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FOREWORD 

Worldwide conventional manufacturing technologies seem to have reached an end 
due to limitations in production techniques, material selections and properties. 
Nanotechnology, as a young challenger, is said to be the revolutionary solution to the 
limitations in the material properties and indirectly in the production techniques. 
Nano manipulation of materials has already been providing extraordinary features. 
Therefore, from now on nanotechnology phenomenon may not be regarded as a 
futuristic prediction anymore, because it is already a reality in our daily life. This is 
one of the reasons why I have chosen to research on “nanofiber production” as a 
branch of nanotechnology. Electrospun nanofibers having nanometer diameters and 
incredibly large surface area will determine the destiny of all fiber, membrane and 
composite based materials.  

In this work, electrospun nanofibers are produced from synthetic polymers at both 
laboratory scale and industrial scale. With a commercialization point of view, 
superior nanofiber based samples are produced. It is hoped that these products will 
be utilized by the national textile and energy industries. Therefore, I believe this 
investigation will be a candle to the researchers and manufacturers interested in this 
area since there is great lack of documentation.   

I would like to sincerely express my gratitude to my advisor Prof. Dr. Ali Demir who 
did not only encourage and guide me in my research period but also was a great 
example of moral values contributing me. Special thanks to Turkish Ministry of 
Industry and Commerce and ITU for financing this MSc thesis by SANTEZ program 
and allow this work to take place at laboratories of the Department of Textile 
Engineering.  

I am deeply indebted to my family assisting me for all times of this tough work 
period. I also want to acknowledge Abdullah Aşlamacı and Fatih Oruç for their great 
contribution to this work.  
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DESIGN AND MANUFACTURE OF POLYMERIC NANOFIBER 
MEMBRANES VIA ELECTROSPINNING METHOD 

SUMMARY 

Electrospinning process aims to obtain nanometer diameter polymeric fibers by 
means of high voltage electrical forces.  Polymer solutions are exposed to electric 
fields that transfer the solution from one point to another during solvent evaporation 
by decreasing the diameter of the fiber to nanometer levels.  

Basic electrospinning process and its fundamental aspects are discussed in this work. 
Process parameters of electrospinning are studied in detail so that a basic 
understanding of the nature of the process is achieved. The conventional 
electrospinning setups suggested in the current scientific literature is composed of 
one needle to be charged by high voltage and a collector plate to be grounded. At the 
beginning of this work, the conventional setup with one needle/collector had been 
successfully utilized. Afterwards, to challenge the critics about limitations in 
electrospinning process production rate, multi needle systems have designed and 
manufactured to increase the output of the system. 2, 4, 9, 16 and 24 needled 
electrospinning systems were installed and run successfully in five months period.  

At the second stage of the work, industrial scale electrospinning systems with 40, 50, 
100 and 256 needles are designed, manufactured and run successfully. Thermoplastic 
polyurethane (TPU) polymer solutions are prepared and fed into the industrial scale 
system. The final industrial scale electrospinning configuration with 256 needles is 
able to coat a one-meter wide fabric with nanofibers having diameters of 50-400 nm.  

By the help of multi needle systems, it is now possible to coat a fabric with 
nanowebs to be used in commercial product development stages of the work. Since, 
the targeted products such as Performance Fabrics and Battery Separators are to be 
developed; TPU and PAN (Polyacrylonitrile) nanofiber webs with 50x40 cm 
dimensions have been produced. After several nanofiber samples production, first 
models of nanofiber based Performance Fabric and Battery Separator which are 
commercially competitive are obtained. These resulting sample products are 
characterized in accordance with the specific applications.  

 



  xx



  xxi

ELEKTROSPİNNİNG YÖNTEMİYLE POLİMERİK MEMBRAN TASARIMI 
VE ENDÜSTRİYEL ÜRETİMİ 

ÖZET 

Elektrospinning prosesinin amacı yüksek voltaj kullanılarak nanometre çapında 
polimerik lifler elde etmektir. Elektrik alan kuvvetlerine maruz bırakılan polimer 
çözeltisi bir noktadan başka bir noktaya ilerlerken üzerindeki çözelti buharlaşır ve 
jetin çapı azalarak nanometre mertebelerine iner.  

Bu çalışmada elektrospinning işleminin farklı temel yönleri incelenmiştir. Prosesin 
doğasını daha iyi anlamak amacıyla proses parametreleri üzerinde detaylıca 
çalışılmıştır. Literatürdeki mevcut elektrospinning düzenekleri elektrik yüklenmiş tek 
bir iğne ve topraklanmış bir toplayıcıdan oluşmaktadır. Çalışmada ilk olarak tek 
iğneli elektrospinning işlemi başarıyla gerçekleştirilmiştir. Daha sonraki beş aylık 
periyodda 2, 4, 9, 16 ve 24 iğneli sistemler tasarlanmış ve başarıyla çalıştırılarak 
elektrospinning işleminin üretim hızı gibi kısıtlamaları aşılmaya çalışılmıştır. 

Çalışmanın ikinci aşamasında 40, 50, 100 ve 246 iğneli elektrospinning sistemleri 
tasarlanmış ve başarılı bir şekilde çalıştırılmıştır. 256 iğneden oluşan nihai pilot 
üretim sistemine termoplastik poliüretan çözeltisi beslenerek, bir metre eninde 
içerisinde 50-400 nm çapında lifler bulunan bir kumaş üretilebilmektedir.  

Çok iğneli elektrospinning sistemlerinin yardımıyla, çalışmanın ticari ürün geliştirme 
süreçlerinde kullanılmak üzere nano ağlardan oluşan kumaşlar elde etmek mümkün 
hale gelmiştir. TPU ve PAN nanoliflerinden oluşan ve 50 cm X 40 cm boyutlarındaki 
yüzeyler Performans Kumaş ve Batarya Separatör Malzemesi geliştirilecek ürünler 
olarak seçilmiştir. Çok sayıda nanolif numune üretildikten sonra ticari eşlenikleriyle 
rekabet edebilir nanolif tabanlı performans kumaş ve batarya separatörlerinin ilk 
modelleri elde edilmiştir. Ortaya çıkan numune ürünlerin, son kullanım amaçlarına 
yönelik karakterizasyonu yapılmıştır. 
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1.  INTRODUCTION 

In 2000, the American National Science Foundation forecasted that nanotechnology 

market will have one billion US Dollar capacities and nanotechnology related 

industries would employ 200 million people by 2015. Despite these numbers are 

based on data from government documents, the foresights may always contain faults 

as with every growing technology. Thus, a few industry and corporations related 

with nanotechnology had emerged in seven years after the launch of National 

Nanotechnology Initiative in the United States. The research and development 

activities on this area have been progressing very intensively. Therefore,  capacity of 

“Global Nanotechnology Market” in 2015 revised as 2.95 billion US Dollars in case 

semiconductors are counted [1]. These forethoughts are huge numbers as it is thought 

that the capacity of consumer goods was around 900 billion US Dollars and the 

industrial production was about 3 trillion US Dollars in the U.S.A. in 2005 [2]. 

 

Figure 1.1 : Growth and development of the innovations and technologies [3].  

Norman Poire, an economist from Merrill Lynch, argues that growth innovations 

drive the economy by supporting his thesis with some important revolutions. It is 

stated that it takes about 28 years for a new technology to become widely accepted 

which then it goes through a rapid development period for about a half century. 

Finally, it becomes widely knowable one century after the birth. As illustrated in 
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Figure 1.1, Poire thinks that nanotechnology which have been in the emerging period 

will shape the industry in forthcoming century [3].  

The studies on nanotechnology are carried out by various disciplines together or 

individually. It also has started to find some applications in textile industry. Today 

many nanotechnology applications, from fiber to finishing such as nanofiber 

production and nano dressing, take part in research topics of scientist in this industry. 

Nanomaterials have been started producing as nanoparticles. One of the most 

important advantage of nanomaterials is high surface area to volume ratio. Porous, 

selectively permeable, high surface area materials can be used in various 

applications. Therefore, nanofibers are potential materials for applications, which 

require high surfaces.  

A fiber having a diameter below one micrometer may be defined as a nanofiber. As 

these nanofibers can be manufactured from organics such as synthetic or natural 

polymers, they also can be produced from inorganic materials such as metals or 

ceramics [4]. 

Nanofibers can be obtained by high capacity processes such as meltblowing, 

spunbonding, bi-component (island-in-the-sea) fiber spinning as well as particular 

methods for instance self-assembly and nanolithography. However, cost, production 

rate, fiber structure, fiber diameter distribution, orientation factors are the causes, 

which limit the usage of these production systems. At this point, electrospinning 

method which has high production rate and low cost becomes advantageous [5].  

Nanofiber production in filament form can only be realized by electrospinning and 

electroblowing methods. Both of these methods are based on electrostatic fiber 

spinning. Metals, ceramics, polymers, particles, additives can be used as raw 

materials for electrospinning process. Moreover, complex nanofiber structures such 

as core-shell, hollow, highly porous, crimped, bi-component nanofibers can be 

obtained by using special methods [6, 7].  
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2.  ELECTROSPINNING PROCESS 

2.1 Nanofibers and Electrospinning 

Diameters of nanofibers are much smaller than human hair (Figure 2.1). The 

paramount advantage of nanofibers is to have extremely high surface area to volume 

ratio. For example, when 10 µm and 100 nm polyethylene fibers are compared, 13 

km microfiber (with 10 µm diameter) is produced from one gram polymer while 

130,000 km nanofiber (with 100 nm diameter) is obtained from the same amount of 

polymer. These microfibers construct 0.4 m2gr-1 surface area while nanofibers make 

40 m2gr-1. In denier numbering system, 9000 meters of one gram fiber is defined as 

one denier so, 10 µm fiber equals 1 denier and it equals to 10-4 denier for 100 nm of 

nanofiber [6]. 

 

Figure 2.1 : Human hair and nanofibers. 

Principle of electrospun nanofiber production method is based on thinning of 

viscoelastic fluid material by drawing it in a path, under internal and external forces.  

In solution and melt spinning production methods fibers are made thinner under 

mechanical forces, while in electrospun fiber production, fluid material is oriented by 

electrostatic forces during solidification, so nano-sized fibers are obtained. Nanofiber 

filament is produced as long as material is fed to the system that is also principle of 

conventional fiber spinning methods. 
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A laboratory electrospinning set-up (as seen in Figure 2.2) basically and commonly 

consists of polymer solution, solution feeding system, high voltage power supply and 

collector plate. By some means, a polymer droplet is formed on the needle with a 

feeding rate about 1-7 ml/h. High voltage which have potential more than a few 

kilovolts is applied to this polymer droplet on the tip of needle. 

 

Figure 2.2 : Electrospinning set-up. 

A collector, which is grounded or charged with opposite potential, is placed at a 

suitable distance from the needle. The semi-spherical droplet under surface tension 

forces forms a conical shape into direction of the collector by the effect of 

electrostatic forces opposing to surface tension, this cone is named as “Taylor cone”. 

When the voltage is increased a little more, a polymer jet ejects from droplet and it 

started to travel to the collector. Jet moves into a linear path for the first several 

centimeters, and then it continues its travel on a helical path because of the high 

stress difference between internal and external forces. During this time, viscoelastic 

jet becomes thinner by drawing and it also solidifies. The helical motion of jet in 

unstable region is defined as “whipping”. In addition, this phenomenon provides the 

nonwoven and porous structures from fibers accumulated on the collector [8-10]. 

It is possible to produce melt electrospun fibers from thermoplastic polymers such as 

polypropylene or polyethylene. Because it requires more drawing ratios and 

solidifies quickly, melt electrospinning process contains difficulties in practice [8]. 
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2.2 Electrospinning History 

Though electrospinning is a topic, which is actively researched, fundamental of 

process goes back to 1700’s. Gray was the first person who worked on the activity of 

water droplets under electrostatic forces in 1731 [11]. At the end of 1800’s Larmor 

explained the movements of dielectric liquids under electric charges by 

electrodynamics theory [12]. This theory made contributions to electrospinning 

which was firstly experimented by Cooley and Morton in the first decade of 20th 

century. In addition, the first patent about electrospinning was published by Cooley 

in 1902 (see Figure 2.3). However Cooley’s set-up as seen in Figure 2.3 was not a 

fiber spinning process, fluids are collected onto a drum as dispersed particles by 

using electrostatic forces [13]. In the same year, Morton patented a process that he 

produced liquid particles under positive or negative high electrical potential [14]. 

Hagiwara in 1929 designed a viscose fiber production system by electrospinning 

[15].  

 

Figure 2.3 : Cooley’s electrospinning set-up [13]. 

The first patent for electrospun fiber production, which is commonly acknowledged, 

was published by Formhals in 1934. In the Formals’ patent, a solution was prepared 

by solving cellulose acetate in ethylene glycol, then a high voltage about 5-10 kV 

was applied to the solution by a rough drum. He accumulated the fiber onto another 

drum then he managed to collect fibers as a bunch from this drum [16]. Formhals 

used various systems and he published eleven patent applications in following ten 

years [6].  
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Vonnegut and Neuber, in 1952, managed to produce regular droplets having 

diameters about 100 µm by employing high voltage. They used water that conduct 

high voltage in a capillary glass tube which has a hole diameter smaller than 1 mm. 

They applied 5-10 kV high voltage to a copper wire which does not have any contact 

to water [17].  

Drozin invented that some liquids are dispersed under high voltage conditions in 

1955. He used an electrospinning set-up which was similar to Vonnegut and 

Neuberin’s system, he investigated the characteristic of droplets in different 

conditions [18]. 

In 1966, Simons achieved producing very thin and light nonwovens by application of 

electrospinning set-up, which is also published as a patent application. Fiber webs in 

different structures were obtained by polymers such as cellulose esters and ethers, 

vinyl, acrylic, polystyrene, polyurethane, polycarbonate solved in chloroform, ketone 

based solvents which have different dielectric constants [19].  

In 1969, Taylor made investigations on liquid droplets, electrically charged polymer 

jets, and derived a theory as a result of his observations (see Taylor’s electrospinning 

set-up in Figure 2.4). In this theoretical model, it is showed that a stable fluid droplet 

becomes unstable under the effect of critical voltage. Taylor also reflects on the 

Zeleny’s theory and he argued that instability starts when internal and external forces 

equally affect the polymer droplet [20].  

He set up a test equipment in order to show voltage value the liquid from capillary 

tube is required as seen in Figure 2.4. Polymer in C reservoir is activated by applying 

potential difference between B and E plates. If voltage is increased, at first, droplet 

take a convex form by quitting from A, D metal tube. Then, a little increase in 

voltage moves the jet from A tube to B plate [20]. 

 

Figure 2.4 : Taylor’s electrospinning set-up [20]. 
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In 1971, Baumgarten produced acrylic microfiber by electrospinning method. In the 

experiment a solution was prepared with commercial copolymer contains 43.6% 

acrylonitrile, 56% methyl acrylate and 0.4% sodium styrene by solving it in dimethyl 

formamide. In order to display the events taking place between needle tip and 

collector plate, a camera and a flasher are placed into the electrospinning set-up as 

seen in Figure 2.5. It is observed that the shape of the polymer droplet becomes semi-

cylindrical from conical if viscosity is increased. Additionally, it was verified that 

linear jet length increase with increasing viscosity and this jet length is directly 

proportional to fiber diameter. In addition to these, the number of jets increases with 

increasing flow rate, however fiber diameter does not change. All these phenomena 

are supported by the experimental photographs (see Figure 2.5) [21].  

 

Figure 2.5 : Electrospinning apparatus with photographic setup [21]. 

In 1977, Martin et al. manufactured two and three-dimensional prosthesis from 

organic materials such as PTFE (polytetrafluoroethylene), polyurethane, polyvinyl 

alcohol, polyvinyl pyrrolidone, polyethylene oxide by electrospinning method. Fiber 

webs, collected onto a non-conductive conveyor belt, are taken from belt in order to 

be used as medical prosthesis, wound dressings and tissue scaffolds as seen in Figure 

2.6 [22]. 

In 1978, Simm et al. who worked for Bayer in Germany published a patent about an 

electrospinning design, which produces electrospun polystyrene fiber webs for 

filtration applications. Solution is fed from a reservoir by a pump to the rotary 

nozzle, so at the nozzle tip a high voltage is applied to the solution as seen in Figure 

2.7. 
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Figure 2.6 : Continuous electrospun fiber production by Martin et al [22]. 

At the both sides of the nozzle, two conveyor belts are placed as collector. Simm et 

al. observed that temperature, humidity and solution conductivity affect the diameter 

of electrospun fibers. Electrospun fiber web is produced as a composite material by 

laminating it with a suitable filter paper [23].   

Lorrando and Manley made experiment on polyethylene and polypropylene by 

combining electrospinning and melt spinning process to produce melt electrospun 

fibers. In this novel production system, high pressure forces which is required for 

conventional melt spinning replaced low pressure and electrostatic forces [24]. 

 

Figure 2.7 : Apparatus for the production of fiber fleeces by Simm et.al.[23].  

As electrospun fiber was compared to the fibers produced by conventional melt spun 

fibers, its orientation was low and some beads were also generated on the fiber 
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surface. The level of voltage and melt viscosity directly affects the diameter of fiber. 

It is determined that finer fibers can be produced with higher voltage values and 

higher temperatures. As for spinneret diameter, it was stated that spinneret diameter 

does not constitute a factor on fiber diameter [24].  

In 1982, Bornat patented a design for manufacturing electrospun tubular products to 

use as medical products. In this system (as seen in Figure 2.8), biocompatible 

polymers such as PTFE, polyurethane, polyamide, polyacrylonitrile, polyvinyl 

alcohol, pyrrolidone, polyethylene oxide were preferred. High potential difference is 

generated between polymer solution loaded needles and a rotating grounded rod, 

which is also used as collector. Fibers are accumulated on to this rotating rod to form 

tubular nanofiber webs for medical applications. The final products are constructed 

with porous web containing fine fibers [25, 26].  

 

Figure 2.8 : Apparatus for preparing tubular fiber webs [25]. 

In 1982, Donaldson Inc. incorporated nanofibers into filters to increase the efficiency 

of filtering small particles. The first electrospun fiber product was introduced to the 

market by the trade name Ultra-Web®. Electrospun nonwoven mesh incorporated 

with catalyst has been used in clothing to provide protection from chemical and 

biological hazards [27]. 

After an interruption for a decade or so, a major upsurge in research on 

electrospinning took place due to the increased knowledge on the application 

potential of nanofibers in different areas such as high efficiency filter media, 

protective clothing, catalyst substrates and adsorbent materials. Research on 

nanofibers gained momentum due to the work of Doshi and Reneker [28]. Doshi and 

Reneker studied the characteristics of polyethylene oxide (PEG) nanofibers by 
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varying the solution concentration and applied electric potential. The jet diameters 

were measured as a function of distance from the apex of the cone and they observed 

that the jet diameter decreases with the increase in distance. They found that the 

solution with viscosity less than 800 centipoises (cP) was too dilute to form a stable 

jet and solutions with viscosity more than 4000 cP were too thick to form fibers [29].  

2.3 Electrospinning Theory 

It is stated that five forces act on polymer solution or melt during electrospinning 

process (Figure 2.9). These forces make fluid droplet a mobile jet and they move the 

jet towards to collector at high acceleration rates [30]. Forces are shown in the 

equation below,  

In this equation, “l” is the distance between spinneret and collector.  

