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MEKANIK ALASIMLAMA YO NTEMIYLE U RETILMI S W-TiC-Ni 
KOMPOZITLERININ GELI STIRILMESI  VE O ZELLIKLERININ 
INCELENMESI  

O ZET 
Volfram ve alasÇmlarÇ yu ksek ergime sÇcaklÇklarÇ, yu ksek elastik modu lleri, termal 
soka karsÇ dayanÇmlarÇ, du su k termal genlesme katsayÇlarÇ ve yu ksek sÇcaklÇklarda 
go sterdig i mukavemet ve direngenliklerinden dolayÇ yu ksek sÇcaklÇklarda 
kullanÇlacak malzemelerin gelistirilmesinde matris malzemesi olarak o ne 
cÇkmaktadÇrlar. Yu ksek ergime sÇcaklÇg Ç ve du su k toklug undan dolayÇ volfram 
u retmek cok zordur. Toz metalurjisi yo ntemi kullanÇlmasÇ durumunda bile yu ksek 
yog unluklarda volfram u retmek icin 2400 — 2800 oC sÇcaklÇklara ihtiyac 
duyulmaktadÇr. Aftiflestirilmis sinterleme adÇ verilen yo ntem, Pd, Pt, Ni, Co ve Fe 
gibi bazÇ gecis metallerinin du su k miktarlarda eklenmesinde dahi volframÇn 
sinterleme sÇcaklÇg ÇnÇn bu yu k oranda du su ru lmesini sag lamaktadÇr.  

Volfram ve alasÇmlarÇnÇn mekanik o zelliklerinin gelistirilmesi amacÇyla TiC, ZrC, 
HfC, TiN, Y2O3, La2O3, Sm2O3, ThO2, ZrO2 gibi cesitli refrakter karbu rler, nitru rler 
ve oksit fazlarÇ takviye elemanÇ olarak kullanÇlmaktadÇr. Bu calÇsmada, takviye 
elemanÇ olarak yu ksek ergime derecesi, yu ksek sertlik, yu ksek sÇcaklÇklarda dayanÇm 
ve iyi korozyon direnci gibi mu kemmel o zelliklere sahip TiC, aktivasyon elemanÇ 
olarak Ni kullanÇlan W matrisli kompozitler du su k partiku l boyutuna sahip ve 
homojen bir dag ÇlÇm elde etmek amacÇyla deg isik su relerde mekanik alasÇmlandÇ. 
Mekanik alasÇmlama su relerinin yanÇ sÇra aktiflestirilmis sinterlemenin gelistirilen 
kompozit malzemenin yapÇsÇna ve o zelliklerine etkisi incelendi. Mekanik alasÇmlama 
sonucu elde edilen kompozit tozlarÇnÇn partiku l boyutlarÇ laser partiku l boyut o lcu m 
cihazÇ ile o lcu ldu . Kompozit tozlarÇnÇn ve sinterlenmis numunelerin mikroyapÇ ve faz 
analizleri taramalÇ elektron mikroskobu (SEM), gecirimli elektron mikroskobu 
(TEM) ve x ÇsÇnlarÇ kÇrÇnÇmÇ (XRD) teknikleri kullanÇlarak yapÇldÇ. Preslenmis 
numunelerin yog unlug u boyutsal olarak, sinterlenmis numunelerin yog unlug u 
Arsimet teknig i kullanÇlarak o lcu ldu . AyrÇca sinterlenmis numunelerin sertlikleri 
Vicker™s mikrosertlik cihazÇ ile tespit edildi. 
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DEVELOPMENT AND CHARACTERIZATION INVESTIGATIONS OF 
MECHANICALLY ALLOYED W-TiC-Ni COMPOSITES 

SUMMARY 
As interesting and appropriate matrix materials with their high melting point, high 
modulus, high resistance of thermal shock, low CTE and good high temperature 
strength and stiffness, in this last decade, tungsten and its alloys have received 
attention with a view of improving the high temperature mechanical properties.  

Generally, it is very difficult to fabricate tungsten because of its high melting point, 
low ductility, and even using powder metallurgy techniques, processing requires very 
high sintering temperatures up to 2400 — 2800 oC to get near fully dense tungsten. 
The addition of small quantities of some transition metals such as Pd, Pt, Ni, Co, and 
Fe makes it possible to greatly reduce the sintering temperature of W. 

As dispersion strengtheners, refractory carbide, nitride and oxide phases, such as 
TiC, VC, ZrC, HfC, TiN, Y2O3, La2O3, Sm2O3, ThO2, ZrO2, etc. have been mainly 
used to improve the mechanical properties of tungsten and its alloys. In this study, 
tungsten matrix composites reinforced with TiC particles or VC particles  were 
mechanically alloyed (MA™d) for different times. Ni is used as sintering aid which is 
added before and after mechanical alloying. Furthermore, W and Ni   mechanically 
alloyed together to investigate both effect of MA and activated sintering and TiC 
particles or VC particles were added after mechanical alloying for reinforcement.  
Microstructural and phase characterizations of composite powders and sintered 
samples were carried out via SEM, TEM and XRD analyses. Density and hardness 
measurements of sintered samples were carried out.  
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1. INTRODUCTION 

Materials and the tools made from them play a crucial role in the history of human 

development. It is no accident that pivotal epochs such as the Stone, Bronze, and Iron 

Ages are named for materials. Materials are no less important today. Many of our 

modern technologies require materials with unusual combinations of properties 

which cannot be met by conventional metal alloys, ceramics, and polymeric 

materials. Since no single material could fulfill these rising requirements in the last 

20 years, an increasing interest in developing new materials has been aroused to 

serve the need for new materials having unique properties for special applications 

(Song et al., 2003a; Tang et al., 2004). A composite material which is made by 

combining two or more materials to give a unique combination of properties can 

fulfill the requirements of the modern technology have been, and are yet being, 

extended (Mazumdar, 2002). Composite materials refers to materials having strong 

reinforcing fibers“ continuous or noncontinuous“ surrounded by a weaker matrix 

material. The matrix serves to distribute the reinforcements and also to transmit the 

load to the reinforcements. The reinforcements can be fibers, particulates, or 

whiskers, and the matrix materials can be metals, plastics, or ceramics (Mazumdar, 

2002; Gay et al., 2003). 

An easy way to classify composites is to separate the matrix and reinforcing phase 

constituents, and divide them into several groups. The first classification is based on 

the type of the matrix constituent: Polymer-Matrix, Metal-Matrix or Ceramic-Matrix 

Composites. Composites can also be classified based on the type of reinforcement 

used: fiber reinforced (continuous or discontinuous) or particulate reinforced (flakes, 

chopped fibers, shaped particles, and whiskers). However, the best way to classify 

the composites is to include both the reinforcement and matrix constituent, such as 

particle-reinforced-metal-matrix composites (PRMMC) (Schwartz, 1984; Coskun, 

2006).  

Metal matrix composites (MMCs), like all composites, consist of at least two 

chemically and physically distinct phases, suitably distributed to provide properties 
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not obtainable with either of the individual phases. Generally, there are two phases, 

e.g., a fibrous or particulate phase, distributed in a metallic matrix (Chawla and 

Chawla, 2006). The reinforcing constituent is in most cases a ceramic, although there 

are exceptions to this and MMCs can be taken to encompass materials ” reinforced„  

with relatively soft and/or compliant phases, such as graphitic flakes, lead particles, 

or even gases. It is also possible to use refractory metals, inter-metallics, or 

semiconductors, rather than true ceramics (Clyne, 2000). The mechanical properties 

of the MMC™s highly depend on the volume fraction and the type of the 

reinforcement as well as the type of the matrix (Stjernstoft, 2004). On the other hand, 

while continuous fiber-reinforcement provides the most effective strengthening in a 

given direction, particle-reinforcement provides cost-effectiveness and especially 

isotropic properties to the composite (Chawla and Shen, 2001). 

Beside all the attention that the composites received for the last 20 years, there is 

another group of materials which have found applications in various industries, such 

as defense and aerospace in recent years, namely nanostructured materials or 

nanomaterials (Cahn, 2001). These materials exhibit unique microstructures and 

superior mechanical properties (Han et al., 2005). Nanotechnology is regarded 

world-wide as one of the key technologies of the 21st Century, and nanotechnological 

products and processes hold an enormous economic potential for the markets of the 

future (Zweck and Luther, 2003). So, the combination of composite materials and 

nanostructured materials, namely ” nanocomposites„  with the appropriate matrix and 

reinforcing phase constituents would be candidate materials for industrial 

applications, such as defense, aerospace and as cutting tools materials (Coskun, 

2006).  

As interesting and appropriate matrix materials with their high melting point, high 

modulus, high resistance of thermal shock, low CTE and good high temperature 

strength and stiffness, in this last decade, tungsten and its alloys have received 

attention with a view of improving the high temperature mechanical properties (Song 

et. al., 2002). Generally, it is very difficult to fabricate tungsten because of its high 

melting point, low ductility, and even using powder metallurgy techniques, 

processing requires very high sintering temperatures up to 2400 — 2800 oC to get near 

fully dense tungsten (Li and German, 1983). The addition of small quantities of some 

transition metals such as Pd, Pt, Ni, Co, and Fe makes it possible to greatly reduce 
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the sintering temperature of W (Li and German, 1983; German and Munir, 1976; 

Vajek, 1959; Hayden and Brophy, 1963).  

As dispersion strengtheners, refractory carbide, nitride and oxide phases, such as 

TiC, VC, ZrC, HfC, TiN, Y2O3, La2O3, Sm2O3, ThO2, ZrO2, etc. have been mainly 

used to improve the mechanical properties of tungsten and its alloys (Song et. al., 

2002; Song et. al., 2003b; Lee et. al., 2004). Keeping the above concepts in mind, the 

aim of this study has been to develop and characterize nanostructured TiC particle-

reinforced tungsten composite powders and their consolidated and sintered 

counterparts. Ni used as activation agent to investigate activated sintering of 

mechanically alloyed W-TiC 
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2. LITERATURE REVIEW 

2.1. Metal Matrix Composites 

Metal matrix composites (MMCs), like all composites, consist of at least two 

chemically and physically distinct phases, suitably distributed to provide properties 

not obtainable with either of the individual phases. Generally, there are two phases, 

e.g., a fibrous or particulate phase, distributed in a metallic matrix (Chawla and 

Chawla, 2006). Metals are chosen as the matrix material in MMC structures mainly 

because of the following characteristics: a) they have higher application temperature 

ranges, b) they have higher transverse stiffnesses and strengths, c) in general, they 

have high toughness values, d) when present in metal matrices, the moisture effects 

and the danger of flammability are absolutely absent and they have high radiation 

resistances, e) they have high electric and thermal conductivities, f) MMC have 

higher strength-to-density, stiffness-to-density ratios, as well as better fatigue 

resistances, lower coefficients of thermal expansion (CTE) and better wear 

resistances as compared with monolithic metals, and g) they can be fabricated with 

conventional metal working equipment (Akovali and Uyanik, 2001). 

The reinforcing constituent is in most cases a ceramic, although there are exceptions 

to this and MMCs can be taken to encompass materials ” reinforced„  with relatively 

soft and/or compliant phases, such as graphitic flakes, lead particles, or even gases. It 

is also possible to use refractory metals, inter-metallics, or semiconductors, rather 

than true ceramics (Clyne, 2000).  In general, there are three kinds of metal matrix 

composites (MMCs): particle reinforced MMCs, short fiber or whisker reinforced 

MMCs and continuous fiber or sheet reinforced MMCs (Chawla and Chawla, 2006). 

Fig. 2.1 shows the schematic representations of these three major types of metal 

matrix composites.  
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Figure 2.1 : Schematic representation of three shapes of metal matrix composite 
                       materials (Clyne and Withers, 1993).  

2.1.1. Particulate Reinforced Metal Matrix Composites (PRMMCùs) 

Particulate reinforced metal matrix composites are comprised of the class of metals 

containing reinforcement phases exhibiting approximately equiaxed geometries, 

typically referred to as particles or particulates. These differ from composites 

containing higher aspect ratio reinforcements such as fibers or whiskers in significant 

and important ways (Hunt, 2000). More recently, PRMMC™s have received an 

increasing attention because of their relatively low costs, good formability and 

machinability as well as characteristic isotropic properties (Ibrahim et al., 1991; 

Tjong and Ma, 2000; Sun et al., 2003). 

Particle reinforced composite systems can be considered in two sub-classes: µlarge 

particle™ and µdispersion™ strengthened composites, by basing on the reinforcement or 

strengthening mechanisms.  

2.1.1.1. Large particle composites 

The term µlarge™ is used to denote that particle-matrix interactions can not be treated 

on atomic or molecular level and µcontinuum mechanics™ is used. For composites 

reinforced by large particles, the reinforcing component is usually harder and stiffer 

than the matrix and they tend to restrain movement of the matrix. The matrix 

transfers some of the applied stress to the particles. The efficiency of reinforcement 

depends strongly on interaction at the particle-matrix interface (Akovali and Uyanik, 

2001). These composites are used widely as cutting tools for hardened steels. The 

hard carbide particles provide the cutting surface but, are not themselves capable of 

withstanding the cutting stresses because they are extremely brittle. Toughness is 
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enhanced by their inclusion in the ductile metal matrix, which isolates the carbide 

particles from one another and prevents particle-to-particle crack propagation. Both 

matrix and particulate phases are quite refractory, to withstand the high temperatures 

generated by the cutting action on materials that are extremely hard (Askeland, 1984; 

Schwartz, 1984). 

2.1.1.2. Dispersion-strengthened composites  

In dispersion-strengthened composites, the fine dispersions of oxide, carbide, or 

boride particles impede the motion of dislocations so that the matrix is strengthened 

in proportion to the effectiveness of the dispersions as a barrier to the motion of 

dislocations. For a dislocation to pass through a dispersion of fine particles, the 

applied stress must be sufficiently large to bend the dislocation line into a 

semicircular loop. Calculations show that interparticle separation for effective 

dispersion hardening should be between 0.01 and 0.3 μm (10 — 300 nm). To achieve 

this range of spacing between the dispersoid, the particle diameters should be less 

than 100 nm at volume fractions below 15% (Asthana et al., 2006). Of many 

dispersion-hardened alloy systems only a few have reached commercial significance, 

namely, aluminum, nickel, and tungsten; two others, copper and titanium, have 

proved succesful in laboratory and developmental stages (Schwartz, 1984). The 

development of oxide dispersion-strengthened (ODS) composites (e.g., W-ThO2, Ni-

A1203, Cu-SiO2, Cu-A1203, NiCrA1Ti-Y203, Ni-ThO2, Ni-HfO2, etc.) has led to 

considerable improvements in the elevated-temperature strength and creep-resistance 

of the matrix alloys. The ODS composites contain small (< 15%) amounts of fine 

second-phase particles, which resist recrystallization and grain coarsening, and act as 

a barrier to the motion of dislocations. Small quantities of fine oxide ceramics 

improve the strength without degrading the valuable matrix properties (Asthana et 

al., 2006).  

2.2. Fabrication of PRMMC 

There are various processing techniques used to fabricate PRMMC™s. These 

fabrication methods can be grouped according to the temperature of the metal matrix 

during the process. So, there are liquid phase processes, solid state processes and two 

phase processes. Main liquid phase processes are molten metal mixing process, melt 
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infiltration process and melt oxidation process. On the other hand, major solid state 

processes are powder metallurgy and high-energy-high-rate process. Finally, two 

phase processes are Osprey deposition, rheocasting and variable co-deposition of 

multi-phase materials (VCM) process (Ibrahim et al., 1991; Coskun, 2006).  

Various processing techniques have been developed over the last two decades which 

try to optimize the structure and properties of PRMMC™s (Ibrahim et al., 1991; 

Schwartz, 1997). Among these techniques, there were some luxurious ones to 

enhance the wettability by, for instance, introducing some kind of surface coating to 

the particles before fabrication. However, this preprocessing of particles increased 

the cost of PRMMC™s further, which in turn limited their commercial utilization. In 

addition, some recently developed PRMMC™s, using state-of-the-art high 

performance materials, such as tungsten, molybdenum, niobium and tantalum as the 

matrix material, are difficult to fabricate by using conventional liquid metallurgy 

process because these materials have incredibly high melting temperatures (Liu et al., 

1994). In these cases, powder metallurgy seems more attractive and has become the 

most important fabrication technique for this group of PRMMC™s (Coskun, 2006). 

