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INCIPIENT FAULT DETECTION IN WIND TURBINES

SUMMARY

The global goal of increasing the share of renewable energy supplies in the overall
energy consumption has resulted in a rising focus on technological developments in
this field. Wind energy is one of the promising options amongst renewable energy
sources with a growing number of investments and rising installation number and
capacities. Due to the increasing demands from wind energy industry, the
requirement of more effective wind farm operations has emerged. Wind turbine
maintenance systems are essential parts towards achieving this requirement.

Today, maintenance of wind turbines is mostly based on preventive and corrective
actions. However, these approaches are inadequate to meet current demands from
wind energy industry. With the developments in computational capabilities and data
collection systems, a high potential of using advanced data-driven techniques has
appeared for the maintenance of wind turbines. This thesis proposes a predictive
maintenance approach using data which were collected from a wind turbine
Supervisory Control and Data Acquisition System (SCADA).

SCADA is the primary interface between the wind farm operators and wind turbines
which allows remote and local control and monitoring. Various kinds of data are
collected by SCADA systems such as wind parameters, temperature values,
operational and status data. It is a built-in part in most medium and large-scale
modern wind turbines. Therefore, a major advantage of using SCADA data for fault
detection purposes is that additional hardware costs are not required. However, there
are imperfections in the data such as low sampling frequency and high ratio of
missing values. To handle these disadvantages, a suitable approach is required which
was provided by Artificial Neural Networks (ANN) in this thesis. Moreover, wind
turbines are highly non-linear systems with complex control parts and ANN models
are also powerful on handling such complex systems. By this way, this thesis aims to
design a cost-effective maintenance system for the overall wind turbine.

Firstly, a sensor validation technique to detect faults of temperature sensors was
designed. The method solely uses sensor measurements to detect calibration drifts by
analyzing a set of sensors located on components with similar temperature
characteristics. Auto-Associative and Multi-Input-Single-Output ANN structures
were employed. The concurrent use of them provided the best outputs on the
detection of the simulated calibration drift. The results prove that, validation of
sensors can be realized by continuously monitoring sensor readings. It is
advantageous as there is no need of dismantling sensors to test their calibration. Also,
this method is a cost-effective solution in terms of not requiring redundant sensor
use.

After the sensor validation part, a 3-level fault classification system to detect, isolate
and predict wind turbine faults was realized. The types of faults attempted in this part
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are frequent and non-fatal wind turbine faults. Distinguishing these kind faults is a
challenging task because they do not show as strong indications as fatal faults do.
However, as they are observed frequently in all wind turbines and decrease turbine
performance, detection of them is a significant research topic. The core part of
algorithms employed in this part is ANN models, in addition to them assistive
methods were also designed to increase the fault classification performance.

For the initial step of this part, feature construction and selection techniques were
employed to find out an effective subset of inputs to be used as inputs of ANN
models. These pre-processing tasks are important to design fast and accurate models
as performance of algorithms strongly depend on the feature representation of input
data in artificial intelligence applications. Raw data collected by the SCADA system
were used to generate new features that possibly give more information about the
hidden relations indicating fault occurences comparing to the raw features. In the
feature selection step, both raw and constructed features were analyzed to identify a
subset of relevant features to reduce computational burden and increase accuracy of
models. Two different feature selection methods were used in a hybrid way, which
are filter and wrapper-based methods. The results show that, the feature construction
and selection algorithms designed are useful especially in terms of reducing false
fault alarms which is an important issue in fault detection systems built using
SCADA data.

Finally, a 3-level classification scheme for wind turbine faults was designed using
ANN models. By this way, a complete system was formed that provides required
information by wind farm operators to take actions or measures in case of a current
or an upcoming fault. In the detection level, the status of the turbine was analyzed to
find out if the turbine is in a normal or a faulty mode. In the fault isolation level, the
specific subsystem subjected to fault was attempted to be found. Therefore, this level
includes distinguishing detected faults from each other. Finally, in the fault
prediction level it was aimed to predict faults in advance to inform operators for
possible prevention or repairing actions. We have obtained comprehensive results
proving that the proposed methods are effective in all levels of fault classification.
Our findings support the idea that despite the shortcomings of SCADA data, ANN
models used with assistive methods are powerful on the classification of wind
turbine faults. As a result, this thesis contributes to efforts of designing a cost-
effective predictive maintenance approach for wind turbines.
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RUZGAR TURBINLERINDE GELISMEKTE OLAN HATA ONGORUSU

OZET

Enerji talebi, diinya genelinde sanayi devriminden giinlimiize siirekli artmaktadir ve
bu durumun ilerleyen donemlerde de devam etmesi beklenmektedir. Kiiresel bazda
niifus artisi, degisen enerji kullamim aliskanliklar1 ve artan sanayilesme enerji
talebindeki artigin temel sebeplerindendir.

Gilinlimiizde enerji talebi biiyiik Ol¢iide fosil kaynaklarm  kullanimiyla
karsilanmaktadir. Fakat, fosil kaynaklarin iklim degisiminin ana nedenlerinden olan
zararli gevresel etkileri nedeniyle tiiketim miktarimin kiiresel anlagmalarla
diistiriilmesi hedeflenmektedir. Ayrica fosil kaynaklarin hizla tilkenmekte olan sinirl
kaynaklar olmasi ve yiiksek oranda kullaniminin fosil yakit ithalatgist olan tilkelere
bagimlilig1 arttirmast gibi nedenler de tiiketimlerinin diigiiriilmesi ydniindeki
calismalarin gerekcgelerindendir.

Riizgar enerjisi, enerji kaynaklarinin cesitliliginin arttirilmas1 konusunda yiiksek
potansiyele sahip olan alternatifler arasindadir. Bu nedenle, riizgar enerjisi
konusunda yatirnmlar ve teknolojik gelismeler Onem kazanmaktadir. Riizgar
tiirbinlerinin tiim alt sistemlerinde yapilan gelistirmelerle maliyetlerinin diigtirilmesi
hedeflenmektedir. isletme ve bakim calismalari, riizgar tiirbinlerinin ana maliyet
kaynaklarindandir. Bu tezde, riizgar tiirbinlerinde zaman iginde gelismekte olan
hatalarin tespiti ve 6ngoriisii i¢in yontemler sunulmaktadir.

Giinlimiizde, riizgar tiirbinleri i¢in genellikle 6nleyici ve onarict bakim yontemleri
uygulanmaktadir. Fakat riizgar enerjisi igin taleplerin hizla artmakta olmasi
nedeniyle daha etkili bakim ¢alismalariin yapilmasi gerekliligi dogmustur. Ayrica
riizgar tiirbinlerinin yerlesim yerlerinden uzakta konumlandirilmasi ve faaliyet
gosterdikleri kosullarin ¢evresel agidan zorlayici olmasi da isletim ve bakim
yontemlerinde gelistirme yapilmasini 6nemli hale getirmektedir.

Bu tez calismasinda, bir riizgar tiirbininden alinan gesitli veriler kullanilarak tiirbin
genelinde olusan hatalarin tespiti ve Ongoriisii tizerinde c¢alisilmistir. Riizgar
tiirbinlerinde baslica iki veri toplama ydntemi bulunmaktadir. Birincisi, belirlenen
bilesenler i¢in 06zel olarak segilen sensorler yerlestirilerek gereken verilerin
toplanmasidir. ikincisi ise Denetim Kontrol ve Veri Toplama (Supervisory Control
and Data Acquisition - SCADA) sistemi sayesinde tiirbin geneli ile ilgili bilgi
verebilecek verilerin  kaydedilmesidir. Bu sayede sicaklik verileri, riizgar
parametreleri, tiirbinin mevcut operasyon parametreleri ve bulundugu durum ile ilgili
veriler elde edilebilmektedir. SCADA, modern riizgar tiirbinlerinin ¢ogunda ekstra
maliyet gerektirmeden bulunan bir sistemdir. Bu nedenle, SCADA verileri
degerlendirilerek tasarlanan hata Ongorii sistemleri maliyet etkin bir ¢oziim
sunabilmektedir. Ote yandan, SCADA sistemlerinin temel tasarim amaglar tiirbin
aktivitelerinin izlenmesidir. Dolayisiyla hata Ongorii sistemleri igin veri Kalitesi
agisindan ozel olarak yerlestirilmis sensorler kadar uygun degildir. Ornekleme
periyodu genellikle 10 dakikadir ve sik sik eksik verilerle karsilagiimaktadir. Bu
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nedenle, SCADA verilerinin hata 6ngoriisii amagh kullaniminda, bu dezavantajlara
tolerans1 olan gelismis bir algoritma yapisinin kurulmasi 6nem kazanmaktadir.
Ayrica, riizgar tiirbinleri, dogrusal olmayan bir¢ok alt sistemden ve kompleks kontrol
boliimlerinden olusmaktadir. Bu tezde oOnerilen algoritmalarin temelinde bulunan
Yapay Sinir Aglar1 (YSA) bu tiir problemlerde etkili ¢oziimler sunabilmektedir. Bu
sayede, sistemin giris-gikislar1 arasindaki iliskilerin ¢oziimlenerek hata tespitinin
yapilabilmesi hedeflenmistir.

Bu tez ¢alismasi 3 ana boliimden olusmaktadir. Birinci boliimde, sicaklik sensorleri
icin bir sensor validasyon teknigi tasarlanmustir. ilgili metotta, SCADA sisteminden
alman 4 sicaklik sensoriiniin Slgtimleri kullanilarak herhangi birinde hata olup
olmadig1 tespit edilmeye calisilmistir. Bu sayede, sensorlerin yerlerinden alinarak
kontrol edilmesi yerine siirekli durum izleme ile hata tespiti yapilmasi amaglanmaistir.
Oz-1liskili ve Cok-Giris-Tek-Cikisl YSA yapilari ile farkli baslangic kosullari ve ag
mimarileri kullanilarak problemin ¢6ziilmesi saglanmistir. SCADA sistemi, sensor
hatalarina dair bilgi i¢ermedigi igin, sensorlerden birinde kalibrasyon kaymasi
seklinde bir hata yapay olarak modellenmistir. Kalibrasyon kaymasi, yliksek dlcekte
olmadig siirece genel davranistan ¢ok farkli dlglimlere neden olmadigi i¢in bu tip bir
durum hata tespiti agisindan zorlayict bir kosuldur. Onerilen sistemin etkinliginin
degerlendirilebilmesi ~ ve  kalibrasyon = hatasinin ~ ¢evresel  kosullardan
kaynaklanabilecek ger¢ek sicaklik degisiminden ayristirilabilmesi igin, YSA
modelleri egitildikten sonra farkli kosullarda test edilmistir. Oncelikle tiim
Olgtimlerin orijinal test veri setinden alindigi, ikinci durumda sensorlerden birinde
kalibrasyon hatasinin modellendigi, tgiincii durumda ise ¢evresel nedenlerden
kaynakli olabilecek sekilde tiim sensor Olclimlerinin degistirildigi bir test yapisi
kurulmustur. Alinan sonuglar, tasarlanan sistemin kalibrasyon hatasini tespit
edebildigi ve bu hatadan kaynaklanan durumun gevresel kosullardan kaynaklanan
sicaklik degisiminden ayristirilabildigini gdstermistir.

Tezin ikinci bolimiinde, riizgar tiirbininin genelinde olusan hatalarin tespit
edilebilmesi igin tasarlanan YSA modellerinde kullanilmak tizere 6zellik olusturma
ve segme yontemleri uygulanmustir. Bu tiir 6n islemler, yapay zeka uygulamalarinda
olusturulan modellerin hizli ve yiiksek basarimli olarak ¢alisabilmesi i¢in kullanilan
yontemlerdendir. Boylece, YSA girislerine sistematik bir sekilde karar verilerek
performansin iyilestirilmesi amaglanmaktadir. Oncelikle, SCADA’dan toplanan ham
verilerden gesitli islemlerle yeni Ozellikler olusturulmustur. Bu sayede, hatalar
hakkinda ham verilerden daha iyi bilgi verebilecek ozellikler elde etmek
amaglanmistir. Yeni veriler olusturulurken, ham veriler arasindaki ilgili 6lgtimler
arasindaki farklar, istatistiksel parametreler, zaman serisi oOzellikleri ve sistemin
genel prensipleri ile ilgili bilgilerden yararlanilmistir. Ham 6zellikler ve olusturulan
ozellikler arasindan hata tespiti problemi i¢in kullanilabilecek etkili bir alt kiimenin
secilmesi i¢in cesitli dzellik segme ydntemleri uygulanmistir. Oncelikle, filtreleme
yontemleriyle tiim oOzellikler arasindan ilk eleme yapilarak problemle yiiksek
derecede ilgisi bulunan 6zellikler belirlenmistir. Filtreleme yontemleri olarak Fischer
ve Relief algoritmalarindan yararlanilmistir. Filtre yontemleri ile elde edilen
Ozellikler sarmal 6zellik segme yontemi ile bir kez daha degerlendirilerek, 6zellikler
arasindaki karsilikl iligkiler incelenmis ve uygun YSA giriglerine ulagilmistir. Elde
edilen sonugclar, 6zellik olusturma ve se¢cme yontemlerinin hata tespit performansi
iizerinde olumlu etkileri oldugunu géstermistir. Ozellikle, SCADA verileri ile
olusturulan hata tespit sistemlerinde karsilagilan 6nemli bir problem olan yiiksek
sayida yanlis hata alarminin diisiiriilmesi konusunda yiiksek basarim gdzlenmistir.
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Uygulanan 6zellik olusturma ve se¢me yontemleri ile, jenerator 1sinma hatast i¢in 3
aylik test verisinde karsilasilan yanlis hata alarm siiresi 210 dakikadan 30 dakikaya
distirtilmistir.

Son asamada, sistem genelinde 3 seviyeden olusan bir hata siniflandirmasi yaklagimi
tasarlanarak, riizgar tiirbini genelinde hata tespiti, izolasyonu ve Ongoriisii
gerceklestirilmistir. SCADA sistemi sayesinde ¢esitli alt sistemlere dair hata
bilgisine ulasilabilmektedir. Boylece, sensor validasyonu boliimiinden farkli olarak
bu boliimde hatalarin yapay olarak modellenmesi yerine gergek hata verisi iizerinde
calistlmistir. Bu tezde kullanilan riizgar tiirbininde bir yillik veri toplama siiresince
temel tiirbin bilesenlerinden herhangi birinin ¢ok ciddi bir hasara maruz kalmadigi
gozlenmistir. Fakat, tim riizgar tirbinlerinde oldugu gibi sik sik biiyiik sonuglara
neden olmadigi halde enerji iretiminin diismesine ve tirbin giivenilirliginin
azalmasina neden olan hatalar olugsmustur. Bu tip hatalar 6nemli belirtiler vermedigi
icin tespit edilmesi temel bilesenlerdeki biiyiik hatalardan daha zordur. Literatiirde,
aylar Oncesinden tespit edilebilen temel bilesenlerdeki fatal hatalarin aksine, Sik
gerceklesen hatalarin 6ngorii araliginin saatlerle sinirli oldugu goriilmektedir. Ayrica,
hata smiflandirma problemlerinde saglikli ve hatali veri Setlerinin dogal olarak
dengeli bir sayida olmamasi, veri setinin biiylik oranda normal g¢alismaya dair
orneklerden olusmasi da model basariminin diismesine sebep olmaktadir. Bu duruma
onlem olarak, 6zellik olusturma ve se¢me yontemlerinin yani sira hata smifina ait
yapay Ornekler olusturarak ve normal ¢alisma sinifinin 6rnek sayisi azaltilarak farkli
egitim setleriyle de egitim gergeklestirilmistir. 3 seviyeli hata smiflandirma
sisteminin ilk seviyesi olan hata tespit asamasinda, tiirbinin normal veya hatali bir
durumda olup olmadig: tespit edilmeye ¢alisilmistir. Hata izolasyonu Seviyesinde,
hatanin hangi alt sistemden kaynaklandiginin tespit edilmesi hedeflenmistir. Son
olarak, hata ongoriisii seviyesinde ise olusacak hatalar énceden tahmin edilmeye
calistlmistir. Cesitli simiflandirma seviyelerinden olusan bu yaklasim sayesinde,
operatorlere mevcut veya gelecekte olusacak hatalarla ilgili bilgi verebilecek bir hata
siniflandirma sistemi olusturulmustur.

