ISTANBUL TECHNICAL UNIVERSITY % INSTITUTE OF SCIENCE AND TECHNOLOGY

(3+3+2) WARPED-LIKE PRODUCT MANIFOLDS WITH
SPIN(7) HOLONOMY

Ph.D. Thesis by

Selman LfBUZ, M.Sc.

Department : MATHEMATICS ENGINEERING

Programme : MATHEMATICS ENGINEERING

FEBRUARY 2008



ISTANBUL TECHNICAL UNIVERSITY % INSTITUTE OF SCIENCE AND TECHNOLOGY

(3+3+2) WARPED-LIKE PRODUCT MANIFOLDS WITH
SPIN(7) HOLONOMY

Ph.D. Thesis by
Selman USUZ, M.Sc.

(509022002)

Date of Submission : 4 February 2008
Date of Examination : 21 November 2008

Supervisor : Prof. Dr. Ayse H. BILGE
Members of the Examining Committee Prof. Dr. Vahap ERDOGDU (iTU)
Prof. Dr. Tekin DEREL | (KOG U.)
Prof. Dr. Zerrin SENTURK ( ITU)

Prof. Dr. Sahin KOGCAK (ANADOLU U.)

FEBRUARY 2008



ISTANBUL TEKN IK UN IVERSITESI % FEN BIL IMLER | ENSTITUSU

SPIN(7) HOLONOM ISINE SAH P (3+3+2) WARPED-BENZERI
CARPIM MAN IFOLDLARI

DOKTORA TEZ |
Y.Mat. Selman UGUZ

(509022002)

Tezin Enstitiye Verildigi Tarih ;4 Subat 2008
Tezin Savunulduju Tarih  : 21 Kasim 2008

Tez Danismani : Prof. Dr. Ayse H. BILGE
Diger Juri Uyeleri Prof. Dr. Vahap ERDO GDU (ITU)
Prof. Dr. Tekin DEREL i (KOG U.)
Prof. Dr. Zerrin SENTURK ( ITU)

Prof. Dr. Sahin KOCAK (ANADOLU U.)

SUBAT 2008



ACKNOWLEDGEMENTS

I would like to thank my supervisor Prof. Dr. Ayse H. Bilge for supports, advices
during the preparation of this thesis and and giving me guidance throughout the
process of this work with remarkable patience and conscientiousness. I should
also like to thank Prof. Dr. Tekin Dereli, Prof. Dr. Vahap Erdogdu and Prof.
Dr. Zerrin Sentiirk for many comments and invaluable support during this work.

Additionally I would also like to thank Prof.  Dr. Sahin Kogak for
guidance and continual encouragement throughout thesis. He taught me many
fundamental concepts and their relations with his excellent and genuine manner
of presentation.

I would like to thank Prof. Dr. Thomas Friedrich, Prof. Dr. Ilka Agricola, Dr.
Simon Chiossi, Dr. Richard Cleyton and Dr. Takayoshi Ootsuka for many fruitful
discussions and comments.

I also wish to give my very special thanks my wife and my little son for living
with the thesis as well as giving me love and support all through the years.

This thesis was supported by TUBITAK under Project No: 106T558 and
TUBITAK-BIDEB Research Programme 2214.

February 2008 Selman UGUZ



CONTENTS

LIST OF TABLES Y
LIST OF FIGURES Vi
LIST OF SYMBOLS Vil
SUMMARY viii
OZET IX
1. INTRODUCTION 1
2. PRELIMINARIES 4
2.1. Basic Definitions 4
2.2. Riemannian Geometry 7
2.2.1. Metric Tensor 7
2.2.2. Hodge Duality 7
2.2.3. Connections 8
2.2.4. Parallel Translation and Geodesics 9
2.2.5. Curvature and the Ricci Tensor 10
2.3. Warped and Multiply Warped Products 12
2.4. Riemannian Holonomy 13
2.4.1. Preliminaries 13
2.4.2. The Holonomy Group 14
2.4.3. The Classification of Riemannian Holonomy Groups 17
2.4.3.1. Holonomy Groups Classification: Berger’s List 17
2.4.3.2. Berger’s List and Normed Algebras over R 19
2.4.3.3. Classification Table 19
2.4.4. Explicit Examples 21
3. MANIFOLDS WITH SPIN(7) HOLONOMY 23
3.1. The Bonan Form on R® 23
3.1.1. Obtaining the Bonan Form via Octonionic Algebra 24
3.1.2. Obtaining the Bonan Form via Vector Cross Products on
Octonions 26
3.2. Construction of a Manifold with Spin7) Holonomy 27
3.2.1. A Vector Field Method for the Construction of Manifolds
with Spin7) Holonomy 27

3.2.2. An Example of Manifold with Spin(7) Holonomy: S*x S*xR? 31

4. (3+3+2) WARPED-LIKE PRODUCT MANIFOLDS WITH SPIN(7)

HOLONOMY 39
4.1. Preliminaries 40
4.2. (3+3+2) Warped-Like Product Manifolds 42

4.3. Bonan Form and (3+ 3+ 2) Warped-Like Product Structure 46



4.4. (3+3+2) Warped-Like Product Manifolds with Spin7) Holonomy 49

4.5. Comparison with the Yasui-Ootsuka ansatz 55
5. CONCLUSION AND DISCUSSION 59
REFERENCES 62
APPENDIX 65
A. MULTIPLICATION TABLE OF OCTONIONS 65
B. THE SCHOUTEN-NIJENHUIS BRACKET 68
C. THE SET OF 56 LINEAR EQUATIONS 69

CIRCULUM VITAE 71



LIST OF TABLES

Page No
Table 2.1 Berger’'slist . . . .. ... ... ... ... ... ... ..., 13
Table 2.2  Berger’s list via division algebras . . . . . . . ... ... ... 20
Table 3.1  The multiplication of octonions . . . . . . .. ... ... ... 25
Table A.1  Octonion multiplication table . . . . . . ... ... ... ... 65



LIST OF FIGURES

Figure 2.1:
Figure 2.2:
Figure 2.3:
Figure 2.4:

Figure 2.5:

Page No
Parallel translation of vector field. . . . . . . . ... ... ... 15
Holonomy group at the point p. . . . . . ... ... ... ... 15
Holonomy group for connected manifolds. . . . . .. ... .. 16
Salamon’s illustration of the holonomy groups of the Berger’s
list. . . . 19
Classification of Riemannian holonomy. . . . . . . . . ... .. 20

Vi



LIST OF SYMBOLS

M : Differentiable manifold

\ . Vector space

V* : Dual vector space of V

(r,s) : Tensor of r-covariant, S-contravariant
TL(V) : Set of tensors of r-covariant, S-contravariant
2'(V) : Set of symmetric tensors of r-covariant
A"(V) : Set of alternating tensors of r-covariant
® . Tensorial product

A : Wedge product

d . Exterior derivative

Vp : Tangent vector at p

TpoM : Tangent vector space at p

T;‘)M : Cotangent vector space at p

™ : Tangent bundle

M : Cotangent bundle

X(M) : Vector fields on M

g : Metric tensor

U : Connection

rk : Second type Christoffel symbol
R!jk : Curvature tensor

T : Torsion tensor

K(M) : Sectional curvature of M

w : Connection one-form matrix

X : Curvature 2-form matrix

R : Real numbers

C : Complex numbers

H : Quaternions

O : Octonions

: n-dimensional Real vector space
SQO(n) : Special orthogonal group

SU(n) : Special unitary group

Sp(n) : Symplectic group

&

Q : Bonan form
Il : Nom

(,) : Inner product
* : Hodge dual

vii



(3+3+2) WARPED-LIKE PRODUCT MANIFOLDS WITH SPIN(7)
HOLONOMY

SUMMARY

In the theory of Riemannian holonomy groups there are two exceptional cases,
the holonomy group Gy in 7-dimensional and the holonomy group Spin7) in
8-dimensional manifolds. In the present thesis, we investigate the structure of
Riemannian manifolds whose holonomy group is a subgroup of Spin7), for a
special case.

Manifolds with Spin7) holonomy are characterized by the existence of a 4-form,
called the Bonan form (Cayley form or Fundamental form), which is self-dual
in the Hodge sense, Spin7) invariant and closed. In Chapter 2, we review
two methods for the construction of the Bonan form, based on the octonionic
multiplication and the triple vector cross products on octonions.

In Chapter 3, we survey a metric with Spin(7) holonomy on S* x S$* x R? given
by Yasui and Ootsuka. By using a specific tensor formula called the 2-vector
condition given there, we obtain conditions on the commutators of orthonormal

vector fields for the existence of a metric with Spin7) holonomy on an arbitrary
8-manifold.

In Chapter 4, we define “(3+3+2) warped-like product manifolds"as a
generalization of multiply warped product manifolds, by allowing the fiber metric
to be non block diagonal, on a manifold M = F x B, where the base B is a
two dimensional Riemannian manifold, the fibre F is a 6-manifold of the form
F =F x F where F’s (i =1,2) are complete, connected and simply connected
Riemannian 3-manifolds. In the Yasui-Ootsuka solution, the underlying manifold
is of this type and the fibers are assumed to be S*. In this thesis we prove that if
the specific Bonan form given in Yasui-Ootsuka is closed, then the fibre spaces F’s
are isometric to S°. This implies that the Yasui-Ootsuka solution is unique in the
class of (3+ 3+ 2) warped-like product metrics admitting the Spin(7) structure
determined by the Bonan form given in Yasui-Ootsuka.

Finally we briefly discuss the conclusions of the study and the directions for future
research.
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SPIN(7) HOLONOM ISINE SAHIP (3+3+2) WARPED-BENZERI GARPIM
MAN IFOLDLARI

OZET

Riemann holonomi teorisinde ayricalikli iki holonomi grubu vardir. Bunlar
7-boyutlu manifoldlar iizerinde olan Gy ve 8-boyutlu manifoldlar {izerinde
olan Spin7) holonomi gruplaridir. Bu tez caligmasinda, holonomi grubu,
Spin7)’nin bir alt grubu olan Riemann manifoldlarimin yapisi 6zel bir durum
i¢in incelenmigtir.

2. Boliimde, Spin7) holonomi grubuna sahip manifoldlar, Bonan formu (Cayley
formu veya esas form) olarak adlandirilan, Hodge anlaminda kendine eg, Spin7)
invaryant ve kapali bir 4-formun varhgi ile karakterize edilir. Oktonion garpimi
ve oktonionlar iizerinde tanimli ii¢lii vektor carpimi kullanilarak Bonan formunun
elde edilme yollar1 tartigilmigtir.

3. Béliimde, Yasui-Ootsuka tarafindan S® x S® x R? manifoldu tizerinde verilen
metrik incelenmigtir. Bu makalede verilen 2-vektor sarti adli bir tensor denklemi
kullanilarak, herhangi bir manifold tizerindeki metrigin Spin7) holonomiye sahip
olmasi i¢in, ortonormal vektor alanlarimin komiitatorlerinin saglamasi gereken
kogullar elde edilmigtir.

4. Boliimde, ¢oklu warped carpim manifoldlarinin, lif metrigi diagonal
olmayan bir genellemesi olan “(3+3+2) warped-benzeri carpim manifoldlarn™
tammmlanmigtir. Bu manifoldlar M = F x B sgeklinde olup, B iki boyutlu bir
Riemann manifoldu, F, (i = 1,2) baglantili, basit baglantili, tam Riemann
3-manifoldlar ve F = F; x Fp seklinde 6-boyutlu bir Riemann manifolddur.
Yasui-Ootsuka ¢oziimiinde, lif uzaylar1 3-kiireler olarak alinan bu tip manifold
ornegi cahigilmigtir. Bu tez calismasinda, Yasui-Ootsuka tarafindan verilen
Bonan formu, yukaridaki kogullar altinda kapali oldugunda, liflerin F (i =
1,2) S¥e isometrik oldugu ispatlanmistir. Bu sonuc ise, Yasui-Ootsuka
galigmasindaki Bonan formu tarafindan belirlenen Spin(7) yapisina sahip, (34 3+
2) warped-benzeri ¢arpim simiflar igerisinde, Yasui-Ootsuka ¢oziimiiniin tekligini
gostermektedir.

Son boliimde ¢alismamizin sonuglarin irdelenip, ileride caligilabilecek arasgtirma
konular: tartigilmigtir.



1. INTRODUCTION

In this thesis we will study Riemannian manifolds whose holonomy group is
contained in Spin7). These manifolds are characterized by the existence of a
4-form, called the Bonan form (or the fundamental form, Cayley form) their

geometry is very rich and in particular they are Ricci-flat [9].

In Riemannian geometry, there is a unique torsion free metric connection [,
called the Levi-Civita connection which defines parallel the transport of vectors
parallelly along curves. When we transport vectors around a closed curve, their
final position can be different from their initial position. This change is expressed
as a holonomy transformatianThe set of all such changes constitutes a group of

transformations which is called the holonomy groug(see Section 2.4.2).

The holonomy group of a Riemannian manifold was defined by Elie Cartan in
1923 and proved to be an efficient tool in the study of Riemannian manifolds
(see [16,17,34,42] for further details). Cartan gave a classification of holonomy
groups for irreducible, simply-connected, Riemannian symmetric manifolds by
using the theory of Lie groups. The list of possible holonomy groups of irreducible,
simply-connected, non-symmetric Riemannian manifolds which is called Berger’s

list (see Table 2.1) was given by Marcel Berger in 1955 [4].

Berger’s list includes the group SQ(N) as the generic case, U(n), SU(N) in
2n-dimensions, Sp(n), SPN)SE1) in 4n-dimensions and two special cases, Gp
holonomy in 7-dimensions and Spin7) holonomy in 8-dimensions. Manifolds
with holonomy groups U (n), SU(n),Spn),SpN)SQ1) are denoted as manifolds
with special holonomyand the two special cases are described as manifolds
with exceptional holonomy When Berger’s list was presented, the existence of

manifolds with special holonomy was an open problem (see Section 2.4.3.1).

The existence of manifolds with exceptional holonomy was first demonstrated by

R.Bryant in 1987 [10], then complete examples were given by R. Bryant and S.



Salamon in 1989 [11]| and the first compact examples were found by D. Joyce in
1996 [30]. The study of manifolds with exceptional holonomy and the construction

of explicit examples is still an active research area in mathematics and physics.
The thesis is organized as follows.