2.2.1. Powder Metallurgy (PM) 

By far the most widely used method for producing particulate reinforced MMCs by 

powder metallurgy processing is to combine the matrix and reinforcement powders 

together in the form of an intermediate billet which is then utilized for subsequent 

deformation processing to final product form (Hunt, 2000). When higher strength 

discontinuous MMCs are required, PM processes are often used because segregation, 

brittle reaction products, and high residual stresses from solidification shrinkage can 

be minimized. In addition, with the advent of rapid solidification and mechanical 

alloying technology, the matrix alloy can be produced as a prealloyed powder, rather 

than starting with elemental blends (Campbell, 2006). 

Powder metallurgy route has been used widely to produce PRMMCs because; 

a) These materials are difficult to fabricate by the conventional liquid processing 

route owing to the high processing temperature involved.  

b) It offers the possibility of using a wide range of reinforcement volume fraction 

and size. 

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com


 9 

c) It also ensures a homogeneous distribution of reinforcements in the matrix 

material. 

d) A high dislocation density, a small subgrain size and limited recrystallization can 

be obtained through a PM route, resulting in superior mechanical properties (Das et. 

al., 2002). 

Also, porous products, such as bearings and filters with better properties can be 

produced by using the PM technique (Coskun, 2006). 

Starting materials in powder metallurgy processes have a very important role for the 

success of the process. In addition to the chemistry and the purity of the powders, 

there are additional issues to concern, such as particle size, size distribution, particle 

shape as well as the surface texture of the particles (Newkirk and Kosher, 2004). The 

improvements of mechanical properties in PRMMC™s depend on the strength, the 

shape and the volume fraction of particles, a particle—matrix interface, etc (Kim and 

Hahn, 2006) .Considering the PRMMC™s, mechanical behavior, chemical stability, 

thermal mismatch and the cost are another factors which play a significant role in the 

success of the end-product (Liu et al., 1994). 

After a proper selection of the materials is ensured, the next step is blending or 

mixing. This step is very important, because it controls the final distribution of 

reinforcement particles and porosity in green compacts, which strongly affects the 

mechanical properties of the PM end-products. However, there are some problems, 

such as segregation and clustering, associated with the today™s modern mixing or 

blending methods. The reasons of these problems include different flow 

characteristics between metal powder and reinforcement particles and the tendency 

of the agglomeration of particles to minimize their surface energy. However, these 

segregation and clustering problems can be overcome by a technique called 

”Mechanical Alloying (MA)„  (Liu et al., 1994). This technique will be discussed in 

detail in the section 2.2.2. 

The next step after blending or mixing operation, is the consolidation and pressing of 

the powder mixture to form the green compacts (Liu et al., 1994). This step is the one 

of the most critical steps in the PM process, because it sets the density of the powder 

and the uniformity of the density throughout the product. Because final properties 

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com


 10

strongly depend on density, uniform properties require uniform density (Newkirk and 

Kosher, 2004). The compaction process has the following major functions: 

1. To consolidate the powders into the desired shape 

2. To impart, as much as possible, the desired final dimensions considering any 

dimensional changes resulting from sintering 

3. To give the desired level of porosity 

4. To provide sufficient strength for subsequent handling (Upadhyaya, 2000). 

In the conventional compaction methods, schematic view showed in Fig. 2.2, the 

pressure is usually applied in one direction resulting in a non-uniform distribution of 

consolidation and even insufficient densities (Liu et al., 1994). Mostly, mechanical 

and hydraulic presses and rigid dies are used (Newkirk and Kosher, 2004). 

 
Figure 2.2 : Schematic view of a conventional one-directional press (Liu et al., 
                        1994). 

2.2.1.1. Sintering 

Sintering is a processing technique used to produce density-controlled materials and 

components from metal or/and ceramic powders by applying thermal energy (Kang, 

2005). In sintering, particles bond with one another by atomic diffusion. There are 

different variables which determine sinterability and the sintered microstructure of a 

powder compact which given in Table 2.1. All sintering equations contain a number 

of parameters such as diffusion coefficient, surface tension, particle size, initial pore 

volume, etc. One can divide these parameters into two classes: 

1. Intrinsic “  these specify the intrinsic properties of the materials being sintered, 

such as surface tension, diffusion coefficient, vapour pressure, viscosity, etc. These 
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properties change when the chemical composition, ambient atmosphere or 

temperature changes. 

2. Extrinsic “  these depend on the geometrical or topological details of a system. 

These include parameters, as average particle size, particle or pore or grain shape and 

size distribution, etc (Upadhyaya, 2001). 

The driving force for sintering is the minimization of the solid-vapor interface area 

(i.e., the total area of the powders in contact with the surrounding vapor) and 

elimination of the regions of sharp curvature at powder contacts. In the initial stages 

of sintering, small necks form and grow between contacting particles by mass 

transfer via atomic diffusion. Fine powders increase the driving force for sintering 

because of a larger surface area per unit volume, which increases the total solid-

vapor interfacial energy (Asthana et al., 2006). 

Table 2.1: Variables affecting sinterability and microstructure (Kang, 2005). 

Variables related to raw materials 
(material variables) 

Powder; 
Shape, size, size distribution, agglomeration, 
etc. 
Chemistry; 
Composition, impurity, homogeneity, etc. 

Variables related to sintering 
conditions (process variables) 

Temperature, time, pressure, atmosphere, 
heating 
and cooling rate, etc. 

Basically, sintering processes can be divided into two types: solid state sintering and 

liquid phase sintering. Solid state sintering occurs when the powder compact is 

densified wholly in a solid state at the sintering temperature, while liquid phase 

sintering occurs when a liquid phase is present in the powder compact during 

sintering (Kang, 2005). 

In addition to solid state and liquid phase sintering, other types of sintering, for 

example, transient liquid phase sintering and viscous flow sintering, can be utilized. 

Viscous flow sintering occurs when the volume fraction of liquid is sufficiently high, 

so that the full densification of the compact can be achieved by a viscous flow of 

grain—liquid mixture without having any grain shape change during densification. 

Transient liquid phase sintering is a combination of liquid phase sintering and solid 

state sintering. In this sintering technique a liquid phase forms in the compact at an 

early stage of sintering, but the liquid disappears as sintering proceeds and 
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densification is completed in the solid state (Kang, 2005). Moreover, activated 

sintering can be mentioned as another type of sintering which will be  discussed in 

detail in this section (Upadhyaya, 2000). 

 
Figure 2.3 : Illustration of various types of sintering (Kang, 2005). 

2.2.1.1.1. Solid-state sintering 

The solid-state sintering is carried out in protective atmosphere within a furnace at a 

temperature below the melting point of the base metal. The process leads to a 

decrease in the surface area, an increase in compact strength and mostly shrinkage in 

the compact. Sintering longer at high temperature decreases the number of pores and 

makes the pore shape become smooth. Also, grain growth can be expected 

(Upadhyaya, 2000).  

Various stages and mass transport mechanisms have been proposed to contribute 

sintering. The transport mechanisms detail the paths by which mass moves; for solid-

state sintering the candidate processes include surface diffusion, volume diffusion, 

grain boundary diffusion, viscous flow, plastic flow, and even vapor transport from 

solid surfaces (German, 1996).  
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Figure 2.4 : Various sintering mechanisms (Upadhyaya, 2000). 

The three stages of sintering and and their schematic densification curve of a powder 

compact can be seen in Figure 2.5.  In addition to these there stages, a very first stage 

occurs when particles come into contact, since there is a weak cohesive cohesive 

bond at the contacts. The initial sintering stage usually occurs during heating and is 

characterized by rapid grain growth of the interparticle neck. Although there is a 

considerable neck growth, the actual volume of the neck is small, so, it takes a small 

mass to form a neck. In the intermediate stage, the pore structure becomes smooth 

and develops an interconnected, approximately cylindrical nature. The appearance of 

isolated pores indicates the final stage of sintering and slow densification (German, 

1995).  

These three stages can be described with the highlights listed below:  

Initial Stage: Particle surface smoothing and rounding of pores, grain boundaries 

form, neck formation and growth, homogenization of segregated material by 

diffusion, open pores and small porosity decreases <12%. 
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Figure 2.5 : Schematic showing the densification curve of a powder compact and the 
                     three sintering stages (Kang, 2005). 

Intermediate Stage: Intersection of grain boundaries, shrinkage of open pores, 

porosity decreases substantially, slow grain growth and differential pore shrinkage 

and grain growth in heterogeneous material. 

Final Stage: Closed pores--density >92%, closed pores intersect grain boundaries,  

pores shrink to a limiting size or disappear and pores larger than the grains shrink 

very slowly (Ring, 1996) 

2.2.1.1.2. Liquid phase sintering 

Liquid phase sintering is a consolidation technique of powder compacts containing 

more than one component at a temperature above the solidus of the components and 

hence in the presence of a liquid. Unlike solid state sintering, the microstructure 

change during liquid phase sintering is fast because of fast material transport through 

the liquid (Kang, 2005). It is rare that sintering with liquid phase does not imply any 

chemical reactions, but in the simple case where these reactions do not have a 

marked influence, surface effects are predominant. The main parameters are 

therefore: i) quantity of liquid phase, ii) its viscosity, iii) its wettability with respect 

to the solid, and iv) the respective solubilities of the solid in the liquid and the liquid 

in the solid ( Boch and Leriche, 2001). 
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There are two kinds of liquid phase sintering namely; heterogeneous systems and 

homogeneous systems. In heterogeneous systems, solid material is heated to 

sintering temperature and a liquid phase is formed which persists through out 

sintering and the liquid solidified during cooling. In case of homogeneous systems, 

as the consalidated powders are heated to sintering temperatures, a liquid phase is 

formed which gradually disappears as it is soluble in the matrix. Particle 

rearrangement stage, dissolution-reprecipitation stage, liquid assimilation and solid 

state grain growth stage are the four main stages of liquid phase sintering process 

(Ring, 1996). 

2.2.1.1.3. Activated sintering 

Activated sintering involves a small addition to the powder mix or, more rarely, to 

the sintering atmosphere in order to promote sintering kinetics. The action of the 

activator may be to remove the surface oxide from the powder particles or to 

facilitate more rapid diffusion of the metal™s atoms (Upadhyaya, 2000). A high-

melting-temperature materials material requires a high sintering temperature to 

induce significant diffusion. However, a lower-melting-temperature phase will have 

inherently faster diffusion rates. Activated sintering occurs when the high-melting-

temperature material is soluble in the low-melting-temperature phase, resulting is a 

short-circuit sintering path. Some of the most dramatic examples of activated 

sintering occur with the refractory metals: molybdenum, tungsten, chromium, 

rhenium, and tantalum (German, 1996).   

Generally, it is very difficult to fabricate tungsten because of its high melting point, 

low ductility. Even when the powder metallurgy techniques are used, processing of 

tungsten requires very high sintering temperatures up to 2400 — 2800 oC to get near 

fully dense structure (Li and German, 1983). The addition of small quantities of 

some transition metals such as Pd, Pt, Ni, Co, and Fe, provides a major reduce in the 

sintering temperature of W (Li and German, 1983; German and Munir, 1976; Vacek, 

1959; Hayden and Brophy, 1963). This reduction of the sintering temperature is due 

the decrement of the activation energy between W particles. Activation energy for 

volume self-diffusion of tungsten, 135 kcal/mol, becomes 68 kcal/mol in the case of 

Ni activated W (Hayden and Brophy, 1963). 
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Hayden and Brophy interpreted the mechanism of the activated sintering in terms of 

three main stage in their study (Hayden and Brophy, 1963). After the appearance on 

the tungsten particle surface of a ” supporting phase„ , formed by activating agent, the 

dissolution of tungsten at the points of contact between particles takes place and the 

diffusion of tungsten atoms along the interface between the ” supporting phase„  and 

the particle provides densification. On this basis, the distance between the centers of 

adjacent particles decreases and consequently fuller shrinkage occurs (Hayden and 

Brophy, 1963; Samsonov and Yakovlev, 1967). Fig. 2.6. is the schematic 

representation of sintering nickel-coated tungsten powder which Brophy et. al., 

indicated during their project prepared in U.S. Navy in M.I.T. laboratories (Brophy 

et. al, 1963).   

 
Figure 2.6 : Schematic representation of sintering nickel-coated tungsten powder 
                       (Brophy et. al., 1963). 

Another elucidation of the activated sintering mechanism was accomplished in (Toth 

and Lockington, 1967) where dissolution of tungsten at the activator-tungsten 

interface is followed by volume diffusion outwards through the activator layer and 

subsequent surface diffusion. Diffusion through the activator layer to the contact 

point between adjacent particles results in the formation of sintering ” necks„  [Toth 

and Lockington, 1967; Corti, 1986). 
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Figure 2.7 : Schematic representation of activated sintering of tungsten (Toth and 
                       Lockington, 1967). 

Samsonov and Yakovlev stated activated sintering in terms of the electron structure 

of the activators and tungsten; an increase of the stable d-bonds in the system lowers 

the free energy, activating the sintering process in which diffusion is accelerated by 

the activators for which tungsten acts as an electron donor and this ease of electron 

transfer gives rise to the high solubility in the activating element (Samsonov and 

Yakovlev, 1969). 

German and Munir reported that the activator has a role in providing enhanced grain 

boundary diffusion with the activator layer wetting the interparticle grain boundary. 

The relative solubility criterion is a prerequisite for enhanced diffusion of the 

refractory metal. Enhanced mass transport, and hence densification, results from the 

lowering of the activation energy for the refractory metal in the activator (German 

and Munir, 1982; Corti, 1986). 
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Figure 2.8 : Schematic representation of the activated sintering (German and Munir, 
                      1982). 

2.2.2. Mechanical Alloying (MA) 

2.2.2.1. History and definition of mechanical alloying 

The ever-increasing demands for properties and performance of materials have led to 

the design and development of advanced materials (Suryanarayana, 2001). As a 

result, non-equilibrium processing of materials has attracted the attention of a 

number of scientists and engineers due to the possibility of producing better and 

improved materials in comparison to conventional methods (Suryanarayana et al., 

2001). 

As mentioned above, the structure and constitution of advanced materials can be 

better controlled by processing them under non-equilibrium (or far-from-

equilibrium) conditions and mechanical alloying (MA) is such a processing method 

that materials can be produced under non-equilibrium conditions (Suryanarayana, 

2001).  MA can be defined as a powder metallurgy process for producing composite 

metal powders with a controlled fine microstructure by repeated cold welding, 

fracturing and rewelding of powder particles in a high—energy ball mill (O vecog lu, 

1987; Benjamin, 1992; Suryanarayana et al., 2001). 
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The mechanical alloying (MA) process is usually dated back to the pioneer work of 

Benjamin at the International Nickel Company™s Paul D. Merica Research 

Laboratory in the late 1960™s. It started as an industrial necessity to produce oxide-

dispersion-strengthened nickel-based superalloys for gas turbine engine components 

(O vecog lu, 1987; Suryanarayana et al., 2001; Delogu et al., 2003). However, the 

subsequent discovery of metastable phase formation by MA opened the door to 

important applications in Materials Science (Delogu et al., 2003). In addition to the 

metastable phases, equilibrium phases of commercially useful and scientifically 

interesting materials can be synthesized by MA (Suryanarayana et al., 2001). 

MA is a simple and versatile technique which includes economically feasible process 

with important technical advantages. One of the major advantages of MA is 

possibility of synthesizing of novel alloys, which normally immiscible elements. 

This synthesize is only possible with MA because MA is a completely solid-state 

processing technique, thus limitations imposed by phase diagrams do not apply for 

this process (Suryanarayana et al., 2001). Furthermore, MA holds an advantage over 

traditional ball milling processes which is to produce a material whose internal 

homogeneity is independent of the initial starting particle size. It is not uncommon to 

obtain mechanically-alloyed dispersions with less than 1 °m interparticle spacing 

from initial powder sizes of 50-100 °m average diameters (Goff, 2003). 

2.2.2.2. Processing equipment and process variables 

Different types of high-energy milling equipment are used to produce mechanically 

alloyed powders. These equipments include Spex Mixer/mills, planetary ball mills, 

attritor mills and commercial mills. They have different capacity, efficiency of 

milling and additional arrangements for cooling, heating, etc (Suryanarayana, 2001; 

Goff, 2003).  