Elde edilen sonuglar, olusturulan sistemin her 3 seviyede de yiiksek basarimlara
sahip oldugunu gostermistir. Boylece, SCADA verisinin dezavantajlarina ragmen,
YSA modelleri ve yardimcer algoritmalar uygulanarak riizgar tiirbinlerinde etkili bir
sekilde hata tespiti, izolasyonu ve &ngoriisii yapilabilecegi goriilmiistiir. Onerilen
sistem, riizgar tiirbinlerinde akilli bakim yontemlerinin gelistirilmesi konusuna
maliyet etkin ¢oztimlere katkida bulunmaktadir.
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1. INTRODUCTION

Global energy demand has shown a sharp increase in the last decades and this trend
is expected to continue. According to the International Energy Agency, total world
energy demand is projected to expand by approximately 30% between today and
2040 which would be around twice as large without the ongoing improvements in
energy efficiency [1]. The growth in the world population, growing world economy,
increasing urbanization and changing energy consumption patterns are some of the

reasons of the rise in energy demand.

Fossil fuels are still the leading primary energy sources to meet the world energy
demand. They are advantageous in terms of their high calorific value, easy
transportation, storage and globally well-developed technology. However, the share
of them in the overall energy supplies should be reduced for various reasons. One of
them is that fossil fuels are finite sources and they are depleting at a fast rate. Heavily
relying on them would cause challenges in a global manner on meeting the energy
demand in the future. Also, the negative impacts of fossil fuel consumption on
environment is an important factor. United Nations Framework Convention on
Climate Change (UNFCCC) agreed in 2012 to pursue actions in order to limit the
global mean temperature change to below 2 °C compared with pre-industrial levels
[2]. This target is perceived as a universally accepted goal as a safe limit. It was
shown in a study that a significant part of oil, gas and coal reserves should be
remained unused until 2050 for the average global temperature rise caused by

greenhouse gas emissions not exceed 2 °C [3].

For fossil fuel importers such as Turkey, dependency to exporters cause additional
risks. Turkey meets most of its energy demand by foreign resources. This causes a
significant disadvantage as energy is a strategic commodity. The overdependency
also brings economic vulnerability to market fluctuations as the economy is exposed
to the volatility in oil and gas prices. Due to all these factors, reducing the share of
fossil fuels in the energy mix is an essential requirement. Therefore, efforts towards

diversification of energy supplies have been intensified globally.



Diversification of energy is the practice of using various energy sources, suppliers
and transportation routes to reduce dependence on a single resource or provider. By
diversifying its energy mix, a country can become able to insulate itself from energy
disruptions and strengthen its energy security. Renewable energy sources carry
significant opportunities especially in terms of diversification and for the reduction
of greenhouse gas emissions. In addition, as renewable energy resources exist over
wide geographical areas, local production of energy becomes possible which lower
the dependency to fossil fuel exporters. Wind energy is one of the most promising
options in this manner with the accelerating investments and technological

developments.

Wind energy technology continues to improve rapidly, and energy conversion costs
from wind installations continue to fall. In many countries wind power is how being
deployed with good resources without any dedicated financial incentives from
governments [4]. In the OECD countries, wind farms produced 6.4% of overall
electricity and 25.5% of renewable electricity in 2017. Wind power capacity
increased from 3.8 TWh to 696.9 TWh between 1990 and 2017, achieving an
average annual growth rate of 21.2%. This is the second fastest growth rate of
renewable electricity after solar photovoltaics [5]. The increase in the installed
capacity is caused both by the new wind farm installations and the rising power

capacity of individual wind turbines.

Both capacity and size of wind turbines have been increasing by virtue of
developments in this field. Today, amongst commercially available wind turbines,
the maximum rated power output capacity has reached the value of 9.5 MW [6].
These improvements result in a need for more developed strategies in wind farm
operations. Moreover, wind farms are located in remote areas and they are usually
operated in harsh environments which makes effective operations even more
important. Wind turbine faults frequently lead to downtimes -the amount of time that
equipment does not operating- in wind turbine operations, therefore result in a
decrease in the amount of energy conversion. Unpredicted faults can also have
detrimental effects on overall wind turbine and may contribute to decrease in systems
lifetime. Fault detection and prediction is a significant part in wind turbine operations
due to the increasing demand for higher performance in wind turbines as well as for

increased safety and reliability requirements. Early diagnosis of faults can prevent



their progression and reduce downtime durations which can contribute to reduce the
operational costs and as a result unit electricity cost from wind turbines and increase
safety, reliability and lifetime. Therefore, it is significant to clearly detect the current
condition of the system and predict upcoming wind turbine faults as early as possible
to take required actions and prevent destructive results. This thesis aims to contribute
to the efforts in decreasing the costs and improving reliability and lifespan of wind
turbines by designing models for overall fault detection, isolation and prediction of
wind turbines using artificial intelligence methods applied to data collected from a

wind turbine.

1.1 A General Look at the Maintenance Strategies

Maintenance of wind turbines are challenging due to various reasons such as their
isolated locations, having several critical components working in vibratory
environments and dependence of working conditions to multiple external variables. It

Is important to select an effective maintenance strategy considering all these factors.

In general, maintenance activities can be broadly classified in three groups namely;

reactive maintenance, preventive maintenance and predictive maintenance.

- Reactive maintenance: Maintenance actions performed to return an
equipment to proper working conditions from a faulty condition is considered
as reactive maintenance. The unscheduled maintenance or repair of
equipments/items are parts of this approach. Reactive maintenance is usually

applied after an occurrence of a breakdown in system.

- Preventive maintenance: Maintenance that is regularly performed to lessen
the likelihood of failing is preventive maintenance. These actions are carried
out in a planned and periodic schedule to keep an equipment in working
condition. These practices are precautionary steps to lower the probability of
failures rather than correcting them after they occur. Regular inspection and
replacement of critical components are examples of preventive maintenance

actions [7].

- Predictive maintenance: Activities that focuses on finding out when
equipment failures will occur and taking on actions before actual failures are

predictive maintenance actions. In this approach, measurements and signal



processing methods are used to accurately diagnose state of equipment during
operation. With a successful deployment of predictive maintenance
techniques, maintenance frequency and costs would be minimized by
preventing expenses associated with preventive maintenance and detrimental

results that would be faced by reactive maintenance.

Today, majority of maintenance actions in wind farms are based on reactive and
preventive approaches. Wind turbines are generally purchased with all-in-service
contracts which include scheduled and unplanned maintenance actions, as well as
periodic replacements and inspections. However, this approach is inadequent to meet
the current demands of wind energy industry. Besides, the developments in the
design of predictive algorithms and data-driven models make it possible to employ
new strategies to maintenance problems. By benefiting from the modern data-
processing and data acquisition systems it is possible to improve capabilities in this
field. As a result, predictive maintenance of wind energy systems has been gaining
increasing attention from researchers and wind energy industry. This thesis also

proposes a predictive maintenance approach for wind turbines.

1.2 Data Acquisition in Wind Turbines

The types, characteristics and quality of data to be used in the design of condition
monitoring and fault detection systems is one of the factors that define the
performance of the system. Data collection in wind turbines can be classified in two
methods. The first method is to use sensors which are specifically mounted for fault
detection purposes. The second method is to use data collected from Supervisory
Control and Data Acquisition Systems (SCADA).

In the first approach, depending on the characteristics of the components to be
monitored, various sensors are mounted on different wind turbine components.
Common measurement types for the purpose-built data collection method are
vibration analysis, acoustic emission analysis, ultrasonic testing, oil particle and oil
quality monitoring, analysis of converter sensor measurements, strain, torque, and
bending moment sensors. The main advantage of using purpose-built sensors is,
because they are selected and mounted for component-specific aims, flexible choices

can be made considering the distinct requirements of target components which



enables designers to collect highly useful data. Whereas, this approach causes extra
costs which becomes an obstacle to developing a cost-effective solution.

SCADA system is a built-in part in most modern wind turbines. Many types of data
are recorded by SCADA sytems such as temperature of various components, amount
of energy production, operational data like rotational speed and power output and
status data supplying information on state of wind turbine. It serves as the primary
interface between the wind farm operator and individual wind turbines. It also allows
remote and local control of basic wind turbine functions and collects data on the
operational and environmental parameters to be used to analyse operations
performance. Using data gathered from SCADA system for fault detection
performance is advantageous as it provides information on overall wind turbine
properties and no additional hardware costs are required as it is a built-in system.
However, SCADA systems were not initially designed for fault detection purposes.
Therefore, the sampling period of these systems is generally 10 min which is lower
than desired for fault detection aims. Such a low data frequency causes difficulties
due to the loss of noise characteristics which may carry important information on
upcoming fault occurrences. Moreover, imperfections and missing values in data are
common in SCADA data collection systems. Main challenges to use SCADA for
fault detection aims are low frequency, late indication of fault statuses, high rate of
false alarms. In spite of these challenges, as it includes a wide variety of data and is a
cost-effective approach, using SCADA data carries many opportunities. To
overcome the imperfections of data characteristics, suitable analysis and prediction
algorithms should be employed to benefit from SCADA systems for fault detection

aims.

By using historical data collected from wind farms operating in different sites and in
diverse environmental conditions, more developed and generalized algorithms can be
designed. However, one of the challenges on this aspect is that currently, the
availability of wind farm data is very limited and publicly available wind farm data
which include information on faults do not exist. The studies in the literature are
designed and tested in different data sets, therefore, it is hard to compare the results
as the complexity of problem and the details and quality of information is subject to
change. The main reason of this issue is that currently wind turbine industry is not

very open to data share. Researchers typically obtain wind farm data by non-



disclosure agreements so it would not be possible to share them. As stated in [8], to
produce more clean energy in a lower price, it is advisable to create data sharing
platforms in wind turbine industry. By providing a better collaboration between wind
energy industry and research community, energy production can increase by at least
10% and wind farm maintenance costs can be decreased developing data-driven
health monitoring systems by 10% [8].

1.3 Model-Based and Data-Driven Fault Detection Strategies

Fault detection algorithms can be designed in different ways such as employing
model-based or data-driven algorithms. In model-based fault detection strategy,
firstly a mathematical model expressing the normal operation conditions of real
system is created. The outputs produced by this model belong to given inputs are
compared to the real measurements from wind turbine sensors. An alarm flag
expressing a faulty condition is raised by analyzing and comparing the outputs of the
mathematical model and the real wind turbine. Model-based algorithms are
advantageous from the aspect of not requiring high frequency data. However, the
success of this approach is highly dependent to the consistency of the mathematical
model and the real behavior of the system. One of the main challenges of this
approach is that wind turbines are very complicated dynamic systems, moreover they
have complex control parts. Therefore, it is hard to obtain a reasonable mathematical

model of the overall system.

In data-driven fault detection methods, unlike model-based algorithms, an explicit
mathematical model of describing the system behavior is not required. They are
designed based on processing the historical data of certain parameters and the
regarding situation of the physical system. As the complexity of the real system
increases, obtaining an accurate mathematical model becomes harder. Therefore,
data-driven methods become an advantageous approach depending on the data
availability. With the recent advances in intelligent methods, data-driven fault
detection approach gained increasing attention. In this thesis, a data-driven fault

prediction algorithm is proposed.



1.4 Wind Turbine Fault Detection Using SCADA Data

There are various approaches in the literature that benefit from SCADA data for the
detection of wind turbine faults. These methods can be classified as trending,
clustering, normal behavior modelling, damage modelling and assessment of alarms

and expert systems [9].

Trending is one of the basic methods to determine if there is an anomaly in the data.
It is based on gathering data for a time period and monitor how they change over
time. Feng et al. analysed the relation between the gearbox efficiency and gearbox
temperature increase by trending approach [9-10] [10], [11]. It was indicated that a
change in the gearbox temperature is visible 6 months before a catastrophic gearbox
failure. Yang et al. developed a trending method using bin averaging of wind speed,
power output and generator speed [12]. They used a correlation method for the
present and historical data to detect faults in two different cases which are a
generator and a blade failure. Astolfi et al. analysed temperature trends depending on
the rated power which helped operators to detect problems [13]. The main difficulty
of the trending approach is that, a change in trends does not guarantee an incipient
fault in the system. Therefore, the number of false alarms can exceed acceptable
limits for the real-world applications.

Instead of visual interpretation of faulty trends, automatic classification of fault states
can be developed by clustering. The advantage of clustering algorithms over trending
methods is that it can provide information on distinct conditions which different
turbines operate [9]. Kusiak and Zhang used vibration data to develop k-means
clustering algorithm based on wind speed [13-14]. However, after acknowledging the
limitations in determining the boundaries of clusters, they chose normal behavior
models over clustering method. Catmull [16] and Kim et al. [17] used self organizing
maps for clustering data to find out abnormalities. Catmull used normal behavior
data as the training set and general ability to detect abnormalities were shown in a
sensor error, reactive power loss and an unidentified generator failure. Kim et. al.
showed a general ability to detect failures. Their method was able to assign
subsequent wind turbine (WT) failures to corresponding clusters. Wilkinson et al.
[18] also used a similar technique and presented some examples of detecting

gearbox failures. Similar to the case in trending algorithms, interpretation of results



is difficult in clustering algorithms as defining boundaries is challenging in real

practices.

Majority of studies in wind turbine fault detection using SCADA data are based on
normal behavior models. The main idea of this approach is to obtain a reference
model of the real system in normal operating conditions to use it for detecting the
possible faulty instances in the future data. A deviation which is higher than pre-
determined limits between the reference model and real system would indicate there
might be a fault in the target component. Various techniques to design normal
behavior models were proposed in the former studies. The simplest approach for this
aim is to use linear and polynomial models. Garlick et. al. used Auto-Regressive with
eXogenous (ARX) input models to detect generator bearing failures using generator
temperature measurements [19]. Cross and Ma also used ARX models [20] to
analyze the normal behavior of generator and gearbox temperatures and detected
some abnormalities in faulty states. Wilkinson et. al. designed a normal behavior
model by full signal reconstruction (FSRC) method for drive train temperatures and
tested their method on five different wind farms with a total 472 wind turbine years
of data and succeeded to detect 24 out of 36 failures [18]. Schlechtingen et. al. also
used linear FSRC approach to obtain a model for generator bearing temperature and
detected a fatal generator fault 25 days prior to the damage [21]. As wind turbines
are highly non-linear systems, modelling their behavior using non-linear models also
carry significant capacity for successful applications. Artificial Neural Networks
(ANN) were intensely used for this aim. Zaher et. al. developed an ANN based
gearbox temperature model using 2 years of SCADA data and succeded to detect
overheating problems 6 months in advance of a fault [22]. Various other studies also
showed the success of normal behavior models by nonlinear methods in the detection
of severe faults [13, 22-24].

Another strategy to detect faults by SCADA data is to build damage models. Instead
of using a normal behavior model that is obtained as a ‘black-box’ in most of the
normal behavior models, in damage modeling principle, the theoretical
characteristics of failures are investigated to find out how systems react in failure
modes. Breteler et. al. worked on the detection of a gearbox failure and reached large
differences between the normal and faulty modes however the difference values were

also large between different turbines [26]. Borchersen and Kinnaert also used



damage modelling approach by designing a mathematical model using Extended
Kalman Filter approach and proved the success by detecting 16 out of 18 faults in a
test set with 3 years of SCADA data from 43 wind turbines [27].

Associating alarm or status information from SCADA system to fault situations is
another method used for the fault detection purpose. Chen et al. trained ANN models
to map from alarm patterns to detect faults, however the obtained accuracy rate was
8-47% [28]. They also used a probabilistic approach and proposed a Bayesian
network to find root causes of faults and showed the feasibility to reason root causes
in the presence of uncertainty [29]. Kusiak and Li predicted status codes by different
machine learning methods and succeeded to predict non-fatal faults 60 min in
advance [30]. Leahy et. al. also investigated detection of frequent faults by analyzing
SCADA statuses and obtained high-accuracy values using support vector machines
[31]-[33]. Li et. al. used Gaussian process classifiers to analyze status codes and
predicted faults 30-min before they occur [34].