)d-m.(=Fg+Fcap+Fve+Fc+Fo=Ft 2

2

dt
l  (2.1) 

Fo: Electrostatic force generated by the electric field.  This force is the resultant force 

of electrostatic forces between charged spinneret and collector. It goes through 

droplet with force 

 .
l

V
 x q = E x q=Fo 0  (2.2) 

 In the equation, q is quantity of charge on droplet, Vo is applied voltage, and l is 

needle to collector distance.  

Fc: repulsive coulomb force acting on droplet from internal droplet forces. This force 

acts as a repulsive forces into droplet generated from droplet molecular structure. So, 

it is defined as 

 e²/l²=Fc  (2.3) 

In the equation, “l” provides stretching of the jet generated on the needle in two 

directions.  
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Figure 2.9 : Schematic diagram showing balance of external and internal forces. 

Fcap (Surface tension): hinders the stretching of droplet and jet, it makes the 

polymer droplet stable. This is characteristics of viscous fluids.  

Fve (Viscoelastic force): hinders the stretching of polymer jet and decreases the 

fluidity of liquid polymer. It depends on the frictional and contact forces between 

polymer chains.  

Fg (Gravitational force): It positively or negatively affects the total force on the 

droplet or jet depending of electrospinning set-up direction, from down to top or 

from top to down, during the travel of jet from needle to collector [31]. 

In comparison to other forces, the gravitational force is negligibly smaller. Therefore, 

electrospinning occurs because of the force differences between internal forces such 

as surface tension, viscoelastic forces of the polymer jet and the electrostatic forces, 

which acts on the jet in the opposite direction of internal forces. For especially 

solution electrospinning process, when a small volume of a polymer solution, which 

is stable under the effect of internal forces, is charged with electric, charged 

molecules are slowly prompt these polymer droplet unstable. At the point where 

internal forces equal to external polymer droplet takes a conical shape called Taylor 

cone. Then the balance between internal and external forces is disturbed with a small 

increase of in electrostatic forces, a jet generates from droplet and begins to travel to 

the collector. The difference between internal and external forces increases as much 
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as jet approach to collector that provides thinning of the jet at a very high draw 

spinning ratio. At this section, the jet travels by forming a helical path (Figure 2.10), 

this motion of the jet is called whipping instability, which not only enhances the 

draw ratio but also, provides much longer time for solidification of viscous jet. At the 

end of this travel, solidified polymer jet is accumulated on the collector as a 

continuous filament having diameter smaller than one micron. In brief, it can be said 

that a polymer solution having suitable properties is spun and solidified under 

electrostatic forces, so a continuous filament, which has nano size diameter is 

produced by a hybrid process composed of electrospray and dry spinning named 

electrospinning [31]. 

 
Figure 2.10 : Taylor cone and electrospinning jet [32]. 

2.4 Factors Affecting Electrospinning Process and Nanofiber Properties 

There are a number of parameters that determine internal and external forces. These 

can be classified as solution properties (concentration, viscosity, molecular weight, 

and surface tension), process parameters (voltage, needle to collector distance, flow 

rate, needle dimensions) and ambient parameters (temperature, humidity).  

2.4.1 Solution properties 

Solution properties directly affect the fiber morphology, production rate, and 

producibility in electrospinning process. Concentration, viscosity, surface tension, 
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solvent properties, solution conductivity and solution temperature are significant 

parameters, which specify the solution properties.  

2.4.1.1 Viscosity 

Viscosity describing the intermolecular interactions in polymer solutions is the most 

important parameter that determines fiber diameter and morphology in 

electrospinning method. For polymer-solvent systems, concentration plays the 

biggest role on the viscosity by decreasing or increasing the intermolecular 

interactions. Therefore, a linear relation exists between these two parameters. In 

addition to this, the interactions between the polymer molecules with solvent, organic 

or inorganic additives are other factors that affect the viscosity [33].  

In order to produce nanofiber by electrospinning process, the viscosity of the solution 

has to be within a strictly defined range. If viscosity is too high, the electrostatic 

forces are not able to generate a jet from the polymer fluid or the fibers with diameter 

in micron range can only be produced. In contrary, a polymer solution with lower 

viscosity generates nano- and micro-particles instead of fibers. Hence, this process is 

called electrospraying. During a production with electrostatic forces from a suitable 

solution viscosity around 1-200 poise, sufficient viscoelastic force is provided, any 

discontinuity does not exist on the jet, as a result, nanofibers can be obtained by 

evaporation of solvent from the jet [34]. While all other parameters are kept constant, 

the viscosity and the surface tension are the prime factors which set this production 

range [35]. 

As seen in Figure 2.11, the relation between viscosity and the fiber diameter is 

claimed to be exponential [36]. Because polymer chains have increasing mobility 

and intermolecular interactions are weaker in low viscosity solutions, stronger 

instabilities occur during electrospun fiber production. Consequently, the jet is 

subject to higher elongation, so fibers with smaller diameters are produced. When 

viscosity is increased, polymer molecules obtain more stable structure that results in 

coarser fiber diameters because of lower elongation ratio of the jet [33].  
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Figure 2.11 : Average diameter of PA fibers as a function of concentration and the 
viscosity of solutions [36] 

In addition to the homogeneity of the solution, the variation in the process 

parameters during fiber production process, the instability of the jet during the travel 

from spinneret to collector and the splaying of the jets are the factors that shape 

characteristics of the fiber diameter distribution. In general, the experiments show 

that decreasing viscosity results in obtaining more homogeneous fiber diameters. On 

the other hand, the electrospun fiber production with high viscosity solutions 

produces a broad fiber diameter distribution. Bimodal or trimodal peaks are observed 

on graphics of the fiber diameter distributions. The reason for this result is that some 

of the jets are broken into small jets during fiber production; however, some others 

stay as they are. This is a problem experienced frequently in the electrospraying [33].  

 

Figure 2.12 : Morphology of beaded fibers versus solution viscosity. Electric field is 
0.7 kV/cm, The horizontal edge of each image is 20 microns [37]. 
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Another effect of viscosity on the fiber morphology is the defects called “bead 

formation”. Bead formation is a disorder resulting from jet irregularly due to the 

reasons stated above. In addition to this, size and structure of beads can differ. As 

seen from Figure 2.12, the beading behavior of fibers electrospun from high viscosity 

solutions is lower than less viscous solutions [37].  

As seen from Figure 2.12, increasing viscosity decreases the number of bead defects 

on fibers, and spherical bead defects are generated from lower viscosity solutions. 

On the other hand, the beads obtain elliptical shapes with increasing viscosity. At the 

end, the smooth fibers are electrospun from much higher viscous solutions without 

any bead formation [37].  

2.4.1.2 Concentration 

The solution concentration is one of the most important parameter for 

electrospinning process, it is necessary that solutions with suitable concentration and 

viscosity must be used in order to produce nanofibers by this method.  

 

Figure 2.13 : SEM images of PA6/formic acid solution with different concentration 
a)10% b)14% c) 16% positive  d) 16% negative  e)18% positive  
f) 18% negative g) 26% positive h) 26% negative [38]. 

If concentration is too low, the jet can not withstand the electrostatic forces due to 

low viscoelastic force that result in breaking of jets. As a result, discontinuous fibers 

or even particles are formed. Thus, an electrostatic process is called electrospray 

occurs which is widely used in the ink-jet printing process, electrostatic powder 
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painting, electrostatic paint spraying. On the other hand, if concentration or viscosity 

is within a suitable range, molecular contacts and friction between polymer chains 

increase. These internal forces exhibit resistance to the electrostatic forces that 

inhibit jet breaks or bead defects and also make fiber thinner by providing 

electrostatic forces to elongate the jet [38].  

In Figure 2.13, PA 6 (polyamide 6) nanofibers are shown which have different 

concentrations ranging between 10-26% w/v. For every material used to produce 

nanofiber by the electrospinning process has limit values of concentration [38]. Even 

particles or fibers coarser than one micron can be produced at the outside of these 

limits. As examples, 10-46% for PA, 4-10% for PEO, 1-4% for PLLA are favorable 

concentration ranges in order to get regular nanofibers. At this point, it has to be 

stated that the molecular weight is also another factor.  [38-40].  

 

Figure 2.14 : Fibers diameter variation as a function of precursor solution 
concentration and applied voltage [41]. 

The fiber diameter is linearly proportional to the concentration. An increase in 

concentration increases the fiber diameter as seen in Figure 2.14.  In order to 

electrospin uniform nanofibers, highly concentrated solutions must be used. [41]. 

2.4.1.3 Molecular weight 

Molecular weight is one of the parameter that directly affects the viscosity of the 

material. Increasing the molecular weight results in an increase in the length of the 

polymer chains as well as an increase in the chain interactions and a decrease in 

distance between molecules. Generally when a high molecular weight polymer is 



 17

solved by a solvent, the viscosity of the solution is higher than the solution prepared 

from the low molecular weight of same polymer [38]. 

Experimental work is carried out by 100,000 and 300,000 molecular weight PLLA, 

fiber diameters electrospun from 4.5%wt concentration of high molecular weight 

equals to 9 wt% concentration of low molecular weight solutions. Molecular weight 

plays an important role on determining the solution concentration and fiber diameter 

(see figure 2.15) [39].  

 

Figure 2.15 : Molecular weight effects on the morphology of the electrospun PLLA 
fibers [39]. 

2.4.1.4 Surface tension 

Viscoelastic forces protect polymer droplet against irregular forces during 

electrospinning. The surface tension tends to keep the polymer droplet in minimum 

surface area, in contrast the electrostatic forces push them to elongate and even to 

break the polymer jet in order to disperse the polymer droplet into structures having 

maximum surface area [37].  
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Figure 2.16 : Concentration dependence of solution surface tension and solution 

viscosity for PEO-water solutions [28]. 

Experiments carried out with PEO showed that the surface tension severely decreases 

with increasing concentration ratio. As it is showed in Figure 2.16 smoother fibers 

are obtained because of the regular solidification during travelling of the jet to the 

collector as surface tension decreases [40]. 

2.4.1.5 Solvent 

Solvent used to make polymer chains mobile and open affects the solution viscosity, 

the surface tension and the solution conductivity. Thus, interactions between 

viscoelastic forces, surface tension, electrostatic forces and evaporation, phase 

inversion can be changed in respect of solvent and solvent systems [38, 42].  

 

Figure 2.17 : SEM images of 4% PVP (w/v) nanofibers spun in different solvents; 
A) ethanol B) DMF C) ethanol/DMF [42]. 

The effect of the solvent properties such as surface tension, viscosity, charge density, 

boiling point on PVP nanofiber morphologies is observed by an experiment in which 

ethanol, DMF and ethanol/DMF solvents were used. Increasing amount of ethanol 
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added to the system increases the viscosity of solution; however, reduction in surface 

tension occurs. That provides producing shapely regular and smooth nanofibers. As 

DMF ratio of solvent is increased. The so called “bead defects” are generated as a 

result of reducing viscosity and also increasing the surface tension. Fibers in Figure 

2.17-A having diameter of 300 nm can be made thinner about 200 nm as in Figure 

2.17-C by adding suitable DMF to the ethanol which provides conductivity and 

suitable viscosity and surface tension values to the solution [42].  

2.4.1.6 Additives  

Additives such as salts, surfactants, plasticizers, polyelectrolytes added to the 

polymer/solvent systems can alter the electrospun fiber diameter, morphology, 

diameter distribution and physical properties of fiber web. Because of this, they 

affect the internal, external forces and phase separation in electrospinning process.  

In the observations by adding salt to the solution, it is observed that nanofibers with 

smaller diameters are generally produced. However, this result can not be 

generalized as that every salts give similar results, because each salt has different, 

specific chemical structure and molecular size. In consequence of this observation, a 

salt, which gives favorable results for polymer solutions, could not form similar 

effects for other solutions in electrospun fiber production. Each salt specifically react 

with polymer and solvent molecules with different intensity that results in various 

changes in viscosity, surface tension and conductivity [33].  

The effect of different salts on electrospun PAN nanofiber properties is 

experimentally investigated by Qin, et al.[43]. It was observed that salts added 1%wt 

to the solution increases conductivity of the solution to superior levels as seen in 

Figure 2.18. It is also stated that viscosity and shear strength are slightly affected by 

the salts added to the solution. Added salts to PAN/DMF solutions more than 4% 

give limited decrease to viscosity and shear strength  properties of the solution [43].  
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Figure 2.18 : Comparison of conductance of solutions with different kinds of 
concentration and added salt [43]. 

In Table 2.1, it is argued that, final nanofiber diameter is directly proportional to the 

solution conductivity as a result of velocity of jet increasing by the effect of solution 

conductivity increment [43]. 

Table 2.1 : Mean values of fibers electrospun by solutions with different salts [43]. 

Salt Average fiber 
diameter (nm) 

LiCl 

NaNO3 

CaCl2 

NaCl 

473 

462 

444 

410 

In addition to this, ion diameters of salts play important role on the diameter of 

electrospun fibers. Smaller diameter ions have higher charge capacities. In addition, 

mobility of ions in the electric field is higher. A study executed on PLDA with 

different salts which have 1% salt concentration by Zong et al. [44] showed that 

NaCl salt produces thinner nanofibers than NaH2PO4 and KH2PO4 solutions do. The 

researchers explained this result on the difference in the atomic diameters of ions 

[44]. 

Salt ratio added to the solution could be as diverse as ranging from 0.01% to 1% . It 

is stated that a slight amount of salt in the polymer solution significantly affects the 

electrospun fiber diameter. However excessive salt contents than these ratios could 
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give different results such as coarser diameter because of increasing velocity of the 

jet during travel from needle to collector or thinner fibers as a result of increasing 

columbic forces. It is found that fiber diameter distribution realizes in narrower range 

by adding salt to the solution. Also, production rate can be scaled up by increasing 

solution conductivity with salts which has up to 10 mS cm-1 values [33].  

 

Figure 2.19 : Effect of salt concentration on jet current [45]. 

Although it is stated that a linearly proportional relation exists between production 

rate and solution conductivity, excessive solution conductivity provokes jet activity, 

thus this intensity of coulomb forces on polymer jet increases as seen in Figure 2.19. 

Extra low or extra high solution conductivity could cause disorders in electrospun 

fiber production [33]. 

In the electrospinning process, polyelectrolyte materials can perform similar effects 

by increasing charge density, which also provided from adding salts to polymer 

solutions. Son et al. [46] managed producing thinner and bead free fibers by adding 

PAA and PAH polyelectrolyte materials with different ratios to 7 wt% of PEO/water 

solution. Despite the fact that only small differences occur in viscosity and surface 

tension as seen in Figure 2.20, the solution conductivity tremendously increases by 

adding polyelectrolyte material to polymer/solvent system.  

While average fiber diameter is about 360 nm for PEO solution without any additive, 

150 nm diameter of fiber is produced by adding 4% PAA or PAH to the solution. In 

this experiment, despite little concentration decrease due to the addition of the 
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polyelectrolyte, smoother fibers are produced because of providing higher spinning 

force resulting from an increase in charge density. It is proved that bead defects are 

observed in fibers produced from 7 wt% concentrated PEO solution, however there is 

no bead defect seen on fibers electrospun from PAA or PAH polyelectrolyte added 

solutions [46].  

 
Figure 2.20 : Changes in (a) viscosities, (b) surface tensions, and (c) conductivities 

of 7 wt% PEO/water solutions with different amounts of PAH and 
PAA [46]. 

It is also possible to produce thinner and smoother nanofibers by surfactants that can 

be used in polymer solutions. Jung et al. [47] carried out an experiment in order to 

observe effects of surfactants on solution properties and fiber diameter. They added 

to PVA/water solution anionic, cationic, amphoteric, and non-ionic surfactants in 

various ratios. Each surfactant reacts with solutions in different ways. Therefore, 

solution properties such as viscosity, surface tension, conductivity of different 

surfactant added solution differs from the others. As a result of their study, they have 

stated that 4% amphoteric surfactant added solution gives thinner and smooth fibers. 

2.4.1.7 Solution temperature 

If a polymer solution is heated up at the constant concentration, the polymer chains 

opens up, interactions between polymer chains decrease, thus viscosity declines. By 

decreasing viscosity, external forces face with weaker viscoelastic forces; 

electrostatic forces easily draw the polymer jet during electrospinning. Table 2.2  

taken from Kataphinan’s study shows properties of polyamide 6/formic acid 

solutions at different temperatures and fiber properties obtained from this solutions 

[48]. 
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Table 2.2 : Viscosity, surface tension, conductivity and nanofiber diameter of 
20%wt  PA6/formic acid solution at different temperatures [48]. 

Solution 
Temperature 

(0C) 

Viscosity 
(cp) 

Surface Tension 
(mN.m-1) 

Conductivity 
(mS.cm-1) 

Fiber 
Diameter 

(nm) 
30 

40 

50 

60 

517 

387 

284 

212 

43.2 

42.3 

41.8 

41.1 

4.2 

3.9 

3.8 

3.4 

98.3± 8.2 

94.0± 6.3 

91.8±7.2 

89.7±5.6 

 

Despite solution conductivity slightly decreases, more reduction in viscosity value 

occurs which results in producing 10% thinner fiber [48].  

Experiment conducted by Demir et al.[45], polyurethane-urea nanofibers were 

produced at 30 oC have 179.2 nm diameter values, however nanofibers having 92.2 

nm diameters can be produced from solution at 60 oC. In addition to this, it has 

determined that increasing temperature provides electrospinning of smoother fibers 

and increases fiber production rate.  

2.4.2 Process Parameters  

In the electrospinning process, regular and very thin fibers can be produced as long 

as a balance in process parameters (voltage, needle to collector distance, flow rate, 

spinneret geometry, and polarity) provided.  

2.4.2.1 Applied voltage 

A polymer droplet under the effect of viscoelastic and surface tension forces is 

prompted by electrostatic forces in the electrospinning process. The resistance of 

these forces to each other provides elongation of the jet to nano size diameters. To 

produce finer nanofibers, voltage applied to system must be adjusted very precisely. 

In fact, to generate a jet from droplet, which is under the effect of remarkable surface 

tension forces, a critical voltage value is necessary at a distance from the needle. 

Voltage, which is lower than this value, is not sufficient to drive the polymer droplet.  

Experiment made by Lee et al. in conditions of 13 wt% PS/DMF-THF concentration, 

12 cm needle to collector distance, shows that up to voltage value of 15 kV spherical 

beads on fibers obtain elliptical shapes. After 15 kV, beads reshape themselves into 
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spherical forms as voltage increases. The polymer jet is drawn by higher electrostatic 

forces up to 15 kV results in higher elongation of fiber. However, values over a 

critical voltage (15 kV in this case) draw ratio of the jet decreases because of higher 

velocity of the jet in the electrospinning area. As a result, the fiber diameters become 

coarser, the number and the diameter of the beads on fiber also increase (see Figure 

2.21) [34].  

 
Figure 2.21 : (a) The change of bead morphology and (b) the aspect ratio with the 

applied voltage (PS dissolved in the mixture of THF/DMF, 50/50 
(v/v)). The solution concentration and needle to collector distance are 
13 wt%, 12 cm, respectively [34]. 

Increasing voltage accelerates the drawing velocity of the fiber, while the current 

created between the needle and the collector hinders the whipping instability. 

Decreased whipping instability means coarser or beaded fibers.  

Additionally, if solution feeding rate is much lower from the applied voltage can 

draw, a Taylor cone is generated inside the capillary of the needle, hence polymer jet 

rapidly accelerates to the collector. This phenomenon increases the drawing effect. 

The increased whipping in the electrospinning process also cause production 

disorders and results in jet breaks and bead defects on fiber web [45]. 