Spex Mixer/mills are most commonly used for laboratory investigations and they 

mill about 10 - 20 g powder at a time depending on the density of starting 

constituents (Goff, 2003).  The common variety of these mills has one vial, 

containing the sample and grinding balls, secured in the clamp and shakes the milling 

container in three-mutually perpendicular directions at about 1200 rpm resulting in 

powder microstructural refinement with time (Suryanarayana, 2001; Goff, 2003). 

Ball-ball and ball-container collisions continually trap and refine the powder 
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constituents with time ultimately leading to an overall homogeneously dispersed 

microstructure (Goff, 2003). There are different vial materials available for the SPEX 

mixer/mills, which are hardened steel, alumina, tungsten carbide, zirconia, stainless 

steel, silicon nitride, agate, plastic, and methacrylate (Suryanarayana, 2001). Typical 

SPEX mill and tungsten carbide vial set can be seen in Fig. 2. 9.  

Another popular mill for conducting MA experiments is the planetary ball mill in 

which a few hundred grams of the powder can be milled at a time. It is called the 

planetary ball because of its vial™s planet-like movement. The centrifugal force 

produced by the vials rotating around their own axes act on the vial contents, 

consisting of material to be ground and the grinding balls. As result, powders are 

trapped between the rotating balls and the walls of the vial and refined. Even though 

the linear velocity of the balls in this type of mill is higher than that in the SPEX 

mills, the frequency of impacts is much more in the SPEX mills. 

 
Figure 2.9 : a) A typical Spex shaker mill b) Tungsten carbide vial set consisting of  
                     the vial, lid, gasket, and balls (Suryanarayana, 2001). 
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Therefore, compared to SPEX mills, planetary ball mills can be considered lower 

energy mills (Suryanarayana, 2001). In Fig. 2.10, a schematic view of ball motion in 

a planetary   ball mill can be seen. 

 
Figure 2.10 : A schematic view of ball motion in a planetary ball mill 
                             (Suryanarayana, 2001). 

Another type of mills is the attritor mills which possible large quantities of powder 

(from about 0.5 to 40kg) can be milled at a time (Suryanarayana, 2001). It contains a 

vertical shaft with a series of impellers that rotates in the tank of about 250 rpm 

(Goff, 2003).  As the shaft rotates, the balls drop on the metal powder that is being 

ground. The impellers energize the ball charge, causing powder size reduction 

because of impact between balls, between balls and container wall, and between 

balls, agitator shaft, and impellers. The rate of grinding increases with the speed of 

rotation. However, at high speeds the centrifugal force acting on the balls exceeds the 

force of gravity, and the balls are pinned to the wall of the container. At this point the 

grinding action stops (Suryanarayana, 2001). Schematic view of an attritor mill is 

given in Fig. 2. 11. 

 
Figure 2.11 : A schematic view of an attritor mill (Goff, 2003). 
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Finally, commercial mills for MA are much larger in size than the mills described 

above and can grind several hundred kilograms of powders at a time. Mechanical 

alloying for commercial production is carried out in ball mills of up to about 1250 kg 

capacity (Suryanarayana, 2001). A picture of commercial-size ball mills can be seen 

in Figure 2.12. 

The milling time decreases with an increase in the energy of the mill. Roughly, it can 

be estimated that a process that takes only a few minutes in the SPEX mill may take 

hours in an attritor and a few days in a commercial mill (Suryanarayana, 2001). 

Besides the type of the mill, there are different variables that affect the result of the 

mechanical alloying process.  These include the type (material) of the milling 

container and the milling medium, ball-to-powder ratio, milling atmosphere, milling 

time, use of a process control agent (PCA), etc. (Suryanarayana, 2001). 

 
Figure 2.12 : Commercial production-size ball mills used for mechanical alloying 
                         (Suryanarayana, 2001). 
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The material used for the milling container (grinding vessel, vial) is important since 

the impact of the grinding medium on the inner walls of the container will result in 

tiny fractions of milling material that fracture off and disperse into the composite 

powder as contaminations. If the material of the grinding vessel is different from that 

of the powder, then the powder may be contaminated with the grinding vessel 

material, whereas if the two materials are the same, then the chemistry may be 

altered (Suryanarayana, 2001; Goff, 2003). Regardless of the type of mechanical 

alloying process, the most appropriate type of container and milling media for the 

given system should be chosen. Generally, milling media which is made of a similar 

material as that of the material to be processed is used to reduce contamination 

during processing (Goff, 2003). The density of the grinding medium should be high 

enough so that the balls create enough impact force on the powder (Suryanarayana, 

2001). 

Another important parameter is ball-to-powder ratio (BPR). This has been varied by 

different investigators from a value as low as 1:1 to as high as 220:1. Generally, a 

ratio of 10:1 is most commonly used while milling the powder in a small capacity 

mill such as a SPEX mixer/mill. The BPR has an important effect on the time 

required to achieve a particular phase in the powder being milled. The higher the 

BPR, the shorter is the time required (Suryanarayana, 2001). 

Milling atmosphere is also an important variable for MA process. The major effect of 

the milling atmosphere is on the contamination of the powder. Therefore, the 

powders are milled in containers that have been either vacuumed or filled with an 

inert gas such as argon or helium. However, high-purity argon is the most common 

used gas to prevent oxidation and contamination of the powder (Suryanarayana, 

2001). The presence of air in the vial cause to produce oxides and nitrides in the 

powder, especially if the powders are reactive in nature. Thus, the loading and 

unloading of the powders into the vial has to be carried out inside an atmosphere-

controlled glove box (Suryanarayana, 2001; Fecht, 2002). 

The time of milling is the most important parameter, where the rate of refinement of 

the internal structure (particle size, crystallite size, lamellar spacing, etc.) is roughly 

logarithmic with processing time (Fig. 2.13) and therefore the size of the starting 

particles is relatively unimportant. The lamellar spacing usually becomes smaller and 

the average crystallite size is refined to nanometer scale after milling. Normally, the 
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time is so chosen to achieve a steady state between the fracturing and cold welding of 

the powder particles. Furthermore, the times required depend on the type of mill 

used, the intensity of milling, the ball-to-powder ratio, and the temperature of 

milling. Milling time is a parameter to decide considering combinations of the above 

parameters and for the particular powder system. However, it should be realized that 

the level of contamination increases and some undesirable phases form if the powder 

is milled for times longer than required. Therefore, the powder has to be milled just 

for the required duration and not any longer (Suryanarayana, 2001). 

 
Figure 2.13 : Refinement of particle and grain sizes with milling time. Rate of 
                          refinement increases with higher milling energy, ball-to-powder 
                          weight ratio, lower temperature, etc. (Suryanarayana, 2001). 

The use of process control agents (PCA) are another concern in the MA process. 

Generally, ductile powder particles get cold-welded to each other, due to the heavy 

plastic deformation during milling. However, true alloying among powder particles 

can occur only when a balance is maintained between cold welding and fracturing of 

particles, which require using a process control agent (PCA) during milling to reduce 

the cold welding (O vecog lu, 1987; Suryanarayana, 2001). The PCA™s can be solids, 

liquids, or gases. They are mostly organic compounds, which act as surface-active 

agents by adsorbing on the surface of the powder particles and minimizing cold 

welding between powder particles and thereby inhibiting the agglomeration 

(Suryanarayana, 2001). 

2.2.2.3. Science and mechanism of mechanical alloying  

MA is an advanced fabrication process that can produce ultra-fine and homogenous 

powders (Ryu et al., 2000). Even, nanocrystalline materials (with a grain size of few 

nanometers, usually<100 nm) are also produced by MA of powder mixtures. 
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Additionally, it has been recognized that this technique can be used to induce 

chemical (displacement) reactions in powder mixtures at room temperature or at 

much lower temperatures than normally required to synthesize pure metals 

(Suryanarayana et al., 2001). 

In any mechanical alloying process, starting powder constituents are first mixed or 

blended according to the required stoichiometry for desired composite batches. Then, 

they are put in the milling container with the appropriate ball charge and milled until 

a steady state of homogeneous dispersion is achieved (Goff, 2003). The central event 

of MA is the ball-powder collisions (Fecht, 2002). Microstructural refinement during 

the MA process occurs due to the repeated cold-welding, fracturing, and cold-

welding of the dry powder constituents during their impact between ball-ball and/or 

ball-container collisions. Fig. 2.14. is a schematic representation of the collided balls. 

The force of the impact plastically deforms the powder particles leading to work 

hardening and fracture (Suryanarayana, 2001; Fecht, 2002).  

 
Figure 2.14 : Schematic view of a ball-powder-ball collision (Suryanarayana, 2001). 

As a result, MA provides several strengthening mechanisms which are oxide 

dispersion strengthening, carbide dispersion strengthening, fine grain size 

strengthening, substructural strengthening and solid solution strengthening 

(O vecog lu, 1987). 

In order to get better understanding about the physical phenomena that occur during 

MA processing, it is useful to divide the typical process into three or four stages 

(O vecog lu, 1987; Goff, 2003). 

In the early stages of milling, the particles are soft (if we are using either ductile-

ductile or ductile-brittle material combination), their tendency to weld together and 
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form large particles is high (Suryanarayana, 2001). A broad range of particle sizes 

develops, with some as large as three times bigger than the starting particles 

(Suryanarayana, 2001; Goff, 2003). The composite particles at this stage have a 

characteristic layered structure consisting of various combinations of the starting 

constituents (Fig. 2.15.) (O vecog lu, 1987). 

As the metallic phases are flattened and overlap during ball collisions, atomically 

clean surfaces are placed in contact with one another and subsequently cold-weld 

together, where  brittle constituents (intermetallics and dispersoids) are occluded by 

the ductile constituents thus becoming trapped along cold-weld interfaces (Goff, 

2003). Figure 2.16 shows early stage of processing in which particles are layered 

composites of starting constituents. 

 
Figure 2.15 : Deformation characteristics of starting powders used in a typical MA 
                        process (Suryanarayana, 2001). 

In the intermediate stage, the composite powder particles are further refined due to 

continual welding and fracturing of excessively work-hardened metallic phases and 

brittle intermetallics and/or dispersoids (Goff, 2003). At this stage the tendency to 

fracture predominates the over cold welding (Suryanarayana, 2001). The particles 

consist of convoluted lamellae. The reduction in particle size, increased 

microstructural mixing, and elevated temperature of the powder constituents due to 

the adsorbed kinetic energy of milling balls all help to form areas of solute 

dissolution throughout the metallic powder matrix (O vecog lu, 1987). So, this 

potentially may lead to areas where new phases develop which is mainly due to an 

overall decrease in atomic diffusion distances between individual phases and 
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decreased activation energies for diffusion due to the increase in temperature 

(O vecog lu, 1987; Goff, 2003). Consequently, the inter-layer spacing decreases and 

the number of layers in a particle increase (Suryanarayana, 2001).  Figure 2.17 is 

schematic view of the reduced lamellae thickness, solute dissolution, and formation 

of new phases in the intermediate stage of processing. 

 

 
Figure 2.16 : Early stage of processing in which particles are layered composites of 
                        starting constituents (O vecog lu, 1987). 

 

Figure 2.17 : Intermediate stage of processing showing reduced lamellae thickness, 
                       solute dissolution, and formation of new phases (O vecog lu, 1987). 

In the final stage (Fig. 2.18.), steady-state equilibrium is attained when a balance is 

achieved between the rate of welding and the rate of fracturing. As a result smaller 

particles are able to withstand deformation without fracturing and tend to be welded 

into larger pieces, with an overall tendency to drive both very fine and very large 

particles towards an intermediate size (Suryanarayana, 2001).  
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Furthermore, individual particle compositions are equal to the starting powder blend 

composition; the lamellae are no longer optically resolvable; and the dispersoid 

spacing is equal to the distance between weld interfaces (O vecog lu, 1987). At this 

point, further processing would not improve the dispersoid distribution or serve to 

enhance the homogeneity of the composite microstructure (O vecog lu, 1987; Goff, 

2003). The particle size distribution at this stage is narrow, because particles larger 

than average are reduced in size at the same rate that fragments smaller than average 

grow through agglomeration of smaller particles (Suryanarayana, 2001). 

 

Figure 2.18 : The final stage of processing and consolidation (O vecog lu, 1987). 

In order to complete the MA process and obtain a useable bulk composite form, the 

powders are heated to a temperature greater than half the melting temperature of the 

composite powder and consolidated. This serves to further homogenize the 

microstructure (Goff, 2003). 

It is possible to conduct MA with three different combinations of metals and alloys, 

namely ductile-ductile, ductile-brittle and brittle-brittle systems. Therefore, it is 

convenient to discuss the mechanism of MA also under these categories (Fecht, 

2002). 

Ductile-ductile combination is thought to be the ideal combination for MA process. It 

is suggested that it was necessary to have at least 15% of a ductile component for 

achieving alloying. This was true because alloying occurs due to the repeated action 

of cold welding and fracturing of powder particles; cold welding cannot occur if the 

particles are not ductile. In the early stages of MA, the ductile components get 

flattened to platelet/pancake shapes. A small quantity of the powder, usually one or 

two particle thickness, also gets welded onto the ball surfaces. This coating of the 

powder on the grinding medium is advantageous since it prevents excessive wear of 
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the grinding medium; so, the contamination of the powder is prevented. However, 

the thickness of the powder layer on the grinding medium must be kept to a 

minimum to avoid forming a heterogeneous product (Suryanarayana, 2001). In the 

next stage, these flattened particles get cold welded together and form a composite 

lamellar structure of the constituent metals (O vecog lu, 1987). An increase in particle 

size is also observed at this stage (Suryanarayana, 2001). For instance, it has been 

found that during MA of Fe-Cu powder mixture, agglomerates of multilayers are 

formed leading to microstructures very similar to those obtained by cold-rolling 

(Fecht, 2002).   With increasing MA time, the composite powder particles get work 

hardened, the hardness and consequently the brittleness increases, and the particles 

get fragmented resulting in particles with more equiaxed dimensions (Suryanarayana, 

2001). With further milling, the elemental lamellae of the welded layer and both the 

coarse and fine powders become convoluted rather than being linear Alloying begins 

to occur at this stage due to the combination of decreased diffusion distances 

(interlamellar spacing), increased lattice defect density, and any heating that may 

have occurred during the milling operation (O vecog lu, 1987).   The hardness and 

particle size tend to reach a saturation value at this stage, called the steady-state 

processing stage. With further milling, true alloying occurs at the atomic level 

resulting in the formation of solid solutions, intermetallics, or even amorphous 

phases. The layer spacing becomes so fine or disappears at this stage that it is no 

longer visible under an optical microscope (O vecog lu, 1987; Suryanarayana, 2001).    

Considering ductile-brittle combinations, in the initial stages of milling, the ductile 

metal powder particles get again flattened by the ball-powder-ball collisions, while 

the brittle oxide or intermetallic particles get fragmented. These fragmented brittle 

particles tend to become occluded by the ductile constituents and trapped in the 

ductile particles. The brittle constituent is closely spaced along the interlamellar 

spacings (Fig. 2.19a) (O vecog lu, 1987).  With further milling, the ductile powder 

particles get work hardened, the lamellae get twisted, and refined (Fig. 2.19b). With 

continued milling, the lamellae get further refined, the interlamellar spacing 

decreases, and the brittle particles get uniformly dispersed, if they are insoluble, in 

the ductile matrix (Fig. 2.19c) (O vecog lu, 1987; Suryanarayana, 2001). On the other 

hand, if the brittle phase is soluble, alloying occurs between the ductile and brittle 

components also and chemical homogeneity is achieved (Suryanarayana, 2001). 
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Figure 2.19 : Schematics of microstructural evolution during milling of a ductile- 
                         brittle combination of powders. This is typical for oxide dispersion 
                         strengthened case (Suryanarayana, 2001). 

If a brittle-brittle combination is the case, it would appear that it is unlikely that 

alloying occurs in a system consisting of two or more brittle components. The reason 

for that is that the absence of a ductile component prevents any welding from 

occurring, and in its absence, alloying is not expected to occur. However, alloying 

has been reported to occur in brittle-brittle component systems such as Si-Ge and 

Mn-Bi or Fe2O3-Cr2O3 and ZrO2-Y2O3 (Suryanarayana, 2001; Fecht, 2002). Milling 

of mixtures of brittle intermetallics also produced amorphous phases. During milling, 

the brittle components get fragmented and their particle size gets reduced 

continuously. However, at very small particle sizes the powder particles behave in a 

ductile fashion, and further reduction in size is not possible; this is termed the limit 

of comminution. Furthermore, during milling of brittle-brittle component systems, it 

has been observed that the harder (more brittle) component gets fragmented and gets 

embedded in the softer (less brittle) component (Suryanarayana, 2001). 

