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TOWARDS THE CLASSIFICATION OF SCALAR INTEGRABLE
EVOLUTION EQUATIONS IN (1+41)-DIMENSIONS

SUMMARY

In the literature, integrable equations are meant to be non-linear equations
which are solvable by a transformation to a linear equation or by an inverse
spectral transformation [22]. The difficulty in constructing an inverse spectral
transformation had motivated the search for other methods which would identify
the equations expected to be solvable by an inverse spectral transformation.
These methods which consist of finding a property shared by all known
integrable equations are called “integrability tests”. The existence of an infinite
number of conserved quantities, infinite number of symmetries, soliton solutions,
Hamiltonian and bi-Hamiltonian structures, Lax pairs, Painleve property, are
well known integrability tests.

“The classification problem” is defined as the classification of families of
integrable differential equations. Recently Wang and Sanders used the existence
of infinitely many symmetries to solve this problem for polynomial scale invariant,
scalar equations, by proving that scale invariant scalar integrable evolution
equations of order greater than seven are symmetries of third and fifth order
equations [3].

The first result towards a classification for arbitrary m’th order evolution
equations is obtained in [1] where it is shown that scalar evolution equations
u; = Flu], of order m = 2k + 1 with k£ > 3, admitting a nontrivial conserved
density p = Pu? + Qu, + R of order n = m + 1, are quasi-linear. This result
indicates that essentially non-linear classes of integrable equations arising at
the third order are absent for equations of order larger than 7 and one may
hope to give a complete classification in the non-polynomial case. This is the
motivation of the present work where the problem of classification of scalar
integrable evolution equations in (14-1) (1 spatial and 1 temporal)-dimensions is
further analyzed.

In this thesis, we use the existence of a formal symmetry introduced by Mikhailov
et al. as the integrability test [2]. We introduce a graded algebra structure “the
level grading” on the derivatives of differential polynomials. Our main result is
the proof that arbitrary (non-polynomial) scalar, integrable evolution equations
of order m, are polynomial in top three derivatives, namely u,,_;, 7 = 0,1,2. In
the proof of this result, explicit computations are needed at lower orders and
computations for equations of order 7 and 9 are given as examples.

In our computations we used three conserved densities, p!), p®, p obtained in
[1]. Computations for the general case and for the lower orders showed that it is
impossible to obtain polynomiality in w,, 3 by using only these three conserved
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densities. Thus the investigation of polynomials beyond wu,, 3 is postponed to
future work.

The first section is devoted to a general introduction with a literature review, on
conservation laws, symmetries, integrability and classification, beginning from
the discovery of the soliton.

Notation used in this study, basic definitions and preliminary notions about
integrability tests, symmetries and recursion operators with examples on KdV
equations are given in the second section.

Main results are gathered in sections three and four. In section three, we give
basic definitions and properties of graded and filtered algebras, and define the
“level grading” while in section four we present the polynomiality results.

In section three, a graded algebra structure on the polynomials in the derivatives

ug+; over the ring of functions depending on x,t,u, ..., u; is introduced. This
grading, called “level grading”, is motivated by the fact that derivatives of a
function depending on z,%,u, ..., u; are polynomial in higher order derivatives

and have a natural scaling by the order of differentiation above the “base level k7.
The crucial point is that, equations relevant for obtaining polynomiality results
involve only the term with top scaling weight with respect to level grading. This
enables to consider top level term only, disregarding the lower ones, and to reduce
symbolic computations to a feasible range.

Polynomiality results on the classification of scalar integrable evolution equations
of order m are given in section four. In our computations we proved that
arbitrary scalar integrable evolution equations of order m > 7 are polynomial in
the derivatives u,, ; for i = 0,1, 2.

Section five is devoted to explicit computations for the classification of 7th
and 9th order evolution equations. The purpose of this section is to give an
information about explicit computations and compare with the solutions for
general m. In particular, at order 7, it is shown that no further information
is obtained by the use of all conserved densities p(, i = —1,1,2,3.

The discussion of the results and directions for future research are given in section
Six.

Appendices A,B,C,D, give respectively the submodules and quotient submodules
with their generating monomials, used in the classification of 7th and 9th order
evolution equations. One can derive easily the monomials for evolution equations
of order higher than nine using these lists.
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SINIFLANDIRMA YOLUNDA (1-{.—1)—BOYUTTA iNTEGRE
EDILEBILIR SKALER EVRIM DENKLEMLERI

OZET

Literatiirde, “integre edilebilen denklemler”, lineer denklemlere dontigtiiriilebilen
ya da ters spektral doniigiim ile ¢oziilebilen denklemler olarak tammlanir [22].
Ters spektral dontigiimlerin ingaasinin ¢ok zor olmasi, ters spektral doniigim
ile coziilmeye aday denklemleri belirleyebilecek yontemlerin geligtirilmesine
yolagmigtir. Bilinen tiim integre edilebilen denklemlerin ortak bir ozelligini
bulmaya dayali bu yontemlere “integrabilite testleri” adi verilir. Sonsuz sayida
korunan nicelikler, sonsuz sayida simetriler, soliton coziimleri, Hamiltonyen
ve bi-Hamiltonyen yapi, Lax ciftleri veya Painlevé ozelliginin varlhigi, yaygin
kullanilan integrabilite testleri olarak bilinir.

“Siiflandirma problemi”, integre edilebilir diferansiyel denklem ailelerinin
siniflandirilmas1 olarak bilinir.  Yakin ge¢miste Wang ve Sanders, sonsuz
sayida simetrilerin varhigimi kullanarak, olcek bagimsiz skaler integre edilebilir,
7 inci mertebeden biiyiik, evrim denklemlerinin, 3 iincii ve 5 inci mertebeden
denklemlerin simetrileri oldugunu gostererek siniflandirma problemini, polinom
olgek bagimsiz skaler denklemler igin ¢ozmiiglerdir. [3].

Keyfi m inci mertebeden evrim denklemlerinin siniflandirilmasi hakkinda, ilk
sonug, [1]’de elde edilmigir. Bu sonug, n = m + 1 mertebeden, trivial olmayan
korunan yogunluk (conserved density) olarak p = Pu? + Qu, + R yu kabul
eden, m = 2k 4+ 1, ve k > 3 mertebeden, u; = Flu] evrim denklemlerinin
kuazilineer olmasidir. Elde edilen sonuca gore ozellikle 3 iincii mertebede
ortaya c¢ikan, lineer olmayan, integre edilebilir evrim denklemlerinin simiflari,
7 den biiyiikk mertebelerde goziitkmez. Bu nedenle polinom olmayan durumlar
icin bir siniflandirma yapilabilecegi diigiiniilebilir. Bu diisiinceden yola ¢ikarak,
bu ¢aliymada, (1+1) boyutta (1 uzaysal 1 zamansal ) integre edilebilir evrim
denklemlerinin siniflandirilmasi problemi ele alinmigtar.

Bu tezde, integrabilite testi olarak, Mikhailov ve digerleri tarafindan ortaya
konan, bigimsel simetrilerinin varhg kabul edilmistir [2]. Ayrica “Level grading”
adi verilen, diferansiyel polinomlarin tiirevleri iizerine bir kademeli cebir (graded
algebra) yapist tamimlanmigtir.  Bu g¢aligmanin esas sonucu, keyfi polinom
olmayan skaler integre edilebilir m inci mertebeden evrim denklemlerinin wu,,_;,
t = 0,1,2 olmak tizere, en st ii¢ mertebeden tiireve gore polinom oldugunun
ispatidir. Bu sonucun ispati, diigiik mertebelerde agik hesaplamalarin yapilmasini
gerektirdiginden, 7 inci ve 9 uncu mertebeden keyfi skaler evrim denklemleri,
ornek olarak, acik sekilde hesaplanmigtir.

Bu ¢aligmada, [1]’de hesaplanan ve bigimsel simetrinin varligmin bir sonucu
olan, ii¢c korunan yogunluk, p™, p® p® (conserved densities) kullanilmistir.
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Genel m ve m < 19 icin yapilan hesaplamalarda, sadece bu ti¢ korunan
yogunluk kullanilarak, daha alt mertebeler (6rnegin wu,,_3) i¢gin polinomlugun
elde edilmesinin imkansiz oldugu goriilmiigtiir. Boylece problem ile ilgili bundan
baska yapilacak olan tartigmalar ileriki ¢aligmalara ertelenmistir.

Birinci boliimde genel bir giris ile birlikte, soliton dalgalarin kesfi ile baslayan
ve giniumiize dek gelen, korunum yasalari, simetriler, integre edilebilirlik ve
siniflandirma ile ilgili literatiir 6zeti verilmistir.

Ikinci boliim, caligmada kullanilan notasyon, temel tammlar, integre edilebilirlik
testleri, simetriler ve rekiirsyon operatorleri hakkinda on bilgilere ve KdV
denklemleri ile ilgili 6rneklere ayrilmigtir.

Esas sonuclar {iciincii ve doérdiincii boliimde toplanmigtir.  Uclineit boliimde,
kademeli (graded) ve filtrelenmis (filtered) cebir ile ilgili temel tanimlar ve
ozellikler ile birlikte “level grading” in tanmimi yapilmigtir. Dordiincii bolimde
ise polinom sonugclar verilmistir.

Katsayilar, x,t,u, ..., u; ya bagh fonksiyonlar halkasi iizerinde, tiirevleri ug.;
olan polinomlara kademeli cebir (graded algebra) yapisi oturtulmustur. “Level
grading” olarak adlandiracagimiz bu yapinin olusma nedeni; z,t,u,...,u; ya

bagl fonksiyonlarin tiirevlerinin yiliksek mertebe tiirevlerde polinom olmasi ve
tirevlenme sirasina gore baz seviye k tlizerinde dogal bir ol¢eklemeye sahip
olmasidir. Bu yapinin olugmasindaki can alict nokta, polinom sonuclar igeren
denklemlerin “level grading”’e gore, sadece en yiiksek mertebeden o6lgekleme
agirhigina sahip terimleri icermesidir. Bu durum, diisiik seviyedeki terimleri
gozard1l ederek ve sadece yiiksek seviyedeki terimleri dikkate alarak sembolik
hesaplamalarin yapilabilir bir seviyeye indirgenmesini saglamigtir.

Skaler, integre edilebilir m inci mertebeden evrim denklemlerinin siniflandirilmasi
tizerine polinom sonuclar dordiincii boliimde verilmistir. Hesaplamalarda, keyfi
skaler integre edilebilir m > 7 mertebe evrim denklemlerinin u,,_;, ¢ = 0,1,2
tiirevlerine gore polinom oldugu ispatlanmistir.

Besinci bolim ise 7 inci ve 9 uncu mertebeden evrim denklemlerinin
siniflandirilmasi i¢in yapilan acik hesaplamalara ayrilmigtir.  Bu bolimiin
amacl, acik hesaplamalarin sonuclarini genel m icin elde edilen sonuclarla
karsilagtirmak olmustur. Ozel olarak 7 inci mertebede, bilinen tiim
korunan yogunluklarm, p® i = —1,1,2,3, kullamlmasinin elde edilen sonucu
degistirmedigi gosterilmistir.

Altinct boliimde sonuglar iizerine tartigmalar ve ileriki aragtirmalar igin
yonlendirmeler verilmigtir.

A B,C ve D, eklerinde sirasiyla, 7 inci ve 9uncu mertebeden evrim denklemlerinin
hesaplamalarinda kullanilan alt modiil ve kalan alt modiilleri iireten monomlarin
listeleri verilmistir. Bu listelerin yardimi ile dokuzuncu mertebeden biiytlik evrim
denklemleri i¢in monomiallarin kolaylikla tiiretilebildigi goriilmiigtiir.
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1 INTRODUCTION

1.1 Introduction

In the literature, integrable equations refer to non-linear equations for which
explicit solutions can be obtained by means of a transformation to linear
equations or by the inverse scattering method. Burgers’ and Korteweg de Vries
(KdV) equations are respectively prototypes for these two cases. For example
the Cole-Hopf transformation v, = wwv, which is local, linearizes the Burgers
equation u; — 2uu, — uz, = 0, to the heat equation vy = v,,, while the KdV
equation requires an inverse spectral transformation [29], [28].

Investigations of the solutions of nonlinear partial differential equations
motivated the discovery of mathematical “soliton” known as solitary wave which
asymptotically preserves its shape and velocity upon nonlinear interaction with
other solitary waves [6]. In 1834 J. Scott Russel was the first who observes, riding
on horse back beside a narrow canal, the formation of a solitary wave. In 1895
Korteweg and de Vries derived the equation for water waves in shallow channels
which bears their name and which confirmed the existence of solitary waves.
The discovery of additional properties of solitons began with the appearance of
computers followed by the numerical calculations carried out on the Maniac I
computer by Fermi, Pasta and Ulam in 1955. They took a chain of harmonic
oscillators coupled with a quadratic nonlinearity and investigated how the energy
in one mode would spread to the rest. They found the system cycled periodically,
implying it was much more integrable than they had thought. The continuum
limit of their model was the KdV equation [30].

The exact solutions of the KdV equation were the solitary wave and cnoidal wave
solutions. While the exact solution of the KdV equation u; + 6uu, + Uz, = 0
subject to the initial condition w(z,0) = f(x) where f(z) decays sufficiently
rapidly as |z|] — oo, was developed by Gardner, Green, Kruakal and Miura
in 1967. The basic idea for this solution is to relate the KdV equation to
the time-independent Schrodinger scattering problem [10]. Gardner, Miura and
Kruskal found out that the eigenvalues of the Schrédinger operator are integrals
of the Korteweg-de Vries equation. This discovery were succeeded by Laxs’
principle which associates nonlinear equations of evolutions with linear operators
so that the eigenvalues of the linear operator are integrals of the nonlinear
equation [24].

The interest to the integrability problem increased by the discovery of soliton
behavior of the KdV equation and of the inverse spectral transformation for
its analytical solution. In 1965 Zabusky and Kruskal, in numerical studies,
re-derived the KdV equation and they found the remarkable property of solitary
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waves [21]. They give the conjecture that the double wave solutions of the KdV
equation with large |t| behave as the superposition of two solitary waves travelling
at different speeds [24]. These numerical results lead them to search some
analytic explanation. They found out that this behavior can be explained by the
existence of many conservation laws. Therefore the search for the conservation
laws for the KAV equation started. A conservation law has the following form
where U is the conserved density and F' is the conserved flux.

DU + D, F = 0.

First Zabusky and Kruskal found conserved densities of order 2 and 3, after
Miura found a conserved density of order 8. Finally it is proved that there exist
an infinite number of conservation laws and conserved densities at each order [7].

Methods for selecting equations that are considered to be “integrable” among a
general class are called “integrability tests”. Integrability tests use the fact that
integrable equations have a number of remarkable properties such as the existence
of an infinite number of conserved quantities, infinite number of symmetries,
soliton solutions, Hamiltonian and bi-Hamiltonian structure, conserved covariant
(co-symmetries), Lax pairs, Painlevé property, conservation laws etc. Usually
the requirement of sharing a certain property with known integrable equations
leads to the selection of a finite number of equations from a general class and
the selected equations are expected to be integrable. This method leads to a
“classification” and the criterion used in is called an “integrability test”.

The Korteweg-deVries (KdV) equation
U = Uz + uuy (1.1)

is the prototype of integrable evolution equations. There are a number of other
equations related to it involving first order derivatives. These are called the
“modified KdV” or “potential KdV” equations and they are also integrable.
Miura found that the Modified Korteweg de Vries equation

v, = v3 + v (1.2)

turn to KdV equation under the transformation
u = 0>+ v/ —60;.

Therefore he proved that if v(x,t) is a solution of (1.2), u(x,t) is a solution of
(1.1).
Miura transformations map symmetries to symmetries hence those equations

that are related to a known integrable equation by Miura transformations are
also considered integrable and belonging to the same class.

Sophus Lie was the first who studied the symmetry groups of differential
equations. A symmetry group of a system can be defined as the geometric
transformations of its dependent and independent variables which leave the
system invariant. Geometric transformations on the space of independent and
dependent variables of the system are called geometric symmetries. In 1918
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Emmy Noether proved the one-to-one correspondence between one-parameter
symmetry groups and conservation laws for the Euler Lagrange equations [12].
This result can not explain the existence of infinitely many conserved densities
for the KdV equation which possessed only a four-parameter symmetry group.
This observation leads to reinterpret higher order analogs of the KdV equation
as “higher order symmetries”. Then the search began for the hidden symmetries
called “generalized symmetries”, which are groups whose infinitesimal generators
depend not only on the dependent and independent variables of the system but
also the derivatives of the dependent variables [5].

In the classical theory, the “symmetry of a differential equation” is defined
in terms of the invariance groups of the differential equation. This definition
is essentially equivalent to defining symmetries as solutions of the linearized
equation. That is if ¢ is a symmetry of the evolution equation wu, =
F(xz,t,u,tug, ... Uz ), then

o, = F,o (1.3)

where F} is the Frechet derivative of F. A function f(z,t,u, g, uy,...) is called
symmetry of the partial differential equation H(x,t,u, Uy, Us, Ugy, Uge, Ugt, - - ) =
0, if it satisfies the following “linearization”:

(6H OH & OH d 8H<8>2

o0 T owor  w ot du. \ox

OH 0 0 OH [9\°

For a nonlinear evolution equation u; = F(x,t, u, Uy, ..., Uy »), Symmetries of
the form o = o(x,t, u, uz, u;), linear in u,, u; are called “classical symmetries”,
while symmetries depending on higher order derivatives of the dependent variable
u with respect to z are called “generalized symmetries”. For example one of the
simplest general symmetries of the KdV equation u; = wzz, + 6uu,

18! [ = Upgowe + 100Uz + 20Uzt + 30uu, [2].

The existence of infinitely many generalized symmetries is tied to the existence
of a recursion operator which maps symmetries to symmetries [9].

The recursion operator is in general an integro-differential operator say R such
that Ro is a symmetry whenever o is a symmetry, i.e.,
up = Flu]. (1.5)
(Ro); = Fy(Ro). It follows that for any symmetry o,
(R + R, F.]) o = 0. (1.6)

where F,, is the Frechet derivative of F. Given a recursion operator R, one may
expand the integral terms in R in an infinite formal series in terms of the inverse
powers of the operator D=d/dx. A “formal recursion operator” is defined as
a formal series in inverse powers of D satisfying the operator equation (1.6).
A truncation of the formal series satisfying equation (1.6) for a given evolution
equation or F, is defined to be a formal symmetry in [2].
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The solvability of the coefficients of R in the class of local functions requires
that certain quantities denoted as p( be conserved densities. The existence of
one higher symmetry permits to construct not one but many conservation laws.
These conservation laws contain a lot of knowledge about the equation under
consideration.

A function p = p(x,t,u, uy, us, ..., u,) is called a density of a conservation law of
u = F(x,t,u,u,,...), if there exists a local function o such that 4(p) = D(0).
If p = D(h) for any h and o0 = h; then o is a trivial conserved density. These
conserved density conditions give over-determined systems of partial differential
equations for F' and lead to a classification.

Integrability tests based on the existence of a formal symmetry has lead to many
strong results on the classification of 3th and 5th order equations [14] [15]. Among
polynomial equations, at the third order the KdV class is unique, while at the
fifth order there are in addition the Sawada-Kotera and Kaup equations [2].

The classification problem for scalar integrable equations is solved in the work of
Wang and Sanders [3], for the polynomial scale invariant case. Their method is
based on the search of higher symmetries and uses number theoretical techniques.
They proved that if A homogeneous (with respect to the scaling zu, + \u, with
A > 0) equations of the form w;, = w,, + f(u,...,u,_1) have one generalized
symmetry, they have infinitely many and these can be found using recursion
operators or master symmetries [3]. They proved also that if an equation has a
generalized symmetry, it is enough to be able to solve the symmetry equation up
till quadratic terms to find other symmetries [3]. They showed also that if the
order of the symmetry is > 7, there exists a nontrivial symmetry of order < 7[3].
Their main result is that scale invariant, scalar integrable evolution equations of
order greater than seven are symmetries of third and fifth order equations [3] and
similar results are obtained in the case where negative powers are involved [4].
The problem of classification of arbitrary evolution equations is thus reduced to
proving that such equations have desired polynomiality and scaling properties.
In a recent work, the non-polynomial case is studied in [1] and it is shown that
the existence of a conserved density of order m + 1 leads to quasi-linearity. This
is a first step in proving polynomiality, and our motivation is to prove step
by step further polynomiality results and give a complete classification in the
non-polynomial case.

We shall summarize recent works done on the similar field. In 1993 Roberto
Camassa and Darryl Holm derive a new completely integrable dispersive shallow
water equation

Ut + 26Uy — Uggt + SUUL = 2UglUpy + Ugps

where u is the fluid velocity in the x direction and k is a constant related to
the critical shallow water wave speed. The equation is obtained by using an
asymptotic expansion directly in the Hamiltonian for Euler’s equation. This
equation is bi-Hamiltonian it can be expressed in Hamiltonian form in two
different ways. The ration of its two Hamiltonian operators is a recursion
operator that produces an infinite sequence of conservation laws [31]. In 2001
Artur Sergyeyev extended the recursion operators with nonlocal terms of special
form for evolution systems in (141)-dimensions, to well-defined operators on
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the space of nonlocal symmetries and showed that these extended recursion
operators leave this space invariant [33]. Another study of Sergyeyev published
in 2002 is about conditionally integrable evolution systems. They describe all
(141)-dimensional evolution systems that admit a generalized (Lie-Bécklund)
vector field satisfying certain non-degeneracy assumptions, as a generalized
conditional symmetry [34]. Two of several studies about systems of evolution
equations are produced by Wolf. With Sokolov they extend the simplest version
of the symmetry approach to the classification of integrable evolution equations
for (1+1)-dimensional nonlinear PDEs., to the case of vector evolution equations.
They considered systems of evolution equations with one or two vector unknowns
and systems with one vector and one scalar unknown. They gave the list of all
equations having the simplest higher symmetry for these classes [32]. Tsuchida
and Wolf performed a classification of integrable systems mixed scalar and vector
evolution equations with respect to higher symmetries. They consider polynomial
systems that are homogeneous under suitable weighting of variables. They
gave the complete lists of second order systems with a third order or fourth
order symmetry and third order systems with a fifth order symmetry using the
KdV, the Burgers, the Ibrahimov-Shabat and two unfamiliar weightings [35].
Partial differential equations of second order (in time) that possess a hierarchy
of infinitely many higher symmetries are studied in [36]. The classification of
homogeneous integrable evolution equations of fourth and sixth order (in the
space derivative) equations has been done applying the perturbative symmetry
approach in symbolic representation. Three new tenth order integrable equations
has been found. The integrability condition has been proved providing the
corresponding bi-Hamiltonian structures and recursion operators [36]. Recently
number theory results on factorization of polynomials has been used to classify
symmetries of integrable equations [37].

In the present work, the classification of quasi-linear evolution equations of order
m > 7, using the existence of a “formal symmetry” as an integrability test
proposed in [2], is studied.

The presentation is organized as follows: Notation used in this study, basic
definitions and preliminary notions about integrability tests, symmetries and
recursion operators with examples on KdV equations are given in Section 2.
A new structure called “level grading” based on the structure of graded and
filtered algebra accompanied by related definitions, properties and examples
are introduced in Section 3. Polynomiality results in top three derivatives on
classification of scalar integrable evolution equations of order m are given in
Section 4. Section 5 is devoted to the classification of 7th and 9th order evolution
equations. Two different methods are given for the computations of evolution
equation of order 7. Discussions and conclusions are given in Section 6. The
submodules and quotient submodules with their generating monomials, used in
the classification of 7th and 9th order evolution equations are respectively given
in Appendices A,B,C and D.