High voltage does not only affect the physical properties of the fiber, but also it 

changes the crystallinity of the fiber because polymer molecules are aligned in well 

organized manner by the electric field. If applied voltage is increased, the polymer 

jets get faster. This causes a reduction in the amount of amorphous area of the fiber 

because reducing travel time of the jet also limits the required orientation time for the 

fiber [49].  
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Figure 2.22 : Optical microscope images of PEO nanofiber web produced by a) AC 
b) DC electrospinning [50]. 

The type of the high voltage power supply such as voltage generators working in DC 

or AC mode, affect the process parameters. Consequently, it can affect the diameter 

and the morphology of the fibers or fiber webs. If an AC power supply is used on the 

system, forces that determine the whipping instabilities become weaker which has a 

positive role on elongation and solidification of fiber. Fibers electrospun by AC high 

voltage power supply are aligned on the collector as parallel to each other because jet 

which is charged with alternative current moves to collector faster and takes longer 

distance than direct current (DC) charged jet does as shown in Figure 2.22. As a 

result of these, fibers which is produced by AC current power supply, are coarser and 

more wet when it is compared to electrospun fibers accumulated by DC power 

supply [50].  

2.4.2.2 Needle to collector distance 

In order to make thinner a macro size jet by elongation and solidification, it requires 

5 meter length from spinneret to winding in dry spinning fiber production process 

though polymer solution temperature is close to the boiling point. By this 

arrangement, a 40 µm diameter of fiber can only be manufactured [51]. However, 

one or two decimeters space is effective for producing fibers with nano size from a 

polymer at room temperature by electrospinning process.  

Needle to collector distance and applied voltage are the factors, which determine the 

electrical field forces acting on polymer droplet. Increasing the distance between the 

two charged poles, parabolic decrease is shown in electric field forces. The effects of 

needle to collector distance on production of electrospinning process are similar to 

the voltage effect, but it acts conversely. Additionally, a decrease in distance between 
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two polar point increases the electric field which causes electrospinning of coarser, 

semi solidified, bead defected fibers [33].  

An exact linear relation between needle to collector distance and fiber morphology 

may be established as stated for the voltage effect. It is difficult to generate a 

polymer jet from solution droplet with much long needle to collector distance 

because sufficient electric field is not provided at long distances. On the other hand, 

essential time and path for solidification and elongation can not be supplied with 

much short needle to collector distances. The needle to collector distance defines the 

reaching time of jet to collector, solidification amount and whipping instability of jet 

[33].  

2.4.2.3 Flow rate 

In electrospinning process, for every voltage value applied to the solution, there must 

be a certain flow rate, which can response to that voltage which drives the solution 

from feeding zone. If the flow rate is higher than a certain value that a definitive 

voltage can not drive it properly, fibers with coarse diameters and beaded structures 

are obtained [44].  

It is more difficult to solidify the polymer jet at high flow rates. The residual solvent 

on the jet can convert a fiber web into a film layer when jet reaches the collector due 

to dissolving of the fiber. High flow rates cannot be employed in order to provide 

enough solidification [52].  

 

Figure 2.23 : Effect of feeding rates of 15 wt% PAN/DMF solution on nanofiber 
morphology (voltage: 10 kV, needle to collector distance: 15 cm) 
feeding rate: (a) 4 mlh-1; (b) 2 mlh-1; (c) 1 mlh-1 [53]. 

A regular flow rate is necessary to control diameter distribution of the final fiber. If 

solution is fed to the system less than the electrostatic forces can spin, solution 
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solidifies in needle tip, which causes choking up of the needle. Conversely, polymer 

solution leaks from needle if solution flow rate is kept at higher value than critical 

point. This irregularity of feeding rate carries out different size of fiber diameter, in 

other words fiber diameter distribution increases. In addition to this, it is possible to 

increase production rate by concurrently raising voltage and flow rate [33].  

It is stated that increasing or decreasing feeding rate in a specific flow rate range 

affects the fiber diameter and morphology. Jalili et al. made an experiment with 

PAN/DMF solution, beads and high diameter distribution on fiber is observed with 4 

ml/h flow rate resulted from electric field does not completely respond to the flow 

rate (see Figure 2.23). Smooth and homogenous fibers are obtained when 2 ml/h flow 

rate is applied. While flow rate is decreased to 1 ml/h, solution flow becomes slower 

against voltage, so bead defects and fiber diameter irregularities take place on fiber 

web [53].  

2.4.2.4 Spinneret geometry 

Surface tension of droplet exiting from spinneret increases with decreasing spinneret 

inner diameter. If applied voltage is kept at a constant potential, the acceleration and 

mean velocity of the jet decrease because of the increased surface tension. It 

becomes easier that jet breaks into smaller jets and gets thinner by decreasing 

velocity of the jet. Thus, spinnerets with smaller diameters are preferred (see Table 

2.3). However running of the electrospinning process becomes difficult if inner 

diameter of spinneret is smaller than 0.5 mm because of excessive increase in surface 

tension [49]. 

Table 2.3 : Effect of needle diameter on fiber diameter [49]. 

Fiber diameter 
distribution (µm) 

Different spinneret diameters and 
fiber diameters (%) 
0.7 mm 0.9 mm 1.2 mm 

0-1 
1-2 
2-3 
3-4 
4-5 
5-6 
6-7 

Average fiber 
diameter 

62 
25 
9 
3 
1 
0 
0 
1.0 

46 
48 
6 
0 
0 
0 
0 
1.1 

19 
34 
8 
15 
13 
5 
6 
2.6 
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In study of Maccosay et al., electrospun fibers were produced by using number 18 

(Inner Diameter: 0.83 mm, Outer Diameter:1.23 mm), number 22 (ID:0.4 mm, 

OD:0.7 mm) and number 26 (ID:0.1, OD:0.45) needles in same conditions, and 

diameter of 10-12 fibers are measured on SEM photographs of electrospun fiber web.  

 

Figure 2.24 : Effect of inner needle diameter to fiber diameter [54]. 

According to the available information in the literature, it is stated that inner 

diameter of needle is correlated with fiber diameter, however results showed above 

exhibit that a correlation between needle inner diameter and fiber diameter does not 

clearly exist (see Figure 2.24) [54]. 

Mo et al. made an experiment with different needles having diameters between 0.4 

mm to 1.2 mm, they demonstrated that fibers produced with 1.2 mm diameter needle 

have bead defects and needle was clogged, on the other hand, smooth and thinner 

fibers were produced with needle, which has 0.4 mm inner diameter. Also smoother 

and thinner fibers can be produced from high viscosity solutions by using thinner 

spinnerets [55].  

2.4.2.5 Polarity 

Polarity of applied voltage has some effect on the fiber diameter, fiber morphology 

and fiber web properties. In Supaphol et al. experiment with PA 6, it is seen that 

wider fiber webs can be obtained from solutions, which are processed with negative 

polarity. Additionally, negative polarity makes fiber more flattened. This claim is 

supported with SEM photographs. Supaphol et al. explained the reason that amino 
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groups in the tail groups of PA 6, which is solved in formic acid produces 

ammonium cations in solution. Solution is affected by negative polarity more than 

positive because of molecule diameter difference between this cations and formic 

acid anions, so whipping instability makes stronger effect on solution when negative 

polarity is applied [38]. 

 

Figure 2.25 : Optical scanner images of as-spun mats from solutions of PA-6-20 in 
85% v/v formic acid at the concentrations of (a) 40 and (b) 42% w/v 
under positive polarity and at the concentrations of (c) 40 and (d) 42% 
w/v under negative polarity. The electrostatic field strength used was 
21 kV/10 cm and the collection time was 30 s [38].  

Mit-uppatham et al. made an experiment with PA 6 and they stated that fibers 

produced under negative potential are coarser than fibers electrospun by positive 

voltage. It is also stressed that this is a result of increasing mass transport which is 

carried out by electrostatic forces when negative voltage is applied (see Figure 2.25) 

[56]. 

Kilic et al. made two different electrospinning production processes with PVA/water 

solution by using only positive polarity power supply. For the first electrospinning 

set-up, solution feeding spinneret is charged and collector is grounded, for the second 

as the adverse of first experiment set-up, collector is positively charged and needle is 

grounded. Consequently, it is determined that average fiber diameter produced in 

first set-up is thinner than the other [57].   

2.4.3 Ambient parameters 

2.4.3.1 Humidity 

Ambient humidity can change polymer solution properties during electrospinning 

process. At high humidity rates, liquid condensation may occur on fiber in a regular 
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electrospinning process conditions. Thus, ambient humidity can affect the fiber 

morphology of polymers which is solved in volatile solvents [58].  

Smooth fibers are obtained with humidity lower than 50% in an experiment 

conducted with polysulfone/tehtrahydrofurane solution. An increase in the humidity 

rate after this limit results in generating spherical pores on fibers, and diameter of 

pores increases with increasing ambient humidity [59].  

In study of Kim et al., effect of various humidity values that changes from 10% to 

70% on fiber diameter by using polystyrene solution. The result of experiment show 

that fiber diameters increases with increasing relative humidity as it is shown in 

Table 2.4 [30].  

Table 2.4 : Average fiber diameters corresponding to different humidity ratios [30]. 

Relative Humidity (%) Average fiber 
diameter (nm) 

10 130 
30 240 
50 290 
70 380 

No electrostatic charging on the surface of polymer solution is underlined as a reason 

of increasing fiber diameter with increasing relative humidity. In other words, 

electric field, which is deficient to elongate the polymer jet, diminishes with 

increasing humidity or electrostatic forces can not exactly act on the surface of 

polymer jet.  

In Figure 2.26, the morphology of nanofibers produced under different humidity 

values is showed. A conclusion can be drawn from these SEM images that increasing 

humidity makes nanofibers coarser [60].  

 

Figure 2.26 : SEM images for the change of morphology as a function of relative 
humidity: 7%wt polymer concentration, relative humidity of (a) 10%, 
(b) 30%, (c) 50%, and (d) 70% [60]. 
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2.4.3.2 Ambient temperature 

Evaporation rate of solvent slows when the ambient temperature is low. Polymer jets 

do not completely solidify when they arrive at the collector, so diameter of 

nanofibers gets higher. If ambient temperature is high, time that is needed for 

polymer jet splaying and jet elongation can not be completed because of higher 

solidification rates. As a result of this, fiber diameters and fiber diameter 

distributions become higher. In conclusion, fibers can be made thinner with optimum 

temperature ranges, which adjusted for evaporation of solvent on the jet and getting 

thinner of fiber. In Table 2.25, diameter distribution of electrospun fibers produced 

under various temperature conditions are given. It is seen that a suitable temperature 

range for electrospinning is between 22-26 ºC [49]. 

Table 2.5 : Average diameters and diameter distributions of nanofibers produced at 
different ambient temperatures [49]. 

Fiber distribution 

(µm) 

Fiber distribution at different temperatures (%) 

18 ºC 22 ºC 26 ºC 30 ºC 34 ºC 

0-2 

2-4 

4-6 

6-8 

8-10 

10-12 

Average fiber 

diameter 

15 

37 

19 

20 

9 

0 

4.5 

22 

55 

12 

6 

5 

0 

3.5 

26 

27 

14 

13 

20 

0 

4.5 

11 

40 

14 

13 

6 

16 

5.4 

18 

25 

18 

12 

10 

17 

5.6 

2.5 Applications of Electrospun Nanofibers 

The first commercial product of electrospinning process came on to the market in 

1982. Research on product development and potential applications have been 

exponentially increased since 1990’s with increasing number of studies on 

electrospinning. Today there are a lot of products exist in the market, besides 

numerous scientific research on nanofibers are continuously being conducted around 

the world. Filtration, medical, energy, technical textile materials, protective materials 

are some of the major research areas.  
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2.5.1 Filtration 

High specific surface area of nanofibers and porous, nonwoven microstructure of 

electrospun fibers make nanofiber products a good candidate for especially liquid 

and solid filtration. In fact Ultra-Web®  [61] is the first electrospun nanofiber product 

launched to the market in 1982 by Donaldson company [61]. Electrospun nanofibers 

have usage potential in air filtration, dust collector units, automotive filters, HVAC 

systems and liquid filtration. 

Today, desired air quality have been increasing in particular places such as in 

industry, business, daily life, clean rooms, hospitals, schools, thus necessity of 

development of filter materials which can reply to this air quality demand have 

occurred. Nanofiber materials, which can satisfy these properties, are used in many 

applications by constructing them with other filter materials as a composite product. 

Global companies such as Donaldson, DuPont, are pioneer manufacturers of 

nanofiber filter materials. Nanofibers are five hundred times thinner than fibers used 

in conventional filter products. Generally, thinner fibers provide higher filtration 

efficiency because better inertial impaction and interception effect in air filtration 

[27, 62].  

In Figure 2.27, effect of fiber diameter on filtration efficiency is showed. Filtration 

efficiency of nanofiber filters better than filters having micron diameter fibers for 

every aerosol sizes. Additionally, it can be seen that with thinner fibers, smaller 

aerosol particles can be intercepted. The fact, dust holding capacity and filtration life 

of nanofiber filters are better than conventional filters, is demonstrated by laboratory 

tests and experiences obtained in industry [63].  

While fiber diameter decrease causes an increase in pressure drop, this increase is 

balanced by making an improvement in values of direct interception and inertial 

impaction. Therefore, submicron particles can be filtered with better filtration 

efficiency at the same pressure drop or with lower pressure drop values at the same 

filtration efficiency.  

Another characteristic of the nanofiber filters is that they catch the particles on the 

surface of filter, i.e., they make surface filtration. 
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Figure 2.27 : The effect of fiber size on filter efficiency as a function of particle 
sizes [63]. 

HVAC filters manufactured from glass fibers hold the contaminants along the filter 

thickness [63]. 

Nanofiber filters, on the other hand, sieves the particles on the surface of filter, thus 

it enhances the dust holding capacity and provides a longer lifetime by cleaning them 

with backward air flushing (see Figure 2.28).  

 

Figure 2.28 : Schematic filtration mechanisms of conventional and nanofiber filter 
media [61]. 

Air quality of indoor places has big importance for the aspect of both human health 

and working performance of machine and devices. HEPA filters are the most 

developed filter systems that are used in automobile engines, automobile cabins and 

hospitals. In a study where nanofiber and HEPA filters are compared, it is stated that 

nanofiber filter media containing 100 nm diameter fibers exhibits better filtration 

efficiency than HEPA filters (see Figure 2.29). Also, nanofiber materials gives more 



 34

favorable results about pressure drop values which directly affect energy 

consumption [64]. 

 

Figure 2.29 : Filtration efficiency of the Nylon 6 nanofiber filters and the HEPA 
filter as a function of particle size for various fiber diameter [64]. 

Usage of nanofiber filter materials has been increasing in liquid filtration day by day. 

Finetex [61] and DuPont [64] firms started to manufacture membranes for this 

application. Potential application area of these membranes can be counted as 

pharmaceutical industry, microelectronics, water purification, food, beverage and 

medical [62, 65].  

2.5.2 Medical 

Nanofiber materials with a few nanometers to micrometers diameters can be 

produced via synthetic or natural polymers, which have various morphologies 

through improvement in electrospinning process. This nanofiber products can be 

used as tissue and organ scaffolds, tissue regeneration materials, drug delivery 

systems, biocompatible and biodegradable implants, wound dressings, protective 

materials etc [5].  

Natural and synthetic polymers in nano structures such as nanorods, nanofibers, nano 

hollow fibers and nanotubes are used in various applications of medical and 

pharmacology. Biological systems such as proteins, viruses, bacteria, dimensionally 

take place in nano scale and they show similar characteristics with nano structures 

that are the reasons for that they find various application area. Many viruses, for 

example, Tobacco Mosaic, and Marburg  have shapes that resembles nanotubes [9].  
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Natural and synthetic polymer based nanofibers are available in medical applications, 

and research on this materials are kept going. Natural or synthetic polymers such as 

polyglycolites, PLA, PCL, various copolymers, some polyurethanes, collagens, 

gelatins, chitosans, silks, and alginates are used for medical purposes.  

Electrospun nanofiber scaffolds have properties, 

• High water vapor transmission 

• Permeability 

• Surface comfortable 

• Bacteria protective [9]. 

Scientific researches have been conducted on medical applications of nanofibers, 

besides a few commercial products have been launched to the market. One of them is 

ECM (Extra Cellular Matrix) which is developed by co-operation of Surmodics and 

Donaldson companies [66].  

Synthetic ECM of Surmodics seen in Figure 2.30 is a synthetic, durable and new 

generation tissue scaffold that mimics the tissue in the body by its shape and matrix 

structure. Synthetic ECM is user friendly, cheap, practically applied in short time that 

is determined with data obtained from cell researches and cell related applications. 

Nanofiber structure of this product benefits from the nanofiber technology of 

Donaldson Company named Ultra-Web®. Two types of this product are produced as 

nanofiber mixed, non-coated and nanofiber mixed, polyamine coated [67].  

 

Figure 2.30 : Surmodics nanofiber extra cellular matrix [66]. 

Structure of electrospun nanofiber provides surface of web mimicking the tissue that 

results in physiologically formation of cells and forcing cell-to-cell adhesion. The 

polyamine coating is applied due to replying desired cell functions and conjoining 

biomolecules to each other with covalent bonds. Synthetic ECM is sterilized by 
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exposing it to rays via electron beam process. Material is durable about 384 days as 

far as it is not exposed to direct sunlight [67].  

Another material that correspond to synthetic ECM has come into market under trade 

name NovaMesh® developed by Nicast Company (see Figure 2.31). NovaMesh® has 

advantages for instance it is durable to tissue adhesion and it provides positive 

contributions to tissue reproduction. It serves good properties such as, 

• resistant to adhesion of tissue in body, 

• increases tissue reproduction and tissue growth in body, 

• nanofiber layer that biologically mimic tissue, 

• practical for laparoscopic applications, 

• it does not shrink.  

 

Figure 2.31 : NovaMesh® nanofiber extra cellular matrix [68]. 

NovaMesh nanofiber scaffold can be produced in standard and special sizes. Also it 

is manufactured from polyurethane carbonate which is biocompatible with human 

body [68].  

One of the interesting application area of nanofiber products is huge wounds resulted 

from combustion or frictional injuries (see Figure 2.32). It is determined that huge 

wounds give quick healing results when they are especially covered with a 

biopolymer based, thin nanofiber web. It is said that nano porous structure of this 

wound dressings allow gas transmission, also it resist the penetration of destructive 

organisms such as bacteria and viruses. It also planned that these nanofiber materials, 

which has a 100 meter square surface area from 1 gram of polymer, can be used in 

homeostatic wounds because of their high liquid adsorption and drug delivery 

capacity values [9].  
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Figure 2.32 : Nanofiber wound dressing [69]. 

When nanofiber materials are compared to current commercial wound dressing 

products, the scar risk after the rehabilitation quite decreases. Nano sized fiber 

structure accelerates skin growth, and be adding drugs into structure that can be 

inject to nanofiber web provides a controllable healing. For example, antibiotic 

embedded nanofibers are available in literature. PU nanofiber wound dressing is 

commonly used because of high oxygen permeability and barrier properties. Also it 

is verified with histological results that epitelization rates of nanofiber products are 

much more higher when they are compared with other control groups during 

treatment period [70].  

In the research conducted by Rho et al., collagen 1 type nanofiber wound dressings 

are tested on mice. They get good results in the beginning phase of treatment.  

In addition to this, nanofibers produced from mixture of collagen, silk, polyethylene 

oxide can be used as wound dressing. Additionally biodegradable polymers, suitable 

for electrospun nanofiber production, can be used for wounds are available. PLA, 

PLGA copolymers, PCL, chitin, chitosan are only some examples of the 

biodegradable polymers [71]. Commercially, HemCon has begin producing 

nanofiber wound dressings by using nanofiber technology of Elmarco Company [72].  

