ(1)3

∫ 1

0
dα

∫ α

0
dβ

∫

K

[K/+(1−α)p/+(1−β )q/] [K/+(1−α)p/−βq/]

(K2 +M2)3 .

rename

P/ = [(1−α)p/+(1−β )q/] , (2.129)

Q/ = [(1−α)p/−βq/] . (2.130)

Then we can drop the odd terms linear to K/. We get

= (−g3)
4π2ε

g2
Γ(3)
Γ(1)3

∫ 1

0
dα

∫ α

0
dβ

∫

K

K2 +P/Q/

(K2 +M2)3 , (2.131)

we can write

= (−g3)
4π2ε

g2
Γ(3)
Γ(1)3

∫ 1

0
dα

∫ α

0
dβ

∫

K

K2 +P/Q/

(K2 +M2)3 , (2.132)

= (−g3)
4π2ε

g2
Γ(3)
Γ(1)3

∫ 1

0
dα

∫ α

0
dβ

∫

K

[
1

(K2 +M2)2 +
P/Q/−M2

(K2 +M2)3

]
. (2.133)

We perform the integration over K momentum due to the equation (C.18)

= (−g3)
4π2ε

g2
i

(4π)D/2

∫ 1

0
dα

∫ α

0
dβ

[
2Γ

(
2− D

2

)
1

(−M2)2−D/2

−Γ
(

3− D
2

)
P/Q/−M2

(−M2)3−D/2

]
, (2.134)

= −ig

(
4π2ε

)

(4π)2

∫ 1

0
dα

∫ α

0
dβ

[
2Γ

(
2− D

2

)

+Γ
(

3− D
2

)
P/Q/−M2

M2

](
4π
M2

)2−D/2

, (2.135)
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= −ig
ε
4

∫ 1

0
dα

∫ α

0
dβ

[
2Γ

(ε
2

)
+Γ

(
1+

ε
2

) P/Q/−M2

M2

](
4π
M2

)ε/2

, (2.136)

= −ig
ε
4

∫ 1

0
dα

∫ α

0
dβ

[
2
(

2
ε
− γ

)
+

P/Q/
M2 −1

][
1− ε

2
ln

(
M2

4π

)
+ ...

]
(2.137)

= −ig
ε
4

[
2
ε
− γ− 1

2
+

∫ 1

0
dα

∫ α

0
dβ

(
P/Q/
M2 −2ln

(
M2

4π

))]
. (2.138)

Finally we obtain

=
−ig

2
+O(ε). (2.139)

This is a finite result as ε goes to zero. This is an important feature of the model.

Although we find an infinity from the momentum integral, it is cancelled by the ε in

the φ propagator. Therefore we do not need an infinite regularization for the Yukawa

vertex in one loop.

2.9.2 Higher order corrections of the Yukawa vertex

In this subsection we will check the higher order contributions to the Yukawa vertex. In

the previous subsection we gave the detailed calculations of one loop correction. Here

we will first check the previous result with counting the dimension of the contribution

integrals. When we verify the usage of this method in our calculation, we will analyze

the higher orders.

(a) (b) (c)

Figure 2.5. The ladder diagrams of the Yukawa vertex for higher orders (a) One loop,
(b) Two loops, (c) Three loops.

In this power counting method we count every spinor propagator that has one mass

dimension in the denominator. The composite scalar propagator counts as two while it

has an addition ε factor to the numerator. Every loop brings an integral counts as four

mass dimensions to the numerator. If the denominator is higher than the numerator, the

integral gives finite results. If they have the same order, we interpret it as an logarithmic

divergence which may be renormalized. In the other situation, when the denominator

is less than the numerator, we comment that the integral diverges worse than all.
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We may start with one loop correction, figure 2.5.a. This diagram is made out of

two spinors and one composite scalar lines. There is only loop. So we find that the

denominator has four mass dimensions, while the numerator has also four dimensions

with an additional ε factor. Therefore the integral gives a logarithmic factor divergence

which means 1
ε that cancels the ε in the numerator. While ε goes to zero, we obtain a

finite result. This is shown in details in the previous subsection. The finite results was

given in equation (2.139).

The two loop diagram, figure 2.5.b, contains four spinor and two composite scalar

lines. This means that the denominator has eight mass dimensions. The numerator

involves two integrals with ε2 factor. Evaluation of the integrals gives at worst 1
ε2 , that

cancels the other ones. Finally we get a finite result for the two loop correction.

Similarly the three loop diagram contains, as shown in figure 2.5.c, six spinors and

three composite scalar lines. Therefore the denominator has twelve momenta while

the numerator has three integrals with ε3 factor. At worst we end up with a finite result

using the dimensional regularization scheme.

We therefore can conclude the following result. The infinity coming from the

momentum integration is always canceled by the ε in the φ propagator. All the

higher order contributions vanish because the powers of ε exceed the number of

infinities coming momentum integrations. That is why we do not need an infinite

renormalization to the of the spinor scalar coupling constant g.

2.9.3 Four composite scalar vertex

In our model, although the Lagrangian does not possess a kinetic part for the

scalar propagator, we have four scalar interaction. This vertex may need an infinite

renormalization. In figure 2.6, the correction up to the first order to this vertex is

shown.

Figure 2.6. The diagrams of the contribution to four Composite Scalar vertex up to the
first order.
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2.9.4 Fermion box correction

The first correction to the tree diagram is the box diagram shown in figure 2.7.

Figure 2.7. One loop correction to the four composite Scalar vertex.

This diagram has four spinor propagators and the contribution can be written as

I2[p1, p2, p3] = −
∫

l
Tr

[
i(−ig)

l/+ p1/+ p2/+ p3/

i(−ig)
l/+ p1/+ p2/

i(−ig)
l/+ p1/

i(−ig)
l/

]
(2.140)

= −g4
∫

l

Tr [(l/+ p1/+ p2/+ p3/)(l/+ p1/+ p2/)(l/+ p1/)(l/)]
(l + p1 + p2 + p3)2(l + p1 + p2)2(l + p1)2l2 (2.141)

Here we need a Feynman parametrization with three parameters. The general form is

given in Appendix equation (C.12) Using that identity we can express

1
(l + p1 + p2 + p3)2(l + p1 + p2)2(l + p1)2l2 = 3!

∫ 1

0
dx

∫ x

0
dy

∫ y

0
dz

× 1

[(l + p1 + p2 + p3)2z+(l + p1 + p2)2(y− z)+(l + p1)2(x− y)+ l2(1− x)]4
(2.142)

The denominator in equation (2.142)
[
(l + p1 + p2 + p3)2z+(l + p1 + p2)2(y− z)+(l + p1)2(x− y)+ l2(1− x)

]

=
[
(l + xp1 + yp2 + zp3)

2 +M2
]
, (2.143)

where

M2 = xp2
1 + y

[
(p1 + p2)2− p2

1
]
+ z

[
(p1 + p2 + p3)2− (p1 + p2)2]

−(xp1 + yp2 + zp3)2. (2.144)

We replace it to the equation (2.142), we find

=
1[

(l + xp1 + yp2 + zp3)
2 +M2

]4 . (2.145)
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We insert equation (2.142) into the equation (2.141), we get

I2[p1, p2, p3] = −(3!)g4
∫ 1

0
dx

∫ x

0
dy

∫ y

0
dz

×Tr
∫

l

[(l/+ p1/+ p2/+ p3/)(l/+ p1/+ p2/)(l/+ p1/)(l/)][
(l + xp1 + yp2 + zp3)

2 +M2
]4 . (2.146)

We need to shift q = l + xp1 + yp2 + zp3, then we find

I2[p1, p2, p3] = −(3!)g4
∫ 1

0
dx

∫ x

0
dy

∫ y

0
dz

×Tr
∫

q

[
(q/−a/)(q/−b/)(q/− c/)(q/−d/)

]

[q2 +M2]4
, (2.147)

where

a/ = (x−1)p1/+(y−1)p2/+(z−1)p3/, (2.148)

b/ = (x−1)p1/+(y−1)p2/+ zp3/, (2.149)

c/ = (x−1)p1/+ yp2/+ zp3/, (2.150)

d/ = xp1/+ yp2/+ zp3/. (2.151)

The term in trace needs care, we omit to write the odd terms because of the symmetry,

we get

Tr
[
(q/−a/)(q/−b/)(q/− c/)(q/−d/)

]
= Tr

[
q/q/q/q/+q/q/c/d/+q/b/q/d/

+q/b/c/q/+a/q/q/d/+a/q/c/q/+a/b/q/q/+a/b/c/d/
]

(2.152)

= D
[

q4 +q2(c ·d)+2(q ·b)(q ·d)−q2(b ·d)+q2(b · c)+q2(a ·d)+2(q ·a)(q · c)

−q2(a · c)+q2(a ·b)+(a ·b)(c ·d)− (a · c)(b ·b)+(a ·d)(b · c)
]

(2.153)

Here we used the identity in D dimension given in Appendix (C.11). We are going to

divide these terms by 1
[q2+M2]4 then integrate them over q. Before evaluation we have

to study more, first
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∫

q

q4

[q2 +M2]4
=

∫

q

q4−M4 +M4

[q2 +M2]4
, (2.154)

=
∫

q

(q2 +M2)(q2−M2)

[q2 +M2]4
+

∫

q

M4

[q2 +M2]4
, (2.155)

=
∫

q

q2−M2

[q2 +M2]3
+

∫

q

M4

[q2 +M2]4
, (2.156)

=
∫

q

q2 +M2

[q2 +M2]3
−

∫

q

2M2

[q2 +M2]3
+

∫

q

M4

[q2 +M2]4
, (2.157)

=
∫

q

1

[q2 +M2]2
−

∫

q

2M2

[q2 +M2]3
+

∫

q

M4

[q2 +M2]4
. (2.158)

second lets call S = (c ·d)− (b ·d)+(b · c)+(a ·d)− (a · c)+(a ·b)

∫

q

Sq2

[q2 +M2]4
= S

∫

q

q2 +M2−M2

[q2 +M2]4
, (2.159)

= S
∫

q

1

[q2 +M2]3
−S

∫

q

M2

[q2 +M2]4
. (2.160)

third,

∫

q

2 [(q ·b)(q ·d)+(q ·a)(q · c)]
[q2 +M2]4

= 2
∫

q

qµqν(bµdν +aµcν)

[q2 +M2]4
, (2.161)

=
2
D

∫

q

q2gµν(bµdν +aµcν)

[q2 +M2]4
, (2.162)

=
2R
D

∫

q

q2

[q2 +M2]4
, (2.163)

=
2R
D

∫

q

1

[q2 +M2]3
− 2R

D

∫

q

M2

[q2 +M2]4
. (2.164)

Here we called R = (b ·d +a · c) and D is the dimension. Finally last term

∫

q

T

[q2 +M2]4
(2.165)

where we call T = (a · b)(c · d)− (a · c)(b · b)+ (a · d)(b · c). We can combine all of

them in a form such as

∫

q

1

[q2 +M2]2
+

∫

q

−2M2 +S + 2R
D

[q2 +M2]3
+

∫

q

M4− (
S + 2R

D

)
M2 +T

[q2 +M2]4
(2.166)

Evaluation of the integrals are can be done due to the equation (C.18) as follows:

29



∫

q

1

[q2 +M2]2
=

i
(4π)D/2

Γ(2−D/2)
Γ(2)

1
(−M2)2−D/2 ,

=
i

(4π)2
Γ(2−2/D)

Γ(2)

(
4π
M2

)2−D/2

. (2.167)

∫

q

−2M2 +S + 2R
D

[q2 +M2]3
=

−i
(4π)D/2

Γ(3−D/2)
Γ(3)

−2M2 +S + 2R
D

(−M2)3−D/2 ,

= i
−2+ 1

M2

(
S + 2R

D

)

(4π)2
Γ(3−D/2)

Γ(3)

(
4π
M2

)2−D/2

. (2.168)

∫

q

M4− (
S + 2R

D

)
M2 +T

[q2 +M2]4
=

i
(4π)D/2

Γ(4−D/2)
Γ(4)

M4− (
S + 2R

D

)
M2 +T

(−M2)4−D/2 ,

= i
1− 1

M2

(
S + 2R

D

)
+ T

M4

(4π)2
Γ(4−D/2)

Γ(4)

(
4π
M2

)2−D/2

.(2.169)

We obtain

I2[p1, p2, p3] = −iD
g4

(4π)2

∫ 1

0
dx

∫ x

0
dy

∫ y

0
dz

(
4π
M2

)2−D/2

×
[

6Γ(2−D/2)+3Γ(3−D/2)
(
−2+

1
M2

(
S +

2R
D

))

+Γ(4−D/2)
(

1− 1
M2

(
S +

2R
D

)
+

T
M4

)]
. (2.170)

in D = 4− ε dimension we find

= − i
g4

(4π)2

∫ 1

0
dx

∫ x

0
dy

∫ y

0
dz(4− ε)

[
1− ε

2
ln

(
4π
M2

)
+ ...