These studies show that the performance of fault prediction models using SCADA
data depends highly on the type of the failure in terms of severity. It is possible to
detect catastrophic faults of main wind turbine components by processing SCADA
data months in advance. For instance, Zhang and Wang detected the initial
indications of a main bearing fault 3 months in advance with a normal behavior
model using ANN [25]. The overheating problem that indicates an upcoming fault 6
months prior to the real fault by Zaher et al. also focused on a severe gearbox failure
[22]. Similarly, Godwin and Matthews detected prognostic signatures up to 5 months
before a catastrophic gearbox fault occurred [35]. These kinds of catastrophic
failures occur rarely. For example, in [35] SCADA data from 6 wind turbines for 28
months were collected and only one fatal gearbox failure happened. However less
serious faults occur frequently in all wind turbines and they cause a reduction in
power production and degrade performance and life expectancy of turbines. They
naturally present less indications which makes it harder to predict them accurately in
advance. Former research results show potential for prediction of frequent faults. In
the method proposed by Kusiak et al. three-level fault prediction system was
developed which includes detection of the existence and category of faults and
prediction of faults in advance [30]. They used SCADA data with a sampling period

of 1 second, built various data driven methods and managed to predict faults 5-60



min before they occur. Leahy et al. used 10 min SCADA data [36] which is the
generally available sampling period in industrial applications and using support
vector machines, they obtained high recall values between 1 and 12 hours before
generator heating or excitation faults occur. Although comparing to the results on
fatal faults, accuracy rate for detection is small and there are high amount of false
alarms, these studies show the potential success of the use of SCADA data not only
for fatal but also for non-severe faults that are harder to detect which is a challenging

but beneficial task for the reliability and cost effectiveness of wind turbines.

1.5 Purpose of the Thesis and Contributions

The main purpose of this thesis is to design an overall fault detection system for wind
turbines using SCADA data which is available as a part of the built-in components in
most of the modern wind turbines. It was aimed to make contribution on the
detection performance of frequent and non-fatal wind turbine faults which occur in
every wind turbine and do not cause fatalities, however, severely reduce the system
availability and performance. Due to the nature of this type of faults, they do not
show as strong indications as fatal faults do and the quality and sampling frequency
of SCADA data are not ideal therefore advanced models are required which was
provided by Artificial Neural Networks in this thesis. This non-intrusive method
brings major advantages as it does not require any additional hardware costs. The
study was held for the incipient faults which do not occur abruptly but happen

gradually with former indications.

One of the subgoals of the thesis is to ensure the validity of sensor measurements and
detect if there is a calibration error in any of the sensors being evaluated. This was
realized by solely using the temperature measurements from various parts of the

turbine. A regression-based model structure was developed for this aim.

The main goal is to design a system for the overall wind turbine that determines if
there is a fault or not, decides the type of the fault and predicts upcoming faults in
advance by the assessment of fault statuses. For this aim, classification models that

discriminate between the faulty and normal statuses were designed.

The main contributions are listed as follows;

10



A sensor validation method was proposed for temperature sensor
measurements and it was presented that the applied technique was effective
for this purpose. A fault in one of the sensors in form of a calibration drift
was detected by the designed model.

A major advantage of this work is the effective use of SCADA data, which
does not bring any additional hardware costs as it is a built-in part in most

modern wind turbines.

For the plant-wide fault detection purpose, it was shown that ANN are
powerful for the analysis of wind turbine SCADA data on detecting non-fatal
faults which do not show indications as strong as fatal faults of main
components do.

In addition to detect if a fault exists, the exact subsystem with faulty behavior
was attempted to be found and high-performance results were also obtained

in this part of the thesis.

Generator heating faults were predicted in advance as early as 56 hours
before they occur which is a highly effective result that significantly

improves the current prediction horizon in the literature for this type of faults.

Improvements in the classification performance were accomplished by
applying systematic feature construction and selection methods.

The data set naturally contains unbalanced data in terms of the amount of
faulty and normal operations. The training performances are negatively
affected by this characteristic. To overcome this problem, oversampling and

undersampling methods were applied and proven to be effective on results.

The overall high success rates in the fault prediction level would be beneficial
for increasing the amount of energy conversion in wind turbines by informing

operators about upcoming faults to enable them take necessary precautions.

The rest of the thesis is organized as follows. Chapter 2 provides the preliminary
information on the research including general information and main subsystems of
wind turbines, the details of SCADA data used in this thesis and background
information on Artificial Neural Networks. Chapter 3 presents the sensor validation

problem for the temperature sensors. A simulated calibration fault is presented and
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detected in the scope of this part. Chapter 4 provides methods applied on feature
construction and selection to select the inputs of the ANN in a systematic manner. In
Chapter 5, a three-level fault classification method which includes the detection,
isolation and prediction of wind turbine faults is presented. Finally, Chapter 6
provides the conclusion part with the results and the possible future research
directions.
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2. BACKGROUND

This chapter provides background information on the thesis research. General
information on wind turbines and their main components are given in Chapter 2.1. In
Chapter 2.2, the details of the data collected from the SCADA system are described.
The types, limitations and sample segments of the data are presented. Chapter 2.3
firstly presents general information on Artificial Neural Networks. In addition, the

ANN types used in the scope of this research are described in more detail.

2.1 General Information on Wind Turbines

Modern wind turbines are structurally classified into two categories as horizontal
axis wind turbines (HAWT) and vertical axis wind turbines (VAWT). This
classification is based on the orientation of the rotation axis. Horizontal axis means
that the rotating part of the turbine is parallel with the ground, whereas in vertical
axis turbines, it is perpendicular to the ground. Today, high-capacity wind turbines
used in industrial applications are of HAWT class due to their higher energy
conversion efficiency, straightforward design configuration, higher structural
integrity, and improved dynamic stability under strong wind conditions. VAWTS are
only used for experimental aims or in small scale residental applications. In this
thesis, the interest is the horizontal-axis 3 bladed wind turbines and the term “wind
turbine” refers to these kind of turbines. Figure 2.1 shows some main components of

horizontal axis wind turbines.

With the increasing importance of effective wind turbine operations, the amount of
works in this field rapidly increased which resulted in differentiations in the
subsystem and fault representations. This non-uniform data treatmant became a
challenge in the comparison of different studies, therefore the requirement for a clear
and uniform taxonomy has emerged. Reder et. al. proposed a uniform taxonomy [37]
which is convenient for the representation of both the modern and historical wind

turbine data by modernising the existing taxonomy.
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Figure 2.1 : Main parts of HAWTS.

The components and their sub-assemblies were classified based on their physical
location and functionality. By this approach, wind turbine system has been divided
into 7 main subsystems and several assemblies were assigned to each subsystem. The
subsystems are; the power module, rotor and blades, control and communications,

nacelle, drive train, auxiliary system and structure.

Power module consists of generator, converter, transformer and aiding components
regarding to the power conversion process. Generally, most of these components are
located in nacelle. However, in some novel MW scale wind turbines including the

turbine used in this thesis transformer lies on ground level at the bottom of the tower.

Rotor & blades are the rotating parts of the turbine which face the wind and transmit
wind’s kinetic energy to the power module as mechanical rotation. In many wind
turbines, also a pitch mechanism exists by which the angle of blades can be changed

regarding to the wind speed in order to optimize the energy conversion.

Control & communications subsystem is responsible of the automatic operation and
data collection parts of the system. Various types of sensors and SCADA system are

also considered as a part of this assembly.

Main part of the drive train subsystem is gearbox that is responsible for connecting
the low-speed shaft attached to the turbine blades to the high-speed shaft attached to

14



the generator. Assisted by a series of gears of varying sizes, the gearbox converts the
slow rotation of the outer blades to faster rates that is needed by the generator to

begin energy conversion.

Nacelle subsystem is located on top of the tower and provides a protection for the
components mounted in it. In MW-scale wind turbines there is a yaw system which
is also considered as part of the nacelle subsystem. It changes the orientation of the
nacelle and rotor to adjust them to face the wind correctly. Yaw system is comprised

of bearings, gears, brakes, and and engine.

Main components are supported by auxiliary subystem which consists of assemblies
that support the main operations of the turbine such as meteorological station,
cooling system and lightning protection. Finally, structure subsystem is comprised of
tower and foundations assemblies. Table 2.1 shows these subsystems and the

assemblies for each of them.

Table 2.1 : Main subsystems and assemblies of wind turbines [37].

Frequency converter Sensors Cooling System
Generator o3 Controller Electrical Protection
% Switch Gear g gl Communication System Human Safety
3 Soft starter S g Emergency Hydraulic Group
% MV/LV Transformer! | © ©| Control&Comm. Series € | WT Meteorological St.
£ | _Power Feeder Cables *2 Lightning Protection
5 Power Cabinet = Yaw System g Firefighting System
Power Module Other? & Nacelle Cover s Cabinets
Power Protection Unit < Nacelle Bed Plate = Service Crane
Z Lift
Pitch System Gearbox Grounding
g Blade Brake c Main Bearing Beacon / Lights
K Rotor s Bearings Power Supply
@ Blades 'q_, Mechanial Brake Electrical Aux. Cooling
N Hub = High Speed Shaft
% Blade Bearings o Silent Blocks o Tower
@ Low Speed (Main) Shaft | < Foundation

! Medium voltage to low voltage transformer
2 Aiding units in power module

2.2 Data Characteristics

Data used in this research were collected from a 900 kW onshore wind turbine
located on the north of Turkey. Similar to most wind turbine SCADA systems the

sampling period is 10 min. The data were recorded in the 12 months period from
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01.01.2015 to 31.12.2015. The producer, exact location and some additional details
of the turbine are not explicitly specified due to the non-disclosure agreements

signed with the wind turbine company.

The data set consists of various types of information which are; wind parameters,
temperature values, operational data and status data. As presented in a former review
on the use of wind turbine SCADA data, the types of data may vary significantly in
different turbines [9]. The main measurements like produced power and rotation rate
are available in all SCADA systems however the availability of more detailed
measurements differ based on the system. Some parameters typically recorded in
SCADA systems are absent in our data set such as electrical characteristics like
generator voltage and phase values and control variables like pitch angle, fan status,
cooling pump status etc. In the following parts, the characteristics of the data used in

this thesis are described.

2.2.1 Wind parameters

Monitoring wind parameters is an essential part of wind turbine control and data
collection systems as wind information is highly useful in evaluating the efficiency
of power production and the instantenous operational statuses. The available
information regarding to wind characteristics for each 10 min interval are presented
in Table 2.2.

Table 2.2 : Wind parameters.

Data type
Minimum wind speed
Maximum wind speed

Average wind speed

2.2.2 Temperature data

The data set also contains temperature values of various components. Temperature
recordings represent the 10 min averaged values for each time interval. The locations
of temperature sensors mounted on different parts of the turbine are presented in
Table 2.3. Different wind turbine SCADA systems may also contain measurements
of blade temperatures, yaw control cabinet temperature, ambient temperature which
would be beneficial for the improvement of fault prediction performance, however in

our case these measurements do not exist.
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Table 2.3 : Temperature data.

Location of Temperature Sensors
Generator stator
Generator rotor

Nacelle box
Front hub bearing
Rear hub bearing

Nacelle control cabinet
Control cabinet
Tower
Transformer

2.2.3 Operational data

As SCADA systems originally designed for continuous monitoring of wind turbine
operations, many operational features are available. Similar to the wind parameters
and temperature values, operational data also have 10 min sampling period. Details
of the operational data available for this work are presented in Table 2.4.

Table 2.4 : Operational data.

Data Type Detail
Rotation speed Min, Average, Max
Power output Min, Average, Max
Energy output Total, Diff
Nacelle direction Average

2.2.4 Status data

The last category of data recorded by the SCADA system is the status data. Status
data describe the existing condition of the turbine. They include a main code, an
additional code and a status description. Main code defines the general situation
whereas additional code gives details on the cause of the main status. Table 2.5
shows a part of the status data used in this thesis.

Unlike other types of information represented before, data update interval for
statuses is not 10 min. Instead, a new code only appears when the status of the
turbine changes. A change can be caused by external situations such as a turbine stall
due to low wind speed or internal situations such as a failure in one of the
components. Total number of status data is much lower than other data classes. To be
specific, in our case there are more than 50000 instances of wind characteristics,
temperature and operational data. Whereas, there are approximately 2800 instances
of status data. To match status data with other data types, a status for each 10-min
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time step is assigned by repeating the existing status until a new status appears. If
multiple statuses occur in the same 10-min interval, the main reason of the turbine
condition was tried to be determined. For example, on 6/10/2015 the turbine stops
operating at 2.45 due to low wind speed value. At 4.04 wind speed becomes high
enough again so the turbine attempts to operate, however due to generator heating, it
stays in the stall mode. There are more than 1 statuses in the same 10-min interval
from 4:00:00 to 4:10:00, however “Generator heating” label was selected over

“Turbine starting” as it is the main reason of the changing situation of the turbine.

Table 2.5 : Status data.

Day Time Main Additional Status Text Duration
status status

6/10/2015 2:45:10 2 1 Lack of wind : Wind speed too  01:19:00
low

6/10/2015 4:04:10 O 1 Turbine starting 00:00:28

6/10/2015 4:04:38 9 1 Generator heating : Isometer 15:54:17

6/10/2015 19:58:55 2 1 Lack of wind : Wind speed too  00:38:09
low

6/10/2015 20:37:04 0 1 Turbine starting 00:00:30

6/10/2015 20.37:34 9 1 Generator heating : Isometer 06:00:49

6/11/2015 2:38:23 0 2 Turbine operational 00:01:40

6/11/2015 2:40:.03 O 1 Turbine starting 00:01:38

6/11/2015 2:41:41 O 0 Turbine in operation 73:27:14

2.3 Artificial Neural Networks

Artificial Neural Networks (ANN) are computational models inspired by biological
neural networks with particular properties such as the ability to adapt or learn, to
generalise or to cluster and organise data [38]. Strengths of ANN models on complex
problems that are hard or impossible to solve by mathematical modelling is rooted by
their main characteristics which are parallel computing, learning and generalization.
The use of ANN offers many capabilities and properties such as; nonlinearity,
adaptivity, fault tolerance, evidential response and contextual information [39]. A
large number of ANN architectures were proposed for different problems and due to
the advancements in the computational facilities, both software and hardware, ANN

are increasingly implemented in various areas.

The architecture of an ANN determines how its computational units are connected
and how the input information is processed. Although, many different structures

were proposed in the literature, the most common type consists of three main parts
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known as layers which are; input layer, hidden layer or layers and output layer. Input
layer receives information from the external environment. It consists of nodes which
are not computational units but are responsible of transmission of information to the
next parts of the network. Hidden layer includes neurons which are responsible of the
internal processing of the network by their activation functions. Output layer is also
composed of neurons which are responsible of processing the information obtained
from former parts of the network and producing the final output. More detailed

explanations on this topic can be found in [39-40].

The main architectures of ANN in terms of how their layers are arranged and
interconnected can be classified as feedforward and recurrent neural networks. Early
feedforward ANN were single layer networks where input layer nodes projects
directly to output layer neurons [41]. Single layer describes the computational output
layer as input nodes are not processing units. The limitations of single layer ANN
resulted in the development of multilayer feedforward ANN in which, one or more
hidden layers of neurons are used in addition to input and output layers. Many
feedforward ANN are proposed such as Adaline and Madaline Networks [42-43],
Multilayer Perceptron Neural Networks (MLP) [44], Multilayer Feedforward Neural
Networks (MFNN) [39], Probabilistic Networks [45], Radial Basis Function
Networks (RBFNN) [46], Generalized Regression Neural Networks (GRNN) [47]
and Self-Organizing Feature Maps [48].

In recurrent ANNS, there is at least one layer works as a feedback loop. Therefore,
information also flows from outputs to inputs. Some common types of recurrent
neural networks can be listed as; Hopfield Networks [49], EIman Networks [50],
Jordan Networks [51], and Bi-Directional Associative Memory Networks [52],
Adaptive Resonance Theory Networks [53], Long Short Time Memory Networks
[54] and Echo-State Networks [55].