Additionally, Smith and Reneker have developed a direct electrospun nanofiber 

coating process onto wounded skin and it is called “portable electrospinning device”. 

In this device, high voltage is generated from standard batteries. It is possible to 

inject active agents or different polymers in respect of wound type [9]. 

2.5.3 Energy 

Attention to clean energy systems that can be replaced by current energy resources 

have been increasing because of run out of fossil energy resources and increasing 
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carbon emissions around the world. Polymer batteries, fuel cells, photovoltaic cells, 

wind power stations and geothermal resources are the examples that are thought as 

alternatives. Nanofibers having high surface area and high porosity can be used in 

polymer batteries, photo voltaic cells and proton exchange membrane fuel cells.  

Polymer batteries are developed for laptops and mobile telephones; they are also 

lighter and smaller energy storage devices than lithium ion batteries. Polymer 

batteries need to improve electrolyte absorption, physical and chemical resistance, 

energy density properties, in this way the market ratio of polymer batteries can 

increase [10].  

Polymers such as Pad (polyvinylidene fluoride), PAN (polyacrylonitrile) and PVC 

(polyvinyl chloride) are used for polymer batteries. It is estimated that electrospun 

polymer nanofibers are used for this applications because of nano size porous 

structure. Porous structure of nanofiber membrane provides high electrolyte 

absorption. Additionally, high surface are of the nanofiber web makes contribution to 

ion conductivity. Significant properties of polymer batteries with nanofibers are: 

• high ion conductivity 

• high resistance between to layer 

• high electrochemical balance [5].  

 

Figure 2.33 : Polymer battery assembled by sandwiching PVdF nanofiber 
membranes between a mesocarbon micro bead (MCMB) anode and a 
LiCoO2 cathode [5]. 
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As shown in Figure 2.33, a polymer battery is designed which contains two 

electrodes and PVdF nanofiber web. PVdF membrane having 450nm average fiber 

diameter and 1 micron pore diameter is embedded into 1:1:1 mixture of 1 M LiPF6 in 

(EC)/dimethyl carbonate(DMC)/diethyl carbonate (DEC) solution, after that it is 

placed in argon atmosphere for one hour. Then, nanofiber membrane containing 

electrolyte solution is constricted between two steel electrodes, and this prepared 

system is wrapped with a polyethylene coated aluminum foil via vacuum. It is 

observed that electrolyte absorption of PVdF nanofibers is better because of good 

wettability properties and high surface area of nanofibers; also, they keep the 80% 

percent of electrolyte solution, which they absorb at first. Electrolyte solution 

absorption is affected by average nanofiber diameter, moreover thinner fibers 

absorbs more electrolyte solutions besides provide better ion conductivity [5]. 

Resistance between two electrode layer and electrolyte absoption of nanofibers are 

other property of polymer batteries constructed with nanofibers. Nanofiber 

membrane swells when it absorbs electrolyte. At this time, fiber diameter increases 

on the other hand, solution quantity and contact area of nanofiber surface decline. In 

addition, resistance between two layers generally increases with increasing storage 

time. Researchers reveal the result that resistance between two layers of PVdF 

nanofiber electrolyte with lithium electrodes gains a bit increase with increasing 

storage time, but this value is smaller than other gel polymer electrolytes. In 

conclusion, batteries with higher charge density than conventional polymer batteries 

can be produced  with nanofibers because of its high surface are [73].  

Fuel cells are energy systems that they convert the fuel into electrical energy via 

electrochemical reactions and they do not need any recharging. When anode supplies 

fuel and cathode makes oxidation, fuel cells permanently work as battery. Fuel cells 

are also harmless, silent, renewable energy converting devices like as a battery. To 

operate the fuel cell, hydrogen-oxygen or hydrogen-air is necessary. A fuel cell is 

constructed with an electrolyte placed between two central electrodes. Air flows over 

cathode surface. When electrons are transmitted to cathode via an external circuit, 

hydrogen ions moves to the electrode on which oxygen ions are available via 

electrolyte. Water is obtained from the reaction of hydrogen, oxygen ions and 

electrons. The flow of electron on external circuit produces electrical energy (see 

Figure 2.34) [10]. 
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Electricity generation in fuel cells realizes through the chemical reaction of hydrogen 

at the anode and oxygen at the cathode protons are transmitted through an electrolyte 

membrane that contains distilled water, while electrons are transmitted from the 

anode to the cathode. The key properties of electrolyte membranes are high proton 

conductivity and shielding of electron transport. 

 

Figure 2.34 : Schematic diagram of a fuel cell containing nanofiber membrane [5]. 

As the membrane needs to hold distilled water for proton conductivity, water 

retention of the membrane is also important. Nafion® (DuPont), a perfluorosulfonic 

acid polymer film, has been widely used so far. However, Nafion® membranes are 

expensive at up to $800/kg. For the same membrane area, electrospun Nafion® fiber 

membranes require less material than conventional Nafion® fuel cell membranes, 

thereby reducing cost. Porous nanofiber membranes are also able to hold distilled 

water, thus enhancing proton conductivity. Therefore, such nanofiber membranes 

have the potential to be used in PEMFCs [5].  

Table 2.6 : Properties of nanofiber membrane produced by DuPont [74]. 

 Thickness  20-70 μm 

 Porosity  40-90% 

 Pore Size  <1μm 

 Ionic Resistance  0.3-1.2 ohms/cm2 in 2 M LiCl/methanol 

 Frazer Air Permeability  <5 cfm/ft2 at 125 Pa 

 Shrinkage  <5% at 180oC for 2 hours 

 Wettability  Wets in typical aqueous/organic electrolytes 
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Besides scientific researchers have been going on the energy applications of 

nanofibers, DuPont Company release the semi permeable membrane products for 

lithium-ion batteries, alumina electrolytic capacitors, alkaline cells and two-face-

electrochemical capacitors. Properties of nanofiber membrane are given in Table 2.6 

below [74].  

Japan Vilene Company has also research on commercially producing battery 

separators by electrospinning method [75]. 

2.5.4 Protective applications 

It is desired from protective materials not only they are effective against to bacteria, 

viruses and toxic, chemical, biological substances but also they provide 

comfortability to user. For example, it is widely required property that a barrier cloth 

in order to be used against to chemical agents can transfer the moisture, which is 

produced by user.  

Developing warfare technology makes necessary the increase of soldier equipments. 

Equipments used by soldiers are required as lighter, air impermeable, water vapor 

permeable, durable to chemicals and as much as reactant to chemical and biological 

agents. Because nanofiber webs have very small pore diameters and high porosity, 

they do not transfer chemical and biological agents in aerosol form besides they do 

not discomfort user. Additionally nanofiber materials are much lighter as they are 

compared with conventional textile materials. A research had realized with 

cooperation of MIT and US Army, which has a 50 million $ budget, its target was 

minimizing the size of soldier equipments also increasing their quality. Thus, it was 

desired to minimize deaths and injuries that can be take place during a battle. By the 

frame of this project, researches on nanofiber military materials were realized [30].  

In Singapore, a research called development of protective mask against biological 

agents were conducted by Military Science and Technology Agency with 

Ramakrishna’s group. In the study, instead of active carbon, nanofiber composite is 

used for mask as an alternative to HEPA filter with active carbon coal respirators. 

Metal nanoparticles such as silver, magnesium oxide, titanium, nickel embedded on 

nanofiber surfaces were effective to resist paraoxane and dimethyl phosphanate [5].  

In addition to developments in military technology, nanofiber materials are used to 

enhance quality of humans in daily life. An allergen barrier fabric, which is 
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especially required by asthma sufferers, launched to market by DuPont in 2006 can 

be an example. Although commercial barrier materials available in the market have 

good results for allergen protective, they are though, bad handle and uncomfortable 

materials. Furthermore, pillows produced from vinyl, polyurethane and micro porous 

coatings requires holes for air transmission. In addition, pillows and mattresses 

constructed with these materials have short usage life. 

Spunbond/meltblown/spunbond olefin fabrics are also used as allergen barrier  

fabrics, but pore size of these materials is much more than microorganisms [76].  

Pillows and mattresses of DuPont HMT technology contains microporous polymeric 

layer, which are constructed with fibers having 50 nm to 1 micron diameter. The 

nanofiber layer has pores between 0,01 micron to 10 microns diameter. Feature of 

the nanofiber product is given in Figure 2.35 below with a comparative chart 

containing other barrier materials [76].  

 

Figure 2.35 : Barrier efficiency and air permeability of nanofiber barrier fabric [76]. 

Although hospitals are sterilized, they accommodate various bacteria and viruses. In 

addition, people who use the places are under risk. AntimicrobeWeb® is a mask as 

barrier material produced by Elmarco Company. Mask is produced by the 

combination of three, four or five nanofiber layers, an active nanofiber layer, 

spunbond and meltblown layers. For example, it can be seen on the figure, if it is said 

from inner to outer, one layer spunbond fabric, one layer meltblown fabric, than one 

layer nanofiber layer, one active nanofiber layer and a outer textile fabric for 

covering these layers (see Figure 2.36). At this point, layer called active nanofiber is 
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constructed by antimicrobial nanofibers. Antimicrobial effect is provided by adding 

silver nitrate to the solution [77].  

 

Figure 2.36 : AntimicrobeWeb® nanofiber mask [77]. 

Subsequent nanofiber layer only contains polymeric nanofibers. Polyvinyl alcohol, 

polyurethane and polyamide polymers can be applicable for this product. The 

suitable range of nanofiber density is between 0.1-0. 

3 gr/m2. Filtration efficiency  of this mask for bacteria, fungi and viruses is 99.9% 

that is officially registered by international laboratories [77].  

2.5.5 Sensors 

The role of sensors is to transform physical or chemical responses into an electrical 

signal based on the targeted application. So far, electrospun polymer nanofibers have 

been investigated as gas sensors, chemical sensors, optical sensors and biosensors. It 

is considered that high sensitive sensors can be assembled by nanofibers, which 

possess high surface to volume ratio. Except sensitivity of sensors, quick response 

time with a targeted material is also expected to nanofiber sensors [30]. 

It is exactly known that sensitivity of quartz crystal microbalance (QKM) sensors is 

directly related with material coated onto it. Film surfaces have one-dimensional 

structure on the other hand nanofibers have three dimensions. When it is seen to the 

reaction of nanofiber and film QKM sensor which has same thickness coating at 40% 

humidity to 1 ppm of ammonium, frequency change of nanofiber sensor is four times 

faster when it is compared to film coated sensor. The reason of this that surface area 

of electrospun nanofiber is twofold of film coated surface. Because surface area of 
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coating material provides more adsorption surface area, sensors of this materials are 

more quick [78].  
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3.  ELECTROSPUN NANOFIBER WATERPROOF BREATHABLE 

MEMBRANES AND RELATED EXPERIMENTAL WORK 

3.1 Introduction 

In 1950’s membrane researches emerged because of the need of water 

demineralization. Production of membranes in different structures and rising 

demands for membranes resulted in using of membranes in various applications. 

Today, membranes are widely used in food, beverage production, recycling of 

process water in the industry, oil and gas refinery, fuel cells, performance clothes 

even baby diapers.  

Water resistant breathable membranes are generally barrier materials, which resist 

water up to a certain value and also prevent transition of water vapor. This type of 

membranes are used in sport clothes, raincoats and protective clothes more than 30 

years [79].  

A human body makes a kind of refrigeration during physical activity via perspiration. 

If water vapor is not sufficiently transferred, humidity between body and cloth 

increases. That humidity discomfort the body even it may cause deaths resulted from 

hypothermia. In other words, if water vapor between body and cloth is not 

transferred outside, it becomes denser, body may not supply the heat transferred to 

this liquid, so that phenomena can produce mortal circumstances. The water vapor 

transfer capability of cloth or material is known as breathability. Water vapor transfer 

is defined as “the weight in gram of water vapor that passes thorough one square 

meter of a material in a day” [80].  

Water vapor transfer of a cloth directly affects performance of user. One of common 

reason of job diseases of fire fighters is heart attacks because of heat differences, 

which is resulted from decreasing of liquid body substance occurring by perspiration. 

In 1982, according to statistics of fire deaths in America, deaths resulted from burns 

are 2.6% on the other hand, the reason of 46.1% of deaths occurred is heart attacks. 

So, it is vital that water, air and heat resistant should be also breathable.  
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The usage of barrier materials for the same purposes may be dated back to antique 

ages. In those days, they were obtained via coating fabrics with wax, vegetable and 

animal oil. Today, polyvinyl chloride and polyurethane coated waterproof products 

are substantially used in various forms. Especially apparel forms of these products, 

which are laminated to textile fabrics, can not satisfy the user requirements because 

they also resist the transfer of water moisture. Therefore, attention to the selectively 

permeable materials is increasing day by day.  

The usage of breathable materials in shoes, tents, bed coverings, buildings, surgical 

costumes and wound dressings is continuously increasing [79].  

3.2 Types of Waterproof Breathable Materials 

Breathable barrier materials can be classified into three main groups. These are 

densely woven fabrics, microporous membranes and hydrophilic nonporous 

membranes.  

3.2.1 Densely woven and nonwoven fabrics  

The first effectively breathable waterproof fabric is Ventile fabrics, which was 

developed for military purpose during the Second World War. In Ventile fabrics, 

yarns spun by special method from particularly selected long fibers are used. Then an 

Oxford woven fabric is produced from these yarns in order to decrease the size of 

holes in the woven fabric. When fabric is wetted, fibers close the holes via swelling, 

so some pressure is necessary for passing water from the fabric (see Figure 3.1) [80]. 

 

Figure 3.1 : Densely woven dry and wetted waterproof fabrics [80]. 
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By the existence of synthetic fibers especially microfibers, breathable waterproof 

woven fabrics were started to produce from these fibers (see Figure 3.2). Polyester 

and polyamide microfilaments come into prominence with water repellency 

properties [81]. Today, in addition to this fabrics, much more qualified fabrics are 

produced with silicone or fluorocarbon finishing processes [80].  

 

Figure 3.2 : Toray Entrant® waterproof densely woven fabric [81]. 

In addition to the densely woven fabrics, a nonwoven fabric such as Tyvek® 

developed by DuPont in 1955 and put it on the market ten years later is a waterproof 

breathable material. This barrier material is a type of nonwoven fabric which is 

produced from polyethylene via flash spinning method and it is used as water 

isolation in buildings and as protective clothing in chemical sector (see Figure 3.3). 

Tyvek® product has various types which has different water resistance and water 

vapor permeability values [82].  

 

Figure 3.3 : Tyvek® water resistant breathable fabric a) SEM photograph of 
Tyvek® b)Tyvek® weather barrier c) Tyvek® protective apparel [83-
85]. 

3.2.2 Microporous membranes 

Microporous membranes are breathable water resistant materials which have pore 

diameters ranging from 1 to 50 micron and they are laminated or directly coated on 

to fabrics. PTFE, polyurethane, acrylic and polyethylene membranes are the most 
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widely used types. Polyurethane is the most preferred type of membrane because of 

its toughness and conformity to cutting and sewing processes [86]. 

As visually compared in Figure 3.4, microporous membranes having 2-3 micron 

diameter pores do not prevent passing a 100 micron diameter water droplet while 

they provide easily passing 0.0004 micron (0.4 nm)  diameter water vapor molecule 

[86]. 

 

Figure 3.4 : Moisture vapor regulation through fabrics: (a) typical microporous 
membrane system and (b) microporous coating [86]. 

First microporous breathable waterproof membrane was developed in 1976 by W. 

Gore and it came into market under the name of Gore-Tex®. Gore-Tex® membranes 

are fabricated by highly crystalline PTFE [87]. 

 

Figure 3.5 : Gore-Tex® microporous waterproof breathable membrane  
a) SEM photograph b)water vapor transfer mechanism c) water 
resistance mechanism [88, 89]. 

Gore-Tex® membranes seen in Figure 3.5 are also known as expanded film 

membranes. These membranes are extruded as film then it is drawn in lengthwise 

and crosswise about 300%. During this process, pores begin to be formed by 

deformation of amorphous sections in polymer network. Crystalline sections, which 
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are more stable, construct the joint points of occurring pores. By this way, 1,4 billion 

pores are constructed in one inch square of a Gore-Tex® membrane. Parameters 

below determine the porosity and strength of membrane: 

• Crystallinity of membrane must be high (above 98%) 

• Temperature and stretching speed: high temperature and high stretching speed 

make the membrane more homogenous, more fibrous, and tougher and 

increase the length between nodes. 

• Temperature and thermal process time: Amorphous structure of polymer 

increases during thermal process above melting point. 

• Hydrophobic structure of polymer provides membrane high water resistance. 

So hydrostatic head and water vapor permeability values of Gore-Tex® 

membranes are so good. In addition, amorphous sections of polymer 

reinforce the crystalline sections without any change in microstructure. 

Film produced by stretching method can be easily laminated to textile material 

because of thin structure and toughness [86]. 

Micro porous polyurethane membranes are produced by a method called “phase 

inversion” in which a non-solvent liquid is added a solution system obtained from a 

polymer and a solution. “Wet coagulation” and “phase separation” are also 

production methods, which are based on phase inversion principle [90]. 

In wet coagulation method, a solution is prepared by solving polyurethane in 

dimethyl formamide. Then this solution is coated onto fabric which is sequently 

exposed water vapor by passing through a post treatment chamber. Organic solvent 

leaves polymer by mixing with water vapor, so polymer precipitates and a membrane 

coating having micro pores is obtained. Consequently, fabric is washed for removing 

residual solvent. Finally fabric is squeezed by passing through a rolling press and it is 

dried [80].  

Some additives can be added to the polymer solvent system in order to enhance 

performance of this membrane types. Water repellent agents and non-ionic 

surfactants added to coating solution increase water resistance value of membrane 

coating. 0.1 µm silicium dioxide or magnesium oxide particles added to polyurethane 

resin about 1% increase water vapor transmission, also membrane surface take a 

shape like honey comb which is constituted by 1-20 µm pores [86].  
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In thermal coagulation method, polyurethane is solved in a methyl ethyl ketone and 

water. Hence, an emulsion is prepared having 15-20% polymer content. Emulsion 

pat is coated onto one surface of a fabric. Then, coated fabric is passed through two-

step drying process. In the first step, low temperature is applied to remove the 

solvent. In the second step, temperature is increased in order to vaporize the water 

which fill the pores after entering phase inversion process with solvent [86].  

3.2.3 Microporous coatings 

In foam coating method polyurethane and polyurethane/acrylic acid esters mixtures 

are dispersed in water and it is lathered. The foam is also stabilized with some 

additives. Then foam is coated onto fabric and it is replaced drying process to form 

micro pores (see Figure 3.6). Finally, low pressured calendaring is applied to coated 

fabric to tighten the foam coating. Because number of micro pores much more in this 

method, the water resistance of membrane is promoted by applying fluoro carbon 

finishing. It can be said that this process is eco friendly because any solvent is not 

used in this type of membrane production [80].  

Increasing foaming speed and using hydroxyl cellulose as stabilizing agent enhances 

the water vapor transmission and water resistance values [86].  

 

Figure 3.6 : SEM photograph of microporous coating on a fabric [80]. 

3.2.4 Hydrophilic Films 

Hydrophilic films are non-porous waterproof breathable materials, which is produced 

from chemically modified polyurethane or polyester. Hydrophilic feature of 

membrane can be expressed by chain reactions between film and water vapor 
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molecule. Film is constructed by carbon, hydrogen and oxygen atoms on polymer 

chains. By addition of hydroxyl and carboxyl to polymer chain, polymer makes 

better interaction with water molecules, so it gains breathability properties. 