][
6
(

2
ε
− γ

)

+3
(
−2+

1
M2

(
4S +2R−Sε

4− ε

))
+

(
1− 1

M2

(
4S +2R−Sε

4− ε

)
+

T
M4

)]
,

= − i
g4

(4π)2

∫ 1

0
dx

∫ x

0
dy

∫ y

0
dz(4− ε)

[
1− ε

2
ln

(
4π
M2

)]

×
[

12
ε
−6γ−5+

2
M2

(
4S +2R−Sε

4− ε

)
+

T
M4

]
, (2.171)

= − i
g4

(4π)2

∫ 1

0
dx

∫ x

0
dy

∫ y

0
dz

× (4− ε)
[

12
ε
−6γ−5+

2
M2

4S +2R−Sε
(4− ε)

+
T

M4 −6ln
(

4π
M2

)]
, (2.172)

= − i
g4

(4π)2

∫ 1

0
dx

∫ x

0
dy

∫ y

0
dz

[
48
ε
−24γ−32+

2(4S +2R)
M2 +

4T
M4 −24ln

(
4π
M2

)]
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Performing the integrals of the parameter we find

=
−ig4

(4π)2

[
8
ε
− 24γ +32

6
+

∫ 1

0
dx

∫ x

0
dy

∫ y

0
dz

(
8S +4R

M2 +
4T
M4 −24ln

(
4π
M2

))]
(2.173)

We have 5 other channels, so totally it yields

=
−ig4

(4π)2

[
48
ε
− (24γ +32)+

∫ 1

0
dx

∫ x

0
dy

∫ y

0
dz

(
8S +4R

M2 +
4T
M4 −24ln

(
4π
M2

))

+5 other channels
]

(2.174)

So we find that this scalar box diagram gives a 1/ε type divergence. We need to

renormalize the coupling of this vertex to incorporate this divergence.

2.9.5 Fish diagram correction

The second correction to the tree diagram may be the fish diagram shown in figure 2.8.

Figure 2.8. The one-loop scalar field correction to the four scalar interaction .

This diagram can be expressed as

I3[p1, p2] =
(−ia)2

2

∫

l

(−4π2i)
g2

ε
l2

(−4π2i)
g2

ε
(l + p1 + p2)2 , (2.175)

= 8π4 a2

g4 ε2
∫

l

1
l2

1
(l + p)2 (2.176)

Notice that here we called p = p1 + p2. There are two more channels: p = p1 + p3 and

p = p1 + p4. At the end of our calculation we will count them. Now we continue with

the Feynman parametrization using the equation (C.13)

= 8π4 a2

g4 ε2 Γ(2)
Γ(1)2

∫ 1

0
dα

∫

l

1

[(l +α p)2 +α(1−α)p2]2
(2.177)

We shift l +α p = q and call M2 = α(1−α)p2, then

= 8π4 a2

g4 ε2 Γ(2)
Γ(1)2

∫ 1

0
dα

∫

q

1

[q2 +M2]2
(2.178)
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We evaluated the q integral due to the equation (C.18). We find

= 8π4 a2

g4 ε2 Γ(2)
Γ(1)2

∫ 1

0
dα

i
(4π)D/2

Γ(2−D/2)
Γ(2)

1
(−M2)2−D/2 , (2.179)

=
π2

2
ia2

g4 ε2Γ
(

2− D
2

)∫ 1

0
dα

[
4π
M2

]2−D/2

, (2.180)

=
π2

2
ia2

g4 ε2Γ
(ε

2

)∫ 1

0
dα

[
4π
M2

]ε/2

, (2.181)

=
π2

2
ia2

g4 ε2
(

2
ε
− γ

)∫ 1

0
dα

[
1− ε

2
ln

α(1−α)p2

4πµ2

]
. (2.182)

This result clearly shows that when we take ε → 0 limit, fish diagram one loop

contribution vanishes.

2.9.6 Higher order corrections of composite scalar vertex

In the previous subsections we find a 1/ε type infinite contribution in the one loop

correction of the fermion box. Up to now this is the only diverging interaction. In this

section we will go to the higher orders and will try to find the existence of the other

types of divergences.

The two loop contribution to the four scalar interaction is shown in figure 2.9. The

two loop diagram contains a composite propagator φ which makes this diagram finite.

Note that the diagram where the internal scalar is connecting adjacent sides, as shown

in figure 2.9.b, will be a contribution to the renormalization of the Yukawa interaction.

(a) (b)

Figure 2.9. (a) The scalar correction to the composite scalar box diagram, (b) The box
diagram with one vertex correction.
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The other higher order diagrams where the scalar propagators propagates inside the

spinor box with nonadjacent spinor fields are shown in figure 2.10.

(a) (b) (c)

Figure 2.10. Composite scalar vertex corrections for (a) Three loops, (b) Four loops,
(c) Five loops.

The contributions of the diagrams shown in 2.10.a, 2.10.b, 2.10.c give the result zero

with the power of ε , ε2, ε3 consequently.

Unlike these non contributing diagrams, there are some other corrections, too. They

are shown in figure 2.11.a and 2.11.b.

(a) (b)

Figure 2.11. Composite scalar vertex corrections for odd number of loops like (a)
Three loops, (b) Five loops.

They are odd loop number diagrams. These corrections also can be interpreted as the

connection of one loop diagrams by the composite propagators as intermediates. In

the first higher order, at three loop correction figure 2.11.a, we end up with a first order

infinity of the form 1/ε at worst. The next order correction is five loop correction given

in figure 2.11.b. The dimensional regularization scheme gives this diagram corrections

in the 1/ε order of infinity, too. Every higher order of ladder diagrams of this type give

at worst the same type of divergence. This divergence for the four composite scalar

vertex can be renormalized using the standard means.

2.9.7 Spinor scattering

Here we will study the four spinor diagrams. We do not have four spinor coupling in

our Lagrangian. Therefore we need composite scalar particles coupling to spinors to

obtain this interaction, which necessitates the use of composite scalar propagators as

internal lines.
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Figure 2.12. Spinor scattering vertex at tree level

Since each composite scalar propagator contains an ε contribution, the four spinor

processes go to zero as ε . This tree level diagram indicates that there is no four spinor

interaction.

2.9.8 Higher order corrections of spinor scattering

When we go beyond tree diagrams, we need at least two composite scalar propagators

to end up with two spinors, which means extra powers of ε . The one loop diagram is

given in figure 2.13.a. This process uses two scalar propagators. Since the integral is

finite, this process gives a result proportional to ε2.

(a) (b) (c)

Figure 2.13. Spinor scattering vertex at the levels of (a) one loop, (b) two loops, (c)
three loops.

The two loop and three loop ladder diagrams are shown in figure 2.13.b, and figure

2.13.c. Their contributions are in the order of ε3 and ε4, respectively. Therefore, these

contributions vanish as ε goes to zero.

2.9.9 Bethe-Salpeter equation for fermion scattering

Although the fermions are the ingredients of our model, above we see that there is no

fermion scattering in the model. We can justify this claim by writing the Bethe-Salpeter

equations for fermion scattering process.

Figure 2.14. Graphical Illustration of Bethe-Salpeter Equation of Four Fermion
Scattering

34



This equation is shown in the figure 2.14 and can be expressed mathematically as

G(2)(p,q;P) = G(2)
0 (p,q;P)

+
∫ d4 p′

(2π)4
d4q′

(2π)4 G(2)
0 (p, p′;P)K(p′,q′;P)G(2)(q′,q;P). (2.183)

Here G(2)
0 (p,q;P) is two non-crossing spinor lines, G(2)(p,q;P) is the proper four point

function. K is the Bethe-Salpeter kernel.

We note that this expression involves the four spinor kernel which we found to be of

order ε . This expression can be written in the quenched ladder approximation [14],

where the kernel is separated into a scalar propagator with two spinor legs joining the

proper kernel. If the proper kernel is of order ε , the loop involving two spinors and a

scalar propagator can be at most finite that makes the whole diagram in first order in ε .

This fact also shows that there is no nontrivial spinor-spinor scattering.

2.9.10 Bethe-Salpeter equation for Yukawa interaction

In the previous subsections, we have showed that the Yukawa vertex does not need an

infinite renormalization. The finite contributions of the diagrams just renormalize the

coupling constant g by a finite amount.

We come to the same result after we write the Bethe-Salpeter equation for this vertex.

Diagrammatically it is shown in figure 2.15.

Figure 2.15. Graphical Illustration of Bethe-Salpeter Equation of Yukawa Vertex

We need the result of the four fermion scattering kernel to be able to perform this

calculation. Similar to the explanation given above, the kernel will use at least one

scalar propagator. Since the scalar particle propagator has a ε factor, all higher orders,

including the one loop contribution this process does not give infinite contribution.

2.9.11 Other processes

We can also have scattering processes where two scalar particles go to an even number

of scalar particles, shown in figure 2.16.a.
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(a) (b)

Figure 2.16. Composite scalar fields scatter to (a) Even number of scalar fields, (b)
Odd number of scalar fields.

In the one loop approximation all these diagrams give finite results, like the case in the

standard Yukawa coupling model. Since going to an odd number of scalars, shown in

figure 2.16.a, is forbidden by the γ5 invariance of the theory, we can also argue that

scalar φ particles can go to an even number of scalar particles only. This assertion is

easily checked by diagrammatic analysis.

Any diagram which describes the process of producing spinor particles out of two

scalars contains scalar propagators.

(a) (b) (c)

Figure 2.17. Two Spinor scatters to spinor fields in one loop (a) With a spinor triangle,
(b) With a mixed box, (c) With a spinor box.

The lowest of these diagrams where two scalars, figure 2.17.a, go to two spinors vanish

since it either involves a triangle diagram made out of spinors, or a box diagram, figure

2.17.b, made out of three spinors and one scalar. It vanishes due to fall of the scalar

propagator in the latter case, although it is not zero unless the cut-off is removed . The

diagram which involves the production of four spinors out of two scalars, figure 2.17.c,

is zero because of the symmetry of the composite field.