Nanostructured materials that are defined as materials with grain sizes less than 100 

nm have received much attention as advanced engineering materials with improved 

physical and mechanical properties (El-Eskandarany, 2001). Because of the 

extremely small size of the grains, a large fraction of the atoms in these materials is 

located in the grain boundaries  and as a result the material exhibits enhanced 

combinations of physical, mechanical, and magnetic properties (compared to 

material with a more conventional grain size, i.e., >1 μm) (Fecht, 2002) 

(Suryanarayana, 2001). Nanostructured materials have increased strength, high 

hardness, extremely high diffusion rates, and consequently reduced sintering times 

for powder compaction (Suryanarayana, 2001).  
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Recently, MA process has become a popular method to fabricate nanocrystalline 

materials due to its simplicity and relatively inexpensive equipment (El-Eskandarany 

et al., 2000; El-Eskandarany, 2001). The advantage of using MA for the synthesis of 

nanocrystalline materials lies in its ability to produce bulk quantities of material in 

the solid state using simple equipment and at room temperature (Suryanarayana, 

2001). In this process, lattice defects are produced by pumping energy into powder 

particles of typically 50 μm particle diameter. This internal refining process with a 

reduction of the average grain size by a factor of 103-104 results from the creation 

and self organization small-angle and high-angle grain boundaries within the powder 

particles during the mechanical deformation process (Fecht, 2002).  Grain sizes with 

nanometer dimensions have been observed in almost all mechanically alloyed pure 

metals, intermetallics, and alloys (Suryanarayana, 2001). The elemental processes 

leading to formation of nanostructures include three basic stages. Firstly, the 

deformation is localized in shear bands which contain a high dislocation density 

(Fecht, 2002). Their typical width is approximately 0,5-1 μm (Suryanarayana, 2001). 

At a certain level of strain within the high strained regions, these dislocations 

annihilate and recombine to small-angle grain boundaries separating the individual 

grains (Fecht, 2002). This results in a decrease of the lattice strain. With the 

continuing process, deformation occurs in shear bands located in previously 

unstrained parts of the material. The grain size decreases steadily and the shear bands 

unite. The small angle boundaries are replaced by higher angle grain boundaries and, 

consequently, dislocation-free nanostructured grains are formed (Suryanarayana, 

2001). 

2.3. Materials Selection 

The matrix of the composites has to be chosen considering two main requirements, 

matrix has to bind and support the reinforcing phase and, secondly, to satisfy special 

properties based on the requirements in service. Binding strength between the matrix, 

whose main function is to transfer and distribute the load to the reinforcement, and 

the reinforcement depends on the type of matrix and reinforcement (Huda et al., 

1995; Lindroos et al., 2004). Matrix-reinforcement interface has significant 

importance due to its role of determining load transfer and crack resistance of the 

composite during deformation. It is now widely known that in order to maximize 
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interfacial bond strength, it is necessary to promote wetting (when a liquid phase 

process is present), control chemical interactions and minimize oxide formation 

(Ibrahim et al., 1991). 

On the other hand, the hardness of the matrix is the key factor in supporting the 

reinforcing phase. Furthermore, other considerations such as, cost, weight, 

fabricability and availability of the matrix materials should be made (Lindroos et al., 

2004). Generally, Al, Ti, Mg, Ni, Cu, Pb, Fe, Ag, Zn, Sn and Si are used as the 

matrix materials (Huda et al., 1995). In addition to these, tungsten (W) has lately 

received some attention as a matrix material (Song et al., 2002; Song et al., 2003b).  

Reinforcement phase in the composites are mainly used to increase the strength, 

stiffness, temperature resistance capacity and to lower the density. Generally, 

ceramics are used as the reinforcement phase, which are typically oxides, carbide and 

nitrides (Huda et al., 1995). Selection criteria for these ceramic reinforcements 

include elastic modulus, tensile strength, density, melting temperature, thermal 

stability, coefficient of thermal expansion, size and shape, compatibility with matrix 

material and cost (Ibrahim et al., 1991).  Common reinforcement elements are TiC, 

ZrC, SiC, Y2O3, Al2O3, B4C and Si3N4 (Huda et al., 1995).  

2.3.1. Tungsten 

The refractory metals are conveniently described as metals that melt at temperatures 

above 1850 C̊, and for this consideration, twelve metals are in this group namely: 

W, Re, Os, Ta, Mo, Ir, Nb, Ru, Hf, Rh, V, Cr. Among these, due to their high 

melting point, high modulus, high resistance of thermal shock, low CTE and good 

high temperature strength and stiffness properties, tungsten alloys are potential 

candidates for service conditions which require high strength at elevated 

temperatures (Song et al., 2002). Properties of tungsten are listed in Table 2.2. 

A large number of tungsten alloys and composites were investigated in literature 

before, whereas only some of them achieved technical importance. The aim of 

alloying tungsten is to improve its chemical, physical and mechanical properties at 

both ambient conditions and at elevated temperatures. However, alloying of tungsten 

(W) has been relatively less studied than of some of the other refractory metals. 

Tungsten is mainly used in aerospace applications in the unalloyed form which is 

much easier and cheaper to produce and fabricate. Also, it has been found that, 
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particularly at temperatures above 2200 C̊, the strengthening effects of many 

alloying agents decrease disproportionately (Lassner and Schubert, 1999).  

Table 2.2: Properties of Tungsten (Lassner and Schubert, 1999). 

Period 6 
Atomic Number 74 
Atomic Mass 183.85 
Electronegativity 1.7 
Space Group Im3m 
Lattice 
Parameter 

3.16524 Ao 

Density 19.3 g/cm3 
Melting Point 3422 Co 
Boiling Point 5663 Co 
Specific Heat 0.0317 cal/gK 
CTE 4.32-4.68x10-6 K-1 

(25 oC)   
Tensile Strength 172.4 MPa 
Youngùs 
Modulus 

390-410 GPa 

Shear Modulus 156-177 GPa 
Bulk Modulus 305-310 GPa 
Poissonù Ratio 0.28-0.30 
Hardness 350-450 kg/mm2 

Tungsten is mainly consumed in three forms, which are tungsten carbide, alloying 

additions and pure form. Tungsten carbide accounts for about 65% of tungsten 

consumption (Lassner and Schubert, 1999).  It is combined with cobalt as a binder to 

form the so-called cemented carbides, which are used in cutting and wear 

applications because of their high hardness, good wear resistance, good fracture 

resistance and high temperature strength (Zhang et al., 2003) Cemented carbides 

such as WC-Co and WC-Co-TiC are the most widely used material for 

metalworking. As a consequence, a considerable amount of research effort has been 

spent to develop alternative cemented carbide systems in order to improve the 

microstructure and mechanical properties of these materials (Acchar et al., 2004). 

Characteristically, most of the carbides used in cermets have high hardness, good 

electrical and thermal conductivity, and high stability. The brittleness of carbides, 

however, has prevented their use as single-phase materials in highly stressed 

structural applications and has led to the development of metal-bonded composites 

(cemented carbides or cermets) (Coskun, 2006).  
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Metallic tungsten and tungsten alloy mill products account for about 16% of 

consumption. Tungsten and tungsten alloys dominate the market in applications for 

which a high-density material (19.3 g/cm3) is required, such as kinetic energy 

penetrators, counterweights, flywheels, and governors. Other applications include 

radiation shields and x-ray targets. In wire form, tungsten is used extensively for 

lighting, electronic devices, and thermocouples (Lassner and Schubert, 1999).   

The high melting point of tungsten makes it an obvious choice for structural 

applications exposed to very high temperatures. Tungsten is also used at lower 

temperatures for applications that can use its high elastic modulus, density, or 

shielding characteristics to advantage (Lassner and Schubert, 1999).   

2.3.1.1. Tungsten composites  

In order to improve properties of tungsten, dispersion-strengthened and precipitation 

hardened composites were developed. Its first application can be considered as non-

sag tungsten (tungsten doped with potassium) which is used as filaments in lamps is 

one kind of dispersion-strengthened composites, which have excellent creep 

resistance. The term non-sag refers to the resistance of the material against 

deformation (sagging) under its own weight at incandescent temperatures (Lassner 

and Schubert, 1999). 

Moreover, oxide-dispersion-strengthened tungsten composites were mainly used in 

literature. The addition of small amounts of finely dispersed oxides increases the 

mechanical properties of tungsten. The most common one is the W-ThO2 alloy which 

contains a dispersed second phase of 1 to 2% thorium. The thorium dispersion 

enhances thermionic electron emission, which in turn improves the starting 

characteristics of gas tungsten arc welding electrodes. It also increases the efficiency 

of electron discharge tubes and imparts creep strength to wire at temperatures above 

one-half the absolute melting point of tungsten (Mabuchi et al., 1997; Lassner and 

Schubert, 1999; Chen et al., 2000). However, it is desirable to replace ThO2 with 

non-radioactive activators because of the radioactive pollution of thorium during 

fabrication, service or handling. In the last decade, considerable efforts have been 

directed to develop new materials, especially to explore new activators. It has been 

found that tungsten electrodes activated with rare-earth metal oxides (such as La2O3, 

Y2O3, CeO2, etc.) exhibit superior arc characteristics compared to pure W and W-

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com


 35 

ThO2 electrodes (Chen et al., 2000). Particularly, W- La2O3 composites exhibit good 

mechanical properties and have no radioactive potential (Mabuchi et al., 1997). 

Furthermore, there are studies about strengthening the WHA™s by adding Y2O3.  As a 

result, the strength of WHA™s are improved with decreasing particle size which is 

proportional to the Y2O3 content (Ryu and Hong, 2003.).  

There are also different refractory carbides, such as HfC, TiC, ZrC, TaC, and NbC 

used as dispersoids (Lassner and Schubert, 1999). Recently, mechanical and 

thermophysical and ablation properties of TiC/W and ZrC/W at elevated 

temperatures are studied. As a result, it is proved that both of them possess excellent 

high temperature strength and good thermophysical properties, which make them 

good candidates for high temperature applications (Song et al, 2002; Song et al, 

2003a; Song et al, 2003b). 

Table 2.3: Comparison of Young™s modulus of some carbides (Shackelford, 2001). 

Ceramic Youngùs Modulus 
(GPa) 

Temperature 

Boron Carbide (B4C) 290-450 Room temp. 
Silicon Carbide (SiC) 
(pressureless sintered) 
(hot pressed) 

 
303 
440 

 
Room temp. 
Room temp. 

Tantalum Monocarbide 
(TaC) 

285-629 Room temp. 

Titanium Monocarbide 
(TiC) 

439 
310-379 

Room temp. 
1000 oC 

Tungsten Monocarbide  669-714 Room temp. 
Zirconium Monocarbide 
(ZrC) 

195-480 Room temp. 

Hafnium Monocarbide 
(HfC) 

424 Room temp. 

Table 2.4: Comparison of tensile strength of some carbides (Shackelford, 2001). 

Ceramic Tensile Strength 
(MPa) 

Temperature 

Boron Carbide (B4C) 155 980 oC 
Silicon Carbide (SiC) 
(hot pressed) 
(hot pressed) 

34-138 
200 
40-150 

25 oC 
20 oC 
1400 oC 

Tantalum Monocarbide  14-290 1000 oC 
Titanium Monocarbide  119 1000 oC 
Tungsten Monocarbide  345 1000 oC 
Zirconium Monocarbide  
 

110 
81-99 
89-109 

Room temp. 
980 oC 
1250 oC 
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Table 2.5: Comparison of hardness of some carbides (Shackelford, 2001). 

Ceramic Hardness  
Boron Carbide (B4C) Knoop 100g: 2800 kg/mm2 

Knoop 1000g: 2230 kg/mm2 
Vickers : 2400 kg/mm2 

Silicon Carbide (SiC) 
 

Vickers 25g : 3000-3500 
kg/mm2 
Knoop 100g : 2500-2550 
kg/mm2 

Tantalum Monocarbide 
(TaC) 

Knoop 50g: 1800-1952 
kg/mm2 
Knoop 100g: 825 kg/mm2 

Vickers 50g: kg/mm2 
Titanium Monocarbide 
(TiC) 

Knoop 100g: 2470 kg/mm2 
Knoop 1000g: 1905 kg/mm2 
Vickers 50g: 2900-3200 
kg/mm2 
Vickers 100g: 2850-3390 
kg/mm2 

Tungsten Monocarbide 
(WC) 

Knoop 100g: 1870-1880 
kg/mm2 
Vickers 50g: 2400 kg/mm2 
Vickers 100g: 1730 kg/mm2 

Zirconium Monocarbide 
(ZrC) 
 

Knoop : 2138 kg/mm2 

Vickers 50g : 2600 kg/mm2 
Vickers 100g : 2836-3840 
kg/mm2 

Hafnium Monocarbide 
(HfC) 
 

Knoop : 1790-1870 kg/mm2 
Vickers 50g : 2533-3202 
kg/mm2 

Tables 2.3 — 2.5 are comparison of mechanical properties of different refractory 

carbides. Among these refractory carbides TiC have received attraction due to its 

very high melting temperature (3067 oC), high hardness, good high temperature 

strength, and good corrosion resistance (Pierson, 1996). Summary of properties of 

TiC is given in Table 2.6. 
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  Table 2.6: Summary of Properties of TiC (Pierson, 1996). 

Atomic mass 51.91 
Space group Fm3m 
Lattice 
parameter 

4.328 A
o
 

Density 4.54 or 4.91 g/cm
3  

 
Melting Point 3067 

o
C 

Specific Heat 33.8 j/mol*K 
CTE 7.4x10

-6
 C

-1
 (25 

o
C)   

Young Modulus 410 — 510 GPa 
Shear Modulus  186 GPa 
Bulk Modulus  240 - 390 GPa 
Poisson Ratio  0.191 
Hardness 28-35 GPa 

2.3.1.1.1. W-TiC system 

TiC with its above mentioned excellent properties used as reinforcement in W matrix 

composites. In addition to its properties, no detrimental new phase will be formed 

except that W diffuses into the TiC lattice to form (Ti,W)C solid solution according 

to the TiC—W binary alloy diagram (Lipatnikov et al., 1997). A schematic of the 

solid-solution mechanism in TiC-W composite system is given in Fig. 2.20. The 

formation of a (Ti,W)C  solid-solution, which has grater strength than that of TiC, 

should improve the strenghtening effect of TiC (Liu et al., 1997) . 

Song et al. investigated TiC dispersion strengthened W composites with different 

TiC additions varying between 0 and 40 vol.% (Song et al., 2003b). They reported a 

relative density value of 97% and a microhardness value about 7 GPa for the W-20 

vol%TiC composite fabricated by ball milling for 24 h followed by hot pressing at 

2000 oC, and a maximum microhardness value 11 GPa and having 95.5% relative 

density with 40 vol.% TiC addition (Song et al., 2003b). More recently, Chen et al. 

reported a microhardness value of 8 GPa after hot pressing of 24 h ball milled W — 5 

wt% TiC powders at 2100 ¼C for 90 min, where relative density value was about 

94% (Chen et al., 2008). 

These former studies indicated that W-TiC composites can be produced with high 

densities and high hardness values, which gave the motivation to do such an study 

about W — TiC composites. 
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Figure 2.20 :  A schematic of the solid-solution mechanism in the TiC-W composite 
                         system (Song et al., 2003b).  

2.3.2. Ni Activated Sintering 

Activated sintering mechanism is explanied in detail in Session 2.2.1.1.3., stating that 

addition of small quantities of some transition metals such as Pd, Pt, Ni, Co, and Fe, 

enables major reductions in the sintering temperature of W. One of the activating 

agents, Ni, dissolves up to 38 wt% W in its solid solution and the solubility of W into 

Ni is only about 0.1 wt% which is negligible (Fig. 2. 21) (Massalski, 1990). 