Hydrophilic hydrogen groups on polymer chain transfer water vapor molecules from 

sections where RH is high to low RH sections [86]. 

 

Figure 3.7 : a) Schematic diagram of hydrophilic membrane b) water resistance and 
water vapor transfer mechanism of hydrophilic membrane [80, 91]. 

In polymer chains, polyether soft segments which are amorphous and hydrophilic 

permits water vapor transmission. On the other hand, urethane and ester segments 

have crystalline structure and they are the parts providing toughness to the film. 

Water vapor transmission can be raised by adding polyethylene oxide and amino acid 

groups to the chemical structure of film. Amorphous sections constructing the soft 

segments behave as inter molecular pores which resist water but provide water vapor 

transmission (see Figure 3.7) [91].  

Some advantages of hydrophilic films with regard to microporous membranes can be 

compiled as below: 

• Micro porous membrane production via wet coagulation method necessitates 

coagulation bath, washing lines and DMF recycling unit. Moreover, the 

method have difficulties on producing regular pores below 3 µm and 

providing balance between water vapor permeability and water resistance 

properties. On the other hand, hydrophilic film coating can be produced by 

conventional coating equipments.  

• Body fat and detergent contaminants and surfactants used for cleaning can 

clog the pores of micro porous membranes. In addition to this, the pore 

diameter of micro porous membranes increases when they are drawn. In any 
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event, water vapor permeability and water resistance properties of membrane 

are negatively affected. On the other hand, this is not valid for hydrophilic 

membranes.  

• Hydrophilic laminated PU films or PU coatings are more effectively adhered 

to textile material, more resistant to chemicals and cheaper than micro porous 

membranes.  

• Hydrophilic membranes have some advantages such as high strength, high 

toughness, good air impermeability, durable to many chemicals, good odor 

barrier properties, good adherence to textile material because of its small 

thickness, high water vapor permeability. 

In addition to these advantages, hydrophilic films have same disadvantages stated as 

below: 

• Hydrophilic membranes must absorb a little water vapor to start water vapor 

permeability.  

• When film is wetted, connection between film and fabric can break by 

swelling.  

• Hydrophilic film laminated fabrics give coolness sense when they are 

exposed to rain because they stop water on the surface [86].  

3.3 Membrane Related Experimental Work 

3.3.1 Materials 

Commercial-grade pellets of polyether based thermoplastic polyurethane (Elastollan® 

1185A10) and polyester based thermoplastic polyurethane (Elastollan® B64D11) 

were obtained from ENPAŞ Endüstriyel Hammaddeler San. Pazarlama A.Ş., 

properties of thermoplastic polyurethane pellets are given below (see Table 3.1)  

N, N-dimethyl formamide (DMF), ethyl acetate (Bereket Kimya Tıp Teknik Tic. ve 

San. Ltd. Şti.) were used as solvent. Silicone oil and sodium chloride (Bereket Kimya 

Tıp Teknik Tic. ve San. Ltd. Şti) were used as additives for electrospinning solution 

(Table 3.2). 

Three electrospinning solutions were prepared by dissolving the polymer in DMF. 

Solutions were stirred at 110 ºC for 24 hour with added sodium chloride. Then ethyl 
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acetate and poly(methylphenylsiloxane) were added at 80 ºC and the solution is 

stirred for four hours.  

B64 D11 1185A10 
Physical Test Method Unit Value Value 
Density ISO 1183 grcm-³ 1.24 1.12 
Hardness Test Method Unit Value Value 

Shore Hardness (Shore D) ISO 868  61 36 

Mechanical Test Method Unit Value Value 
Tensile Modulus ISO 527-2 MPa 320 45 

Tensile Strain (Break) ISO 527-2 % 450 600 

Elastomers Test Method Unit Value Value 
Tensile Stress ISO 37 

100% Strain MPa 19 6 
300% Strain MPa 35 10 

Tear Strength ISO 34-1 kNm-1 180 70 
Compression Set ISO 815 

23°C % 35 25 
70°C % 50 45 

Impact Test Method Unit Value Value 
Charpy Notched Impact 
Strength 

ISO 179    
-30 °C kJm-² 6 No Break 
23 °C No Break No Break 

 ES 1 ES 2 ES 3 

Polymer Polyether 
based TPU 

Polyester 
based TPU 

Polyester 
based TPU 

Polymer (wt%) 15 15 13 
DMF (wt%)) 60 60 60 
Ethyl Acetate (wt%)) 25 25 20 
NaCl (wt%)) 0.01 0.01 0.008 
Poly (methyl phenylsiloxane) 
(wt%) 

- - 7 

In order to deposit the electrospun nanofiber web on to a fabric, nonwoven fabrics as 

substrate material obtained from Mogul Tekstil. The chosen substrate was 100% 

polyester, lightweight and highly porous spunbond nonwoven. The thickness of the 

nonwoven substrate is 0.28 mm, its weight is 60 grm-2 and its air permeability is 122 

cm3s-1cm-2. 

Table 3.1 : Properties of thermoplastic polyurethane pellets [92, 93]. 

Table 3.2 : Composition of the electrospinning solutions. 
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3.3.2 Electrospinning Process 

The electrospinning process was performed with a 10-needle electrospinning setup 

(see Figure 3.8). The setup consists of two pipe-needle system, each pipe has five 

needles. Solution was fed to the pipe-needle system by a syringe pump (Asena Alaris 

GH, Cardinal Health Inc.), a high voltage power supply capable of 0–100 kV 

(ES100P-20W, Gamma High Voltage Research, Inc.) and a grounded rotating drum 

cylinder as a collector.  

 

Figure 3.8 : The electrospinning set-up with 10 needles. 

TPU/DMF solutions were loaded into a syringe and an electrode was clipped onto 

the needles. The syringe pump was used to control constant volumetric feed rate. 

Thermoplastic polyurethane solutions were electrospun under various conditions 

such as electric potential, needle to collector distance and flow rate to establish 

optimum production conditions. The experimentally established optimum process 

conditions for studied electrospinning solutions (ES) are given in Table 3.3. 

Electrospinning conditions ES 1 ES 2 ES 3 
Voltage (kV) 50 47 43 
Needle-Collector Distance 
(cm) 20 20 15 

Flow rate per needle (mlh-1) 1 1 2,5 

Substrate Spunbond PET 
(85 grm-2) 

Spunbond PET 
(85 grm-2) 

Spunbond PET 
(85 grm-2) 

Table 3.3 : The experimentally established electrospinning conditions for different 
solutions. 
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3.4 Characterization 

3.4.1 Fiber morphology 

A scanning electron microscope (JEOL JSM-6390 LV) was used to visualize the 

TPU nanowebs and to measure the diameters of nanofibers on these nanowebs. SEM 

photographs were obtained with different magnifications. Fiber diameters of 

nanofibers were measured by CATIA 3D design program using SEM photographs.  

3.4.2 Resistance to water penetration 

The hydrostatic head supported by a fabric is a measure of the opposition to the 

passage of water through the fabric. A specimen is subjected to a steadily increasing 

pressure of water on one face, under standard conditions, until three droplet 

penetrations occur through the specimen. The pressure at which the water penetrates 

through the fabric at the appearance of the third droplet is noted. The water pressure 

may be applied from below or from above of the test specimen. The type of the 

chosen alternative for the water application should be stated in the test report. The 

result is immediately relevant to the behavior of fabric articles which are subjected to 

water pressure for short or moderate periods of time [94]. 

A test apparatus as seen in Figure 3.9 was designed and manufactured according to 

BS 20811 standard (Determination of resistance to water penetration –Hydrostatic 

pressure test).  

 

Figure 3.9 : Test apparatus for resistance to water penetration. 
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The designed and manufactured test apparatus confirms the requirements of the 

standard in the following aspects: 

• An area of the fabric of 100 cm2
 is subjected to steadily increasing water 

pressure from below or from above the fabric. 

• No leakage of water takes place at the clamps during the test period 

• The specimen does not slip from the clamps. 

• Any tendency for penetration to occur at the clamped edge of the specimen is 

minimized. 

• Distilled or fully deionized water is used with the test specimen at 20±2 °C. 

• The rate of increase of water pressure is chosen to be 10±0,5 or 60±3 

cmH2Omin-1. 

• A manometer is connected to the testing head. 

• the pressure value when forth droplet is observed on the specimen is defined 

as water penetration resistance of material [94]. 

3.4.3 Water vapor transmission rate (WVTR) 

WVTR was measured according to “ASTM E 96-00 B Water Method”. Three test 

apparatus were designed and manufactured according to this standard as seen in 

Figure 3.10 [95].  

Test dishes were filled with distilled water to a level of 19±6 mm from the specimen. 

The air space thus allowed has a small vapor resistance, but it is necessary in order to 

reduce the risk of water touching the specimen when the dish is handled. The dishes 

were manufactured from high molecular weight polyethylene. Specimen is attached 

to the dish.  

 

Figure 3.10 : Test dishes for water vapor transmission. 
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The test dish filled with distilled water and covered with specimen is weighed and it 

is placed in an atmosphere where relative humidity 50±2% and temperature 21±1 

0ºC. In addition, air continuously circulated throughout the chamber, with a velocity 

sufficient to maintain uniform conditions at all test locations. It is stated in the 

standard that air velocity over the specimen shall be between 0.02 and 0.3 ms-1. Test 

specimens had been left in the test chamber for two days. Then the dishes weighed 

again. Weight difference shows water vapor transmission of specimens for two days.  

3.4.4 Air permeability 

The air permeability is defined as the velocity of an airflow passing perpendicularly 

through a test specimen under specified conditions of test area, pressure drop and 

time. Air permeability of membranes and membrane laminates were measured 

according to “ISO 9237 Determination of the permeability of fabrics to air by an air 

permeability tester (Textest FX 3300-III)” as seen in Figure 3.11. It is based on the 

rate of flow of air passing perpendicularly through a given area of fabric is measured 

at a given pressure difference across the fabric test area over a given time period 

[96].  

 

Figure 3.11 : Textest Fx 3300-III air permeability tester [97]. 

Circular specimen holder, with an orifice allowing the test to be carried out on an 

area of 20 cm2. Pressure gauge or manometer, connected to the test head to indicate a 

pressure drop across the specimen test area of 100 Pa with an accuracy of at least 2% 

[96]. 
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3.5 Experimental Results and Discussions for Membranes 

3.5.1 Fiber morphology 

Nanofiber webs were produced on a commercial polyester fabric by optimal 

electrospinning conditions. SEM photographs of nanofiber webs are given in Figure 

3.12. 

 

Figure 3.12 : SEM photographs of nanofiber from ES 1 solution at different 
magnifications. 

Nanofiber web obtained from ES 1 (see Table 3.2) solution contains many beads 

having diameter about 5 µm. Average diameter of nanofibers is 210 nm. Fibers are 

generally distributed from 100 to 350 nm. A few fibers having diameters 500-550 nm 

are observed on the nanofiber web. Fiber distribution is from SEM photographs of 

the specimens, and it is given in Figure 3.13.  

 

Figure 3.13 : Fiber distribution of ES 1 nanofiber web. 

Electrospun fibers obtained from ES 2 solution have fewer beads than ES 1 solution. 

Nanofibers are smooth and well distributed on the web. SEM photographs of 

nanofibers obtained from ES 2 solution are given in Figure 3.14. 
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Figure 3.14 : SEM photographs of nanofiber from ES 2 solution at different 
magnifications. 

Fiber diameter distribution from nanofiber web electrospun from ES 2 solution 

ranges from 150 to 300 nm. Some nanofibers with diameters about 500 nm also exist 

on the web. Fiber diameter distribution of electrospun nanofibers from ES 2 solution 

is given in Figure 3.15. 

 

Figure 3.15 : Fiber distribution of ES 2 nanofiber web. 

Polymer solution ES 3 contains poly(methylphenylsiloxane) commercially called 

silicone oil. Many beads are encountered on the SEM photograph of nanofiber 

electrospun from ES 3 solution. It is thought that these beads are formed due to the 

existence of poly(methylphenylsiloxane), as the ES 2 solution prepared from the 

same polymer had given beadless smooth nanofibers. SEM photographs of ES 3 

solutions are given in Figure 3.16. 



 60

 

Figure 3.16 : SEM photographs of nanofiber from ES 3 solution at different 
magnifications. 

Fiber diameter distribution of electrospun web from ES 3 solution ranges from 60 to 

300 nm (see Figure 3.17). Average diameter of nanofiber web is about 180 nm.  

Poly(methylphenylsiloxane) enhances the electrospinning process and decreases the 

average nanofiber diameter. Thus, production rate (grmin-1) of ES 3 solution is 

approximately 2.5 times more than all other solutions.  

 

Figure 3.17 : Fiber distribution of ES 3 nanofiber web. 

3.5.2 Resistance to water penetration 

Water penetration resistance of nanofiber web is compared with the commercially 

available waterproof breathable products. A Gore-Tex® 65 grm-2 membrane 

laminated warp knitted fabric and Eurodach® 125 grm-2 three layer spunbond-

membrane-spunbond waterproof material were used as control materials (see Figure 

3.18). In addition, a laminated material was manufactured by using nanofiber web 

from ES 3 solution and a woven fabric by using polyurethane hotmelt adhesive.  
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Figure 3.18 : Commercially available and experimentally developed waterproof 
breathable materials. 

Figure 3.19 shows water penetration resistance of experimentally developed 

nanofiber webs, laminated nanofiber web and control materials. The properties of 

these materials are explained below: 

• ES 1: 60 grm-2 PET spunbond + 10 grm-2 nanofiber (polyether based TPU) 

• ES 2: 60 grm-2 PET spunbond + 10 grm-2 nanofiber (polyester based TPU) 

• ES 3: 60 grm-2 PET spunbond + 10 grm-2 nanofiber (polyester based TPU+ 

poly(methylphenylsiloxane)) 

• Eurodach: 125 grm-2 polypropylene spunbond + polypropylene membrane + 

polypropylene spunbond 

• Gore-Tex: 65 grm-2 knitted fabric + PTFE membrane 

• Laminated ES 3: Woven fabric + 40 grm-2 nanofiber web (polyester based 

TPU+ poly(methylphenylsiloxane))   



 62

 

Figure 3.19 : Water penetration resistances of electrospun webs and control 
materials.  

Water penetration resistance of ES 1 nanofiber is 18 cmH2O. It is very low for a 

membrane material when it is compared to the commercial ones (see Figure 3.19).  

Microporous membranes as seen in Figure 3.20 resist water molecules with 

nonporous sections of  their surface, pores on the membrane permit the transfer of 

water vapor molecules [98]. Nanofiber web also has microporous structure, therefore 

it can be said that polyether phase of nonporous sections of nanofiber web can not 

resist the transfer of water molecules at high pressure values.  

 

Figure 3.20 : SEM photograph of Gore-Tex PTFE membrane [99]. 

ES 2 specimen, polyester based thermoplastic polyurethane nanofiber coated on 

polyester spunbond fabric resist the water penetration up to 62 cmH2O hydrostatic 

head pressure. Nanofiber web of polyester based thermoplastic polyurethane is more 

durable to passing of water molecules than polyether based thermoplastic 

polyurethane.   
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Water resistance levels of waterproof fabrics are classified as low-water-resistant 

(30-80 cmH2O), middle-water-resistant (l0-250 cmH2O) and high-water resistant 

(50-3000 cmH2O ) based on the water resistance values [100]. Therefore, ES 2 

nanofiber web can be defined as low water resistant fabric.  

A 10 grm-2 nanofiber web was electrospun from polyester based TPU/DMF-ethyl 

acetate solution added poly(methylphenylsiloxane) (Specimen ES 3 electrospun from 

ES 3 solution in Table 3.3) onto 60 grm-2 polyester spunbond exhibited 250 cmH2O 

water penetration resistance. ES 3 specimen differs from ES 2 specimen by content 

of 7 wt% poly(methylphenylsiloxane). That content of poly(methylphenylsiloxane) 

provides 190 cmH2O water resistance more.  

Addition of poly(methylphenylsiloxane) to the solution makes the nanofiber web 

middle water resistant material. Water resistant value of ES 3 specimen is also higher 

than the waterproof material Eurodach® without any post treatment.  

To produce an alternative membrane material to Gore-Tex® fabric laminates, 

nanofiber web was electrospun from ES 3 solution and it was laminated on a woven 

fabric by polyurethane hotmelt adhesive. However, ES 3 specimen has only 450 cm 

hydrostatic head pressure, which is much lower than Gore-Tex PTFE. The laminated 

fabric exhibited 900 cmH2O water penetration resistance. 40 grm-2 nanofiber web 

electrospun from ES 3 solution laminated onto woven fabric substrate can be defined 

as high water resistant fabric.  

3.5.3 Water vapor transmission rate (WVTR) 

WVTR is used as an evaluation criteria for performance of the the fabric material 

with regard to user comfort. Therefore, a high WVTR value is desirable with a high 

water penetration resistance. WVTR values of studied specimens are given below 

(see Figure 3.21). 

Vapor transmission rate of all nanofiber web specimens are higher than commercial 

products Eurodach® and Gore-Tex®. Eurodach® as a commercial product has the 

lowest WVTR value because of high material density and material type. That 

waterproof material is composed of polypropylene spunbond layers and 

polypropylene membrane. Both spunbond layers and membrane, which has low 

porosity, play a role on decreasing WVTR value. Gore-Tex®, PTFE laminated 

knitted fabric has remarkable vapor transmission rates, because it contains a 
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membrane layer, which has highly microporous structure and has a warp knitted 

fabric with large holes. Both highly porous membrane and laminated fabric enhance 

the vapor transmission of Gore-Tex®.   

 

Figure 3.21 : WVTR values nanofiber and commercial membrane materials. 

The highest WVTR value was obtained from the ES 3 laminated fabric. It was 

expected that higher membrane density of ES 3 laminated fabric should give lowest 

water vapor transfer. Since woven substrate material used for ES 3 nanofiber web 

was made of cotton, substrates of the other three materials were polyester spunbond 

nonwovens therefore they have lower WVTR values. High value in WVTR for ES 

nanofiber webs indicates that open structure plays a major role in transmitting of 

water vapors through fabrics. 

 

Figure 3.22 : WVTR values of nanofiber webs having different weights N1: 9 grm-2, 
N2: 12 grm-2, N3: 27 grm-2. 
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In addition to this, three nanofiber web electrospun from the solution ES 2 onto 60 

grm-2 polyester spunbond fabrics with different densities were tested to compare 

WVTR values of nanofiber webs, which have different nanofiber weights.  

It can be seen from Figure 3.22 that the weight of the web does not seem to play 

remarkable role on water vapor transmission rate of nanofiber web. Open pore 

structure makes nanofiber web highly breathable material even if weight density of 

nanofiber is high.  

3.5.4 Air permeability 

Air permeability rates of six specimens were investigated and the results of the tests 

are given in Figure 3.23. Air permeability is important for waterproof breathable 

materials because low air permeable products indirectly provide thermal insulation 

especially in cold circumstances. The number and size of pores in the construction 

determine the air permeability of a material. Product with no pores is impermeable 

and offer good protection against wind. But also materials with sufficiently small 

pores may in practice be almost impermeable to air penetration [101]. So commercial 

waterproof materials have low air permeability values because of their limited open 

pore structures.  

On the other hand, nanofiber membranes have air permeability values around 3  

ltm-2s-1, which is high in comparison to the commercial ones.  