2 PRELIMINARIES

The purpose of this section is to introduce notations used in this study. We
also give a brief knowledge about integrability tests, symmetries and recursion
operators which constitute the fundamental part of this study.

2.1 Notation and Basic Definitions

In this study we work with scalar evolution equations in one space dimension
where the independent space and time variables are respectively x and t while
the dependent variable is u = u(x, t).

Definition 2.1.1. A differential function F[u] is a smooth function of z.,t, v and
of the derivatives of u with respect to x, up to an arbitrary but finite order.

Evolution equations are of the form

0
au(x t) = Ful (2.1.1)

where F[u] is a differential function.

We simplify the notation for the derivatives of differential polynomials as follows:

The partial derivative of u with respect to t is denoted by uy = g—;‘. The partial
derivatives with respect to x are denoted by u; = gix‘f.

This agreement emphasizes that these quantities are considered as independent
variables.

If Flul=F (x,t,u,u, ..., uy) is a differential function, the total derivative with

respect to t denoted by D, is

Di(F) = or 9.1.2
«(F) ;)aui o T ot (2.1.2)

and the total derivative with respect to x denoted by D is

" OF 8F
DF = Z uz+1 % (213)

We agree on the convention that the operator inverse of D is D~! defined as
D7l = [e¢.



Definition 2.1.2. The differential polynomial F'[u] is said to have fixed scaling
weight s if it transforms as F[u] — \*F[u] under the scaling (z,u) — (A~1z, \u),
where d is called the weight of u and denote it as wt(u).

Definition 2.1.3. A differential polynomial is called KdV-like if it is a sum
of polynomials with odd scaling weight s, with wt(u) = 2.

Definition 2.1.4. . A Laurent series in D is a formal series

L= LD'+> LD (2.1.4)

=1 i=1

and it is called a pseudo-differential operator. The order of the operator is the
highest index n with L, # 0. The operators given in closed form that involve
integral operations will be called integro-differential operators.

In order to define the products of pseudo-differential operators, we need to define
the operator

D'y = ¢D'—DyD?+4 D*oD73 + ...
= f: (_1>i (DZ([J) Dl 4 (_1)m+1 D! [(Dm_H(,D) D—m—l}(zlﬁ)
i=0

(2

this formula is just the expression of integration by parts, for example

D (pD*) = [¢D" = oD tw— [ DDy
— DMl — DeDF 24 + / D2pDF2%)  (2.1.6)

The action of D7* is computed by repeated applications of (2.1.6), up to any
desired order.

2.2 Integrability Tests

In this part we shall briefly discuss integrability tests. First of all one
needs a definition of “integrability” for nonlinear partial differential evolution
equations, in order to understand the integrability of known equations, to test
the integrability of new equations and to obtain new integrable equations. This
subject has been discussed in several papers gathered on the book “What is
integrability?”[23]. “There is no precise definition besides the two notions of
“C-integrability” and “S-integrability” 7 as stated by Calogero in [22]. The
first one corresponds to the possibility of linearization via an appropriate
“change of variables”, while the second denotes solvability via the “Spectral
transform technique” or the “inverse Scattering method”. The transformation of
a nonlinear equation via an invertible change of coordinates into a linear equation
can also be defined as “C-integrability” [38]. Indirect methods are used to identify
the equations expected to be solvable by an inverse spectral transformation and
they are commonly called “integrability tests”.
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A well known example for equations solvable by an inverse spectral
transformation is the Korteweg de Vries equation. Integrability tests are
inspired by the remarkable properties of the KdV equation such as an infinite
number of conserved quantities, infinite number of symmetries, soliton solutions,
Hamiltonian and bi-Hamiltonian structure, Lax pairs and Painlevé property.

The existence of an infinite set of conservation laws for the KdV equation suggests
that certain nonlinear partial differential evolution equations might have similar
properties. The existence of the infinite set of conservation laws motivated the
search for a simple way of generating the conserved quantities[11]. This search
led to the Miura-Gardner one parameter family of Backlaund transformations
between the solutions of KAV and of the modified KdV equations. Therefore the
inverse scattering transform for directly linearizing the equation was developed.
In 1968 Lax put the inverse scattering method for solving the KdV equation into
a more general form and found the Lax pair [24].

The Backlaund transformation was an important key to check a given equation
for symmetries. The nonexistence of an infinite number of conservation laws
does not obstruct integrability. There exist integrable equations which have a
finite number of conservation laws, which are not Hamiltonian and which are
dissipative. An appropriate example is the Burgers equation which has only one
conservation law, although an infinite number of symmetries. It can be integrated
using the one parameter family of Backlaund transformation between solutions
of the heat and Burgers equation.

In 1971 Hirota developed a direct method, known as Bilinear Representation,
for finding N-soliton solutions of nonlinear evolution equations [6]. It is shown
that KdV-like equations with non-zero 3rd order part, viewed as perturbations
of the KdV equations can be transformed to the KdV equations up to a certain
order provided that the coefficients satisfy certain conditions. These conditions
are obtained by requiring that the conserved densities of the KdV equations be
extended to higher orders [26], [27].

Kruskal and Zabusky after the re-derivation of the KdV equation discovered the
interaction properties of the soliton and they explain the existence of infinitely
many conservation laws by suggesting the existence of hidden symmetries in this
equation. In 1987, Fokas proposed the existence of one generalized symmetry
as an integrability test [25]. MSS develop a new symmetry, called “formal
symmetry”, using as a base, the locality concept of the Sophus Lie classical theory
of contact transformations and the inverse scattering transform. The existence
of formal symmetries of sufficiently high order is proposed as an integrability
test [2]. A formal symmetry is a pseudo-differential operator which agrees up to
a certain order with some fractional power of a recursion operator expanded in
inverse powers of D, which is the total derivative with respect to x. The existence
of a formal symmetry gives certain conserved density conditions which in turn
lead to a classification. The Painlevé method, which can be applied to systems
of ordinary and partial differential equations alike, is one of the methods used to
identify integrable systems. The basic idea is to expand each dependent variable
in the system of equations as a Laurent series about a pole manifold [8].



2.3 Symmetries and Recursion Operators

In this section we shall give the definitions and interrelations between symmetries,
recursion operators conserved densities and discuss the formal symmetry method.

Definition 2.3.1. A local one parameter group of transformations acting on the
space of variables (z,t,u) is called a symmetry group of the equation u; = Flul,
if it transforms all solutions to solutions.

Definition 2.3.2. The Frechet derivative denoted by F; is a linearized operator
associated with the differential function F'[u] and is defined as

n(OF\
F, = D (8%) D (2.3.1)

where u; = ( gza“c)

Definition 2.3.3. A differential function o is called a symmetry of the equation
u; = F[u] if it satisfies the linearized equation, oy = Fio.

Definition 2.3.4. The symmetries depending linearly on the first derivatives of
the unknown function are called classical symmetries or Lie-point symmetries.
All other symmetries are called non Lie-point or generalized symmetries.

Definition 2.3.5. A differential function p is called a conserved density, if there
exists a differential polynomial ¢ such that p, = Dep.

In the solution of the KdV equation via the inverse spectral transformation, it
appears that not only the KdV equation, but the sequence of odd order equations
called the KdV hierarchy are all solvable by the same method. These equations
are symmetries of the KdV equation and they can be defined recursively.

Definition 2.3.6. A recursion operator is a linear operator R such that Ro is a
symmetry whenever o is a symmetry. It can also be defined as a solution of the
operator equation R; + [R, F.| = 0.

Assuming that ¢ is a symmetry and using the equation above we have

(Ro); = R0+ RF,0
(-RF.0 + F.Ro)+ RF.c
— F.Ro (2.3.2)

hence Ro is a symmetry. We can conclude that R sends symmetries to
symmetries.



Example 2.3.7: The Recursion operator for the KdV equation of the form:

U = ug + uuy (2.3.3)
is 5 ]
%KdV = D?C + gu + gungl (234)

where D! is the left inverse of D, [13].
Applying (2.3.3) to (2.3.4) we get:

2 1 2 1
(D§+§u+ gulDI_l)(u;pLuul) = D?(us —|—uu1)+§U(U3+uu1)+§u1D;1(U3+uu1).

Computations give fifth order KdV equation:

U = u —|—Euu + —uus + —uu
t — Wwh 3 1Ww2 3 3 6 1

Since recursion operators send symmetries to symmetries, it can be said that
fifth order KdV equation is the symmetry of the third order equation.

Definition 2.3.8. A formal recursion operator for the evolution equation
u; = Flul, is as pseudo-differential operator R satisfying the equation

R+ [R,F]=0 (2.3.5)

If R is not purely differential operator, it is difficult to determine its
integro-differential part, but the last one can be expand in inverse powers of
D and obtain a pseudo-differential operator. Now the equation (2.3.5) is an
infinite series in inverse powers of D, and only a finite number of these equations
can be solved. If a finite number of terms in the equation (2.3.5) hold, then the
equation will hold identically.

Definition 2.3.9. A formal symmetry is a pseudo-differential operator which
satisfies the operator equation R; + [R, F.] = 0 up to a certain order.

If Ord(R) = n, Ord(F,) = m and in the symmetry equation the coefficients of
D=L up to D"t™1=N are zero, the highest N terms in the symmetry equation
are satisfied, we say that the formal symmetry has order N.
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3 BASIC ALGEBRAIC STRUCTURES

In this section we give the algebraic structures that will be used in our problem.
In the first part we give basic algebraic definitions with some examples, in the
second and third part we give respectively the structure of the graded algebra
and the “level grading” structure that we introduce in this study.

3.1 Basic Definitions

In this part we give fundamental definitions concerning the graded and filtered
algebra.

Definition 3.1.1 A ring (K, +, .) is a set KC together with two binary operations
(+,.), which we call addition and multiplication, defined on X such that the
following axioms are satisfied:

1) (K,+) is an abelian group.

2) Multiplication is associative.

3) For all a,b, ¢, € K, the left distributive law, a (b+ ¢) = (ab) + (ac) and
4)The right distributive law, (a + ) ¢ = (ac) + (bc), hold [17].

Definition 3.1.2. Let IC be a ring. A (left) K-module consists of an abelian
group G together with an operation of external multiplication of each element of
G by each element of K on the left such that for all o, 3, € G and r, s, € IC, the
following conditions are satisfied:

1) (ra) € G.

2) rla+p) =ra+rp.

3) (r+s)a=ra+ sa.

4) (rs)a = r(sa).

A K-module is very much like a vector space except that the scalars need only
form a ring [17]. In any left K-module, a family of elements 1, x, ..., ,, is called
linearly independent if for any «; € K the relation > a;z; = 0 holds only when
a1 = ... = a, = 0. A linearly independent generating set is called a basis.

Definition 3.1.3. A module is said to be free if it has a basis.
It is clear that any basis of a free module is a minimal generating set, i.e. a
generating set such that no proper subset generates the whole module [19].

11



Definition 3.1.4. An algebra consists of a vector space V over a field C,
together with a binary operation of multiplication on the set V of vectors, such
that for all @ € C and «a, 3,7 € V, the following conditions are satisfied:
1)(a0)8 = a(af) = a(af).
2)(a+ B)y =ay+ By
3a(B+7) =abB+ ay.

W is an associative algebra over C if, in addition to the preceding three
conditions:

4)(afB)y = a(By) for all o, B,y € W [17].

Definition 3.1.5. If for a field C a positive integer n exists such that n.a =0
for all a € C, then the least such positive integer is the characteristic of the
field C. If no such positive integer exists, then C is of characteristic 0 [17].

Definition 3.1.6. Let C be a field of characteristic 0. A vector space V over C
is called a Lie Algebra over C if there is a map

(X,)Y)— [X,)Y], (X,Y,[X,Y]eV)

of V- x V into V with the following properties:

(1)(X,Y) — [X,Y] is bilinear

(W)X, Y]+ [Y,X]=0, (X, Y €V)

(ii0) X, [V, Z]] + [V, 12, X]| + [2,]Y, X] = 0, (X,Y,Z € V) [20].

The following definitions of the graded and filtered algebra are based on the
previous preliminary definitions.

Definition 3.1.7. Let M be an associative algebra over a field C of characteristic
0. M is said to be graded if for each integer n > 0 there is a subspace M,, of M
such that

(i)1 € My and M is the direct sum of the M,,

<ii)M(ni)M(nj) C Mn,4n;)

for all n;,n; >0

In this case the elements of U, _, M, are called homogeneous, and those of M,
are called homogeneous of degree n; if v = 32,59 v (v, € My, v € M), then v, is
called the homogeneous component of v of degree n [20].

Definition 3.1.8. M is said to be filtered if for each integer n > 0 there is a
subspace M ™ of M such that:

H1eMO M CM C.. U2yM™=Mand

(i) M) M) < MMitna) for all ng,n; > 0.

It is convenient to use the convention that M1 = ). For v € M, the integer
s > 0 such that M € M® but ¢ MG ig called the degree of v, and written
deg(v). For n >0, M™ is then the set of all v € M with deg(v) < n [20].

We give now certain examples of gradings on polynomial rings. The polynomials
in a single variable x over a field C is a standard example of graded and filtered
algebra.
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Example 3.1.1. Let M be the algebra of polynomials in one indeterminate x
over a field of coefficients C. The degree of the indeterminate x gives a grading
where each submodule M™ = span(z™).

Table 3.1.1:Submodules and their graded elements.

MY M2 M3 Mt M| MS

X ZL‘2 LL‘3 .’E4 SL‘5 IEG

Example 3.1.2. Let M be the algebra of polynomials in two independent variables
x,y over a field of coefficients C. The total degree gives a grading on this algebra.
Alternatively, we can induce a grading by choosing a weight, wt(zx), wt(y), for each
of the variables and then use total degree. For example if the weights of  and y are
respectively 1 and 2, then the grade of z®y? will be o + 26. The generators of the
graded modules are given in the table below.

Table 3.1.2: Generators of graded modules

MY M2 M3 M M| MS
X a:2 1'3 1'4 a:5 .%'6
y | zy | 2%y | 2Py | 2y
y2 xy2 x2y2
y3

Definition 3.1.9. Let § = Kz, ..., z,] be a commutative ring of polynomials where
xy’s are indeterminates and

f= Eailm,;nxil,...,xi" (3.1.1)

n

where a;, . ;, are real numbers. Each product m; = x?,...,mf{l in f is called a
monomial and the corresponding term a;,. ;, is called a monomial term. The total

degree of the monomial m; is
d(mg) = ik (3.1.2)

where iy, is the degree of xj, [18].

Example 3.1.3. S = K[z1,...,z,] is a commutative ring of polynomials in k
indeterminates. We use a grading by the total degree, then the grades of the following

monomials 7323, ¥{rjrs and xJx] are respectively 8, 10 and 12.

If we work with polynomial evolution equations, we can work with a polynomial
algebra where the indeterminates are the derivatives u;’s and the coefficient ring is
I = C°°(x,t). In the case of non-polynomial evolution equations, the expressions of the
time derivatives of the conserved densities are polynomial in higher order derivatives.
For example for quasilinear equations, the indeterminates are {u,,, um+1, ...} and the
coefficient ring is the ring of C*° functions of x,t, u, and the derivatives of u up to
order m — 1.

On this polynomial algebra, the order of the derivative gives a natural grading. In
dealing with this grading, as shown in [1], in order to obtain top two terms of a time
derivative, it is necessary to take top four terms of all expressions, and this necessitates
complicated computations.

The key feature of our work is the use of a different type of grading, that we shall
call the “level” of a monomial. The advantage of using a grading by “levels” is that
the computation of the top terms in time derivatives necessitates the knowledge of the
dependence on a single highest term.
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3.2 The Structure of The Graded Algebra

Let K£*) be the ring of C*° functions of z,t,u,...,u; and M®*) be the polynomial
algebra over K(*) generated by S*) = {Uk+1,Uk+2,...}. A monomial m; in M® is a
product of a finite number of elements of S*). Monomials are of the form

n
m; = H um,ij (3.2.1)
j=1

We shall call m — 1 as the “base level” and the “level of a derivative term u,, will be
the number of derivatives above the base level, i.e., n — (m — 1).

Let’s now fix a base level d and denote the submodules generated by elements of level
j above this base level by M. Then the polynomial algebra My over K will be a direct
sum of these modules given as

My =P M (3.2.2)
>0

My=M)PM;EPM;EPM;PM;...

The first few submodules can be expressed in terms of their generators as follows.

M;=K @(um> @<Um+17 u?) @(um+2, Uny 1 Uy, U, ) @ e

Full sets of generators are given in the Appendices.

or explicitly as

The differentiation with respect to x induces a map on these modules compatible with
the grading as follows. For example, a general term in M C% is of the form ¢ug41 where
¢ is a function of z, t, v and the w;’s for ¢ < d. Then

D(pugi1) = o¢ugra + Dougiq (3.2.3)
= Quai2 + Ud+1[Patar1 + Pa—1ua + .. ]
Thus it has parts in M [} and inM 3 . Similarly it can be seen that
T My— MjEP M
and

e My MyEPMTP.. P

Note that not all monomials appear in a total derivative, i.e, in each submodule mil
there are monomials that are not in the image of 7. These will be the "non-integrable”
terms that we shall be searching for. It can be seen that a monomial is non-integrable
if and only if it is nonlinear in the highest derivative. We describe the structure as
follows. Let o

R = Im(n?) ﬂ M

and define the quotient submodule Mf;rj by

“Fi+J i+J

M, = Mczl T/R.
It can be seen that the quotient module is generated by the the non-integrable
monomials. These are listed in the Appendices.

The most important feature of this grading is that in the intersection of the image of
7/ with the top module only the dependencies on ug appear. That is practically if we
work on the top module, we may assume that our functions depend on ug only. This
allows a considerable reduction in the computational requirements.
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3.3 The Ring of Polynomials and “Level-Grading”

In preliminary analytic computations as well as in explicit symbolic computations, we
have noticed that, although we used dependencies in top four derivatives, polynomiality
results involved only the dependencies on the top derivatives. This remark led to the
definition of an unusual grading on the monomials in the derivatives of u, called the
“level grading”. More precisely, if the unknown functions depend on the derivatives of
u up to order k, the expressions of F'[u] and the conserved densities p(i) are polynomial
in ug4;, for j > 1, hence they look like polynomials over functions depending on the
derivatives u; with j < k. By defining the “level of ui4; above k” to be j, we can give
a graded algebra structure described below. In this setup, the crucial point is that the
level above k is preserved under differentiations and integrations by parts hence we can
work with the top level part of the expressions. We define the ”level” of a monomial
as follows:

Definition 3.3.1: Let m; = uZ}mu,‘:ijQ . ..ui’jrjn be a monomial in M*) and wuy be
the base term of the monomial. The level above k of m; is defined by :

levk(mi) =aij1+azje+ ...+ apjn (331)

The “level above k7 gives a graded algebra structure to M*). Monomials of a fixed

level p form a free module over K*) that we denote by Mlgk). By definition Mék) = Kk
and M®*) is the direct sum of these modules, i.e.

S = {n € SV levy (1) = p}
MO =pMPomMPe. oM o.. ..
Starting from this graded algebra structure and defining the modules

p
—@®M®
it

and M*) = Mék) 4.+ Mék) we obtain a corresponding filtered algebra. We illustrate
these structures by an example.

Example 3.3.1. Let £k =5. Then Mé5) = K©®) is the ring of functions depending on

z, t, u,...,us and Ml@, 1=1,2,3,4 are spanned by the monomials
MY = {ug),
My = (ug,u),
M§5) = <u U7u6,ug>
5
MP = (ug, ugug, u2, urud, ud).

The modules ]\Zfi(S) are obtained as direct sums of the modules above and they are
spanned by

Vi
r(5)
Ms™ = <u u6, ug),
YA 3
3 - <U U7U6,U6,U7,U6,U6>
7 () 4 3 2
M4 = <ug,U8U6,U7,’LL7'LL6,U6,U8,U7U6,U6,U7,U6,U6>
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Now we take a specific monomial and illustrate the effects of differentiation and
integration by parts.

Example 3.3.2. Let k =5 and M®) be as in example 3.3.1. We take the following
polynomial of level 3 above 5 in M?ES)

v = pug + Yurug + nug p,,n € KO,
Then, the total derivative Dv given by

Dv = ug+ tusug + Yus + 3nugur + (@sus + @aus + ... + Oz )us
+ (1ﬂ5u6 + Pqus + ...+ ¢m)u7u6 + (775u6 + naus + ...+ nx)ug

belongs to M f) as seen below.

Duv = pug + (5 + V) usue + bu? + (5 + 3n)uru + nsug

M
+ (paus + ...+ pp)ug + (haus + ... + e )urue + (aus 4 . .. + 0 )ud

M

and the projection to M, 25) depends only on the derivatives with respect to us.

Integrations by parts are treated using (2.1.6) in the preliminaries as below

/vdx = ur+ %wug +/ [—D(SO)W - %D(T/J)u% + nug}

1 1
/Udl‘ = pur + [21/) - 2905} ug

M)

1 1
+ / {2905,5 - 5@05 + 77] uy

M)

and we see that the projection on M§5) depends on the us dependencies only as before.

To see the behavior of the level grading under time derivatives, we let u; = F'[u] where
F'is of order m and level © = m — k above k. Let p be an arbitrary differential function
of order n and level j = n — k above k. Then since

n
9p n
Dip = —D"(F
tp hz_% Bu (F) + pe
and 887‘; and D™F have orders n and n + m respectively,
|Dip| = n + m.

Similarly since the level of the partial derivatives of p are at most j, and the level of
D"F is i + n, it follows that

levi(Dip) < j+i+n

These results allow us to facilitate the computations using top dependencies only.
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4 CLASSIFICATION OF m’th ORDER
EVOLUTION EQUATIONS

4.1 Notation and Terminology, Conserved Densities

Let u = u(z,t). A function ¢ of x, ¢, v and the derivatives of u up to a fixed but finite
order will be called a “differential function” [9] and denoted by ¢[u]. We shall assume
that ¢ has partial derivatives of all orders. We shall denote indices by subscripts
or superscripts in parenthesis such as in «;) or p™ and reserve subscripts without
parentheses for partial derivatives, i.e., for u = u(x,t),

and for ¢ = p(z, t,u,ut, ..., up),

_ 99 _O%p _ 9%
Yt = ata @w_ax7 gok_auk

If ¢ is a differential function, the total derivative with respect to x is denoted by D¢
and it is given by
n
Do =" piuit1 + ¢ (4.1.1)
i=0

Higher order derivatives can be computed by applying the binomial formula as

pae§[R () e

j + Dy, (4.1.2)
i=0 | j=0

In the computation of [ Dyp, we shall use only top two order nonlinear terms, which
come from top 4 derivatives. For this purpose, we need the expression of (4.1.2) only up
to top 4 derivatives which are given in (4.1.3 — 4.1.6). The general expression for D¥ ¢
given by (4.1.6) is valid for & > 7. It follows that in the present thesis general formulas
are valid for equations of order m > 19, and we have done explicit computations for
equations of lower orders.

We shall denote generic functions ¢ that depend on at most u,, by O(uy,) or by || = n.
That is

¢ =0(u,) or |p|=n if and only if =0 for k>1.

Un+k

If ¢ = O(uy), then Dy is linear in u, 1 and D¥y is polynomial in u,; for i > 1. In
order to distinguish polynomial functions we use the notation ¢ = P(uy), i.e.,

O

Dk =0 for some k.
uTL

¢ = P(up) if and only if ¢ = O(u,) and
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This distinction is used in the expression of derivatives given in (4.1.3 — 4.1.6).