In Chapter 2, we first overview certain basic concepts from Riemannian geometry
and present the definitions to set up our notational conventions. Then warped
product and multiply warped product manifolds are also reviewed. Finally the

classification of Riemannian manifolds with special holonomy is given in detail.

In Chapter 3, we concentrate on manifolds with Spin7) holonomy and review the
structure of a certain 4-form called the Bonan formQ [9]. An explicit construction
of the Bonan form is presented in two different ways, using the structure constants
of octonionic algebra in Section 3.1.1 and the vector cross products on octonions
in Section 3.1.2. We note that there are many different multiplication tables
of octonions in the literature [2]. In order to obtain the same Bonan form (see
the equation (3.11)) in these two different constructions, we use two different
multiplication rules of octonions respectively given in Table 3.1 and Table A.1

(see Appendix A.1).

In Section 3.2.1, we give an overview of the method given by Yasui-Ootsuka [45]
and obtain the explicit form of the equations for the existence of a metric with
Spin(7) holonomy in terms of vector fields for the general case (see the equation
(3.31). Then in Section 3.2.2, we present the Spin7) metric (equation (3.57)
obtained by Yasui-Ootsuka [45] on S® x S® x R3, that we call the “Yasui-Ootsuka

solution."

In Chapter 4, we start to work with the explicit Spin(7) metric on S* x S* x R?
given in the equation (3.57) and look whether one could obtain other solutions
by relaxing some of their assumptions, in particular without requiring the three
dimensional submanifolds to be S*. With this purpose, we define warped-like
product metrics as a general framework for our metric ansatz, by allowing the

fiber metric to be non block diagonal as presented in Section 4.2.
In Section 4.3, we work with a specific (3+ 3+ 2) warped-like product manifold
M=F xFxB (1.2)
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and a specific SpiN7) structure. In Section 4.4, we prove that, when the base
B is two dimensional, the fibre F is a 6-manifold of the form F = F; x F» such
that F’s (i = 1,2) are complete, connected and simply connected 3-manifolds and
the metric is given by the equation (4.28) then the connection of the fibers is
completely determined by the requirement that the Bonan 4-form given in the

equation (3.11)be closed.

With the global assumptions given above, it is concluded that the fibers (F,i =
1,2) are isometric to 3-spheres S°. It follows that the Yasui-Ootsuka solution
is unique in the class of (3+ 3+ 2) warped-like product metrics defined by the
equation (4.28) admitting the Spin(7) structure determined by the Bonan form

given in the equation (3.11)

In Chapter 5, conclusions of the study will also be discussed briefly and some of

the relevant concepts of our work will be presented for future studies.



2. PRELIMINARIES

2.1 Basic Definitions

In this section we will briefly recall certain basic facts from differential geometry
that are used in the thesis. These will also be helpful to set up our notational

conventions.

Definition 2.1. An n-dimensionaimanifold Mis a topological space such that each

point has a neighborhood homeomorphic to an open subset &itblidean spadk”.

In addition, we assume that M is also Hausdorff and second countable to ensure
that the manifold embeds in some finite-dimensional Euclidean space [34]. We
also note that the Hausdorff condition is an essential part of the definition,

because there are locally Fuclidean spaces which are non-Hausdorff.

Let M be a manifold, a pair (U, @) is called a coordinate chart for M if U C M
is an open set and @ is a homeomorphism of U to an open subset @(U) C R".
Two charts (U1, @) and (Uz, @) are called C*-compatible if whenever U NUs is

non-empty, the mapping

goloqazfl : @(UlﬂUZ) — gOl(UlﬂUZ) (2.1)
is a diffeomorphism.

An atlas is a family of charts (Ug, @& ) where any two are C*-compatible and M =
Uael YUa, where I is an index set. The manifold M with a smooth differentiable

structure is called a differentiable manifold.

Definition 2.2. Let M be a differentiable manifold anal : | — M be a differentiable
curve inM. Let C*(M) be the set of functions oM that are differentiable ap.
Suppose thatr (0) = p € M. A tangent vectorto the curvea att = 0 is a function
ap:C°(M) — R given by

ap(f) = d(fdj“) o (2.2)




wheref € C*(M).

A tangent vector denoted by Vp is the tangent vector at t = 0 of some curve o :
| — M with a(0) = p. The tangent vectors at p satisfy the following properties
[34],

Vp:C*(M) — R (2.3)

i) vp(af+bg) =avy(f)+bvp(g) (linearity)
i) vp(fg) = vp(f)g+vp(g)f (Leibniz rule)

Definition 2.3. Let M be a manifold, fop € M, the set of tangent vectorsats called

thetangent spaceof M at p and denoted bjj,M.

ToM = {vp | vp :C*(M) — R}. (2.4)

The tangent space at p is a vector space. Let vp,wp € ToM, A € R then

(V+W)p :VI0+Wp7

All tangent spaces of a manifold is called the tangent bundle

If M is an n-dimensional manifold, then the tangent bundle is a 2n-dimensional

manifold [34].

Definition 2.4. A vector field von a differentiable manifold/ is a correspondence

that associates a vectey € TpM to each poinp € M
V: M—TM
p—V(p) =Vpe TpM. (2.7)
The set of smooth vector fields is a vector space and it is denoted by x(M).

Definition 2.5. A realtensor ¢ on a vector spac¥ is a multi-linear map

Q:Vx..xVxV'x..xV"—R (2.8)

whereV* is the dual space of.



The integers r and S are called respectively covariant and contravariant orders of
@. The set of all tensors on V of covariant order r and contravariant order S is
denoted by T¢ (V). We will say @ is (r,s)-type tensor field. If s=0, ¢ € Ty (V) is

called r-covariant tensor space.

Let @ be a r-covariant tensor in Ty (V) and §(r) denote the permutation group of
the set of natural numbers {1,2,...;r}. Note that 0 € S(r) = 0:(1,2,....r) —
(0(1),0(2),...,0(r)) and

o= { 4 0% S e
@ is alternating or anti-symmetrig if
O(Xg; ey %) = SIOP(Xg(1)5 -+ KXo (1)) (2.10)
@ is symmetricif
XL, oo %) = QK1) X)) (2.11)

for every o € §(r).

The set of all alternating r-covariant tensors and all symmetric r-covariant
tensors in T"(TpM) is denoted by A"TyM and X' TpM respectively. An alternating
r-covariant tensor field of order r on a manifold M is called an exterior differential

form or r-form.

Definition 2.6. Let M be ann-dimensional differentiable manifold ad T M) be the

direct sum of all the spaces’(T M). There exists a unique multi-linear map
d:A(TM) = A(TM)
which satisfies following conditions

i) feA%TM)=C"(M)then df is the total derivative off,
i) @eA(TM) and ¢ € AS(TM) then

d(eng)=dend + (1)@ Adg,
i) d?=0.

The mapd is calledexterior differentiation or exterior derivative



2.2 Riemannian Geometry

In this section, we present certain fundamental concepts in Riemannian geometry.

2.2.1 Metric Tensor

Let M be a differentiable manifold and p € M. A Riemannian metric g is a type
(2,0) tensor field on M
g:TMxTM —R (2.12)

which satisfies the following conditions at each point p € M and for each u,v€ TM,

I) gp<UaV) = gp(V7 U)
i) gp(u,u) >0, (equality holds iff u=0)

where gp = g|p . In a local coordinate basis {X'}, we can write the metric tensor

g as

n . .
g= gijdxdx.. (2.13)

2.2.2 Hodge Duality

Let V be an n-dimensional oriented real inner product space. Then there is a

linear transformation called the Hodge star operator [43]
x AV) — A(V) (2.14)

which is given by the requirement that for any orthonormal basis {ej,ep,...,en}
of V

k(1A ... ANey) = £1,

*(@1A ... \N€) = £€pt1A... \€n. (2.15)

The Hodge star operator has the following property on AP(V)

oy — (_1)p(n—p). (2.16)



2.2.3 Connections

Let M be a C* manifold, a connection on M is a map

0 X(M) x X(M) = X(M), (2.17)
which satisfies the following three conditions
i) Ox(aY-+bz)=alxY +bOxZ,
i) OitxqgnZ = fOxZ+90yvZ,
i) Ox(fY) = (XT)Y + fOxY,
where X,Y,Z € x(M), a,be Rand f,ge C?(M).
The torsion tensor T of a connection O is a (2,1) type tensor defined by

T: TMxTM—TM
T(X,Y) = OxY — OyX — [X,Y] (2.18)

where X,Y € TM. A connection [Jwith T = 0is said to be torsion-freeor symmetric
connection Note that 0 and T are defined without a metric. If there is a metric

g on M, then we state the compatibility g and [ as

Ox(g(u,v)) = (Oxg)(u, v) +9(Bxu, v) +g(u, Oxv), (2.19)

where X is a tangent vector. The fundamental theorem of Riemannian geometry

is as follows.

Theorem 2.7. Given a Riemannian manifold M, there exists a unique torfiea

connection] compatible with g called the Levi-Civita connection.

In local coordinates, the Levi-Civita connection can be given in terms of the
Christoffel symbols of the second kind rh Let O be a connection on M and

0 = d_ax"’ the Christoffel symbols I’!‘j is written as
050; = Zrh k. (2.20)
As the connection is torsion-free,
050 —Up, 0 = [0, 0j]. (2.21)

8



Since

[1,0j] =0, (2.22)

we have [ 0j = o, 0;. This expression implies that

rk=rk. (2.23)

If we use compatibility of g with [, we obtain
0,(0j,0q) +0j(0i,05) — 05(0;,0j) = 2(05,5 9;). (2.24)

From this, we have
3(9jo) +9j(9ig) — 95(Gij) 22 ¥ dok. (2.25)

If we multiply both sides with the inverse of ggk, we obtain the classical expression
of Christoffel symbols F!‘j in terms of metric components in a local coordinate basis

as follows [15]

12 dgd] 00si  00ij
~ 2 Z o"'x' Toaxi T dx0>' (2.26)

2.2.4 Parallel Translation and Geodesics

Let M be a Riemannian manifold and a be a smooth curve in M defined on the
interval |. Let us choose a point p € M on the curve and denote by T its tangent

vector at this point
a:l—M, p=a(t), T:al/o(t). (2.27)

Let ¢ = (x1,%%,...x") be a local coordinate system, (U,¢) be a chart and Y be a

vector field on U.

Definition 2.8. A vector fieldY ona : [a,b] — M is parallel ona if O7Y =0.

In local coordinates, T and Y can be written as

T = a’p(t) _ S d—“'d. = ZT a, (2.28)
Y(t n Yig;, 2.29
(t) gl j (2.29)



where a(t) = (al(t),a?(t),..,a"(t)) and & = %. By using the definition, we

obtain the equations of parallel displacement in local coordinates as

n dYk n J
OrY :kzl T .Z T'Y F O« (2.30)
= =1
k n
— dY + 5 TYIrg=o (2.31)
i,)=1
where k=1,23,...n.
Definition 2.9. A curvea is ageodesicif [T = 0.
If we take Y =T and YK = ( ) , the equation of the geodesics on a manifold M
in local coordinates is given by
d2 da'daJ
=0 2.32
Z dt dt ’ ( )

i,j=1

where k=1,2,3,...n.

2.2.5 Curvature and the Ricci Tensor

We present the definition of Riemannian curvature tensor and the Ricci tensor as

follows.

Definition 2.10. The Riemannian curvature tensor B a (3,1) type tensor field
defined by

R: TMxTMxTM— TM
(X,Y,Z) — R(X,Y)Z = OxOyZ —~ OyOxZ — Oy 2. (2.33)

We prove the tensoriality of R as

R(fX,gY)hZ = f0x{g0y(h2)} —gby{ fOx(hZ)} — £X(g)Ly(h2)
+9Y(9)Ux(hZ) — fgUx vy (h2)
— fg0x{Y(N)Z +h0yZ} — gfOy {X(N)Z +hOxZ}
—f9(Z,Y](h)Z — fghOx v, (h2),
= fgh{0xCyZ — Oy OxZ — Oy 2}
_ fghRIX,Y)Z, (2.34)

10



where f,g,h € C®(M). If we use local coordinates, then
R(3,0))0« = D(;ID(;jdk—D(;j Dddk—m[o},aj]ak
= Uy Uy, Ok — o, Uy, 0. (2.35)
By the properties of covariant differentiation, we have
R(d,0))0k =0, (Fqk)o"'a — Uy, (k)0
=(3|(r aa+zr Ddaa a](rﬁr()aa—zrﬁil]djaa
(?( ) 0a + Z 500 — Z M I'?aﬁg

= [0i(rjk) —aj(r )]0a + Z r A FG )00 (2.36)
If we replace the index a with g in the first summation, we obtain

R(d:,0;)4 [ —9;(rg) ag+zzr 9, 49,0

—9(rg +Zr 9 —T8r%) | do

ij00, (2.37)

where
Rk” 0X' —}—Z r r,%, ) (2.38)

The RZ j are the components of the curvature tensor [15]. By lowering the o, we

obtain the fourth rank tensor Rykij = Joa Ry j as

}< ﬁzgoj dzgki B 0290I 92 Ok;j
2 0xkoXi | Ox99xI  Ixkdxi  AxI9X

Rokij = )+ga,3(r§jr,fi — I'gil'fj’j). (2.39)

The fourth rank tensor Rgyjj satisfies the following identities.

Rokij = —Rkaij,  Rokij = —Rokii,
Rokij = Rijok Roiij = Rokjj =0,
Rokij + Raijk + Rojki = 0. (2.40)

Definition 2.11. The Ricci tensor denoted B¥; is defined by

Rj = ZR!}(]. (2.41)
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In terms of local coordinates, the components of the Ricci tensor can be computed

from the following formula [15]

0 0
Ri = (_ r&——ro+r9rf —rg rP). (2.42)
J c;p oxi io X0 ij pllio pa' ij

Ricci-flat manifolds are Riemannian manifolds whose Ricci tensor vanishes. We

give two more definitions related to the Ricci tensor.

Definition 2.12. The Ricci scalar is denoted B and is defined by
R=YSd'R;. (2.43)
2
Definition 2.13. A Riemannian manifoldM, g) is said to be an Einstein manifold if
Rij = kgij, (2.44)

wherek is a constant.

2.3 Warped and Multiply Warped Products

We present the definitions of warped and multiply warped product manifolds.
Then using these definitions, a generalization of multiply warped product
manifolds that we call “warped-like product manifoldswill be given in Chapter 4.
The idea of warped product manifolds is a decomposition of the manifolds into a

product of fiber and base spaces M = F x B. More details are given in [39].