 

Figure 3.23 : Air permeability rates of nanofiber and commercial membrane 
materials. 
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In addition to this, laminated woven fabrics by  hotmelt adhesive with 40 gr/m2 

nanofiber web has 1.34 ltm-2s-1 air permeability value which is closer to the 

performance value of  the Gore-Tex® and Eurodach® barrier products.  
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4.  NANOFIBROUS COMPOSITE MEMBRANE SEPERATORS FOR 

LITHIUM-ION BATTERIES AND RELATED EXPERIMENTAL WORK 

4.1 Introduction 

The energy and the environment will be at the top of global problems facing our 

society for the next 50 years. At present, fossil fuels are the primary source used to 

meet the energy demands, nevertheless these resources are finite. Furthermore, 

processing of fossil fuels leads to global warming due to emissions of greenhouse 

gases, including carbon dioxide, methane, nitrous oxide and other gases, such as 

volatile organic compounds and hydro fluorocarbons. The quality of the environment 

has also deteriorated due to industrialization, which releases many pollutants into the 

atmosphere. Water and air represent two environmental systems where the most 

pressing environmental issues persist. Water pollution and dwindling freshwater 

supplies are often cited as critical global problems. It is estimated that more than 

50% of nations in the world will face freshwater stress or shortages by 2025. By 

2075, it is further estimated that the number of nations facing these problems will 

increase to become 75% of all nations [10]. 

Researchers have been investigating clean energy opportunities such as, using solar 

energy more efficiently and cost effective generation of electricity, electrolysis of 

water to generate hydrogen and into electricity with reduced emissions via fuel cells. 

Efficient use of energy is often connected with energy conservation. Once the 

electricity is generated, it must be efficiently stored during low demand periods, or 

for use in portable applications. This highlights the need for electrochemical energy 

storage devices, via high energy density batteries and/or super capacitors. Then, the 

storage of hydrogen becomes of interest, particularly when considering the use of 

hydrogen as fuel for electric vehicles or as a clean burning fuel for vehicles with 

combustion engines [10]. 

Lithium-ion (Li-ion) batteries are thought to hold promise for uses from mobile 

phones and laptop computers through to electric vehicles and the market is forecast 
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to rise to $7 billion in 2015. In hybrid and electric vehicles alone, the market could 

grow from virtually zero in 2004 to around $1 billion in 2015 [102]. 

The cathode in this kind of battery is a lithiated metal oxide (LiCoO2, LiMO2, 

LiNiO2) and the anode is made of graphitic carbon with a layered structure. The 

electrolyte is made up of lithium salts (such as LiPF6) dissolved in organic 

carbonates. When the battery is charged, the lithium atoms in the cathode become 

ions and migrate through the electrolyte toward the carbon anode where they 

combine with external electrons and are deposited between the carbon layers as 

lithium atoms. This process is reversed during the discharge process [103]. 

Lithium-ion batteries, first proposed in the 1960s, came into reality when Bell Labs 

developed a workable graphite anode to provide an alternative to lithium metal 

(lithium battery). The first commercial lithium-ion batteries were produced by Sony 

in 1990. Since then, improved material developments have led to vast improvements 

in terms of the energy density (increased from 75 to 200 Whkg-1) and cycle life 

(increased to as high as 10,000 cycles). The efficiency of Li-ion batteries is almost 

100% which forms another important advantage over other conventional batteries 

[103]. 

Although Li-ion batteries take over 50% of the small portable devices market, there 

are some challenges for making large-scale Li-ion batteries. The main hurdle is the 

high cost (>$600/kWh) due to special packaging and internal overcharge protection 

circuits. [103].  

4.2 Lithium-ion Battery Separators 

The principle of Li-ion battery (LIB) is based on the “rocking-chair” concept, in 

which a low potential Li insertion anode as carbonaceous material is matched with a 

high potential Li insertion cathode. Various materials have been developed for high 

performance, more safety, low cost and availability considerations. So far, the best 

choice for electrode reactions for commercial Li-ion batteries is Li intercalation 

compounds such as LiCoO2 for cathode material and graphite for anode material. The 

discharge process is the lithium ion moves out of the intercalated carbon and into 

another lithium intercalation compound  
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In order to satisfy the human needs of both environmental protection and 

miniaturization of consumer products, Li-ion batteries have rapidly become the 

rechargeable battery of choice for many applications
 
and are available in a variety of 

configuration, size, and capacity [104]. 

The separator is a critical component in liquid electrolyte batteries, and is placed 

between the positive electrode and the negative electrode to prevent physical contact 

of the electrodes while enabling free ionic transport and isolating electronic flow. It 

mostly is a microporous layer consisting of either a polymeric membrane or a non-

woven fabric mat. Essentially, it must be chemically and electrochemically stable 

towards the electrolyte and electrode materials and must be mechanically strong to 

withstand the high tension during the battery assembly operation. Structurally, the 

separator should have sufficient porosity to absorb liquid electrolyte for the high 

ionic conductivity. However, the presence of the separator adds electrical resistance 

and takes up limited space inside the battery, which adversely affects battery 

performance. Therefore, selection of an appropriate separator is critical to the battery 

performance, including energy density, power density, cycle life and safety.  

For high energy and power densities, the separator is required to be very thin and 

highly porous while remaining mechanically strong. For battery safety, the separator 

should be able to shut the battery down when overheating occurs, such as the 

occasional short circuit, so that thermal runaway can be avoided. The shutdown 

function can be obtained through a multilayer design of the separator, in which at 

least one layer melts to close the pores below the thermal runaway temperature and 

the other layer provides mechanical strength to prevent physical contact of the 

electrodes [105]. 

4.3 Properties of Separators 

4.3.1 Thickness 

Separator backweb refers to the porous separating membrane. It is of uniform 

thickness and has a macroscopically uniform pore distribution. Only in this way can 

an overall uniform current density be ensured during the operation of the storage 

battery, achieving a uniform charging and discharging of the electrodes and thus a 

maximum utilization of the electrode materials.  
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In practice, the desired electrolyte distribution is achieved by distance-maintaining 

ribs on the porous backweb; this in addition has the advantage of maintaining a 

maximum distance between the origin of oxidizing substances located at the positive 

electrode and the highly porous separating membrane, sensitive due to its large inner 

surface. The total or overall thickness thus comprises the backweb thickness and the 

rib height. For achieving a uniform current distribution the thickness is normally 

specified very precisely and it is acceptable only within rather narrow tolerances. 

Besides technical difficulties in the production, this also presents a problem in 

measurement. Since all separator materials are more or less compressible, a specified 

measuring pressure has to be used. Moreover, the measuring area is also significant. 

One can easily imagine an extended area touching only the microscopic elevations of 

the separator, whereas a measuring tip may very well hit "valleys" [106]. 

4.3.2 Pore size and porosity 

An appropriate porosity is necessary to hold sufficient liquid electrolyte for the ionic 

conductivity between the electrodes. However, too high porosity will adversely 

impact the shutdown performance because in this case, the pores cannot be closed 

effectively and the membrane tends to shrink as it melts or softens. The porosity can 

be measured using liquid or gas absorption methods. Typically, the Li-ion battery 

separators have a porosity of 40% [105].  

The pore size must be smaller than the particle size of the electrode components, 

including the electrode active materials and the conducting additives. In practical 

cases, membranes with sub-micron pore sizes have proven adequate to block the 

penetration of particles since the tortuous structure of the pores assists in blocking 

the particles from reaching the opposite electrode. Uniform distribution and a 

tortuous structure of the pores are both highly desirable since the former ensures a 

uniform current distribution throughout the separator and the latter suppresses the 

growth of dendritic lithium [105]. 

4.3.3 Chemical stability 

The separator material must be chemically stable against the electrolyte and electrode 

materials, especially under the strongly reductive and oxidative environments when 

the battery is fully charged. Meanwhile, it should not degrade and lose mechanical 

strength. An easy method to verify chemical stability is by calendar life testing [105]. 
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4.3.4 Permeability 

Separator should not limit the electrical performance of the battery. Typically, the 

presence of a separator increases the effective resistance of the electrolyte by a factor 

of 4–5. The ratio of the resistance of the separator filled with electrolyte divided by 

the resistance of the electrolyte alone is called MacMullin number. MacMullin 

numbers as high as 8 have been used in high power Li-ion batteries. For batteries 

used in hybrid electric vehicles (HEV) and in power tools, the MacMullin number 

should be lower for the purpose of safety and a long cycle life. Air permeability can 

be used indirectly to estimate the MacMullin number. Air permeability is expressed 

by a terms of the Gurley value, which is defined as the time required for a specific 

amount of air to pass through a specific area of the separator under a specific 

pressure. The Gurley value can be measured according to ASTM D726. When the 

porosity and thickness of the separators are fixed, the Gurley value reflects the 

tortuosity of the pores. The separator with uniform permeability is essential for the 

long cycle life of a battery. Variations in permeability will result in uneven current 

density distribution, which has been verified as the main reason for the formation of 

dendrite Li on the negative electrode [105]. 

4.3.5 Wettability 

The separator should wet easily in the electrolyte and retain the electrolyte 

permanently. The former facilitates the process of electrolyte filling in battery 

assembly and the latter increases cycle life of the battery. There is no generally 

accepted test for separator wettability. However, placing a droplet of electrolyte on 

the separator and observing whether or not the droplet quickly wicks into the 

separator is an easy way to indicate sufficient wettability [105]. 

4.3.6 Dimensional stability 

The separator should lay flat and not bow or skew when it is laid out and soaked with 

liquid electrolyte. The separator should remain stable in dimensions over a wide 

temperature range [105]. 

4.3.7 Thermal shrinkage 

When the temperature rises to the softening temperature, the membrane tends to 

shrink, even if the porosity is very low, because of the difference in the density 
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between the crystalline and amorphous phases of polyolefin materials. For example, 

the PE can shrink as much as 10% when exposed to a temperature of 120 oC for only 

10 min. The thermal shrinkage should be minimized. For the Li-ion battery, the 

shrinkage is required to be not more than 5% after 60 min at 90 oC [105]. 

4.4 Types of Separators 

4.4.1 Microporous membrane separators 

Currently, all commercially available, spirally wound lithium-ion cells use 

microporous polyolefin separators (see 4.1). In particular, separators are made from 

polyethylene, polypropylene, or some combination of the two. Polyolefins provide 

excellent mechanical properties and chemical stability at a reasonable cost. A 

number of manufacturers produce microporous polyolefin separators. Nonwoven 

materials have not been able to compete with microporous films, most probably 

because of the difficulty in making thin (25 µm) nonwovens with acceptable physical 

properties (for example, gauge uniformity, puncture strength). However, nonwovens 

are used in buton cells and bobbin cells when thicker separators and low discharge 

rates are acceptable [107].  

 

Figure 4.1 : SEM photographs of three layer microporous membrane a) surface  
b) cross section [107]. 

The processes for manufacturing micro porous membranes can be broadly divided 

into wet processes and dry processes. Both processes usually employ one or more 

orientation steps to impart porosity and/or increase tensile strength.  

Wet processes involve mixing a hydrocarbon liquid or some other low-molecular -

weight substance with a polyolefin resin, heating and melting the mixture, extruding 

the melt into a sheet, orientating the sheet either in the machine direction or biaxially, 

and then extracting the liquid with a volatile solvent [108].  
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Dry processes involve melting a polyolefin resin, extruding it into a film, thermal 

annealing, orientation at a low temperature to form micro pore initiators, and then 

orientation at a high temperature to form micro pores [9, 10]. The dry process 

involves no solvent handling, and therefore is inherently simpler than the wet 

process. The dry process involves only virgin polyolefin resins and so presents little 

possibility of battery contamination [108]. 

4.4.2 Nonwoven fabric maths 

A non-woven separator is a fibrous mat made by bonding numerous fibers together 

through chemical, physical or mechanical methods. Natural and synthetic materials 

have been used to manufacture the fibers for non-woven separators. Natural 

materials include celluloses and their chemically modified derivatives. The synthetic 

materials include polyolefin, polyamide, polytetrafluoroethylene, PVdF, polyvinyl 

chloride (PVC), polyester as seen in Figure 4.2 and so forth [105,109].  

 

Figure 4.2 : SEM picture of polyester nonwoven separator [109]. 

The principal bonding methods for the battery separators are resin bonding and 

thermoplastic fiber bonding. In the former, the resin as an adhesive is sprayed onto 

the web of fibers, and then dried, heat-cured and in some instances pressed. In the 

latter, a fusible (thermoplastic) fiber having a lower melting point than the base fiber 

as the bonding agent is blended with the base fiber to form a web, followed by 

pressing between two heated rollers to promote bonding of the thermoplastic fibers 

and the base fibers. To minimize the adverse effect of foreign adhesives on the 

battery performance, the thermoplastic bonding method is most preferable for the 

manufacture of battery separator. The fibrous webs can formed either by a wet 

process such as a paper-making process, a solution extrusion method using a 
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spinning jet and wet-laid method or by a dry process such as a melt blowing method 

[105]. 

4.4.3 Inorganic composite separator  

An inorganic composite separator, or “ceramic separator”, is a porous web made of 

ultrafine inorganic particles bonded using a small amount of binder. Due to the high 

hydrophilicity and high surface of the small inorganic particles, such separators 

exhibit exceptional wettability with all non-aqueous liquid electrolytes, especially 

those containing a high content of cyclic carbonate solvents such as ethylene 

carbonate (EC), propylene carbonate (PC) and butyrolactone (GBL), which have a 

high dielectric constant and are known to be unable to wet the non-polar polyolefin 

separators. Meanwhile, these separators have extreme thermal stability and show 

zero-dimensional shrinkage at high temperatures [105].  

The outstanding wettability allows one to use a high content of PC and EC in the 

liquid electrolytes, which is very helpful to increase the cycleability of the Li-ion 

batteries at high temperatures, while the extreme thermal stability offers the batteries 

excellent temperature tolerance, which is critical to large-size Li-ion batteries. In 

fact, temperature-related safety issues are mostly related to the dimensional shrinking 

or melting of the separator. Both shrinking and melting of the separator could result 

in physical contact of the electrodes so that direct chemical reactions between the 

strongly oxidative cathode material and the strongly reductive anode material occur, 

and the generated heat causes thermal runaway. Therefore, the inorganic composite 

separators with excellent wettability and zero shrinkage are highly desirable for the 

development of large-size Li-ion batteries, especially these for hybrid electric 

vehicles and power tools [105]. 

4.5 Experimental Work 

Polyolefin microporous films and nonwoven fabrics are the most used material for 

lithium-ion battery separators. Both separators have disadvantages that porosity and 

electrolyte wettability of microporous membranes are low and thin membrane 

structure and small pore size of microporous membranes are the advantages of them. 

On the other hand, nonwoven separators have higher porosity good electrolyte 

wettability. But high thickness and large pores are disadvantages of nonwoven 
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fabrics [110]. Therefore, a new generation separator material, which has good 

wettability, high porosity with small sizes and has smaller thickness, can be a strong 

alternative to current battery separators. Polyacrylonitrile nanofiber web can be a 

good candidate as an alternative material for lithium-ion batteries instead of 

microporous membranes and nonwoven materials.  

4.5.1 Materials 

To produce polyacrylonitrile solution, poly(acrylonitrile) powder was obtained from 

AKSA Akrilik A.Ş. and dimethyl formamide obtained from Bereket Kimya Tıp 

Teknik Tic. ve San. Ltd. Şti. were used as solvent. Fumed silica nanoparticles, 

AEROSIL 200 Pharma (See Table 4.1 for its properties), were supplied from 

Marmara Ecza and Kimyevi Maddeler San. Tic. which have 21 nm diameter.  

Properties Unit Typical 
Value 

Specific surface area (BET) m2g-1  200 ± 25  
Tapped density (approx. value) 

gl-1  approx. 50  acc. to DIN EN ISO 787/11, Aug. 1983 

pH 

  3.5 - 5.5  Tested according to Ph. Eur., USP/NF 

Chloride 

ppm  < 250; < 110  Tested according to Ph. Eur.; JP 

Heavy Metals 

ppm  < 25; < 40  Tested according to Ph. Eur.; JP 

SiO2 - content 

wt%  
99.0 - 100.5; > 
98.0  Tested acc. to Ph. Eur., USP/NF; JP 

Loss on Drying (moisture) 

wt%  < 2.5; < 7.0  Tested according to USP/NF; JP 

Loss on Ignition 

wt%  
< 5.0; < 2.0; < 
12.0  Tested acc. to Ph. Eur.; USP/NF; JP 

As - content 

ppm  < 8.0; < 5.0  Tested according to USP/NF; JP 

Volume Test 

ml  > 70  Tested according to JP 

Fe - content 

ppm  < 500  Tested according to JP 

PAN powders were dissolved in DMF at 10 wt% concentration and solution was 

stirred at 100 ºC for 12 hours. Then three PAN/DMF solutions were prepared with 0 

wt%, 1 wt% and 2 wt% silica content.  

Table 4.1 : Properties of Aerosil 200 Pharma silica [111]. 
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Solutions were coded as below; 

• 10 wt% PAN/DMF: PAN-Si00 

• 10 wt% PAN/DMF+1 wt% Silica: PAN-Si01 

• 10 wt% PAN/DMF+2 wt% Silica: PAN-Si02 

Microporous membrane Celgard 2020 was supplied from Celgard LLC (see Table 

4.2 for its properties) as control material for nanofiber web separators. Properties of 

membrane are; 

• 20 μm microporous three layer membrane (PP/PE/PP) 

• Uniform pore structure with high chemical and thermal stability 

• Oxidation resistance for excellent cycling and trickle charge performance 

• PE inner layer provides high-speed shutdown 

• Excellent resistance to acids, bases and most chemicals 

• Zero TD shrinkage reduces internal shorting and improves high temperature 

dimensional stability [112]. 

Basic Film Properties Unit of Measure Typical Value 

Thickness μm 20 

Air permeability Gurley (JIS) Seconds 530 

Porosity % 30 

Pore size (Average diameter) μm 0.027 

TD Shrinkage at 90º C / 1 Hour % 0 

MD Shrinkage at 90º C / 1 Hour % 5 

Puncture Strength Grams 360 

Tensile Strength MD kgcm-² 2050 

Tensile Strength, TD kgcm-² 165 

4.5.2 Electrospinning of PAN/DMF/silica solutions 

Electrospinning was performed by the 10-needle electrospinning setup (see Figure 

3.8). It consists of two pipe-needle system, each pipe has five needles. Solution was 

fed to the pipe-needle system by a syringe pump (Asena Alaris GH, Cardinal Health 

Table 4.2 : Basic film properties of Celgard 2320 [112]. 
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Inc.), a high voltage power supply capable of 0–100 kV (ES100P-20W, Gamma 

High Voltage Research, Inc.) and a grounded rotating drum cylinder as a collector.  

85 grm-2 polyester spunbond fabrics were used as substrate material for PAN/silica 

nanofibers. Electrospinning of PAN/DMF solution has difficulties because of high 

conductivity of solution. Fiber bundles generated during electrospinning process and 

these bundles disturb homogeneity and porous structure of nanofiber web. Optimal 

electrospinning conditions for three PAN/DMF solutions with different silica content 

are given in Table 4.3.  

Electrospinning parameters PAN-Si00 PAN-Si01 PAN-Si02 

Voltage (kV) 26 34 30 

Needle to collector distance (cm) 7.5 10 12 

Flow rate (mlh-1needle-1) 2 2 1 

4.6 Characterization  

4.6.1 Fiber morphology 

Scanning Electron Microscope (JEOL JSM-6390 LV) was used to characterize PAN 

nanofiber web and measure the diameters of nanofibers. SEM photographs were 

obtained at different magnifications. Fiber diameters of nanofibers were measured by 

CATIA 3D design program using SEM photographs.  