Note that even if ¢ = O(u,,), and ¢ has an arbitrary functional form, D¥¢ is polynomial
in upy; for ¢ > 1. The total derivative with respect to x increases the order by one,
thus if || = n then |DF¢| =n + k.

When u; = F, and |¢| = n, then the total derivative with respect to t is given by
n .
Dip=> @D'F + ¢,
i=0
thus if |F'| = m, Dy increases the order by m.

Equalities up to total derivatives with respect to x will be denoted by =, i.e.,

=1 if and only if @ =1 + Dy

Integration by parts of monomials is defined as follows. Let p1 < ps < ... <p; <s—1.
Then

ai ap o~ ai ajp
DUt - Ul = D (goupl .. .upl> Us—1,
ai aj,, P ~ 1 ai ar) , P!
Py - UpyUg_(Us = =27 D ((pupl cougl fug .

The integration by parts is repeated until one encounter a monomial which is nonlinear
in the highest derivative,

a ay, p
Upy - UpiUs, D> 1
The order of a differential monomial is not invariant under integration by parts, but it

is possible to compute when the integration by parts will give a non-integrable term.

Higher order derivatives are computed in [1] as follows:

Do = gnunik + P(unip-1), k>1 (4.1.3)
Dk‘P = PnUntk t [Pn—1 + kDpp] tnik—1
+ Plupips), k>3 (4.1.4)
Dk(p = Pnplpyk + [Spn—l + kDSOn] Un4k—1
k
+ Yn—2 +kDpn—1 + <2> DQSOTL] Un+k—2
+ P(untyk-3), k=5 (4.1.5)
Dk(p = Pnplpyk + [Qpn—l + kDSOn] Un4k—1
k
+ on—2 +kDpn1 + <2> DQWH] Un+k—2
A A
+ Pn—3 + kD(Pn—2 + 9 D ©Yn—1+ 3 D On | Un+k—3
b Plupipa), k=T (4.1.6)

If the evolution equation u; = F[u] is integrable, it is known that the quantities

AV = B O = By B, (4.1.7)
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where

oF B = oF

Fp=—
m 8Um ’ 8um_ 1

(4.1.8)

are conserved densities for equations of any order [2].

Higher order conserved densities are computed in [1] as below, with the following
notation

a=FEY™ ag) = En,i:LZ&4 (4.1.9)
12
W) — 4 YDg)? —
p a” " (Da) o 1)Daa(1)
N [ 12 )
m2(m + 1)a(1)
24
_ mmﬂ—D%ﬂ’ (4.1.10)

(4.1.11)

60
m(m +1)(m + 3)

p® = a(D%)? - a2D2aDa(1)

(m—1)
m(m+ 1)(m + 3)

1 _
+ 1° 1(Da)4+3Oa(Da)2[ Dayy

1 , 2

m2(m + DO T mm2 = 1)0‘(2)}
120

m(m? — 1)(m + 3) m

(m—1)2m-3) ,
2 1)

(m—1)(m —3)

aQDa {— Oé(l)DOé(l)

+ (m - 3)Da(2) —
6(m — 2
+(m)%Wm—Mﬂ
60 3Fm1)
m(mQ—l)(m—l—S)a m

(m—1)(2m —3) o
(1)

m

(Dayy)?

4
— fDOz(l)a(g) +

m m3

(2m—3) ,
- A e T

m®@ T )W)

RORIC)

8
T (4.1.12)
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4.2 General Results on Classification

In [1], the criterion for integrability is the existence of a formal symmetry in the sense
of [2]. The existence of a formal symmetry requires the existence of certain conserved
densities p¥, i = —1,0,1,.... It is well known that for any m, the first two conserved
densities are

pY =F,Y™ and p = Fp/Fp.

The explicit expressions of p*) and p(® for m > 5 and of p for m > 7 obtained
in [1] are given in Appendix A. In our computations we shall use only conserved
densities which look like p™), p@ and p®), but all conserved densities have been used
in computer algebra computations at lower orders for cross checking purposes.

The coefficients of top two nonlinear terms in Dyp(!) give a linear homogeneous system
of equations for 31% and 825;1)7
matrix is nonsingular for m = 5, hence it follows that for m > 7, an evolution
equation of order m admitting a nontrivial conserved density of order m + 1 has to
be quasi-linear. In [1], it is shown that u2, 4141 is the top nonlinear term in [ Dyp,
for p = p(z,t,u,...,u,) and w, = F(x,t,u,...,uy) where m = 2k + 1, n > m and
n=2k+1+1.

with coefficients depending on m. The coefficient

In this section first we shall show that the contribution to the top two nonlinear
terms, come from the top 4 derivatives in the expansion of [ D;p. Then we shall give
the expression of the coefficients of top two nonlinearities ugk 4141 and ugk 4 in the
expansion of [ Dyp.

This result is based on the expression of the derivatives as in [1].

Proposition 4.2.1. Let p = p(x,t,u,...,uy) and vy = F(z,t,u,...,uy) where
m=2k+1, n=2k+1l+1andk+1—12>0. Then

(_1)k+1Dtp ~ [Dk+1pn _ kan_l]Dk+lF _ [kan—Z _ Dk*lpn_?’}DkJrlle
+ O(U3k+l,1). (4.2.1)

Proof:

n
Dip=>_ piD'F + p; (4.2.2)
=0

In Dyp, the highest order derivative comes from p,D"™F, where p, and D"F are of
orders 2k + 1 + [ and 4k + 2 + [ respectively. If we integrate by parts k + 1 times we
obtain

annF ~ (_1)k+1Dk+1pn Dk—HF

where DFt1p and D*t'F are now respectively of orders 3k 4+ 2+ 1 and 3k + 1+ 1. One
more integration by parts gives a term nonlinear in uggy14;. Similarly one can see that
in pn,lD”_lF, Pn—1 and D" 'F are of orders 2k + 1 + [ and 4k + 1 + [. This time,
integrating by parts k times, we have

pn—anilF ~ (_1)kapn Dk+lF,

where D¥p,_; and D¥HF are both of orders 3k + 1 + [. Thus the highest order
nonlinear term, in usg1y41, comes from top two derivatives in p, D™ and pn_1D" L.
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By similar counting arguments, one can easily see that top two nonlinear terms are
obtained from top four derivatives and the remaining terms are of order 3k + 1 — 1.

pn—2pDn72pF+pn—2p—1Dn72p71F = p2k+l+1—2pD2k+l+172pF

+  Pokpi—2pDFTITPE (4.2.3)

with 2k +1 — 2p > 0. We integrate by parts until the order of the product differ by
one and we get:

(—1)FP[DMPp, o, — DFPp, o, (| DFTIPE (4.2.4)

Here, the first and the second term in the brackets are of orders 3k + [+ 2 —p and
3k+1+4+1—p respectively, and DFT'=PF has order 3k +1+ 1 — p. Thus after
integration by parts again we get the term u2, 4i41—p- 1t follows that the top two
nonlinear terms for p = 0, and p = 1 come from p,, pn—1, pn—2 and p,_3. O

Remark 4.2.2 As the general expressions for the derivatives given in (4.1.3 — 4.1.6)
are valid for large k, there are restrictions on the validity of the formula (4.2.1). Since
the top four terms of D¥*'F and D¥*!p, are needed in (4.2.1), from (4.1.6) it follows
that k£ + 1 and k + [ should be both larger than or equal to 7. On the other hand, at
most top two terms of the expressions in the second bracket in (4.2.1) contribute to
the top nonlinearities and it turns out that the restrictions coming from (4.1.3,4.1.4)
are always satisfied and the crucial restriction is k +1 > 7 and k 4+ > 7. Thus for
[=1,0, —1 and —2, we need respectively k > 6, 7, 8 and 9 hence m > 13, 15, 17 and
19.

We shall now give the explicit expressions of the coefficients of top two nonlinear terms
form>19and k+1> 7.

Proposition 4.2.3Let uy = F(x,t,u,...,uy), m =2k+ 1, be an evolution equation
and p = p(z,t,u,...,uy) with n=m+1, =2 <1 <2, be a conserved density for
ur = F. For m > 13 and k+1 > 7, the coefficients of the top two nonlinear terms
u§k+l+1 for k+1>0 and ung for k+1—1> 0 are respectively as follows

1 1
(k+ 5)FnDpag = (k+1+ 5)DFnpnn — Fuipan =0, (4.2.5)

1
Pnn DPFy, [12 (23 4 621 + 6k1* + 213 4 3k* + 31% + 6kl + k + 1)
1
+  ppn D*Fpy {2 (K* 4 2kl + 2k + 20 + 1> + 1)]

1
+ pon DEy—o {2 (3+ 2k + 25)}
Pn,n Fn_3
1
Dppy D*Fy, [4 (—2K% — 4K*1 — 2k1* + K* + 12 4+ 2kl + k + 1)}

1
+ Dppy DFpy {2 (1+1—2K2 - 2k:l)]
1
+ Dpn,n Fm—2 |:2 (1 - 2k):|

+ D%, DEy, [i(%?’ F ok — kP — k)]
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1
+ DQpn,n mel {2 kQ}

+ D3ppn Fm [112 (—2k3 — 3k% — k:)}

+ Dppn1 DF,, B (=14 2k + 21)}

+ Dppn-1 Fma

+ D?ppn-1 Fn B (—1— 2/<:)}

+ panz DF,, [2k+21—1]

+ Pan-2 Fo1 [2]

+ Dppn—s Fn [~2k — 1]

+ putni DFn B (1—2k— 25)}

+  pn-1n-1 Fno1 [—1]

+ Dpntnt Fm B (1 +2k)} ~ 0. (4.2.6)

Proof. The proof is a straightforward computation of the integrations indicated in
Proposition 4.2.1. Writing the first four terms in D;p and keeping only the terms
which contribute to the nonlinearities u%k s ugk 4y We get

2

(~D)*Dyp =2 pun Fnizkris: Uskiive
P [Fm—1+ (k+1)DFy] uskpi uskti+2

k+1
Pn,n lFm—z + (k+1)DFy-1 + ( 5 )Dsz] USk41—1 UBk+142

+ o+

_|_

k+1
Pnn [Fm_g + (k+1)DFEy,_o+ ( N >D2Fm_1

2
k+1
( >D3Fm1 USk41—2 UBk+1+2

(k+1) Dpppn Fin Uskti41 Uskti+1
(k+1) Dppp [ m—1+ (k+1)DFp] uspr ugkti+1

k+1
( 5 >D2Fm1 USk1—1 UBk+14+1

k+1
+ Pnn—2 + Dpn,n—l + ( 9 >D2pn,n

+ o+ + + o+

—  Pn—in—1) FmUsktit1 Uskt

k+1
+ \pan-2+Dppp-1+ ( 9 >D2Pn,n - pnl,nl]

X [Fr—1+ (K +1)DFy] usktr uskt

k+1
+ Pnn—3 T (k + 1)Dpn,n72 + k;szn,nfl + < 3 >D3pn,n

—  Pn-in-2—kDpp—1n-1] Fm Uskti+1 Uskti—1
—  Pn—2.n Fm U341 Uskt141
— pn-2n [Fm-1+ (k+1—1)DF,] uskti—1 Uskti+1
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- [pan,nfl + k;Dpan,n - pn73,n] Fin ugkyi usks- (427)

After integrations by parts we get (4.2.5) as the coefficient of the first nonlinear term
U344 141 and (4.2.6) as the coefficient of the second nonlinear term u3; ;. O

From equation (4.2.5) we can easily get a number of results pertaining the form of
the conserved densities. In particular we can see that higher order conserved densities
should be quadratic in the highest derivative and top coefficients of the conserved
densities at every order are proportional to each other [1].

Corollary 4.2.4 Let p = p(z,t,u,...,u,) and uy = F(x,t,u,...,up), m > 7 and
n >m. Then
Pnnmn = 0 (428)

Proof. Tt can be seen that (4.2.5) uses only top two terms and for [ > 0 it is valid for
k 4+ 1> 3. Writing it in the form

Pn,n
k+-)———(k+l+=2)— = , 4.2.9
(o )P (ko )™ = (4.2.9)
we can see that for n > m the highest order term is Dp,, ,, and it follows that p; ,,», = 0.
Od

Remark 4.2.5 From (4.2.9) one can easily see that if p and 1 are both conserved
densities of order n, with p,, = P and 7,, = @, then % = %Q, hence the ratio of
the top coefficients is independent of x. If p and 7 are conserved densities of consecutive
orders say, |p| =n and |n| = n+ 1 with p,,, = P and 9,41 n+1 = @, then

1. (DQ DP\ DF,
) ( Q P ) B

(k+
hence @ = F%/mP.

Remark 4.2.6 If the partial derivatives of F' and p in (4.2.5) and (4.2.6) depend at
most on u;, then these equations are polynomial in w;j4;, ¢ > 0. In all the subsequent
computations we have used only the coefficient of the top order derivatives.

4.3 Polynomiality Results in Top Three Derivatives

In this section we give our final results which are the polynomiality in top three
derivatives. We apply Proposition 4.2.3 either directly to a canonical density p(*),
i = 1,2,3(step 3 and 6), or to generic conserved densities p, v. We also give Tables
showing that at least one of the canonical densities is of the generic form (Tables
(4.3.1) — (4.3.5))

We used generic conserved densities in steps one, two and four. The first step is
to obtain the quasilinearity result for m > 5, which follows from the fact that the
coefficient matrix of a homogeneous system is non-singular for m > 5. At the second
and fourth steps we have a similar structure; we show that the coefficient of w,, is
independent of u,,—1 and u,,_o respectively, by obtaining nonsingular homogeneous
systems of linear equations.

The third and sixth steps are based on relatively straightforward computations using
the canonical densities. At the third step we complete polynomiality in u,,_1 while
at the fifth and sixth steps we complete polynomiality in u,,—_o, by using the explicit
form of the canonical densities p(!) and p3).
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Step 0:Quasilinearity F),,, =0

First we obtain again the quasilinearity result given in [1], for m > 5. Thanks to the
general expressions in Proposition 4.2.3, applying (4.2.5) to p(l) the proof given here
is very neat.

Proposition 4.3.1 Let uv; = F(x,t,u,...,up), m = 2k+1 > 13, |F| = m, be

an arbitrary evolution equation and p(l) = P(O)uznﬂ + Q(O)um+1 + RO | =1,
IPO| =1Q0)| = [RO| =m, PO +£0 its conserved density, then F,,, =0

Proof: The coefficient of u,,41 in (4.2.5) and the coefficient of wu,,+3 in (4.2.6) are
respectively as follows:

(0)
Pm Fm m
(2 +1) 5y — (2 +3) =™ =0 (4.3.1)
pY F
2k +1)(k® +k + 6) 57 — 2k +3)(k+ 1)(k+2) I’;””” =0 (4.3.2)
From (4.3.1) and (4.3.2) we get:
©
1 ~1 B 0
@ | =
(K2 +k+6) —(k>+3k+2) {%ﬂm] [0] (4.3.3)
Since k # 2 from (4.3.3) we conclude that
Fpom = P9 =0 (4.3.4)
O

The following steps are valid for m > 19

The aim of the first and second steps is to investigate the dependency on wu,,_1 of the
coefficients A and B in the quasi-linear integrable evolution equation u; = Au,, + B.
For this purpose we use the coefficients of the top two nonlinearities in [ D;p which are
respectively equations 4.2.5 and 4.2.6. The results with their proof are given below.

Step 1:Polynomiality in w,, 1 1st Result A4,, 1 =F,,_1 =0
Proposition 4.3.2 Let
u = Augy, + B,
with A =a™ and |A| = |B| =m — 1. Then the canonical density p(!) reduces to
pV = P2 4+ QWy,, + RM),
with [PM| = |[QW| = |[RV| =m — 1, And if p(V) is conserved density then

Apy =PV, =0 (4.3.5)

m—

Proof: Substituting u; = Au,, + B in (4.1.10) and integrating by parts if necessary
we get p(t) with

2
Am—1

p —

; (4.3.6)
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The coefficient of uy,, in (4.2.5) is:

(1)
Pm—l Am*l —

(2 +1) 55— (2K +3) =5 =0 (4.3.7)

While the coefficient of w42 in (4.2.6) is:
(1) 1 3 2 1) 1 3 2
2PN A1 o5 (2% + 9K + 13k + 6] — 26, A [2K% 4 3K + 13k + 6] = 0
A p)
3 2 m—1 3 2 m—1 _
|2k* + 9K? + 13k + 6| h [2% + 3K + 13k + 6] Sap =0 (438)

From (4.3.7) and (4.3.8) we get:

2k +1 —(2k +3) ] [P%jf]:[o] (4.3.9)

2k3 + 3k% + 13k +6  —(2k3 + 9k% + 13k + 6) mo1 0
Since k # 2, A1 = P,Sll =0. O

Now we shall see that the existence of a conserved density determines the form of B.

Step 3:Polinomiality in u,,_; 2nd Result B,,_1,-1m-1 =0

Proposition 4.3.3 Let
u = Augy + B,

with |A| =m —2, |B|=m — 1 and the canonical densities
p(l) — P(l)u72n—1 + Q(l)umfl + R(l)
P(3) — P(3)u72n + Q(3)Um + R(3)
with [P = m—2and |P®)| = m—1 Andif p() and p®) are conserved densities,then
Bo—tm—t1m-1 =0 (4.3.10)

Proof: We substitute uy = Au,, + B and A,,—1 = 0 in (4.1.10), (4.1.12) and integrate
by parts then we get the coefficients P() and P®) respectively:

24 )
PY = — a2 + a5y 0™ (m* = 1) (4.3.11)
() — a 2 3 2
PO = g [tz (4 3m® — 121+ 507)

180
+ a_mﬂam_gBm_Lm_l (m — 60)

+ a2t pB2 (60 - 60)] (4.3.12)

m—1,m—1 m m2

We compute (4.2.5) using p) where | = —1 and the top dependency of P(M) is w,_o
and we get:

(k + %)Mp(llwm,l — (k- %)2p<l>Am,2um71 ~2PYB, 1 =0 (4313

m
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We compute also (4.2.5) using p(3) where [ = 0 and the top dependency of P®) is u,,_;
and we get:

(k + )2AP(3) i — (k + )2P< ) Ap—ottm—1 — 2P® By, = 0 (4.3.14)

Differentiating twice (4.3.13) with respect to u,,—1 we obtain:
2PY By 4 mtm1 =0 (4.3.15)

On the other hand the coefficient of u,, in (4.3.14) gives:

(k+ 5)24 P¥. =0 (4.3.16)
and P( )1 can be written as
Bn—tm-1,m-1(0" Am—2 + P’ Bm—1,m-1) (4.3.17)

where p! and p? are independent from w,, 1. Then from (4.3.15) and (4.3.17) we
conclude that:
Bumtm-1m-1=0. (4.3.18)

a

Here is the form of the integrable evolution equation that we obtain which is polynomial
in upy—1. ur = Auyy, + C’u?n_l + Du,,—1 + E. The following three steps investigate the
polynomiality in w,,—o2.

Step 4:Polinomiality in u,, » 1st Result A,, o, =PF,, s =C =0

Proposition 4.3.4 Let u; = Auy, +Cu2, | + Duy_1 + E, where a = Aw and the
canonical densities

pay =PYu2_ +QWuy_y + RY (4.3.19)

and

where A,C,D,E,PM P® a4 depend on z,t,u,... U2, If pay and p(y) are
conserved densities, then
Amo=PY —c=0 (4.3.21)

m 2
Proof: We substitute u; = Auy, +Cu?,_; + Duy,—1 + E, in (4.1.10) and (4.1.12¢) and
notice that p™) and p(® have the same form as pay and prpy. We recomputed (4.2.5),
and (4.2.6) for [ = —1,0 and we get respectively:
The coefficient of w,,_1 in (4.2.5) for pM, 1 = —1

PO

m> m— 2
4C — 2k + 1) a" S + (4K = 1) @™ a5 =0 (4.3.22)

The coefficient of 11 in (4.2.6) for p™), 1= -1

(1)
P
2 3 2 m—2
126°C — (2K + 3% + 13k +6) a2
+ (4" — 4K + 23K + 25k + 6) 0™ a5 = 0 (4.3.23)
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Thus (4.3.22) and (4.3.23) give:

(8k* — 4k — 24)C + (—8k* + 26k + 12)a™ tay—2 =0 (4.3.24)

The coefficient of wu,, 1 in (4.2.5) for p@®), 1 =0

(2)

um72 2 m—1 _
4C — (2k +1)a" 2 + (482 + 4k +1) @™ ap 5 =0 (4.3.25)

The coefficient of 41 in (4.2.6) for ,0(2), =0

(2)
12 (K* + 2k 4+ 1)C — (2k3 4 3k? 4 25k + 12)a™ 22

P
+ (4k* + 93 4 28k* + 49k +18)a™ a2 =0 (4.3.26)
Thus (4.3.25) and (4.3.26) give:
(8k? + 20k — 36)C + (k* — 25k* +6)a™ a9 =0 (4.3.27)

Finally equations (4.3.24) and (4.3.27) give:

(8k% + 20k — 36) (k3 — 25k? + 6) m-1 0

a

(8K2 — 4k — 24) (—8k3+26k+12>H0 ) _2]:[0] (4.3.28)

Since the determinant of the matrix (4.3.28) is different than zero for k£ # 2 and a # 0
we have:

Ayp—92 = Am_z =C=0 (4.3.29)
Thus equations (4.3.22) and (4.3.25) give:

—0 (4.3.30)

Step 5:Polinomiality in u,,_2 2nd Result D,, 3,2 =0

Proposition 4.3.5 Let uy = Auy, + Duy—1 + E, where A,_o =0, and assume that
there exist a conserved density p = Pu2,_; + Qupy_1 + R, where Py,_o =0. Then

Dp—9m-2=0 (4.3.31)

Proof: We recomputed (4.2.5) under these conditions and we get:

[k + ;] 2P 5(A)tm 2 — [k _ ﬂ 2P(Ap3)tm2 = 2P(D) (4.3.32)

We differentiate (4.3.32) twice with respect to w,,—2 and we obtain:

Dp-9m-—2 =0 (4.3.33)
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Step 6:Polinomiality in u,, 2 3rd Result £, _2,,-2m-2.m-2 = 0.
Proposition 4.3.6 Let u; = Auym + Gugn—1Um—2 + Hup 1 + E,

A=a™, |Al=|G|=|H|=m-3, |E|=m—2 be the evolution equation and p*)
its conserved density. Then

Eme,me,mfZ,mf2 =0. (4334)

Proof: In this case p(l) should be quadratic in uy,_o.

- 24‘13;23 + 12755;(1 = ;)1
T ChT
G 1 G
+ 18“”}3 (= —1)+12 ;llai“}
+ 12um_QCMIM [2aG — ma™ ay,—3]
+ o, a%;—‘* 12U A (C::;f)[am
+ o2 (mQ‘Z_ S [—2ma™ By s + H(m — 1)) (4.3.35)

Thus the third derivative of ,0(1) with respect to w,,_o is:

83p(1) 24"+
Oum—_2®>  m(m2—1)

Emf2,mf2,m72,m72 =0 (4336)

Finally the integrable evolution equation of order m where the coefficients depend on
x,t,u,, ..., unp_g has the following form:

F = Aup + Gy ot -1 + Htgy 1 + Jud, o+ Lu?,_o+ Nup o +S  (4.3.37)

where A,G,H,J,L,N,S depend on z,t,u,...,Un_3
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The following Tables show the correspondence between the generic and canonical
densities for each Step.