2.10 RG Analysis of the Model

In our model, we have two coupling constants, g and a. We find that the coupling

constant a needs renormalization while there is no need for infinite renormalization for

coupling constant g. The reason is widely discussed above.

If we take µ0 as a reference scale at low energies, t = ln(µ/µ0), where µ is the

renormalization point by using the language of renormalization group analysis. Since
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the diagram given in figure 2.4 is finite, due to the presence of ε in the scalar

propagator, the first order for the Yukawa vertex can be given by

dg0

dt
= 0. (2.184)

Higher order calculations using the Bethe-Salpeter equation verify that the right hand

side of the equation does not change in higher orders. This has also been discussed.

We see that in the model the only infinite renormalization is needed for the four φ

vertex; hence the coupling constant for this process runs. The first correction to the

tree diagram is the box diagram, shown in figure 2.7 . This diagram has four spinor

propagators and gives rise to a 1
ε type divergence. The renormalization group equation

written for this vertex can be given by

16π2 da(t)
dt

= −48g4
0. (2.185)

The solution of the first order renormalization group equations given in equation

(2.184) is just a constant. This gives the solution of the equation (2.185) solution

as

a(t) = a0−
48g4

0
16π2 t. (2.186)

Here the coupling constant goes to infinity with the cutoff and should be renormalized.

2.11 Conclusion

In this chapter, we tried to give a new interpretation to the work which was done

in [36, 44]. We showed explicitly that the polynomial form of the original model

corresponds to the original Gürsey model at least classically. Then we made the

constraint analysis and found the propagators of the model via path integral method.

We went to higher orders in the calculation, beyond one loop for scattering processes.

By using the Dyson-Schwinger and Bethe-Salpeter equations we verified higher order

process results. In the end we found that the non-trivial scattering of the fundamental

fields was not allowed in this model. Only bound states could scatter from each other.

The essential point in our analysis was the fact that, being proportional to ε
p2 , the

composite scalar field propagator cancelled many of the potential infinities that arise

while calculating loop integrals. As a result of this cancellation, only composite

37



fields participate in physical processes such as scattering and particle production.

The scattering and production of elementary spinor fields were not allowed. This

phenomena was an example of treating the bound states, instead of the principal fields,

as physical entities.
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3. GAUGED SYSTEM MIMICKING THE GÜRSEY MODEL

A further point will be to couple an elementary vector field to the model described in

the previous chapter, in line with the process studied for the NJL model [28, 29]. Our

final goal is to investigate if we get a non-trivial theory when we couple a YM system

with color and flavor degrees of freedom, like it is done in [31–35].

In this chapter we will study the abelian case, as an initial step. First we will summarize

the changes in our results when this elementary vector field is coupled to the model.

Then we will give our new results in the following sections. Mainly we will conclude

that our original model, in which only the composites take part in physical processes

like scattering or particle production, is reduced to a gauged-Higgs-Yukawa(gHY)

model, where both the composites and the fundamental spinor and vector fields

participate in all the processes.

3.1 Gauging with an Elementary Vector Field

We had a Lagrangian density in our model given in equation (2.18) with the following

form

L = ψi∂/ψ +gψψφ +λ (gψψ−aφ 3). (3.1)

We can add a constituent U(1) gauge field to the model in a minimal way with a new

coupling constant e. The new Lagrangian density can be given as

L = ψiD/ψ +gψψφ +λ (gψψ−aφ 3)− 1
4
(FµνFµν). (3.2)

Here Aµ is the elementary vector field and Fµν is the electromagnetic field strength

tensor and Dµ is the covariant derivative defined as in the usual way as follows.

Fµν = ∂µAν −∂νAµ , (3.3)

Dµ = ∂µ + ieAµ . (3.4)
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3.2 Constraint Analysis

Here we have additional fields, A0 and Ai, besides our previous four fields ψ , ψ , φ and

λ . This leads to new momenta in this modified model in addition to the existing ones

which were given in equations (2.19), (2.20) , (2.21), ( 2.22).

π0 =
∂L

∂ (∂0A0)
= 0, (3.5)

π i =
∂L

∂ (∂0Ai)
=−F0i. (3.6)

Here i = 1,2,3. By inspecting equations (3.5) and (3.6), we can conclude that there

is only one primary constraint in the modified model. So totally there are five primary

constraints,

ϕ1 = π, (3.7)

ϕ2 = π− i ψγ0, (3.8)

ϕ3 = ρ, (3.9)

ϕ4 = η , (3.10)

ϕ5 = π0. (3.11)

Here we impose the π i momentum in the canonical Hamiltonian by

∂ 0Ai =−π i +∂ iA0. (3.12)

Then the canonical Hamiltonian density of the new model can be expressed as

Hc = −π iπi

2
−A0(∂iπ i)+ψ

[
iγ i∂iψ−gφ + e(γ0A0− γ iAi)

]
ψ−λ (gψψ−aφ 3)

− 1
2
[A j∂i(∂ iA j)−A j∂i(∂ jAi)]. (3.13)

Here partial integration is used to be able to write −A0(∂iπ i) instead of π i(∂iA0).

Similar to the work shown in the previous chapter, this Hamiltonian generates the

Hamiltonian equations of motion. These equations are not unique too. Therefore

we replace this canonical Hamiltonian density with the total Hamiltonian density as

follows.

40



HT = −π iπi

2
−A0(∂iπ i)+ψ

[
iγ i∂iψ−gφ + e(γ0A0− γ iAi)

]
ψ−λ (gψψ−aφ 3)

− 1
2
[A j∂i(∂ iA j)−A j∂i(∂ jAi)]+u1π ψ̄ +(πψ − i ψγ0)u2 +u3πφ

+ u4πλ +u5π0. (3.14)

Here u1 and u2 are four component spinor field coefficients, u3 and u4 are scalar

field coefficients and u5 is the four component vector field coefficient. This new

HT generates new equations of motion which are unique. From the consistency

requirement of the constraints we find

ϕ̇1 = −[i γ i−→∂i −g(φ +λ )+ eA/]ψ + i γ0u2, (3.15)

ϕ̇2 = −i u1γ0−ψ [−iγ i ←−∂i −gψ(φ +λ )+ eA/], (3.16)

ϕ̇3 = gψψ−3aλφ 2, (3.17)

ϕ̇4 = gψψ−aφ 3, (3.18)

ϕ̇5 = ∂iπ i− eψγ0ψ, (3.19)

The first two equations give a relation between the spinor coefficients. The last three

ones imply a new relation among the canonical momenta and fields. These are the

secondary constraints.

ϕ6 = gψψ−3aλφ 2, (3.20)

ϕ7 = gψψ−aφ 3, (3.21)

ϕ8 = ∂iπ i− eψγ0ψ. (3.22)

Repeating the same processes, taking the Poisson brackets of these constraints with

the total Hamiltonian density of the system, we find relations between the coefficients

u1, u2, u3 and u4. But there is no relation for the u5 coefficient. Remember that this

coefficient is related to the π0 constraint which arises from the fact that the Lagrangian

density is independent of the time derivative of A0. This is called a primary constraint,

because it follows directly from the structure of the Lagrangian. We can impose new

constraint to our system by hand depends on our choice. Here we will study in the
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Landau gauge. Our new two constraints are as follows.

ϕ9 = A0, (3.23)

ϕ10 = ∂ µAµ . (3.24)

This new constraints let us to determine all the relations between the coefficients.

Therefore we find a closed constraint algebra. To classify the constraints we need to

take the Poisson brackets of all constraints among themselves.

{ϕ1,ϕ2} = iγ0, (3.25)

{ϕ1,ϕ6} = −gψ, (3.26)

{ϕ1,ϕ7} = −gψ, (3.27)

{ϕ1,ϕ8} = eγ0ψ , (3.28)

{ϕ2,ϕ6} = −gψ , (3.29)

{ϕ2,ϕ7} = −gψ, (3.30)

{ϕ2,ϕ8} = eψγ0, (3.31)

{ϕ3,ϕ6} = 6aλφ , (3.32)

{ϕ3,ϕ7} = 3aφ 2, (3.33)

{ϕ4,ϕ6} = 3aφ 2, (3.34)

{ϕ5,ϕ9} = −1, (3.35)

{ϕ8,ϕ10} = ∂ 2. (3.36)

This result indicates the class of the constraints as second class. We can express the

matrix Cαβ as,

Cαβ =




0 iγ0 0 0 0 -gψ -gψ eγ0ψ 0 0
−iγ0 0 0 0 0 -gψ −gψ eψγ0 0 0

0 0 0 0 0 6aλφ 3aφ 2 0 0 0
0 0 0 0 0 3aφ 2 0 0 0 0
0 0 0 0 0 0 0 0 -1 0

gψ gψ −6aλφ −3aφ 2 0 0 0 0 0 0
gψ gψ −3aφ 2 0 0 0 0 0 0 0

−eγ0ψ −eψγ0 0 0 0 0 0 0 0 ∂ 2

0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 −∂ 2 0 0



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We find the Fadeev-Popov determinant as

4F =
[
det{ϕα ,ϕβ}

]1/2 = det
(
9a2φ 4∂ 2) , (3.37)

= det
(
9a2φ 4)det

(
∂ 2) . (3.38)

This result is not an unexpected one. Since the vector field couples only with the

fermions, it has nothing to do with the constraint system. So quantization of the model

can be considered in two different parts. First one is the constrained one, which we

have shown the quantization in details in the previous chapter. The other one is the

electromagnetic field quantization. We may show this quantization, but it is useless

since one can find it in basic QFT text books [25, 43, 45].

3.3 Perturbation Expansion of Correlation Functions

We end up with an effective Lagrangian density for the gauged model as follow.

L = −1
4
(FµνFµν)+ψ(i∂/− eA/+gΦ)ψ− a

4
Φ4 +Lghost +Lgau.fix..(3.39)

The ghost fields and one of the scalar field Λ is decoupled from the model like before.

Note that the spinor field couples to composite scalar field Λ by the coupling constant

g where it couples to vector field by the coupling constant e. We also have a self

interaction for the composite scalar field with the coupling a.

3.3.1 Photon propagator

We have the same photon two point correlation function as in QED.

−igµν

k2 + iε
. (3.40)

Remark that we take the vector field propagator in the Feynman gauge. We will clarify

this choice in the following subsection.

3.3.2 Spinor propagator

We have no essential change in the spinor propagator in Feynman gauge. The massless

Dirac propagator is

ip/
p2 + iε

. (3.41)
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Dynamical mass generations is studied in various ways. In reference [14] Miransky

explains how for coupling constant α less than π/3, there is no mass generation in the

quenched approximation. Here α = e2

4π . J.C.R. Bloch, in his Durham thesis, [46],

explores the range where this result is valid when the calculation is done without

this approximation. He states that the quenched and the rainbow approximations,

used by Miransky and collaborators, have non physical features, namely they are not

gauge invariant, making the calculated value vary wildly depending on the particular

gauge used. Bloch, himself, uses the Ball-Chiu vertex, [47], instead of the bare one,

where the exact longitudinal part of the full QED vertex, is uniquely determined by

the Ward-Takahashi identity relating the vertex with the propagator. The transverse

part of the vertex, however, is still arbitrary. Bloch then considers a special form

of the Curtis-Pennington vertex [48] in which the transverse part of the vertex is

constructed by requiring the multiplicative renormalizability of the fermion propagator

with additional assumptions.

Bloch claims that for the different gauges used with this choice, he gets rather close

values for the critical coupling [49]. He also performs numerical calculations where

the approximations are kept to a minimum. The results are given in the table on pg.