4.6.2 Air permeability 

Air permeability is defined as velocity of an airflow passing perpendicularly through 

a test specimen under specified conditions of test area, pressure drop and time. Air 

permeability of membranes and membrane laminates were measured according to 

ISO 9237 Determination of the permeability of fabrics to air by an air permeability 

tester (Textest FX 3300-III). It is based on the rate of flow of air passing 

perpendicularly through a given area of fabric is measured at a given pressure 

difference across the fabric test area over a given time period.  

A circular specimen holder is used to carry out the test sample with an area of 20 

cm2. Pressure gauge or manometer connected to the test head to indicate a pressure 

drop across the specimen test area of 100 Pa with an accuracy of 2% [96]. 

Table 4.3 : Optimal electrospinning conditions for PAN/DMF/silica solutions. 
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4.6.3 DSC analysis 

The DSC analysis was performed at temperature range of 0–400 ºC for 

PAN/DMF/silica solutions and (-50 ºC) – (200 ºC) for microporous membrane by the 

rate of 20 ºCmin-1 with Q100 TA Instruments.  

4.6.4 Thermal Stability 

Thermal stabilities of microporous and nanofiber membranes were measured by 

replacing them at 120 ºC for 36 hour in a vacuum drying oven. Sizes of membranes 

were measured before and after thermal process. 

4.7 Results and Discussions 

4.7.1 Fiber morphology 

SEM photographs of pure PAN and PAN/silica nanofibers with various silica 

contents are give in Figures 4.3, 4.4 and 4.5. All samples exhibit long and straight 

fibrous morphology, with fiber diameters ranging from 150 to 500 nm. However, 

deformations exist on nanofibers with increasing silica content of PAN solutions.  

 

Figure 4.3 : SEM photographs of PAN-Si00 a)1000X b)7500X c)25000X 
magnification. 

 

Figure 4.4 : SEM photographs of PAN-Si01 a)1000X b)7500X c)25000X 
magnification. 
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Figure 4.5 : SEM photographs of PAN-Si02 a)1000X b)7500X c)25000X 
magnification. 

Addition of silica to the solution does not constantly affect diameter distributions of 

web. PAN-Si00 solution, which does not contain silica, has well nanofiber 

distributed structure (see Figure 4.6). Fiber distribution of nanofiber web, obtained 

from PAN-Si01 solution, has bimodal structure (Figure 4.7). 550-600 nm diameter 

fibers are observed in nanofiber web. Fiber diameter distribution of PAN-Si02 

solution is better than fibers obtained from PAN-Si01 solution as seen in Figure 

(4.8). 

 

Figure 4.6 : Fiber distribution of PAN-Si00. 

 

Figure 4.7 : Fiber distribution of PAN-Si01. 
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Figure 4.8 : Fiber distribution of PAN-Si02. 

Surface of nanofibers become rough with increasing silica content. Agglomeration 

on the surface of fiber when silica concentration in the solution increases.  

4.7.2 Air permeability 

Air permeability of PAN/silica nanofibers and Celgard membrane is given in Figure 

4.9. Microporous membrane can be defined as air proof material.  

 

Figure 4.9 : Air permeability of PAN nanofiber webs and Celgard membrane. 

PAN nanofiber webs are highly air permeable materials when they are compared 

with commercial microporous battery separator. Air permeability value of 

PAN/silica nanofiber increases with increasing silica content. Silica added nanofiber 

webs possess a bulkier structure than non-silica added webs. Therefore, high air 
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permeability of silica added nanofiber webs is resulted from this bulky structure of 

the web. 

4.7.3 DSC analysis 

DSC graphics of pure PAN and PAN/silica nanofibers obtained from 1 wt% and 2 

wt% solution are given in Figure 4.10 and Figure 4.11 respectively. Nanofiber 

samples give a weak glass transition and a relatively large and sharp exothermic 

peak. The glass transition temperature and exothermic peak and its onset temperature 

shift to higher temperatures with increasing silica content. Glass transition of pure 

PAN nanofiber increases from 102.75 to 104.65 ºC with increasing silica content to 2 

wt%. This increase is not so high, because silica nanoparticles are so large when they 

are compared to polymer chains. It can be said that silica nanoparticles does not 

affect the movement of polymer chains during the temperature increase. 

 

Figure 4.10 : Endothermic shift of pure PAN and PAN/silica nanofibers from DSC 
 analysis. 

It has been reported that the exothermic peak of PAN can result from three principal 

reactions, i.e., dehydrogenation, instantaneous cyclization, and crosslinking 

reactions, which are exothermic in nature. Among these three reactions, the 

predominant one is the instantaneous cyclization reaction. The large and sharp peak 

of pure PAN indicates the instantaneous cyclization of nitrile groups into an 

extended conjugated ring system in the nitrogen atmosphere. The broadening of the 

exothermic peak in the presence of silica suggests that silica either works as a 
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dehydration reagent, or modifies the activity of the free radicals involved in the 

cyclization reaction [113]. 

 

Figure 4.11 : Exothermic shift of pure PAN and PAN/silica nanofibers from DSC 
analysis. 

The reduced reaction heat is caused by the interactions between PAN and silica, 

which decrease the formation of free radicals on the nitrile groups and subsequently 

their recombinations. The shifting of the peak to higher temperatures is also 

attributed to the inhibiting effect of silica on the free radical formation. At higher 

silica concentrations, the exothermic peak disappears, indicating that the cyclization 

reaction may cease to occur because of the interactions between PAN molecules and 

large quantities of silica inhibitor. As a result, it can be concluded that the cyclization 

of PAN molecules in nitrogen environment is hindered by the addition of silica 

[113]. 

 

Figure 4.12 : DSC graphic of microporous membrane (Celgard 2020). 
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DSC thermogram of microporous membrane (Celgard2020) is given in Figure 4.12. 

Microporous membrane gives two endothermic peaks at 134.4 and 163.7ºC. These 

points are attributed as melting points of polyethylene and polypropylene.  

To conclude, pure and silica added PAN nanofiber webs are thermally more stable 

than the commercially available microporous membrane (Celgard 2020).  

4.7.4 Thermal Stability 

Microporous, pure PAN and silica added PAN after thermally treated for 36 hour at 

120 ºC is given in Figure 4.13. Microporous membrane lost its spherical shape under 

heat and it took ellipsoid shape. The reason for this change is attributed to the fact 

that microporous membrane is produced by stretching method under high 

temperatures then it stabilized at low temperatures. Therefore, it regains its former 

shape under high temperatures. Pure PAN nanofibers keep their spherical shape, 

however specimen lost 16% of its initial diameter in average after 36 hour thermal 

treatment.  

 

Figure 4.13 : Microporous and nanofiber membranes after thermal treatment with 
control membranes. 

Adding silica to PAN nanofiber improved the thermal stability of PAN nanofiber 

web as it is verified with DSC analysis. Nanofiber web obtained from 1 wt% silica 

added PAN/DMF solution, coded as PAN-Si01 kept its average diameter value 5% 

more than pure nanofiber web.  
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Figure 4.14 : Average diameter variation of membranes during thermal stability test. 

Finally, PAN-Si02 specimen that was electrospun from 2 wt% silica added 

PAN/DMF solution gave the best results. Average diameter of PAN-Si02 nanofiber 

membrane decreased to 93% of its original diameter after 36 hour thermal test, which 

is also more stable than commercial microporous membrane. 

Average diameter variation of membranes during thermal test is shown in Figure 

4.14 
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5.  DESIGN AND MANUFACTURE OF INDUSTRIAL ELECTROSPINNING 

PILOT MACHINE 

5.1 Introduction 

In this section of this work, the main aim is to design and manufacture an 

electrospinning pilot unit for commercial membrane material production. To realize 

this purpose laboratory experiments, pilot designs and optimization of the pilot 

electrospinning unit were done. 

5.2 Laboratory Scale Experiments for Industrialization of Electrospinning 

Before design and manufacturing pilot electrospinning machine, electrospinning tests 

are conducted in order to figure out the principles of the machine system. The aim of 

these tests is to reply questions below: 

• How does one jet work in electrospinning process? 

• What are the necessary parameters for electrospinning process? 

• What are the requirements while working with multi jet electrospinning 

process? 

• What are the optimum conditions for increasing production of electrospinning? 

5.2.1 One needle electrospinning experiments 

For the primary experiments, a one-needle electrospinning set-up is constructed by 

utilizing early electrospinning set-ups given in the literature. In these experiments 7.5 

wt% PVA/water solution was prepared.  

Main requirements for electrospinning process were provided by constructing three 

main component of electrospinning setup 

• High Voltage Power Supply: A high voltage DC power supply (Gamma ES 

100 model) is used for one needle electrospinning set-up which generates up 

to 100 kV voltage values. Power supply device has two display panels for 
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voltage and current. Voltage can be manually adjusted and current panel 

shows the output current of the machine. In addition, power supply can 

generate maximum 200 µA, so it totally has 20-watt capacity.  

• Solution Feeding System: Syringes and needles were used which are usually 

preferred in the literature because of practical and economical properties of 

them. In order to feeding solution to the electrospinning section with regular 

control, a syringe pump (Asena GH model) is used. Device can pump 

solution with 0.1-150 mlh-1 flow rate by applying maximum 100 mmHg 

pressure, also it recognize 5, 10, 20, 50 and 60 ml syringes automatically. 

• Collector: Aluminum plate is preferred because of high conductivity; it is a 

cheap material, which can be found in various shapes.  

Some process parameters such as voltage, collector to needle distance, flow rate, 

needle diameter, and position of electrospinning with respect to gravity have been 

observed with one needle electrospinning system. As a result of these observations, 

for one needle electrospinning system, PVA/water solution can be regularly 

electrospun under conditions 12 cm needle to collector distance, 1 ml/min flow rate 

and 20 kV electric voltage. In this conditions flow rate and voltage are balanced for 

0,4 mm inner diameter of needle. If flow rate is reduced, this balance collapses and 

the needle is clogged.  

5.2.2 Multi needle stationary electrospinning set-up 

The aim of multi needle electrospinning experiments is that optimizing process 

parameters such as needle to collector distance, voltage with increasing needle 

number, observation of path of jets, nanofiber collecting areas and morphological 

properties of electrospun fibers. In this sense, experiment apparatus is constructed as 

below (see Figure 5.1).  

• 1 mm diameter of holes a were made with 10 mm spaces on 200mm*200mm 

aluminum plate 

• 25 mm PS foam was placed under aluminum plate 

• 250 mm diameter aluminum was used as collector 
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Figure 5.1 : Multi needle electrospinning set-up. 

7.5 wt% PVA/water solution is electrospun with 2,4 and 9 needles at 12 cm needle to 

collector distance in multi needle electrospinning experiments. In this experiment 

flow rate is adjusted gravimetrically. Production times are observed where total 

solution volume ejected to system per needle and voltage is applied at a constant 

value.  Results and parameters of these experiments are given in Table 5.1.  

Parameters and results 2 needle 4 needle 9 needle 
Voltage  (kV) 25  25 25-30 
Needle to collector distance 
(cm) 12 12 12 

Needle spaces (cm) 4 4 2 
Production rate (mlmin-1) 0.0140 0.0140 0.0135 

The most important result of this experiment is that electrospinning jets and 

electrospinning collecting areas do not mix together. Even though distance between 

needles is reduced to 2 cm, jets repel each other and they do not produce a 

homogeneous nanofiber mat with 9-needle electrospinning set-up. The reason of this 

that jets charged with same polarity repel each other, so they are collected as 

unconnected nanofiber webs. This phenomenon is one of the biggest problem for 

industrializing the electrospinning process. In order to increase production rate. 

Number of needles and needle density must be raised, however effect of electrostatic 

forces on jets do not permit the increasing needle number. Nanofiber morphologies 

obtained from this experiment are given in Figure 5.2 below.  

Table 5.1 : Results of multi needle experiments. 
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Figure 5.2 : Nanofiber webs produced by 2,4 and 9 needles. 

Even though needles were positioned at a narrower area, wider nanofiber webs were 

collected as a result of repellency of each jet to others. In 9 needle electrospinning 

experiment with 2 cm needle density, because the central needle was constricted 

from other jets, central needle could not find enough area for electrospinning 

process, thus electrospinning for central needle can not be achieved. SEM 

photographs of nanofiber webs obtained from PVA/water solution are given in 

Figure 5.3.  

 
Figure 5.3 : SEM photographs of nanofibers produced by multi needle 

electrospinning set-up a) 2 needle b) 4 needle c) 9 needle. 

5.2.3 16 Needle Electrospinning Set-up Supported Conveyor Belt 

Because, jets do not mix or make entanglements, a homogenous web can not be 

produced by stationary electrospinning set-up. This problem can be solved by 

making needle system or collector shifting. For this purpose, next experiments were 

conducted with an electrospinning set-up having a conveyor belt system as collector 

(see Figure 5.4).  

For 16-needle electrospinning set-up, an aluminum collector plate having 400 one 

millimeter-diameter-holes is manufactured. Distances between holes are 10 

millimeter as shown in Figure 5.5. 
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Figure 5.4 : 16 needled electrospinning set-up. 

Purpose of manufacturing this plate is that observing interactions between charged 

needles and jets during electrospinning, also fabricating a homogeneous nanofiber 

web. That collector plate is located on the top of electrospinning set-up. At the 

bottom, a conveyor belt system is installed as a substrate material. A nonwoven 

fabric is used as a substrate which is driven by two rotating cylinder like a conveyor 

system. An aluminum plate is installed inside of conveyor fabric. As nanofiber 

accumulating on conveyor fabric, each needle row consists of four needles are 

shifted 1 cm, in order to inhibit overlapping of spinning jets.  

 
Figure 5.5 : Schematic diagram of needle positions. 

Production of four nanofiber product was planned on this electrospinning set-up. 15 

wt% PA 6/formic acid solution was used for nanofiber production. Without an 

external feeding system, flow rate was provided by gravimetric flows. For this 

purpose, syringes were loaded as much as their capacity. SEM images of produced 

nanofiber webs are given Figure 5.6. 



 90

 

Figure 5.6 : SEM images of PA 6/formic acid solution electrospun on 16 needle-
conveyor belt system. 

As a result of experiment, nanofibers that have average diameters about 200 nm were 

produced. Because feed rate was not control regularly some defects occurred on 

nanofiber web ( see Figure 5.7). In addition, homogeneity of nanofiber web was not 

provided because of not using a controllable feeding system.  

 

Figure 5.7 : PA 6 nanofiber web on nonwoven fabric, droplet defects are circled.  

5.2.4 Bottom to up electrospinning set-up with 24 needle 

In order to produce homogeneous nanofiber web and increase the production rate of 

electrospinning a 24-needle electrospinning set-up was manufactured, the set-up is 

seen in Figure 5.8). To increase homogeneity of nanofiber web needle layout was 

spread on the needle block. In this electrospinning set-up bottom-up nanofiber 

production was applied because of difficulties on controlling of feed rate for each 
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needle. Variations on flow rate of each needle can damage the web by 

electrospraying of micro or macro droplets on the electrospun web.  

 
Figure 5.8 : 24-neddle electrospinning set-up. 

By bottom-up electrospinning set-up, deformations on the nanofiber web were 

minimized protecting web from dripping or spraying solution. In the collector part of 

electrospinning set-up a grounded aluminum is positioned in the continuous a 

spunbond nonwoven fabric which is also used as a conveyor system. On the counter 

side of electrospinning system, needles were charged with positive high voltage. By 

this way, a potential difference is generated between needles and collector.  

In addition to 16-needle electrospinning, set-up a feeding pump was used in order to 

control feed rate. That syringe pump can eject polymer solution with 0.1 

milliliter/hour sensitivity.  

Observations of this electrospinning set-up are stated below, 

• In order to produce nanofiber by electrospinning system voltage, flow rate 

and needle to collector distance should be adjusted well that is parallel to our 

experiences that are gained by one needle electrospinning system and 

information in the electrospinning literature. For the solution of 15% 

TPU/DMF used in experiments, a collector distance higher than 150 mm and 

voltage higher than 30 kV are necessary.  

• If nanofiber production is realized by grounding one of polar such as needle 

or collector, grounding must be done well in order to generate better electric 

field between needle and collector.   
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• Distance between needles and needle to collector distance are important for 

drawing, elongating and solidification of polymer jet. Materials used as 

substrate directly affect electrospinning process or surface morphology of 

manufactured electrospun product. So, substrate materials should not disrupt 

charge transmission between needle and collector and contact between 

substrate and collector plate or cylinder should be homogenous on every 

point. Irregular air gaps between collector plate and substrate or disorders on 

the collector plate can result in line faults or inhomogeneous web density 

from point to point. 

• Irregularity of flow rate, which is fed to the each needle, disrupts the 

homogeneity of nanofiber web or results in clogging some of needles and 

leaking some of them.  

5.2.5 100-Needle Electrospinning Set-up 

A 100-needle set-up was designed in order to test the 100-watt power supply if it can 

endure multi needle electrospinning (see Figure 5.9). 20 needles were constructed on 

a 10-millimeter-dimater polyethylene pipe. 40 mm space was replaced between every 

two needles. By preparing five item of that configuration 100 needle set-up is 

obtained. Needles are connected together by a copper cable, and positive potential is 

applied by this cable from power supply. Polyethylene pipes are fixed on a plexi 

glass construction, which has pipe channels. Distance between pipes and channels 

were 100 mm.  

 

Figure 5.9 : 100-needle electrospinning set-up. 
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In order to feed the solution regularly, a syringe pump was used with a solution 

reservoir. In addition, a distributor was designed to distribute solution, which is fed 

from solution reservoir to five pipes. Plexi glass construction was designed for five 

pipes and bottom part of pipes on the construction kept open-air structure.  

 

Figure 5.10 : Nanofiber layer produced by 100-needle system on aluminum foil. 

If bottom of pipe is closed, solution leaked from needles can cause discharge of 

charged solution. Thus, electric losses were prohibited. For this electrospinning set-

up, there was no moving collector system was used. Nanofiber production was 

realized by bottom to up electrospinning. 

Electrospinning experiments were conducted systematically. Polyethylene pipes are 

connected to the electrospinning system one by one. At first, 20 needle then 

consequently 40, 60, 80 and 100 needles were operated. A 70x70 cm aluminum foil 

is used for this experiment as collector (see Figure 5.10). 15% wt PVA/water 

solution was electrospun in this electrospinning set-up. Nanofiber web having five 

rows produced by 100-needle set-up is shown in Figure 5.10. Applied voltages at 15 

cm needle to collector distance are shown in Table 5.2 for every polyethylene pipe 

added to the electrospinning system.  

Number of needle Applied Voltage 
(kV) 

20 30 
40 33 
60 35 
80 39 
100 41 

Here, with increasing needle number applied voltage must be increased as shown in 

Table 5.2. In theory, needles are connected in parallel and they consume same 

Table 5.2 : Effect of number of needle on required minimum voltage. 



 94

energy. If there is no electric losses a 100-watt power supply easily works 100 needle 

electrospinning set-up. However, with increasing needle discharges from system to 

air and other spare parts of system limits the usage of power supply. Therefore, 

electric insulation on the electrospinning system should be well organized. 