Table 4.3.1: Step 1: u; = Au,, + B, Polynomiality in u,,_1 First Result

m=2k+1,k=k | p(un) = Pu?, Eq( ), Eq(8) | 3 qUm: Uzptms2 | Am1 =0
m="7k=3 p) = Pu? Eq(7), Eq(8) | ujour, ug Ag =0
m=9,k=4 p) = Pu% Eq(7), Eq(8) | uisug, uisuis Ag =0
m=11,k=5 (1) = Pu?, Eq(7),Eq(8) | u3gui1, uisuis Aip=0
m=13k=6 (1) = Pu?, Eq(7), Eq(8) | uiqu1s, uiguis A =0
m=15k=7 (1) = Pu?, Eq(7),Eq(8) | udyu1s, ud uir Ay =0
m=17k=38 p(l) = Pu?. Eq(7), Eq(8) | u3su17, u3suie Aig=0
m=19k=9 p) = Puiy Eq(7), Eq(8) | udguig, ud-u Aig=0

Table 4.3.2: Step 2: u; = Auy + B, A1 =0 Polynomiality in w,;,_1
Second Result

m=2k+1,k=k | p(un) = Pu, | BEq(7) u§k+1um By—1,m—1,m-1 =0
m="7k=23 p®) = Pu? Eq(7) | ulyuz B =0
m=9k=4 p®) = Pu} Eq(7) | u?qug Bggs =0
m=11,k=5 pB) = Pu?, Eq(7) | uigun Bi1o,10,10 =0
m=13,k=6 p®) = Pui, Eq(7) | ulquis B1212,12 =0
m=15k=7 p®) = Pu3, Eq(7) | udyuis B14,1414 =0
m=17k=38 p®) = Pu, Eq(7) | udsuir Big,16,06 = 0
m=19k=9 p®) = Pu, Eq(7) | udguio Big1818 =0

Table 4.3.3: Step 3: u; = Auy, + Cu?,_ + Duy1 + E, App_1 =0
Polynomiality in u,,_s First Result.

m =2k +1, plum—1) = PuZ,_ | Eq(7), BEq(8) | w2 um—1, u3p_1tumt1 | Am—z =
k=k p(um) = Pu?, Eq(7),Eq(8) | u3)qum—1, u3,ums+1 | C =0
m="7 k=3 | pl) = Pu? Eq(7), Eq(8) | udug, ug As5=0
k=3 p®) = Pu2 Eq(7), Eq(8) | u3que, udus C=0
m=9,k=4 | p0 = Pul Eq(7), Eq(8) | u3yus, u2juio A7 =0
k=4 pB3) = Pu? Eq(7), Eq(8) | u33us, u25u10 C=0
m=11,k=5 | ptM = Pui, Eq(7), Eq(8) | u3su10, udquia Ag=0
k=5 p® = Pui, Eq(7), Eq(8) | ufguio, ufsuiz ¢=
m=13,k=6 | p) = Pul, Eq(7), Eq(8) | uiguiz, uiruiy A1 =0
k=6 p® = Puiy Eq(7), Eq(8) | uiguiz, ufsuia C=
m=15 k=1 p) = Pul, Eq(7), Eq(8) | u3ju14, udyuis Az =
k=T pB) = Pul, Eq(7), Eq(8) | u3yu14, u3 uie C=0
m=17,k =8| ptM) = Pui, Eq(7),Eq(8) | u3 u1e, udsuis A5 =
k=8 p®) = Pu3, Eq(7), Eq(8) | u3su16, u3suis C=0
m=19k=9| pl) = Pulq Eq(7), Eq(8) | u3;u1s, udguzo Ar =
k=9 p®) = Pui, Eq(7), Eq(8) | u3guis, ud uzo C=0
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Table 4.3.4: Step 4: u; = Aup, + Duyy_1 + E, Apy1 = Apy2=0
Polynomiality in wu,,—s Second Result

m=2k+1,k=k | plum_1)=Puz_; | Eq(7) | usk*um—1 | Din—2m—2=0
m="7k=3 pB) = Pu? Eq(7) | udus D55 =0
m=9k=4 pB) = Pu3 Eq(7) | u3yus D77=0
m=11,k=25 pB) = Pui, Eq(7) | uisuio Dyg =0
m=13,k=6 pB) = Pu?, Eq(7) | uiguia D111 =0
m=15k=7 pB) = Pu?, Eq(7) | u3ui4 Dy313=0
m=17,k =8 pB) = Pui Eq(7) | ud,uie D1515 =0
m=19k=9 p®) = Puig Eq(7) | uduis Dy717=0

Table 4.3.5:Step 5: u; = Auy, + Gupp—ot—1 + Hupp1 + E, Ap_1=A3,_9=0

Polynomiality in u,,—2 Third Result

m =2k +1, P(Um—2) = Pugn—2 Eq(8) ng,lum—l En—2m—2m-2m-2=0
=k

m="Tk=3 | p) = Pu? Eq(8) | udug Ess55=0
m=9k=4 | pt = Pu2 Eq(8) | u3qus Er777=0
m=11,k=5 | pi) = Pu Eq(8) | u34u1o FE9999=0
m=13,k=6 | pt) = Pu}, Eq(8) | uiruin Fi1111111 =0
m=15k="7 | pM) = Pul, Eq(8) | udyuis Fi3131313 =0
m=17,k=8 | pt) = Pui, Eq(8) | u3suie Fi5151515 =0
m=19k=9 | p = Pu?, Eq(8) | udguis Erara717 =0
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5 SPECIAL CASES

In the application of the integrations by parts to D;p we use the expression of the
kth derivatives given by (4.1.6). This expression, which involves top 4 derivatives
is valid for k¥ > 7. In our computations D¥"—1F for | = —2,—1,0,1,2 appears in
(4.2.1). Although at this place only top 2 derivatives are used, we assume that the
general results obtained in the previous section are valid for k& > 9, i.e, for m > 19,
and treat m = 7,9,11,13,15,17,19 as special cases and conserved density conditions
are computed directly, without using 4.2.5 and 4.2.6. The derivations for m = 7 and
m = 9 are given in some detail below. At all other orders, computations are carried
out explicitly. One can compute it using the tables below (Tables 5.1.1—5.1.4) where it
has been shown the steps and quadratic terms to be considered on each computation.

5.1 Classification of 7th order evolution equation

5.1.1 First Method
In this section we give the explicit computations for m = 7 using all canonical densities
p® i =—1,1,2,3 computed in [1].
Step 1. We start with the quasilinear case where
up = Az, t,u, ..., ug)uy + B(x,t,u, ..., ug).
Recalling that in the grading by levels we need only the dependency on ug we write
up ~ A(ug)ur + Blug).

In the following ~ will denote equality using the dependency on the top base level

only.
The conserved densities are
P =gt =477 (5.1.1.1)
P = waZa! iU7aﬁBﬁa + 5 —Bia ", (5.1.1.2)
14 98
3
p(2) = u%a(;a_? [—7a¢Bg + Bgal —?umﬁBga_B
- B3 —19 5.1.1.3
B, (5.1.1.3)
3 _ .22 4] 2 Ly, 2 2, 1y
p = ugaga + uy; a666060 + < agg0 ageg + —aga
3 3 3 4
6] 3
+ U?CL 6 [%CLGGBGGCL—F 28a6366 — 56a6B666a}
_13 [165 33 3
e [ o5 656 ~ ggaoBoeBoea + g6 B ]
33 33
—wragBga ' + ——Bja=%. 5.1.1.4
G666 T ggpge? ( )



The structure of non-integrable terms is given by the following table. The coefficients
of the nonintegrable terms shown with bold face are the ones that lead to ag = 0.

Table 5.1.1: Structure of non-integrable terms in Step 1. for order m = 7.

pD | pM @ p®
Top terms in p(®) Ug u? u? u?
Order of p(® 6 7 7 8
Level of p() 0 2 2 4
Top term in fpgi) uU13 UL4UT UL4UT U15US
Level of top term in fpgi) 7 9 9 11
Non-integrable terms ujur, | Wigur, | uiy, udur,
in fp,gi) uduz, | ud, uuz, u?yug,
u%u;’, ugu8u7, ugug, U%OUSU%
ul, udugur, | uduguy, | uigus,
ugury, udul, udus,
uguy, | ug, ugug,
udu3, ugu?, ududur,
u?, udud, udugud,
uguy, | uguz,
ut?, uduz,
uguy,
uguy,
wdul, ull

The conserved density p(!) is of order 7, level 2, p™) = pM (... ur, u?),

P = o (ug)y + ... (5.1.1.5)

where pgl) is of order (1 4+ 7+ 7) = 15 and level 9. The integrability conditions for
D‘lpgl) will be provided by equating to zero the coefficients of the non-integrable

terms in Mé’.
(1)

The coefficients u?quy and ug in p;’ gave respectively the following conditions: for

a#0

udour : 14aga®(agea — 5az) =0 (5.1.1.6)
uy .  Taga®(—2agea+ 11a2) =0 (5.1.1.7)

The compatibility of (5.1.1.6), (5.1.1.7) gives:
ag =0 (5.1.1.8)

Since the coefficient @ has to be independent of ug and A = a”, the dependency of A
is restricted to us.

Step 2. In our second step the evolution equation is:
ur ~ A (us) uz + B (us, ugp) (5.1.1.9)
and the conserved densities are:

P =gt =477 (5.1.1.10)
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3
L —ugasBga ™ 7

1
o = st udada - 2
3
—13
B B 1.1.11
+ a {14 sa’ +98 6} (5 )
p(2) = U7CL5BGCL_6 + urugas [—7a5 + BGGCL—ﬂ

ulasa™" [—7asBs + Bsgal

+ o+

3
u6a5a713 {—B5a7 + 7Bg:|

+

B —19{ Bs —B} 1.1.12
R Tt (5 )

_ 1 5 3
p® = ula M {20%@12 28a5366a + 19636256]

+ U7’U,(25 l:a55a5a — —a55B(56a 5_ —a5

65
12 —agBE;aG

9
+ a5366a }+U7u6a_ [28

28

1 33 3
—  —asBsea’ — ——as5BgsB BssB
28615 560 98615 66 6+98 56 66a:|
11

1
+ wuza'? [70,5350, — %%Bg

- 91835B66a} +uga™? {a%az + iaé}
+ uga_7 [Zag,g,ag,Bﬁa — %a55B56a — gagBG

+ 298a5B56a] + u6a_13 [ gzang,cﬂ + 19685 5B6
_ gza5B5ﬁBﬁa + ;a5B55a + %Bma }

+ uga P |:j];;a5B5B6a — 63836a5Bg —

33
L g [9832 14_@3 B2a +96043§] (5.1.1.13)

Then we repeated the same computations for (5.1.1.9) with pD pM) p2) HB3),
The conserved density p® is of order 7 and level 2, p® = pB) (..., u2).

o = o (ur)y + ... (5.1.1.14)

p§3) is of order (7 + 7+ 1) = 15 and level 9. The following conditions came up from

the coefficients of the non-integrable term u2,u7 in ﬁg:

5 3
u%0u7 : B666a_4 (—4&5& + 14B66> =0 (51115)
Therefore
Bess =0 = B =Bu2+ Cug+D (5.1.1.16)
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Table 5.1.2: Structure of non-integrable terms in Step 2. for order m = 7.

pD ] pM p@ p®)
Top terms in p(i) Uus ur ur u%
Order of p 5 7 7 7
Level of p( 0 1 1 2
Top term in f pgz) Uu12 U4 U4 U14U7
Level of top term in [ pgl) 6 8 8 9
Non-integrable terms u3, uly, | udy, | uiour,
in fpl(f) ug, udus, | udus, | ug,
udu2, | udu?, | udu?, | udugusz,
W b |l | udud,
udu2, | udu?, | ugur,
w2ud, | w2l | udid,
uy uguz,
R

Step 3. The evolution equation is:
us ~ Aur + Buk 4+ Cug + D (5.1.1.17)

where A = A(us), B = B(us), C = C(us), D = D(us). Here we noticed that the
coefficients A, B, C, D, in u; are of order 5, then we choose us as our basic term with
level zero. The conserved densities are:

P =a = A7YT (5.1.1.18)
1 3
p(l) = ug |:a55 +aza " — casa B
2 7
1 6, 0 _13 2] -13 [ 3 6
1435@ + 49a B7| + uga 14@ a’C

6 1 3
B PO S o T [ L Dya’ 02] 5.1.1.19
11 50 +49 ]+ 1 5a+98 ( )
p(2) = ug [7@55(],5 — 2(155@763 — 2@%@773 - a5B5a76
12 2 16
+ s B SR B |

+ uga_lg [—a55a130 — a%amC — a5Csa'

12 2 1 24
+ Za5a®BC+ ZC5a"B+ =Bsa’C — 49C'B2}

7 7 7
~19 13,3 642, 2 7
+ wuga —asDsa™° + ?a5a Cc* + ?Dg,a B
1 12 1 2
—Cs5a"C — CQB} 190 [D T 02] 5.1.1.20
L STy T 775" T a9 ( )
1 5 3
p(3) = u%all [zagam — ﬂa5aﬁB + 4932]

1 1 _ 2 35
+ Ué [—3a555a5a + ﬂa555a °B + §a§5a + Ea55ag
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50 1 88
—  —assa5a B — —assBsa™ > + 7@55(1_1232

21 6 147

+ %ag) + % a "B - %a2B5a 6

— izaz -13p2 4 452a5B55a 5 %%35@ ’B

_ %%a—lgB?; 127355a_113 i 22432 —11

_ %B5CL—1832 n 2143021(1—2534] tuda [_171%5(15(1190

— %%5056120 + %a aBBC + 373 a'®C — Zagcsa

+ %a5055a g—Sa CsaB + Q—é% Bsa'3C — 3i§a5a6032

— 7055&43 + —C5B5a — %05 'B* - 3 43B5a7BC

N 2246041 033} +u2a {—;a55D5a n 98a a3

— 2: %D a + Sz a2Cc? + i—;ag,Dg,algB + ;—1&5C5a130

— %%JC?B + 49D55a14B + 49D5B5a - %Dw B?

* 19602 B %C OB - % Bra’C + 2149081 C*5 2}

+ wuga™? [iga D5a130 — 6836a5a603 + 98D5C5a

~ SEDOB - GO 4 0 CPB ]

+ o {9181)2@14 - %D5a702 + 960404} (5.1.1.21)
In this step the computations has been done for (5.1.1.17) with p(=1, p(M) p2) ),

These conserved densities are respectively of order 5, 6, 7 and level 0, 2, 3, and
4. The orders of pg_l), pgl), p§2), p®) are respectively 12, 13, 14 and 14 and their
levels are 7, 9, 10, and 11. The integrability conditions came up from the coefficients
of the non-integrable terms: udug, udug in p=V, wdug, ud in pM), wdur in p® and
uigus, udus, udurug, udud in p3).

U%uG . %

~ 84a3a® - 842B) (5.1.1.22)

(—7@555@8 + 63&55&5@7 + 4@55CLB

1
98713 (343(1555(120 — 3430,55@50,19 — 490@55(1133

—  4116a3a"® + 3136a2a'*B + 245a5 Bsa'?
— 13444505 B? — 49Bs5a + 196Bsa”B — 4SB3> (5.1.1.23)
1

98al3
—  2646a2a"*B — 196a;5Bsa"® + 1176a5a° B?

1+ 49Bssa'* — 210Bsa’B + 7233) (5.1.1.24)

(~343as550” + 588as5aB + 3430a3a’®

3
ugzw : ) (343&55@5@ — 98as5a Bp_ 98a5a12B
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2
U1oU6

UgUg

495 Bsa'® + 84a5a° B2 + 14Bsa’ B — 1633)

1
93411 (686a55a5a19 — 245a55a" B — 2058a3a'®
a

2744a2a"? B — 245a5Bsa'® — 616a5a° B>
84Bsa"B — 2433)
1

98all
8965a2a'? B 4 980a5Bsa'? + 1694a5a5 B?

336Bsa” B + 19233)

(—27440,55@5@19 + 980(155@13B + 6517@%&18

(5.1.1.25)

(5.1.1.26)

(5.1.1.27)

We solve (5.1.1.22) for asss and replace in (5.1.1.23) - (5.1.1.24). Then we get:

u3u6

+

1
98al3
2744a%a* B + 245a5Bsa’® — 1344a5a° B
49Bs5a™ + 196B5a” B — 48B°)

1

98413 (—3087a55a5a19 + 3925503 B + 75460308
a

2254a2a'? B — 196a5Bsa'® + 1176a5a° B
49Bssa'* — 210B5a" B + 72B%)

(2744a55a5a19 — 294@55@133 — 8232a§a18

(5.1.1.28)

(5.1.1.29)

We solve (5.1.1.25) for as5 and replace in (5.1.1.22)- (5.1.1.26) - (5.1.1.27) - (5.1.1.28)

- (5.1.1.29) and we get:

u%uﬁ

U%uG

2

ugu8

We solve (5.1.1.31) for Bss and replace in (5.1.1.30) - (5.1.1.32) and we get:

uguﬁ

1
98¢a15
1204a5a° B — 49Bs5a'* + 126 B5a37B — 1633)

1

(—411603a'™ + 11760202 B + 637a5 Bsa'®

(~1176a3a'? + 504a20° B + 91as Bsa’

14a”
268a5B2 — TBsza® + 22B5aB)

1 3 18 2 12 13
5a.3 (7946a3a’® — 3136aZa'*B — 637a; Bsa

1792a5a5 B2 + 49Bs5a'* — 154B5a” B + 833)
1
98q11
798a5a5B? + 49Bsa’ B + 1633)

1

98all
8965a2a'? B 4 980a5Bsa'® + 1694a5a° B?

336Bs5a” B + 19233)

(~2058a3a'® + 2940a2a'2B — 147a; Bsa'®
(~2744as5050" + 980as50' B + 6517ada’®
2

a7 (1029a30™® — 58802a'? B + 168a5a° B?

— 7Bsd’B — 433)
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(5.1.1.31)

(5.1.1.32)

(5.1.1.33)

(5.1.1.34)

(5.1.1.35)



1
uy 19413 (—343&%@18 + 196a2a"*B
~ 42030°B + 4B%) (5.1.1.36)

We solve (5.1.1.35) for Bs, we replace in (5.1.1.31) - (5.1.1.33)—(5.1.1.34) and we get:

u2ug 158 (50421080 — 50421430 B
+  21266aa** B* — 5684a3a'®B? + 1148a2a'? B*
— 148a5a°B° + 81°) (5.1.1.37)
3
wous © gerp (~7203a4a?" + 5831030’ B
~ 156803a'? B? + 154a5a" B* — 4B") (5.1.1.38)
udug N (86436030 — 71687a3a'* B

+  2082502a'2B? — 2618aza° B® + 144B*) (5.1.1.39)
Computations between (5.1.1.36), (5.1.1.38) and (5.1.1.39) end up with
1 2 12 6 R+ 2
o B (1029430 — 560a50° B+7652) = 0. (5.1.1.40)

We solve (5.1.1.40) and find three roots:

147a5a° Tasa®
B=0, B= 3‘;5“ , B= “;a (5.1.1.41)
1)For B=0and B = % the coefficients of u?yug and udug are respectively
2 ) 7 2
ujoue : Tasa (a55a — 3a5) (5.1.1.42)
7 7
ugu(g a;a (—8@55@ + 19&%) (5.1.1.43)

Computations between (5.1.1.42) and (5.1.1.43) end up with the condition

as =0 (5.1.1.44)
2)For B = mgi, The coefficients of udug, udug, udurug, and udud are as follows:
2 7a’ 2 3
uglle 1 - (—a555a + 1lassasa — 16a5> (5.1.1.45)
a2
u%uﬁ : > (18@5555@3 + 178a555a5a2 + 123@%5612
+  5688assala + 4776a3) (5.1.1.46)
ul : 7iﬁ(—2 2 1 7a2.a2 — 29a55a2 4 1.1.47
quTUG 5 ass5a5a” + Tassa 9assaza + 60ay (5.1.1.47)
2,3 Ta® 3 3 2 2
UgUg : T (—2a5555a5a + 12@555@55(1 - 17a555a5a
—  100a2sa5a® + 443as5a3a — 480(155)) (5.1.1.48)
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We solve (5.1.1.45) for asss, replace in (5.1.1.46), (5.1.1.47), (5.1.1.48) and we get:

2

wdug % (3210250% + 8762as503a — 664a3) (5.1.1.49)

7 6
udurug % <7a§5a2 — 5lassaza + 92a§> (5.1.1.50)

35a5a®

udud % (a§5a2 — Gaszaza + 8a§) (5.1.1.51)

After computations between (5.1.1.49), (5.1.1.50) and (5.1.1.49), (5.1.1.51) we get

713583
———a; =0 =a5=0 5.1.1.52
5190694 @ ( )

Thus for all values of B obtained in (5.1.1.41) we get a5 = 0. Then we conclude that
our third and fourth conditions are: as =0 and B =0

Table 5.1.3: Structure of non-integrable terms in Step 3. for order m = 7.

pD ] pM p@ p®)
Top terms in p(®) Us u? ud u?
Order of p(® 5 6 6 7
Level of p® 0 2 3 4
Top term in [ pgl) U192 U4 UL4UG UL5UG
Level of top term in fpgl) 7 9 10 11
Non-integrable terms uzug, | ujue, ud, uious,
in fpgl) udug, | ud, uiuy, | u2ug,
u%u%, u§u7u6, ugu%, u§U7u6,
ul | u2ud, | udug, | u2ud,
U7 Ug, udu?, uguy,
udug, uduzul, | ugul,
udug, udug, ududug,
ug u3, udurug,
ugug, | ugug,
udug, uSug,
upug, | ugug,
ug” uug,
uzu,
ull

Step 4. The evolution equation is:
ug ~ Aug + Cug + D (5.1.1.53)

where A = A(uy), C' = C(ug,us), D = D(ug,us).
In this step the basic term with level zero is us and the conserved densities are as
follows:

oD =g = A7 (5.1.1.54)
pM = —iues(3’5a_6 +a713 [a2a12u2 — ia4aﬁcu5
14 a1y
_ 1y 7+302} (5.1.1.55)
14°% T 98 o
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7 7 1 1
p(2) = ug [5CL44G,U5 + 5aiU5 — 504a_5 + 705(1_120]
+ o [a4C4a13u§ — 7aia120u§ — asDsa'3us
3 1 1 2
+ ?a4a66’2u5 — 5D4a14 + ?D5G7C - 4903} (5.1.1.56)
5 11 3
@ _ ,2 -11|2 212 11 6 2
p uga [2a4a 28@405@ + 19605}

1 _ 1 _
+  ug [5@44a4au?) — 1a44C’5a 5u§ — ?a44a 5Clus

3 1 41
+ iaiug - ?aiC5a*6u§ + 278(1121&760“5
1 _ 13 _ 11 _
+ ?a4D55a 5U5 - %04040, 5U5 - %GAC{)G 12CU5
1 1 1
- D C —11 70 C —11 70 —110
+ 0” sCsa +49 1Csa U5+49 4Q
11 3
- 6%0502(1_18] +a % {aia%ug + 1(144@4(119011%
_ 3 Cua203 14 o4 4
28a44 4Q u5—|—4a4a Uy
9 33 9
- Zaialgc’ug — %aiDg,algu% + %ai@;algu%
165 1 3
+ Qaiaucaug + ?a4D45a20u§ — ﬂa4D4a2OU5
11 33 33
+ Ea4D5a13CU5 — %a404a130u§ — @(14&6031%
1 1 1
- D 14C 7D2 14_7DC 14
gt Ot ggtsa T ggstan s
11 3 33
— —Dsa’C?* 4+ —Cla Ml + — 5.1.1.57
686 "% < T 196 1" "5 T ge0a ( )