Definition 2.14. [39] Let (F,gr), (B,gs) be Riemannian manifolds anid> 0 be
smooth function orB. A warped product manifolds a product manifold = F x B

equipped with the metric

9= 7ggs + (f o 7B) MOF, (2.45)
wherery : F x B— F and7rg : F x B— B are the natural projections.
In local coordinates the first block that depends on the coordinates of the first

group of coordinates is multiplied by a function of the second group of coordinates.

Then if f =1, then F x B reduces to a Riemannian product manifold.

If the definition holds an open subset of M, then M is called locally warped product
manifold. A generalization of the notion of warped product metrics is the “multiply

warped product$, defined as follows [23].
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Definition 2.15. Let (F,gr), i = 1,2,...,nand(B,gg) be Riemannian manifolds. Let
fi > 0 be smooth functions oB. A multiply warped product manifolds the product

manifold

FixBx...xFxB (2.46)

with base(B, gg), fibers(F,gr ), i = 1,2,...,n, warping functionsf; > 0 and equipped

with the metric
n
g=Tg0s + Z( fio ) T4 OF,, (2.47)
i=

wheretg : Fix B x ... xFyxB—Bandmi:F xF x...xFy, xB— F are the

natural projections oB andF; respectively.

In this scheme, the metric is block diagonal, with the metrics of the F’s are

multiplied by a conformal factor depending on the coordinates of the base.

2.4 Riemannian Holonomy

2.4.1 Preliminaries

In the literature, Riemannian manifolds (M,Q) are given special names coming
from the holonomy group classification list presented by M. Berger. Berger’s
list, presented in Table 2.1 gives the possible holonomy groups of irreducible,

simply-connected and non-symmetric Riemannian manifolds (see Theorem 2.18).

Table 2.1 Berger’s list

Cases Holonomy groups Real dimension
[ SQn) n>2
ii U(m) n=2m m>2
iii SU(m) n=2m m>2
\% Spm) n=4m m>1
Vv Spm)Sp1) n=4m m>1
Vi Gy 7
Vii Spin7) 8

Manifolds with holonomy SQ(n) constitute the generic case, while all others are
denoted as manifolds with special holonomy and the last two cases are described

as manifolds with exceptional holonomy.
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The original list included Spin9), but D. Aleksevskii [1] and Gray-Brown [26]
modified the original statement of the Berger’s list, i.e. they excluded the Spin9)
holonomy in 16-dimensions by showing manifolds with this holonomy group are

symmetric.

After Berger introduced his classification list, whether all subgroups given in the
list could occur as the holonomy group of a Riemannian manifold (M,g) were
open problem. The existence problem is solved by the following authors case by
case. Here we present the historical summary of these structures as follows (see

for detailed history in [31]).

The existence of manifolds with Hol(g) C SU(n) and Hol(g) C Spn) was shown
by E. Calabi which gave the first local construction of explicit metrics with SU(n)
and Spn) holonomy [13].

S.T. Yau proved the existence compact manifolds with SU(n) holonomy by using
his solution of the Calabi conjecture [46]. Yau’s solution implies that any compact
Kahler manifold with vanishing first Chern class admits a unique metric with
SU(n) holonomy. In the literature, manifolds with holonomy group SU(n) are
called Calabi-Yau manifold$31].

Explicit examples of complete metrics with Hol(g) € Sp(n) on compact manifolds

were given by Fujuki [24].

The existence of manifolds with Gz and Spin(7) holonomy was first constructed
by R.Bryant [10], who gave some examples of explicit, incomplete manifolds.
Then R. Bryant and S. Salamon found explicit, complete metrics with exceptional
holonomy on noncompact manifolds [11]. The first examples of metrics with Gy
and Spin7) holonomy on compact manifolds were constructed by D. Joyce [30|

as mentioned in the introduction.

The research on construction of explicit metric examples on manifolds with

exceptional holonomy group continues |20, 32,33, 35|.

2.4.2 The Holonomy Group

In this section we present the definition of the holonomy group of a Riemannian

manifold and discuss some of its important properties. For further details of the
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holonomy group of a Riemannian manifold, we refer to the books by Berger [5],

Besse [6] and Salamon [41].

Let M be a manifold and g be a Riemannian metric on M. The Levi-Civita

connection [ defines the parallel transport of vectors along a curve.

o

Figure 2.1 Parallel translation of vector field.

Let o :[0,1] — M be a smooth curve with a(0) = p and a(1) =q. By using

parallel translation, [J defines a linear map

which preserves vector addition and scalar multiplication, which is an isometry
as the metric is covariantly constant [Jg= 0. If we choose a smooth closed curve

passing from p € M, then parallel transport defines a self-isometry of TpM.

Figure 2.2 Holonomy group at the poir.

The set of all loops based at p gives rise to a group of isometries of TpM which is

called the holonomy grougbased at p and it is denoted by Holp(M).

Holp(M) is a subgroup of the group of all isometries at the point p, i.e. it

is isomorphic to a subgroup of the orthogonal group O(n). If the manifold is
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connected, then the holonomy groups based at the different points are conjugate
subgroups of O(n),
PyHolp(M)P; 1 = Holg(M) (2.49)

where @ is any smooth curve from p to g in M.

P & |
Figure 2.3 Holonomy group for connected manifolds.

This implies that we can drop the base point of M and just define the holonomy
group Hol(M) as a subgroup of O(n) up to conjugation. A Riemannian metric on
an orientable manifold has holonomy group SQ(n), but for some metrics it can
be a subgroup, in which case the manifold is said to have special holonomy as

mentioned before.

If we choose contractible closed curves (i.e. closed curves that can be contracted
to a point) at p in M, then we get a new subgroup of the holonomy group at p
which is called restricted (reducedholonomy group and denoted by Holg(M). It
is an important property that the restricted holonomy group of M (Holp(M))
is a normal subgroup of Hol(M). It follows the definition, if the manifold M is
simply-connected, then

Holo(M) = Hol(M). (2.50)

We state below some of the basic properties of the holonomy groups and restricted

holonomy groups without proofs.

Proposition 2.16. [34] Let(M,g) be a n-dimensional connected manifold. Then

) Holog(M) is closed connected Lie subgroup of $9,
) Holg(M) is the identity component of Hall),

i) There is a surjective group homomorphigmrm (M) — Hol(M)/Holp(M),

)
iv) Holp(M) is trivial if and only if g is flat
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2.4.3 The Classification of Riemannian Holonomy Groups

Let (M,Q) be a connected Riemannian manifold. From the definition, we know
that if M is a simply connected manifold, then the holonomy and restricted
(reduced) holonomy groups coincide. Thus we study the simply connected

manifolds to avoid fundamental groups and global topology.

We look at the holonomy group of Riemannian product manifolds. The following

proposition gives the holonomy classification of reducible manifolds.

Proposition 2.17. [31] Let(M1,01) and(Mz,g2) be Riemannian manifolds. Then the

product metric g x g> has holonomy

Hol(g1 x g2) = Hol(g1) x Hol(gy). (2.51)

In classifying of the holonomy groups, we restrict us to the irreducible case as the
holonomy group of a reducible manifold is the product of the holonomy groups

of the components.

Riemannian symmetric spaces that are generic types of manifolds which can be
written as the quotient of two Lie groups M = G/H [34]. E. Cartan proved that the
holonomy group of M = G/H is just H. Thus Cartan obtained the classification
list of the holonomy groups of all irreducible, simply connected, Riemannian

symmetric manifolds [17].

The research on holonomy is focused on the determination of the restricted
holonomy groups of irreducible non-symmetric Riemannian manifolds. The main
result which is called the Berger’s holonomy classification theorem is presented

in the following section.

2.4.3.1 Holonomy Groups Classification: Berger’s List

M. Berger proved the following result usually referred as Berger's Theoremand
gave the list of possible holonomy groups called Berger’s list in the literature.

More detailed treatment can be found in the book by Berger [5].

Theorem 2.18.[Berger] Let (M,g) be an n-dimensional simply-connected,irredigcib

and non-symmetric manifold. Then the holonomy group(g)as given in Table 2.1.
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Special holonomy groups given in the Berger’s list are important in the study of
Riemannian manifolds. We state some definitions and geometric properties for
each case in the Berger’s list to understand the importance of these holonomy

groups.
(i) Hol(g) = SQ(n) is the holonomy group of generic situation.

(ii) Metrics g with Hol(g) CU(n) defines Kahler metrics and Kahler geometry.

These are the natural class of the complex manifolds [34].

(iii) If Hol(g) € SU(n), then g is said to be Calabi-Yau metricand M is called
Calabi-Yau manifold31]. Since SU(n) is a subset of U(m), the Calabi-Yau metrics
are automatically Kahler. If g is Kahler, then Holp(g) C SU(n) if and only if the

metric is Ricci-flat. Hence Calabi-Yau metrics are Ricci-flat Kahler metrics.

The first explicit examples of complete Calabi-Yau metrics were given by Calabi
[14]. The existence of compact manifolds with SU(n) holonomy was shown by
Yau and it was obtained from the Yau’s solution of the Calabi conjecture [46].
The well-known example is the K3 (complex) surface which has a set of metrics

with holonomy SU(2) [31].

(iv) Metrics g with holonomy group contained in Sp(n) are called hyperkahler
metrics Since Spin) C SU(2n) C U(2n), hyperkahler metrics are Ricci-flat and
Kahler. The explicit examples of complete metrics with Spn) holonomy were
obtained by Calabi [12]. The metrics on compact manifolds with Sp(n) holonomy
can be also obtained from Yau’s solution of the Calabi conjecture [31]. The first
compact examples were given by Fujuki [24] with Sp2) holonomy and Beauville
[3] with Sp(n) holonomy.

(v) If Hol(g) € SEn)Sp1) for the dimension m > 2, then g is said to be
guaternionic Kahler metric These metrics are Einstein, but not Kahler and not

Ricci-flat [31]. Detailed work on quaternionic Kahler manifolds was presented by

Salamon [40].

(vi)-(vii) Metrics g with holonomy group contained in G, and Spin7) are called
exceptional holonomy metricend manifolds with G, and Spin(7) holonomy are
called exceptional manifoldsSometimes these are called G, and Spin(7) manifolds

with respect to their holonomy groups in the literature.
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After two years later of Joyce’s work [30], the existence of manifolds with G;
and Spin7) holonomy on compact manifolds was obtained by Kovalev [36] in a

different way.

The following Figure 2.4 is presented as a nice summary the geometry of the

Berger’s list and taken from the book by Salamon [41].

RICCI FLAT
Spin(T
n=r n=%4
Uniz) SUmiE) Spnah) SpiniiSpl 1)
HYFERKAHLER QUATERMICMIC
KAHLER
KAHLER

Figure 2.4 Salamon’s illustration of the holonomy groups of the Besykst.

2.4.3.2 Berger's List and Normed Algebras oveiR

An alternative approach to the Berger’s list is given by using four division algebras
or skew-fields the real numbers R, the complex numbers C, the quaternions H

and the octonions O [41].

There is a relation between the Berger’s list and these four division algebras.
The groups in the Berger list are the group of automorphisms (or subgroups) of
R"C"H" and ©. In other words, SQn) is the group of automorphisms of R",
U(n) and SU(n) are the group of automorphisms of C", Spn)and SEnN)SH1)
are the group of automorphisms of H", Gy is the group of automorphisms of
Im O = R’, Spin7) is the group of automorphisms of @ =2 R8. We summarize

Berger’s list and normed algebras relation in Table 2.2.

2.4.3.3 Classification Table

In the light of the Riemannian holonomy studies up to now, we present the
following classification Figure 2.5 to understand the history of the Riemannian

holonomy theory. It is important to note that there is no complete classification
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Table 2.2 Berger’s list via division algebras

Cases Berger's list| Vector space Real dimension
i SQn) R" n>2
i U(m) cm n=2m m>2
i SU(m) cm n=2m m>2
iv Spm) HM n=4m m>1
v | Spm)Sp1) H™ n=4m m>1
vi Gy ImQO 7
vii Spin7) O 8

for non simply-connected manifolds yet, as indicated in the figure (See [38,44] for

further details).

M
Connected
Fundamental Group Fundamental Gmoup
trivial ot frivial
I Mo complete
Simply Comnected claz=ification
Raducible hT-BdUDbI'B
Symmetric Space Momeymmetric Space
[ECarlan; 15925) [ M. Bemgar; 19557
GiH
Holonamy Groups
HaoliZHE= H
Siom)
v Uizm
Su2m)
Sp[4m)
[S5e6 BEz=e book) SpdmSpm
Pl P4 Compact Mom-compact o,
Hia [ He I Typa Type Spm(r)

Figure 2.5 Classification of Riemannian holonomy.
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2.4.4 Explicit Examples

In this section we examine for the computation of the holonomy groups and

restricted holonomy groups for simple examples.

Example 2.19.Let M be the Euclidean spadd = R" with its usual inner product.
The Euclidean spadR" is a simply-connected (trivial) manifold, hence the holmyo
and restricted holonomy groups coincide. RY is also a flat manifold, all parallel
translation maps are identity, = I4 for all closed curvesx. Hence,Hol(R") =
Holo(R") = {4}

Example 2.20.Let M be the cylinderM = St x R. As it is a flat manifold, the
restricted holonomy group i8lolg(M) = {lq}. Although the cylinder is not a
simply-connected manifold, the holonomy and restrictetbinmamy groups are the
same. Henceélolp(M) = Hol(M) = {l4}.