202 of hep-ph/0208074.

Using on the arguments in the Bloch’s thesis, also using the results of his numerical

calculations, we conclude that at least for α < 0.5 we can safely claim that there will

be no mass generation or the assumed γ5 symmetry will not be broken. Since we do not

study heavy ion processes, the numerical value we have for α will be much smaller

than this limit. Hence, our results will be valid. Note that in QCD mass generation

occurs at relatively low energies, where the coupling constant has already increased.

3.3.3 Composite scalar propagator

As we find that, there is no mixing between the vector field and the composite scalar

fields. We have the same composite propagator found in the previous chapter in

equation (3.42).

−i
4π2

g2
ε
q2 . (3.42)

As before, the ε factor in this correlation function will play an important role.
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3.4 Interactions

In the crude model there were two interactions. They were namely Yukawa interaction

and four composite scalar interaction. In the gauged model one more interaction

appears. This interaction is between the vector field and spinor fields with the coupling

constant e.

In Appendix (C.1.2) we give the Feynman rules for the gauged model in Minkowski

space.

In the next subsections we will analyze the effects of the new interaction to the previous

vertices. We will also check the higher order corrections of these vertices.

3.4.1 Yukawa vertex

In our model to leading order in 1/N, the contribution to the Yukawa vertex up to the

first order was shown by the diagrams in figure (2.3). In gauged version we have one

additional correction which is not finite. All the corrections up to the first order to the

vertex is shown in figure (3.1).

Figure 3.1. The diagram of the contribution to Yukawa Vertex up to the first order in
the gauged model.

The scalar correction to the Yukawa vertex is shown to give finite result in the previous

chapter. Here we will check the vector field correction to the vertex given in figure

(3.2).

Figure 3.2. One loop vector field correction to the Yukawa vertex

Vector field contribution can be expressed by
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I4[p,q] =
∫

k
(−ieγβ )

i
k/+ p/+q/

(−ig)
i

k/+ p/
(−ieγα)

−igβα

k2 , (3.43)

= −(ge2)
∫

k

γβ (k/+ p/+q/)(k/+ p/)γβ

(k + p+q)2(k + p)2k2 . (3.44)

Very similar calculation has done for the Yukawa vertex correction in the previous

section. Therefore briefly we give the calculations here. The Feynman parametrization

is the same with given equation (2.125). We find immediately

=−(ge2)
Γ(3)
Γ(1)3

∫ 1

0
dα

∫ α

0
dβ

∫

k

γβ (k/+ p/+q/)(k/+ p/)γβ[
(k +β p+αq)2 +M2

]3 . (3.45)

Here M2 has the same definition with the equation (2.127).

M2 = β (1−β )q2 +α(1−α)p2 +2β (1−α)pq. (3.46)

We can make a shift K = k+β p+αq. The odd terms of momenta will not contribute,

so we can ignore them here. Up to now everything is same as what we have done in

the previous chapter except some coefficients. The main difference comes from the

numerator.

γβ (K/+P/)(K/+Q/)γβ . (3.47)

Here

P/ = [(1−α)p/+(1−β )q/] , (3.48)

Q/ = [(1−α)p/−βq/] . (3.49)

Using the properties of the gamma functions given in appendix equation (C.8), we get

γβ (K/+P/)(K/+Q/)γβ =
D2

D
K2 + γβ P/Q/γβ . (3.50)

Here D is the dimension.

= −(ge2)
Γ(3)
Γ(1)3

∫ 1

0
dα

∫ α

0
dβ

∫

K

DK2 + γβ P/Q/γβ

(K2 +M2)3 , (3.51)

= −(ge2)
Γ(3)
Γ(1)3

∫ 1

0
dα

∫ α

0
dβ

∫

K

[
D

(K2 +M2)2 +
γβ P/Q/γβ −DM2

(K2 +M2)3

]
. (3.52)
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Since we are looking for the divergency we omit the finite part here. The evaluation

of the integrals, due to the equation (C.18), give us

I4[p,q] = −(ge2)
2iD

(4π)2

[
2
ε

+finite contributions
]
, (3.53)

= (−ig)
16e2

16π2
1
ε

+finite contributions. (3.54)

In the original model we do not need an infinite renormalization for the Yukawa vertex.

This result is changed in the gauged model. We will proceed renormalization to this

vertex in the following sections.

3.4.2 Higher order corrections of the Yukawa vertex

In this subsection we will check the higher order contributions to the Yukawa vertex in

the gauged model. Previously we showed that the finite renormalization of this vertex

has been changed to infinite renormalization by the vector field contribution.

The two loop planar corrections to the Yukawa vertex can be given as follows.

(a) (b) (c) (d)

Figure 3.3. Two loop corrections of the Yukawa vertex (a) Two composite scalar
field correction, (b) Scalar vector field correction, (c) Vector Scalar field
correction, (d) Two vector field correction

We have previously showed that two composite scalar field correction shown in figure

3.3.a is finite. The mixed corrections, figure 3.3.b and figure 3.3.c, give a 1/ε type

infinity. The last correction, figure 3.3.d, is the worst term which gives a (1/ε)2 type

infiniteness. Every higher vector field insertion gives another loop and this results with

another 1/ε type correction to the vertex. Naively the planar vector field contributions

can be summed up as a geometric series [50].

3.4.3 Vector spinor vertex

This new vertex was absent in the ungauged model. In literature this vertex , for the

purely electromagnetic case, is vastly studied [47,48]. Here we give the corrections to

the vector spinor field interaction corrections up to the first order as follows.
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Figure 3.4. Vector spinor field vertex

First we should find the vector field correction to the vector spinor field vertex. We can

define the momenta of these vertex as follows.

Figure 3.5. Vector field correction to the Vector Spinor field Vertex in one loop.

This one loop correction can be expressed by the terms as,

I5[p,q] =
∫

k
(−ieγβ )

i
k/+ p/+q/

(−ieγµ)
i

k/+ p/
(−ieγα)

−igαβ

k2 (3.55)

= −e3
∫

q

γβ (k/+ p/+q/)γµ(k/+ p/)γβ

(k + p+q)2(k + p)2k2 (3.56)

We realize that, we have done a very similar calculation before in equation (3.44).

=−e3 Γ(3)
Γ(1)3

∫ 1

0
dα

∫ α

0
dβ

∫

k

γβ (k/+ p/+q/)γµ (k/+ p/)γβ[
(k +β p+αq)2 +M2

]3 . (3.57)

After shifting the momentum as usual,

=−e3 Γ(3)
Γ(1)3

∫ 1

0
dα

∫ α

0
dβ

∫

K

γβ (K/+P/)γµ (K/+Q/)γβ

[K2 +M2]3
. (3.58)

We see only one difference from the previous one. The numerator is as follows.

γβ (K/+P/)γµ (K/+Q/)γβ =
(2−D)2

D
K2γµ + γβ P/γµQ/γβ (3.59)

Replacing this numerator we obtain,

= −e3 Γ(3)
Γ(1)3

∫ 1

0
dα

∫ α

0
dβ

∫

K

(2−D)2

D K2γµ + γβ P/γµQ/γβ

(K2 +M2)3 , (3.60)

= −e3 Γ(3)
Γ(1)3

∫ 1

0
dα

∫ α

0
dβ

∫

K

[
(2−D)2

D γµ

(K2 +M2)2 +
γβ P/γµQ/γβ − (2−D)2

D M2γµ

(K2 +M2)3

]
.(3.61)
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Since we are looking for the divergency we omit the finite part here. The evaluation of

the integrals, due to the equation (C.18), give us

I5[p,q] = −e2 i
(4π)2

(2−D)2

D
γµ

[
2
ε

+finite contributions
]
, (3.62)

= (−ieγµ)
2e2

16π2
1
ε

+finite contributions. (3.63)

Here we find an infinite contribution of the vector correction to the spinor vector

vertex.

The second correction we can deal with is the composite field correction. We give this

correction in a diagrammatic way in figure 3.6.

Figure 3.6. Composite scalar field correction to the Vector Spinor field Vertex in one
loop.

This correction can be expressed as

I6[p,q] =
∫

k
(−ig)

i
k/+ p/+q/

(−ieγµ)
i

k/+ p/
(−ig)

4π2ε
g2

−i
k2 , (3.64)

= (−eg2)
4π2ε

g2

∫

k

(k/+ p/+q/)γµ (k/+ p/)
(k + p+q)2(k + p)2k2 . (3.65)

After the usual Feynman parametrization, given in equation (C.14) ,we get another

similar expression. We make a shift in the momentum K = k +β p+αq,

= (−eg2)
4π2ε

g2
Γ(3)
Γ(1)3

∫ 1

0
dα

∫ α

0
dβ

∫

K

(K/+P/)γµ(K/+Q/)

[K2 +M2]3
. (3.66)

Again the only difference comes from the numerator.

(K/+P/)γµ(K/+Q/) =
(2−D)

D
K2γµ +P/γµQ/. (3.67)

Then we get,
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= (−eg2)
4π2ε

g2
Γ(3)
Γ(1)3

∫ 1

0
dα

∫ α

0
dβ

∫

K

(2−D)
D K2γµ +P/γµQ/

[K2 +M2]3
, (3.68)

= (−eg2)
4π2ε

g2
Γ(3)
Γ(1)3

∫ 1

0
dα

∫ α

0
dβ

∫

K

[
(2−D)

D γµ

[K2 +M2]2
+

P/γµQ/− (2−D)
D M2γµ

[K2 +M2]3

]
.(3.69)

Then we get a finite result as follows.

I6[p,q] =
−ieγµ

8
+O(ε). (3.70)

3.4.4 Higher order corrections of the vector spinor vertex

In the previous subsection we find that only vector field correction needs an infinite

renormalization while the scalar correction needs finite renormalization. We have

discussed this result up to the first order. Here we will beyond the one loop and give

the two loop planar corrections to the Vector Spinor vertex as follows.

(a) (b) (c) (d)

Figure 3.7. Two loop corrections of the Yukawa vertex (a) Two vector field correction,
(b) Vector Scalar field correction, (c) Scalar vector field correction, (d)
Two composite scalar field correction

We have previously showed that composite scalar field correction is finite. So the two

loop composite scalar field correction shown in figure 3.7.d is also finite. The mixed

corrections, figure 3.7.b and figure 3.7.c, give a 1/ε type infinity. Only the correction,

figure 3.7.a, is the worst term which gives a (1/ε)2 type infiniteness. Because every

higher vector field insertion gives another loop and which produces another 1/ε type

correction to the vertex. Naively the planar vector field contributions can be summed

up as a geometric series [50], too.

3.4.5 Four composite scalar vertex

In our crude model, we have showed that the first order correction was the scalar box

diagram. This vertex was the only vertex that needed an infinite renormalization. In

the gauged model we have an additional correction to the box diagram starts from two

loop. In figure 3.8, the correction up to the second order to this vertex is shown.
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Figure 3.8. Four composite Scalar vertex with planar corrections.

As a conclusion up to the first order, there is no new correction to the four composite

scalar vertex. The infinite contribution has been discussed in the previous chapter in

detailed.

3.4.6 Higher order corrections of composite scalar vertex

In the crude model we showed that the scalar box diagram needed an infinite

renormalization in one loop correction. The two loop contribution to the four scalar

interaction, shown in figure 3.9.a, gives a finite result. The higher order corrections

does not contribute to the vertex in the absence of the vector field.