In artificial intelligence applications, the selection of model should be realized
considering the requirements of implementation. For example, for time dependent
systems, recurrent ANNs offer possible successful results. They are effective for
tasks where inputs and outputs are both sequences such as speech recognition, speech
synthesis, named-entity recognition, language modelling, and machine translation
[56]. As proven in [57] MFNN are universal approximators for function

approximation. Some of the areas they are commonly used is regression and
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classification problems. In this thesis, the sensor validation problem was handled as
regression and the overall fault detection task was approached as a classification
problem therefore, MFNN is one of the ANN types attempted in the scope of this
work. RBFNN and GRNN which are also well-suited for these kind of tasks are the
other types used in this thesis. In the next parts of this chapter, these ANN types are

described.

2.3.1 Multilayer feedforward neural network

Multilayer Feedforward Neural Network (MFNN) is the first type of networks used
in this thesis. There are three basic characteristics which are common in all MFNN
networks. First, they contain one or more hidden layers. Second, each neuron
includes an activation function. Lastly, there is a high degree of connectivity set up

by synaptic weights between network elements [39].

The hidden neurons play an important role in the network. They perform a nonlinear
transformation from input space to feature space. By this way, the patterns in the data
become more seperable. Nonlinearity property of MFNN which is one of the most
important characteristics of them is provided by the use of nonlinear activation
functions. Some commonly used activation functions are logarithmic sigmoid,

tangent sigmoid, softmax functions.

Backpropagation algorithm (BP) is the classical method in training MFNN neural
networks. Training by BP involves two phases which are the forward phase and the
backward phase. In the forward phase, the input signal is transmitted through the
network layer by layer and the outputs are calculated. This phase finishes with the
computation of an error signal. In the backward phase, the calculated error value is
propogated in the backward direction through the input of the model. The

adjustments for the network parameters are performed in this phase.
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Figure 2.2 : Signal flow graph of MFNN networks [39].

Figure 2.2 shows the signal flow graph of a MFNN network for two neurons j and k
from consecutive layers. Where, w(n) and b(n) are the weight and bias values for
iteration n, v(n) is the induced local field which is the input for activation functions,
d(n) is the desired outputs, y(n) is the output for each neuron and ¢(.) are the
activation functions. The computations start by selecting initial values for adaptive
parameters like synaptic weights and bias values. This step is followed by feeding
the network with an input set from the training data. The input signal is propagated
through the network. In this forward phase, the induced local field for neuron j in

layer | is computed as;

.!;}[I) (Tl) _ Z wjg!) (n)yi[l—l)(n) (21)

Where, yE(E_l)(rz) is the output of neuron i in the previous layer [ — 1 at iteration n,

[) is the weight of neuron j in layer | fed from neuron i. And the output signal for

neuron j in layer 1 is;
v = 0i(w;(w) @2)
If neuron j is the output neuron than

() = 0;(n) (2.3)
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And the error between the desired and computed outputs are;
ej(n) =d;(n) — o;(n) (2.4)

After the computation of error signal, backward phase starts for the update of

adaptive parameters. Firstly local gradients of the network are computed by;

e )y (_v}(t) (n)), for output layer L
HOE 2.5)
0j (M () Tie 81 P ywS ™ (n), for hidden layer |

Where, qo} is the differentiation with respect to the argument. If the neuron j is in the

output layer, the layer was referred as L. As the last step, synaptic weights are

adjusted according to the generalized delta rule [39].

(D _.,@ D (D (I-1)
w; (n+1) =w,; () + alAw;;"(n— 1) +n6; " (M)y;” ~ (n)] (2.6)

Forward and backward computation phases are repeated with each new input set
until the chosen success criteria is met. The procedure explained in this part is online
learning in which input data is fed into the network sequentially. In this thesis online
learning was applied. Another alternative is the batch learning where the update is
not realized after the introduction of every new input but the weight and bias deltas
are accumulated to aggregate set of deltas and they are applied to each weight and

bias.

The basic backpropagation algorithm uses the steepest descent approach to minimize
errors. To provide a faster algorithm for practical applications, many variations of it
were proposed where the derivatives are also processed from the last layer of the
network to the first [58]. They differ from the classical approach in the way of how
the resulting derivatives are used to update weights. Levenberg-Marquardt [59]
algorithm is one of them which was used as the training method of MFNN models in
this thesis. It is commonly used as one of the main choices in practical applications

due to its general fast and stable results.
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2.3.2 Radial basis function neural networks

RBFNN is a type of ANN typically having a single layer of hidden units that are
connected to linear output units. In the classical RBFNN approach, the size of the

units in the hidden layer is the same as the size of the training vector [46].

RBFNN uses radial basis functions as transfer functions and also differ from
MFFNN in terms of two basic principles. First, instead of performing an inner
product operation between the weight and the input, the distance between the input
and the rows of the weight matrix are calculated. Each row in the weight matrix is
often called as the center of the corresponding neuron (radial basis function).
Secondly, instead of adding a bias, in this case it is multiplied by a width factor (also
referred as spread term) [58]. Width factor performs a scaling operation to the radial

basis function and causes it to stretch or compress.

Output of a neuron of RBFNN is given in Eq. 2.7.

N
y = Y wiepe(llx = el @7
k=1

Where, N is the number of neurons in hidden layer, @, is the kernel of radial basis
function for each unit. ¢, is the center of radial basis function vector for neuron k,

wy. is the weight of neuron k in the output layer.

Various radial basis functions can be used as kernel such as, gaussian function,
multi-quadratic function, thin plate spline function, cubic function. The most
common choice for RBFNN kernel is Gaussian activation function which was also

used in this thesis. It is presented in Eq. 2.8.

. 2
@i (llx — i ll) = exp (— u) (2.8)

2
207

Where |lx — c||? is the squared Euclidian distance between the associated center
vector and the input vector. And oy, is the width factor of the k" hidden unit in the
hidden layer which controls the smoothness properties of interpolating function. The
center values determine the position, whereas standard deviation determines the
widtf of the gaussian function which is the width factor. By changing these

parameters, different trials can be made based on the requirements of applications.
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2.3.3 Generalized regression neural networks

GRNN is a type of feedforward neural network that is originated from the theory of
statistical estimation. It is mainly based on a nonparametric regression of the variable
y on the independent variable x. In this approach, a specific functional form to
describe the relation between inputs and outputs is not required, instead the
appropriate form is expressed as a probability density function which is determined
from observed data. By this way, the most probable value of output y is calculated
given the training vector x. Since the parameters are directly calculated using

examples, an iterative computation is not required [47].

The estimated output value is calculated by its conditional expectation which is given
in Eq. 2.9.

_ Vo1 Vi@ (x, %3, 0) (2.9)
Y1 Pr (X, x5, 0)

yo)

Where, y is the estimate of the output which is a weighted average of all the
observed samples yy, k is the number of sample observations, x is the input vector,

X, are the training samples, o is the width factor and ¢, is the kernel function

In this theis, similar as RBFNN models, gaussian kernel function was applied.

Therefore, ¢ is;

2
@(x,x;) = exp (— %) (2.10)

Where, D2 is the k™ squared distance between the training samples used to calculate

the probable values which is given Eq. 2.9.
D2 = (x —x;)T(x — x3) (2.11)

Eq 2.12 gives the resulting output estimate

Di
2?2:1}’;(9-’5? (_ 202)
y(x) = >
n (_ Dk )
k=1\ " 252

IN GRNNSs, centers and heights can be directly determined from the data without

(2.12)

training. Therefore, it belongs to the class of memory-based networks, in which the

operation highly dependes on the storage of data. Memory-based concepts are
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different from optimization-based concepts such as MFNN which are characterized
by high optimization efforts. Due to this lack-of optimization, GRNNs can be
inefficient in noise attenuation however, they are trained much faster than RBFNN
models [60].
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3. SENSOR VALIDATION

Data collected from wind turbine sensors are used for various aims such as control
systems  design, plant-wide condition monitoring, interconnection and
communication within wind farm. Ensuring the validity of sensor measurements is

essential for healthy operation of all these subsystems.

The reliability and safety of complex systems are highly dependent on the reliability
of sensors used. Measurement errors may cause a degraded performance and
reduction in the power output of wind turbines. Diagnosis of faulty sensors in wind
turbines can enable required actions to be taken, such as rescheduling maintenance,
reconfiguration of corrupted control loops or initialization of emergency shutdown
operations [61]. Therefore, fault detection and calibration of sensors is an essential

part of the overall condition monitoring of wind turbines.

Currently, wind turbine sensor calibration is generally performed during scheduled
maintenance actions. Instead of diagnosing sensor faults by taking the system offline
periodically, it would be more feasible and practical to detect such faults during the

online monitoring of sensor readings.

A sensor validation technique applied to wind turbine temperature sensors is
presented in this part of the thesis. Considering the low-frequency outputs of
SCADA measurements, nonlinear dynamics of the system and imperfections in data
such as high rate of missing values, Artificial Neural Networks were selected to find

out possible drifts in sensor measurements.

Effective implementation of ANN for sensor validation purpose in many fields have
been reported in former studies. Kramer introduced Auto-Associative ANN
architectures for sensor validation in temperature data for a simulated distillation
column [62]. Various research results proved the power of ANNSs in sensor validation
in nuclear power plants [63-65], chemical processes [66], gas turbines [67] and
turbofan engines [68].

27



Although ANN are widely used for fault detection of many parts of wind turbines,
research on sensor faults is relatively limited. A possible reason for that is, generally
data collection systems in wind turbines do not provide information on sensor faults.
In most cases, sensor fault is simulated as sensor fault data in real system is generally
not available. Simani et. al. and Bakir et. al. showed the success of ANNs on the
detection of wind turbine pitch and rotor speed sensor faults [69-71]. They worked
on a simulated wind turbine model as a part of the challenge started by Odgaard et.
al. [72] to find out the capabilities of different methods to detect and isolate various
wind turbine faults such as faults on sensors and actuators. Sensor faults in these

works also created manually.

Sensor faults can appear in various ways. Typical sensor faults encountered in WTs
can be listed as; multiplicative, additive, offset faults and faults resulting in changing
dynamics in the system [72]. Small drifts in calibration are especially hard to detect
as they do not cause significant changes in characteristics of measurements. In this
study, multiplicative fault in temperature sensor measurements is investigated.
Multiplicative faults may arise from calibration drifts and act like a scaling factor on
sensor measurements. This type of a fault was selected to be investigated because
unless scaling factor of a multiplicative fault is too big, it does not cause an easily
recognizable change comparing to normal response of sensors which makes them

harder to detect.

3.1 Data Description

Data used for the sensor validation purpose were collected from temperature sensors
of the target turbine. As stated in Chapter 2.2.2, there are 10 temperature sensors
mounted on various parts of the turbine. To present the performance of the approach
used for sensor validation, a case study was set up by selecting measurements of 4
temperature sensors. One month of data were used which was collected from
01.11.2015 to 30.11.2015. 75% of data were used in the training phase and the

remaining data were used to test the performance of networks.

The sensors providing information on rear hub bearing temperature (S1), control

cabinet temperature (Sz), tower temperature (S3) and transformer temperature (Ss)
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were used to evaluate the performance of the proposed approach. The locations of

the selected sensors are presented in Figure 3.1.
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Figure 3.1 : Locations of sensors used for the sensor validation purpose.

The proposed method is based on finding out sensor calibration drifts by using solely
the measurements of a group of sensors which are related to each other. Therefore,
the subset of sensors was determined by considering the resemblance in the
temperature characteristics of the areas they were installed in. By this approach,
without hardware redundancy, validation of sensors would be realized by

computational methods.

3.2 ANN Input-Output Structures

To find out ANN models that characterize sensor measurement faults effectively, in
addition to designing networks with various computational characteristics given in
Chapter 2.3, different input-output structures were also created. From this aspect,
networks with two different structures were developed. First of them is Auto-
Associative Neural Network (AANN) and the second is Multi-Input-Single-Output
(MISO) ANN.

3.2.1 Auto-associative neural networks

In Auto-Associative models, input vector is associated with itself. In our application,

as presented in Figure 3.2 the measurements from the selected 4 temperature sensors
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are introduced to the network from the input layer, where the desired output layer

also consists of these 4 measurements.

Input Hidden Quput
layer layer layer

Figure 3.2 : Auto-Associative network structure.

As the input and the desired outputs are the same, the function to be learned by the
network is the identity function. However, learning the identity function perfectly
would not be useful because it would not cause a transformation on the data. For
MFNN AANN, the power of Auto-Associative structure comes from their internal
constraints that cause prevention of perfectly learning the identity function. This is
provided by the “bottleneck layer”, which is the hidden layer with a less number of
neurons from the input and output vectors [62]. Compression of information by the
bottleneck results in the acquisition of a correlation model of the input data, which is
useful for performing a variety of data processing tasks. For RBFNN and GRNN,
this constraint is not valid due to their different computational characteristics than
MFNN.

The network reduces measurement noise by mapping inputs into the space of the
correlation model, and the residuals of this mapping can be used to detect sensor
faults. Values for missing and faulty sensors can be estimated using the network.
Auto-Associative networks can be used to preprocess data so that sensor-based
calculations can be performed correctly even in the presence of large sensor biases
and failures [62].

3.2.2 MISO neural networks

To design Multi-Input-Single-Output (MISO) architectures for the sensor validation

problem, measurements of 3 out of 4 temperature sensors are used to be fed from the
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input layer and the remaining sensor’s measurement is used as the reference desired
output. This procedure was repeated 4 times with each one of the sensors used as
output separately. Figure 3.3 presents the MISO network structure with Sensor 4 is
the output and the remaining sensors are the inputs.

Input Hidden Ouput

layer layer layer

S1

Figure 3.3 : MISO network structure.

Decomposing a multivariable system into multiple MISO models brings some
advantages. Each MISO model is simpler than possible Multi-Output networks,
which makes implementations become easier in complicated systems. Another
advantage is that the required accuracy for each model can be adjusted separately so
there is no need for a single loss function results in an accuracy tradeoff between the
different model outputs. Moreover, different model architectures, structures and
optimization techniques can be applied to each MISO subsystem, so the modelling
approach become more flexible [60]. However, as a disadvantage, this approach

requires more training time than one overall model.

3.3 Methodology and Network Selection

The sensor validation task was handled as a regression problem. The measurements
that were taken during the healthy behavior phase of the temperature sensors were
introduced to the networks as inputs and the networks were trained in a supervised
way to make close approximations to sensor readings used as ANN outputs. The data
set was split into 2 classes as training and test sets. After training the networks using
non-faulty measurements, the effectiveness of each network was tested by the
original test set and its altered versions as different cases to design situations
representing the faulty situation. In case of a fault occurrence, the residuals between

the real measurements and the ANN outputs are expected to grow.
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Multiple networks with the different computational principles and input-output
structures described in the former parts of the thesis were created to find out an
effective model that produces the required ANN outputs to detect calibration drifts.

Table 3.1 shows the groups of ANN types designed for the sensor validation task.

Table 3.1 : ANN structures designed for the sensor validation purpose.

Network Computational Input-Output

Type Principle Relation
Type 1 MFNN Auto-Associative
Type 2 MFNN MISO
Type 3 RBFNN Auto-Associative
Type 4 RBFNN MISO
Type 5 GRNN Auto-Associative
Type 6 GRNN MISO

Success of the networks for each group were evaluated using the R? performance
criteria. R? is a statistical measure of how close the estimated outputs fit the actual
data. It is one of the commonly used measures to test the effectiveness of regression

problems. Equation 3.1 represents the calculation of R? value.

_RSS TSS—ESS _ ESS Sy —9)?

B LN ¢ b (3.1)
TSS TSS TSS Yy — ¥)?

RZ

Where, y; and y; are the actual and estimated outputs for each data point 7and y is
the mean of the output values. RSS is the regression sum of squares; measure of the
variation off the fitted regression values around the mean, TSS is the total sum of
squares; measure of the variation of the observed values around the mean, ESS is the
error sum of squares; measure of the variation of the observed values around the

regression line. Equations 3.2-3.4 show the calculation of these values.