Example 2.21.Let M be the cone with its tip removed. As it is flat, the restricted
holonomy group isHolp(M) = {lg}. Since the cone is not a simply-connected
manifold, there are closed curves which are not contractiol the cone. Ifr is a
non-contractible closed curve, then vectors are rotateld mispect to vertex angle
of the cone. If the first rotation angle between the vectodeisoted by9, then the
parallel translation map igd?. If we rotate the vectors-times, we get the parallel
translation maps aré"®, wheren € Z. Hence we obtain the holonomy group of the
cone atp as follows

Hol(p) ={€" |nez} ~Z. (2.52)
Example 2.22.Finally, let M be the 2-spheré = . Since the spher&’ is a
simply-connected manifold fom > 2 [15], every closed curve on the sph&eis
a contractible curve. As the sphegis not a flat manifold, the holonomy group of
& is nontrivial. Note that on great circles of the sphere, thmfiel translation map
is identity as in the Example 2.20. For any other circle of spbere, the parallel
translation is a rotation by a fixed angle related to the xeatele of a cone tangent to

the circle.
The circleSt can be written as follows,
St={(xy) | ¥*+y? =1} = {€9 | sif8+cosO = 1,0 < [0,2m]}. (2.53)
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S! has a group structure with summation operation, and gremestts aré which in
[0,271]. Now we prove that there is a group isomorphism betwgemndSQ(2). Leth
be a map frons' to SQ(2),

h:s8 — sQ2)

io cosf sin@
e ( —sin@ cos6O ) (2.54)

It is easily verified that this map is one to one, onto and a glieamorphism. This
isomorphism implies that set of translation maps &@&2). Hence the holonomy

group of the sphere is given by

Holg(S?) = Hol($%) = SQ2). (2.55)
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3. MANIFOLDS WITH SPIN(7) HOLONOMY

In this chapter we start with a review of the geometry of manifolds with
Spin7) holonomy. A manifold (M,g) with Spin(7) holonomy is a real orientable
8-dimensional Riemannian manifold whose holonomy group Hol(g) is contained
in Spin7). The key of the construction of these manifolds is a globally defined
4-form Q which is called the Bonan form(Cayley formor fundamental formin the

literature [9].

In Section 3.1, we present two methods for the construction the Bonan 4-form
based on the structure constants of octonionic algebra [28|, and on vector cross

products of octonions [7,27].

In Section 3.2, we study the construction of explicit examples of manifolds with
Spin7) holonomy. In Section 3.2.1, we give an overview of the method given by
Yasui-Ootsuka [45] and obtain the explicit form of the equations for the existence
of a metric with Spin(7) in terms of vector fields for the general case. Then in
Section 3.2.2, we present the Spin7) metric structure obtained by Yasui-Ootsuka
[45] on S*x S* x R3.

The existence of the globally defined 4-form has remarkable properties; closedness,
self-duality in the Hodge sense and Spin(7) invariance [10]. Conversely, if the
Bonan form is closed, then the manifold has Spin7) holonomy, as given by R.
Bryant (see Proposition 3.1) in [11|. These features of the Bonan form are the

main tools for the construction of a SpiN(7) holonomy manifold.

3.1 The Bonan Form onR8

In the literature, there are different ways to construct the Bonan form Q. In
Section 3.1.1, we present a method of the construction Q on R® via octonionic
algebra. In Section 3.1.2, we use triple vector cross products on octonions given

in [27] to obtain an alternative definition.
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A 4-form Q on R& = {(x},x?,...,x®)} can be written as

1
Q:Eaﬁzagam A A A XY A, (3.1)
y

where Qg5 are functions on R8.

For notational convenience, we identify dX with €, local orthonormal basis for
the cotangent bundle of R® and we write it as

1 5
Q= S Qupys e NP nel ned. (3.2)

apyd

In the following we shall omit the wedge symbol in exterior products of forms,

i.e. we write
P —PAeP, =P NP NE, PN nefnel (3.3)

In Sections 3.1.1 and 3.1.2, we shall present two different methods for the

computation of the components Qggys of Q using octonions.

3.1.1 Obtaining the Bonan Form via Octonionic Algebra

The method of the construction discussed below is related to the structure
constants of octonionic algebra @ [2,28]. The octonions are the largest of the
four normed division algebras over the real numbers R. The octonions form an

8-dimensional non-associative algebra generated by the eight elements
O=span{l,e; | a=12.,7}, (3.4)

satisfying the multiplication rule given in Table 3.1. Note that the multiplication

is not unique and there are many ways to construct such a table [2].

By using Table 3.1, the structure constants of octonions denoted by @apc can be

written as
€a€p = Pancc — Oab; (3.9)
where ¢gpc are totally antisymmetric with
Papc=1, (3.6)
for the following set of indices
(abc) = (123),(516),(624),(435),(471),(673),(572), (3.7)
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Table 3.1 The multiplication of octonions

| [1]e|e|e|[e|es|es| e |
€L | €& | & | &4 | & | 6
-l | e3|-&| € |-6| 6

e
—€4
-6
& e |-l -6 €| €| -6
€1
€
€3

PLPIPLELIP|P| -
PLPPLELIP|P|-
b
fod
§P
AR
H
P

and zero otherwise.

Then Qapeg is given by the following formula 28],

Qach = ¢ab07

1
Qabed = 3 Z Eabcdefdefg (3.8)
' &y

where €apcdefgis totally antisymmetric constants. Thus the components Qapcq of

Q:
Qaped = 1, (3.9)

for the following set of elements

(abcd) = {(1238),(5168),(6248),(4358),(4718),(6739), (5729,
(4567), (7423, (3751),(6172),(2635), (5214, (1346} (3.10)

and zero otherwise. The explicit expression of the Bonan form is given by

0 _ 6‘1238+ 85168+ 66248+ 84358+ e4718_|_ 66738—{— e5728
+e4567+ 87423+ 93751—|— 96172+ 62635—|— 85214—|— 61346. (311)
The 4-form Q is self dual in the Hodge sense, that is,
Q==xQ, (3.12)

hence the 8-form QA Q coincides with the volume form of R8. In addition, it is

invariant under the action of Spin(7) [37].

The second method of the construction Q is given by using vector cross products

on octonions in the following sections.
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3.1.2 Obtaining the Bonan Form via Vector Cross Products on Qionions

The Bonan form Q is given in terms of triple vector cross products [27] as
QX y,2.W) = (XY x 2X W), (3.13)

where X,y,z,w € Q.

Now we compute the explicit expression of Q via triple vector cross products.
Note that we use a new octonionic multiplication table (see Appendix A) chosen
differently from Table 3.1 to obtain the same Bonan form as the one given in the

equation (3.11)

The non-zero set of Q(€y,€3,€,€5) can be obtained by the following formula
given in [7] as

Q(eq,es,€y,€65) = (€q,€3(8/€5)), (3.14)
where €4’s are the basis of the octonions and €, denotes the conjugate of the

element €, We find the non-zero index set of the Bonan form as follows;

Q(ey, e, €3,64) = (€1,2(8384)) = (€1,€2(—€364)) = (€1, €2(—65)) = (e1,e7) =0,
Q(e1,e,€3,65) = (€1,€2(€365)) = (€1,€2(—€365)) = (€1,€2(—€4)) = (€1,65) =0,

Q(es3, €, €7,68) = (€3,65(€7€3)) = (€3,€5(—€76g)) = (€3,65(—€7)) = (€3,€3) = 1,
Q(es, e5,€5,€7) = (€4,65(86€7)) = (€4,65(—€p€7)) = (€4, €5€3) = (€4,€4) = 1,

Q(ey,€5,€7,63) = (€4,€5(€7€8)) = (€4,5(—€7€8)) = (€4,66(—€7)) = (€4,€3) =0,
Q(es, €6, €7,68) = (€5,65(€7€8)) = (€5,€5(—€7€8)) = (65,65(—€7)) = (65,€3) = 0.

Then the full set of non-zero indices of Q(eq,€s,€y,€5) is found in Appendix A

as follows

{(1238),(1245), (2167), (1346), (1357), (1478), (5169,
(3247),(2356), (2468), (2578), (4358, (3678), (4567) . (3.15)
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Hence using triple vector cross products on octonions, we obtain the same explicit

expression of the Bonan form given in the equation (3.11)as

0 _ 61238+ e1245_ 61267—|— 91346+ 91357—|— e1478_ e1568

. 62347—|— 62356+ 62468+ e2578_ 63458—|— 83678+ 64567.

3.2 Construction of a Manifold with Spin(7) Holonomy

The following proposition reveals the importance of the Bonan form Q in the
construction of a manifold with Spin7) holonomy and is given by R. Bryant
in [10].

Proposition 3.1. [Bryant] The holonomy group of Riemannian metric defined by the

Bonan formQ is contained in Spif?) if and only if dQ = 0.

3.2.1 A Vector Field Method for the Construction of Manifolds with Spin7)

Holonomy

In this section we present the method given by Y.Yasui and T. Ootsuka in 2001
[45] for the construction of a manifold with Spin(7) holonomy. In their approach,
the condition dQ = 0 is converted to an expression in terms of vector fields and

the specific solution discussed in Section 3.2.2 is obtained.

Note that as Q is a 4-form in eight dimensions, the dQ = 0 gives 56 equations
involving exterior derivatives of the basis 1-forms. Applying the method given
in [45], we obtain equivalently, 56 equations involving the commutators of tangent
vector fields (see Appendix C.3). These equations given in Appendix C in explicit
form are new. Since in the derivation of our main result, we have used directly the
condition dQ = 0, we did not make use of the equations in Appendix (C.3), but
we note that they are general expressions valid for any background and provide

ready to use expressions for metrical ansatz in terms of vector fields.

We now present the vector field method for the construction of a manifold with

Spin7) holonomy.
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Proposition 3.2. [Y. Yasui - T. Ootsuka] Let M be a simply connected eight
dimensional manifold, and dvol be the volume form on M. let¥ = 1,2,...,8) be
linearly independent vector fields on M andWe the one-forms dual tq,V Suppose

that the vector fields y/satisfy the following two conditions:

I. the volume-preservation conditiony,Jdvol = 0.

ii. the 2-vector conditiony 4,5 Qapys[Va A Vg, Vy AVslsn=0,

where Qqp,5 are given in the equationg3.9}(3.10) and [ , |sn is the

Schouten-Nijenhuis bracket, i.e.

Then the metric with Sp{i) holonomy is
g:(pZW“@W" (3.16)
a

where@? = dvol(V1,Va, ..., Vg) and the corresponding Bonan 4-form is given by

1

@ S Qupys P, (3.17)
apByd

where & = /WY,
Since the proof of Proposition 3.2 is just briefly outlined in the work by
Yasui-Ootsuka, we present the proof in details and use in the next sections.

Proof. We prove that Q satisfies the three fundamental properties given in the
previous sections, i.e. it is self-dual in the Hodge sense, Spin7) invariant and

closed.

Self-duality and Spii7) invariance: If we replace the 1-form

e’ = /oWe, (3.18)

in the equations (3.16) and (3.16) respectively, then
1

()
Q = m z QUBV5 eaﬁy’
Tapyd
g = Ze"@e“. (3.19)
a

28



Hence we get the same expression as given in the equation (3.11)on R8. Tt follows
that Q is a Spin(7) invariant and self-dual 4-form in the Hodge sense as mentioned

in Section 3.1.1.

Closedness:We now show that Q is closed form, that is dQ = 0. For this we

rewrite Q in the form

1 o
Q=71 > Qapysivalviv,ivdvol, (3.20)
apByd

where iy, denotes the inner derivation with respect to Vu. We calculate dQ by

using the following formula successively

Lvaivy —ivsLve = Tvg v (3.21)
Lv, = diy, +iy,d. (3.22)
Then
1 S 1 S
dQ = > Qaﬁyadlvalvﬁlvylvédvolzm > Qapys (Lv, —iv,div,iy,ivs)dvol
1 apyo aBys
= Bzégaﬁyé (Lvgivgiv,ivs — iy, divyiv,ivs)dvol
apBy
1 . . . . . . . . . -
= BzéQaByé (LVD,IVﬁIvyIV(5 — Ivg Lvg vy v +|va|v,3lvﬁdlvyl\/5)dvol
apBy
1 . . . . . . . . . . . . .
4 BzchaByé (Lvaivgivyivs —ive Lvgivyivs +ivgivs Lvyivs —iv,ivgiv,div; )dvol
apBy
1 . . . . . . . . . . . )
Tl z Qapys (Lvaivgivyivs —ive Lvgivyivs +iveivs Ly ivs —ivaivgiv, Lvs

Tapyd
+iVaiVB ivyivéd)dVO|
=21 2 Qapys (v vplivyivs +ivgivg vy Vs +ivgivyivg vg) +vsivyivs Ly,
Tapyod
“WVal Ve Vs = Walvylivs vis) = Ve vyl Lvg +1va Vg1 v

—Hva iVB iV6 LVV — iVa iVﬁiVyLV(g -+ iva iVB ivyivéd)dVOL

Furthermore using the antisymmetry properties of Qqgys and the closedness of

top form dvol, i.e. d(dvol) =0, we get the following equation

1 : . L
dQ = E ﬁzégaﬁyé (GI [\/a7VB]IVVIV6 — 4|Va|V[3 IVVLV6> dvol. (323)
apy
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If we put the volume preservation condition Ly,dvol= 0 and the

condition, then we obtain

6 . .
dQ = a0 Z Qaﬁy(;l[va’vﬁ}lvylvédvol
apyd
and
Z QaByé[Va /\Vﬁ,Vy/\V5]SN =4 Z Q(XBV5[VC(7VB] /\Vy/\V5 =0.
apByd apyd

If we use the following property
z i[Vg,VB}iVyiV(st()l = iZaByé[VmVB]/\Vy/\VEdVOL
apByd

then the equation (3.24)is written as

6.
dQ = ﬂ'ZaByé QapysVa 7Vﬁ]AVvAV5dVO|‘

2-vector

(3.24)

(3.25)

(3.26)

(3.27)

By using the equation (3.25) this gives dQ = 0. This completes the proof that Q

is the Bonan 4-form and g is the metric with Spin7) holonomy on M.

O

We shall now obtain the conditions implied by the 2-vector condition of

Proposition 3.2.

antisymmetry properties of Qgpgys, then we can write

> QapysVa AVp,VyAVelsn=4 5 Qapys[Va,Vy] AVp AVs.
apyd aByd

If we expand the Schouten-Nijenhuis bracket by using the

(3.28)

The explicit expression of ¥ 5py5 Qapys[Va,Vy| AVg AVs is given in Appendix B.1.