When additional the vector particle contributions are added, this expression is

modified. The process where two scalar particles goes to two scalar particles gets

further infinite contributions from the box type diagrams with vector field insertions,

where one part of the diagram is connected to the non-adjacent part with a vector field

as shown in the figure 3.9.b. All these diagrams go as 1
ε where ε is the parameter

in dimensional regularization scheme. Figure 3.9.c., contributes to the box diagram

renormalization. Also note that the diagram where the internal photon is connecting

adjacent sides, as shown figure 3.9.d., will be a contribution to the coupling constant

renormalization of one of the vertices. Since this is not a new contribution, we will not

consider it separately.

(a) (b) (c) (d)

Figure 3.9. Correction to the fermion box diagram (a) Composite scalar field to non
adjacent part, (b) Vector field to non adjacent part, (c) Composite scalar
field to adjacent part, (d) Vector field to adjacent part.

For the three loop contribution, we have already showed that figure 3.10.a results to

zero with the power of ε . Figure 3.10.c give an infinite contribution to the power of
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1
ε . Note that mixed scalar and vector insertions, figure 3.10, do not give additional

infinities, since the scalar propagator reduces the degree of divergence.

(a) (b) (c)

Figure 3.10. Three loop correction to the fermion box diagram (a) Two scalar field
correction, (b) Scalar and vector field correction, (c) Two vector field
correction

Another three loop correction can be diagrammatically expressed as in figure 3.11. We

already showed the contribution given in figure 3.11.a. Due to that result this diagram

contributes as 1/ε . Figure 3.11.b, does not contribute since the odd number of gamma

matrices gives a zero result. Finally figure 3.11.c has no contribution due to the current

conservation.

(a) (b) (c)

Figure 3.11. Three loop correction to the fermion box diagram (a) Two scalar
field channel correction, (b) One scalar and one vector field channel
correction, (c) Two vector field channel correction.

Therefore we conlude that there are no higher divergences for this process.

3.4.7 Spinor scattering

As a result of previous analysis in the second chapter, in the ungauged version, we

end up with a model where there is no scattering of the fundamental fields, i.e. the

spinors, whereas the composite scalar fields can take part in a scattering process.

The coupling constant for the scattering of the composite particles runs, whereas the

coupling constant for the spinor-scalar interaction does not run.

This result changes drastically when the gauged model is studied instead of the original

one. The process in figure 3.12.a , which is prohibited in the previous model, now is

possible due to the presence of the vector field channel. In lowest order this process

goes through the tree diagram given in figure 3.12.b.
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(a) (b)

Figure 3.12. Two fermion scattering (a) Through the scalar particle channel, (b)
Through the vector channel.

3.4.8 Higher order corrections of spinor scattering

The spinor scattering processes, figure 3.13.a, was prohibited in the previous model.

The process is finite though, since at the next higher order the QED box diagram

with two spinors and two vector particles, figure 3.13.c, is ultraviolet finite from

dimensional analysis, and is calculated in reference [51].

(a) (b) (c)

Figure 3.13. Higher order diagram for spinor scattering (a) Via two scalar field
channel, (b) Via one scalar one vector field channel, (c) Via two vector
field channel,

The mixed diagrams, figure3.13.b, do not give a contribution. We conclude that higher

orders of spinor scattering do not give new type of ultra violet divergences.

3.4.9 Spinor production

In the crude model, we showed that if the composite scalar particles are used as

intermediaries, there is no spinor production, figure 3.14.a.

(a) (b) (c)

Figure 3.14. Spinor production (a) Via scalar particles are used as intermediaries, (b)
Via scalar particle are used as intermediaries, (c) Via vector particles are
used as intermediaries.

In the gauged model, instead of the composite scalar particles, vector particles can be

used as intermediaries, figure 3.14.c. Then spinor production becomes possible. If we
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use one vector and one scalar particles as intermediaries, we have a zero contribution

due to the trace of the odd number of gamma matrices.

3.4.10 Triangle interactions

In the crude model three composite scalar interaction, figure 3.15.a, is not allowed due

trace rule. In the gauged model we have additional interactions. One of them, the

interaction given in figure 3.15.c, is not allowed with the same reason.

(a) (b) (c) (d)

Figure 3.15. Triangle Interactions (a) Three scalar fields, (b) Two scalar and one vector
field, (c) Two vector and one scalar field, (d) Three vector fields.

The other interactions, given in figure 3.15.b and figure 3.15.d, vanish due to the

Furry’s theorem [52].

3.4.11 Multi scattering processes

In the crude model, we have demonstrated that we can have scattering processes where

two scalar particles go to an even number of scalar particles bigger than two. In the

one loop approximation all these diagrams give finite results, figure 3.16.a.

(a) (b) (c) (d)

Figure 3.16. (a) Two composite scalar field scatter to even number of scalar fields, (b)
Two composite scalar field scatter to even number of vector fields, (c)
Two vector field scatter to even number of vector fields, (d) Two vector
field scatter to even number of composite scalar fields.

In the gauged model, we also have scattering processes where two vector particles go

to an even number of vector particles, like the case in the standard electrodynamics,

figure 3.16.c. Since going to an odd number of vector particles is forbidden by the

Furry theorem, we can also argue that vector φ particles can go to an even number of

vector particles only. This assertion is easily checked by diagrammatic analysis.
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3.4.12 Other scattering processes

The < AµAµφ 2 > can be generated by the spinor box diagram, figure 3.17.a and figure

3.17.b, thus making contact between the scalar and the vector particles in the theory,

although such an interaction does not exist in the original Lagrangian. They do not

contribute due to the conservation of current.

(a) (b) (c)

Figure 3.17. (a) Two composite scalar fields scatter to two vector fields, (b) Two vector
fields scatter to two composite scalar fields, (c) Two vector fields scatter
to two vector fields.

Another scattering is between four vector fields. They also use fermion box diagram.

This diagram gives a finite contribution which has been wildly discussed in the

literature [53–55].

3.4.13 Higher order corrections to the other processes

We can analyze the higher order corrections of the scattering of two vector particles

from two composite scalar particles. These corrections can be done by a scalar or

vector field to the adjacent and non adjacent part of the fermion box, given in figure

3.18.

(a) (b) (c) (d)

Figure 3.18. Two composite scalar fields scatter to two vector fields, (a) One scalar
field correction to the nonadjacent part, (b) One vector field correction to
the nonadjacent part, (c) One scalar field correction to the adjacent part,
(d) One vector field correction to the adjacent part.

All these two loop corrections do not contribute to the model due to the current

conservation. The three loop corrections are given in figure 3.19.
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(a) (b) (c)

Figure 3.19. Two composite scalar fields scatter to two vector fields, (a) Two scalar
fields correction to the nonadjacent part, (b) One vector and one scalar
fields correction to the nonadjacent part, (c) Two vector fields correction
to the adjacent part.

In the Appendix B we gave some other possible interactions in higher orders. Some of

them are finite, some of them are zero. We can conclude that there is no contribution

to the infinite renormalization of the interaction in higher orders.

3.5 RG Analysis of the Gauged Model

The original model had two coupling constants, g and a. In the new model, where

an elementary vector field is added to the model, we add a new coupling constant e

which describes the coupling of the vector field to the spinors. Here all three coupling

constants are renormalized.

We can write the three first order renormalization group equations for these three

coupling constants similar to the analysis in section 2.10.

16π2 de(t)
dt

= be3(t), (3.71)

16π2 dg(t)
dt

= −cg(t)e2(t), (3.72)

16π2 da(t)
dt

= −ug4(t). (3.73)

where b, c, u are numerical constants. These values are found as b = 2, c = 16, u = 48.

These processes are illustrated in diagrams shown in figures (2.7), (3.2), (3.5) above.

Here we take µ0 as a reference scale at low energies, t = ln(µ/µ0), where µ is the

renormalization point.

The first RG equation, equation (3.71), can be rewritten as

de
e3 =

b
16π2 dt. (3.74)

The integration of the equation let us to the solution as
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1
e2

0
− 1

e2 =
2b

16π2 t. (3.75)

Finally we can write the solution of the vector coupling constant as

e(t)2 =
e2

0

1− 2be2
0

16π2 t
. (3.76)

We will use this solution for solving the next equation, equation (3.72). If we replace

it, we get

dg
g

=− ce2
0

16π2

dt

1− 2be2
0

16π2 t
. (3.77)

This integral can be done easily by a variable change. The final result is

g(t) = g0

(
1− 2be2

0
16π2 t

)c/2b

. (3.78)

This solution let us to find the final coupling constant solution. If we replace the

solution of the g coupling constant to equation (3.73), we have

da =− ug4
0

16π2

(
1− 2be2

0
16π2 t

)2c/b

dt. (3.79)

Integration of this solution we find the final result as,

a = a0 +
ug4

0

2e2
0 (2c+b)

(
1− 2be2

0
16π2 t

) 2c
b +1

. (3.80)

We can substitute the values of b, c and u constants, but instead of this substitution we

have to point a crucial problem. Here we face with the main problem of models with

U(1) coupling, namely the Landau pole. The coupling constant e(t) diverges with a

finite value of t = 16π2/2be2
0. This pole makes our new gauged model a trivial one.

3.6 Conclusion

In this chapter we discuss the differences between the ungauged and gauged model.

These models are widely analyzed in this and previous chapters. We find out that many

of the features of the original model are not true anymore. Like in the crude model only

composite scalar particles are taking part in physical processes but now the constituent

fields too. As far as renormalizations are concerned, we have essentially QED, with
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corrections coming from the scalar part mimicking the Yukawa interactions with the

Φ4 term added. We end up with a system mimicking, the gHY system, although our

starting point is gauging a constrained model.

We also have scattering processes where two scalar particles go to an even number

of scalar particles, or scattering of spinor particles from each other. In the one loop

approximation all these diagrams give finite results, like the case in the standard

Yukawa coupling model. We also have creation of spinor particles from the interaction

of scalars, as well as scattering of spinors with each other, and all the other processes

in the gHY system.

In the renormalization of the couplings, we encountered a Landau pole, which means

at a certain finite energy, the coupling constant of the vector fields diverges. This

divergency makes the model a trivial one.
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4. NON-PERTURBATIVE RENORMALIZATION GROUP AND
RENORMALIZABILITY OF A GÜRSEY MODEL INSPIRED FIELD
THEORY

We encounter with a Landau pole in the gauged model. We expect that coupling to a

non-Abelian gauge theory will remedy this defect by new contributions to the RGE’s.

Thus, obtaining a nontrivial model will be possible. Coupling to a non-Abelian gauge

field will also give us more degrees of freedom in studying the behavior of the beta

function. This may allow us to find the critical number of gauge and fermion fields

to obtain a zero of this function at a nontrivial values of the coupling constants of the

model. We will study this in the this chapter.

4.1 Gauging with a non Abelian Gauge Field

Here we couple an SU(NC) gauge field to the model instead of U(1). We also take

spinors with different flavors, up to N f . Similar to the Lagrangian density given in the

previous chapter in equation (3.2), we consider the new Lagrangian density as follows

L =
N f

∑
i=1

iψ iD/ψi +g
N f

∑
i=1

ψ iψiφ +λ

(
g

N f

∑
i=1

ψ iψi−aφ 3

)
− 1

4
Tr[FµνFµν ]. (4.1)

Upon performing constraint analysis similar to the one performed in section 3.2, we

see that we have to satisfy

g
N f

∑
i=1

ψ iψi−aφ 3 = 0, (4.2)

3aλφ 2−g
N f

∑
i=1

ψ iψi = 0. (4.3)

After calculating the constraint matrix, raising the result to the exponential by using

ghost field, and performing the transformations Φ = φ + λ and Λ = φ − λ we get

similar equations. We see that both the Λ and the ghost fields coming from the

compositeness constraint decouple from our model.
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At this point we have to note that there are two kinds of ghost contributions in the

new model. The ghosts coming from the gauge condition on the vector field do not

decouple, and contribute to the renormalization group equations in the usual way. We

impose these constraints on equation (4.1).