Computations has been done for (5.1.1.53 — 5.1.1.57). We noticed that the conserved
densities p(=1, p™M)| p() and their total derivatives with respect to ¢ ,0(_1), p%l), p,@
don’t agree with our basic term and level admission; except the conserved density p(*)
which is of order 7 and level 2 and its total derivative with respect to ¢ (pg?’)) which is
of order 14 and level 9. The integrability condition came from the non-integrable term
udug of pff’) which is:

Csy5=0 = C=Sus+T (5.1.1.58)

Step 5. The evolution equation is:
up ~ Aug + Susug + Tug + D (5.1.1.59)

where A = A(ua), S = S(ua), T =T (usa), D = D(uag,us). In this step the basic term
with level zero is uy and the conserved densities are as follows:

Pl =a b= A"YT (5.1.1.60)
1 _ _i 65 1 g 13 |g2412 2_3 6.Gy,2
P = 11 t6a a aza "uy — Ta4a”Su;
3 1 3
- ﬁa4a6TU5 - ﬁD5a7 + %521@
3 3
3 grp T2] 5.1.1.61
LT RS ( )
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3)

7 7 1
= U ga44au5 + 50’121“5 — gS4CL_5U5 — 6T4a_5

+ %a‘mSQ% + ;a_mST} + a1 {—7aia125u§
—  7a2a*®Tu? — ayDsa'3us + agSsat3ul
+  asTa 3l + %a4a65’2u§ + ga4aGSTu§

+ %a4a6TQU5 — éD4a14 + %D5a75u5 + %D5a7T

— ;@@—gﬁmyikﬂ%—éﬁ] (5.1.1.62)

5 11 3
uga_ll faiam — —a4a%S + Sz] + ug [5@44a4au§

2 28 196

;—;a44a_55u§ - %a44a_5Tu5 + gaf’lug + g—;aia_ﬁSug
;%aia_GT% + %G4D55G_SU5 — £G4S4a_5u§
%a4T4a_5u5 - %aw_mSng — %az;a_uSTug,
9—18D5a_115 + %SML_HSUE + %S@L—HT%
439T4a7113u&—, + %TMfIIT — %ailsSgug
%CL*BSZTUE—, — 61;6a185T2} +a {aila%ug
§a44a4a1951/5l + §a44a4a19Tu:5)’ — ia4454a20ug1
4 4 28
2—38a44T4(120ug + iaiaﬂué - ZaialBSug
%aiamTug - %aiDmlgu% + %ai&;algué
%aiﬂalgug + %aialzsaug‘ + %aiamSTu‘;’
%aiamTQu% + %a4D45a20u§ — %a4D4aQOU5
%a4D5a13Sug + %CL4D5CL13TU5 — §Q4T4a135u§’
§a4T4a13Tu§ — %MCLGS:SU% — %Q4G6SQT’M§
%amGSTng — %Q4G6T3U5 + 4i9D4a14SU5
4—19D4a14T + %DgaM — %D55’4a14u§
%D5T4a14u5 — 61?16D5G7TQ + @SzaMUEL
%5’4T4a14u§ + 136T42a14u§ + %541@
5%ﬁ%@+£%§@ﬁ+£%ﬂ%5

33
%@# (5.1.1.63)
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Computations showed that the integrability condition came from the coefficient of u3ug

in ,0,(51). Here we noticed that the level of u3ug is 10 while p,gl) is of order 13 and level

9. The condition is:

Dssss =0 = D = Ful + Fu + Gus + H (5.1.1.64)

where E = E(ua), F = F(uw), G = G(us), H= H(us)
Step 6. The evolution equation is:

Up ~ Au7+SU5u6+TU6+Eu§ —I—Fug—l—Gug,—{—H (5.1.1.65)

where all the coefficients depend on u4. The basic term with level zero is still u4 and
the conserved densities are as follows:

p(*l) —al=A"UT (5.1.1.66)
p(l) — a_13 aiamug — ga4aGSu§ — —a4a6TU5
14 14
1 79 3 7.9 14 L 7
- _ 2B - A Fus — —
+ 14S4a us — 4@ Eus — 6 Fus — 0 G
+ Sy iST% 4 3 (5.1.1.67)
98"~ "0 49 98 o
p(2) = ug —la444a — ——Qy404 — 7031(1_75
10 10

1 9 1
+ §a454a_6 — 3a4a SE + ?a4a_1352 + ES44&_5

1 1 3 9
_ 75« _125—*E -5 < _125E—7 —1953:|
724 jrad Tt ga 19

18
+ uia™ [—7aia12T — 2a4aF + 7a4a6ST

1 1 1
— ?S4a7T + ET44CL14 — ?T4CL7S
1

2 3 6
Fua 4+ Z4"SF+ Za'TE — S2T]
pras TSl a 9

3 1 1
+ usa” " [—a4a13G + §a4a6T2 - gG4a14 + 7a7SG

2 7 6 2:| —19 |: 1 14
ZTF — 28T _ZH
o0 19 ta 54l

1 2
+ ?a7TG - 49T3} (5.1.1.68)

p® = wla ™! Baiau _ %GMGS + 1;52]

+ ug [—§a444a4a + ;—4a444a_55’ — gaia
— %auai — %a44a4a_65 + %a4454a_5
— %a44a_5E + %a44a—1252 + %aia‘l
+ %aia_75’ — %ai&la_ﬁ — —a2a°FE
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121 13 11
7CLZCL—13SQ + —a4S44a_5 — —a4S4a_125

98 84 98
ia4E4a75 + %agta*mSE — %auﬁlgszs
%SMCFHS + %852(1711 - 4395461711E
%SML_BSZ + %Ew—lls 4 %a—llEQ
%G—BSQE 4 %a_%S‘l
u?tf25 ia444a20T — ﬁa44a4a19T
%CLMTM20 - %a44a20F + %a44a135T
1—75aia18T — 1—71aiT4a19 — %aial‘qF
%aiamST — %MSNBT + £Q4T44a20
%mTwBS — ia4F4a20 + %a4a135’F
4—9a4a13TE - %MQGSQT — 91—8544(114T
93’8546114F + %SMST - 4—19T44a14S
%TNU‘E + %Tm?Sz + %EmMT
%le‘ls + 4%@14EF - ?%JS?F
%CJSTE + %S%
uia=® —%aiaw(} + %aialsz
%a4T4a13T - ia4G4a20 + %malgSG
Z—;a4a13TF - %(14(165T2 — %SMMG
%SMJTQ _ 41—9T44a14T _ & 2414

L ratr ¢ LraTsT 4 L Eatr

49 343 49

%GMMS + %CLMEG + 4%)61141?2
%JSZG — %CJSTF — %JTQE
42(9)252T2] +uga” 2 [—134a4H4a20
i—;a4a13TG — %a4a6T3 — %T;{CLIZLG
4—19G4a14T + %9}14@145 + 4%a14FG
%JSTG — %CJTQF + 223’151’3}
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1 1 11
—25 14 14 ~2 T2
S HMT + — a6 — TG
toa [49 a0+ 5ga 686"
33 Tﬂ

* 9604

(5.1.1.69)

The integrability conditions came from the coefficients of u2us in pg_l) with order 11
and level 7, the coefficients of u% in pgl) with order 12 and level 9, the coefficient of

2, - (2)

udug in p;~’ with order 12 and level 10 and the coefficients of udus, udur, udugus, udus
in pgg) with order 12 and level 11.

First we solve agq4 from the coefficient of u%u5

7 49
U$U5 : a3 <—2a444a8 + ?a44a4a7 + agqaS
~ 28a}a” - 24}S) (5.1.1.70)
2 4
Qg = a8 <7a44a4a7 + ?a44a5 — 8ajab — 7&35’) (5.1.1.71)

Then we get the coefficients of ugus and u3uy.

11
US’U,5 S (35(144a4a19 1 “agats — 7Oa3 18
45 5 g 11 13 4o
+ 2 S 4 a4S4a 14a4a S
2 TQ 3
N 1454a 3 983 ) (5.1.1.72)
05
u%m :oa ! <14Oa44a4a + 1laga's + — 3 a'®
137 5 19 23 6 o2
- = 11 _ =
1 aja °S + asSya'? 28a4a S
6 12
— =5,d"S 53) 5.1.1.73
77105 g ( )

We compute (5.1.1.72) and (5.1.1.73) and end up with:

455 223 127 6
11 318 212 0852 3
a ( 5 aga " + 1 aja -S R asa’S* + 49S) (5.1.1.74)

We solve S from (5.1.1.74) and we get three roots:

91

S = §a4a6 (5.1.1.75)
35

= anﬁ (5.1.1.76)

= l4a4a® (5.1.1.77)

We choose S = 14a4a® and we solve E from the coefficient of u%ua.

1029 9586 5 2
u§u6 a ( 3 agqasa’® — T + 63a4FE — 5E4a) (5.1.1.78)
Ey = asa™" (49as4a® — 266a%a” + 155) (5.1.1.79)
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Then we solve E from the coefficient of u3.

221
u% tay <—2a44a6 — 63a421a5 + 3E>

7
E:uf<2mga+2hﬁ)

(5.1.1.80)

(5.1.1.81)

Computations between the coefficients of uZugus and u2u3 end up with:

9 36
aia6 <—7a44a + 7ai> =0

If df (a,us) = 0 then E = 0.
If df (a,uq) # 0 we get the following conditions:

44 = —
E = 35d3d°

35

We did the same computations for S = 32a4a% and T =

3
get:

7438a3
2603a
1559299a3a®
70281
240953683457a3
64582469384a
829201536681a3a®

Q44 =

Q44 =

133332887424

(5.1.1.82)

(5.1.1.83)
(5.1.1.84)

%a4a6 respectively and we

(5.1.1.85)
(5.1.1.86)
(5.1.1.87)

(5.1.1.88)

We choose S = 14a4a® for computational simplicity. Then the integrable evolution

equation of 7th order has the following form:

ur = a"ur + 14agabusug + Tug + 35aia5u§ + Fu?) + Gus + H (5.1.1.89)

where a,T, F,G, H depend on uy.
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Table 5.1.4: Structure of non-integrable terms in Step 6. for order m = 7.

pD [ pM p@ p®)
Top terms in p® Uy u? u3 u?
Order of p 4 5 5 5
Level of p() 0 2 3 4
Top term in fpgz) U1 U2U5 ’U,12u§ U13UG
Level of top term in [ pgi) 7 9 10 11
Non-integrable terms uZus, | udus, u3, ulus,
in fpfﬁ) udus, | ud uiug, | uZur,
udud, | vugus, | uug, uZugus,
i 2ed, | ddus, | uud,
ugus, udud, udug,
udug, wdugud, | udu?,
udug, udug, uudus,
ug ug, udugus,
ugug, | ufus,
udug, ugus,
ugug, | ugus,
| s
ugus,
ull

5.1.2 Second Method

We observed that the use of the canonical densities p™) and p®) is sufficient to get the
same results. In this section we give the explicit computations for m = 7 using only
the canonical densities p(*) and p(®).

Step 1:
ug = Auy + B, A=a' (5.1.2.1)

We compute [ Dy(pM)) for (5.1.2.1).
The coefficients of the top two nonlinear terms, u%om and ug give respectively:

l4aga’ (agsa — 5aZ) = 0 (5.1.2.2)
Taga® (—2agsa + 11a2) = 0 (5.1.2.3)

1 -5 Ag6QA . 0
EHIEIER 512

Since the determinant is different than zero

CLGZO.

Step 2: We compute [ D;(p®) for (5.1.2.1), and consider ag = 0. The coefficient
of the top nonlinear term, u,u; gives:

_4, O 3
Beggea 4(71a5a6 + ﬁBﬁG) =0 (5125)
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Then
Bgeg =0 (5.1.2.6)
or
5 3

P — S B —
7050° = 77 Bos =0 (5.1.2.7)

Since ag = 0, the derivative of (5.1.2.7) with respect to ug gives:
Begs = 0 (5.1.2.8)

Step 3:
up = Aug + Cué + Dug + FE (5.1.2.9)

We compute [ Di(pM) and [ Dy(p®) for (5.1.2.9). The coefficients of udug, 3 in
[ Di(p™V), and the coefficient of ufqus, udus in [ Di(p)) are respectively:

7 7
*&555&7 - *&55(15&6 — 5a55C’ — 42&%&5

2 2
5 96
+32a§a_10 + 5@505 — 7a5a_702
1 —6 24 13,43
—5055a + 2C5a°C — @a C°=0 (5.1.2.10)

7
—§a555a7 + 6as5C + 35a§a5 — 27a§a_1C — 2a5C5
1 15 36
+12aza""C? + 5550 = 7C5a—60 + Ea—li”c3 =0 (5.1.2.11)

5
a_11(7a55a5a19 - §a55a130 - 21a§a18 + 28@%@120

5 44 6 12
—5%()5@13 - 7a5a6C2 + ?C5a7C' - 4—903) =0 (5.1.2.12)
133 183
a1 (—28assas5a'® + 10as5a2C + Tagals — 7a§a120
121 24 96
+10a5C5a'® + 7a5a602 - 705a70 + 4—903) =0 (5.1.2.13)

We compute (5.1.2.12) and (5.1.2.13) and we solve C":

35 6
= E(Z5G
7
§a5a6

= ga5A6 (5.1.2.14)

Q aQ Q
I

6 6

The coefficient of u% in p(3) vanishes for C = %ag,a and %CLg,CL . This contradicts our

assumption thus we use only C = i’—ga5a6. We substitute C' = ?—ga5a6 in (5.1.2.10),

(5.1.2.11) and (5.1.2.13) and we get respectively:

77 2443 7511
5 2 3
— - — —_— = 1.2.1
a (32a555a 198 as5a50 F15 az) =0 (5 5)
77 4655 14245
5 - 2 —_— 3 _=
a’( 32(1555@ + 56 55050 1024 az) =0 (5.1.2.16)
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21 609
a5a7(_372a55a _|_ T%ag) = 0 (51217)

Then (5.1.2.15) and (5.1.2.16) give:

231 7,

— — = 1.2.1
256@55a+ 1024a5) 0 (5 8)

asa’(—

From (5.1.2.17) and (5.1.2.18) we get:

-8 29 as5a . 0
FEIEIER .
Since the determinant is different than zero a5 = 0. Thus C = 0.
Step 4:

u = Au7 + Dug + E,a5 =0 (5.1.2.20)

We compute [ D;(p™M) for (5.1.2.20).

The coefficient of udug gives:
Dss =0 (5.1.2.21)

Step 5:
up = Aug + Fugus + Gug + F (5.1.2.22)

We compute [ Dy(p®) for (5.1.2.22). The coefficient of udug gives:

1
_ZESSE)SG =0 (51223)
Hence the integrable evolution equation of order 7 has to be as follows:

ug = Auy + Fugus + Gug + Hu% + Ju% + Lus + M (5.1.2.24)

5.2 Classification of 9th order evolution equation

We aim to obtain a general formula for an evolution equation of order m. Then we
did the same computations and the same assumptions for an evolution equation of
order 9 using the same conserved densities in (?7?) for m = 9. The general form of the
quasi-linear evolution equation of order 9 is:

ug = A(z, t,u, ..., ug)ug + B(x, t,u, ..., ug) (5.2.1)

In this section we used “level grading”. The corresponding submodules and quotient
submodules are given in Appendix C and Appendix D.

Step 1.As we used the same grading by levels we observed that we need only the
dependency on ug which is our basic term with level zero. The evolution equation and
the conserved densities used in the first step are:

up ~ A(ug)ug + B(ug). (5.2.2)
P =gt =477 (5.2.3)
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2 2
p(l) — ugaga_l + —UQanga_g =+ 735(1_17 (524)

19 135
1 2
p? = u2aga™ [~9agBg + Bssa) — §U9a8B§a*17 — 8—13§a*25 (5.2.5)
2 1 2 1,4 _
p® = wdiada+ ud [—3a888a8a + gagga — §a88a§ + 1a§a 1}
g1 2
+ uga 8 [%agngsa + §G§B88 - %anggsa]
_17[65 5 1
+ wuda 7 [54a§B§ — 2—761838838& + 162338@2}
5) )
——ugagBia~* + ——Bga™* 5.2.6
gzt T gy et (5.26)

The integrability condition came from the coefficients of non-integrable terms, u3ug

G
and u2yuqp in Pfs ),

ufgug . 18aga” (—agga + 6@%) (5.2.7)

u%2u11 . 6aga” (13agga — 89a§) (5.2.8)

The compatibility of (5.2.7), (5.2.8) gives:

24
fﬁagcﬁ =0 (5.2.9)

Since a # 0 we get:
ag =0 (5.2.10)
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Table 5.2.1: Structure of non-integrable terms in Step 1. for order m = 9.

p(—l) p(l) p(2) p(3)
Top terms in p® ug ud ud u?,
Order of p 8 9 9 10
Level of p() 0 2 2 4
Top term in fpgz) U7 U18UY U18U9 U19U10
Level of top term in fp,gl) 9 11 11 13
Non-integrable terms u2yug, u?zuy, u?qug, u? ug,
in fpz(SZ) u%l? u%2u11’ u%2u11, u%i’)ull’
u%luloug, u%2u10U9, U%zuloug, u%3u10u9a
u%lugv U%TU’gv u%ngv u%{iugv u%2u97
U%oug, U?lulo, U:f’lum, U%zullulm
“?0“37 u:{’lu37 U%UE, U%wnué,
U%ouga “%1“%0U9a u%lu%0u9’ “%2“%0“5%
uj ufuioud, | uiiuiouds | uisuious,
U%Wga U%lugv “%2“.87
u?0u97 u?0u97 uzlllu97
u%Ougv uéllougv uzl))lu%O’
u{’oug, u:fouga U:flug;
U%ougv u%ougv u?lugv
Uglal “slal U%lu‘(fou%
U%lu%ouga
u%lulouga
U%Wg,
“(150“97 U?ouga
uzll()ugv u?Ougv
ufgug, up’

Step 2. In this step the evolution equation is:

up ~ Aug + B

(5.2.11)

where A = A(uy) and B = B(ur,ug). Here the basic term with level zero is still ug.

The conserved densities under this condition are as follows:

(-1) — g1 = A-1/7

p

15

4

+ ugam_g [—9a7Bs + Brgal] + ugaza” '’ [
1 1 2
*B2 B —25 |:B 9_B2:|
3 8} R FT R TR

49

2 _
— —u8a7Bga 9

3
UgUgA7 |:—a7 + nga_8:| + ZUQCWBSCL_S

3

(5.2.12)

(5.2.13)

(5.2.14)



1 1 1
3 2 —15 2 16 8 2
p( ) = Uga |:2a7a — Ea7nga + 162B88:|
5 1 9
+ uw% [4a77a7a — 1—8a77nga_7 — Za?

2 4
+ 9a$nga_8} + UQU8G_16 [BangaB

) 1 1
— —a7ngBg + B78388a} + Ugailﬁ l:a7B7a9

27 81 18
5 2 1 4 —1[ 2 2
- mchs — ﬁB7nga + uga [a77a
+ 1a4 +uda™® 1a a7 Bga — ia Brga?
4 7 8 9 TTA7 D8 18 TTD78
2 )
— 2a3Bg + 9a3B7ga} +ua 17 [—6a$B7a9
65 5 1
-+ 5—4@%3% - EQ7B78B8G + 5@73770110
1 _ ) 5
+ szggaQ} + uga % |:54a73738a9 — @a7B§)
1 1
= BB 10} —33 {32 18
g4 DTEDTAT AT 5o, P10
5 5
— ﬁBﬂfzgag + 43743;1} (5.2.15)

In this step the integrability condition came from the coefficient of the non-integrable
term uZ;ug in pf’ :

6 (3 1
ufqu : ngga 6 (7a7a8 - 9388) =0 (5.2.16)
Then we get:
Bggs =0 (5.2.17)

Step 3. Here our evolution equation is:
us ~ Aug + Bul 4+ Cug + D (5.2.18)

where A,B,C,D depend only on uy7. Since all the coefficients depend only on wuy, the
basic term with level zero is u7. And the conserved densities are as follows:

Pl =gt =A"Y7 (5.2.19)

3 _ 4 _ 1 _
PV =l Loaw +aa! — e B — %Bm 8
1

8 —17 2:| —17 |: 2 8 9
° 4B — 2 4O — —C
135 + usa 157" 307"

8 1
—BC -7 [—D 9 02} 5.2.20
+ 135 ]—I—a T + ( )

27 7
PP = [41177@7 - 1“77@783 ~4a3a™°B

1 4 1

— §a7B7a78 + §a7a717B2 + éB7a76B

_ Ea—sz?) 1ou2q 2 3 170 _ 342410
31 QA 4@77a a-a
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1 4 1 1
— 5@707@” + —a7a®BC + 6C7agB + EBmgC

3
3 1
— 287320] +U86L_25 {—4(17D7CL17 + §a7a802
1 1 4
_D QB - 9y —_ B 2:|
+ 5 7a —1—12C7aC 5 C

1 2
25 9 2
+ —D - —
a °C [12 7Q SIC }

1 1 2
uga_l‘:’ [2a%a16 — éaqagB + 8132}

) 1 _ 7
u§ {—mawwm + ﬁawm "B+ Ea%a

11 4 5

€a77a$ — §a77a7a783 — ﬁa77B7a77

25 1 116

aaWa*lGBz + Za‘%afl + Wa:;cng

35 _ 10 5, _ 7

ﬁ(z%Bm 8 _ ﬁaga 172 4 108a7B77a

D 4aBra=158 — 20 2R3 Bra "B
18777 243 486"

T 52 15 o —24 2 40 334
— — —B B
9727 243 T 1Ry

5 1 5
uga_?’?’ —6a77a7a250 - ﬁa77C7a26 + ﬁawa”BC
10 13 10
§a§a240 — Ea$C7a25 + ﬁa%awBC

1 26 , 29 17 20 g ;o
— —a7Cra"'B — — CB
18&70770, + 108@7 7a 81a7a

1 18 1 18 5 9 p2
— B+ —CB — —C7a”B
fos 1T B gy CrBraT = g5 Cia

5 80 1

- B gBC B3C:| 2 —33 |:_ D 26

21374 PC T o1y T uga 18T
5 4 25

mawa”(ﬂ — §a%D7a25 + 5—4a$a1602

1 5 10
%Q7D77a26 + 5—4a7D7a17B - 8—1a7a802B

1 1 5
- D 1SB —~ D-B 18—7D 9B2
T R T e e S YR
20

1 2 18 5 9 5 9 ~2
= — 2 C.a®BC — 2 B-d°C
162 7% T o437 07207 Y T g

5) ) 1

-33 17 8,3 18

- - - D

uga [54a7D7a C 243@7(1 C° + 32407 7a
20

5 5
2 D.a?BC — —2Cra?C? 303}
pag P70 BC — g Cra’Ch + oren

1 5 5
—33 | 1 2,18 _ 2 1 902 04}
@ {324 1@ = g PO+ m

0232}

ol

(5.2.21)

(5.2.22)



Table 5.2.2: Structure of non-integrable terms in Step 3. for order m = 9.

p(—l) p(l) p(2) p(3)
Top terms in p® Uy u3 u3 ud
Order of p 7 8 8 9
Level of p() 0 2 3 4
Top term in fpgz) U6 UT7TUS UTUR U18U9
Level of top term in [ p” | 9 11 12 13
Non-integrable terms u?,ug, | ulyusg, uls, u?;ug, us, Uy,
in fpz(SZ) u%O? u%lulﬂv u%2u97 U%QUQ’U/S,
u%0u9u87 U%1U9U8, U%2U§> u%zug, U?l“&
ufous uiyug, uiy, uiuroug,
U?;LUS? U:fouga U%1U10U87 U%lumu%,
ugug? u?Ougv u%l“%? u%lugu&
ugug, | uigufus, | ufjuoug, | uijugud,
ug U%OU9ug, u%l“é? uzllOﬂ u%lu&
u%oug U?OU9US, u‘llou&
ugus, | ufoud, ujous,
u%ugv U%Ou& u%Oung,
uug, ufougug, U:foug‘,
uguf, | wiguguy, | uiougus,
ug! U%oug u%ougug,
ug? ugug, u%oung,
ugus, ufgus,
ugug, uSus, ugug,
ugug, ugug, ufug,
ug” uguy, ug’

The integrability conditions came from the coefficients of u$, us, u3, in p

2 3
UjUio M Py .