If we rearrange the expression given in Appendix B.1, then we obtain

> QapyslVa, WIAVEAVs =

aByd
(IV6,V7] — [Va, V5] — [V3,Vg]) AVI A2+ (—[V5,V7] +[V2, V8] — [Va, V6]) AV1 A Va+
([V3,V6] — V7, V8] + [V2,V5]) AViAVa  + ([V3,V7] — [V2,Va] + [Ve, Vg]) AVL A Vs+
(—[Vs, V] — [Va, Va] — [Vo,Va]) AVA AV + ([Vo,Vig] + [Va, V] — [Va,Vs]) AVA AVy+
(Vs V] — Vo,Vs] — Vo, Vo)) AVA AVE + (—[Va,Ve] — Vi, Vi) -+ [V, Vo) AV AVt
(—[V1.Vs] = [V3,V7] — [V, Vg]) AV2 AVa + ([V3,Ve] — [V7, V8] + [V1, Va]) A V2 A Vs
([Va, V] + V1, V] — Va, Ve ) AVo AV + (V. V] + Va,Via] — [V, Ve]) A Vo AVa+
(V1 Vs] — [V, Vo] — Va, V) AVo AV +  ([Va, V] — [V, V] + [V, V]) AV AVt



(—[Va,Vg] — [V2,Ve6] — [V1,V7]) AVa AV +  ([V1,Va] + V2, V5] — [V7,Vg]) AV3 AVe+
(IVs, V] — [V2,Va] + [V1,V5]) AVa AV +  ([Va,Vs] — V1, Vo] — [V, V7]) AV3 A Vg+
(_[V]-?VZ] + [V33V8] - [V55V7]) AV4AVs  + ([V57V7] [V13V3] - [VZ’VS]) AVa AVg+
(—[V5,Ve] + [V2, V3] — [V1,Vs]) AVaAV7  +  (—[V3,V5] + [V1, V7] + [V2, V6] ) AVa AVg+
(—[V2,Va] — [Va, V7] + [V1,V8]) AVs AV +  ([Va,Ve] — [V1,V3] — [V2,Vg]) A V5 AV7+
([V2,V7] = V1, V6] + [V3,Va]) AVs AV + ([V1, Vo] —[Va, V] — [V3,Vg]) A Ve AV7+
(—[V2,Va] + [Va,V7] + V1,V5]) AVe AVs +  (—[V1,Va] — V3, V] — [V2,V5]) AV7 A Vs.
(3.29)
If we write the commutator as
[Va,Vﬁ} = zCaByV , (3.30)
Y
then the rearranged equation (3.29)can be written as

aByd aBy
where Cg gy are linear combinations of the coefficients of ¢4, (a,B,Y=1,2,...,8).
Hence we obtain a new set of 56 linear equations which should be zero in order

to satisfy the 2-vector condition given in Appendix C.3.
3.2.2 An Example of Manifold with Spin(7) Holonomy: S* x S* x R?
We illustrate the method by applying to the eight dimensional manifold
M=5 xS xR? (3.32)
as given in [45]. Let (X,y) be the coordinates on R? and
6.6 i=123 andi=i+3, (3.33)
be the left invariant 1-forms on the 3-spheres satisfying the following relations

dot=-6%, do*=6" do>=-6"
dol— 6% de2—08 de3—_p22 (3.34)

Thus
{dx dy, 81,62, 6% 61,02 0%} (3.35)
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are global sections of the cotangent bundle T*M and the duals of these global

sections are respectively

Jd 0
{a_xua_yuelu 92793761762795_5,}' (336)

The commutator of the vector fields 6 and & (i =1,2,3) on S® are given by

6,6] =0, i—123
[617 62] = 637 [617 63] = _627 [627 63] = 917
01,65] =63,  [6,035] =65,  [65,05] =6 (3.37)

We start with the ansatz for vector fields Vg  (a =1,2,...,6)

Vi =a)[ouy)6+any)8],  (i=123),
Vf = b(X) [aZl(y>9I + a22(y) ef] ) (I =12 3)7 (3.38)

and without loss of generality, we take andVg as below,

)
V7 - B(y)gc
0
Vo = o0 (3.39)
The volume form dvol is chosen as
dvol = dx dy 816263019268, (3.40)

To construct the explicit expression of the metric with Spin7) holonomy on
M = S x S x R?, we check that these vector fields satisfy the two conditions

given in Proposition 3.2.
1- The volume-preservation conditionydvol = 0.

We use the formula Ly, = diy, +iy,d in the computation. Since Vg for a =

(1,2,3,...,6) has no components along dx and dy,
LvadX: ivad(dX) —|—d(iVadX) =0

and

Ly, dy = iv, d(dy) +d(iv,dy) = O.
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The formula Ly, dvol is written as

Ly,dvol = diy,dvol+iy,d(dvol)
= diy, dvol. (3.41)

For ease of computation, we write the equation (3.38)as

\/i = al(X7y)9I +él(xay)9f7
Ve =bi(x,y)8 +bi(x.y)8, (3.42)

where i = 1,2 3. By linearity of i,

Lvidvol = d|ai(x,y)igdvol+a(X,y)igdvol
= daigdvol+daigdvol+ad(igdvol) +ad(igdvol).  (3.43)

But igdvol and igdvol has components along dx and dy, hence their exterior

product with dg and d§; gives zero. Thus
Ly, dvol = aid(igdvol) +&d(igdvol), (3.44)
for i =1,2,3. Let i =1, then

Ly,dvol = a;d(ig dvol) +a;d(ig,dvol)
= ayd(dx dy 0230123 1 a,d(dx dy 612%6%)
~ 0 (3.45)

Similar procedures apply for Vj i =2,3and V; i =1,2,3. We omit the details. We

now check that Lyzdvol= 0. The computation for V7 is similar and it is omitted.
Ly,dvol = diydvol
=digyg (dx dy6*2%012%)
—d (—c(x)dx61239m) . (3.46)
Using d(cdx) = 0, we obtain

Ly,dvol = —c(x)dx d(6%391%3)
- —c(x)dx(d(9123)ei?§— 9123d(6w)> .
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By using the equation (3.34) it is seen that d(8%3) = d(Qﬁé) = 0. Then we

complete the volume preservation condition of the Vg, i.e, Ly,dvol =

Hence we conclude that the vector fields Vg given in the equation (3.38) satisfy

the volume-preservation condition Ly,dvol=0 for (o =1,2,3,...,8).
2- The 2-vector conditiony 4,5 Qapys[Va A Vg, Vy AVslsn=0

We need to the commutator of the vector fields to use of the 56 linear equations
given in Appendix C.3. Thus we start to compute the commutator of the vector
fields Vg by using commutator relations of 6 and 6 given in the equations (3.37)
We use the notation dot " and prime ’ to denote the differentiations with respect

to X and Y.

If we choose a1 =2 and a1 =0 in the equation (3.38)as given by [45], then the

vector fields are

Vi =alx) (291 +a12(y)6; ) =a(x) (292 + aia(y) 92) )
V3 =a(x)(263+a12(y)6s), = b(x)a22(y) 63
Vs =Db(x)a22(y)6s = b(x)a22(y) 05
7] 7]
V = = — A7
: =By (5 (347
We can write the 6,6, aax and from the equation (3.47) as
\ Vs
6; = 6; =
1 bazg 2 bazz
. Vo _ V1 Q1Va
3 bazz, 1 2a 2[:)(.:7227
6 _ Vo o a1V V3 012V
2= 2a 2b022 B 2a 2b022
0 . V7 17} . V8
»- B 3y ¢ (3.48)

If we put the equation (3.48)in the commutators of the vector fields, then we

obtain the followings

a2a?,—2atay; v
bay, 7
2.2 2
acas, —2aca
[V1,V3] = —2aV, + ( 12 12) Vs,
bay,
V1,Va] =0, [V1,Vs] = aa12Ve,

MaVe) = —aanVe, ViVl = P2y,

[V]_,Vz] = 2aVz+ (
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aca;
Vg = ——22V,
[Vl» 8] bazz 4,

[VZ,V3] = 2aVj + (

bays

a2a2,—2a%ay;
V47

Vo,Va] = —aa1oVe, [Vo,V5] =0,
/
[V27V7] a\/ ) [V27V8] - _abcngVE”
22
V3,Va] = aales, V3, V5] = —3012\//4,
aca
V3,V7] = aV . V3, Vg =— b azlsze,
Va,Vs] = b0122V6, V4, V6] = —bazoVs,
b ca’
Va, V7] = —%V4, Vs, Vg] = — =22V,
%22
V5,V6] = baoVa, [Vs,V7] = Bb Vs,
ca’
[V57V8] = - 22V57
(0r)) /
b ca
Ve, V7] = —%Ve, Ve, V] = ——22V/g,
azo
/
V7,Vg| = &:Ve — %W

V3, Vg|

V2, Vs| = aa15Va,

=0,

(3.49)

Hence we obtain the following Gj (see the equation (3.30)) which are different

from zero

C123= —C132=Cp31 =23,

Ba
C171=C272=Ca73= ——»
C456 = —Ca65 = Csp4 = D022,
Bb
C474= C575 = Ce76 = T
/
C184 = Cog5 = C386 = — a1
b6¥22
ca),
C484 = Cs85 = Ceg = — )
%222 2
L B _a“ap,—2a%ap
C126 = —C135=Cp34 = ba2s
cB’ Bc
C7g7 = —F7 C7gs = ry

C156 = —C165 = —C246 = C264 = C345 = —C354 = al12.

(3.50)

If we put these values in the equations of Appendix C.3, then we get the following

set of five different first order non-linear differential equations.

acai, Ba Bb

b Pa_Po_o
bazz 22 , b ’
a—aao+ 22 =0,

022
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242 2 / '
a‘af,—2a‘01p  aca, fBb _

0
bazz . bazz b ’
ca cB’
2a—2a0i2+ —22+— =0,
2 a2z B
2.2 2 : ’ :
acaf,—2a%ay pBa pb pc¢
—bayy— o - 2= —o. 3.51
baos 022 a b C ( )
The solution of the equations given in the (3.51)is
012 =1—tanh(y),
a2 = B = sechy),
a=c,
.1
= E(E —ab),
b= —2a’. (3.52)

From the solution, it is seen that the y dependent functions a2, 22, B are solved
but X dependent functions a,b are given by differential equations. Then the vector

fields are

a(x) (261 + (1—tanh(y))6;) ,
(26, + (1~ tanh(y))65)
(265 + (1—tanh(y))6s) ,
b(x)sechy)6;,

a(x

Vi=a(x)
V2 =a(x)
V3 = a(x)
Vs = b(x)
Vs = b(x)

b(x)sechy)6,

Ve = b(x)sechly)6;,
0

V7 = sectfy) o

0

Vg = a(x) oy (3.53)

To obtain explicit metric expression, we will compute the dual of vector fields and
the function @ (see Proposition 3.2) defined by Yasui and Ootsuka. We obtain

the following dual of vector fields as follows

1

1

11 2_ 1.0
w —ZFB, W 2a9,

3_ 1.3
wW —2a9,

1 i (1—tanh(y))

4_ i 1

W= bsecliy) (6 + 2 )
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Then @ is obtained as

B 1 (1—tanh(y))
0= bseclty) ( "+ 2 62) ’
B 1 3 (1—tanh(y))
0= bsecliy) ( S+ 2 63) ’
7 1
~ sechy) %
w8 = gdy. (3.54)

@ = dvol(Vi,Vs,...,Va)

— dxAdyABLABZAB3ABLA B2 A B3 VL, Vs, ..., V)

(dx,V1) (dx V) (dx Vs)
(dy, Vi)  (dy,Vz2) (dy,Vs)
(0t Vv1) (61 \y) (6%, Vg)
(62V1) (62 Vo) (62,Vg)
- <937V1> <937V2> <937V8>
(OL V1) (BLVo) ... (6LVg)
(62 V1) (82V2) ... (6°Vg)
(63 V1) (63 Vo) ... (6%Va)
= a*bisech(y). (3.55)

The orthonormal frame € = /W% can be written as follows (see the equation

(3.18)

%b%sechy)ei, =123
%ab‘?lt(l—tant'n(y))(i?i +a ‘7119?, i=123

ab%dx,

bisechy)dy, (3.56)

where the functions a(X), b(x) and their relations are given in the equation (3.52)

From the orthonormal basis given in the equation (3.56) we write the following

Spin(7) holonomy metric on S* x S* x R? given in [45] as

8
g =3 e’ e’
a=1

g = Vatb3d¥ + vb3secK(y) (dy2+%1(6i)2> + \/% (Gr+w9i)2

2
(3.57)
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where a and b depend on X and satisfy the differential equations

. 1/a8
a_é(g—ab>,

b= —2a (3.58)

After then we call the explicit Spin(7) holonomy metric given in the equation

(3.57)a “Yasui-Ootsuka solution"on S* x S* x R?.
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4. (3+3+2) WARPED-LIKE PRODUCT MANIFOLDS WITH SPIN(7)
HOLONOMY

The aim of this chapter is to prove the uniqueness of the metric with Spin7)
holonomy on S* x S* x R? [45], (i.e. the Yasui-Ootsuka solutioms given in the
equation (3.57)), in the class of (34 34 2) warped-like product metrics defined in
the equation (4.28) which admit the Spin7) structure determined by the Bonan

form Q given by the equation (3.11)

In Section 4.2, we note that the Yasui-Ootsuka metric given by the equation (3.38)
is a generalization of warped product metrics and we define “ (3+3+2) warped-like
product metrics"as a general framework for our metrical ansatz, by allowing the

fiber metric to be non block diagonal in a multiply warped product [23].

In Section 4.3 and Section 4.4, we work with a (34 34 2) warped-like manifold
M = F1 x F, x B defined in the equation (4.28) and we prove that, when the
base B is two dimensional, the fibre F is a 6-manifold of the form F =F; x F
such that the fibers F’s (i = 1,2) are complete, connected and simply connected
3-manifolds and the metric is given by the equation (4.28) then the connection
of the fibers is completely determined by the requirement that the Bonan form
given in the equation (3.11)be closed. With the global assumptions given on the
fibers above, we conclude that the fibers F’s (i = 1,2) are isometric to 3-spheres

S (see Theorem 4.5).