Moreover, the volume diffusion of W into Ni is rather more rapid than that of Ni into 

W (Panichkina, 1967). Hayden and Brophy reported a value of 68 kcal/mole for the 

activation energy for volume self-diffusion of W in the case of activated sintering 

with Ni, a value much lower than 135 kcal/mole pertaining to pure W (Hayden and 

Brophy, 1963). 

Activated sintering of W with different transition metal additions have mainly 

investigated in literature which mentioned above. German and Munir, reported that 

Pd is the best activator agent for W, and sequentially, Ni, Pt, Co, Fe, Cu addition 

provides activation (German and Munir, 1976). Even though Pd, reported as the best 

activator for W, its use is limited due to its very high price. Ni is proper activator 
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agent which can be used instead of Pd, specially at temperature ranges about 1400 γC 

(Fig. 2.22) (German and Munir, 1976).   

 
Figure 2.21 : Ni-W phase diagram (Massalski, 1990). 

 
Figure 2.22 : Shrinkage dependence on activator type and temperature in activated 
                        sintering of W (German and Munir, 1976). 

Above mentioned literature review reperesented the development of disperion 

strenghtened W matrix composites and activated sintering of W. However, there are 

no detailed studies about the sintering behaviour and microstructural properties of 

dispersion strengthened W-based composites sintered with the presence of a 

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com


 40

transition metal constituent. This study aims to fulfill this gap with investigations of 

sintering behaviour and mechanical properties of mechanically alloyed and Ni 

activated sintered W-TiC composites. Thus, the objective of the present study is to 

report on the microstuctural characterization and physical properties of mechanically 

alloyed and sintered W-2wt% TiC-1wt% Ni composites. 

. 
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3. EXPERIMENTAL PROCEDURE 

The experimental studies was conducted in order to develop Ni activated sintered W-

TiC composites produced via mechanical alloying and to get better understanding 

about sintering behavior, microstructural and mechanical properties of developed W-

TiC-Ni composites. 

The first part experiments deals with both effects of mechanical alloying and 

activated sintering together, having a composition batch W-2 weight(wt)%TiC-1 

wt.% Ni powders. Duration of mechanical alloying and sintering regime were 

determined in this part, as well. Moreover, another series of experiments were 

conducted to understand the effects of Ni activated sintering on TiC dispersion 

strengthened W composites. Finally, strengthening of Ni activated W investigated.  

The experimental procedure of the present study is summarized in the flow chart 

show in Figure 3.1.  

3.1. Preparation of Green Compacts 

3.1.1. Characterization of Powders 

Elemental tungsten (W) powders (99.9% purity, 14 μm average particle size) as the 

matrix of the composite and titanium carbide (TiC) powders (99.5% purity, 2.7 μm 

average particle size) as reinforcement and 1 wt% Ni powders (99.9% purity, 8 μm 

average particle size) as activating agent are used in this study. Furthermore, 0.5 wt% 

graphite powders (99.9% purity, 21 °m average particle size) was used as a process 

control agent (PCA) to minimize cold welding between powder particles and thereby 

to inhibit agglomeration. Mechanical alloying (MA) experiments were carried out 

using a Spexº   Duo Mixer/Mill 8000D with a speed of 1200 rpm  for 3 h, 6 h, 12 h 

and 24 h in a tungsten carbide (WC) vial  with WC balls having a diameter of 6.35 

mm (α  inches).  The ball-to-powder (BPR) weight ratio was 7:1. W-2wt% TiC-1 

wt% Ni (hereafter referred as W2TiC1Ni) were mixed and MA™d for 3 h, 6 h, 12 h 

and 24 h in first part of experiments where both effects of MA and activated sintering 
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investigated. Moreover, W-2 wt% TiC were mixed and MA™d for the same durations 

and 1 wt% Ni added after MA and further MA was conducted for 20 min with W-2 

wt% TiC and 1 wt% Ni (hereafter referred as W2TiC+1Ni). In addition, W and 1 

wt% Ni were mixed and MA™d for the same durations. 2 wt% TiC added to MA™d 

W-1 wt% Ni and MA™d together for 20 min (hereafter referred as W1Ni+2TiC). 

 
Figure 3.1 : The Flow Chart of the Experimental Procedure. 
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Powder particle size measurements were carried out in a MalvernTM Mastersizer 

Laser particle size analyzer. Microstructural characterization investigations of as-

blended and MA™d powders were conducted using a Jeolº -JSM-T330 scanning 

electron microscope (SEM), Jeolº -JEM-EX2000 transmission electron microscope 

(TEM) and a Brukerº  X-Ray Diffractometer (XRD) (CuK≈ radiation). TOPAS 3 

(Bruker AXS) software (Kern and Coelho, 2006) was used to estimate crystallite 

sizes. 

a)  b)  
Figure 3.3 : Photos of a) Malvern Mastersizer, b) Bruker X-Ray Diffractometer 
                       (XRD). 
 

  a)  b)  
Figure 3.4 : Photos of a) Jeolº -JSM-T330 scanning electron microscope and  
                        b) Jeolº -JEM-EX2000 transmission electron microscope. 

3.1.2. Compaction 

The mechanically alloyed powders were compacted by cold pressing in a tool-steel 

die at a pressure of 400 MPa into cylinder shaped green compacts with a diameter of 

±12mm  for 1 minute by using a 10 tons ”APEXº  3010/4„  one-action hydraulic 
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press. Zinc Stearat was applied to the walls of the die to take the samples out of the 

die easily. As-blended powders could not be compacted, because of these reason 

there are no sintered sample of as-blended powders in this study. 

 
Figure 3.5 : The photo of APEXº  3010/4 one-action hydraulic press. 

3.2. Sintering and Characterization of Sintered Samples 

The compacts were sintered in an Anterº  Dilatometer at 1400 γC under both inert 

Ar and reducing H2 gas flowing conditions for 1 h. The microstructural and phase 

characterizations of the sintered samples were carried out using the same XRD, SEM 

and TEM. Before the sintered samples were characterized, they were mounted in 

bakelite using the Struersº  Labopress-1 machine.  After that the samples were 

polished on the Struersº  Tegrapol-15 automatic polishing machine.  

a)   b)  

Figure 3.6 : Photos of a) Struersº  Labopress-1 machine and b) Struersº  Tegrapol- 
                     15 automatic polishing machine. 

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com


 45 

Sintered samples were grinded and polished to make thinner sample for TEM. 

Grinded samples were mechanically punched to 3 mm diameter, punching followed 

by standard dimpler and etching (HF:HNO3) processes.  

Sintered densities were measured by using the Archimedes method. Density results 

are the arithmetic mean of 5 measurements of the same sample. Vickers 

microhardness tests were conducted on the sintered samples using a Shimadzuº  

microhardness tester under a load of 100 g for 15 seconds. Microhardness test result 

for each sample is the arithmetic mean of 10 successive indentations and standard 

deviations.  

a)        b)   
Figure 3.7 : Photos of a) Precisaº  XB220A weighing machine and b) Shimadzuº   
                      micro hardness tester. 
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4. RESULTS 

Experimental studies and results of the present study were conducted in there main 

routes an mentioned in Chapter 3 and if so, it is found convenient to present results in 

three main section. 

4.1. Characterization Investigations of Mechanically Alloyed and Sintered W-2 

wt% TiC-1 wt% Ni Composites 

Abstract 

Blended elemental W-2 wt% TiC-1 wt% Ni powders were mechanically alloyed 

(MA™d) for 3 h, 6 h, 12 h and 24 h in a Spex Mixer/mill at room temperature to 

investigate effects of both MA and activated sintering. MA™d powders were sintered 

at 1400 oC for 1 h under Ar, H2 gas flowing conditions. Microstructural and phase 

characterizations of MA™d powders and sintered samples were carried out via SEM, 

TEM and XRD analyses. Whereas XRD investigations on MA™d powders revealed 

stable W and WC phases, those on sintered samples showed the presence of a new 

face-centered cubic W phase and Ni in addition to the matrix W phase. TEM 

investigations revealed the presence of Ni, TiC, W2C, NiTi, rutile, TiO2 and Ti4O7 

phases existing in a W-matrix. Relative density values varied between 89 and 97%, 

and increased with increasing MA duration. Microhardness values of the sintered 

composites varied between 5 GPa and 5.6 GPa.  

4.1.1. Characterization of Powders 

XRD patterns of as-blended and mechanically alloyed (MA™d) for 3 h, 6 h, 12 h and 

24 h W2TiC1Ni powders are shown in Figures 4.1a- 4.1e, respectively. As seen in 

these figures, the peaks of W which has a b.c.c. Bravais lattice and Im3m space 

group with the lattice parameter of a = 0.316 nm (ICDD, 04-0806,) can be identified 

in all samples. Additionally, the peak belonging to {111} reflections of Ni which has 

a f.c.c. Bravais lattice and Fm 3m space group with the lattice parameter of a = 0.352 

nm (ICDD, 65-2865) is identified in the as-blended sample (Fig. 4.1a). Peaks for TiC 
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are not seen, probably due to its small amount (2 wt%) in the powder blend and its 

small particle size (2.7 °m) compared to those of Ni (8 °m) and W (14 °m). 

Moreover, as seen in Figures 4.1d and 4.1e for samples MA™d for 12 h and 24 h, the 

presence of WC phase which has a hexagonal Bravais lattice and P 6 m2 space group 

with the lattice parameters of a = 0.290 nm and c = 0.283 nm (ICDD, 51-0939) can 

be detected due to contamination during MA. Thus, it is clear that with increasing 

MA, peaks are broadened and peak heights are decreased, as a result of grain 

refinement and due to internal strain buildup during MA. Average grain size of the 

matrix W phase in the as-blended and MA™d W2TiC1Ni powders was calculated 

from Figures 4.1a — 4.1e using TOPAS 3 (Bruker AXS) software (Kern and Coelho, 

2006) which decreased with increasing MA durations. Whereas the as-blended 

W2TiC+1Ni powders have a W grain size of 219 nm, those MA™d for 3 h, 6 h, 12 h 

and 24 h have average W grain sizes of 47.8 nm, 22.8 nm, 12.9 nm, 8.7 nm, 

respectively.  

 
Figure 4.1 : XRD patterns of a) as-blended, b) MA™d for 3 h, c) MA™d for 6 h, 
                       d) MA™d for 12 h and e) MA™d for 24 h W2TiC1Ni powders. 
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Figures 4.2a and 4.2b are SEM micrographs taken from as-blended W2TiC+1Ni 

powders and from powders those MA™d for 24 h, respectively. Fig. 4.2c is a bright-

field TEM micrograph of powders MA™d for 24 h. As seen in Figures 4.2a — 4.2c, 

microscale as-blended powders have diameters in nanoscale after MA. Moreover, 

TiC and Ni powders distributed homogeneously in W matrix after MA. Local 

agglomerations which are clearly seen in Fig. 4.2b, occur due to small particle size 

distributions of MA™d powders.  Fig. 4.2c shows the equiaxed shaped particles 

varying in size between 100 and 200 nm. 

a)  

 b)  

Figure 4.2 : Electron micrographs of as-blended and MA™d W2TiC1Ni powders. 
                       Representative SEM micrographs of: a) as-blended powders and b) 
                       those MA™d for 24 h. c) Bright-field (BF) TEM micrograph of  
                       powders MA™d for 24 h. 
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c)  

Figure 4.2 : Electron micrographs of as-blended and MA™d W2TiC1Ni 
                            powders. Representative SEM micrographs of: a) as- 
                            blended powders and b) those MA™d for 24 h. c) Bright-                                          
                            field (BF) TEM micrograph of powders MA™d for 24 h(continued).  

Fig. 4.3. is particle size distributions of W2TiC1Ni powders MA™d for 3 h, 6 h, 12 h 

and 24 h. As seen in Fig. 4.3., average particles sizes are about 160 nm for 

W2TiC1Ni powders after 24 h MA. Furthermore, with MA, specific surface area of 

the powders drastically increases, which are less than 1 m2/g for as-blended 

W2TiC1Ni powders, become 44,5 m2/g for W2TiC1Ni powders MA™d for 24 h.  

As explained in the Experimental Procedures, there are no pressed and sintered 

compacts prepared from as-blended powders used in this study. Relative green 

density values of the consolidated powders are 64%, 57%, 60% and 54% for MA for 

3 h, 6 h, 12 h and 24 h, respectively.  

4.1.2. Characterization of Sintered Samples 

4.1.2.1. XRD and SEM Investigations 

XRD patterns of W2TiC1Ni powders sintered at 1400 γC under both inert Ar and 

reducing H2 gas flowing conditions for 1 h are shown in Figures 4.4a — 4.4d. As 

clearly seen in Figures 4.4a — 4.4d, stable b.c.c. W and f.c.c. Ni phases are identified 

in all sintered samples. Moreover, a second W phase which has a f.c.c. Bravais lattice 

with Fm 3m space group and lattice parameter of a = 4.06 nm (ICDD, 88-2339) is 

present in W2TiC1Ni samples MA™d for 3 h and 6 h. On the other hand, in sintered 
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W2TiC1Ni sample MA™d for 3 h, other phases are identified, which are NiTi phase 

with hexagonal Bravais lattices having P 3  space group (ICDD, 72-3504), TiO phase 

with a base-centered monoclinic Bravais lattice having A2/m space group (ICDD, 

72-0020) and WO2 phase with a orthorhombic Bravais lattice having Pnma space 

group (ICDD, 48-1827). The reason of oxidation and thermal decomposition, which 

took place only in sintered W2TiC1Ni sample MA™d for 3 h, is not clearly 

understood. 

 
Figure 4.3 : Particle size distributions of MA™d W2TiC1Ni powders. 

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com


 52

 
Figure 4.4 : XRD patterns of the sintered W2TiC1Ni samples which were a) MA™d 
                      for 3 h, b) MA™d for 6 h, c) MA™d for 12 h and d) MA™d for 24 h. 

SEM micrographs taken from MA™d W2TiC1Ni samples are shown in Figures 4.5a — 

4.5d. Since chemical etching (Murakami and H2O2) was ineffective, grain boundaries 

of the matrix W can not be observed. However, EDS spectra revealed that gray 

regions are matrix W, black dots are TiC and/or WC, porous like gray regions (Fig. 

4.5d) are Ni rich areas surrounded by W matrix and white dots are dirtiness. As seen 

in Fig. 4.5a, sintering of the W2TiC1Ni sample MA™d for 3 h was not efficient. 

Moreover, no black dots (TiC and/or WC) can be seen in Fig. 4.5a, consisting with 

XRD results (Fig. 4.4a) where phases such as NiTi and TiO were formed during 

sintering as a result of thermal decomposition of TiC. As seen in Fig. 4.5d, TiC/WC 

particles distributed homogeneously in matrix W with a diameter range of 100 and 

300 nm after MA for 24 h. A detailed EDS spectra analysis of these regions/phases 

can be shown in Table 4.1 (Page 73).  
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a)   

b)  
Figure 4.5 : SEM micrographs of sintered W2TiC1Ni samples which were a) MA™d 
                     for 3 h, b) MA™d for 6 h, c) MA™d for 12 h and d) MA™d for 24 h. 
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c)   

d)  

Figure 4.5 : SEM micrographs of sintered W2TiC1Ni samples which were a) MA™d 
                     for 3 h, b) MA™d for 6 h, c) MA™d for 12 h and d) MA™d for 24 h   
                     (continued). 
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4.1.2.2. TEM Investigations 

a) b)  

c)  

Figure 4.6: a) Bright-field micrograph and b) dark-field electron micrograph with 
                     the objective aperture on (200) showing b. c. c. W regions and c) 
                     corresponding selected-area diffraction patterns of W (ICDD, 04-0806) 
                     in the W2TiC1Ni sample MA™d for 24 h and sintered at 1400 γC for 1 h. 
                     (Camera length, L = 100 cm,  Zone axis is [01 2 ]).  
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a)  b)  

c)  

Figure 4.7 : a) Bright-field micrograph and b) dark-field electron micrograph with 
                      the objective aperture on (10 2 ) showing sphereoidal orthorhombic 
                      W2C grains and c) corresponding selected-area diffraction patterns of 
                      W2C (ICDD, 89-2371) in the W2TiC1Ni sample MA™d for 24 h and 
                      sintered at 1400 γC for 1 h. (Camera length, L=100 cm, Zone axis is 
                      [010]).  
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a)  b)  

c)  

Figure 4.8 : a) Bright-field micrograph and b) dark-field electron micrograph with 
                      the objective aperture on (10 2 ) showing spheroidal-shaped hexagonal 
                      W2C (ICDD, 79-0743) particles in the W2TiC1Ni sample MA™d for 24 
                      h and sintered at 1400 γC for 1 h. c) Corresponding selected-area 
                      diffraction pattern. (Camera length: 100 cm; Zone axis: [0110]). 
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a)  b)  

c)  
Figure 4.9 : a) Bright-field micrograph and b) dark-field electron micrograph with 
                      the objective aperture on ( 4 2 2 ) showing f. c. c. TiC region and c) 
                      corresponding selected-area diffraction patterns of TiC (ICDD, 65- 
                      0242) in the W2TiC1Ni sample MA™d for 24 h and sintered at 1400 γC 
                      for 1 h. (Camera length, L = 100 cm,  Zone axis is [1 2 0]). 