These steps are done in the previous chapters, so we omit to redo it explicitly. Similar

to equation (3.39), we end up with the effective Lagrangian density given as

L ′ =−1
4

Tr[FµνFµν ]+
N f

∑
i=1

ψ i[iD/ψi +gΦ]ψi− a
4

Φ4 +Lghost +Lgau.fix.. (4.4)

Here N f is the number of flavors. The gauge field belongs to the adjoint representation

of the color group SU(NC) where Dµ is the color covariant derivative. g, a, e are the

Yukawa, quartic scalar and gauge coupling constants, respectively. We take N f in the

same order as NC.

In Appendix (C.1.3) we give the Feynman rules of the model.

4.2 RG Equations

In the one loop approximation, the renormalization group equations read as

16π2 d
dt

e(t) = −be3(t), (4.5)

16π2 d
dt

g(t) = −cg(t)e2(t), (4.6)

16π2 d
dt

a(t) = −ug4(t), (4.7)

where b, c and u are positive constants given as

b =
11NC−4T (R)N f

3
, c = 6C2(R), u = 8N f NC. (4.8)

Here C2(R) is the second Casimir, C2(R) = (N2
C−1)
2NC

and R is the fundamental

representation with T (R) = 1
2 . We take µ0 as a reference scale at low energies,

t = ln(µ/µ0), where µ is the renormalization point.

In the RGE we see that the diagrams, where scalar propagators take part, are down

by powers of ε . Hence we do not have contributions proportional to a2(t), g3(t) and

a(t)g2(t), as one would have in the gHY system as described in the work of [31].
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Since the diagrams, omitted in [31] via a 1
Nc

analysis, are down by an order of ε in our

analysis, we do not need a relation between NC, N f and the coupling constants at this

point.

In the next section we will solve the RGE’s and then analyze the solution in the

following sections.

4.3 Solutions of the RGE’s

The solution for the first RG equation (4.5) can be obtained easily as follows. First we

take the integral,

16π2
∫ de(t)

e3(t)
=−b

∫
dt. (4.9)

We find

1
e2 =

1
e2

0

(
1+

b
2π

e2
0

4π
t
)

. (4.10)

Here we define α0 = e2
0

4π . Then we can rewrite the solution of the RG equation as

e2(t) = e2
0

(
1+

bα0

2π
t

)−1

. (4.11)

We define

η(t)≡ α(t)
α0

≡ e2(t)
e2

0
=

(
1+

bα0

2π
t

)−1

(4.12)

where e0 = e(t = 0) which is the initial value at the reference scale µ0. Note that

η(0) = 1 and η(t → ∞) = +0.

We can solve the RG equations by defining RG invariants. To observe a RG invariant

for the RG equation (4.6), we use the equality.

d
dt

(
e2(t)
g2(t)

)
= 2

(
e′

e
− g′

g

)
e2

g2 . (4.13)

If we subtract equation (4.6) from equation (4.5), we find

16π2
(

e′

e
− g′

g

)
= (c−b)e2. (4.14)

61



If we multiply both sides with e2(t)
g2(t) , we find a similar equation with the equation (4.13),

d
dt

(
e2(t)
g2(t)

)
=

(c−b)
2π

e2
0

4π
e2(t)
e2

0(t)
e2(t)
g2(t)

= α0
(c−b)

2π
η(t)

e2(t)
g2(t)

. (4.15)

Here we define a RG invariant H(t) for the solution of the equation (4.15) where A is

a constant.

H(t) = A(c−b)ηω e2(t)
g2(t)

. (4.16)

We need to determine ω for the solution. Since H(t) is a constant, we have dH(t)
dt = 0.

Therefore we can take the derivative of the constant as

ωηω−1 dη(t)
dt

e2

g2 +ηω d
dt

(
e2

g2

)
= 0. (4.17)

We need the derivative of the function η(t) which is defined in equation (4.12). We

find it as

dη(t)
dt

=−bα0

2π
η2(t). (4.18)

When we use the equations (4.18) and (4.17) in equation (4.15), we determine a

relation for the ω constant as

−bω + c−b = 0. (4.19)

Determination of the ω for the RG invariant lets us to write the RG invariant solution

as,

H(t) = (c−b)η−1+ c
b (t)

e2(t)
g2(t)

. (4.20)

Since H(t) is a constant, we call it H0. Then, the solution of the gauge coupling

constant can be written as

g2(t) =
c−b
H0

η−1+ c
b (t)e2(t). (4.21)
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This solution can be expressed in another form as

g2(t) =
c−b
H0

e2
0η

c
b (t). (4.22)

For the solution of the last RG equation (4.7), we need the derivative of

d
dt

(
a(t)
g2(t)

e2(t)
g2(t)

)
=

(
a′

a
+2

e′

e
−4

g′

g

)(
a
g2

e2

g2

)
. (4.23)

To obtain this equation we need to multiply the equation (4.5) by two and equation

(4.6) by minus four. Then we need to add them with the equation (4.7). Finally we

have

16π2
(

2
e′

e
−4

g′

g
+

a′

a

)
= (4c−2b)e2−u

g4

a
. (4.24)

In order to have a total derivative we need to multiply both sides with a
g2

e2

g2 . Then we

can write it as

d
dt

(
a(t)
g2(t)

e2(t)
g2(t)

)
=
−uα0

4π
η(t)

[
1− 2(2c−b)

u
a(t)
g2(t)

e2(t)
g2(t)

]
(4.25)

Here another RG invariant K(t) can be defined by

K(t) = Bηλ
[

1− 2(2c−b)
u

a(t)
g2(t)

e2(t)
g2(t)

]
, (4.26)

where B is a constant. Here λ should be determined. If we use the definition of the

invariance, the following equation should be equal to zero.

ληλ−1 dη
dt

[
1− 2(2c−b)

u
a(t)
g2(t)

e2(t)
g2(t)

]
+ηλ

(−2(2c−b)
u

)
d
dt

(
a(t)
g2(t)

e2(t)
g2(t)

)
(4.27)

If the equations (4.18) and (4.25) are used in equation (4.27), we get a relation for the

λ coefficient as follows.

λ =−1+
2c
b

(4.28)

Now we can define the RG invariant K(t) for the last RG equation (4.7) as

K(t) =−uη−1+ 2c
b

[
1− 2(2c−b)

u
a(t)
g2(t)

e2(t)
g2(t)

]
. (4.29)
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We can then write the solution for the coupling constant a(t) as

a(t) =
u

2(2c−b)
g2(t)
e2(t)

g2(t)
[

1+
K0

u
η1− 2c

b (t)
]
. (4.30)

Here K0 is the value of the RG invariant. We can rewrite equation (4.30) in terms of all

RG invariants as following.

a(t) =
u(c−b)2e2

0

2H2
0 (2c−b)

[
η−1+ 2c

b (t)+
K0

u

]
. (4.31)

4.4 Some Limiting Cases

Before entering the detailed analysis in the next section, let us briefly see how the

coupling constant solutions look like in some limiting cases. When we check the

ultraviolet limit now, we find

η(t → ∞)→ +0, b > 0; (4.32)

η
c
b (t → ∞)→ +0, c,b > 0; (4.33)

and

η−1+ 2c
b (t → ∞)→





+0, 2c > b;
+0, 2c > b > c;
+∞, b > 2c.

(4.34)

We see that the constants H0 and K0 play important roles on the behavior of solutions

of coupling equations (4.11), (4.22), (4.31). For c > b, H0 should be positive; for c < b,

H0 should be negative to have the Yukawa coupling take a real value. This is necessary

to have a unitary theory. Also for a region c < b < 2c, with H0 < 0, the unitarity

condition is satisfied for all coupling constants. K0 ≥ 0 condition is also needed for

stability of the vacuum. If K0 < 0, we get a(t → ∞) < 0, which raises the problem of

the vacuum instability.

Next we study the different limits our parameters can take:

4.4.1 b→+0 limit case for finite t

In this limit if we analyze the equation (4.12), we see that η(t) goes a constant, η(t) =

1. But we have to clarify η(t)−
c
b expression. If we expand it carefully in the b → 0

limit, we find

η(t)−
c
b −→ exp

(
α
αc

t
)

=
(

µ
µ0

)α/αc

, (4.35)
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where c
2π = 1

αc
and α0 = α . Then we obtain from the coupling constant equations

(4.11), (4.22), (4.31) as

e2(t) = e2
0, (4.36)

g2(t) =
ce2

0
H0

exp
(
− α

αc
t
)

, (4.37)

a(t) =
uce2

0

4H2
0

[
exp

(
−2α

αc
t
)

+
K0

u

]
. (4.38)

This means that when we set the b term to zero, the Yukawa running coupling constant

decreases exponentially to zero. For this limit the gauge and the quadratic coupling

constants go just to a constant. Next we consider the limiting case b = c.

4.4.2 c→ b limit case for finite t

Although the Yukawa coupling (4.22) appears to vanish in this limit case, a careful

consideration of RGE leads to a non-vanishing result. If c approaches b, the limit

depends on the value of H0. If H0 is non zero, g2(t) goes to zero. If H0 goes to zero as

a constant times c−b, i.e. H0 = H1(c−b), we can write the Yukawa coupling as

g2(t) = H1elnη−1+c/b
e2(t). (4.39)

We can expand the exponential term, that gives us

g2(t) = H1

[
1+

(
−1+

c
b

)
lnη + . . .

]
e2(t). (4.40)

In the limit, g2(t) yields to an expression which is proportional to the e2(t) coupling.

g2(t) = H1e2(t), H1 > 0. (4.41)

We also find that a(t) is proportional to e2(t) like the g2(t) coupling as follows

e2(t) = e2
0η(t), (4.42)

a(t) =
ue2

0H2
1

2b

[
η(t)+

K0

u

]
. (4.43)
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4.4.3 2c→ b limit case for finite t

The case b = 2c can be treated in a similar manner. Here, when 2c approaches b, the

behavior of a(t) changes. If we set

K0

u
=−1+

2c−b
b

K1, (4.44)

then we see that a(t) coupling constant goes as lnη(t). Therefore it yields

a(t) =
ube2

0

8H2
0

[
K1 + lnη(t)

]
. (4.45)

This behavior is not allowed since a(t) diverges as t → +∞. The other couplings are

given as

e2(t) = e2
0η(t), (4.46)

g2(t) = − b
2H0

e2
0η

1
2 (t). (4.47)

4.5 Nontriviality of the system

We now use the solutions of the RGE’s found in the preceding section to investigate

under what circumstances our model is nontrivial. We adopt the following criteria for

the nontriviality:

All the running coupling constants:

• should not diverge at finite t>0 (no Landau poles);

• should not vanish identically;

• should not violate the consistency of the theory such as unitarity and/or vacuum

stability.

Since the composite scalar field is the novel feature of our model, we will not consider

the case when the scalar field is completely decoupled from the theory with a(t) =

g(t) = 0, which is in fact a nontrivial QCD-like theory.
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4.6 Fixed Point Solution

We derive the expressions given below from the RGE equations.