In Section 4.5, we prove that the Yasui-Ootsuka solution is unique in the class of
metrics given by the equation (4.28) admitting the Spin7) structure defined by
the equation (3.11) by giving the gauge transformations to this metric explicitly
(see Corollary 4.10).
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4.1 Preliminaries

Assuming from the existence of a globally defined Bonan form, the problem
of proving that M has holonomy in Spin(7) is reduced to the local problem of
checking that Q is a closed form (see Proposition 3.1). We shall do this for
the metric ansatz given by the equation (4.28) and the Bonan form given in the

equation (3.11)

Our notation is as follows. g and € (i=1,...,n) denote respectively local
orthonormal frames for the tangent and the cotangent bundles. This gives rise

to local bases for k-forms denoted by
dl=énel,
dk=dne ne

M —dnelnéne, .. (4.1)

If we have a local orthonormal frame € (i = 1,...,n) on n-dimensional manifold

M, then the metric g is written as
n . .
g= Ze‘ ®€. (4.2)
i=

We shall now rewrite the Bonan form Q given in the equation (3.11)in a suitable

form for our purposes. Starting with the equation (3.11) the Bonan form is given

by

0 _ e1238_ e1568_|_ e2468_ 63458—l— 81478+ 63678—l— e2578

+ e4567_ 92347+ e1357_ 61267+ 92356+ 61245+ 91346.
We rearrange it as

Q = (el4+ e25+e36)e78+e1245+ 61346+ e2356

+(9123_ 9156+ e246_ 6345)68 + (6456— 6234—|— e135_ 6126)97. (43)
Then relabeling the indices

i=4 2=5 3=, (4.4)



that is,

we obtain the following form

Q — (eli+e2§+e3é)e78_(61122+e113§+6223§)

Jr((_:,123_ eﬁé o eizé - eiés) e (eiéé _ eizs_ e123 _ elzé) o

When we introduce new variables 3,4 and v as
B = etre?ie®
u = el23_ eléé - eizé _ eiés)
v = eiéé _ eizs_ e123 _ elzé
Q is written as
1
0 :Be78+“e8+ve7_ EBZ

and its exterior derivative is

dQ = dBe’®+ Bd(e’®) + due® — udeé® + dve’ — vde’ — Bdp.

(4.5)

(4.6)

4.7)

(4.8)

(4.9)

Since Q is a 4-form on an eight dimensional manifold, the dQ = 0 gives 56

equations for the partial derivatives of the coefficient functions in the basis

1-forms. These equations would be analogues of the 56 equations involving the

commutators of tangent vector fields (see Appendix C.3). We shall not give them

in the general case but investigate only a special case in the next sections.

Now we discuss generalizations of warped product manifolds and define (3+3+2)

warped-like producinanifolds that we shall use.
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4.2 (3+3+2) Warped-Like Product Manifolds

We recall that the Yasui-Ootsuka solution on
M =S x S xR? (4.10)

is given by the following (global) orthonormal frame

d = %b%sechy)ei, i=1,23

d - %ab—%u—tanh(y))ei+ab—%9f, =123

e = abidx

&8 = bisechy)dy, (4.11)

where the local sections of the cotangent bundle of each S® respectively by 6', o

and the functions a(x), b(x) are given in the equation (3.52) Thus the metric is

g = [\/Wd)@+\/75ecﬁ yz}
"EQB

\/_secl"r() \/?( 1—tanhy)) ] \/74

qusg T’;gs3

\/? S gigf
- E[1—tanh(y)]i;a¢9, (4.12)

where T : S X P xR2 — R? and 1 : S x S xR?2 — P are the natural

projections on R? and S respectively.

Defining the functions

[\/_seclpr() \/?( —tanh(y))] fo = a_l:’

4

h= % 1 tanh(y)] (4.13)
and the 2-form w ;
w="5 086, (4.14)
2,
we can write g as
2
0= TRos+ Z(fi o 1) % Or, + hw, (4.15)
i=
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where T : S X S xR2 — R? and 1 : S x S xR?2 — S are the natural

projections on R? and S® respectively. The matrix of g with respect to the (global)

frame
(61,02,03% 61,02 0% & &8 (4.16)
18
fils B3 0
g=| Nz fals O (4.17)
0 0 Ip

where I3 and |y are identity matrices of size 3 and 2, and zeroes denote zero
matrices of appropriate sizes. Note that if h were zero, the metric given in the
equation (4.15)would be a multiply warped product with a block diagonal matrix

with respect to an appropriate frame [23].

We shall discuss below possible generalizations of this structure. Let M be the

topologically product manifold
M=F xFx..xFKxB, (4.18)

where dim By =na, (a=1,...,k), dim B=n. Assume that these manifolds are
equipped with Riemannian metrics gr, and gg respectively. Let Ua C F5 and

V C B be coordinate neighborhoods on F; and B respectively, and let
Uy x U2 x ... x Ug x V. (4.19)

Denote the local sections of the cotangent bundle of each Fj respectively by
{61, the local coordinates of each Fa by {y,};, and the local coordinates on

B by xL,x2, ..., x".

We can define a metric on M by choosing linearly independent local sections of
the cotangent bundle T*M and declaring these to be orthonormal. The most

general local orthonormal frame corresponding to a fiber-base decomposition is

given by
_ k np
=Y YANG, i=1..m a=1.k (4.20)
b=1j=1
. n .
eg= 3 agjd¥,  i=1..n (4.21)
=1
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where
A = ARL(x P, LX), a = ag(xt XD, (4.22)
First note that
_i%®%=%%, (4.23)
=

where T : F1 X Fo» X ... X ik x B — B is the natural projection on B. Then the

metric g is written by

k na ]
= e
g T%gB—i_azllzl a®¢a
k na k Ny o k nc
_r@gﬁa;;i[(z 3 i) o (3 5 aset)
Np Nc k na
_TlégBerCZ_ljzll 1<a_1IZAg'JAa|) 91®9' (4.24)

If we split the summation for € into the cases b= c and ¢ # b, we obtain

k Np k ng
_ bi Abi QJ 9
J T%gB ’ b21121 (a_llzlAal Aal> N °

k k Np N¢ k na
bi (6) 2 6.+ 6 6] 4.25
+b21C—g+ljzl| 1( Z\Aa Aal) SReTHE ) ( )

a=1i

It {ég}?bzl is any other local orthonormal frame for F,, then

:z%% (4.26)

Under these frame rotations g transforms as

=1c=1 j=1I= a_ll
k na o 5 .
= T0s + Z Z < Zl Z A?llj iPtJ)rPllas> 6 @ 6
=1rs=1 \a=1i
k k nb Ne k ng np ng
i bzl % 1r=1 l ( 1i Zl ZlIZ Agleal PbrPéS) eb ; es (4.27)
=1lc=b+1r=1s=1 \a=1li=1] =

Hence the coefficients of 9§® 6 given in the equation (4.27)is in general a function

depending on the coordinates of the base B and the fibers Fy and F,.

The problem we are dealing is modeled on an 8-dimensional warped-like product
manifold M = F; x F, x B where Fp,F are 3-dimensional and B is a 2-dimensional

manifold.
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Definition 4.1. Let M = F; x I, x B be an 8-dimensional topologically product
manifold whereF;, F are 3-manifolds and is a 2-manifold, each equipped with
Riemannian metrics. Led', 6" be orthonormal sections of the cotangent bundlds of
andF, respectively and, y be local coordinates oB. If the metric on M is defined by

the following orthonormal frame

d =AY +B(xy)0, i=123
d =Axy0 +B(xy)0, i=123
ei+6 = ail(x7y)dx+ aiZ(Xa y)dya I = la 2 (428)

whereA,B,A,B and ajj (i,j = 1,2) are functions on base manifol| then we call
(M,€) (i=1,2,....8) a“(3+3+2) warped-like product"manifold.

The metric is then given by (4.28)is written as

3 . . o o 2 . .
g =5 (ded+dwed)+Tbget®
2 )*2,
= (a1 + 851)dx® dx+ (8, + a3,)dy® dy-+ (A11812+ Bpz821)dx dy
58
A 3 . . ~ 3 o o A A 3 . ~
+(A%+ A?) Ze' ® 6' +(B?+B?) Ze' ® 0'+2(AB+ AB) Ze' ® 0

——
4 9F; 50r, T,
= 1gYe + (f10TB) M OF, + (f20 TB) B OF, + (hi20 TB) T, W, (4.29)
where
fi=A?+ A%, f,=B?+B? hy=2(AB+AB), (4.30)

TB.FixkhxxB—B m:FixkhxB—HkKkand m:Fi xkHxB—F xk
are the natural projections on B, iy and Fy x F respectively, and w = Ziszl ool

on F1>< F2

Remark4.2 Since all 3-manifolds are paralellizable [29], (i.eF's (i = 1,2)
are paralellizable), then the fibér is also a paralellizable 6-manifold. Léi",ef
(i=1,2,3) be (global) orthonormal sections of the cotangent bundids andF,
respectively. Then the set of 3-forms in the filigri.e. A3(F), includes two closed

3-forms. These are the volume forms of this (i = 1,2) given by

volr, = 62 and volr, = 6%, (4.31)
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After fixing orthonormal basis foff, andF,, we define an almost complex structure
by 6 — 6, o — —6 where6; and8: are the duals of th@' and@' respectively. The

complex volume form and the K&hler fornw onF are defined by

W o= Whiw =(6'+i136%(0%+i36%)(6%+i36°),

3
w = Y 06'AJ6. (4.32)
2,

UsingJ@' = @' for i = 1,2,3, we obtain

Wt — gl23_ eléé _ 912:3, _ eiés
() p— 9123_|_ 61234— 612’3 _ eiéé
w = 0%01+6%6%+0%°. (4.33)

Hence the fiber spadé admits a special almost Hermitian 6-dimensional manifold
structure, i.e. a six-dimensional smooth manifold endowét an SU(3)-structure.
Such a manifold is characterized by its complex volume fétm Wt +iW~ and its

Kahler formow [34].

4.3 Bonan Form and(3+ 3+ 2) Warped-Like Product Structure

In this section, we present the Bonan form Q in terms of the (34 3+ 2) warped-like

product structure on M = F x R2.

Proposition 4.3. Let F be a6-dimensional Riemannian manifold of the form=F
Fixkand F (i =1,2) be3-manifolds. Letei,ef (i =1,2,3) be orthonormal
sections of the cotangent bundles gfafd F, respectively. LefM = F x R?, €) be
an 8-dimensional(3+ 3+ 2) warped-like product manifold given in Definition 4.1.

Then the form given in the equati@® 11)is written as
Q=120+ @ m+ @ m+@n+@n+ fwe'
where

W= 611+ 922_|_ 93§ ¢l+ _ 9123 CP_L_ _ 9123

(p2+ _ 912§+ 6123+ 61237 (pz— _ 9123_,_ 61§3+ 612§7 (434)
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and f,m, n, (i=1,2) are

f =AB—BA
m = [AS—3AA%e® + [A3 - 3A%A)e’,
my = [AB?—2BAB— AB?|e® + [AB? — 2ABB — B?Ale’,
n = [B>—3BB%e’+ [B®—3B%Bl¢’,
n, = [A’B—2AAB— BA?e® + [A’B— 2ABA— A%Ble’. (4.35)

Proof. When we substitute the (34 3+ 2) warped-like product structure given by

the equation (4.28)into the expressions of the Bonan form given in the equation

(3.11) then we obtain

B=fw (4.36)
where
f—AB-BA, w=o6l102,0% (4.37)
And we get 4 and v as
po = [A3—3AR2)01%34 [AB” — 2BAB— AB?)(0'3 + 618 4 019)

+[B3—3BB%01% 1 [A%B - 2AAB - BAY (91234 91234 912,

% = [AS _ 3A2A]9123—|— [AEZ _2ABB— BZA](Q:LQ@—F 912@ + 6123)

+[B%— 38280123 1 [A%B — 2ABA — A%B)(013 4+ 01231 91B) (4.38)

We introduce new variables to simplify the notation qqi (i=1,2) as

of =0123  @f = 9123 | g1 | 6123,
o = 9123, o = gi23 | g123 | 9123 (4.39)
Then we can write
8 7 _ ot + - -
pe +ve' = @ M+ @ M+ @ N+ @ Ny, (4.40)

where the coefficient 1-forms my and n; (i = 1,2) are given in the equation (4.35)

Hence we write the Bonan form Q on M as follows

1
Q=21 +gfm+ @ me+ e m+¢n+ fwe’ (4.41)
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This completes the proof. U]

Hence Proposition 4.3 implies that the Bonan form Q is written as a linear
combination of the forms in the exterior algebra of the fiber with coefficients

in the exterior algebra of the base space.

Remarkd.4. If the metric onF x B is a Riemannian product wheBas diffeomorphic
to R?, then the Bonan forr® onF x R? is given in [31]

1
Q=we®+WeP ey — sz, (4.42)

whereW = W* + ¥~ is complex volume formw is Kahler form ande’,e® are
orthonormal frame of the cotangent bundle®f. We see that in the case of a

(3+ 3+ 2) warped-like product, this linear combination will involve

{w,0® @0 o0}, (4.43)

where @ = 6122 and ¢, = 6123 are the volume forms of the fibeRs's (i = 1,2)

respectively.

Corresponding to the decomposition of the manifold as “fiber" and “base", the

exterior algebra has the following direct sum decomposition,

NP(M) = P AW (wm), (4.44)
atk=p
where a=1,...,6 and k= 1,2, i.e. in our case the fiber is 6-dimensional and the

base is 2-dimensional, this fiber structure gives a decomposition of the exterior

algebra as follows.

ALM) = AMOgACL
/\Z(M) — /\2,0@/\171@/\0,27

/\3(M) _ /\3,0@/\2,1@/\1,27

/\4(M) _ /\4’0@/\3’1@/\2’2,

NM) = NPanand?

/\G(M) _ /\6,0@/\5,1@/\4,27

A (M) = ABL1gA52

NE(M) = A®2 (4.45)
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Under the exterior derivative these summands are mapped as
d: A@KM) — ABFLR) g ARk, (4.46)
We can refine this decomposition by splitting the components for each fiber as
APM)= @ ABPHwm), (4.47)

atb+k=p

where a and b range from 1 to 3 and k= 1,2 as before, i.e.,

(M) = AMPOgAOLOG AL

/\Z(M) _ /\2,0,0EB/\l,l,OEB/\O,Z,O@/\1,0,169/\07171@/\0,0,2,
(M) = A300g 2104 AL20 g \030 g \201 g ALLL gy AO21 oy ALO2 gy \O.L2)
(M) = A3LOGA2200 1304 ABOL g \211 g \L21 gy AOBL g 202, ALL2

EB/\O’Z’Z,

(M) = A320g7\230 5 \311 g \221 5 A131 5 \302 \212 \122 g \0.32
(M) — /\3,3,0@/\3,2,1 @/\2,3,1@/\3,1,2 @/\27272@/\1’3’2,

N(M) = ABLgA322gN\232)

(M) = AT (4.48)

The effect of the exterior derivative is given by

d: /\(ab7k)(M) _ /\(a+17b7|() @A(a7b+17k) @/\(a,bk-ﬁ-l)‘ (449)

After defining the structure of the (3+ 3+ 2) warped-like product manifolds, we
study the Spin(7) holonomy metrics on these type of manifolds and prove a main
theorem related to the (3+ 3+ 2) warped-like product manifolds with Spin(7)

holonomy in the following section.