Figures 4.10a and 4.10b are bright-field and dark-field TEM micrographs taken from 

the W2TiC1Ni sample MA™d for 24 h and sintered at 1400 γC for 1 h showing 

rectrangular region with diameters of 100 nm width and 300 nm length. A selected 

electron diffraction pattern (SADP) taken from this rectangular region is shown in 

Fig. 4.10c. This rectangular region is unambiguously identified as being composed of 

the NiTi phase which has hexagonal Bravais lattice and P3  space group with lattice 

parameters of a = 0.735 nm and c = 0.528 nm (ICDD, 72-3504). Thermodynamic 
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calculations using FACT-Sage software (Bale et al., 2002) confirmed that formation 

of NiTi out of Ni and TiC phases is not possible in the temperature range between 0 

and 2000 ¼C. Identification of this  intermetallic NiTi phase is self evident proof of 

decomposition of TiC in MA™d and sintered W2TiC1Ni composites where Ni and 

TiC powders added as starting materials. 

a)  b)  

c)  

Figure 4.10 : a) Bright-field and b) dark-field electron micrographs with the 
                           objective aperture on (013 ) showing rectangular shaped region and 
                           c) corresponding selected-area diffraction pattern of hexagonal NiTi 
                           (ICDD, 72-3504) in the W2TiC1Ni sample MA™d for 24 h and 
                           sintered at 1400 γC for 1 h. (Camera length L= 100 cm).  

Figures 4.11a and 4.11b are bright-field and dark-field TEM micrographs taken from 

the W2TiC1Ni sample MA™d for 24 h and sintered at 1400 γC for 1 h showing 
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sphereoidal grains. A selected electron diffraction pattern (SADP) taken from the 

grain upper left of Fig. 4.11a is shown in Fig. 4.11c. suggesting that this grain is 

being composed of rutile (TiO2) phase which has tetragonal Bravais lattice and 

P42/mmm space group with lattice parameters of a = 0.459 nm and c = 0.295 nm 

(ICDD, 21-1276). As clearly seen in Fig. 4.11b, oxidation takes place at grain 

boundary which is a phenomena that Song et al. indicated as a result of TiC™s 

reaction with O2 (Song et al., 2003a).  

Figures 4.12a and 4.12b are bright-field and dark-field TEM micrographs taken from 

the W2TiC1Ni sample MA™d for 24 h and sintered at 1400 γC for 1 h. Fig. 4.12c is a 

selected electron diffraction pattern (SADP) taken from the spherical grain at Fig. 

4.12a. This spherical grain is unambigously identified as being composed of –-TiO2 

phase which has orthorhombic Bravais lattice and Pbnm space group with lattice 

parameters of a = 0.483 nm, b = 0.942 nm and c = 0.295 nm (ICDD, 53-0619).   

 
 
 
 
 
 
 
 
 
 
 
 
 
 

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com


 61 

a)  b)  

c)  

Figure 4.11 : a) Bright-field and b) dark-field electron micrographs with the 
                           objective aperture on (020) showing sphereoidal grain and c) 
                           corresponding selected-area diffraction pattern of Rutile (TiO2) 
                            (ICDD, 21-1276) in the W2TiC1Ni sample MA™d for 24 h and 
                            sintered at 1400 γC for 1 h. (Camera length L= 100 cm).  
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a)  b)  

c)  
Figure 4.12 : a) Bright-field and b) dark-field electron micrographs with the 
                           objective aperture on (1 2 0)  showing sphereoidal grain and c) 
                           corresponding selected-area diffraction pattern of orthorhombic   
                           –-TiO2 (ICDD, 53-0619) in the W2TiC1Ni sample MA™d for 24 h 
                           and sintered at 1400 γC for 1 h. (Camera length L= 100 cm).  
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a)  b)  

c)  

Figure 4.13 : a) Bright-field and b) dark-field electron micrograph with the objective 
                        aperture on ( 2 11) showing sphereoidal triclinic Ti4O7 grains and c) 
                        corresponding selected-area diffraction patterns of Ti4O7 (ICDD, 72- 
                        4509) in the W2TiC1Ni sample MA™d for 24 h and sintered at 1400 
                        γC for 1 h. (Camera length, L = 100 cm,  Zone axis is [231]). 

4.1.2.3. Density and Hardness Measurements  

Relative densities were measured by using the Archimedes method and relative 

density results of the sintered W2TiC1Ni samples are given in Fig. 4.14. These 

results are the arithmetic mean of 5 successive measurements of the same sample and 

standard deviations.  As seen in Fig. 4.14, relative density values vary between 88 

and 97.5% and increase with increasing MA. Moreover, relative density value of 
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sintered W2TiC1Ni sample MA™d for 3 h has very high standard deviation, which is 

due to its porous microstructure and uncompleted sintering (Fig. 4.5a).  

 
Figure 4.14 : Relative density values of the sintered W2TiC1Ni composites MA™d 
                       for 3 h, 6 h, 12 h and 24 h. 

Vickers microhardness results of sintered W2TiC1Ni samples are given in Fig. 4.15. 

These microhardness test results for each sample are the arithmetic mean of 10 

successive indentations and standard deviations. As seen in Fig. 4.15, microhardness 

values are between 5 and 5.6 GPa. Sintered W2TiC1Ni sample MA™d for 3 h has a 

relatively high microhardess value of 5.4 GPa, this high value can be attributed to 

formation of new oxide and intermetallic phases (Fig. 4.4a). Sample MA™d for 6 h 

unexpectedly have higher hardness value (with higher standard deviation) from the 

sample MA™d for 12 h. Microstructures of these samples (Figures 4.5b and 4.5c, 

respectively) can give an idea about these microhardness results. As seen in Fig. 

4.5b, sintered W2TiC1Ni sample MA™d for 6 h, has better TiC distributions than the 

sample MA™d for 12 h (Fig. 4.5b). Moreover, it seems sample MA™d for 6 h has 

some cracks in microstructure.  
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Figure 4.15 : Vickers microhardness values of the sintered W2TiC1Ni composites 
                        MA™d for 3 h, 6 h, 12 h and 24 h. 

4.1.3. Conclusions 

On the basis of the results of the present investigations, the following conclusions 

can be drawn: 

1)  XRD patterns of the as-blended and MA™d W2TiC1Ni powders revealed peaks 

belonging to the matrix W and Ni phases. Except the WC phase in the samples MA™d 

for 12 h and 24 h, there is no evidence of any intermetallic phase formation between 

W, TiC, C and Ni in the MA™d powders.  Both average grain sizes and particle sizes 

of the MA™d W2TiC1Ni powders decrease with increasing MA duration.  Minimum 

average grain size and particle sizes are achieved for the W2TiC1Ni powders MA™d 

for 24 h and these are 9 nm and 160 nm, respectively. 

2)  Due to Ni-activated sintering, MA™d W2TiC1Ni powders were sintered at a very 

low temperature of 1400¼C. Relative density values varied between 88 and 97.5% 

and increased with increasing MA duration. Vickers microhardness values varied 
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between 5 and 5.6 GPa, where the highest value achieved in sintered W2TiC1Ni 

sample MA™d for 24 h.  

3)  XRD patterns of the MA™d and sintered W2TiC1Ni composites revealed the 

presence of the stable W and Ni phases and a small amount of a W phase which has a 

f.c.c Bravais lattice. New oxide and intermetallic phases, which thought to have 

detrimental effects on sintering, only formed in sintered W2TiC1Ni sample MA™d 

for 3 h. 

4) SEM micrographs taken from MA™d and sintered W2TiC1Ni composites revealed 

the unefficient sintering of the sample MA™d for 3 h.  TEM investigations confirmed 

the presence of the matrix Wand Ni phases detected in the XRD patterns as well as 

the TiC, W2C phases with hexagonal and orthorhombic Bravais lattice, NiTi, rutile, 

TiO2 and Ti4O7 phases in the microstructures of the MA™d and sintered W2TiC1Ni 

composites. 
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4.2. Microstructural Characterizations of Ni Activated Sintered W-2wt% TiC 

Composites produced via Mechanical Alloying 

Abstract 

Blended elemental W-2 wt% TiC powders were mechanically alloyed (MA™d) for 3 

h, 6 h, 12 h and 24 h in a Spex Mixer/mill at room temperature. 1 wt% Ni was added 

as a sintering aid after mechanical alloying to investigate the effects of MA and 

activated sintering. MA™d powders were sintered at 1400 oC for 1 h under Ar, H2 gas 

flowing conditions. Microstructural and phase characterizations of MA™d powders 

and sintered samples were carried out via SEM, TEM and XRD analyses. Whereas 

XRD investigations on MA™d powders revealed stable W and WC phases, those on 

sintered samples showed the presence of a new face-centered cubic W phase and Ni 

in addition to the matrix W phase. TEM investigations on MA™d and sintered 

samples confirmed the presence of the matrix W and the f.c.c. W phase also detected 

in XRD patterns.  TEM investigations also revealed the presence of TiC, Ni4W and 

W2C particles existing in a W-matrix. Relative density values were about 94% for all 

sintered composites which did not change with MA.  Microhardness values of the 

sintered composites varied between 5.4 GPa for the 3 h MA™d sample and 6.0 GPa 

for the 24 h MA™d sample.  

4.2.1. Characterization of Powders 

XRD patterns of mechanically alloyed (MA™d) W2TiC+1Ni powders are shown in 

Figures 4.16a — 4.16e. As seen in these figures, the peaks of W which has a b.c.c. 

Bravais lattice and Im3m space group with the lattice parameter of a = 0.316 nm 

(ICDD, 04-0806) can be identified in all samples. Additionally, the peak belonging 

to {111} reflections of Ni which has a f.c.c. Bravais lattice and Fm3 m space group 

with the lattice parameter of a = 0.352 nm (ICDD, 65-2865) is identified in the as-

blended sample (Fig. 4.16a). Peaks for TiC are not seen, probably due to its small 

amount (2 wt%) in the powder blend and its small particle size (2.7 °m) compared to 

those of Ni (8 °m) and W (14 °m). Moreover, as seen in Figures 4.16c and 4.16d for 

samples MA™d for 6 h and 12 h, the presence of WC phase which has a hexagonal 

Bravais lattice and P 6 m2 space group with the lattice parameters of a = 0.290 nm 

and c = 0.283 nm (ICDD, 51-0339) can be detected due to contamination during MA. 
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However, WC peaks can not be observed in the W2TiC+1Ni powders MA™d for 24 

h, probably due to peak broadening, which caused WC peaks to disappear in the 

background. Thus, it is clear that with increasing MA, peaks are broadened and peak 

heights are decreased, as a result of grain refinement and due to internal strain 

buildup during MA. Average grain size of the matrix W phase in the as-blended and 

MA™d W2TiC+1Ni powders was calculated from Figures 4.16a — 4.16e using 

TOPAS 3 (Bruker AXS) software (Kern and Coelho, 2006) which decreased with 

increasing MA durations. Whereas the as-blended W2TiC+1Ni powders have a W 

grain size of 219 nm, those MA™d for 3 h, 6 h, 12 h and 24 h have average W grain 

sizes of 47.8 nm, 21.1 nm, 10 nm and 5.2 nm, respectively. 

 
Figure 4.16 : XRD patterns of  W2TiC+1Ni powders: a) as-blended, b) MA™d for 
                        3 h, c) MA™d for 6 h, d) MA™d for 12 h and e) MA™d for 24 h. 

Figures 4.17a and 4.17b are SEM micrographs taken from as-blended W2TiC+1Ni 

powders and from powders those MA™d for 24 h, respectively. Fig. 4.17c is a bright-

field TEM micrograph of powders MA™d for 24 h. As seen in Figures 4.17a — 4.17c, 

microscale as-blended powders have diameters in nanoscale after MA. Moreover, 

TiC and Ni powders distributed homogeneously in W matrix after MA. Local 
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agglomerations which are clearly seen in Fig. 4.17b, occur due to small particle size 

distributions of MA™d powders.  Fig. 4.17c shows the equiaxed shaped particles 

varying in size between 100 and 150 nm. 

a)   

b)  

Figure 4.17 : Electron micrographs of as-blended and MA™d W2TiC+1Ni powders. 
                        Representative SEM micrographs of: a) as-blended powders and b) 
                        those MA™d for 24 h. c) Bright-field (BF) TEM micrograph of 
                        powders MA™d for 24 h.  
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c)  

Figure 4.17 : Electron micrographs of as-blended and MA™d W2TiC+1Ni powders. 
                        Representative SEM micrographs of: a) as-blended powders and b) 
                        those MA™d for 24 h. c) Bright-field (BF) TEM micrograph 
                        of powders MA™d for 24 h (continued).  

Figures 4.18a — 4.18d are particle size distributions of as-blended W2TiC+1Ni 

powders and those MA™d for 3 h, 12 h and 24 h, respectively. As-blended 

W2TiC+1Ni powders have an average particle size of 33 μm (Fig. 4.18a), suggesting 

that agglomeration has taken place between the starting powders W (14 μm), Ni (8 

μm) and TiC (2.7 μm). As seen in Figures 4.18b, 4.18c and 4.18d, drastic reductions 

in particle sizes are achieved with MA. Agglomeration peaks in Figures 4.18b — 

4.18c can be attributed to addition of ductile Ni phase after MA of W — 2 wt% TiC.  

An average particle size of 1.4 μm is measured for the powder MA™d for 3 h (Fig. 

4.18b). W2TiC+1Ni powders have the final particle size distributions of 234 nm and 

225 nm after MA for 12 h and 24 h, respectively. Furthermore, with increasing MA 

duration, specific surface area of the powders which is less than 1 m2/g for as-

blended W2TiC+1Ni powders increases with MA and has the value of 36.5 m2/g for 

the W2TiC+1Ni powders MA™d for 24 h. 
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Figure 4.18 : Particle size distributions of a) as-blended W2TiC+1Ni powders and 
                        those MA™d for:  b) 3 h, c) 12 h, d) 24 h. 

As explained in the Experimental Procedures, there are no pressed and sintered 

compacts prepared from as-blended powders used in this study. Relative green 

density values of the consolidated powders are 64%, 64.5%, 59% and 57% for MA 

for 3 h, 6 h, 12 h and 24 h, respectively. Green density values have tendency of 

decreasing with increasing MA duration. 

4.2.2. Characterization of Sintered Samples 

4.2.2.1. XRD and SEM Investigations 

XRD patterns of W2TiC+1Ni powders sintered at 1400 γC under both inert Ar and 

reducing H2 gas flowing conditions for 1 h are shown in Figures 4.19a — 4.19d. As 

clearly seen in Figures 4.19a — 4.19d, stable b.c.c. W and f.c.c. Ni phases are 

identified in all sintered samples. Moreover, a second W phase which has a f.c.c. 

Bravais lattice with Fm3m space group and lattice parameter of a = 4.06 nm (ICDD, 
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88-2339) is present in all MA™d W2TiC+1Ni samples and its major (111) peak is 

shown as an inset figure in Fig. 4.19.   

 
Figure 4.19 : XRD patterns of the sintered W2TiC+1Ni samples which were 
                           a) MA™d for 3 h, b) MA™d for 6 h, c) MA™d for 12 h and d) MA™d 
                           for 24 h. 