ESS = ) (i — §0)? (32)
ISS = ) i~ )? (33)
RSS = ) G~ )’ (3.4)

From each group of networks given in Table 3.1, network with the highest R? value

was chosen to be used in the next parts of the process. In the subsequent step, outputs
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of the resulting 6 networks were compared for different inputs to find out a solution
for the problem handled.

MFNN networks with Auto-Assosiative structure were created using 2 and 3 neurons
in the hidden layer to supply the networks with the bottleneck characteristics. 10
trials were made with each architecture. The reason of multiple trials is to ensure the
reach of a minimum point in the cost function space as the performance of the
networks alter depending on the initial values of the network weights. Various
activation functions were tried such as; “logarithmic sigmoid - linear”, “logarithmic
sigmoid - logarithmic sigmoid”, “tangent sigmoid - linear” and “tangent sigmoid -
tangent sigmoid”. The former function represents the hidden layer’s and the latter
represents the output layer’s activation function. For the MISO MFNN networks,
again different activation functions with multiple trials were applied. As a difference
from the Auto-Associative case, the number of neurons in the hidden layer was
changed between 2 and 15.

Amongst Auto-Associative MFNN networks, the best scores from the different trials
were obtained by the network with 3 neurons in the hidden layer and the activation
function pair of logsig-purelin. R? values of this architecture are 0.999, 0.999, 0.996
and 0.993 for sensors 1 through 4, respectively. For MISO MFNN networks,
activation function pair was also found to be logsig-purelin. Best number of hidden
neurons were obrained as 3, 3, 6 and 8 from sensors 1 to 4 in the output layer,
respectively. The resulting highest R? scores are 0.836, 0.979, 0.984 and 0.985.

Figure 3.4 shows the regression graphs for networks with the best performances.
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Figure 3.4 : Regression plots for (a) Auto-Associative MFNN (b) MISO



Similarly, several Auto-Associative and MISO networks with using RBFNN were
developed. In this case, the difference between the networks are rooted by the
varying width factors. Width factors of the networks were selected amongst varying
values between 0.1 and 150. In the initial attempts, it was seen that the best R? scores
amongst Auto-Associative RBFNN networks were bigger than 0.999 for all sensors.
This situation shows that the network could not realize a nonlinear mapping. In
classical RBFNN approach, the number of hidden neurons is equal to the number of
training samples. To reduce the hidden neuron number, training of RBFNN networks
was repeated using a smaller amount of training samples, however, even using only
100 samples, the networks could not succeed the mapping between the inputs and
outputs. The highest scores for MISO RBFNN networks for sensors 1 to 4 are; 0.824,
0.979, 0.982 and 0.984. Regression plots for the test set of RBFNN networks are
presented in Figure 3.5.
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Figure 3.5 : Regression plots for (a) Auto-Associative RBFNN (b) MISO
RBFNN.

GRNN models were also designed with varying width factors from 0.1 to 150. The
highest R? values for Auto-Associative GRNN were 0.992, 0.990, 0.990, 0.994 for
sensors 1 through 4, respectively and the best scores for MISO GRNN networks
were 0.808, 0.976, 0.973 and 0.981. Figure 3.6 shows the regression plots for Auto-
Associative and MISO GRNN models with the highest goodness of fit results.
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Figure 3.6 : Regression plots for (a) Auto-Associative GRNN (b) MISO
GRNN.

3.4 Results for Sensor Validation

For analysing the performance of the networks selected in the previous stage of the
sensor validation problem, a set of cases were designed by altering the original test
set. The main idea relies on the fact that the sensors were selected from relevant
places having similar temperature characteristics. Therefore, by solely using the
measurements of these 4 sensors, a possible fault in one of them can be detected.
Also, it is required to distinguish variations caused by calibration drifts from
variations appeared due to the real temperature changes such as changes originated
from environmental conditions. To ensure that the proposed algorithm distinguishes
the root reason for the temperature change, networks were tested in 3 different cases.
Performances of the ANN models for the test set without any temperature drifts was
observed in Case 0. In Case 1, a calibration fault was simulated by multiplying only
one of the sensor’s output with a constant factor. An overall shift in all temperature
measurements were simulated in Case 2 which represents a change originated from

not a fault but a real environmental temperature change.

The details and different expectations from ANN outputs for all cases are

summarized as follows;
Case 0 — No fault case.

In this case, temperature measurements gathered from the sensors were directly used

as network inputs. The data presents the temperature values in the normal behaviour
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of the turbine without any faults, therefore the expectation from the networks is to

produce as close output values as possible to the real sensor measurements.
Case 1 — Multiplicative fault in one of the sensors.

Case 1 was designed to introduce a fault to be detected to the measurement system.
A multiplicative fault was artificially created in one of the sensors. The test set for
the measurements of Control Cabinet Temperature Sensor (S,) was multiplied by the
constant term 1.2. The performances of the networks for this case were evaluated by
analyzing the residuals between network outputs and sensor measurements. The
expectation is to obtain greater residuals between measurement and estimation of the

faulty sensor comparing to other sensors.

Case 2 — No fault case. Overall shift in all measurements due to an environmental

temperature rise.

In this case, the measurements from all 4 sensors were shifted by multiplying by the
constant term 1.2. The aim for this overall shift is to ensure that networks used for
this fault detection algorithm do not produce a false fault alarm when none of the
sensors are faulty but instead a real temperature rise is recorded. The expectation
from networks for this case is again to produce as close estimation values as possible

to actual temperature values.

Input data for all 3 cases were implemented to the resulting 6 models with the best
R? values. Outputs of the networks were analyzed based on different requirements

for each case.

Table 3.2 presents the Root Mean Square Error (RMSE) values of ANNs for each
case in °C. The results indicate that the most convenient network to distinguish the
faulty case from non-faulty ones is Auto-Associative MFNN. In Cases 0 and 2, the
RMSE between the real values and ANN outputs are less than 0.8 °C for all sensors,
whereas in Case 1 RMSE values are 1.6 °C and 1.3 °C for sensors 2 and 4,
respectively. Although Auto-Associative RBFNN outperforms the former network in
Case 0 and Case 2, it was unable to produce the required residuals in the faulty case
(Case 1).
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Table 3.2 : RMSE values for each ANN.

Auto-Assoc. MFNN MISO MFNN
Sensor No | Case0 Casel Case2 Case0 Casel Case2
S1 0.1 0.4 0.5 1.8 2.7 3.4
S2 0.1 1.6 0.4 0.6 7.2 15
S3 0.3 0.3 0.7 0.6 2.6 2.2
S4 0.4 1.3 0.7 0.6 3.2 2.1
Auto-Assoc. RBFNN MISO RBFNN
Case0 Casel Case2 Case0 Casel Case2
S1 0.2e-4  0.3e-3 0.8e-3 1.8 20.8 8.9
S2 0.1e-4  1.3e-3 0.5e-3 0.6 7.2 4.8
S3 0.2e-4  0.5e-3 0.4e-3 0.6 20.8 44 .4
S4 0.1e-4  0.4e-3 0.5e-3 0.6 4.9 5.9
Auto-Assoc. GRNN MISO GRNN
Case0 Casel Case2 Case0 Casel Case2
S1 0.5 1.1 3.9 1.9 2.5 4.7
S2 0.4 4.2 2.3 0.7 7.2 2.8
S3 0.4 1.8 1.3 0.7 3.3 1.6
S4 0.4 1.8 1.3 0.7 2.9 1.7

Figures 3.7-3.9 present the Auto-Associative MFNN results for each case. As can be
seen from Figures 3.7 and 3.9, real temperature values and ANN outputs are very
close in Case 0 and Case 2. Figure 3.8 shows that the residuals are visible in Case 1,
which is a sign of fault existence. However, the magnitude of residuals for Control
Cabinet and Transformer are very close to each other. This situation prevents finding
the exact location of the fault. Therefore, to diagnose which sensor gives the faulty
measurements, the necessity of using different network estimations in a combined

way has emerged.
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Figure 3.7 : Measured and network values for Case 0 with Auto Associative-

MFNN.
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Figure 3.8 : Measured and network output values for Case 1 with Auto
Associative-MFNN.

38



Rear Hub Bearing Temperature Control Cabinet Temperature

60 60
o
. 50
p
=)
B 40 f
0]
g
S 30f
|_

20
200 400 600 800 1000 200 400 600 800 1000

50 ' Tower Tempgratu re 50 Tfansforlmer Telmperatlure
8, 40
o
=
© 30 |
@
o
g Measured 2
= Simulated

10 10

200 400 600 800 1000 200 400 600 800 1000
Samples Samples

Figure 3.9 : Measured and network output values for Case 2 with Auto
Associative-MFNN.

The network providing the best results to determine the location of the fault was
found to be MISO MFNN. Where the RMSE value of the faulty sensor (S,) is
significantly larger than other sensors in Case 1 and in other cases, the RMSE values
are comparatively smaller. Figures 3.10-3.12 present the results obtained by the
specified networks. The corresponding figures show a combination of 4 neural
networks with a different output sensor in each subplot due to the single output

architecture of MISO networks.

As shown in Figure 3.10, the real data and the network outputs are consistent in the
normal operation case. Figure 3.11 shows that in Case 1, unlike the results from the
Auto-Associative network, this time the residuals for Control Cabinet Temperature
are significantly bigger than the residuals for other sensors with an RMSE value of
7.2 °C. Therefore, this network can be used for the isolation of fault location. For
Case 2 (as presented in Figure 3.12), the networks produce residuals which is
undesired for this scenario, however the decision of fault existence would be made
with the support of Auto-Associative MFNN to prevent false alarms. By this
combined decision-making algorithm using different networks, the fault detection
system would be able to distinguish faulty and non-faulty situations in a more

sensitive way and give information on the exact location of faults.
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Figure 3.10 : Measured and network values for Case 0 with MISO-MFNN.
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Figure 3.11 : Measured and network values for Case 1 with MISO-MFNN.
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Figure 3.12 : Measured and network values for Case 2 with MISO-MFNN.

Based on the results presented, it is proven that the method implemented is
successful on the detection of a calibration drift in temperature sensors. Also, it can
discriminate well between the situations of a calibration drift and an overall drift due
to an environmental change. This method solely uses the measurements of sensors
with similar characteristics, therefore is advantageous of not requiring hardware
redundancy or additional usage of sensors measuring different parameters to obtain
more information to be used in the network inputs. The calibration status of sensors
can be monitored without taking the wind turbine into stall mode and dismantling the
sensors to be tested. Therefore, this approach provides a cost-effective solution
providing information about drifts that start to affect the health of measurements by
continuously monitoring sensors without the need of corrective and preventive

maintenance actions.
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4. FEATURE CONSTRUCTION AND SELECTION

Determining the features to act as inputs of models is an important step in artificial
intelligence applications as performance of algorithms strongly depend on the feature
representation of input data. An appropriate set of features is essential on creating
fast and accurate models. Feature construction and selection are methods that are
commonly used to find out features that successfully characterize the behavior of the
system and to improve performance of artificial intelligence models in various ways.
In this chapter, feature construction and selection methods that were used to
determine a set of inputs that is effective for the fault analysis of the wind turbine is
presented. The findings obtained in this part are used in a comparative analysis

which is presented in Chapter 5.

Feature construction is to generate new features from raw features. By this way,
hidden information about the relations amongst features can be discovered and
augmented to the feature space. A new feature can be constructed in various ways
depending on the task and requirements of the system. It can be realized in a manual
or automated techniqgue. Common methods in manual feature construction can be
listed as; knowledge-based, time domain and frequency domain operations. It can
also be automatized by aggregating, combining or transforming raw features. This
procedure can result in a rapid growth in the number of overall features. For
example, after the construction step, in [33] the number of features became more
than 400 in a wind turbine fault detection study and in [73] it reached from 49 to 490

to solve a failure diagnosis problem for a robot operation.

Such large numbers of features bring numerous disadvantages. After a certain point,
increasing the number of input features would degrade the performance instead of
improving that is commonly referred as “Curse of dimensionality” which was
initially introduced in the optimization of dynamic programming problem [74]. With
the excessive increase in the number of features, the available data become sparse

which is an obstacle for tasks requiring statistical significance. For this reason,
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reduction of features by finding out the inputs that characterize the target task

effectively is useful in such cases.

Feature selection is to identify a subset of relevant features from the overall feature
set which is a compulsory process in machine learning applications involving
moderate and high number of inputs. It brings many advantages such as preventing
overfitting that can be caused by large number of features, reducing computational
burden and training time, increasing accuracy of the model. Feature selection process
can be employed by different approaches namely filter, wrapper and embedded
techniques. Filter approaches evaluate features without utilizing any classification
algorithm. They rank features independently based on a selected criteria [75-76].
Wrapper methods select and evaluate a subset of features together and search for the
best subset describing the model [77]. In embedded approaches, the selection is a

part of the learning process [78].

In this thesis, firstly a feature construction procedure was realized to obtain possible
features that are more effective on characterizing the problem than the raw inputs.
After the feature construction step, a hybrid feature selection method was employed
to the acquired features for the fault analysis of the overall turbine. In the feature
selection part, at first filter methods were applied to find out and exclude the features
that are non-discriminant. Features determined as relevant by the filter methods were
than evaluated in a wrapper-based approach to get the knowledge about mutual
relations or additional redundancies. By combining these two selection approaches, it
was aimed to benefit from the advantages of both. Filter methods are practical in
large data sets in terms of training time and complexity. However, they are not able
to evaluate mutual dependencies between features. Therefore, after using the filter
approach as a pre-processing step, wrapper method was employed to eliminate

redundancies and obtain subsets based on evaluating mutual relations.

4.1 Feature Construction

In this part, the methods used to create additional features from the raw features are
explained in detail. The constructed features are classified in 4 groups as knowledge-

based features, difference features, time series features and statistical features.
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4.1.1 Knowledge-based features

Knowledge-based features were generated using the information on wind turbine
working principles. First kind of the knowledge-based features are available power
values. Using the minimum, maximum and mean wind speed measurements,

available power for each 10 min interval was calculated.

The ratios of the available power to the produced power values were also calculated
as part of knowledge-based features as it can indicate abnormalities in the health of
the system. The last type of knowledge-based features is the sinusoidal components
of nacelle position which can also be helpful in providing extra information on
possible anomalies.

4.1.2 Difference features

Differences between the relevant parameters of the turbine can be useful in the
detection of faults in the related subsystems. Therefore, the differences of features in
the temperature measurements, operational data and wind speed data were
calculated. For example, the differences between the minimum, mean and maximum
rotor power values, wind speeds, produced power values and the difference between
the generator rotor and generator stator temperatures are amongst these features. The
total number of difference-based features is 17.

4.1.3 Time series features

Raw measurements collected from the wind turbine is a kind of time series data that
collectively represents how the system and its behaviour change over time. Time
series data are useful to understand the underlying structure and characteristics that
produce the observations. To benefit from the time-dependent characteristics of the
measurements, the models were supplied with the past measurements on a rolling
basis together with the current ones. The original features were lagged to construct
new possible inputs to networks. Each original feature was delayed from 10 min to
120 min with the aim of benefiting from time series characteristics. By this way, 132

new features were generated.
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4.1.4 Statistical features

Statistical parameters have also a potential of supplying information on fault
indications. Therefore, statistical features from original features were generated as
the last part of the feature construction step. Moving mean, standard variation and
median values of the original features were calculated in a rolling basis from 30 to
120 min time windows. The number of constructed features by the calculation of

statistical parameters is 198.

By gathering the constructed features with the original features, a data set with 377
features was obtained. 22 of them are original features and the remaining 355 are
generated features. The feature selection methodology is explained in the following

part.

4.2 Feature Selection

In artificial intelligence applications, input data sets mostly tend to be high-
dimensional which can emerge naturally due to the high number of raw features or
such as in our case, additive high-number of inputs could be intentionally created to
obtain features that characterize the problem effectively. However, many of these
features can either be partially or compeletely irrelevant/redundant to target concept
[78]. Feature selection is a mandatory step to define the relevant features. Because
irrelevant and redundant features decrease the performance scores and increase the
training time of models. In many applications, the size of a dataset is so large that
learning might not work as well before removing these unwanted features. Reducing
the number of irrelevant/redundant features drastically reduce the time required for

the learning process and yields a more general concept [78].