4.4 (3+3+2) Warped-Like Product Manifolds with Spin(7) Holonomy

We consider the case where the eight dimensional manifold has a 3+3+2
decomposition and for simplicity we assume that the base is R2. We will prove

that under suitable global assumptions the fibers are isometric to S°.

Theorem 4.5.Let M be diffeomorphic to i B, where the base B is a two dimensional

Riemannian manifold diffeomorphic &®?, the fibre F is a6-manifold of the form
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F=F xF, and F's (i = 1,2) are complete, connected and simply connected
3-manifolds. Let the metric on M be @+ 3+ 2) warped-like product with the

following orthonormal frame

d =AXY)0 +B(x y)@f, =123
d =Axy)0 +Bxy)8, i=123
e —an(xy)dx+ap(xy)dy, i=12

andQ be the Bonan form on M given by

Q= —1f2P+ @ m+ @M+ m+ @+ fwe'

where
w=0140210% f—AB-BA ¢ =05 ¢ -6
cp2+ _ eléé_|_ 912§+ 6123 %— — 6123+ 91234— 912’3

and m, n;, i = 1,2 are 1-forms written as

m = [AS—3AA%E + [AS —3A%Ale,
my = [AB?—2BAB— AB?|e® + [AB% — 2ABB — B?Al¢’,
n = [B>—3BB%e’+ [B®—3B%Bl¢’,
n,  =[A’B—2AAB—BA?e®+ [A’B— 2ABA— A%Ble’.

If dQ =0, then F and F, are isometric to &

The crucial step in the proof of this theorem is to find projections of the 5-form
dQ into subspaces of A>(M) determined by the (3+ 3+ 2) warped-like product

structure. We prove the main theorem a slightly different way in [8].

Proposition 4.6. Let (M, €) be an8-dimensional warped-like product manifold as in

Theorem 4.5 If @ = 0, then the following three conditions hold.

i) wdw=0,

i) fdfw?=dg m+dg n,,

i) fdwe™ = @ dmy + @ dmp+ @ dm + ¢ drp,
wherew, qqi, m, nj, (i=1,2) and f are given in the equatidd.34)and (4.35)
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Proof. For ease of our computation, we write the Bonan form Q given in the

equation (4.41) as
Q= [-3f2? + [@ M+ @ mp+ @ n+ @ np] + [fowe’™]. (4.50)
The terms in the brackets belong to subspaces
/\4,0 /\B,l and /\2,2

respectively. Note that
df e®=d(e’® =0, (4.51)

since the base of the multi-warped product is two dimensional. Similarly, as each

F is three dimensional, their volume forms are closed, i.e,

dg =dg =0. (4.52)
Then dQ = 0 reduces to
dQ = [ flwdw| + [~ fdfw? +dg m+dg ny]
+ [fdwe’™ — g dmy — @ dmp — @ dm — @, dp] (4.53)

where the terms in the brackets belong respectively to
AO(M), A*L(M) and A3?(M).

The closedness of Q gives us the three equations of Proposition 4.6. This

completes the proof. 0

Now we prove that the third condition of the Proposition 4.6 fixes the exterior

derivatives of the 8'’s and 8"s completely for the manifold M in Theorem 4.5.

Lemma 4.7. Let (M,€) be an8-dimensional warped-like product manifold as in

Theorem 4.5. If
fdwe’® — @ dm — @ dmp — g dmy — @, dnp = 0,
then
46 = .62, dot =62,
d02 = —¢;013,  dB2= —,08%5,
de3=c,0%2,  d6% =012 (4.54)
where g and ¢ are arbitrary constants.
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Proof. Write the exterior derivative My, Mp, Ny, Np are of the following form

dm = ue’®, dmp = ue’®,

dm =v1€’8, dmp = vee’®, (4.55)

where U1, Up,Vq,Vo are functions on the base manifold B. Then we can factorize

e’8 in the condition and obtain

[fdw] — [@u1] — [@ W] — [@ 1] — [@ V2] =0. (4.56)
In the equation (4.56) the terms in the brackets belong respectively to subspaces

ARLO) g A(120)  A(B00)  A(120)  A030) ang A210)

This implies that u; = vy = 0, that is,
dm =dm =0. (4.57)

Thus we obtain

fdw= @ U+ @ Vo (4.58)
If we write explicitly w, (@ and @, , then
fd(9ﬁ+ 622 4 633) _ (912§+ 918 | 6123)u2+ (6123+ 9123 | 9123)\/2.
When we rearrange the equality,

(fdO —v,023)01 — (fdol + u,02%)0t

H(1d02+v,0%)02 — (fd62 — u,613)02

>
>

(£dO% —v20%2)8° — (£d6° +1012)8% = 0,

we obtain
dol = %623, dg2= %613 ded= 212 (4.59)
) 9 f ) .
dol = —%62 de?= %13 do = ZgL2 (4.60)
, , 212 .
If we take the exterior derivative of dO1 = %923, we get
d (%) 6% 4 $d9293 . %ezde?’ —0. (4.61)
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Using the equation (4.59) it is seen that

V:
d ( fz) 0, (4.62)
and in similar way,
u
d ( fz) —0. (4.63)
It implies that, sz, %2 are constants. This proves the Lemma 4.7, if the constants
are chosen as €1 and Cy. ]

The connection forms on any 3-dimensional Riemannian manifolds F; and F» can
be given as follows;
A6 = wio62+ w1363, dO = N126%+ 136,

462 = —wp20% +wa36°,  d6%= —'71291+ nzseé,

6% = —wi361 —wy302, 63 = —n136" — 2367, (4.64)
where Wj; and njj are connection one-forms. If we expand these one forms, we
get

dot = (W},0" +W3,6%)67 + (Wiz0" +wi362) 63,

d6% = (—W5,0% —w3,0°%) 6" + (W36 +w3367)6°,

d6° = (—Wi30° — Wi,0%) 6" + (—Wzs0" — w36°) 6%, (4.65)

d6* = (0,01 +n$,0%) 6%+ (n}s6' + nf6%)6°,
d6? = (—n%,07 — n$,6%)6" + (136" + n:6%)6,
463 = (—1712392 - nfzeé)ei + (—'72139i - n§39§)92~ (4.66)
Then d@"s are
dot = wi,0 + w1303 + (Wi5 — wip) 622,
d6% = W50+ (W5, + W33) 0 — wi36%,

d63 = (W3 — Wis) 02 — W2,013 + w,0%2, (4.67)

And similarly do"’s are

dot = n{,0% + niz01 + (nfs— niy) 6%,
do? = nfzelz +(nS+ ’723)913 — N3 923
d6* = (nfs— '723)912 — '712913 + ’712923- (4.68)
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Here we compute the connection one-form matrix w for 3-manifold Fy. A similar

procedure applies for F». If we choose the constant C as
(Wia — Wag) = (Wi3—Wip) = —(Wip+W33) = C, (4.69)
then

d6* = (Wi —Wip)67° = c6%,
d6% = (Wip+W35)0%° = —c6%?,
d6® = (Why —wh3) 012 = ch12, (4.70)

Hence the connection one-form matrix is obtained as follows,

0 56 562 of 0 € -
w=| $6 o0 50! |= -5 -6 o0 6* |. (4.71)
-562 S6t 0 6> -6' 0

X =dw—ww
C2 0 912 913 CZ 0 912 913
_ S 12 o @8 |+%| _g2 o g2
2\ _g13 _g23 g 4\ _g13 _g23 g
C2 0 912 913
-~ | —62 o 9= |. (4.72)
4\ _g13 _g23

The components of the curvature two-form matrix are obtained as below

2
C

%1 — ——6192

2 4 Y
2
C

%1 _ ——6193

3 4 Y

2 ¢ 203

The the curvature two-form elements %’ij are related to the Riemannian curvature

elements as

%ij = dwf— W|J<W|k = RijkIWle : (4.74)
Then we obtain
2
C
Ri212= Ri313= Roz23= -7 (4.75)
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Riemannian curvature elements describe the sectional curvature Kjj = Rjjji which

implies that the sectional curvature of Fy is positive, i.e.

K(F) = % > 0. (4.76)

Similar result is obtained for F>,. We will complete the proof of Theorem 4.5 by

using the following classical result given in [34].

Theorem 4.8. [Kobayashi-Nomizu] Any two connected, simply connected complete

Riemannian manifolds of constant curvature k are isométrigach other.

Proof of Theorem 4.5Since the equation (4.54) describes the Lie algebra su(2),
it follows that if the fibers are connected and simply connected, then they are
diffeomorphic to S [43]. Alternatively, using the equation (4.54) we obtained that
the sectional curvatures of F1 and F, were positive, i.e, K(F) = %: >0. for i=
1,2. Then by the Theorem 4.8, it follows that F; and F, are isometric to S3. This

completes the proof of Theorem 4.5. U

Remark4.9. For the existence of the solution, we have to me,A, B andaj (i,] =
1,2) such that the conditions) and ii) of Proposition 4.6 are satisfied. From the
exterior derivatives of the basis 1-for#6 and 6', it is seen that the conditiom) of
Proposition 4.6 holds identically. The conditian is to be solved, but instead of this

computation, we will use the Yasui-Ootsuka solution in thiéfving section.

4.5 Comparison with the Yasui-Ootsuka ansatz

In this section we first give the explicit gauge transformations from the equation
(4.28)to the Yasui-Ootsuka metric (see the equations (3.38)(3.39)), then we show
that the Yasui-Ootsuka solution satisfies the conditions of Proposition 4.8, hence
it is the unique solution for a (3+ 3+ 2) warped-like manifold of the form given
in the equation (4.28)admitting the Spin(7) structure defined by the Bonan form
in the equation (3.11)

Since every two-dimensional Riemannian metric can be diagonalized [15], in the

equation (4.28)we can take

R

e7

110X,
aody, (4.77)

e8
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as in [45]. We will show that we can also set B= 0 in the equation (4.28) by a
frame transformation and obtain exactly the Yasui-Ootsuka metrical ansatz given

in the equation (4.11)

An orthogonal transformation of the cotangent frame {ei,e'ﬁ} is given by

e P QO d
& =P QO e |. (4.78)
g+6 0 0 | g+b

Thus we obtain the cotangent frame {e',e'} as

§ = 3 (Pel+qQel), i=123
J

§ = y(Fe+Qe), i=123 (4.79)
J

where P,Q, P, Q satisfy

PP +QQ =1,
PP'+QQ =0,
PP+ QQ =1. (4.80)

The new basis elements &,& can be written now as

& — Ao+ B0,
d = A0+ B0 (4.81)

where

A—=AP+AQ, B=BP+BO. (4.82)
If we require B = 0, then .
B
P=——0Q. (4.83)
B
Substituting this in the equation (4.82) with A, we see that
" - AB
Al = (A_ E) Q, (4.84)
hence
Q = QO(X7 y)l ’ (485)
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that is, Q is the proportional to identity. Then from the first condition given in

the equation (4.80) we can determine Qg and obtain P and Q as

B
SR — (4.86)
VB2+B?
B
P —— | (4.87)

Then we determine P from the equation PP+ Qét = 0, and substituting in A, we

see that Q is also proportional to identity and determine P and Q as

A B

O=e—— | (4.88)
Vv B2+ B?

N B

P=g—— | (4.89)

where €2 = 1. The transformation matrix

PQ) 1 B +B
(I5 Q)_,/Bz+|§2(eB sB) (4.90)

is clearly orthogonal and the coefficients of the new frame are

~ f

A=F—F—,
VB2+B?

B=0,

x  AB+AB

A=¢ +

B—ev/B2+ B2, (4.91)

hence we obtain exactly the metric ansatz given in the equation (4.11) Comparing

with the equation (4.28) we can see that

A= %b%sect(y),

B=0,

A~ 1 1

A= éab a(1—tanh(y)),
B=ab 4,

3
ajp=ab4, a;pp=0,

a1 =0, Ay = b%secmy). (4.92)

By a straight forward computation using (3.58) it can be seen that the three

conditions given in Proposition 4.6 are satisfied, hence we obtain a direct proof
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that the Yasui-Ootsuka solution given in the equation (3.57)is a Spin(7) holonomy

metric. Thus we have the following corollary.

Corollary 4.10. Let M be the(3+ 3+ 2) warped-like product manifold defined in
the equation(4.28) which admits the Spin(7) structure defined by the Bonan form
given in the equatiorg3.11) Then the metric given b{B.57)is unique up to gauge

transformations.
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5. CONCLUSION AND DISCUSSION

In this thesis we have focused on a special case of Riemannian manifolds whose

holonomy group is contained in Spin7).

As we have seen, a manifold with Spin7) holonomy is an 8-dimensional real
orientable manifold as Spin7) is a subgroup of SQ(8). A remarkable feature
of this manifold is the existence of a nowhere vanishing 4-form which is called
Bonan form denoted by Q and which can be written locally as in the equation
(3.11) The Bonan form has a key role in the construction of a manifold with
Spin7) holonomy. In the literature, a few explicit examples of Spin(7) holonomy
manifolds are constructed locally case by case, by using the fundamental
properties of the Bonan form, i.e. self-duality, Spin7) invariance and closedness

[11,25].

We have presented explicit construction methods of the Bonan form Q on R& by
using octonionic multiplication rule [2,45| and the triple vector cross product of

octonions [7,22].

We have surveyed an explicit metric on a manifold with Spin7) holonomy and
worked the metric given by Yasui and Ootsuka on the manifold S* x S® x R?.
In their method, they use the vector fields ansatz (see the equation (3.38) to
satisfy the volume-preserving vector fields condition and a specific tensor formula
called the 2-vector condition. Then a Spin7) metric structure on S* x S* x R?
is obtained from the solutions of the first order non-linear differential equations
(see the equation (3.51)) as given in the Section 3.2.2. We called this Spin(7)

metric solution as the “Yasui-Ootsuka solution"on S x S x R2.

Applying the method given in [45] we obtain equivalently, 56 equations involving
the commutators of tangent vector fields (see Appendix C.3). The explicit
expression form of these linear equations is new one and can be used in future

work.
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In our work, instead of using the method given by Yasui-Ootsuka (see Section
4.2), it is used a differential form ansatz as a (3+ 3+ 2) warped-like product metric

which is a generalization of multiply-warped product metric [8].

In the thesis we prove that, when the base B is two dimensional, the fibre F is a
6-manifold of the form F = F; x F, such that F’s (i = 1,2) are complete, connected
and simply connected 3-manifolds and the metric is given by the equation (4.28),
and M has the Spin7) structure determined by the Bonan form given in the
equation (3.11) then the connection of the fibers is completely determined by the
requirement that the Bonan form be closed. With the global assumptions given

above, it is concluded that the fibers F’s are isometric to S°.