(=1)

9 9
u%lug a3 (2a777a10 — ?a77a7a9 — 2ar77aB
+  T2d3a® + 4a$B)
uifo a3 (—5@777@10 + 48a77a7a9 + 3ar7aB

—  66a3a® — 6a$B)

Computations of (5.2.23), (5.2.24) give:

7 7
a3 <a77a7a9 + —araB + —arza® — —a

5) 45 5)
We solve B from (5.2.25):

and u?;us,

(5.2.23)

(5.2.24)

(5.2.25)

(5.2.26)

(5.2.27)

B = 9a7a8
The coefficients of u?5ug and u3yu1p have the following form after equating the value
of B:
2 9 2
Uy3U 18ara (—a77a + 6a7)
u%Qulo 3a7a9 (32&77@ — 257&%)
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Compatibility of (5.2.27), (5.2.28) gives:

65
—33@%9 =0 (5.2.29)

Since we accept that a # 0, we conclude that

a;=0and B=0 (5.2.30)

Step 4. The evolution equation and the conserved densities under the preceding
conditions are as follows:
ug ~ Aug + Cug + D (5.2.31)

where A = A(ug), C' = C(ug,ur7), D = D(ug,u7) and the basic term with level zero is
uz.
P =gt =AY (5.2.32)

1 4
p(l) = %USU7C77CL78 + u?a’g [a%ag — T5a607

1 2
+ 06701 — ﬁum@'a_gC

1 2
—-17 9 2
——D C 5.2.33
+ a [ 30 70" + 135 ] ( )

27 27 1
2 _— il b2 1 -8
p uguy [28%6(1 + 28a6 + 4a607a ]
+ wuga™'6 [—SCGag + 1070}
28 12

+ u%aﬁafg [—9a6C + Cga]
3 1
+ uraga” '’ [—Dmg + 3C’2}

4
+ a® {—3D6a18 + iD7a90 — 203] (5.2.34)
28 12 81

p® = uza™' Ha%aw - %a607a8 + 1(13203}

=+ ugu% Ba%aﬁa — %%607@_7 + %ag

- 316(1207(18} + uguga™ ' [—118%6@90

+ gagasC + %GGD7709 - %%06@9 - 534“6070

+ 1(1)806074 + uga~** {3;4D7C7a9 + %Cﬁagc

— 95720702] + u?a_l [a%6a2 + iaé]

1 1 2
+ u%a_9 [2a66a6a0 — TS(ZGGCGGQ — Qa%C + ga%C’(ga}

5 65 1
+ ua 7 {—Ga%Dmg + 5—46%02 + EaGDmalO

5) 1 _ 1
— EGGCGGC‘F 1620625@2] +ura™% [—12@6D6a18
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5 5 1
~anD 9 Y 3—7D 10
+ o 5a6P1a7C = 5560 = 55 PrCea
1 1 5
—33 18 2 18 9 ~2
—_Da'®C + — D248 — 2_Da’C
toa [162 600 5o PT T g
5
L 437404} (5.2.35)

The integrability condition is obtained from the coefficient of u?,us in p§3):

7 1
’U,%QUS : C’77a_6 <4a6a8 — 907) (5.2.36)
Ci7=0 =C=8Su;+T (5.2.37)

Step 5. In this step the evolution equation and the conserved densities are as follows:
up ~ Aug + Suyug + Tug + D (5.2.38)

where A = A(ug), S = S(ug), T =T (us) and D = D(ug, ur) .

SV =gl = AT (5.2.39)
p(l) = gV {a2a16 — gaﬁagS + iS@ag
7 6 5 30
2 —17 [ 2 3
= T|-Z
+ 1355 } + uza 5a6¢
4 1 2
Yy —17 [—D 9 TQ} 5.2.40
+ 135 ] +a 30 7a” + 135 ( )
27 81 1
PP = {—56@666(1 ~ 5606606 — §a66a785

1 3
— 8&%&795 + §a6S6a*8 + aﬁa*”SQ + %SGGCL77

1 —16 2 —25 3:|

12SGCL S 81a S
I 1

+ u2a”? | —9a2a'T + 1a6T6a17

+ 26L6(L85”_%—Y + iT(;(;CLIS — iT’@CLQS — ngagT

28 12 12

2 1 3 1
— 2—782T_ +uza” [—4a6D7a17 + §a6a8T2

1 2 3
- D QS—ST2:| —25 |:—D 18
toptee T ta 2804
1

2
+ 1—2D7a9T — 81T3} (5.2.41)

15 [7 7 1
,0(3) = u%a 15 [4a§a16 — %a6a85 + 16252]
7

+ u8u$ {QCLGGCLGCL — %CL%CL—’?S + Zag
31

_ _ 5 _
%a%a 85 — %%Sga T 5—4a6a 16,62
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LS(‘)CL_LGS _ 5a—245v3:|

324 972
+ uSU7a_24 {—1a66a17T + §a%amT + i(16D77al7
18 9 12
7 5 5
. ~acT 17 < 8 T T 9
36a6 60 54a6a5' +324 ga’ S
1 9 5 2 —24 [ 1 9
— T—-—T —D
+ 1628@& 186 S:|+u8a 394 7a”S
1 5 _
+ @TWQT — 9725T2] + uta 33 [a§6a34
+ 1CLGGGGCL%S - i(16656(126 + 1(14&32
2 18 40
2 64 : 5
—  2a3a*S + §a§56a25 + ﬁa%a”’Sz - 2—7a656a175
5 8 a3 I @2 18 5 4]
- — S° 4+ —85 —5
243762 T 16276 T 31
1 1
+ u?a*:{)’ {2a66a6a25T — E%GTW% — 2aga24T
2 65 5
+ §a%T6a25 + ﬁagawST — 2—7a6T6a17S
5 17 5 8pa2 , L 18
- = T— — T —T
27a656a 81a6a S°+ g1 656a
10 _ 5
+ 2]_87T53:| + 'U;%CL 33 [—6(1%1)7(125
65 1 5
+ ﬁa%amTz + EagDma% + 574a6D7a17S
5 5 1
_ - Cl 17T—7 SST2—7DS 18
o7 46%6% 817%¢ 3247064
— iD7a952 P L 552T2]
972 16276 729
1 5 5
+ U7a733 {—2(16D6a26 + 5—4a6D7a17T — %(IGCLSTS
b DS — - DeTyat® — 2 DaadST
162 ° 324770 486"
- 10ST?"} + a3 {1D6a18T + L p2gs
2187 162 32477
5 92 5 4]
972D7a T° + 4374T (5.2.42)
The integrability condition came from the coefficient of u?,ug in pgl).
3
u%1u8 : %waa (5.2.43)

Here the basic term with level zero is ug. We noticed that the level of u? ug is 12
while the level of pgl) is 11. The top term of pgl) is uy7 which has a level of 11. The

condition is:

D =0 = D = Eud + Fu? + GurH (5.2.44)
Step 6. In this step the evolution equation and the conserved densities are as follows:
up ~ Aug + Suyug + Tug + Eu? + Fu% +Gur +H (5.2.45)

where A, S, T, FE, F,G, H depend only on ug.
p(=1) =a"t = A7 (5.2.46)

%)



2)

2 1
= wfa™V {a%aw - 5a6a85 + %5'6@9
1 9 2 2 —17|: 2 8
— —°E+ -5 AV | _ 2 edT
10" " T 135 } tur 15464

1 9 4 —17|: 1 9
B T~ _ G
545 135 ]+a 30"

2
= 72
+ 135 ]
27 81 1
u? {—5661666& - %CL(,GU@ - §a66a_88

1 9
— 8a%a_95 + §a656a_8 — Zaga E

4

3 1
+ aga17S? + %Sﬁw—? - ﬁsm—lﬁs

3 1 2
Eea—T + Sq-165F — 2 42563
og 6 0 81

1 3
+ u%a_25 {—9a§al6T + faGTgaN — fa6a17F

4 2

1 3
+ 2(16(185T - ESGCLQT + fT66(118

28

1 3 1 1
—Tsa’S — ——Fsa'® + —a’SF + —a’TE
B sa” S 5g 60 +6a5’ +4a

2
— S2T] +uza™2 {3%@17(}

27
1

4
3

1
+ ZagalT? — =Gga'® + —a’SG

3 28 12

1 2 3
+ —d°TF — ST2] +a {—le8

6 27
1

28

2
+ —d'TG - Tg}

12 81

7 7 1
uda1 [40,%@16 - %aGaSS + 16252]
7 7 _ 1
u‘% {—6(1666(1% + ﬁCLGGGa S — 6(1%6@
23 19 2
ﬁa(jga% — %GGGGGCL*SS + ﬁa6656a77

1 5 1
éa%a*?E + @a%a’wSz + zaéa’l

8 14 4
ﬁaga_gS — —a2Sea® — ~a2a°E

27 3
115 7
—a%a_”SQ + maﬁSﬁgaq — ﬁ

5 5
—16 —25 a3 —15
— SE — — S — —8S S
aga 81616(1 972 66Q

1 2 —15 1 —15 5 —24 g2

— ——5 E+ —5 S
6% g6t E T grposa

1

5
_— E *155 - 715E2_7 72452E
39060 O T ge0 324"

1
a3354] + u:%af?’?‘ [%(1666@26T

)
a656a_165

(5.2.47)

(5.2.48)



7 5 1
—apeaa® T + —=aesTea® — —agea® F

12 72 12
5 14 65
ﬁ%@a”ST + gagaMT — EagTﬁa%
13 5 5
Ea%a%F + gagalﬁST - 5—4a656a17T
7 5 25
~acT 26 T 175 17SF
7o 06607 — 5y aelea S+ g aea
5 17 5 8 02 1 18
2 06 "TE — 20603 S2T — —— Seea'®T
18704 97 46% 394 °66¢
1 1 5
——S¢Tsa'® — —Sa'®F + —S4a” ST
64876760 T 10g P00t gg e
5 1 5
T 188—7T 18E T 952
645" 6% 108 6% Tt grptea
1 1 1
E, 18T F 18 - 18EF
1o o T+ g feaS 4 5a
2 082F — 2 9STE + — 83T
186" 162" * o187
5 65
u%a_?’?’ —gaga%G + 5—4a%a16T2
ia6T6a17T + iaw”SG + ECLGaNTF
54 36 27
5 8 2 1 18 5 92
2 06a®ST? — ——S6a'8G + —— ST
97464 620" T grp6d
1 1 5
— Teea®T — —Tsa'®F + —Tysa”ST
162" %6¢ 1627 6% &t ggted
1 1 1
@FﬁamT + 3274G6a185 + 5746118EG
1 18 2 5 9 o2 5 9
g2 2 _ 2 9STF
81 o G T39S
5 1
92 22 33 26
T?°E + -2 §2T _—agH
324 +729° } +ura [ 12767764
1
el 17 Y 83 18
5a000 TG = 53060 394 160G
1 1
G 18 H, 1851 . ISFG
162767 4 T 1521160 P T g
5 9 / 5 92 10 3:|
2 2 T F 4 — 8T
16 °Y% 16 oY
1
—33 o a18 + 324a18G2
5
92 4
27 24
o TG+ 37 (5.2.49)
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Table 5.2.3: Structure of non-integrable terms in Step 6. for order m = 9.

p(—l) p(l) p(2) p(3)
Top terms in p® Ug u? ud u?
Order of p 6 7 7 8
Level of p() 0 2 3 4
Top term in f p( R U5 U16UT U16u% U7US
Level of top term in fp,gl) 9 11 12 13
Non-integrable terms u%0u7, u? ug, u?y, u?,u7, U3, Uy,
in f pz(SZ) ug7 u%0u9 u%lu& u%lusu'ﬂ u%lugv
u%uyw, U%OU8U7, u%l u%, U?OUW U%OUQ’UJg,
ugu%? u%ou% uil))OJ u%0u9u77 u%0u9u%7
u§U7, ugUg, u%oug, u%ougu%
ugu%? ugu%? U%O’U@u%, U%OUSU%
ué%u?? ugugu% U%OU%’ u%Ou?v
u? ugugu‘;’, ug, ugu8u7, u3U7, ugug,
ugu?, u%u%, ugu8u%,
u§u7, ugug, ugu‘%,
u‘éu%, u%u%u% u%u%um
u%u?, u%usu%, u%u%u%,
u%u;, ugu?, u§u8u§, u%u;,
u%l ug, ugu%, ugu% ugu:?,
whud, wdub, | udud, udul,
u%u%, U%Q ugug, u%g

. s o . . -1 :
The integrability conditions came from the coefficients of uju; in pg ), u3yug in
1 (2 o (3)
pg ), u?qug in pg ), ulyug, U ug, Ut usur, U ud in pg ). First we solve agee from the

coefficient of ufyuz:

9 81
u%0u7 : a3 (2%66@10 — ?a66a6a9 — ageaS
+ 54ada® + 203S) (5.2.50)
—10 9, 2 3
aese = @ (9a66a6a + §a66a5 — 12a3a® — 9a65> (5.2.51)
Then we get the coefficients of ufyu7 and u?;ug:
63 7
u%QW :oa P (—2a66a6a25 + Zagﬁa”S
189 . 7
+ Taga% - 21a(2)-a16S + fa@-SGal?
5 8c2 Lla g 3)
—a°S° — =Sga’S + —S 5.2.52
+ g 5 + o7 ( )
28
U%Ug coa P (168a66a6a25 — §a66a17S — 168a3 24
595
+ 12 % 165— gagSﬁa
17 82 o 25 3)
- - — 2.
36 S°+ 75 S 162S (5.2.53)
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We compute (5.2.52), (5.2.53) and we get:

107 143 43
~15 (9,3 24 2 16 8q2 3
2 - — S+ — St ———=9 5.2.54
¢ ( B T T T S TS ) (5.2:54)
We solve S from (5.2.54) and choose one of the three roots:
576 4
= 2.
S 13 469 (5.2.55)
We solve Eg form the coefficient of u?,ug and E from the coefficient of u3jug :
o (_865323@ aed® 73670553a3a7
e 3698 °7° 159014
5103 81
- E+ —F 2.
oy 0B + 5 Fia) (5.2.56)
149562 12733182 441
Fs = -1 8 kT E) 2.
6 = aed ( 1849 "% T T7gs07 %6 T3 (5:257)
W2 (_ 782997@ oS 111425793a2a7
1079 "\ 9245 397535 ¢
4071
—F 2.
+ S ) (5.2.58)
260999 37141931
E = d — 2) 5.2.59
¢ ( 58351 “05° T 2500003 “0 (5.2:59)

Finally we get from the computations between the coefficients of u$,usu; and u3,u:

y <156358224795 ) 5

3404839201 667
91566076338255

146408085643 6696%

23513752582055415 4>
6205547682649 0

2

(5.2.60)

> 5 aL1<305455811181333 5 o

Uity 292816171286 667
5549671127072697
12591095365208 0067
335197654360042203 4>

2707078550353907 6

(5.2.61)

ata? (K(l)a%a - K(Q)a%) =0 (5.2.62)
where KM and K®) are constants. Assuming that ag # 0
ags = K®a2a™ (5.2.63)
where K = K®) /KM and
E=KWakd" (5.2.64)
where K is a constant. In conclusion, integrable evolution equations of order 9 have
the following form:

576
up = a’ug + Ea6a8mu8 + Tug + K(4)a§a7u§ + Fu% + Gur+ H (5.2.65)
where a,T, F, G, H depend on ug.
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6 DISCUSSIONS AND CONCLUSIONS

The aim of this thesis is to classify scalar integrable evolution equations. The
constraints of the integrable equations, to be classified, are to be scalar and
evolutionary. Non-evolutionary equations i.e. uy; = F[u], and integrable evolution
systems or vector evolution equations are excluded. The problem is based on an
arbitrary evolution equation uy = F'[u] without any functional and scaling assumption.

The integrability test that we used is Mikhailov-Shabat-Sokolov’s “formal symmetry
method”. This integrability test is based on the existence of a truncated expansion of
a formal pseudo-differential operator R, satisfying the operator equation

R+ [R,F.] =0,

where F is the Frechet derivative of F'. The solvability of the coefficients in R requires
the existence of canonical conserved densities, denoted as p¥, i = —1,0,1,2,3,...

We worked with mth order equations. The order m = 2k + 1 is odd because the
conserved densities of even order equations are trivial [1].

It is known that there are essentially nonlinear integrable 3rd order equations [2]
which need special techniques [16]. There exist also essentially nonlinear fifth order
equations which are not quasi-linear. Since 3rd and 5th order equations remain still
as open problems, our results are valid for m > 7.

The integrability of homogeneous and non-polynomial scalar evolution equations has
been discussed in [3] and [4]. In the former one it has been shown that scale invariant
polynomial evolution equations of order greater than seven are symmetries of third
and fifth order equations, while in the latter similar results are obtained using negative
powers. Thus the problem of classification of arbitrary evolution equations is reduced
to prove the polynomiality and scaling properties of such equations.

We proved that arbitrary (non-polynomial) scalar evolution equations of order m > 7,
that are integrable in the sense of admitting the canonical conserved densities p),
p® and p®)| introduced in [2], and computed in [1] are polynomial in the derivatives
Upm—; for i = 0,1, 2. By the use of these conserved densities we did actually some more
computations and we obtained that the coefficient of u,, is independent of wu,,_3 and
the coefficient of u;,_ou,,_1 is zero. But as it was not possible to obtain polynomiality
in u;,_3, we didn’t present these in the thesis. The similarity of the results obtained
in explicit computations for m = 7, m = 9 and symbolic computations for general
m assure the consistence of our results. In computations for arbitrary m, we haven’t
used p(=1) and p(©, while for m = 7 we did the computations in two methods where
respectively we used p(=, p(0) p(M p@ 53) and only the conserved densities, p*) and
p3). These two methods showed that p(—1 and p(® didn’t give any further information.
We did not use p® in the computations of 7th order whereas we needed it for the
computations of the general m.

For future work the computation of few more conserved densities is necessary to settle
the classification problem at low orders. But is there any end for the computations of
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the conserved densities? The explicit computations of the conserved densities for 7th
order evolution equations will give an idea.

The use of the graded algebra structure named as “level grading” that we introduced
in this thesis and the scale invariance property seems to be promising for an explicit
formula for general m. The use of “level grading” will be a tool for the assumption of a
fixed level and the form of the conserved densities p(k), without explicit computations.
These assumptions will give the proof of the independence of A from wug, ( 04 _ 0)
which will be sufficient for the polynomiality case.
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Appendix A

The submodules M} and their generating monomials with level I(m;), where d =
6,5,4,3 and [ = 1,2,3,...,11 used in classification of 7th order evolution equations:

Submodules with base level 6

(u7)
<u87 u?)
Mg’ = (ug, uguy, u§>
(u10, ugur, ug, ugu?, u7>
(u11, ur0U7, UgUS, uQu7, USU7, u8u§, u?}
(w12, ur1u7, W1oUS, UI0UF, UG, UgUsUT, UUF,
ug’ u%u%, USUA%’ u$>
M{ = (ui3,ur2ur, urius, u11u?, Uioug, UloUsUs, UioUs,
US’U,’?, ung, U9u8u$, U9U$7
u§U7, ugu?, u8u$, u§>
M68 = <U147U13U7;U12U8;U12U$7U11U9;U11U8’U«77U11U$7
ufo, ui0UgUT, ULOUF, UTOUSUF, UTUT,
ugug, uéu%, UQU§U7, u9u8u§, Ung,
ug, udus, uguz, uguf, uz)
M = (uis, uraur, ui3us, uisu,
Uj2ug, U12U8U7, U12U§7
UL1UL0, UT1 UYUT, U1 UG, U1 USUT, U1 UT,
U3 U7, UT0UYUS, UIOUYUT , UIQUGUT, ULOUS U, UTOUT,
u, udugur, udud, ugus, uguiud, ugugus, ugul,
ugur, ugud, uiud, ugul, ud)
Mg = (uie, ursur, ursus, u1au3,
U13UY, UI3USUT, U13US,
U12U10, Ur2U9UT, u12ug, U12U8U$7 U12U§7
Ufl, Up1u1oUr, U11U9US, u11u9U%7 U11U§U77 Unusu?, U11U?7
U%OU& u%oug, uloug, Uipougugur, u10U9u§,
u10UR, UL0UFUF, utoUsUT, U1oUT,
Uy, ubud, udiugud, udut, ugusur, uguiu, ugugu’, ugul,
ugv ugugv ugu% uguga uSug? u%0>
Mgt = (w17, uieur, uisus, uisu3,
U4TUg, UT4USUT, UL4US,
UL3U10, UI3UYUT, U13UG, UIZUSUS, UI3UT,
U12UIT, UL2UTOUT, UT2UYUS, U 2UYUF, UT2UFUT, U2USUS, U 2UT
u%lm, Uriuious, U11U1o’u$7 Unug, Urrugugur, uuuw?,

3 2.2 4 6
uj1ug, U11Uugly, U11Uugly, U11Uy,
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2 2 2 .3
ulOU9, u10u8U7, u10u7,

2 2 2 4
U10UgU7, U1pU9UZ, U10UYULUT, U10UIUT,
3 2.3 5 7
uipugur, ulgugly, U1oUgUyz, 10Uy,
3 3,2 ,2, 2 2 3,25
Ugus, UQU7, UQUSU7, UQU8U7, UQU'?,

4 3,2 2,4 6 8
UglUg, UgUgU7, UgUgU7, UGUIUT, UYUT,

udur, uéu?, uu3, u%u;, ugud, utl)
(u18, u17U7, U16US, umu%, U15U9, U15USUT, u15U§,

U14U10, Ur4U9UT, u14u§, u14u8U$, u14u§,

U131, UL3ULOUT, UI3UYUS, UI3UYUSF, UIZUSUT, UI3USUY, U133,
U%z, U2U11U7, UT2U10US, ulzulou% Ulzug, Uiuguguy, ulzugui,
U12Ug, UT2UFUF, Ur2usUT, U,

U%lus, u%lu% U11UIUY, UT1UIOUSUT, Ullul(]U?a Unugun
’LL11UQU§, U11U9u8’u%, U11UQU$, ullugU7, ullugug, u11u8u$, ullu;,
u?O? u%0u9u77 U%O“éa U%OUSU% U%OUZ%’