As described in the initial part of this chapter, filter-based and wrapper-based feature
selection approaches were applied in this thesis to benefit from the advantages of
both. Through this way, the number of features obtained after the feature
construction step was reduced significantly and an effective subset of inputs for
ANN models was determined. The details of filter-based and wrapper beased

methods used are explained in the Sections 4.2.1 and 4.2.2, respectively.
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4.2.1 Filter-based feature selection

Filter-based feature selection methods sort features based on the characteristics of the
training data by observing which features are more relevant to the outputs. They
exploit information contained in input data sets analyzing various characteristics like
information gain, entropy, consistency values [79]. These methods are seperate
processes working independently on their performance and parameters. They can be
treated as kind of pre-procesing procedures as they carry out the feature selection
task as an independent step from the induction algorithm [80]. Due to this
independency, filter-based methods are generally computationally efficient. The
general nature of filters makes them applicable for most cases, however as they
disregard the performance of the resulting learning algorithm, it is not guaranteed
that the features with the highest scores are able to produce successful results when
they constitute an input set [79]. Figure 4.1 shows the structure of filter-based feature
selection algorithms.

Feature
Subset
All . Filter —— Model
Features

Figure 4.1 : Filter-based feature selection.

In former researches, many feature selection methods have been proposed and
different approaches have proven to be successful in different tasks and data sets.
Some commonly applied filter-based feature selection methods are; Mutual
Information [81], Correlation-based Selection [82], Fisher Method [83-84], Relief
Algorithm [85], Laplacian Score [86], Hilbert Schmidt Independence Criterion [87]
and Trace Ratio Criterion [88]. In this thesis, initially four of these filter-based
feature selection methods were attempted which are; Fisher Score, Relief algorithm,
Mutual information and correlation-based feature selection. The initial simulations
showed that Fisher score and Relief methods had supplied effective results.
Therefore, the detailed subset selection had been conducted using the results based

on these two techniques.
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4.2.1.1 Fisher method

Fisher method has proven to be a fast yet effective method in many diverse
applications. It evaluates features by using the ratio of interclass separation and
intraclass variance. It assigns a score for each feature by attempting to find a subset
of features that provide in the dataspace spanned by the features, the distances
between data points in different classes are as large as possible, while the distances
between the data points in the same class are as small as possible. The Fisher score of

the i" feature is calculated as follows:

(i) = Skt ny (5, — 1)’ (4.)
| (c)?
(69)% = Z i () (4.2)
k=1

Where, n,, is the size of the k™ class, . and o;} are the mean and standard deviation

of the i feature when considering the samples of the k™" class. u* and o are the mean

and standard deviation of the whole data set corresponding to the i feature. A higher
Fisher score means that the informative value of the corresponding feature is also
higher.

4.2.1.2 Relief method

Relief method uses an Euclidian distance metric and nearest neighbor technique to
rank the features based on their discriminative capabilities. It works by randomly

selecting instances from the training set and calculating a score based on the
Equation 4.3 shows the calculation of the Relief score (i) for feature i. The score of

each feature is updated after processing every selected instance based on the
difference between the selected instance and the two nearest instances of the same

and opposite classes.

M
1
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Where, r(i) is the calculated score of feature i, x:i is the value of feature i in the
instance t. M is the number of the instances randomly selected from the data. NH(x)
are the nearest sample from the same class (‘nearest hit’) and NM(x) are the nearest
sample from the opposite class (‘nearest miss’) and ||.|| is the measurement of
distance. The algorithm calculates the discriminative success of each feature with
respect to whether the feature differentiates two instances from the same class which
is an undesired property and whether it differentiates two instances from opposite

class which is a desired property.

4.2.2 Wrapper-based feature selection

Wrapper-based feature selection algorithms require an induction algorithm which is a
predetermined learning algorithm to find out which subset of features are effective
for the task handled. They use the results achieved from the induction algorithm to
evaluate the performance of the selected feature subsets. In wrapper-based selection,
the induction algorithm is used as a black box for evaluating features, therefore the
behavior of the corresponding feature evaluation function is usually highly nonlinear
[89]. In this case, to obtain a global optimal solution is infeasible for high-
dimensional data. To address the problem, wrapper-based feature selection
algorithms conduct a search in the space of possible features.

All Multiple
Feat Feature Model
eatures Subsets
Wrapper

Figure 4.2 : Wrapper-based feature selection.

Various search algorithms can be used to decide the subsets to be used in wrapper
models. Common search algorithms can be classified as exponential (also known as
complete), sequential and randomized algorithms [90-91]. In exponential algorithms,
number of subsets increases exponentially with the number of elements in the feature
space. For instance, exhaustive search is a kind of exponential search algorithms

where all possible subsets of the feature space are used in the wrapper models to find
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the best combination. For a dataset with n possible features, 2" number of features
are tested in exhaustive search which guarentees an optimal subset. However this
approach is not practical in the existence of moderate or high number of features.
Sequantial search algorithms add or remove features sequentially. Sequential
Forward Search, Sequential Backward Search, Sequential Floating Search
Algorithms are amongst the main heuristic search methods [92]. The main idea of
randomized algorithms is to use their randomness to avoid the algorithm to stay on a
local minimum and to allow temporarily moving to other solutions [91]. Random
subset feature selection [93] and genetic algorithms [94] are some common examples
for this class.

For the problem handled in this thesis, a sequential search algorithm was used after
reducing the number of possible features by selecting the most relevant features in
the former part by the filter methods. A sequential search was applied as it provides a
balance on the optimality and computational efficiency. Sequential Backward
Floating Search (SBFS) used which is a top down search procedure where the initial
set starts by the whole feature set which is the most relevant features obtained in the
filter-based selection in our case. The least significant feature is excluded in each
step which is followed by conditional inclusions [92]. The search continues as long
as the resulting subsets are better than the previously evaluated ones at that level.

MFNN ANN models were used as the induction algorithm of the wrapper method.

4.3 Results

Methods explained in this part of the thesis were applied to the problem of detecting
generator heating faults as a case study. For this aim, the possible input features were

analyzed by associating them to generator heating faults as outputs of the networks.

Top 10 ranked features by Fisher and Relief methods were taken to be used in the
wrapper selection phase. Table 4.1 presents the features and their ranks selected by
Fisher algorithm.
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Table 4.1 : Top 10 features selected by Fisher algorithm.

Rank

Features Selected by Fisher Algorithm

Difference between generator stator and generator rotor
temperature

Difference between generator rotor and transformer
temperature

Difference between generator rotor and nacelle temperature

120 min moving median of max power output

60 min moving median of max power output

30 min moving median of max power output

Maximum power output

Difference between current and 10-min previous maximum
power output

30 min moving mean of maximum power output

60 min moving mean of maximum power output

As it is seen in Table 4.1, most of the top ranked features are constructed ones
instead of original features. The only original feature selected by Fisher method is
the maximum power output. There are 4 difference and 5 statistical features amongst
top 10 ranked features. It was observed that the temperature differences of generator

stator, rotor and other components have the highest impact in this approach to

distinguish generator heating faults.

The features with the highest scores assigned by Relief algorithm can be seen in

Table 4.2.
Table 4.2 : Top 10 features selected by Relief algorithm.
Rank Features Selected by Relief Algorithm
1 30 min moving standard deviation of mean rotor speed
2 120 min moving median of maximum power output
3 Difference between minimum and mean rotor speed
4 Difference between minimum and maximum rotor speed
5 Minimum rotor speed
6 Maximum available power from wind
7 Difference between current and 10 min previous minimum rotor
speed
8 60 min moving standard deviation of nacelle control cabinet
temperature
9 60 min moving median of maximum rotor speed
10 Cosinus of nacelle direction

As presented in Table 4.1 and 4.2, there are no common features which are selected
by Fisher and Relief methods. Using Relief algorithm, again only one original

feature is amongst the top 10 ranked ones whereas all other features are from
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constructed features. The original feature selected is the minimum rotor speed. 3
difference features, 4 statistical features and 2 knowledge-based features selected by
Relief method. This time, the most relevant features were found to be the statistical
features which are the 30 min moving standard deviation of mean rotor speed and

120 min moving median of maximum power output.

After obtaining the highest ranked features by both Fisher and Relief methods, they
were analysed in the wrapper-based feature selection algorithm to find out the

resulting input set.

In addition, another feature set was selected by heuristic methods in order to compare
the performance of the proposed approach. In this method, only the original features
and the statistical features of generator rotor and stator temperatures were used in a

Sequential Backward Search method.
The resulting features acquired by the proposed feature construction and selection

appraoch and heuristic way are presented in Table 4.3.

Table 4.3 : Top 10 features selected by the proposed feature engineering techniques
and a heuristic way.

Systematic Feature Engineering Method Heuristic Method
Difference between generator stator and
generator rotor temperature
Difference between generator rotor and
transformer temperature
Difference between generator rotor and
nacelle temperature
60 min moving median of maximum power

Minimum wind speed

Minimum power output

Minimum rotor speed*

Mean rotor speed

output
30 min moving median of maximum power Mean wind speed
output
Maximum power output™ Maximum power output®
30 min moving mean of max power output Generator rotor temperature
60 min moving mean of max power output Generator stator temperature

60 min moving variance of
generator stator temp.
60 min moving variance of gen.
rotor temp.

Minimum rotor speed*

Maximum available power from wind

*The common features selected by both methods.

After applying the wrapper-based selection, it was observed that most of the resulting
features come from the Fisher selection algorithm, whereas 2 out of 10 are from
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Relief algorithm which are minimum rotor speed and maximum available power

from wind.

When compared to the heuristic method, it is seen that the original features selected
by the systematic feature engineering methods which are maximum power output
and minimum rotor speed were also found to be amongst the best features in the

heuristic method.

After using both feature sets as ANN inputs, it was observed that the proposed
feature construction and selection methods increase the detection success of
generator heating faults. Detailed performance scores obtained by both approaches

are presented in Chapter 5.7.2.
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5. THREE LEVEL FAULT CLASSIFICATION

A three level fault classification system that consists of the fault detection, isolation
and prediction for the overall wind turbine is presented in this chapter. Determining
if the turbine is in the normal or faulty operation mode, in case of a faulty operation,
finding out the type of the fault, and the prediction of possible upcoming faults are
the objectives of the proposed system. These operations form a complete system that
provides required information to the wind farm operators to take the actions or

measures in the case of a current fault or upcoming fault.

Unlike the sensor validation method designed in Chapter 3, this part of the thesis
benefit from the actual fault information collected from the target turbine instead of a
simulated fault. All types of collected data explained in Chapter 2.2 were used for the
design of the fault analysis system. Information of fault instances were obtained from
the status data. The historical status data, historical and current information of
temperature data, operational data and wind data were used for the current or future

estimations of fault statuses.

During the data collection period from the wind turbine, a fatal failure of the main
components which would result in a replacement and a long duration of downtime
did not occur. However, a large number of non-fatal but frequent faults observed. As
described in Chapter 1.4, former research results show that the prediction success of
fatal faults are comparatively very high which can be realized months in advance.
However, as frequent but non-fatal faults show less apparent indications, the
prediction horizon is not very far. But becuse these type of faults happen in all of the
wind turbines and cause a decreasing efficiency and loss of power conversion,

detection of them are recently focused on by various studies.

The types, explanations and durations of the faults appeared in the target turbine are
presented in Chapter 5.1. Also, information on power conversion in normal and

faulty operations were given.
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The characteristics and different aims of the three fault classification levels are
presented in Chapter 5.2 in detail. To introduce the data to the classification models
with different requirements, the data set should be pre-processed accordingly. This
pre-processing step is a significant part of the design especially because it includes
assigning labels to each 10 min instance to be used in the classification models.
Different data classes were created for each classification level based on varying
aims. Chapter 5.3 provides information on the data labeling to constitute data classes

for each level.

The data set used in this study is a very unbalanced set. Which means the amount of
data in different classes are very distant from each other which possibly causes
complications for the models to be trained. To handle the unbalanced dataset
problem, some techniques were used which are explained in Chapter 5.4. ANN
models were designed to classify faults in all of the levels. Chapter 5.5 presents the
information on ANN models that were used in this part of the thesis. Finally, the
performance metrics and the results of the fault classification system are presented in

Chapters 5.6 and 5.7, respectively.

5.1 Fault Information

The instantenous condition of the wind turbine and the reason of that condition can
be obtained from the “status data” of the SCADA system. If the turbine is in the
working condition without any abnormalities, the status code is “Turbine in
operation”. Also, if there is no fault and the turbine is about to start working,
“Turbine operational” and “Turbine starting” codes consecutively appear before it
starts working. All other status codes different than these 3 conditions show some

abnormalities about the wind turbine or the environmental conditions.

Stall of the turbine due to the environmental conditions are generally caused by
reasons related to wind speed. In accordance with the working principles of wind
turbines, they operate in specific wind speed intervals. Therefore, it was observed
that the status code was “Lack of wind” where the wind speed is too low for the
operation and in the “Storm” status where it was higher than the cut-off speed of the

wind turbine.
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Amongst the fault statuses, it was seen that fault types which have sufficient amount
of samples to be used in the classification models are; “Mains failure”, “Generator
heating” and “Feeding fault”. Mains failure describes the problems related to the
mains electricitiy supply of the turbine. Additional information regarding the details
of mains statuses show that mains failures occurred due to many reasons like;
underfrequency, undervoltage and overvoltage. Mains failure statuses result in a
blackout of the turbine. Generator heating faults refer to the problems about
overheating of the generator which appeared due to the problems in isometer or
mains. Feeding faults show problems in the power feeder cables of the turbine. After
these faults appear, they continue for a varying amount of time. The number of
occurences of these faults during the one-year period of data collection and the total
10 min instances that give information on the duration of each type of fault are

presented in Table 5.1.

Table 5.1 : Frequent fault types.

Fault type Frequency Number of instances
Feeding fault 3 80
Generator heating 14 222
Mains failure 54 65

Frequency in Table 5.1 refers to the independent number of occurrences of each fault
type. For instance, 14 generator heating faults were observed and the total number of

these 14 faults correspond to 222 10 min samples.

Other than these frequent faults, some different faults have also been observed in the
data set. Namely, “Pitch control error” and “Semiconductor fuse blown” faults
happened both for once in the entire duration. However, they were not attempted in
the fault classification levels as there are not sufficient amount of data to train and
test the models. Also, some different conditions about physical limitations were

observed such as “Cable twist”.

Status data also supply information on the maintenance actions. A high amount of
“Turbine in operation during maintenance” were observed. Besides, for 8 times,
“Maintenance” status code appeared where the turbine goes into a stall condition

during the maintenance actions.

Figure 5.1 presents the normalized power values depending on the wind speed for

each 10 min instances and the normalized ideal power curve of the turbine. The
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values were presented in a normalized way due to the non-disclosure agreements
signed with the wind turbine company. As it is seen in the figure, the turbine is
operational in some fault situations and in the stall mode for the others. Also, it does
not track the ideal power conversion line in every normal operation status. These are

some indications of the non-linear relations within the turbine operations.
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Figure 5.1 : Normalized power output values for the normal and faulty operation
statuses.

5.2 Classification Levels

In this part, the three different fault classification levels that were designed for the
generation of the overall condition monitoring and fault classification aim were
explained. The characteristics and objectives of the fault detection, isolation and

prediction levels are described in Chapters 5.2.1, 5.2.2 and 5.2.3, respectively.

5.2.1 Fault detection

Fault detection is the first level of classification where the aim is to distinguish faulty
instances from non-faulty ones. The distinction between fault types is not important
in this level. Therefore, the data were split in two classes describing the normal
operation class and the faulty class. The fault class consists of all the frequent fault
types presented in Table 5.1 and the instances of statuses which show non-frequrent
faults like semiconductor fuse blown are also taken as elements of the fault class. All
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the remaining data constitute the normal behavior class. There is a significant
imbalance between the number of elements in the normal operation (majority) class
and the fault (minority) class. The number of elements in the majority class is more
than a hundred times greater than the instances in the minority class. This situation
may degrade the success of the classification models. Therefore, some techniques
were applied to increase the performance of the models which are explained in
Chapter 5.4.