8π2 d
dt

[
g2(t)
e2(t)

]
= (b− c)

[
g2(t)
e2(t)

]
e2(t), (4.48)

8π2 d
dt

[
e2(t)
g2(t)

a(t)
g2(t)

]
= (2c−b)

[
e2(t)
g2(t)

a(t)
g2(t)

− u
2(2c−b)

]
e2(t). (4.49)

For the fixed point solution, b equals c in equation (4.48). For this value, there is a

single solution which satisfies both equations (4.48) and (4.49). This solution is given

as,

e2(t)
g2(t)

=
1

H1
, (4.50)

where H1 is a constant, and

a(t)
g2(t)

=
uH1

2c
. (4.51)

If we take H0 = H1(c− b) approaching zero as c approaches to b, while K0 = 0 in

equation (4.31) , then we find

g2(t) = H1e2(t), (4.52)

a(t) =
uH1

2c
g2(t). (4.53)

Since g2(t)
e2(t) and a(t)

g2(t) are constants, the behavior of the Yukawa and quartic scalar

couplings are completely determined by the gauge coupling. This corresponds to

"coupling constant reduction" in the sense of Kubo, Sibold and Zimmermann [56].

In the context of the RGE, it corresponds to the Pendleton-Ross fixed point [57].

4.7 Yukawa Coupling

As seen from the previous sections the behavior of the Yukawa coupling depends on

whether c > b or c < b. The point where c = b needs a special care. Moreover the sign

of the H0 is important.
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4.7.1 c>b case

In this case H0 should not equal to zero. Then we find in the UV limits

g2(t → ∞)→
{

+0, H0 > 0;
−0, H0 < 0. (4.54)

So the Yukawa coupling is asymptotically free. As it is seen, the sign of the RG

invariant is important. It should be chosen positive not to cause the violation of stability

of the vacuum.

In figure 4.1 we plot g2(t) vs. e2(t) for c = 8, b = 7. Both coupling constants approach

the origin as t goes to infinity. Thus, our model fulfills the condition required by the

asymptotic freedom criterion.

Figure 4.1. Plot of g2(t) vs. e2(t) for different values of H0. The arrows denote the
flow directions toward the UV region.

4.7.2 c<b case

In this case with a non zero value of H0

g2(t → ∞)→
{ −0, H0 > 0;

+0, H0 < 0. (4.55)

For H0 < 0, our system satisfies the asymptotic freedom condition. Our system does

not have a Landau pole. In this respect it differs from the gHY system [31]. As shown

below, there is a restriction on the value of b in this case.
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4.7.3 c=b case

This is the fixed point solution analyzed above.

g2(t) = H1e2(t). (4.56)

4.7.4 Quartic scalar coupling

a(t) can be analyzed with four non trivial limits of the Yukawa coupling.

• c > b with H0 > 0,

• c < b < 2c with H0 < 0,

• b > 2c with H0 < 0,

• c = b with H0 = 0.

For c > b case, we should have H0 > 0, whereas in the c < b < 2c case we have H0 < 0.

In both cases K0 should be greater or equal to zero for the stability of the vacuum. In

the third case, b > 2c with H0 < 0, for all the real values of K0, a(t) diverges in the UV

limit. This means that there is no chance for a nontrivial theory in that region. Finally

the c = b case with H0 = 0 has already be shown in equation (4.45). It is clear that in

the UV limits K0 should not take negative values.

As seen above these constraints give different relations between numbers of color and

flavor. Note that in all the cases studied, if we take K0 < 0, one can deduce from

equation (4.31) that a(t) can be made equal to zero for a finite value of t, a situation

which should not be allowed. Therefore, we can use only the option with K0 ≥ 0. The

standard model with three colors and six flavors satisfies the c > b case.

For K0 = 0 at the UV limit, the equation (4.31)

a(t) =
u(c−b)2e2

0

2H2
0 (2c−b)

η−1+ 2c
b (t)→+0, (4.57)

shows that the coupling constant is asymptotically free. Also for a non zero K0, we

find in the UV limit

a(t)→ (c−b)2e2
0K0

2H2
0 (2c−b)

. (4.58)
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Then the sign of the K0 is crucial for the stability of the vacuum.

Although for K0 > 0 we do not violate unitarity, we see that the asymptotic freedom

criterion is not satisfied. The requirement of this criterion fixes K0 at the value zero. In

figure 4.2, we plot the RG flows in (a(t),g2(t)) plane for different values of H0 higher

than zero while the gauge coupling α(t = 0) is fixed to 1. The origin is the limit where

t goes to infinity, there both coupling constants approach zero when K0 = 0.

Figure 4.2. Plot of a(t) vs. g2(t) for different values of H0 while K0 = 0.

4.8 Conclusion

Here we write the SU(N) gauge version of the polynomial Lagrangian inspired by

the Gürsey model. In the second chapter we find an interacting model, where only

the composites take part in scattering processes, if only perturbative calculations are

done. Gauging it with a constituent U(1) field, in the third chapter, resulted in a model

which looked like the gHY system, with all the problems associated with the Landau

pole. In this chapter, when a SU(N) gauge field is coupled, instead, we find that

the renormalization group equations for the three coupling constants indicate that this

model is nontrivial. All the coupling constants go to zero asymptotically as the cutoff

parameter goes to infinity, exhibiting the behavior dictated by asymptotic freedom.

In equations (4.48) and (4.49) we give the equations for the ratios of the coupling

constants and find the fixed points. We see that we can have nontrivial fixed points.
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5. RESULTS AND DISCUSSION

With this thesis, we give a new interpretation of the old work of Akdeniz et al. [36].

First we see that the non polynomial original Gürsey model can be expressed in a

polynomial form. We show that both models are equivalent, at least classically. We

use the path integral method to quantize the system.

In the equivalent model, the interaction between the scalar and the fermions is a

Yukawa interaction. Naturally it looks like a massless Yukawa model. But we find

that this is not quite true. In the equivalent model, the scalar field is not elementary.

In the new version, we go to higher orders in our calculation beyond the one loop

for the scattering processes. It is shown that by using the Dyson-Schwinger and

Bethe-Salpeter equations some of the fundamental processes can be better understood.

We see that while the non-trivial scattering of the fundamental fields is not allowed,

bound states can scatter from each other with non-trivial amplitudes. This phenomena

can be interpreted as another example of treating the bound states, instead of the

principal fields, as physical entities, that go through physical processes such as

scattering.

In our model we find that we need an infinite renormalization in one of the diagrams.

Further renormalization is necessary at each higher loop, like any other renormalizable

model. The difference between our model and other renormalizable models lies in

the fact that, although our model is a renormalizable one using naive dimensional

counting arguments, we have only one set of diagrams which are divergent. We need

to renormalize only one of the coupling constants by an infinite amount. This set of

diagrams, corresponding to the scattering of two bound states to two bound states, have

the same type of divergence, i.e. 1
ε in the dimensional regularization scheme for all odd

number of loops. The contributions from even number of diagrams are finite, hence

require no infinite renormalization. The scattering of two scalars to four, or to any

higher even number of scalars is finite, as expected to have a renormalizable model,
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whereas production of spinors from the scattering of scalars goes to zero as the cut-off

is lifted [2].

After renormalization a further point would be to couple an elementary vector field

to the model described in reference [2], in line with the process studied for the NJL

model [28,29]. Our final goal was to investigate if we get a non-trivial theory when we

couple a Yang-Mills system with color and flavor degrees of freedom. We study the

abelian case, as an initial step.

In the third chapter, we summarize the changes in our results when this elementary

vector field is coupled to the model described in reference [2]. The main conclusion is

that our original model, in which only the composites take part in physical processes

like scattering or particle production, is reduced to a gauged gHY model, where both

the composites and the fundamental spinor and vector fields participate in all the

processes. We have the known problems of the Landau pole of a mimicked gHY

system, with all of its connotations of triviality, [3].

Finally, in the fourth chapter, we study our original model [2], coupled to a SU(N)

gauge field and use solely RG techniques. We derive the RG equations in one loop,

and try to derive the criteria for obtaining non-trivial fixed points for the coupling

constants of the theory. There we closely follow the line of discussion followed in

our reference [31]. In our model, however, there is a composite scalar field with a

propagator completely different from a constituent scalar field used in this reference.

This gives rise to RG equations in our case which are different from those given by

Harada et al. Since our starting models are different the motivation of our work is

different from that of this reference. We show that the renormalization group equations

point to the non-triviality of the model when it is coupled to an SU(N) gauge field with

a few remarks, [4].

5.1 Further studies

The most essential point of this thesis is the fact that the propagator of the composite

scalar field is proportional to ε . This parameter comes from the dimensional

regularization method. But physics should not depend on the regularization method.

So checking these results in alternative methods, like inserting a cut off function, can

be one of the important issue for the further studies.
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Also one can study the beta functions and the anomalous dimensions of the models.

Although the equivalent model looks like Yukawa model, we explain that it does not.

Therefore one can find beta functions and the anomalous dimensions differently from

the Yukawa model.

Alternatively one can study the models in ERG methods. Since the absence of the

kinetic term of the composite scalar field in the equivalent Lagrangian density, we can

not study in perturbative ERG. Also the parameter ε does not correspond anything.

But we believe, it is still possible to study our model in unperturbative ERG method.

Sonoda gave a lecture series for two weeks in 2007, in Istanbul. There he gave

important clues for the non-perturbative aspects of the Wilson ERG [58], in the chapter

5.

Finally one can study the models in non-commutative space. At high energies the

composite scalar propagator may give interesting results. All the different versions of

the model, may give different processes.
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A. CONSTRAINT ANALYSIS OF THE GÜRSEY MODEL

We start the analysis with the Lagrangian density

L (qi, q̇i) = i ψ∂/ψ +gψψφ +λ (gψψ−aφ 3). (A.1)

The Euler Lagrange equations of the model are

ψ
[

iγµ←−∂µ −g(φ +λ )
]

= 0, (A.2)

gψψ−aφ 3 = 0, (A.3)
gψψ−3aλφ 2 = 0. (A.4)

We can find solution to these equations of motions. We start with

i∂µψγµ −gψ(φ +λ ) = 0, (A.5)

i∂0ψγ0− i∂iψγ i−gψ(φ +λ ) = 0. (A.6)

We find

∂0ψ = −i
[

i∂iψγ i +gψ(φ +λ )
]

γ0, (A.7)

We keep doing the simple algebra, the complex conjugation gives
[

∂0ψ†γ0
]†

= iγ0
[

i∂iψ†γ0γ i +gψ†γ0(φ +λ )
]†

, (A.8)

γ0∂0ψ = iγ0
[
− i∂iγ0γ iψ +gγ0(φ +λ )ψ

]
, (A.9)

∂0ψ = iγ0
[
− i∂iγ iψ +g(φ +λ )ψ

]
. (A.10)

Here we used
(
γ i

)† =−γ i,
(
γ0)† = γ0 and {γ0,γ i}= 0.