Ulougug, Ulougua Ulougugum U10u9U8U$7 U10U9U?,

uloug, ulgugug, ulouglé, Ulo’u,sug, uloug,

ué, ugugm, u%u%, ugug, ugugu%, ugugvﬁ, ugug,

UQU%LUJ, m;u%u%, UQU?BU‘;), U9u8u;, UQ'LL?,

ugv ugu%: ug‘u‘%, ugu?? u%ug, u8u%0’ u%2>

(u1g, Uiz, U17Us, UITUF, ULGUY, UI6USUT, UT6 U,

U150, UL5UYUT, UT5US, UL5USUT, U5UT,

UL4UTT, UT4ULOUT, UT4UgUS, UT4UGUT, UT4USUT, U4 USUS, Ut 4 U3,
U13U12, U13UTTUT, U13UIOUS, U13U10U$, U13US, U13U9U8UT, U13U9u§,
U13ug, u13u§u$, u13u8U$, U13u$, u%zu% U12U11US, u12u11U$,
U12U10UY, UI2UTOUSUT, U12U10U§,

U2UGUT, ULUGUF, UT2UGUSUS, U2 UGS,

wpugur, wipudud, uipusul, uisul,

U%1“97 u%1u8u77 “%1“%7 ullu%o:

Ur1u1ouguz, U11U10U§7 UHulouSu?, U11U10U§7

U UGUS, U UGUF, Ut1 UgUFUT, Ut UgUSUS, Up UgU,

unué, uuugug, u11u§u§, u11u8u$, ullug,

ui’ou% u%ougu& u%ougug, u%ougu% u%ougui’, u%oug,

uloug, U10u§U8U7, ulougu%,

u10U9u§, u10U9u§u$, u10U9u8u§, u10U9ug,

u10u§U7, ulougu;’, ulougué, u10u8u$, ulgu?,

U3U7, ugug, ugu8u$, ugu‘%, u%u%um ugugu;’, uSusug, ugu;,
Ung, ungug, umt%u‘%, ungug, uQu8u§, U9U%O,

6 53,45 3.7 29 11 13
UgUy, ugly, ugUs, UgUy, Ugly, UgUT ", Uy >
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Submodules with base level 5

10
M;

(ue)

(u7, ug)

(ug, urug, u%)

(ug, ugug, u7, u6U7, ué)
(u10, ugug, uguy, u8u6, u7u6, u7ug, u2>

(u11, ur0us, Ugli7, UGUG, UF, UsUT UG, UL,

u?a u%“%? 'LL7U%, Ug>

<U12, U11Ue, U10U7, U10U%7 ugusg, UgUTUE, U9u§, uéue, USU%,
ugurud, ugug, uiug, uiud, uru, ug)

<u13, U2Ue6, U11U7, unu%, ujous, U10U7Ue, ulou%,

ug, UgULUG, UQ’LL%, ’LLgU7u%, U9ué,

udug, uiud, ugudue, ugurud, ugug, ut, uiud, viug, urud, ul)
(w14, U13UG, UI2UT, UI2UG, UT1US, UT1 UTUG, U1 Ug,

UL0Ug, UT0USUG, UT0US, UT0UTUG, UT0 UG,

udug, uglugtiy, UgUgUd , Uguiug, Ugtruy, Ugtg,

3,2 2.3 3 2,2 4 6
U8, U8U7u6, u8u6, U8U77 U8U7u67 USU7U6, USUG,

u‘%u(g, u?u%, u%ug, uwé, ug>

<U15, U14U6, U13UT, U13U%, Ui2ug, U12UTUG, uuu%,

Up1ug, U11U8UG, Uuug, u11u7u§, Ulluéa

30, U10UgUG, ULOUSUT, UOUSUG, UL0UFUG, ULOUTUY, UTOUG,
’LLSU7, ugu%, UQ’LL%, UYURUT UG, ’LLg’nggug, wu%ué, u9u7ué, Ung, ugug,
u§u6, u%u%, uguw%, ugué, u8u§u6, ugugu%, u8u7ug, Ugug,
u?? Uf%“%? u%ué’ u%ug, U7ug, u(IS0>

(u16, u15Ue, U147, U14Ug, U13U8, U13U7UG, ulsug,

U12U9, U12ULUE, U12U$7 u12u7u§, UlZUéa

U11U10, UT1UIUG, U1 USUT, U11U8U§, U11U%U6, U11U7Ug, ulwé,
U3 oUG, U0UYUT, UTOUUG, ULOUF, U0 USUTUG , ULOUSU(,

w0, urouFug, uourug, uoug,

ug'lig, USUﬂJ,G, ugug, UgU%UG, ungu%, UQUSU,TU%, UgUgué,
’U,gu:;UG, @u%u%, u;ﬂwu%, UQ’U,E,

ugw, ugu%, u%u%uﬁ, u%uw%, u%ug,

’nguZ%, Ugugu%, ugugué, u8U7’LLg, ugug,

u‘;’u(;, u‘%u%, u?ug, u%ug, wu%, uél)

(u17, ut6Up, U15U7, Ulsug, U14Ug, U14UTUE, U14Ug

U13U9, U13UUE, U13U$, U13U7U(23, U13Ué,

U12U10, UT2UIUG, U12USUT, U12U8U%, UlQU%UGa U12u7ug, UlQUg
U%p U11U10U6, UT1UIUT, unus;u%, U11U8UTUE, U11usug, u11ug
unu%ug, U11U7u%, unug, u%om, u%oug,

3 2 2 2 4
UL0UYUS, UT10UYUTUEG, UTOUYUg, U10URUE, U10USUT, UTOUSUTUG, U10US UG,
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3 2.3 5 7 .3

U10U7Ue6, U10U7UG, UL0UTUG, U10 UG, Uy,
2 2,2 .2 2,2 4 2 2,2
UgUgU6, UQU7, UQU7U6, UQUG, uQu8U7, UQUSUG,

2 3 5 4 3,2 2,4

6 8 4 .3 3,3 ,2,3 2.2 2 2 4 .2 6
UQU7U6, U9u67 U8, U8u7U6, u8u6, U8U7, U8U7u6, UBU7U6, u8u6,

4 3,3 2,5 7 9 6 .52 4 4
URUT UG, USUF UG, USUTUG, USUTUg, UUG, Uy, U, Ug, Ug,

uzug, wtug, urug’, ug’)
(u18, u17u6, U16UT, umué, U15US, UI5UTUE, u15u2,

Up4Ug, U14ULUG, U14U$, u14u7u§, u14u§,

U13U10, U13UYUG, U13UsUT, UISUSUG, U13UTUG, UI3UTUG, U13UG,
U12U11, U12UI0UG, U12U9UT, U12U9U%, U12U§7

UL2USUTUG, UL2USUY, UI2UT, UTRUFUG, Ut UTUG, Ui2Ug,

Ui1u10uy, Unulou%, UT1UQUS, U1 UIUTUE, U11u9ug, U11U§U6,
u11u8u$, U11U8’LL7’LL%, u11u8ué, U11u$u6, ullugug, U11U7ug, ullug,
U%OU& U%OU7U6, U%OU%, uloug,

U0UYUSUE, U10U9U7U§, UlOUQUé, U1OU§U77 ulouéué,

U0UsUFUG, UIOUSUTUG, ULOUSUY, UT0UT, U0US UG,

ulougué, u10U7ug, uloug, uguﬁ,

ugugw, ugusu%, u%u%uf;, ugmug, ugug,

’U,g’ug, UQU§U7U6, u;;u%ug, ungug, UQU8U$’U%, U9U8U7ué,

uQu8ug, UQ’LLZ%UG, ugugug, uQu%ug, ugwug, Ung,

u§u6, u%u%, uguw%, ugu‘é, U%U;UG, u%u%u%, u%uw%,

u%ug, Ugug, ugu‘%u%, uw%ué, ugugug, Uguwg, uguéo,

6 5,3 .45 3. 7 2 9 11,13
UpUe, Urlg, UrlUg, UrUG, Wrllg, UTUg Ug", )

Submodules with base level 4

S 588
[ | |

U5>

Ug, u§>

w7, UgUs, ug)

ug, Urls, ué, u6u§, u§>

2 .2 3.5
Uug, Ugus, Urle, UTls, UgUs, UeUs, U5>

o~ o~ o~ o~~~

Uuip, UgUs, u8u§, UgUg, u?, UruUeUs, u7u§,

U%a u%ug, uﬁuév ug)

(u11, w105, Ugls, UgUZ, UglT, Uslislis, UL,
U$U5, uw%, U7u6u§, uwé, ug’IL57 u%ug, u6ug, ug>
(w12, U11Us, UI0UG, ULOUE, UgUT, US, UgUUs, UGUS,
ugUTUs5, ’LLgu%, u8u6u§, Ugug, u%uG, u%u%, U7’LL%U5, U7U6U§, u7ug,
ué’ uguga ugu%? uﬁug’ u§>

(u13, u12us, U116, U11U§, U0U7, UL0UEUS, Uloug,
UQUS, UYUTUS, ung, u9u6u§, uQué,

u%uE,, UUTUG, ngwug, u8u§U5, u8u6u§, u8ug,

u?, u$u6U5, u?ug, mu%, mu%ug, u7u6u§, U7ug,

4 3.3 .25 7.9
UgUs, UUS, UgUs, U, Us)
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(u14, uizus, u12ue, U12u§, UT1UT, U11UEUS, Unug, uoUs, ué,
UpU7Us, Uloug, U10U6U§, U10u§7

UgUgU5, UYUTUG, UQU7U§, UgU%U5, U9u6ug, ung,

u§u6, u%u%, u8u$, UUTUGUS, u8U7u§, u8u%, USU%UE, u8u6u§, Ugug,

3 2.2 2 2 2 4 5 3 2,3 7
U7U5, U7u67 U7UGU5, u7u5, U7UGU5, U7u6’u,5, U7U6'LL5, U7US,

ug? uéug, u%uév ugug? uﬁug? ué0>

<u157 U14U5, U13UE, u13u§, U2U7, U12UEUS, U12U§,

ujlug, U11U7US, unug, unuﬁug, ullu?,‘,

UL0UY, UT0UTUG, UTOUSUS, UIOUTUE , UIOUGUS, UTOUGUE, UTQUS,
ugu5, UgULUG, UQUSUE, Ung, UYUTUEUS, ugu7u§,

U9u§u§, u9u6u§, UQU%, ung,

U§U7, U§U6U5, U%ug, u8U$U5, ’UJ8U7U§, U8U7U6u§, u8U7u§,
USUgU5, usugug, u8u6ug, u8ug, u?%u6, u?u%,

u%u%w, u%umﬁ?, u%ug, U7ué, U7ugu§, IW’LL%U%, U7u6ug, U7u§,
udus, ugud, udu, udul, ugud, uil)

(16, U15Us, UI4UG, UIAUZ, UL3UT, UT3UGUS, U13U,

Ui2us, U12UTU5, U12u§7 Ur1ug, U11UsUs5, U11UTUG, U11U7U§,
U ugus, u Ueus, utiul, Uiy, urougus,

U10UUG, ULOUSUZ , UT0US , U10UT UGS, UTOUTUS,

U0, UL0UGUZ, utouEUs, ugUS,

uguﬁ, USU%, UYUIUT , UQUIUEUS , UQUS’UJE, ugu$U5,

U9U7U%, uguw(gu%, UQ’LL7U§, U9ugU5, ugu%ug, UQUE;’LLg, ’LLgug,
ug, ugzwus,, ugug, u§u6u§, u%ug, u8u$u6, u8u$u§,

2 3 5 4 3,2 2 4 6 8
USU7UGU5, U8U7U/6U5, U8U7U5, U8U6, USUGU5, USUGU5, U8U6’U/57 U8U5,

4 .3 3,3 .2 3 2,2 2 2 4 2 6

U7, U7U6u5, U7U5, U7u6, U7U6U5, U7U6U5, U7U5,
4 3,3 2.5 7 9 6 5 2
U7U6U5, U7UGU5, U7UGU5, U7UGU5, U7U5, u67 UGU57

4.4 36 2 8 10 12
UgUs, UGUs, Ugls, UgUs , Uy~ )

<U177 U16Us, 1615”%7 Ur4U7, U14UEUS, u14u§,

U13Us, UI3UTUS, UI3UG, UI3UGUS, U133,

U12Ug9, U12U8U5, U12UTUG, uuuw§, U12U%U5, u12u6U§, U12U§,
U11U10, U11UUS5, U11USUG, unusug, U1UTUEUS, U11U7u§,
unug, unu%ug, u11u6u§, unug, u102U5,

ULUYUG, UIOUYUE, UTOUSUT, UTQUSUGUS, ULOUSUS,

u10U7ug, u10U7u6u§, u10U7u§, u10UEU5, ulou%ug,

ulou()-ug7 uloug, ugu% u%uGUg), ugug, ung,

UYUIUTUS, uQu8u§, U9u8u6u§, U9u8u§, uQu$u6, U9u$u§,

2 3 5 4 3,2 2.4

ugugud, ugul, ugus, uurue, uFurus, uudus, ug32ugus, uus
U,gu%, u8u$u6U5, u8u$u§, ugmug, USU7U(231L§, u8U7u6ué, u8u7ug,
ugu§u5, ugugug, usu%ug, uguﬁug, u8ug, u§u5,

u?u%, u%uGug, u‘?ug, u%ugu5, u%ugug, u%uGug, u%ug,

5 4 2 3,4 2,6 8 10
UrlUg, UTUgG, Ug, UTUGUS, UTUgUS, UTUsUS, UTUS
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6 5.3 4,5 3,7 2.9 11 .13
U6u57u6U5,u6U5,U6U5,u6U5,UGU5 ,'U/5 >

Submodules with base level 3

10
M

o~ o~ o~ o~~~

ugq)

Us, ui>

UG, U5y, US)

U, UGy, UE , UsUT, Us)

Ug, Ty, UGS , UGU S , US4, U, US)

Ug, ugU4, u7ui, urus, u%,

UGUS UL, UGUS , U, URUT, Uz, ul)

(u10, ugus, ugus, usuy, urug, Urusug, Urud,

u%u;;, u6u§, U6U5u?1, uﬁuﬁ, u%m;, u%ui, u5uf’1, UD

(U1, Ur0tia, Uglis, UgUZ, Ugle, Us, USU5LLL, USUS,

U7rUEU4, U7’LL§, U7U5UZ, U7ui, ’LL%UE,, u%ui, u6u§u4, UGU5U§1, UG’LLZ,
uév ugui, uguia U5ug, u§1>

<u12a U11U4, U10U5, Uloui, UgUe, UgU5U4, UQ’U,i,

usuT, ugUeU4, u8u§, USU5U£21, Ugui,

u%w;, UTUGUS, U7u6ui, U7U§U4, U7U5ui, U7u2,

ug, UEU5U4, u%ui, ’LLGU%Ui, u6u5u3, uﬁug, ZLG’U,?L,

gy, uud, v, usul, ul)

(u13, w124, u11UsS, Unui, UioUe, U10U5U4, Uloui

UgU7, UgUE U4, ’U,gug, UQU5ui, UQ’U,i,

u%, UKUTUY, USUEUS, u8u6ui, Ugugm, usumﬁ, ugui,

U%U5, u%ui, U7u%, U7TUEU5U4, u7u6ui, U7u§, Wu%ui, U7U5ui, u7ug,
ugm, u%u%, u%ug)ui, uguﬁ, u6u5ui, uw%w;, ugugui, u6u1,
ugv uéu?b ugui’ ugugv U5u§1, uzll0>

<u147 U13U4, U12Us5, U12u1217 U11U6, U11U5U4, ulluiv

Uo7, Uloug, UioUely, ulOUSU?p uloui,

ugug, UgUTU4, UgUeUs, UQUGUZ, unguzl, U9U5Ui, Ugui,

U§U4, uguU7TUs, u8u%, U8U7’U,£21, UgUEU5U4 , usuﬁui,

U,gu%ui, ugug, u8U5uﬁi, USU?p

u%uﬁ, U%U5U4, U7U%U4, U7u6ug, u%ui, U7UGU5UZ, U7U§U4, u7u6uﬁi,
um%ui, U7u5ui, u7uZ, ug%, ugui, u%u§u4, ugug—)ui, ugui,
UGUEUE, UGU5UE, uﬁug, u6u§ui, uﬁui,

udug, ugus, uiul, udul, usul, uil)

(15, U14Ua, U13U5, UIZUT, U12Us, U12USUA, U203,

U7, U11U6U4, Ull“g, u11u5u421, ulluia

Uipug, U10UTU4, U10UCUS, U10u6u421a U10U§u47 ulOUE)ui» ulﬂuiv
U37 uUgugU4, UgUTUs5, ’U,9U7U421, ung, UgUeU5U4, ’LLg’U@Ui,

ung, ungui, U9U5U3, U9u2,

U§U5, ugui, USUTUG, USUTUSFUL, U8U7ui,

2 2 2 4
UUGUL, UBUEUSU 4, URUEUS, URUEL Y,
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3 2,3 5 7
USU5U4, UBU5U4, USU5U4, USU4,
3,2 2.2 2 2,2 4
U77 U7U6U4, U7U5, U7U5U4, U7U4,

2 2, 2 2 3 5 4 3,2 2. 4
U7u6U5, U?UGU47 U7UGU5U47 U7U6U5U4, U7U6’U/4, U7U5, U7U5U4, U7U5U4,

6 8 4 .3 3,3 .2 3,2 2 2 2 4 .2 6
U7U5U4, U7U4, UG, UGU5U4, U6U47 UGU57 U6U5U4, U6USU4, U6U4,

3,3 2,5 4 7 9,6 52 4 4
UGUSU4, UGU5U4, U6U5u47 UGUSU4, U6U4, US, USU4, U5U4,

usu, uguy, usuy”, ug’)

<u167 U15U4, UT4US5, u14u12p U13U6, U13U5U4, U13ui

U2U7, U12UU4, ulzug, U12U5UZ, U12ui,

U11Us, W11 U7ty UT1UGUS, UL1UGUS, U1 UL, UT1 Us U, UT1 U],
U10Ug, ULOUSUL, UOUTUS , UQUTUS, UL0UG, UTOUGUS U4, UT0UGUS],
uloug, Ulougui, U10U5U3a Uloug, U§U4, UgUgUs5, UUTUGE, Ugusui,
UguUTUSUY4, UQU%U4, UQUGU%, ’U,QU7U§1, UQU6U5UZ, Ung’UML, U9u6u3,
ungui, U9U5Ui, uQuZ, ugug, U§U5U4, u%ui, UUTUEUL, umwu%,
U8U7U5ui, u8U7u3, U8UEU5, u8u§ui, u8u6u§u41, u8u(5U5ui, u8u6ui,
Ugug, u8u§uiu8u§ui, u8U5ug, u8u$, usui,

u:%m, u$u6u5, u%uﬁui, u%ugm, u%uwi, u%uf’l,

u7u2, U7UEU5U4, U7u6u§, UJU%U?, W%u%ui, U7UGU5U,3, u7u6u§,
U7U§U4, mu%ui, mu%ui, U7U5UZ, U7u2,

ué‘m, u%u%, ugug)ui, u%uﬁi, u%ugm, u%u%ui, u%uwi, u%uz,

uﬁug, u6u§ui, uﬁuguﬁ, u6u§u2, u6U5ui, u6u}10,

6 5.3 .44 .37 29 11 13
U5 U, USUY, UsUyg, USUY, UsTUy, Usty , Uy”)
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Appendix B

The quotient submodules ﬁfl and their generating monomials (that are not total
derivatives), where d = 6,5,4,3 and [ = 1,2,3,...,11 used in classification of 7th
order evolution equations:

Quotient Submodules with base level 6

A2
My

A3
WK

0
uz)
u7)
, u7)

U77U7>

2.2 .6
’ 8’u8u77u7>

S

u

3,7
udug, uur, uiud, ul)

32248>

2
7
3
7
2
8
2
8
2
9
2
9
2 2 4
ulo 'LLQU87 Ugu'?, u8, U/8U7, u8U77 'LL7
2
1

3 4 3.3 .25 .9
u OU’?, Ug, UQUSU’?, u9u77 fLLs’U/?7 u8U7, U8U77 U7>

(

(

(

(
(u
(

(

(

(
(s, ulOUSa u10“77 USU% UgUSa U9U8U7» USU%

ug, uguF, uguz, uguy, ur’)

<u%1U7, u%0u97 U%OU8U7, U%OU%

USUS, USU%, u%u?ﬂw, ugusug, 'U,gU7, ugu?,

ugu3, ugu?, ugug, ug')

<u%27 u%lu& u%l“’?? uilj)[)ﬂ U%OUQU’?, u%O“%? U%OUSU% U%OUZ%?
Ué, USUSU’?, ’U/S'Uq, ugug, ugugu%, USUgU?, ’U/gﬂq,

ug, ugud, uguz, uguf, ugu?, up’)

2 2 2 2 .3
(ufgu7, uiiug, Ui ugur, Uy U7,
3 2 2 2,2 2 2 3
U10u77 ’ulOZL9u8, ulougu'7, U10u8u7, u10u8u7,
4 3,2 .3 2,3 .4 .2 3 2,23 .2 5,27
U9U7, UQu87 UQU8U7, U9U/7, UQ'LLSU’T, U9u8u'77 Ungu'?, UQU7,

6 5 4.5 3.7 .2 9 13
u8u77u87u77u8u77u8u77u8u77u7 >

Quotient Submodules with base level 5

2 2.2 4 3.2 2 4 8
Ug, UUT, UgUg, U7, U7Ug, UTUg, u6>
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11
My

12
M;

FVeE]
M;

(udug, us, udurug, uSud,

u%uﬁ’ u%ug, u%ugv ug)

(ug, udug, udud, udug, uiud, viurud, udug,
Uz, ugug, ugug, uzug, ug’)

(uFque, udug, udurug, udug,

3 3.2 292 2 3 .25
u8U7, U8u6, u8U7UG7 USU7u6, u8u6,
4.3 35 2 7 11
U7U67 U, WG, UTllg, Ug )
2 2 3 2.2 2 2 24
(udy, uigur, ufyug, ug, ugusue, ujug, ugurug, ugug

4 3 3,3 ,2,3 .22 2 2 4 .2 6
UB, U8U7UG, USUG, u8u'77 U8U7u6, UBU7U6, USUG,

6 52 4.4 3.6 2 8 12
Uz, Urle, U7u6= “7“67 Uz g, tg”)
3,3 2 2 2

<U10U8, U10U7U6, u10u6, U/QUG, UQUS'U/?, UQU8UG,

2, 2 2 3,2 5 4 3,2 .3 2,3 4
UgU7U6, ’U/9U7U67 U9u6, USUG, U8U77 U8U7u6, U8u6

2.3 22,3 .2 5,27
Ugu'?u(j, UBU'YUG, USU7u6, USUG,

6 3,45 7,29 13
udug, udud, urug, uiud, uiug, ug’)

Quotient Submodules with base level 4

2
My

13
My

(@)

(u3)

(u3)

(g, ug)

<u(25u57 u5>

<u%, Ug, u%ug, ug)

<u$u5v UgUs, u6ug7 ug>

(ud, ugue, uFug, ug, ugus, ugus, us)

(udus, u3, udugus, usus, uéU5, ugud udug, ud)
(ud, udug, udu?, udus, uiul, udugul, uSus,

5 4.2 34 2 6 10
Uug, Ugls, Ugls, Ugls, Uz )

(udus, udur, uSugus, uaus,

udug, uBud, uiudus, vdueud, uiud, udus, ugus,
ugus, uguf, ug')

(U3, udue, udu2, ud, udurus, udud, udugud, udus,
ur, udugus, udud, udud, uiudud viugud, uiul,

ug, ugus, g, ugus, ugus, us?)