SEM micrographs taken from MA™d W2TiC+1Ni samples revealed similar features 

in all sintered microstructures and almost no porosity. Fig. 4.20 is a representative 

SEM micrograph taken from sintered W2TiC+1Ni sample MA™d for 12 h, showing 

three distinct regions indexed as A, B and C in the microstructure. Since chemical 

etching (Murakami and H2O2) was ineffective, grain boundaries of the matrix W can 

not be observed. However, EDS spectra taken from different locations have shown 

that regions indexed as A contained 84.41  ́2.15 wt% W, 2  ́1.12 wt% Ti, 13.04  ́

1.38 wt% C and 0.55  ́0.54 wt% Ni, indicating that these regions are W matrix. EDS 

spectra taken from porous like gray grains (indexed as B) have shown that grains 

comprised 50.92  ́ 11.04 wt% W, 0.95  ́ 0.38 wt% Ti, 17.29  ́ 2.75 wt% C and 

30.78  ́8.9 wt% Ni, inferring that these are Ni-rich grains surrounded by W matrix. 

In addition, black dots (indexed as C) varying in size between 0.1 μm and 1 μm are 
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also present in the microstructure. EDS spectra taken from these black dots revealed 

that they contained 36.38  ́14.8 wt% W, 48.91  ́15.32 wt% Ti, 13.77  ́5.59 wt% C 

and 0.95  ́1.22 wt% Ni. These EDS spectra results with almost equal content of W 

and Ti with high standard deviations indicate that black dots in the microstructure are 

TiC and/or WC particles. 

 
Figure 4.20 : Representative SEM micrograph taken from the W2TiC+1Ni sample 
                        MA™d for 12 h and sintered at 1400 γC for 1 h. 

Table 4.1: EDS spectra analysis 

Region/ 
Elements W Ti C Ni 

Region A 84.41  ́2.15 wt% 2  ́1.12wt% 13.04  ́1.38 wt% 0.55  ́0.54 wt% 

Region B 50.92  ́11.04 wt%  0.95  ́0.38 wt%  17.29  ́2.75 wt% 30.78  ́8.9 wt%  

Region C 36.38  ́14.8 wt% 48.91  ́15.32 wt%  13.77  ́5.59 wt% 0.95  ́1.22 wt% 

4.2.2.2. TEM Investigations 

Figures 4.21a and 4.21b are bright-field and dark-field TEM micrographs taken from 

the sintered W2TiC+1Ni sample MA™d for 24 h showing sphereoidal grains (100 — 

200 nm in size). A selected electron diffraction pattern (SADP) taken from the grain 

upper left of Fig. 4.21a is shown in Fig. 4.21c.  Based on Figures 4.21b and 4.21c, 

these spheroidal grains are unambiguously identified as being composed of the 

matrix b.c.c. W (ICDD, 04-0806) phase. It is clear that sintering led to considerable 

grain growth from a 5 nm mean W grain size of the powders MA™d for 24 h to about 

100 — 200 nm after sintering at 1400 γC for 1 h. 

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com


 74

a)  b)  

c)  

Figure 4.21 : a) Bright-field micrograph and b) dark-field electron micrograph with 
                        the objective aperture on ( 2 11) showing sphereoidal b. c. c. W grains 
                        and c) corresponding selected-area diffraction patterns of W (ICDD, 
                        04-0806) in the W2TiC+1Ni sample MA™d for 24 h and sintered at 
                        1400 γC for 1 h. (Camera length, L = 100 cm,  Zone axis is [011]).  

Figures 4.22a and 4.22b are a pair of bright- and dark-field TEM micrographs taken 

from the sintered W2TiC+1Ni sample MA™d for 24 h showing a rectangular-shaped 

region (indexed as A). An electron diffraction pattern from this rectangular region is 

shown in Fig. 4.21c.  This region is unambiguously identified as the f.c.c. W which is 

also observed in the XRD pattern shown in Fig. 4.19 (ICDD, 88-2339).  Thus, the 

existence of the fcc W phase which otherwise was reported in International Centre 
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for Diffraction Data (ICDD) as a calculated phase is confirmed by the TEM 

investigations of the present study (ICDD, 88-2339).  

a)  b)  

c)  

Figure 4.22 : a) Bright-field micrograph and b) dark-field electron micrograph with 
                        the objective aperture on (13 1) showing rectangular shaped (labeled 
                        as A) f. c. c. W grain (ICDD, 88-2339)  in the W2TiC+1Ni sample 
                        MA™d for 24 h and sintered at 1400 γC for 1 h. c) Corresponding 
                        selected-area diffraction pattern.  (Camera length, L= 60 cm; Zone 
                        axis is [11 4 ]). 

Figures 4.23a and 4.23b are bright-field and dark-field TEM micrographs taken from 

sphereoidal grains in the W2TiC+1Ni sample MA™d for 24 h and sintered at 1400 γC 

for 1 h, respectively. Corresponding electron diffraction pattern from the spherical 

grain upper right of Fig. 4.23a is shown in Fig. 4.23c suggests that it is composed of 
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TiC with a face centered cubic Bravais lattice and with a lattice parameter of a = 

0.431 nm (ICDD, 71-6256).  Further, as clearly seen in Figures 4.23a and 4.23b, TiC 

particles which are not detected in the XRD patterns due to small amount (2 wt%) 

are distributed in the W matrix with diameters of 100 nm or smaller. 

a)  b)  

c)  

Figure 4.23 : a) Bright-field micrograph and b) dark-field electron micrograph with 
                        the objective aperture on ( 2 2 0) showing several spherical-shaped 
                        TiC grains (ICDD, 71-6256) in the W2TiC+1Ni sample MA™d for 24 
                        h and sintered at 1400 γC for 1 h. c) Corresponding selected-area 
                        diffraction pattern. (Camera length, L= 100 cm; Zone axis is [001]). 

Figures 4.24a and 4.24b are bright-field and dark-field TEM micrographs taken from 

the sintered W2TiC+1Ni sample MA™d for 24 h showing spherical grains between 

150 and 200 nm in size.  Corresponding electron diffraction pattern from the lower 
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spherical grain at Fig. 4.24a is shown in Fig. 4.24c. These spherical particles are 

unambiguously identified as being composed of Ni4W with a body centered 

tetragonal Bravais lattice and with lattice parameters of a = 0.573 nm and c = 0.355 

nm (ICDD, 65-2673).   

a)  b)  

c)  

Figure 4.24 : a) Bright-field micrograph and b) dark-field electron micrograph with 
                        the objective aperture on ( 2 11) showing spherical-shaped b. c. t. 
                        Ni4W (ICDD, 65-2673) grains  in the W2TiC+1Ni sample MA™d for 
                        24 h and sintered at 1400 γC for 1 h. c) Corresponding selected-area 
                        diffraction pattern. (Camera length: 100 cm; Zone axis: [011]). 

Figures 4.25a and 4.25b are bright-field and-dark field TEM micrographs taken from 

the sintered W2TiC+1Ni sample MA™d for 24 h showing sphereoidal shaped grains 

varying in size between 40 and 90 nm. Corresponding electron diffraction pattern 

from the spheroidal grains at the lower right of Fig. 4.25a is shown in Fig. 4.25c, 
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suggests that these grains are W2C phase having a hexagonal Bravais lattice and with 

the lattice parameters a = 0.519 nm and c = 0.472 nm (ICDD, 79-0743).  

a)  b)  

c)  

Figure 4.25 : a) Bright-field micrograph and b) dark-field electron micrograph with 
                        the objective aperture on (10 2 ) showing spheroidal-shaped hexagonal 
                        W2C (ICDD, 79-0743) particles in the W2TiC+1Ni sample MA™d for 
                        24 h and sintered at 1400 γC for 1 h. c) Corresponding selected-area 
                        diffraction pattern. (Camera length: 100 cm; Zone axis: [0110]). 
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4.2.2.3. Density and Hardness Measurements 

Relative densities were measured by using the Archimedes method and relative 

density results of the sintered W2TiC+1Ni samples are given in Fig. 4.26. These 

results are the arithmetic mean of 5 successive measurements of the same sample and 

standard deviations.  As seen in Fig. 4.26, relative densities are about 94.2 % for all 

the sintered W2TiC+1Ni. Moreover, relative density results of all the samples have 

almost the same standard deviation values which is about  ́0.9 %.   

Vickers microhardness results of sintered W2TiC+1Ni samples are given in Fig. 

4.27. These microhardness test results for each sample are the arithmetic mean of 10 

successive indentations and standard deviations. As seen in Fig. 4.27, microhardness 

values are between 5.4 GPa and 6.0 GPa and they increase with increasing MA 

duration for all W2TiC+1Ni samples. Since all sintered samples have the same 

relative densities about 94%, this increase can be attributed to grain refinement 

during MA. Vickers microhardness values of the W2TiC+1Ni samples MA™d for 3 h, 

6 h and 24 h have the standard deviations about  ́0.15 — 0.2 GPa where the sample 

MA™d for 12 h has the highest standard deviation with a value of  ́0.26 GPa.  

 
Figure 4.26 : Relative density values of the sintered W2TiC + 1Ni composites MA™d 
                       for 3 h, 6 h, 12 h and 24 h. 
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Figure 4.27 : Vickers microhardness values of the sintered W2TiC + 1Ni composites 
                       MA™d for 3 h, 6 h, 12 h and 24 h. 

4.2.3. Conclusions 

On the basis of the results of the present investigations, the following conclusions 

can be drawn: 

1) XRD patterns of the as-blended and MA™d W2TiC+1Ni powders revealed peaks 

belonging to the matrix W and Ni phases. Except the WC phase in the samples MA™d 

for 6 h, there is no evidence of any intermetallic phase formation between W, TiC, C 

and Ni in the MA™d powders.  Both average grain sizes and particle sizes of the 

MA™d W2TiC+1Ni powders decrease with increasing MA duration.  Minimum 

average grain size and particle sizes are achieved for the W2TiC+1Ni powders MA™d 

for 24 h and these are 5 nm and 225 nm, respectively. 

2) Due to Ni-activated sintering, MA™d W2TiC+1Ni powders were sintered at a very 

low temperature of 1400¼C. Whereas all MA™d and sintered compacts have the same 

relative sinter density of 94%, their microhardness values vary between 5.42 GPa 

and 6.00 GPa.  
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3) XRD patterns of the MA™d and sintered W2TiC+1Ni composites revealed the 

presence of the stable W and Ni phases and a small amount of a W phase which has a 

f.c.c Bravais lattice. SEM micrographs taken from MA™d and sintered W2TiC+1Ni 

composites revealed similar microstructural features with no porosity in the sintered 

microstructures.  TEM investigations confirmed the presence of the matrix W and the 

f.c.c. W phases detected in the XRD patterns as well as the TiC, Ni4W and W2C 

phases in the microstructures of the MA™d and sintered W2TiC+1Ni composites. 
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4.3. Characterization Investigations TiC Dispersion Strengthened W-Ni 

Composites produced via Mechanical Alloying 

Abstract 

Blended elemental W-1 wt% Ni powders were mechanically alloyed (MA™d) for 3 h, 

6 h, 12 h and 24 h in a Spex Mixer/mill at room temperature to investigate the effects 

of MA and activated sintering. 2 wt% TiC was added as reinforcement after 

mechanical alloying. MA™d powders were sintered at 1400 oC for 1 h under Ar, H2 

gas flowing conditions. Microstructural and phase characterizations of MA™d 

powders and sintered samples were carried out via SEM and XRD analyses. Whereas 

XRD investigations on MA™d powders revealed stable W and WC phases, those on 

sintered samples showed the presence of a new face-centered cubic W phase and Ni 

in addition to the matrix W phase. Relative density values varied between 94 and 

98.5% and increased with increasing MA duration. Microhardness values of the 

sintered composites varied between 4.8 GPa for the 3 h MA™d sample and 5.1 GPa 

for the 24 h MA™d sample.  

4.3.1. Characterization of Powders 

XRD patterns of mechanically alloyed (MA™d) W1Ni+2TiC powders are shown in 

Figures 4.28a — 4.28e. As seen in these figures, the peaks of W which has a b.c.c. 

Bravais lattice and Im3m space group with the lattice parameter of a = 0.316 nm 

(ICDD, 04-0806) can be identified in all samples. Additionally, the peak belonging 

to {111} reflections of Ni which has a f.c.c. Bravais lattice and Fm3m space group 

with the lattice parameter of a = 0.352 nm (ICDD, 65-2865) is identified in the as-

blended sample (Fig. 4.28a). Peaks for TiC are not seen, probably due to its small 

amount (2 wt%) in the powder blend and its small particle size (2.7 °m) compared to 

those of Ni (8 °m) and W (14 °m). Moreover, as seen in Figures 4.28b — 4.28d for 

samples MA™d for 3 h, 6 h and 12 h, the presence of WC phase which has a 

hexagonal Bravais lattice and P 6 m2 space group with the lattice parameters of a = 

0.290 nm and c = 0.283 nm (ICDD, 51-0339) can be detected due to contamination 

during MA. However, WC peaks can not be observed in the W2TiC+1Ni powders 

MA™d for 24 h, probably due to peak broadening, which caused WC peaks to 

disappear in the background. Thus, it is clear that with increasing MA, peaks are 
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broadened and peak heights are decreased, as a result of grain refinement and due to 

internal strain buildup during MA. Average grain size of the matrix W phase in the 

as-blended and MA™d W2TiC+1Ni powders was calculated from Figures 4.28a — 

4.28e using TOPAS 3 (Bruker AXS) software (Kern and Coelho, 2006) which 

decreased with increasing MA durations. Whereas the as-blended W1Ni+2TiC 

powders have a W grain size of 219 nm, those MA™d for 3 h, 6 h, 12 h and 24 h have 

average W grain sizes of 74.8 nm, 31.8 nm, 12.5 nm and 8.1 nm, respectively.  

 
Figure 4.28 : XRD patterns of  W1Ni+2TiC powders: a) as-blended, b) MA™d for 
                        3 h, c) MA™d for 6 h, d) MA™d for 12 h and e) MA™d for 24 h. 

Figures 4.29a and 4.29b are SEM micrographs taken from as-blended W1Ni+2TiC 

powders and from powders those MA™d for 24 h, respectively. As seen in Figures 

4.29a and 4.29b, microscale as-blended powders have diameters in nanoscale after 

MA. Moreover, TiC and Ni powders distributed homogeneously in W matrix after 

MA. Local agglomerations which are clearly seen in Fig. 4.29b, occur due to small 

particle size distributions of MA™d powders.   
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a)   

b)  

Figure 4.29 : Electron micrographs of as-blended and MA™d W2TiC+1Ni powders. 
                        Representative SEM micrographs of: a) as-blended powders and b) 
                        those MA™d for 24 h.  

Figures 4.30a — 4.30d are particle size distributions of as-blended W1Ni+2TiC 

powders and those MA™d for 3 h, 6 h and 24 h, respectively. As-blended W1Ni+2TiC 

powders have an average particle size of 33 μm (Fig. 4.30a), suggesting that 

agglomeration has taken place between the starting powders W (14 μm), Ni (8 μm) 

and TiC (2.7 μm). As seen in Figures 4.30b, 4.30c and 4.30d, drastic reductions in 

particle sizes are achieved with MA. W1Ni+2TiC powders have the final particle 
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size distributions of 177 nm and 121 nm after MA for 6 h and 24 h, respectively. 

Furthermore, with increasing MA duration, specific surface area of the powders 

which is less than 1 m2/g for as-blended W1Ni+2TiC powders increases with MA 

and has the value of 52,2 m2/g for the W1Ni+2TiC powders MA™d for 24 h. 

 
Figure 4.30 : Particle size distributions of a) as-blended W1Ni+2TiC powders and 
                         those MA™d for:  b) 3 h, c) 6 h, d) 24 h. 

There are no pressed and sintered compacts prepared from as-blended powders used 

in this study. Relative green density values of the consolidated powders are 64.8%, 

64.8%, 60.9% and 56.6% for MA for 3 h, 6 h, 12 h and 24 h, respectively. Green 

density values have tendency of decreasing with increasing MA duration. 
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4.3.2. Characterization of Sintered Samples 

4.3.2.1. XRD and SEM Investigations 

XRD patterns of W1Ni+2TiC powders sintered at 1400 γC under both inert Ar and 

reducing H2 gas flowing conditions for 1 h are shown in Figures 4.31a — 4.31d. As 

clearly seen in Figures 4.31a — 4.31d, stable b.c.c. W and f.c.c. Ni phases are 

identified in all sintered samples. Moreover, a second W phase which has a f.c.c. 