This implies that the Yasui-Ootsuka solution given in the equation (3.57) on
S® x $® x R? is unique in the class of the (34-3+42) warped-like product metrics
admitting the Spin(7) structure determined by the Bonan form given in the
equation (3.11)

We recall that as the Bonan form Q is a 4-form, then dQ = 0 gives 56 equations
involving exterior derivatives of the basis 1-forms. The connection on any
8-dimensional manifolds is determined by the connection 1-forms, i.e. 8x7/2=28,
that is, 28x8=224 parameters. If the manifold is of type SQ(8) or Spin7), then
there are respectively 28 and 21 free parameters. Since there are 56 equations,

this shows that the solution is not unique under the above conditions.

In the case of the 3+ 3+ 2 warped-like product metric, there are 9 parameters
on each 3-manifolds F (i =1,2). Then there are totally 18 parameters and 56
equations as mentioned above. Under some special conditions, it is not surprising

to obtain a unique solution as given in Corollary 4.10.

Finally we will present some problems related to the warped-like product
manifolds with exceptional holonomy groups. These can be given as research

topics for future studies.
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Alternative splitting of 8-dimensional manifolds

We have defined the warped-like product manifold in general case and studied
a special case (34 3+ 2) warped-like product manifolds with Spin7) holonomy.
Any alternative splitting of 8-dimensional warped-like product manifolds with

Spin(7) holonomy can also be studied.
G, case

We have seen that the exceptional holonomy groups of Riemannian manifolds
are G2 and Spin7) which occur in 7 and 8-dimensional manifolds respectively.
An obvious question is that what can we do for warped-like product manifolds
with G, holonomy [18,19]. And it can be also studied any alternative splitting

of 7-dimensional warped-like product manifolds with G, holonomy.
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A. MULTIPLICATION TABLE OF OCTONIONS

There are many ways to construct the multiplication table of octonions. Among
these are Cayley-Dickson process, Fano plane, etc. [2,28]. We choose the following
multiplication table of octonions to obtain the Bonan form via vector cross
products on octonions in Section 3.1.2.

Let us choose the following octonion basis elements as follows

O = span{ey, e, €3,€4,65,65,€7,68 = 1}. (A1)

Then the multiplication of g’s is chosen as follows.

Table A.1: Octonion multiplication table

| e [e|[ea|e|e|e|e|e]

e||-1|-e3| e |-€| € |-6&|€ | &
€| e |-1|-e|-€|-€| €& |6 | &
3| -e|€e |-1]|6 |-6|-€| €6 |E€3
|| €7 | €& |-6&| -1 | e |-&|-€6 €&
€& || €| € | €& |-63|-1|€ |-&|6
€ || & |e| € | & |6 | -1]|-6|e€
€ || e|-6|-6&|€ | & e|-1|¢g
eg 1

e | & | e | &g | 6| 6| €&

The Non-Zero Set ofQ(eq, €3, €y, €5) in Section 3.1.2

The Bonan form on R8 is written as

1 a 0
Q=715 Qapys €N nENE,
apyd
where €¥’s belong to an local orthonormal basis for the cotangent bundle of R8.

Then Qgpys is defined by the following formula.

QGBV5 = Q(eaaeﬁveyv 65) = <ea7eﬁ(e_yeé)>’ (A2)

where € is conjugation of €5 and e;’s (a =1,2...,8) are given in the equation
(A.1). The non-zero elements are computed respectively as
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Hence Qgpys 1s non-zero for the following set of indices

{(1238),(1245,(2167),(1346),(1357),(1478),(5168),

(A.3)

(3247),(2356), (2468), (2578), (4358, (3678), (4567) .
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B. THE SCHOUTEN-NIJENHUIS BRACKET

In the work by [45], the Schouten-Nijenhuis bracket is used in the construction of
manifolds with Spin7) holonomy. This expression is used to obtain the 56 linear
equations given in Appendix C.

> QapysVa, Wy AV AV =

apyd

[V1,Va] AV2 AVg — [V1,Vg] AV2 AV3 — [V, V3] AV A Vg + [V2,Vg] AVL A V3
[V Vo| AV3 AVg — [V3,V8 AV1 AV + [V5,V6] AV1AVg— [V AV1AVg
[V]_,VG /\V5/\V8+[V1,V8 /\V5/\V6-|—[V V5]/\V6/\V8— [V6,V8 AVs5 AV
[V4,V6 /\V2/\V8—[V6,V8 AV AVg — [V2,V4]/\V6/\V8—|—[V2,V8 AVg A Vg
[VZ;VG AVa N\ Vg — [V4,V8 /\V6/\V2—|—[V V5]/\V3/\V8— [V4,V8 AV3 A Vg
[V3,V5 /\V4/\V8+[V3,V8 AVa AVs5+ [V V4]/\V5/\V8—[V5,V8 AVa AV3
[Vl,V4 AV7 A\ Vg — [V4,V8 AV7 AV, + [Vl,V7]/\V4/\V8—|—[V7,V8 AVa AV

+

] ] ]
) ] ]
] ] ]
] ] ]
] ] ]
] ] ]
[V4,V7] AV1AVg— [V]_,Vg] AVa AV7 — [V V6] AV7 AVg — [VG,Vg] AV7 AV3
V3,V7] AVg AVg+ [V7,V8] AVgAV3 — [VG,V7] AV3AVg— [V3,V8] AVg A V7
[Vz,V5] AV7 A\ Vg — [V5,V8] AV7 AVp + [ V7] AVs5 A Vg + [V7,V8] AVs5 A Vo
] AVo AVg — [V2,V8] AVs5 AV7+ [V4,V6] AVs5 AV7 — [V4,V7]
_[\/57\/6] AV4AV7 4 V5, V7] AV4 AVg — [Va, V] AVe AV7 — [V, V7] AV4 A V5
] ] ]
] ] ]
] ] ]
] ] ]
) ] )
] ] ]
] ] ]
] ] ]
] ] ]

£

—[V2,V7] AVa AV + [V3,V7] AVa AVo + Vo, V4] AV7 AV3 — [V3,V4] AV7 AV:
—|—[V4,V7 AVo AV3 — [V2,V3 /\V7/\V4—[ V7] /\V5/\V1—[ V3| AV A V7
+[V5,V7 /\V3/\V1+[V1,V5 AV3 AV7+ [V ,V5]/\V7/\V1— [Vl,V7 AV3 A Vg

+[V6,V7 /\Vl/\Vz—i—[Vz,Ve AV1 AV7 — [Vl,V7]/\V6/\V2+[V1,V2 AVg AV7
—|—[V1,V6 /\V7/\V2+[V2,V7 /\V6/\V1+[V V3]/\V6/\V5— [V2,V5 AVg A V3

_|_

[V3,V6 AVo A Vg — [V57V6 AVo AV3 — [Vz,Ve] AV3 A Vg — [V3,V5 AV A Vg
[Vl,V5 AV2AV4+[V4,V5 /\V2/\V1—|—[Vl,Vz]/\V5/\V4—|—[V2,V4 AVs AV
+[V2,V5 /\Vl/\V4—[V2,V4 /\V5/\V1-|—[V V4]/\V3/\V6— [V]_,Ve AV3 AV
[V3,V4 AVl/\V6+[V3,V6 /\V1/\V4—[ ,V3]/\V4/\V6— [V4,V6 AV1 A V3.
(B.1)
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C. THE SET OF 56 LINEAR EQUATIONS

When we write the commutator Vg and Vg given in the equation (3.30)as

[VCUVB} = zCaByV , (C.1
4
then the Schouten-Nijenhuis bracket can be written as
Z QO,BV(;[VO,,VV]/\VB AVgs = Z CaByVCf /\VB /\Vy7 (C.2)
apysd aBy

where Cqp,, are collection of the coefficients of c4g, (a0, 8,y=1,2,...,8). Thus we
obtain the set of 56 linear equations which should be zero in order to satisfy the
2-vector condition.

C123= —C181— C2g2— C383— C453+ C462+ C471— Csp1+ C572+ Ce73= 0,
C124= —C151— Co52— C32— €371 — C384— C454+ Ce74— Ceg1+ C7g2= 0,
Ci25= C141+ Co42+ C361— C372— C385— Ca55+ Ca75— Ceg2— C781 = 0,
Ci26= C171+ C272+ C342— C351— C386 — Ca56+ Ca81+ Csg2+ Ca76 = 0,
C127= —C161— C262+ C341+ C352— C387 — C457— Cag2+ Csg1+ Co77 = 0,
Ci28= C131+C232— C388— Ca58— Cap1+ Ca72— Cs62— C571+ Co78= 0,

C134= —C161— C253+ C271+ C284— C363— C464 — C574+ Cs81+ C783 =0,
C135= —C171+ C243— Cpp1+ C285— C373— C465— Ca81— C575— Ceg3 = 0,
Ci36= C141-+ C251+ C273+ Coge+ C343— Ca66— C576+ Cs583— C781 = 0,

C137= C151— Cp41— C2e3+ Cog7+ C353— Ca67— Cag83— C577+ Ceg1 = 0,
C138 = —C121+ C233+ Cogg+ Ca51— Capg+ C473— C563— C578 — Co71 = 0,

C145= —C121+ Cp44+ Cp55+ C365— C374+ C381 — Cs71— Co84— C785 = 0,
C146 = —C131+ C256+ C274— C281+ C344+ C366+ C571+ C584— C7g6 = O,
C147= —C181+ C231+ C257— C2p4+ C354+ C367 — Caga— Cs61— C787 =0,
Cr48= C171+ C234+ C258+ Cop1— C351+ C3eg+ Ca74— Csp4— C788 = 0,

Cis6= Ci181— C231— Cp46+ Cp75+ C345+ C376 — Ca71+ Csg5+ Cogs = 0,
C157 = —C131— C247— Cop5— C2g1+ C355+ C377+ C461— Cag5+ Cog7 = 0,
C158 = —C161+ C235— C248+ C271+ C341+ C378+ C475— Cs65+ Cogg = O,
Ci67= C121— Coe6— C277 — C347+ C356 — C381— C451— Cage— Cs87 = 0,

Ci68= Ci51+ C236— C241— C278— C348+ C371+ C476 — Cs66— Cs88 = 0,
C178 = —C141+ C237— Co51+ Coeg — C358 — C361 -+ C477+ Cagg — Cs567 = O,
Coza= Ci153— C162— C184+ Co72+ C373+ C474— Cs64+ Cs82+ Ceg3 = 0,

Co35 = —C143— C172— C185— C262 — C363+ C475— Ca82 — C565+ C783 = 0,
Cozs= C142— C173— C186+ C252-+ C353+ C476 — C483— Cs66— C782 = 0,

Co37= Ci52+ C163— C187— C242— €343+ C477— Cs567— C583+ Ceg2 = 0,
Co3g= —C122— C133— C188+ C452+ Ca63+ C478— Cs68+ C573— Co72 = 0,
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Co45 = —C122— C144— C155— C364— C375+ C382 — Cg72 — Cggs+ C784 = O,
Co46= —C132— C156— C174— C282+ C354 — C376 — Ca84+ C572— Cog6 = O,
Co47= —C157+ C1e4— C182+ C232 — C344 — C377 — C562 — C584 — Ceg7 = 0,

Ca48 = —C134— C158+ C172+ Cop2 — C352 — C378+ Cap4+ C574— Cogg = 0,
Cos6= C146— C175+ C182— C232+ C355+ C36 — C472— Cags— C7g6 = 0,
Ca57= —C132+ C147+ C165— C282 — C345+ C367+ Ca62— C585— C787 = 0,
Cos8 = —C135+ C148— C162+ C272+ C342+ C368+ Ca65+ C575— C7gg = 0,
Co67= Ci122+ Cie6+ C177— C346— C357 — C382— Ca52+ Cag7— Csge = 0,
Coeg = —C136+ C152+ C178— C242 — C358+ C372+ Ca66+ Cagg+ Cs76 = 0,

Co78 = —C137— C142— C168— C252+ C348 — C362+ Ca67+ C577+ C588 = O,
Cgs5 = —C123— C165+ C174+ Coe4a+ Co75-+ C383+ Caga+ Cs85 — Ce73 = 0,

Ca46= —C133— C144— C166 — C254+ C276 — C283+ C573+ Csg86+ C784 = 0,
C3z47= —C154— C167— C183+ C233+ C244+ C277— C563+ C587— Cega = O,

Cgag= C124— C168+ C173+ Cop3+ Co78— C353— Ca54+ Csg8+ Co74 = 0,

Cas6 = —C145— C176+ C183— €233 — C255 — C266 — C473 — Ca86+ C785 = O,
Cas7 = —C133— C155— C177+ C245— C267 — C283+ C463 — C487 — Cogs = O,

Casg = C125— C163— C178— C2p8+ C273+ C343— C455— Cag8+ Ce75 = 0,

Cge7= C123+ C147— C156+ Co46+ Co57 — C383— Ca53— Cegs— C787 = 0,
Czeg = C126-+ C148+ C153— C243+ Co58+ C373— C456+ Ce76— C788 = 0,

Cs78= C127— C143+ C158— Co48— Co53— C363— Ca57+ Ce77+ Cogg = 0,
Cus6 = —C126+ C135+ C184— C234+ Cog5-+ C386 — C474 — C575 — C76 = O,

Cy57 = —C127— C134+ C185— C235— Cpg4+ C387+ Ca64+ C565 — Co77 = O,
Cy58 = —C128— C164— C175— C265+ C274+ C344+ C355-+ C388 — Co78 = O,

Ca67= C1r24— C137+ C186— C236— C287— C384— C454+ Csp6+ C577 =0,
Cs68 = —C138+ C154— C176 — C244— C266— C288+ C356+ C374+ Cs78 = 0,
C478 = —C144— C177— C188+ C238 — Co54 — Cop7+ C357 — C364— Cseg = 0,
Cs67=C125+ C136+ C187— C237+ Cog6— C385— C455— Ca66— C477 =0,
Csgg = C155+ C166+ C188 — C238— C245— C276— C346+ C375— Ca78 = 0,
Cs78 = —C138— C145+ C167 — Co55— C277 — C288 — C347 — C365+ Ca68 = 0,
Co78= C128— Cr46— C157+ C247— Co56— C366— C377— C38g— C458 = 0.
(C.3)
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