5.2.2 Fault isolation

Fault isolation (which is also described in some sources as fault diagnosis) is to
determine which subsystem is subject to fault. In this level, in addition to determine
if a fault occurred, the exact location of the fault was also attempted to be detected.
As they are in a sufficient amount for the ANN models to be trained and tested, the
frequent fault types presented in Table 5.1 were attempted to be isolated in this level.
For this aim, the data set was split in four classes according to the status codes. Three
of the classes represent each fault type and all the remaining samples were assigned
to the normal operation class including the situations like non-frequent fault

instances and maintenance actions.

5.2.3 Fault prediction

The aim of this level is to predict fault statuses and isolate the exact fault types in
advance. The fault prediction level is the most advanced step and it serves for the
aim of designing a system which enables operators to be informed about future faults
and take required actions to prevent or minimize downtime and possible detrimental

effects resulted by faults.

Fault types investigated in the second level were also attempted in this level. First
simulations show that the results of generator heating faults are more promising
whereas prediction of mains failure and feeding faults could not show successful
results. The reason for this is that they occur by the status of the grid not the turbine.
Therefore, after observing the prediction success of all 3 types of faults in the initial
part of this level, a more detailed research was carried out on prediction of generator

faults.
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5.3 Data Pre-processing

Pre-processing of data is an essential step effecting the training success. Due to the
reason that SCADA data collection systems have many imperfections, the
importance of data pre-processing even gets more important. As the initial step, the
data set was cleared from blank entries which reduced the number of 10 min
instances from 52560 to 50952. This shows 268 hours of data became lost during the

data collection period.

After clearing the blank entries, the following step was to assign a status code for
each 10 min instance. The matching of the status data to the other types of data is a
complicated part of the pre-processing. As explained in Chapter 2.2.4, status log
changes whenever the condition of the turbine changes, whereas other data sets
renewed in every 10 mins. This results in the situation that, in the same 10 min
interval, more than one statuses may appear which is seen frequently. In the presence
of this case, the possible main reason of the status data was selected as the main
status of the regarding instance and they were continued until a new status appears.

By this way, data classes were built for each level depending on the varying aims.

In the fault detection level, the labeling of data belong to each 10 min interval were
performed by classifying them based on the corresponding fault statutes. For
instance, for the fault detection level if any kind of fault happens less than 10 min
and not more than 10 min from a fault status that instance was considered as a part of

the fault class [36]. Equation 5.1 presents the labeling in the fault detection level.

B {F, t; —10min <t < t, — 10min (5.1)

y(®) = N, otherwise
Where, F is the label assigned for faulty states, N is the label for the normal states,
y(t) is the label at time t, ¢, is the start time of the fault, t, is the end time of the fault.

10 min threshold is used to capture all the information related to the faulty instances.
By this way, if a fault status appears between 20:32-20:48, all instances starting from
20:30 to 20:50 will be assigned to the fault class.

In the fault isolation level, the labeling has the same main principle with the process

in the detection level. The only difference is that, all types of frequent faults are
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assigned to a different class. As a result, 4 different data classes were generated. The

10 min threshold was used again, to capture all the information on the fault.

Data labelling in the fault prediction level was managed by a different technique as
in this level, different from the first two levels, not the current but the future fault
estimation is the objective. As stated in Chapter 5.2.3, in this level only the generator
heating fault was attempted due to the potential successful results. Two classes were
created, first of them is the pre-fault class for generator heating faults and the second
class contains all the remaining data including other types of faults. Data labeling
was performed by using the approach proposed by Leahy at el. [31] which
significantly improves the capability of early prediction. In this approach, the times
during which a fault occurs are not labelled as fault class, instead a time band before
the fault was labeled as pre-fault data. Training of the models were realized by using

pre-fault and normal operation classes.

PF, w, — 10min < t < w, — 10min (5.2)
N, otherwise

y© -1
Where, PF is the pre-fault class, N is the normal operation class, ws is the start and
We is the end of the pre-fault time window. Table 5.2 shows the different time bands
for generating data sets. For instance, in Case C, all the data instances with
timestamps between 6 to 12 hours before a generator heating fault were selected for
the pre-fault class. Positive prediction in this time band means that, the model
succeeds to identify an upcoming generator fault at least 6 hours before the fault

starts.

Table 5.2 : Time windows created for the pre-fault instances.

Case Time window (hours)
A 0-1
B 2-12
C 6-12
D 12-24
E 12-48
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5.4 Methods to Improve Training Performance in Imbalanced Datasets

A dataset is imbalanced if the classification categories are not approximately equally
represented [95]. In such situations, classification algorithms are generally likely to
classify new observations in the majority class because in the training phase, they
were built to minimize errors and a tendency to classify new data as part of majority

class would reduce the overall cost value.

Fault detection is one type of many areas with naturally imbalanced datasets as they
have much more samples in the normal class than the faulty class. In our dataset, for
instance for the fault detection level, the number of elements in the majority class is
more than a hundred times greater than the instances in the minority class. This high
imbalance rate creates a tendency towards new observations to be classified as
normal instances, however, in many fault detection systems it is more important to

correctly classify faulty states than normal states.

There are two common practices to solve this tendency of models built in imbalanced
datasets. One of them is to assign distinct costs to training examples and the other is
to re-sample the original training data set [96]. In this thesis, the second approach

was implemented to increase the classification success of the faulty states.

The techniques applied are oversampling the minority class and undersampling the
majority class. Under sampling of the majority class data was realized by randomly
selecting some samples to be deleted. For the oversampling of minority class,
Synthetic Minority Oversampling Technique (SMOTE) [96] which is one of the most
common oversampling techniques in machine learning applications was used. After
the classes were constituted and split into training and test sets, these techniques
were applied only to the training sets. Data in the test sets were kept in their original

form for all the classification levels.

5.4.1 Oversampling of minority class

Synthetic Minority Oversampling Technique (SMOTE) is a common method used in
diverse areas due to its less application-specific manner than other similar
algorithms. Because it operates in “feature space” instead of “data space” [96]. In
this method, the minority class is over-sampled by taking each minority class sample
and introducing synthetic examples along the line segments joining any/all of the k
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number of minority class nearest neighbors. Depending upon the amount of over-
sampling required, neighbors from the k nearest neighbors are randomly chosen. To
generate the synthetic samples, firstly the difference between the feature sample
under consideration and its nearest neighbor is taken. This difference is multiplied by
a random number between 0 and 1 and added to the feature sample. This causes the
selection of a random point along the line segment between two specific features. By

this approach, the decision region of the minority class becomes more general.

5.4.2 Undersampling of majority class

The second technique used to handle the problem was to undersample the training
examples in normal states. The undersampling procedure was implemented by
randomly selecting the samples to be removed. The number of instances to be
removed was decided empirically and for the fault detection level it was found out
that the best results were taken by removing 20000 out of 35000 samples from the
training data set. Undersampling and oversampling methods were both applied
independently and in conjunction for an overall performance comparison of the

attempted re-sampling techniques.

5.5 ANN Architectures

Various ANN models were designed in all levels of classification to obtain effective
structures for the problems handled. After some initial tests, it was seen that MLP
networks are successful in distinguishing the faulty states from normal ones.
Therefore, MLP networks with different parameters were focused on to obtain the

final architectures.

For the fault detection level, as the number of possible outputs is 2 -which are the
faulty and normal classes- MISO (Multi-Input-Single-Output) models were used.
The inputs were selected by heuristic ways and by the feature engineering techniques
given in Chapter 4 in different trials. The number of hidden neurons was changed
from 1 to 15. Various types of activation functions such as “logarithmic sigmoid”,
“linear”, “tangent sigmoid”, “soft-max” were tried in the hidden and output layers.
Also, multiple trials with random initial ANN weights for each architecture were

held to ensure that the models do not stuck in a local minimum in the cost function
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space. The results obtained with the most successful networks are given in Chapter
5.7.

For the third classification level, in which the fault prediction problem is handled, the
network architecture was again MISO type. Where, the possible outputs are the pre-
fault for the generator heating faults and the remaining instances. Therefore,
searching for a successful network architecture was realized in a similar way to the

fault detection level.

The problem to be handled differs in the fault isolation level. This time there are 4
possible outputs representing 3 types of faults and in addition the remaining
instances as the 4™ class. Therefore, the case turns into a multiclass classification
problem which requires a different architecture than the other two levels. One
possible solution for this case is to use multi output ANN which uses the selected
features as inputs and provide more than 2 possible outcomes as the response of the
network. However, the initial test results with multi output ANN showed that the
networks had difficulties with distinguishing faults from each other in the multi-
output structures. Therefore, One-Against-All (OAA) ANN models were created.
Distinguishing each type of faults from the remaining instances was performed by 3
different ANN and all the results were evaluated by a decision rule to reach the final
decision of the algorithm. To generate the decision rule, the performance of the best
networks for each fault type was evaluated in the training set. It was determined
based on the false alarm tendencies of the models. The ANN output that belongs to
the fault type which shows less false alarms was selected against the other ANN

outputs. A basic scheme of the OAA architecture is shown in Figure 5.2.
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Figure 5.2 : OAA network structure used in the fault isolation level.

5.6 Performance Evaluation Metrics

In classification problems, the most widespread performance indexes to evaluate the
success and compare the performance of models are accuracy, specificity, recall (also
known as sensitivity), precision and f-score. Equations 5.3 to 5.7 present the

calculation of these metrics.

accuracy = (tp +tn)/(tp+tn+ fp + fn) (5.3)
specificity = tn/(fp + tn) (5.4)
recall = tp/(tp + fn) (5.9)
precision = tp/(tp + fp) (5.6)
2tp recall = precision
f = score = 2tp+ fp+ fn =2 recall + precision G.7)

Where, tp is true positives; number of correctly classified fault instances, t, is true
negatives; number of correctly classified normal instances, f, is false positives;
normal instances incorrectly predicted as fault instances; f, is false negatives; fault

instances incorrectly labelled as normal instances.
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In applications like fault detection where there is a natural imbalance between the
number of samples in different classes, accuracy and specificity metrics may not be
informative. Because of the excessive amount of the normal samples comparing to
the faulty samples, even if there is no correctly classified fault samples, accuracy and
specificity can still reach values close to 1 due to the high number of correctly
classified normal samples. For instance, in a dataset with 990 majority and 10
minority class samples; if the correctly classified samples from the majority class is
900 and there are no correctly classified samples from the minority class, the
accuracy value would still be 90% despite non of the minority class samples are
correctly classified which means non of the faults are detected in problems like ours.
Recall, precision and f-score are informative in such problems. Recall can be
described as how successfully the model can predict the faults, and precision is how
successfully the model can identify only the relevant points as fault instances. F-
score is the harmonic mean of the former two metrics, which provides information
on both recall and precision. Recall and precision are conflicting metrics and the goal
of classification in imbalanced datasets is to improve recall without degrading
precision [95]. Because there is a significant imbalance through the classes in the
fault detection and isolation levels, accuracy and specificity results found to be
always greater than 0.95. Therefore, recall, precision and f-score were used to select
the best model. In the fault prediction level, the imbalance is comparatively smaller
due to the long time spans of the pre-fault windows so the evaluation was made by

also considering accuracy value.

The classical performance metrics given in Equations 5.3-5.7 are calculated in a
point-based manner which means the network outputs for all the time instances were
evaluated independently to calculate the metric values. In fault detection and
isolation levels, this approach is convenient as the previous and following values are
not of interest. However, for the fault prediction level it is not the case. In this level,
a window-based interpretation of results is more appropriate than a point-based
approach to evaluate the performances of models. Therefore, such an implementation
was realized to find out the effective prediction horizon. In this method, the response
of the network is monitored using a sliding-window. If the network claims a fault
indicator for a specified time period, an alarm flag is raised. By this way, it becomes

possible to determine the prediction horizon effectively and the number of false
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alarms are reduced as the alarm flag is not activated after each estimation that
exceeds the threshold value but it monitors the ANN results a specified period of

time.

5.7 Results and Discussions

This chapter presents the details and performance results of the networks created for
each classification level.

5.7.1 Results of the fault detection level

As described in the former sections, many different ANN architectures were
designed for the fault detection problem changing the hidden neuron numbers,
activation functions, initial weights. Also, the training set was modified in some trials
by undersampling the majority and/or oversampling the minority classes to increase
the classification performance. Approximately 7/10 of the data (35000 instances)
were selected to train the networks and the remaining samples were used to test the
performance. The best activation function pair was found to be logsig-softmax
functions for the fault detection level. The best performance metrics reached for the
original, under sampled and over-sampled training sets are presented in Fig. 5.3. The
selection was realized based on the highest recall value reached for each case. To
observe the effects of undersampling and oversampling of the training set, the same
threshold value which was selected empirically as 0.8 was used to evaluate the
outputs of the networks. Outputs which are smaller than this threshold value were
considered as faulty and the rest as normal class estimations. Hidden neuron numbers
between 3 and 9 were found to be more successful in general. The ANN with the best

recall value has 7 hidden neurons for all the cases.
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Figure 5.3 : Performance metrics in the fault detection level for a) Original training
set b) Only oversampled case ¢) Only undersampled case d) Oversampled and under
sampled case.

The results show that the application of ANNs for fault detection level provides high-
performance outputs. For all the cases, the accuracy and specificity results are close
to 1, however as they are not informative in highly imbalanced data sets, the
evaluation was realized analyzing recall, precision and f-score. Based on the f-score
values, which provide information on both recall and precision, the training
processes realized by the original training set (Case a) and by oversampling of
minority class (Case b) resulted in successful outcomes of 0.69 and 0.62,
respectively. However, as the correct classification of minority samples is more
important in fault detection systems, the main aim is to obtain a high recall score.
The best recall score was obtained in Case d where both under sampling of majority
and oversampling of minority class were held in the training set. In this case, recall

value is 0.84 and precision value is 0.32.

As presented in Figure 5.3, by modifying the training set with undersampling and
oversampling techniques, recall score increases whereas precision decreases. These
data show that more faults can be predicted by these methods in the expense of
having more false fault alarms. In terms of comparing the undersampling and
oversampling methods, it was seen that the undersampling of the normal class is
more advantageous. Although the recall values are very close to eachother in Case ¢
and d, after investigating the results of all the networks produced, it was seen that

only 1 out of 150 ANN in Case c produced a recall score more than 0.8, whereas it
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was 10 in Case d. Therefore, the results show that using both methods together is
beneficial on detecting more fault instances.

5.7.2 Results of the fault isolation level

In this level, the imbalance rate is higher than the first level. The reason for this is
that in OAA ANN structure, a fault class consists of only one type of fault and all the
remaining data including other faults are assigned to the normal operation class. The
same procedure was repeated for all the three types of faults. Therefore, to reduce the
negative effects of the imbalance, both under sampling of majority class and
oversampling of minority class for the training sets were applied. Multiple models
for 3 different classifiers were generated with various hidden neuron numbers,
activation functions and random weight initializations. Then the outputs of the best
models for each fault type were evaluated together by a decision rule to reach the
final decision of the overall model. The decision rule was determined based on the
false alarm tendencies of the models. The ANN output belongs to the fault type
which shows less false alarms was selected against the other ANN outputs. ANN for
isolating mains failure shows the least number of false alarms. As a result, if the
mains failure fault classifier gives a fault estimation output, the overall decision was
considered as mains failure ignoring the decisions from the models of feeding fault
and generator heating. The second dominant classifier was found as generator

heating. Fig. 5.4 shows the resulting performance scores for all fault types.

Hrecall Mprecision ®f-score

1,2
0,98
1 oge 0,85 53
0,78
0,8 0,72
0,62
0,6
0,44

04 0,34

0 -

Generator Heating Mains Failure Feeding Fault

Figure 5.4 : Performance metrics for the fault isolation level.
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As presented in Fig. 5.4, both recall and precision values for feeding fault are very
high 0.85 and 0.98, respectively which results in a high f-score value which is 0.9.
The results for the isolation of generator heating faults come second with 0.86 and
0.72 recall and precision values. Isolation of mains failure reveals lower rate of

success results which are 0.62 recall and 0.34 precision values.