Bravais lattice with Fm3 m space group and lattice parameter of a = 4.06 nm (ICDD, 

88-2339) is present in all MA™d W1Ni+2TiC samples.   

 
Figure 4.31 : XRD patterns of the sintered W1Ni+2TiC samples which were MA™d 
                        for a) 3 h, b) 6 h, c) 12 h and d) 24 h. 

SEM micrographs taken from MA™d W1Ni+2TiC samples revealed two similar 

features first in 3 h and 6 h, and second in 12 h and 24 h and almost no porosity. 

Figures 4.32a and 4.32b are representative SEM micrograph taken from sintered 

W1Ni+2TiC sample MA™d for 3 h and 12 h, respectively. Since chemical etching 

(Murakami and H2O2) was ineffective, grain boundaries of the matrix W can not be 

observed. However, EDS spectra analysis have shown that gray regions are being 
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composed of matrix W, black dots are TiC and/or WC particles and white areas are 

dirtiness. As seen in Fig. 4.32a, distribution of TiC/WC particle is not homogeneous. 

Thus, with increasing MA duration TiC distributed more homogeneously, as seen in 

Fig.4.32b. Bigger black dots in Fig. 4.32b, which have size range between 200 nm 

and 1 μm, are TiC particles which added after MA of W-1Ni and further MA™d for 

20 min, and smaller black dots are WC particles which contaminated during MA. 

a)  

b)  

Figure 4.32 : Representative SEM micrographs taken from sintered W1Ni+2TiC 
                         samples MA™d for a) 3 h and b) 12 h. 
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4.3.2. Density and Hardness Measurements 

Relative densities were measured by using the Archimedes method and relative 

density results of the sintered W1Ni+2TiC samples are given in Fig. 4.33. These 

results are the arithmetic mean of 5 successive measurements of the same sample and 

standard deviations.  As seen in Fig. 4.33, relative density values vary between 94 

and 98.5% and increase with increasing MA duration, where a value of 98.5% 

achieved in the sintered W1Ni+2TiC sample MA™d for 24 h. Moreover, relative 

density results of all the samples have almost the same standard deviation values 

which is about  ́1 %.   

 
Figure 4.33 : Relative density values of the sintered W1Ni+2TiC composites MA™d 
                       for 3 h, 6 h, 12 h and 24 h. 

Vickers microhardness results of sintered W1Ni+2TiC samples are given in Fig. 

4.34. These microhardness test results for each sample are the arithmetic mean of 10 

successive indentations and standard deviations. As seen in Fig. 4.34, microhardness 

values are between 4.8 GPa and 5.1 GPa and they increase with increasing MA 

duration for all sintered W1Ni+2TiC samples.  
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Figure 4.34 : Vickers microhardness values of the sintered W1Ni+2TiC composites 
                        MA™d for 3 h, 6 h, 12 h and 24 h. 

4.3.3. Conclusions 

On the basis of the results of the present investigations, the following conclusions 

can be drawn: 

1) XRD patterns of the as-blended and MA™d W1Ni+2TiC powders revealed peaks 

belonging to the matrix W and Ni phases. Except the WC phase contaminated during 

MA, there is no evidence of any intermetallic phase formation between W, TiC, C 

and Ni in the MA™d powders.  Both average grain sizes and particle sizes of the 

MA™d W1Ni+2TiC powders decrease with increasing MA duration.  Minimum 

average grain size and particle sizes are achieved for the W1Ni+2TiC powders MA™d 

for 24 h and these are 8 nm and 121 nm, respectively. 

2) Due to Ni-activated sintering, MA™d W1Ni+2TiC powders were sintered at a very 

low temperature of 1400¼C for 1 h with a relative density value as high as 98.5% 

achieved in sintered W1Ni+2TiC sample MA™d for 24 h. Relative density values 

varied between 94 and 98.5% and increased with increasing MA duration. Whereas, 
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Vickers microhardness values were 4.8 GPa for the sample MA™d for 3 h and 5.1 

GPa for the sample MA™d for 24 h. 

3) XRD patterns of the MA™d and sintered W1Ni+2TiC composites revealed the 

presence of the stable W and Ni phases and a small amount of a W phase which has a 

f.c.c Bravais lattice. SEM micrographs taken from MA™d and sintered W1Ni+2TiC 

composites revealed two different microstructural features with no porosity in the 

sintered microstructures.  
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5. DISCUSSION 

The present study has shown that dispersion strengthened W matrix composites can 

be successfully sintered using Ni activated sintering technique at high relative sinter 

densities and at high hardness values using a sintering temperature of as low as 

1400¼C and sintering duration of 1 h. Ni activated sintering of W has been 

investigated by several researchers who reported relative sinter density values 

varying between 88 and 95% for different amounts of Ni additions at sintering 

temperatures in the vicinity of 1400 γC (Vacek, 1959; Hayden and Brophy, 1963; 

Panichkina, 1967; Samsonov and Yakovlev, 1967; Toth and Lockington, 1967; 

Samsonov and Yakovlev, 1969; German and Munir, 1976; German and Munir, 1982; 

Li and German, 1983; Corti, 1986; Gupta et al., 2007). Samsonov and Yakovlev 

measured relative density values between 90 and 95% after sintering at 1400 γC for 1 

h with 0.5 wt% Ni additions (Samsonov and Yakovlev, 1967). More recently, Gupta 

et al. (Gupta et al., 2007) investigated solid-state activated sintering of W with 

different Ni additions at different sintering temperatures. They explained the 

activated sintering mechanism on the basis of grain boundary diffusion and achieved 

a relative sinter density value of 89% for 1 at% Ni doped W sintered at 1400 γC.  

However, mechanisms of dispersion strengthening and activated sintering of W were 

not combined in none of these studies.  Thus, the main contribution of the present 

investigation is the reduction of the sintering temperature of a TiC dispersed W 

composite by the addition of Ni.  In the present study, after sintering in solid state 

well below the bulk eutectic temperature of 1495 γC (Fig. 2.20) (Massalski, 1990), a 

maximum relative density value of 98.5% were achieved for sintered W1Ni+2TiC 

sample MA™d for 24 h, where 2 wt% TiC added after MA of W-1Ni and further 

MA™d for 20 min. Relative density results measured in this study have shown that Ni 

distribution has the dominant role in densification of MA™d W2TiC composites. 

Thus, relative density values varied between 88 and 97.5% for W2TiC1Ni samples 

and 94 and 98.5% for W1Ni+2TiC samples and increased with increasing MA 

duration. Whereas, relative density values of 94% were achieved for all W2TiC+1Ni 
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samples where 1 wt% Ni added after MA of W2TiC and further MA for 20 min for 

all samples.  

Moreover, ball milled W-TiC composites investigated by Song. et. al. (Song et al., 

2003b) who found microhardness values about 5.5 GPa for the case of W-10 vol.% 

TiC after hot pressing at 2000 γC. Chen et al. reported a microhardness value of 8 

GPa after the hot pressing of 24 h ball milled W — 5 wt% TiC powders at 2100 γC for 

90 min, where relative density value was about 94% (Chen et al., 2008). Present 

study have measured a maximum Vickers microhardness value of 6 GPa for the 

sintered W2TiC+1Ni sample MA™d for 24 h which has a relative density of 94% 

which is comparable with Song et al.™s study where microhardness value of 5.5 GPa 

measured for the case of W-10 vol.% TiC after hot pressing at 2000 γC (Song et al., 

2003b). A comparison can be done with three different experimental routes of this 

study which presented in detail in Chapter 4. In case of blended W-2 wt% TiC-1 

wt% Ni powders MA™d together for different durations such as 3 h, 6 h, 12 h and 24 

h, maximum microhardness value of 5.6 GPa achieved in the sample MA™d for 24 h, 

which had relative density value of 97.5%. Second route was MA of W-2 wt% TiC 

for same duration and addition of 1 wt% Ni as sintering aid which further MA™d  

together for 20 min, where relative density values were 94% for all sintered samples 

and did not change with MA duration and a maximum microhardness value of 6 GPa 

achieved in the sample MA™d for 24 h. Third route was MA of W-1 wt% Ni for 3 h, 

6 h, 12 h and 24 h and addition of 2 wt% TiC as reinforcing agent which further 

MA™d together for 20 min. In this route, a maximum relative density value of 98.5% 

achieved in the sample MA™d for 24 h which had a microhardness value of 5.1 GPa.  

Another important contribution of this work is the identification of face centered 

cubic W phase during characterization investigations via XRD (Fig. 4.19) and TEM 

(Fig. 4.22). Thus, the existence of the f.c.c. W phase which otherwise was reported in 

International Centre for Diffraction Data (ICDD) as a calculated phase (ICDD, 88-

2339) is confirmed by the TEM investigations of the present study.  Although, the 

formation mechanism of this phase is not known, since it is identified in all sintered 

samples, it is predicted that it somehow forms during sintering via diffusion and/or 

rearrangement of W atoms in the as-MA™d microstructures. Moreover, a Ni4W with a 

body centered tetragonal Bravais lattice (ICDD, 65-2673) is identified via TEM 

investigations. It is expected that the stable intermetallic Ni4W phase is precipitated 
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at the W-grain boundaries after activated sintering process (Kim et al., 2003). In 

addition to Ni4W, other W-Ni intermetallics such as NiW and NiW2 can be formed 

well below the bulk eutectic temperature of 1495 ¼C (Fig. 2.20) (Massalski, 1990). 

These phases could reversely be decomposed at the high temperatures as seen in 

equilibrium diagram. The present study shows that with the TEM observations 

(Figures 4.24a — 4.24c) conducted at room temperatures, Ni4W intermetallic 

compound exists after sintering at 1400 γC for 1 h. Further, a W2C phase having a 

hexagonal Bravais lattice (ICDD, 79-0743) which could not be observed in the XRD 

patterns, was detected during TEM investigations. This phase might be formed due 

to the decomposition of contaminated WC during sintering or directly due to 

contamination during MA. 

Present study has also shown the solid state decomposition of TiC in W2TiC1Ni 

composites via XRD (Fig. 4.1a) and TEM (Figures 4.10 — 4.14). TiC, which oxidizes 

slowly in air at 800 oC, but can be heated till its melting point without decomposition 

under hydrogen atmosphere, is isomorphous with TiN and TiO, thus oxygen and 

nitrogen can substitute for carbon to form binary and ternary solid solutions over a 

wide range of homogeneity (Pierson, 1996; Jung et al., 1999). Lo→pez et al. 

investigated thermal stability of TiC in Al-Si systems (Lo→pez et al., 2003). They 

found no evidence of solid-state reactions, whereas in liquid phase, between 600 γC 

and 800 oC, Ti-Al-Si intermetallics, with a wide noninteger stoichiometric 

composition, and Al4C3 layers were observed, which both formed at the TiC particle-

matrix interface due to decomposition of TiC. At 850 oC and above, reproduction of 

TiC out of intermetallics was observed with the constitution of Kennedy et al.™s 

(Kennedy et al., 2000) previous work on Al-Ti-C composites who reported a similar 

endothermic reaction between Al4C3 and Al3Ti in Al to produce TiC at 890 oC. 

Kennedy et al. (Kennedy et al., 2001) also stated that TiC was found to be stable at 

900 oC and above. Solid-state stoichiometric changes and displacement reactions of 

TiC in composite systems mainly investigated in literature (Wanjara et al., 2000; 

Yang et al., 2003; Li et al., 2004). However there are no detailed studies about solid-

state decomposition of TiC except Song et al. (Song et al., 2003a) where high 

temperature ablation properties of W-TiC composites investigated, they stated 

formation of TiO layer as protecter formed on the surface of TiC as a result of minor 

reaction of TiC with CO. Formation of intermetallic NiTi phase (Figures 4.10a — 
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4.10c) is self evident proof of decomposition of TiC in W2TiC1Ni composites 

according to FACT-Sage software (Bale et al., 2002) which revealed that formation 

of NiTi out of Ni and TiC phases is not possible in the temperature range between 0 

and 2000 γC. Figures 4.11 — 4.14 are TEM observations showing Rutile, –-TiO2 and 

Ti407 phases, respectively and indicating oxidation of TiC or decomposed Ti in 

MA™d and sintered W2TiC1Ni composites. Since sintering was conducted in solid 

state, at a temperature of 1400 γC which is well below of bulk eutectic temperature of 

W-Ni (1495 ¼C) and melting point of TiC (3067 γC) under both inert Ar and reducing 

H2 atmosphere, where TiC should be stable due to above mentioned literature 

(Pierson, 1996; Kennedy et al., 2001; Lo→pez et al., 2003). Song et al. reported 

oxidation of TiC as a result of ablation of TiC/W composites at high temperatures 

with main reaction given in Eq. 1 (Song et al., 2003a).  

                        TiC + O2L  TiO + CO                                                                     (5.1) 

Song et al. investigated the ablation properties of TiC/W composites with a standard 

ablation experimental setup which involves a flame and temperatures as high as 3000 

γC (Song et al., 2003a). They used far out parameters during processing of TiC/W 

composites in comparison with the present study and so oxidation mechanism was 

not thought to be same. However since they observed oxide phases grow out of 

decomposition of TiC, it should be mentioned in such a study. Sun et al. made a 

study of in-situ production of morph-genetic TiC/C ceramic out of tetrabutyl titanate 

which was firstly decomposed to anatase TiO2, and then reacted with carbon to form 

TiC as seen in Eq. 2 which is reverse mechanism of Eq. 1 (Sun et al., 2004).  

                         TiO2 + 3CL  TiC + CO                                                                  (5.2) 

Conversion of C and TiO2 to TiC as revealed in Eq. 2 took place at 1400 γC during 

sintering under Ar atmosphere (Sun et al., 2004). They conducted experiments 

almost same conditions with this study but came out with the direct opposite results 

about formation and/or composition behavior of TiC. These conflicted results 

predicted as effects of mechanical alloying (MA) which can be defined as a 

processing under non-equilibrium (or far-from-equilibrium) conditions 

(Suryanarayana, 2001). Additionally, it has been recognized that by using this 

technique chemical (displacement) reactions in powder mixtures can be induced at 

room temperature or at much lower temperatures than normally required to 

synthesize (Suryanarayana, 2001; Fecht, 2002). It is believed that, formation of these 
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oxide and intermetallic phases and so decomposition of TiC take place during MA 

and sintering at a temperature of 1400 γC. 

General Conclusions 

On the basis of the results of the present investigations, the following conclusions 

can be drawn: 

1) XRD patterns of the as-blended and MA™d W-TiC-Ni powders revealed peaks 

belonging to the matrix W and Ni phases. Except the WC phase contaminated during 

MA, there is no evidence of any intermetallic phase formation between W, TiC, C 

and Ni in the MA™d powders.  Both average grain sizes and particle sizes of the 

MA™d W1Ni+2TiC powders decrease with increasing MA duration 

2) Due to Ni-activated sintering, MA™d W-TiC-Ni composite powders were sintered 

at a very low temperature of 1400¼C for 1 h with a relative density value as high as 

98.5% achieved in sintered W1Ni+2TiC sample MA™d for 24 h. Relative density 

values varied between 88% and 98.5% and increased with increasing MA duration. 

Whereas, Vickers microhardness values varied between 4.8 GPa and 6 GPa, 

maximum value achieved in the sintered W2TiC+1Ni sample MA™d for 24 h. 

3) XRD patterns of the MA™d and sintered W-TiC-Ni composites revealed the 

presence of the stable W and Ni phases and a small amount of a W phase which has a 

f.c.c Bravais lattice.  

4) TEM investigations confirmed the presence of the matrix W and Ni phases 

detected in the XRD patterns as well as the TiC, W2C phases with hexagonal and 

orthorhombic Bravais lattice, NiTi, rutile, TiO2 and Ti4O7 phases in the 

microstructures of the MA™d and sintered W2TiC1Ni composites. Moreover, TEM 

investigations confirmed the presence of the matrix W and the f.c.c. W phases 

detected in the XRD patterns as well as the TiC, Ni4W and W2C phases in the 

microstructures of the MA™d and sintered W2TiC+1Ni composites. 

All above mentioned results have shown that dispersion strengthened W matrix 

composites can be successfully sintered using Ni activated sintering technique at 

high relative sinter densities (98.5%) and at high hardness values (6 GPa) using a 

sintering temperature of as low as 1400 γC and sintering duration of 1 h.   
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