Briefly we can rewrite the solutions as follows:

∂0ψ = −i ψ
[

i γ i←−∂i +g(φ +λ )
]

γ0, (A.11)

∂0ψ = i γ0
[
− i γ i−→∂i +g(φ +λ )

]
ψ. (A.12)

Next we take the time derivative of the second equation of motion given above. We get

∂0

[
gψψ−aφ 3 = 0

]
, (A.13)

g
[
(∂0ψ)+ψ(∂0ψ)

]
−3a(∂0φ)φ 2 = 0. (A.14)
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Using the above result we get

∂0φ =
g
[
− i ψ

{
i γ i←−∂i +g(φ +λ )

}
γ0ψ + iψγ0{− i γ i−→∂i +g(φ +λ )

}
ψ

]

3aφ 2 , (A.15)

∂0φ =
−i g
3aφ 2 ψ

[
i γ iγ0←−∂i + i γ0γ i−→∂i

]
ψ . (A.16)

Similarly the last equation of motion

∂0

[
gψψ−3aλφ 2 = 0

]
, (A.17)

g
[
(∂0ψ)+ψ(∂0ψ)

]
−6a(∂0φ)λφ −3a(∂0λ )φ 2 = 0. (A.18)

Using the above results we immediately find,

3aφ 2(∂0λ ) = g
[
(∂0ψ)+ψ(∂0ψ)

][
1− 6aλφ

3aφ 2

]
, (A.19)

which can be given as

∂0λ =
−i g
3aφ 2 ψ

[
i γ iγ0←−∂i + i γ0γ i−→∂i

]
ψ

[
1− 6aλφ

3aφ 2

]
. (A.20)

The Hamiltonian density is

H = (∂0ψ)πψ̄ +πψ(∂0ψ)+πφ (∂0φ)+πλ (∂0λ )− i ψγ0∂0ψ
+i ψγ i∂iψ−gψψφ −λ (gψψ−aφ 3). (A.21)

We use the time derivatives of the fields as found, we obtain

H = (∂0ψ)πψ̄ +πψ(∂0ψ)+πφ (∂0φ)+πλ (∂0λ )+aλφ 3. (A.22)

Terms are canceled due to

−i ψγ0∂0ψ =
(
− i ψγ0

)(
i γ0

[
− i γ i−→∂i +g(φ +λ )

]
ψ

)

= −i ψγ i−→∂i ψ +gψ(φ +λ )ψ. (A.23)

Explicitly we can give the final Hamiltonian as

H = −i ψ
[

i γ i←−∂i +g(φ +λ )
]

γ0πψ̄

+πψ i γ0
[
− i γ i−→∂i +g(φ +λ )

]
ψ

+πφ
−i g
3aφ 2 ψ

[
i γ iγ0←−∂i + i γ0γ i−→∂i

]
ψ (A.24)

+πλ
−i g
3aφ 2

(
1− 6aλφ

3aφ 2

)
ψ

[
i γ iγ0←−∂i + i γ0γ i−→∂i

]
ψ

+aλφ 3.
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B. SOME OF THE HIGHER ORDER PROCESSES

(a) (b) (c) (d)

Figure B.1. Two vector fields scatter to two vector fields, (a) One vector field
correction to the nonadjacent part, (b) One scalar field correction to the
adjacent part, (c) One vector field correction to the nonadjacent part, (d)
One scalar field correction to the nonadjacent part.

(a) (b) (c)

Figure B.2. Two vector fields scatter to two vector fields, (a) Two vector fields
correction to the adjacent part, (b) One vector and one scalar fields
correction to the nonadjacent part, (c) Two scalar fields correction to the
nonadjacent part.

(a) (b) (c)

Figure B.3. Two scalar two vector interaction at three loop (a) Via two scalar field
channel, (b) Via one scalar and one vector field channel, (c) Via two vector
field channel.
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(a) (b) (c)

Figure B.4. Two vector field scatters to two vector field at three loop, (a) Via two
vector field channel, (b) Via one scalar and one vector field channel, (c)
Via two vector field channel.

(a) (b) (c) (d)

Figure B.5. Some other spinor production processes at one loop (a) Two scalars
scatters using another scalar field as intermediaries, (b) Two scalars scatter
using vector field as intermediaries, (c) Two scalars scatter using vector
field as intermediaries, (d) Two scalars scatter using another scalar field
as intermediaries.

(a) (b) (c)

Figure B.6. Four spinor field production from two vector fields (a) Via vector particle
are used as intermediaries, (b) Via scalar and vector particle are used as
intermediaries, (c) Via scalar particles are used as intermediaries.
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C. REFERENCE FORMULAE

This Appendix collects together some of the formulae that are most commonly used in
Feynman diagram calculations.

C.1 Feynman Rules

In all the models,

• the momentum is conserved at each vertex,

• the loop momenta are integrated over

∫ dD p
(2π)D (C.1)

• Fermion loops (including the ghost loops) receive an additional factor (−1),

• Each diagram may have a symmetry factor.

We find the following effective Lagrangian density and the Feynman rules:

C.1.1 Equivalent model

L = ψ(i∂/+gΦ)ψ− a
4!

Φ4 +Lghost (C.2)

• Fermion propagator: ip/
p2+iε

• Composite scalar propagator: −i4π2

g2
ε

q2+iε

• Yukawa vertex: −ig

• Φ4 vertex: −ia
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C.1.2 U(1) gauged model

L = −1
4
(FµνFµν)+ψ(i∂/− eA/+gΦ)ψ− a

4!
Φ4 +Lghost +Lgau.fix..(C.3)

In Feynman gauge,

• Fermion propagator: ip/
p2+iε

• Photon propagator: −igµν

k2+iε

• Composite scalar propagator: −i4π2

g2
ε

q2+iε

• QED vertex:−ieγµ

• Yukawa vertex: −ig

• Φ4 vertex: −ia

C.1.3 SU(N) gauged model

L =−1
4

Tr[FµνFµν ]+
N f

∑
i=1

ψ i[iD/ψi +gΦ]ψi− a
4!

Φ4 +Lghost +Lgau.fix.. (C.4)

• Fermion propagator: ip/
p2+iε δi j

• Gauge boson propagator: −igµν

k2+iε δ ab

• Composite scalar propagator: −i4π2

g2
ε

q2+iε

• Fermion vertex: igγµtα

• 3-boson vertex: g f abc[gµν(k− p)ρ +gνρ(p−q)µ +gρµ(q− k)ν ]

• 4-boson vertex: −ig2[ f abe f cde(gµρgνσ −gµσ gνρ)+ f ace f bde(gµνgρσ −gµσ gνρ)+
f ade f bce(gµνgρσ −gµρgµσ )]

• Yukawa vertex: −ig

• Φ4 vertex: −ia

• Ghost propagator: −g f abc pµ

• Ghost vertex: iδ ab

p2+iε
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C.2 Numerator Algebra

In d-dimension we will give a brief summary of the γ matrices.

C.2.1 Miscellaneous identities of gamma matrices

{γµ ,γν} = 2gµν , (C.5)
γµγνγµ = −(D−2)γν , (C.6)

γµγνγργµ = 4gνρ − (4−D)γνγρ , (C.7)
γµγνγργσ γµ = −2γσ γργν +(4−D)γνγργσ . (C.8)

C.2.2 Traces of gamma matrices

Traces of γ matrices can be evaluated as follows:

tr(odd number of γ) = 0, (C.9)
tr [γµγν ] = Dgµν , (C.10)

tr
[
γµγαγνγβ

]
= D

(
gµαgνβ −gµνgαβ −gµβ gαν

)
. (C.11)

C.3 Loops Integrals and Dimensional Regularization

To combine propagator denominators, introduce integrals over Feynman parameters:

1
A1A2 · · ·An

=
∫ 1

0
dx1

∫ x1

0
dx2 · · ·

∫ xn−2

0
dxn−1

· Γ(n)
Γ(1)n

1
[xn−1A1 +(xn−2− xn−1)A2 + · · ·+(1− x1)An]n

. (C.12)

In this thesis we use n = 2, 3, 4 cases. This formula reduces to for n = 2,

1
AB

==
Γ(2)

Γ(1)2

∫ 1

0
dx

1

[Ax+B(1− x)]2
. (C.13)

For n = 3,

1
ABC

=
Γ(3)
Γ(1)3

∫ 1

0
dx

∫ x

0
dy

1

[Ay+B(y− z)+C(1− x)]3
. (C.14)

For n = 4,

1
ABCD

=
Γ(4)
Γ(1)4

∫ 1

0
dx

∫ x

0
dy

∫ y

0
dz

1

[Az+B(y− z)+C(x− y)+D(1− x)]4
. (C.15)
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C.3.1 Symmetry

We can always use the symmetry properties as follows:

∫ dDk
(2π)D kµkν f

(
k2) =

∫ dDk
(2π)D

k2gµν f
(
k2)

D
, (C.16)

∫ dDk
(2π)D kµkνkθ kσ f

(
k2) =

∫ dDk
(2π)D

k4(gµνgθσ +gµθ gνσ +gµσ gνθ ) f
(
k2)

D(D+2)
.

(C.17)

C.3.2 D-dimensional integrals

In Minkowski space d-dimensional integrals can be solved by

∫ dDk
(2π)D

1
(k2 +M2)n =

(−1)ni
(4π)D/2

Γ(n−D/2)
Γ(n)

1
(−M2)n−D/2 . (C.18)

C.3.3 Gamma functions

After the d-dimensional integration we get Γ functions. We need the expansion near
its pole. The general expression is

Γ(ε−n) =
(−1)n

n!

[
1
ε

+

(
n

∑
k=1

1
k
− γ

)]
+O(ε2) (C.19)

where γ , Euler’s constant, and γn are given by

γ ' 0.577 and γn = 1+
1
2

+ · · ·− γ (C.20)

In the thesis we often use

Γ
(ε

2

)
=

2
ε
− γ +

1
4

(
γ2 +

π2

6

)
ε +O(ε2) (C.21)

Γ
(
−1+

ε
2

)
= −2

ε
+(γ−1)− 1

4

(
γ2−2γ +

π2

6

)
ε +O(ε2) (C.22)
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C.4 Integrals

C.4.1 Basic rule

Before starting to the Angular integration rules, here we want to remind a very basic
integration rule that we use.

d
dx

∫ v(x)

u(x)
f (x, t)dt =

dv(x)
dx

f (x,v(x))− du(x)
dx

f (x,u(x))+
∫ v(x)

u(x)

∂
∂x

f (x, t)dt (C.23)

C.5 Angular Integration in 4 Dimensional Euclidean Space

Here are some useful formulas for the angle integrations in 4-dimensional Euclidean
space [14].

Let kµ and pµ be two momenta and pk = |p||k|cosθ ; |p|= (p2
0 +p2)1/2. Then

∫
d4kF

[
(p− k)2] = π2

∫
dk2dΩkk2F

(
k2−2|k||p|cosθ + p2) (C.24)

dΩk =
2
π

sin2θdθ ; (C.25)
∫

dΩk = 1 (C.26)

The general structure of the integrals we use takes the following form:

In[(pk)m] ≡
∫

dΩk
(pk)m

(k− p)2n , (C.27)

In[kµ(pk)m] ≡
∫

dΩk
kµ(pk)m

(k− p)2n , (C.28)

In[kµkν(pk)m] ≡
∫

dΩk
kµkν(pk)m

(k− p)2n . (C.29)

Some useful explicit expressions are
(
x≡ p2),

(
y≡ k2)

I−1 = k2 + p2, (C.30)
I0 = 1, (C.31)

I1[(pk)0] =
1

max(x,y)
, (C.32)

I1[(pk)1] =
1
2

min(x,y)
max(x,y)

, (C.33)

I1[(pk)2] =
1
4

(x+ y)min(x,y)
max(x,y)

, (C.34)

I2[(pk)1] =
min(x,y)

|x− y|max(x,y)
, (C.35)

I2[(pk)2] =
xy+3min(x2,y2)
4|x− y|max(x,y)

, (C.36)

I2[(pk)3] =
(x+ y)min(x2,y2)
2|x− y|max(x,y)

. (C.37)
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Mimicking the Gürsey Model, Mod. Phys. Lett. A 22, 2521.
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