Amongst the models built, the highest performances were obtained as follows. The
best architecture for the isolation of generator heating faults was obtained by logsig-
tansig activation functions for the hidden and output layers with 4 hidden neurons.
For mains failure, logsig-softmax activation functions and 5 hidden neurons and for
feeding fault, again logsig-tansig activation functions with 11 hidden neurons were

found to be the best activations functions.

Results presented in Figure 5.4 belong to the networks generated by the heuristic
feature selection method. The case study on feature construction and selection
methods for the generator heating faults improved the detection of this kind of faults.
In order to analyze the effect of the systematic feature generation and selection
processes, the final selected features given in Table 4.3 were used without changing
the other parameters of the best network architecture. Figure 5.5 presents the
performance metrics obtained by the selected features as inputs of the network with

the best performance results.
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Fig. 5.5 : Performance metrics obtained by a) Heuristic b) Systematic feature
selection approaches.

Figure 5.5 shows the performance metrics for isolation of generator heating faults
with heuristic and systematic feature selection approaches. The heuristic method uses

the same features used to obtain Figure 5.4, however the differences in performance
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metrics between 2 cases is rooted from the OAA structure in Figure 5.4. Figure 5.5
shows the raw metrics for the generator heating faults without a decision rule.

The results presented in Figure 5.5 show that the systematic feature engineering
techniques helped to obtain better results for all the metrics. The improvement in the
recall value is comparatively smaller which increased from 0,83 to 0,85. However, in
precision metric there is a more significant improvement. It increased from 0,75 to
0,96. For the 3 months test period, this result implies that the amount of false
generator heating alarms decreased from 210 to 30 mins. This is an important
advantage as high rate of false alarms is one of the most significant problems in wind
turbine fault detection systems using SCADA data.

5.7.3 Results of the fault prediction level

The results of this level show that contrary to the first two levels, accuracy and
specificity are not close to 1 in all trials. Therefore, in this level model selection was
made considering also accuracy score in addition to recall, precision and f-score. A
possible reason for the smaller accuracy and specificity could be that pre-fault
indications of this level are not as strong as the fault indications of the first two
levels, so the relations are harder for the models to interpret which results in more
false outputs. Also, as the pre-fault band gets wider, the number of samples in the
minority class becomes higher in comparison to the first two levels as they are made
of the time instances within a pre-specified time window which can be up to a 36
hours window worth of instances. This situation results in a less imbalanced data set
and makes accuracy and specificity become concerns. Besides, fault indications
before the beginning and after the end of the pre-fault time windows are seen as
“false positives”, however they are successful indicators of upcoming faults which
also contribute to the low scores in classical performance metrics. Because of this
factor, a sliding window interpretation of ANN outputs is more convenient for this
level, however, results for the classical performance metrics are also provided to

serve as a basis for the future researches.

Initial simulations show that the prediction performance for mains failure and
feeding faults are of low performance, therefore only generator heating fault was
tried to be predicted in this level. The reason for this is, mains failure and feeding

faults are not faults caused by the internal dynamics of the turbine but occur due to
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the external factors. Therefore, solely monitoring turbine parameters is not enough
for successful prediction of these faults.

The best results for the generator heating faults by classical point-based performance

metrics for the specified time windows given in Table 5.2 can be seen in Fig. 5.6.
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Figure 5.6 : Performance metrics for the fault prediction level.

Although recall values which are almost 1 were reached in some other ANN models
for all the cases, the accuracy limit we considered decreased the balanced scores.
Only the models where accuracy scores were higher than 0.65 were taken into the
consideration for the selection of the models with the best recall values. For Case A,
more than half of the samples in the minority class are missing due to imperfections
of SCADA system which contributes to the low performance scores. As it is seen in
Figure 5.6, with the increase of the duration of pre-fault time bands, recall value
decreases approximately from 0.9 to 0.6. Precision score is less than 0.1 in most of
the cases except for Case E where it is 0.2. The comparatively higher precision and f-
score values show there are fault indicators as long as 48 hours before beginning of

faults.

The classical performance metrics given in Figure 5.6 were calculated in a point-
based manner which means the network outputs for all the time instances were

evaluated independently to calculate the metric values. As a window-based
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interpretation is more appropriate for this level, such an implementation was realized
to find out the effective prediction horizon. If a false alarm flag is raised after
ensuring that the network claims a fault indicator for a specified time period, the
number of false alarms decrease significantly. Besides, most of the faults are
predicted in advance. With an appropriate threshold value for ANN outputs which
was determined as 0.975, it was observed that 5 out of 7 generator heating faults in
the test set were predicted successfully. The duration to monitor the persistency of
values lower than threshold was selected as 12 hours. If ANN outputs are less than
the threshold value for more than 12 hours, a fault alarm is raised. These parameters

were determined empirically.

To better interpret the ANN outputs, fistly the response of the network for a region
where no generator heating faults present in the test set is shown in Figure 5.7. 1000

instances from a no-fault region are given in the figure.
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Figure 5.7 : ANN outputs for a section of normal operation region.

As can be seen in the figure, ANN outputs are close to 1 in almost every instance.
Only for some single points, the outputs reach the thereshold value, however the
window-based interpretation prevents a false alarm as the duration of these values
are much lower than 12 hours. NF: in the x axis of the graph implies the starting
point of the no-fault region given in this figure. If there were no missing values, 1000
instances of data shown would results in 166 hours of data would be present in this
period. However, due to the missing data, between the last and the first samples
shown, there are 182 hours of operation, therefore it was shown as NF1+ 182 in the
end of the section.
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Figure 5.8 : ANN outputs and fault beginning instance for Fault 1.
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Figure 5.9 : ANN outputs and fault beginning instances for Faults 4 and 5.

Figures 5.8 and 5.9 show the ANN outputs and the fault beginning instances for the
first, fourth and fifth generator heating faults in the test set for Case D which
provided the best results for the window-based fault prediction analysis. F1, Fs, and
Fs refer to the beginning of the first, fourth and the fifth faults respectively. Similar
to Figure 5.7, Figure 5.8 and Figure 5.9 also display 1000 instances of operation.

When ANN outputs are closer to 1, the network claims that there is no fault.
Decrease in ANN output implies that there might be indications of upcoming faults.
As it is seen from the figures, the fault indications start to appear even earlier from
the pre-fault time-bands (which was between 12-24 hours before fault beginnings for

case D) and the network continue to show fault indications at least until the
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beginning of the faults. After the beginnings of fault occurrences, ANN output
increases again. Figure 5.8 shows that the indicators of Fault 1 start 40 hours in
advance. After monitoring the values for 12 hours, a fault alarm is raised which is 28
hours before the beginning of Fault 1. The alarm stopped 20 min after the fault

ended.

As can be seen in Figure 5.9, there is a steady decrease in ANN outputs that begin 68
hours ahead of Fault 4. After the 12 hours monitoring period of the consistency of
indication for this fault, it was predicted 56 hours in advance with the same
approach. Fault 4 and Fault 5 occur in close time-proximity. There are 47 hours
between the end of Fault 4 and the beginning of Fault 5. Therefore, it is hard to
evaluate certainly how long in advance Fault 5 was predicted. Because, the
indications of Fault 4 may continue for some time after it ends or indications for
Fault 5 could start earlier than 47 hours which would be observable if Fault 4 did not
exist. As a result, there is an uncertainty about the exact prediction instant for Fault
5.

After analyzing ANN outputs for all the test set, results of the fault prediction level

for each generator heating fault are summarized in Table 5.3.

Table 5.3 : Prediction horizon for generator heating faults.

Fault no Time of prediction in
advance (hours
F1 28
F2 -
F3 --
F4 56
F5 ~35
F6 44
F7 16

The other successful predictions are for Fault 6 and Fault 7 with 44 and 16 hours,
respectively. Fault 2 and Fault 3 could not be predicted. During the whole test set
period which covers approximately 3 months, 12 false generator heating alarms

appeared.

The results of this part of the thesis show that, proposed methods and the use of
SCADA data are beneficial in the detection, isolation and prediction of non-fatal but

frequent wind turbine faults which are one of the reasons of the long downtime
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durations. Even though the data set used is comparatively limited as it does not
contain some information which are typically involved in most SCADA systems,
successful outcomes were acquired. High-performance scores in all three levels of
the scheme that expand the current finding performances in the literature were
obtained. The methods especially show a promising capacity in the prediction level.
Most of the generator heating faults were predicted dozens of hours in advance
which is a significant improvement in the prediction horizon comparing to the former

studies on non-fatal wind turbine faults.
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6. CONCLUSION

This thesis presents a predictive maintenance approach for wind turbines using
artificial intelligence techniques. The aim is to design a cost-effective approach to
predict wind turbine faults to increase amount of energy conversion and performance
of the overall system. The proposed methods were developed by using the data
collected from SCADA system of a wind turbine. A major advantage of this
approach is that, as SCADA is a built-in part in many medium or large-scale modern
wind turbines, no additional hardware costs are required for the real-world
application of these methods which serves for the aim of designing a cost-effective
system. Temperature data, operational data, status data and wind parameters are the
types of information commonly available in SCADA systems which were also used
in this thesis. As in line with expectations, data collected from the SCADA system
includes many imperfections such as high rate of missing values and low sampling
frequency. To handle these challenges and the highly non-linear behavior of wind

turbines, ANN models were used as the core parts of the algorithms developed.

During the data collection period from the target wind turbine, serious faults that
cause fatal results in the overall turbine or one of its main components did not
happen. However, many non-fatal faults which typically occur frequently in most
turbines were observed and the algorithms were developed to analyse and classify
this type of faults. Weak indications of these faults make it a challenging task to
detect or predict them. The results of former studies in this field show a clear
distinction between the prediction performances of fatal and non-fatal faults. In fatal
faults of main components, some predictions were successfully made months in
advance, however prediction horizon of frequent, non-fatal faults are described in the
scale of hours. These outcomes show the significance of the severity of indications in

the prediction horizon of faults.

In the first part of the thesis, a validation method for wind turbine temperature
sensors is presented. The problem was approached as a regression task where the

deviations between the real temperature measurements and the estimated temperature
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outputs from ANN models were analysed for the diagnosis of a simulated sensor
fault in the form of a calibration drift. It was observed that the simulated calibration
drift in one of the sensors was successfully detected by the concurrent use of Auto-
Associative and MISO ANN models. Various test cases were generated to examine
the performance of the proposed algorithm on the distinction between a calibration
drift and real temperature alterations that possibly happen due to environmental
changes, and it was shown that the proposed algorithm was capable of distinguishing
the faulty case from non-faulty cases. The results support the findings in the
literature in different fields asserting that ANN models that were constructed solely
using measurements of a group of related sensors as inputs can be used for the
validation of these sensors. By this way, without hardware redundancy or
dismantling the sensors to control their state of health, calibration process can be

realized by continuously monitoring and evaluating measurements.

In the second part, a systematic pre-processing scheme with the aim of improving the
performance of fault classification is presented. Using the raw features directly
collected from the SCADA system and various data processing principles, additional
features were generated to obtain inputs for ANN models that possibly give better
information on hidden relations in the system. The new features were constructed in
4 different principles by using knowledge-based, statistical, time-series and
difference characteristics of the original features. After obtaining the full set
containing the raw and generated features, a hybrid feature selection algorithm that
consists of filter and wrapper selection steps was employed to find out a successful
subset characterizing the problem. The results of this part show that the methods
applied in this level are effective on increasing the performance and reducing the
computational time. The highest impact was seen in the precision metric. It was
increased from 0.75 to 0.96 in the detection of generator heating faults which means
the duration of false alarm was decreased from 210 to 30 mins in the 3 months test
period. This result contributes to efforts aiming to decrease the false alarm rate of
wind turbine fault detection systems which is a significant problem in systems
designed using SCADA data.

The last part of the study presents the design of a 3-level fault classification system
that aims to detect, isolate and predict frequent, non-fatal wind turbine faults. The

fault types attempted in this level are the generator heating fault, mains failure and
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feeding faults. Other faults faced by the turbine was in insufficient amounts to train
and test ANN models. In this part, the problem was handled as a classification
problem in contrary to the sensor validation level where the ANN models were
applied to solve a regression problem. The results obtained in the fault detection
level are very promising in terms of accuracy and competitive towards the similar
works in the literature. In fault isolation level, the performance metrics are even
higher than the first level. One possible reason for this result can be the use of One-
Against-All ANN structure that enables to select input features more flexible than the
first level as each fault type have different indications than others. In the fault
prediction level, only the generator heating faults were attempted as the other two
frequent faults are related to outer circumstances and only monitoring the turbine
parameters do not provide indications of these faults. The results for the prediction of
generator heating faults show that the methods proposed are very effective. 5 out of 7
generator heating faults in the test set was successfully predicted and the prediction
horizon was found as large as 56 hours which is a significant expansion to similar

studies on generator heating faults in the literature.

In addition to the powerful computational characteristics of ANN models, achieving
high performance metrics are also partly rooted from the implementation of the
assistive methods. From this aspect, on top of feature construction and selection
methods, techniques to handle the imbalance rate of the training data set were also

proven to be effective on improving the results.

The results obtained in this thesis expand the performance of the findings in the
current literature and support the fact that despite the shortcomings of SCADA data,
they are useful to increase the reliability of wind turbines. It was shown that using
SCADA data and ANN models with additional assistive methods, significant
opportunities lie in the design of cost-effective fault detection systems.

A possible interesting topic for the future works can be spanning more techniques
about feature engineering methods. The feature construction and selection methods
attempted in this thesis were found to be useful. However, there are many other
methods proposed in the literature that can be applied to further improve the results

in the future works.
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The most important limitation of this thesis lies in the fact that the results belong to a
single wind turbine due to the non-availability of more comprehensive data sets.
Therefore, investigating the generalizability of success of the proposed methods can
be an important topic for future works. Similar methods proposed in this thesis can
be applied to different turbines in distinct working environments to test the
generalizability of the methods.

Another limitation is that in the sensor validation part, due to the absence of sensor
fault information the work was carried out creating a simulated fault assuming that a
calibration drift would result in a similar behavior that was generated in the test
cases. The other parts of this thesis do not include this kind of a limitation and the

data sets were not altered as they already include information on faults.

In terms of the quality of the data collected by the SCADA system used in this thesis,
non-availability of some types of data that could have been beneficial to further
improve the fault classification performance is one of the constraints faced in this
work. For instance, electrical parameters like generator voltage, current and
frequency are some of the basic SCADA parameters that could possibly be
informative on generator heating faults. However, despite their absence, the results
show a high potential. Therefore, the methods proposed in this thesis would have a

chance of producing even better results by applying a more complete data set.

The high-performance results for the detection, isolation and early prediction of
frequent wind turbine faults achieved in this thesis are very useful in two different
aspects. First, they contribute to the transition from preventive to predictive
maintenance approach for wind turbines which is important to reach an optimum
point between cost and performance. Secondly, an early detection system based on
the findings of this thesis would be effective in increasing the availability of wind
turbines and with the help of the precautions that can be taken before faults occur,
increase in energy conversion and system performance and preventing system

degradation would become possible.

In addition to the technical findings, during this thesis work it was seen that, working
towards creating platforms that support open data share policy in wind energy field is
a significant topic to accelerate the technological developments in wind farm

operations. By this way, more comprehensive comparisons between the methods
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presented in the literature can be realized and the industry would benefit from the

knowledge of experts working in this field.

In terms of the practical applicability, the methods presented can be directly used in
other wind turbines for the real-world applications. Moreover, the flexibility of the
methodology allows its use in fault detection purposes for other systems with a
sufficient amount of available data types and fault information.

As a result, this thesis contributes to works on improving wind turbine maintenance
strategies by presenting a methodology that was designed by implementing data-
driven methods that bring only computational costs without any additional hardware
costs. The results indicate that it is a promising field to further investigate in the way
of reducing costs of wind turbine operations and as a result contributing to the global

renewable energy aims.
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