<u10U5, U9U7, ZL9U,6U,5, UQU?, ugu5, u%wuﬁ, ugwug,
ududus, vdugud, uiul, udus, uiud, wdugu?, udul
wdugus, vZudud udugul, uul,

6 53 45 37 29 13
UGUS, UgUs , UgUn , UGS, UEUS, UE" )
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Quotient Submodules with base level 3

13
M;

ui)

ug)

S
IS
L~

Ug, Ups Us Uy, Uy

2 2.2 4 32 924 8§
U7, UgUs, UGUY, Us, Uy, U5y, Ug)

2
4
3
4
2
5
2
5
2 .3 .2 2 6>
6
2
6
2
7
2 3,2 2,3 .4 3,3 ,2.5 .9
UTUL, UG, UgUsUa, Ugy, UsUa, USUY, U5, Uy)
2 2 2.2 3 2.2 2 2 2 4
ug, 'LL7'LL5, UrUy, U6U4, U6U5, U6U5U47 U6U4,
5,42 3.4 2 6 10

Us, UsUy, UsUy, UsUy, Uy >

2 2 2 2.3 .3 3,2 .2 2 2 3,25
<USU4, U7U6, U7U5U4, U7U4, UGU5, U6U4, U6U5U47 U6U5U4, U6U4,

5 4.3 .35 2 7 11
UsUg, UsUg, UsUy, UsUy, Uy )

2 2 2.2 .3 .2 2.2 2 2 2. 4
<U9, UgUs, UgUy, Uy, UrUEU4, UrUg, UTUSUL, UrUy,

ug, udusug, ugud, uiud, uiudu?, viusul, uiag,

uf, uguj, usui, uguy, uzug, ug’)

(uduy, udug, udusug, uaud,

uduy, udugus, uiugul, uduug, uiusul, uiuj,

uguy, ugud, udusut, udug, ududug, vduiud, udusul, udul,

6 53 .44 .3 7 29 13
UgUyg, USUY, Uy, Uplly, U5, Ug”)
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Appendix C

The submodules M Cll and their generating monomials with level [(m;), where d = 8,7
and [ =1,2,3,...,14 used in classification of 9th order evolution equations:

Submodules with base level 8
Mg = (ug)
(w10, ug)
(u11, uroug, uj)
Mg = <u12,u11U9,U107u10u9,u9>
<U13, U2U9, U11U10, unug, U1ou9, Uloug, u8>
<U14, U13U9, U12u10, Ulzug, U%p Uii1u1ouy, U11U3,
U?o» U10U97 Ulouga US)
Mg = <u15,u14u9,ul3u10,U13U3,U12u11,U12u10u9,ul2ug,
u?lug,unu%,ullumu&mlu;‘,
U?OUE% u%O“S? ulng? ug>
M88 = <u16,’u15u9,u14u1o,U14U§,U13U11,u13u10U9,U13U87
U%g, Ui2u11uy, U12u%o, U12uloug7 U12U3,
u%lulo, u%lug, Ullu%O’U,g, unuloug, unug,
u%O? u?ﬂ“%? u%Ougv uloug’ ug>
ME = (uir, uigug, uisuio, u15us,
Up4U11, U14U10UY, U14Ug,
U13u12, U13U11UY, U13U%07 Ulsuloug, U13Ug,
U%QUQ, U12U11U10, ulzunug, U12u%ou9, Ulzuloug, ulzug,
U?l, u%lulowg, u%lug, ullu?o, ullufoug, ulluloué, ullug,
u4110u9v U?OUS’ u%ougv u1oug, ug>
Mglo = <u18,U17U9,U16U107U16U37U15U117U15U10U9,U15U37
UL4UI2, U411 UY, UT4ULOUG, UT4UTOUG, U4 U3,
U%g, U13U12U9, U13U11U10, u13U11U52;, U13U%0U9, U13u10U87 U13U8,
u%gulm U%gug, U12u%17 U12U11U10UY, U12u11ug,
U12U§o, U12U%0U52), u12u1oug, U12Ug7
u:{)luf)v U%W%Oa U%Wlougy U%Wéa Ull“?{)u% Ull“%o“&
u11U10Ug7U11U57
U?O» uilougv U?ouga U%Ouga ulOug» US1)0>
Msn = <U19,U18u9,u17u10,U17U3,U16U11,U16U10u9,Ulﬁug,
U15U12, U15ULTUY, u15U%o, u15u1oug, U15u3,
U14U13, UT14U12UY, UT4UL1U10, U14U11ug, u14ufou9, U14U10Ug, U14Ug,
Ugug, U13UI2UI0, UI3UIRUG, UT3UT T, UT3UTIULOUY, U13UTT Ui,
ursuly, wisuigud, wisuioug, uisud,

2 2 2 .3 2
UoUL1, UToUIOUY, U oUg, U12UT1UY,
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U12U11U%0, ulzunuloué, U12U11U§l,

U12U:fou9, ulzufoug, U12u10u8, U12Ug,

U?lulov u?lugv U%W%OU% U%luloug’ u%lugv

Ullu%o, mwi’oug, uutﬁoug, U11U10U87 umtS,

u?0u97 uAllOU97 u?O”S? U%OU; ulOug? u£1)1>

(u20, U19UY, UI8UI0, UTSUY, UITULT, UITUIOUY, UITUG,

Uieu12, U1eU11UY, Ulﬁu%m ulauloug, umué,

U15U13, U15UI2UY, UT5U11UL0, u15u11u52), u15u%OU9, u15ulou§, u15u8,
u%4, U14U13U9, U14U12U10, U14u12ug, u14u%1, U14U11U1I0UY, U14U11ug,
ur4udy, urauigud, uiauioug, ur4ug,

u%gulo, u%g,ué, U3U12U11, U13U12UTQUY, U13U12US,

U13U%1U9, u13u11U%0, U13U11U10U3, u13U11U§1,

U13U?0u9, ulsufoug, U13u10u8, Ulsug,

U?m U%2U11U9a U%QU%Ov U%2U10U37 U%ﬂga

Ulzuflug, U12U%1U107 u12u11U%0u9, ulzunumug, u12U11U8,
ulguilo, ulgui’oug, ulgufoué, ulguloug, ulgug,

U%h u?lulouﬂh U%Ug? u%lu?m u%lu%ougv u%lulougv u%lugv

un U, U ulyuy, unuTgug, uniutoud, ul1uy,

ugiO? u?ﬂ“%? Uéllougv u?oug’ u%(]ugv u10u£1)07 u$2>

<u21, U20U9, U19U10, Ulgug, Uigu1l, U18U10UY, UlBUS,

Up7u12, U17U11UY, U17U%07 U17U10U§, U17U3>

UeU13, U16U12UY, U16U11U10, u16U11U§, UlGU%OUQ, U16U10Uga U16U8,
U15U14, UT5UI3UY, UT5UI2U10, U15U%1, U15U12ug,

U15UT1UIOUY, U15U11Ug, u15u?0, ulsﬂﬁoug, U15U10u3, U15u8, U%4U9,
U14U13U10, U14u13us2)7 U4UT2ULT, U14UT2UIOUY, U14U12Ug,
U14U%1U9, 16141&1111%07 ’LL14U11U10U§7 U14U11U§17 U14U?0U9=

u14u%0u8, u14u10u3, u14u5,

U%Sulla U%3U10U97 uigug, U13U%27

U13U12U11UY, u13u12u%o, U13U12u10u§, U13U12U3,

U13U%1u10, ulsuflug, U13U11u%0u9, u13u11U1oug, u13U11U87
U13u4110, U13u?0ug, ulgu%oug, ulguloug, u13ug,

U:I)QUQa u%2u11u10, U%QUHUSa U%W%OUQ’ U%QWOU%, U%ﬂga

upuy, ui2u  urouy, ur2ut, U,

U12U11Uifo, Ulzunufoug, U12U11U10U3, Ulzunug,

Ulgu%OUQ, ulgu‘i’oug, Ulgu%()ug, ulguloug, ulgug,

UL111U9a U%U%Oa U?Wlo“gv U?luga

u%lui’ous;, u%lufoug, u%lulougv U%Uga

5 4 2 3 4 2 .6 8 10
U11Ug, UT1UIUg, UTT1 U oUY, U11UTnUY, U11UIQUY, UT1UG

6 5.3 4. 5 3 7 2 9 11 13
ujUY, UToUy, UToUg, UToUG, UTgUys UL0UY , Ug” )
2 3
(u92, 21Uy, U20U10, U20UG, UT9UTT, UT9UTOUY, UT9Uy,
2 2 4
U18U12, U18U11UY, U18UTH, U18UI0Ug, U18Ug,

2 2 3 5
U17uU13, U17UI2U9, UI7UI1IUL0, UL7TUI1Ug, UTTUTGU9, U1TUIOUY, U1T7UY,
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U16U14, U16UI3UY, U16U12U10, U16U12ug, ulGU%b
U16UT1UIOUY, U16U11Ug, u16ui)0, umu?oué, U16U10u3, U16U8,
U%5, U15U14UY, UT5UIZUL0, U15U13U3,

UI5UI2ULT, UI5UT2UI0UY, u15U12US7

U15u%1U9, u15u11u%0, u15unulo’u§7 U15U11U3,

U15U?0U9, U15U%0Ug, u15u10ug, u15u$,

'UJ%4U10, U%wg, U14U13U11, U14U13UTQUY, u14u13u§,

u14u%2, Up4U12U11UY, u14u12u%0, u14u12u10u§, u14u12u3,
U4 UT U0, UTAUT) UG, UL U1 UT UG, UT4 U1 UL O, Ut UL UG,
u14u4110, u14ui’0u§, u14u%0u3, u14u10u8, U14US,

u%3u127 u%3u11u97 u%S“%O? u%‘iuloug’ u%?)ug?

U13U%2U9, U13U12U11U1L0, U13U12U11u§,

U13U12U%OU9, U13U12U10U3, U13U12U3,

U13U?17 U13U%1u10U97 U13U%1ug,

u13u11u§’o, U13u11U%0Ug2); u13u11u10u3, U13U11U8,
ulguilOUg;, U13u§0u3, ulgufoug, U13U10ug, U13’U,8,

U510, UTaUh, UTpUTy, UTpUT1UIOUY, U a1 UG,

ufauiy, ufyuigud, uisuigug, uisug,

’U,12uzf1UQ, ulguflufo, U12u%1uloug, uuuflué,
u12U11u:1)’oU9, U12u11u%oug, u12U11u10Ug, u12U11Ug,
ulgu?o, ulgu%oug, ulgu:{’oug, ulgufoug, ulguloug, ulguéo,
UZ111U107 U%W%a U%U%OU% U?luloug, u:flug,

U%l“ilm U%l“?ou& U%l“%ouga u%luloug, U%WSa

’LL11’LL?OUQ, ulluiloug, ullui’oug, ullufoug, ulluloug, ulluél,

7 6.2 .5 4 . 4 6.3 8 2 10 12 14
U0, UToUG, UTglg, Uity UWinUg, UTgly > Ul0Ug, U )

Submodules with base level 7

M; = (ug)
]\472 = <u97 U§>
M? = <U,10, ugus, ug)
M? = (u11,uious, ug, ugug, u§>
M? = (u12,u11us, U10Uy, U10Ug, UgUs, UgLT, Ug)
MY = (u13,uizus, ui1ug, u11ud, urgUous, uipUuy,
ugv u%ug, u9u§7 ug>
J\477 = <u14, u13ug, U12U9, U12U§, U11U10, U11UQUS, uﬂu%,
U%OUg, ulgug, ’U,10U9u§, uloug, USU& ugug, Ung, u%}
M? = (u1s, u14ug, U3y, u13u§, U12U10, U12UYUS, Ulzug,
U%p U1 UTOUS, u11U§7 U11U9U§7 U11U§,
U%OUQ, u%oug, ulouSU& u10U9ug, uloug,
ugv ugug? ugug? ung, u§>
M? = <U167 U15ug, U14U9, U14U§, uU13U10, U13U9US, ulsué,
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U12U11, U12U10US, U12U3, U12U9U§, U12U§1,

U%lus, U1UIOUY, U11u10U§, ullu3u8, U11U9U§, u11u§,

u‘rfo, u%ouQu& u%oug, uloug, ulgugug, ulquug, uloug,

ugusg, ugud, udug, ugud, ud)

<U17, Uieus, U15U9, u15u§, U14U10, U14UQUS, U14U§7

U13UL1, UL3ULOUS, UI3UGUR, UISUG, UL3UG,

U%Q, U2U11Ug, U12U10UY, ulzuloué, uuu?)us, U12U9U:§7 U12U§,
ui ug, uf ud, urnudy, urtuiougUs, U1 uIOUs,

U U, UTTUGUR, U1 U U, Ur UG,

U?ou& U%Ougv u%0u9u§7 u%Ougv

U10UGUS, ULOUGUS, UL0UYUS, U1 U,

ug? ugugv ugug? ugug’ ung, UEIB0>

(u1g, ui7Ug, U16UY, U16u§7 U15U10, UL5UYUS, U15U§,

U14U11, U14U10US, U14U3, U14U9U§, U14u§,

U13U12, UL3UL U, UI3UTOUY, U13UIOUS, UIUGUS, U13UYUY, UI3US,
Ufzus, Ui2u11Uy, ’u127u611’u§7 u12u%o, Ui2U10U9USg, U12U10U§7
U2, UT2UGUF, Ur2UgUS, U 2UG,

u%lulg, U%IUQU& u%lug, unu%Oug,

unuloug, U11U10U9U§, Unuloué, u11u3u8, unuéug,
U11Ung, unug, U?OUQ, u:foug,

uiougus, ufgugug, uigug,

Uloug, umugug, ulougué, uwugug, uloug,

ugu& uéug, ugug, ugug, ung, uy)

(u19, uigug, U7y, u17u§, U16U10, U16UYUS, U16U§,

U15U11, UT5UIOUS, U15U3, U15U9U§, Ulsug,

U14U12, U14U11US, U14U10UY, u14u10u§, u14ugu8, u14U9U§, u14u§,
U13u12Ug, U13U11U9, u13’u11u§, U13U%0, U3u1oU9Us, U13U10U§,
u13UY, UIUGUS, U1zUYUS, UT3US,

Uiy, UTHUF, U211 UL0, U12UT1 UgUs, UT2UT 1 UG,

U12U%0u8; U12U10u52;, U12u10U9u§, u12U10U§7

U2UGUS, UI2UGUS, U12Ug U, UTUT,

u?l? u%lulou& u%luga u%1u9u§7 u%lugv

Unufoug, unu%oug, Unulouguss, u11ulou9ug7 uﬂuloug,
unug, uuugug, uuugug, UHUng, unug,

uzlL07 u?0u9u87 U?Oug’ u%O“S? u%ou?)ug’ u%oung, u%()ugv
ulougu& ulougug, ulougug, ulGUng, ulgug,

ugv ugug? uéug, ugug? ugug? u9u81§0v ué2>

<U20, Uuigus, u18U9, U1SU§, U17U10, UT7UQUS, U17Ug7

UieU11, U16U10US, U16U3, U16U9U525, U16U§,

U15U12, UT5UI1US, U15U10UY, u15u10u§, u15u3u8, U15U9U§, U15U27
U14U13, U14U2US, UT4UI1UY, u14u11u§, u14u%0,

Ur4U10U9US, u14u10u§, u14u3, u14u3u§, u14uQu§, U14U27
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U%3u8, U13UI2UY, U13u12u§,

U13U11U10, U13UL1UYUS, U13U11U§,

U13U%0U87 U13U10U3, u13U10U9U§, U13U10U§,

UsURus, WIsUGUS, urzueu, urzud,

U%zuwa U%2U9U87 U%W%v Ul?u%h

U2U11U10US, 1612lt11u§7 ’L0127v411u9u§7 u12U11U§17
Ulzu%oug, u12U%oU§, u12U10U§U87 u12u10U9Ug, U12u10U§,
ulgug‘, ulgugug, ulgugué", U12’LL9’ug, ulgug,

U§1U87 U%1U10U9a ufluwu%, U%lugu& U%1U9Uga u%lug,
urudy, uruigugus, urnuigug,

U1 UTOUY , U1 UTOUGUS, U11UT0UYUS, UT1 ULOUS,
unugu& unugug, unugug, U11U9ug, unug,

uzllou& uzli()u?)v u?oung, U%ouga

utougus, uiougud, uigusug, uigug,

uloug, umugug, ulougug, ulougug, u10U9u§, umuéo,
u8u8, ugug, ugug, ugug, ugug, uQuél, u§3>

<10217 U20uUs, U19U9, ulgué, U18U10, UI8UQUS, ulsug,
Ur7U11, U17U10US, u17u§, U17U9U§, U17U§,

UleU12, UT6UI1US, U16U10UY, U16uloU§,

U16UGUS, ULGUUS, UIGUS,

U15U13, U15U12US, U15U11UY, U15U11U§, U15U%07
U15UT0UgUs, U15UT0US, UT5UY, UT5UGUS, UT5UgUS, UT5US,
U%Lp U14U13US, UT4U12UY, U14u12u§,

U14U11U10, U14UL1UYUS, U14U11Ug,

U14U%OU87 U14U10U3, u14U10U9U§, U14U10U§,

u14u8u8, u14ugu§, U14U9u§, u14u§,

U%3U97 U%gug, U13UI2U10, U13U12UYUS, U13U12U§,
U13u%1, U13U11U10US, u13U11u§, u13u11U9u§, u13U11U§17
uguToUy, U13uTgUs, U1suIOUGUS, U13UIOUILS, UI3UTOUS,
U13ug, ulgugug, ulgugué, U13’LL9’ug, ulgug,

u%2u117 u%2u10u87 u%ngv U%QUQU%, u%Q“é?

U12U%1U8, U12U11U10UY, u12U11U10U§a

Ulzunugus, U12u11U9U§7 U12u11ug,

ulzui’o, UlQU%()Ugug, ulgufou%,

U12u10US, U12U10u§u§, U12U10U9U§7 U12U10ug,
ulgugu& ulgugug, ulgugug, u12U9ug, ulgug,

U?1U97 u?luga U%l“%m U%1U10U9U87 U%Ulougv

u%l“%? u%l“’%“%? u%1u9u§7 u%lugv

unu:l)’oug, unufoug, unufougug, unufoué,

U1 U0 Us, U11UIOUGUS, UT1 ULUUS, U1 UTOUS,
unug, uuuéug, unugué, unugug, UHUQ’U,S, unuéo,

4 4.2 3 2 3 3.3.5
UppUg, U1pUg, UTUgUS, U gU9UY, U1gUS,
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2 4 2 392 92 924 2 6 2 8
UpplUg, U1pUgUg, UTpUgUy, U oUIUR, U1oUS,

5 4.3 3.5 2,7 9 11
U10UQUG, U10UgUgG, U10U9UY, UTQU9US, UT0UIUZ, U10US

7,62 54 4.6 3 8 2 10 12 14
ug, UgUg, Ugliy, Ugly, Ugllg, Uglig , Ugliy”, Ug )
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Appendix D
The quotient submodules ﬁfl and their generating monomials (that are not total

derivatives), where d = 8,7 and [ = 1,2,3,...,14 used in classification of 9th order
evolution equations:

Quotient Submodules with base level 8

Mi = ()

Mg = (up)

M = (up)

M§ = <U%0 >

‘]MB5 = <’LL%0U9,UQ>

ﬁg = (U% U107U10us2)7u8>

ﬁg <u%1u9, UoU9, U%Ougv Ug)

ﬁg = <U12,U11U107U%1U9a
U%Ov Uz{’ouga U%oug, US>

ﬁg = <u%2u9ﬂu?l)“%lulou%u%luga
uzllou9> U?ouga u%Ouga ug>

Msw = <U%37U%2U107U%2U37U?1U97U%lu%mU%lulﬂugauﬂuéa
U?m uzllou?)ﬂ U?o“éa u%ougv u€1)0>

Mis%l = <u13u9, U%zulla U%2U10U9a u?ng,
U?luloa u?lugﬁ U%1U%0U9a u%lulougv U%US,
u?0u97 uzllougv ufoug, U%Ou; u91)1>

W = <U%4,U13U10,u13uga
U?zv U%2U11U9’ U%ﬂ%o’ U%Qmoug, uiug,
uélllv u?1u10u97 u?lugv
U%l“?()a u%l“%o“&%v U%1U10U37 u%lugv
u?Ov U?OUS, uzllouéa u?()ugv u%O“S? u‘32>

M813 = <u§4u9, U%P,Ulla U%3U10U9v u%u%,
U?2U97 U%Wllulﬂa U%QUHU& U%W%OU% u%2u10u3, U%z“&
U%1U97 U?l“%m u?lulouga U?lugy
u%lui’oug, U%U%oug? u%lulougv U%luga
u?0u97 U’?Ougv uzliougﬂ uzlg(]u; U%ougv u€1)3>

]\4814 = <u15,uf4u10,u%4u9,

3 2 2 2 2 2 92 4
U 3U12, UT3U11UY, UT3UT(, UT3UIOUY, U 3U,

3 3.2 2 2 2 2 3
UppU1L0, UT2Ug, U1aUyy, UT2UI1ULIOUY, U1aUT1 UG,
2 3 2 .2 92 9 4 2 6

UpaUtg, UT2U10UQ, UT2UL0UY, U12UQ,

4 4,2 3 2 3 3
U11U10, UpyUg, U Ugly, U1 UL0Ug,
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2 4 2 3 2 92 2 4 2 6 .2 8
U11U10aU11U10U9aU11U10U97“11U10U9»U11U97
7 6.2 .5.4 . 4. 6.3 8 10 14
Uy, U10Ug, UTgUg; U1y, U1oUY, U10“9 ,Ug )

Quotient Submodules with base level 7

M} o= (D)
ME = (uf)
M? = (ug)
ME = (uf,ug)
M} = (ufus,u3)
ﬁ? = <u%0 ug,ugug,u@
W - <u%0u87u9u87u9ugvug>
ﬁ? = <u%17 UgpU9, u%O“%? Ug, ugug, ugué, ug)
ﬁ? = <u11U87U107U10U9u87ulougv
uéuS, uud, udud, u)
W = <u%27u%1u9au%1u§>u?0u8v
U%OUQ’ U%OUE’US’ U%OU& ug? ugug, ugué, ugug? ué0>
W = <u%2u87u%luw?u%luf}u&u%lugvu§0u9?u?0u§7
udougus, uiououg, uigug,
Ugu& UQUgv ugugv ugu; ué1>
W = <u%37 U%QU9, u%Q“%? Uzl%la
utyutous, ufyud, uiy ugug, ut us,
u41107 U?OUQUS? U?Ougv
udous, ufgufug, uiguoug, uous,
ugvugu&u3u87ugugvugugvué2>
MB = (uizus, uyuio, uipugus, uiyug,
u%lug, u%lulo’LLg, u%luloug, u%lugug, u%lung, u%lug,
uéllou& U?OUS? U?Oung, u?0u§7
ufougus, uiougus, uiouous, uioug,
USUg, ugug’ ugugv ugug, ugug’ ué3>
W = (uﬂ,u%m,u%u%,

u%Qulh U%Zulou& U%QU& u%QUng, u%nga
U%1U9a U?Wé U%U%o» U%1U10U9U8a U%1U10U§7
U%W%a u%lugug, U%1U9U§a U%lug,

uéllou‘% U?OUSUB’ U?0u9u§’ U?Oug’

2 4.2 392 2 924 2 6 .2 8
UqplUg, UgUgUg, UTgUgUg,; U gUIUSY, U oUS,

7 6,2 .54 46 .3 8 2 10 14
Ug, Uglg, Uglg, Uglg, Ugls, Uglg , Ug )
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