5.3 Pilot Electrospinning Machine 

Before design and manufacture of pilot electrospinning unit, principle of system was 

carried out by support of some experiences and results of previous experiments on 

multi needle electrospinning set-ups. Main properties of the pilot electrospinning unit 

are described below: 

• To industrialization of electrospinning system, needle or needless 

configurations are available. Most of needless systems do not have solution 

feeding control. Because of the disadvantageous of needless electrospinning 

set-ups, an electrospinning set-up consists of 416 needles were expected to 

construct. 26 needle blocks, each of them has 16 needle were planned to 

design.  

• To carry out potential difference between needle blocks and collector, a steel 

conveyor was placed in the primary designs of pilot electrospinning machine. 

A rotary steel collector was preferred, because potential difference between 

the collector and needles generates frictional forces between substrate fabric 

and metal collector. In order to eliminate the problem a special steel conveyor 

was designed which is also durable to rotation around cylinder. So any fabric 

having any strength can be used as a substrate material for electrospun 

nanofibers.  

 

Figure 5.11 : Primary designs for pilot electrospinning machine. 
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• To realize continuous electrospun nanofibers production a fabric let off and 

fabric take up system was thought for substrate material. In this 

configuration, the biggest problem was adjusting the fabric velocity for 

suitable nanofiber density.  

Working principle of pilot electrospinning is shown in Figure 5.11. 

5.3.1 Main Frame 

It is ideal that main frame of pilot electrospinning should be plastic material because 

of providing electrical insulation, however plastic materials store static electric on 

their surface and they lose their mechanical properties under tension load. Thus, 

sigma aluminum profiles were used for the main frame of electrospinning machine 

(see Figure 5.12).   

  

Figure 5.12 : 3-D design and photograph of mainframe. 

Aluminum profiles, which can be supplied in different size, provide easiness for the 

aspect of assembly, but aluminum frames have risk of discharging originated from 

electrospinning zone of the pilot machine during nanofiber production process. 

Therefore, S-suitable spaces were carried out to solve discharging problems and 

insulate the frame from electrospinning area of the machine.  

5.3.2 Solution Transfer System 

A few alternatives were thought for solution transfer system. These are: 

• Needle Block System: That solution transfer system is constructed from an 

enclosed solution reservoir on which needles are fixed. Size of needles and 

position of each needle should be determined and designed well before 

manufacturing of needle block (see Figure 5.13). A disadvantage of this 
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system is that it is not practical and flexible. On the other hand, flow rate 

homogeneity of each needle becomes very good if needle blocks are suitably 

manufactured. Replacing of one or a few needle blocks easier instead of tens 

of needles.  

 

Figure 5.13 : Needle block consists of 100 needles. 

• Solution Reservoir System: In this solution transfer system, solution is taken 

from a reservoir without any solution feeding mechanism and it is transferred 

to electrospinning area. Using a smooth or rough cylinder that immersed into 

the reservoir, generating droplets on the surface of solution by giving 

vibrations to the solution reservoir, replacing needle blocks into the solution 

reservoir in order to generate droplet by utilize of cohesive forces are the 

main ways to realize electrospinning process without using any controllable 

feeding system. In this reservoir system there is no possibility of stopping the 

system because of clogging or flow rate irregularities. However, adjusting of 

desirable feed rate is very difficult. Increasing the production rate of a 

developing pilot machine, which has a reservoir solution transfer system, is 

very difficult.  

• Pipe-Needle System: This solution transfer system consists of pipes that 

have a length equivalent to the machine width. Needles are constructed on 

these pipes in specific spaces. Pipe-needle system can be positioned in any 

configuration through the machine length. This solution transfer system is 

very advantageous because of its producibility, low cost and flexibility 

properties. Difficulty of feeding to each needle on a pipe with same rate is a 

disadvantage of pipe-needle system. 
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These three alternative systems were considered, so pipe-needle system was selected. 

Distance between each needle has determined as seven centimeter by taking account 

of previous experiences on multi needle electrospinning experiments and 

optimization practices that would be carried out when pilot unit is constructed.  

For the pipe material, PTFE was selected, because PTFE has high dielectric strength, 

is durable to most aggressive solvents and chemicals, protects its shape long time, is 

easily processed, it is economic and it is practical. One disadvantage of PTFE pipe is 

that it necessitates support columns under it when it is placed in the pilot machine 

because of its flexible structure. During the electrospinning, because solution is 

indirectly charged, electric power losses appear. Thus, in order to minimize the 

electric losses diameter of pipe was minimized as much as possible. Size of pipe was 

chosen as 8 mm for inner diameter and 16 mm for outer diameter.  Properties of 

PTFE pipe are given in Table 5.3. 

PROPERTIES TEST METHOD UNIT PTFE 

Specific Gravity ASTM D 1457/18  grcm-³ 2,14-2,2  

Usage Temperature - °C -260/+260  

Melting Temperature ISO 3146 °C 325-330  

Brittleness Temperature - °C -200  

Pulling Strength ASTM D- 1708 kgcm-²  250-300 

Elongation Upon Breaking  ASTM D- 1708 %  250-300 

Resistance To Stroke ASTM D- 256  cmkgcm-1  15,5 

Shore D Hard ASTM D- 2240  -  53-57 

Deformity Under Load  
230 °C, 1day, 140kgcm-² ASTM D- 621 %  9,5-11 

D-Electric Resistance ASTM D- 149  kVmm-1  50-80 

Thermal Conductivity ASTM C- 177 kcalcm-1°C-1hour-1  0,035 

Thermal Expansion ASTM E 831 10-5 °C  12-14 

Inflammability Temperature ASTM D- 1929  °C  530 

 Needles installed on pipes were designed as a shape, which minimize clogging, 

electrical losses, and irregular flow rate. For needle pipe system, the smaller needle 

diameter makes the flow rate more regular for each needle. On the other hand, needle 

diameter should be as large as possible in order to minimize the clogging. These 

factors were considered, so needle was designed as shape in Figure 5.14.  

Table 5.3 : Properties of PTFE pipes used in pilot machine. 
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Figure 5.14 : Technical drawing and photograph of brass needle. 

As it is seen in the drawing of brass needle, length of needle is 17 mm, outer 

diameter is 2.8 mm, inner diameter is 2.0 mm and hole diameter of needle is 0.8 mm. 

Needle was manufactured by CNC turn bench, it is pluggable, cleanable, it should be 

durable to aggressive chemicals, so it was manufactured from yellow brass.  

 

Figure 5.15 : PTFE pipe-needle solution transfer system. 

In order to get effectively 100 cm product from the pilot machine length of PTFE 

pipes are adjusted to 120 cm. Thus, 16 needles can be settled on a PTFE pipe as 

shown in Figure 5.15.  

5.3.3 Solution Feeding System 

A solution feeding system is necessary because of that solution transfer system has 

been chosen as pipe-needle system. A peristaltic pump was assembled to the pilot 

machine which replies requirements stated below. 

• Flow rate: Needle-pipe system for pilot machine contains 16 needles for each 

pipe. It was understood by multi needle experiments that each needle has 

approximately 1 ml/h flow rate capacity. Therefore, a pump, which can create 
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16 ml/h flow rate at least, can be qualitatively sufficient. Having flexibility of 

chosen solution feeding system can be advantageous for oncoming 

optimization experiments of pilot unit. The chosen pump can eject solution 

with 0.1 mlh-1 sensitivity.  

• Chemical durability: Pump must be durable to aggressive chemicals, 

because hazardous chemicals such as DMF, DMAc, THF, formic acid, 

toluene is used to solve PU, PA, PAN, PVC polymers for solution 

electrospinning. In addition to this, any material such as oil, air contaminants, 

metallic particles that can change solution properties must not get mix into 

the solution at feeding zone. For peristaltic pumps, there is no directly contact 

between solution and components of pump.  

• Electrical insulation: Electric voltage can indirectly affect the solution 

reservoir and pump parts via solution if there is no interruption on solution 

transfer system. Electrical and electronic parts should be insulated from high 

voltage area. For the peristaltic pump, there is no contact between electrical 

and electronic parts of pump and solution.  

Specifications of peristaltic pump are stated below: 

• Speed: 0.1 to 50.0 rpm, reversible 

• Speed Precision: 0.1 rpm 

• Speed Control: Membrane keypad 

• Display: 3-digit LED displays current rpm 

• Analog Interface: Start/stop and cwccw-1 control 

• Power Supply: AC 220 V  10% 50/60 Hz (standard) 

                          AC 110 V  10% 50/60 Hz (optional) 

• Power Consumption: < 10 W 

• Operating Condition: Temperature 0 to 40 °C, Relative humidity < 80%  

• Dimensions (L : W : H): 176 :110: 115 (mm)  

• Drive Weight: 2.2 kg 
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Figure 5.16 : Peristaltic pump and assembly of peristaltic pump for pilot system. 

 

Figure 5.17 : 3-D design of insulated peristaltic pump head. 

Because high voltage and magnetic field are existed in the pilot electrospinning 

machine, electrical and control parts of peristaltic pump was separated from working 

parts of pump. Head of pump was placed at bottom part of pilot machine. A 

polyethylene block was designed and manufactured to assemble pump head to the 

machine (see Figure 5.16 and 5.17).  

5.3.4 Power Supply 

The most crucial device of the pilot electrospinning system is power supply. High 

electric field is necessary in order to produce electrospun nanofiber on an area that 

spreads in 150x400 cm area. A high voltage and a grounded collector can be enough 

for one needle or small electrospinning units. A positive and a negative high voltage 

power supplies were used for pilot electrospinning unit to generate direct electric 

field. Specifications of power supplies were given in Table 5.4 and Table 5.5 below. 
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Input voltage 220 VAC  50-60 Hz 

Output voltage Continuously adjustable from -100  to 100 kV 

Regulation 0.05% for  ± 10% line change 

Ripple 0.1% 

Size 5” (H) x 8” (W) x 10” (L) 

Metering Two analog meter read output voltage and output 
current 

Power 20 watt 
 

Input voltage 220 VAC  

Output voltage Continuously adjustable from zero to 60 kV 

Regulation 0.05% for  ± 10% line change 

Ripple 0.1% 

Size 43.6 mm (H) x 482 mm (W) x 478 mm (L) 

Metering Two digital meter read output voltage and output current

5.3.5 Collector 

According to basic working principle of pilot electrospinning, machine collector was 

installed at the top of machine, and substrate fabric passes through between collector 

and needles, it is wound by winding cylinder. It was experienced by previous multi 

needle electrospinning systems that frictional force between substrate fabric and 

collector increases with increasing voltage. The frictional force can disturb surface 

regularity of fabric or it makes difficult to wind up the fabric. In addition to this, only 

high durability fabrics can be used as substrate material, low durability fabrics might 

tear under high frictions caused by electric field. To solve this problem, studies for 

designing of a system that substrate fabric and collector synchronously move. As a 

result of this study, a conductive conveyor system can solve this problem. 

Additionally, surface of collector should be smooth. Smoothness of collector directly 

affects the surface morphology of electrospun nanofiber. So collector should be 

homogeneously conductive and it homogeneously contact with the fabric. 

Table 5.4 : Specifications of positive-negative power supply. 

Table 5.5 : Specifications of positive power supply. 
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Figure 5.18 : 3-D design Steel mesh- aluminum plate collector. 

1) Polyamide cylinder  

2) 45x90 mm aluminum sigma profile 

3) 45x45 mm aluminum sigma profile 

4) Steel mesh 

5) Compression pulleys 

6) AC motor with reductor 

Conveyor system, which had been designed, was not feasible because of economical 

and producible problems. So a movable conductive conveyor system was 

manufactured by using aluminum plate and steel mesh instead of steel conveyor 

system as seen in Figure 5.18. Though steel conveyor system is more efficient for 

electrospinning process, steel mesh-aluminum plate conveyor system was 

manufactured because of its low cost. However, steel mesh conveyor has a 

disadvantage that it must be accurately manufactured, because mesh can tear due to 

an axial fault of conveyor cylinders. The manufactured steel mesh-aluminum plate 

conveyor system brake down because of this problem.  

     
Figure 5.19 : Conveyor system as collector. 
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Finally, a conveyor system containing an aluminum plate and two cylinders was used 

as collector part of pilot machine (see 5.19).  

In pilot machine, negative high potential is applied to the aluminum collector. 

Therefore, collector must be well isolated from conveyor and mainframe of pilot 

unit. Aluminum collector plate was isolated from conveyor frame via using ultra 

high-density polyethylene plates. Specification of high-density polyethylene plate is 

given Table 5.6.  

  
UNIT DN ISO UHMW -PE PROPERTIES 

Specific Gravity  gcm-3 53479 1183 0,93 

Service Temperature 0 °C 53461 75 70 
 Melting Point 0 °C - - 130-133 
Thermal Elongation K-110-5 53752 - ca 20 
Pull Strength Nmm-2 53455 527 ³20 
Pull Elongation % 53455 527 20 
Breaking Strength Nmm-5 53455 527 40 
Breaking Elongation % 53455 527 350 
Stroke Resistance kjm-2 53453 179 - 
Notch Stroke Resistance  kjm-2 53453 179 210 
Elasticity Module Nmm-2 53452 178 600 
Water Sucking % 53495 62 <0,02 
Dielectric Resistance kVmm-1 53481 243 >45 
Corrosion (Sand Slurry) % 58836 - 100 
Shore D 53505   D60-70 
Marble Notch 358/30 Nmm-2 53456 2039-1 38 

5.3.6 Fabric let off and winding system 

In order to realize continuous production, a substrate fabric must be passed through 

the electrospinning zone and it must be stored by a fabric let off and winding system. 

Fabric let off and winding system was designed as connected to mainframe of 

electrospinning unit. Actuating the motion of fabric let off and winding system was 

realized by driving the fabric cloth batch from its surface, so speed of fabric motion 

is fasten up.  

Table 5.6 : Specifications of high-density polyethylene used for electrical insulation 
of collector. 
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Figure 5.20 : 3-D design and photograph of fabric let-off and winding system. 

Fabric speed is inversely proportional to nanofiber density on substrate fabric. 

Because the production rate of pilot electrospinning machine is not so high, fabric 

speed must be very slow which is about 1 m/minute and non-stop. To provide low 

fabric speed, rotation speed of an AC motor, which has 900 rpm, was reduced to 

required speed by using belt pulley mechanism, reductor and AC motor drives (see 

Figure 5.20). Motor drives were connected to control panel.  

5.3.7 Solvent Exhaust System 

Solidification of fiber jet in the solution electrospinning system is realized by 

evaporation of solvent from polymer-solvent system. At first, the pilot machine was 

designed consisting of 400 needles. If it is thought that each needle has 1 ml/h 

solution flow rate, which contains 10% polymer phase, 6 ml solvent, must be 

continuously removed from electrospinning zone of pilot machine in a minute. To 

remove solvent from electrospinning zone a pair of exhaust hood was designed 

which is installed on the top of machine.  

 

Figure 5.21 : a) exhaust hood b) flexible aluminum ducts. 
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Two 2 m x 2 m stainless galvanization sheet iron exhaust hood was manufactured 

having shape of triangle prism. Two fans, which have 3 m3min-1 airflow capacity, 

were used to transfer solvent. Connection between fans and exhaust hoods were 

provided by 20 cm diameter flexible aluminum spiral duct as shown in Figure 5.21.  

5.3.8 Control Panel  

Since high voltage exists on the machine during electrospinning process, electronic 

accessories must be electrically insulated from high voltage or they must be 

combined in an external control unit. A control unit was constructed to isolate 

electronic parts from high electric potential and control devices such as pumps, 

motor drives and high voltage power supplies from one panel.  

A practical controlling system was designed by putting control units of some 

equipment stated below: 

• 2 power supply 

• 7 peristaltic pump 

• 3 AC motor drive 

• 2 control units for fan motors 

  
Figure 5.22 : Control panel. 
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Voltage output cables of 100 kV power supplies were lengthened as much as they 

reach to the machine from the control panel. Mainframes of power supplies were 

installed in control unit. Voltage and current displays, on/off switches and voltage 

potentiometers were assembled on control panel door as seen in Figure 5.22 and 

Figure 5.23. 

 

Figure 5.23 : a) Motor drives b) power supply c) peristaltic pump. 

Moving parts of peristaltic pumps such as step motors and pump heads were 

removed from mainframe of peristaltic pump, and they constructed at bottom part of 

machine. Displays and control pads of pumps were installed on control panel door.  

Three items of AC motor drives of fabric let off and winding system were installed in 

control unit to control them from one point (see Figure 5.23 (a)).  

Switches of fan motors, which, are used to evacuation of solvent, are installed on 

control panel door.  

All devices positioned in control panel were connected to main switch by passing 

through on one fuse for each one. In addition, an emergency button was assembled to 

the control panel.  

5.3.9 Assembly of machine 

Each system of machine was assembled into the main frame as shown in Figure 5.24 

and Figure 5.25. Two fabric storing system one of them for let off and the other for 

winding was placed back and forth of the machine. 

Conveyor collector system was fixed to the main frame by four shaft-linear bushing 

systems and two ball screws. By this configuration, collector has vertically 80 cm 

stroke. Pipe-needle systems are placed in to the machine on two blocks of 

polyethylene channels. 416 needles were assembled to the machine before 

production and optimization of electrospinning unit. Seven peristaltic pumps were 
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assembled under pipe-needle blocks onto a polyethylene block that have 80 mm 

thickness.  

  

Figure 5.24 : 3-D design of assembled pilot machine. 

 

Figure 5.25 : Photograph of assembled pilot electrospinning unit. 
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5.4 Electrospinning Process on Pilot Unit 

To start electrospun nanofiber production by pilot unit, pipe-needle blocks were 

configurated to produce homogeneous nanofiber web. Needle-pipe blocks are 

dislocated, as any needle does not locate as one after another (see Figure 5.26). 

Another requirement for operating pilot machine is substrate material. Substrate 

material should be a little conductive for not permitting capacitance between charged 

aluminum collector and needles. Substrate material has 3.6 m2 contact area with 

aluminum collector. When aluminum collector is charged with high voltage, strong 

frictional force generates between substrate and collector.  

 

Figure 5.26 : Pipe-needle layout in electrospinning pilot unit. 

During electrospinning process, substrate material can be torn if it is not resistant to 

high stress. In addition, elastic substrates do not keep their smooth surface when they 

move on charged aluminum plate. Therefore, a rigid substrate, which has high tensile 

strength, is preferable for making experiments on pilot unit. Fabric velocity adjusted 

to minimum speed, which was 0.2 mmin-1 to electrospun thicker nanofiber webs. 

Collector to needle distance was adjusted in respect of solution properties. Voltage 

and flow rate was adjusted online to control both parameters according to their 

potential and rate values. Fans were operated at high speed for efficient solvent 

removing. 60 grm-2 polyester spunbond was used as a substrate for nanofiber web.  

Pilot electrospinning was operated with 416 needles at first, so each pipe-needle 

block was placed with 10 cm spaces. Inner diameter of a pipe is 8 mm and a pipe has 

1200 mm length. To operate pilot unit with 416 needles, 9.2 liter polymer solution 

must be required.  
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Aliphatic polyether based polyurethane/DMF solution which has 15 wt% polymer 

content was obtained from Polychem Company. Polyurethane solution has 750 cP 

viscosity value.  

Many experiments were conducted on pilot electrospinning unit with polyurethane 

solution obtained from Polychem Company. Electrospinning jets were visible when 

setting adjustment of machine was carried out as stated in Figure 5.27 below. 

• Needle to collector distance: 25-45 cm  

• Flow rate: 2,15 mlh-1needle-1 

• Negative voltage: (-10 )- (-40) kV 

• Positive voltage: 30-48 kV 

 

Figure 5.27 : Electrospinning jets during electrospinning. 

However, every experiment became unsuccessful producing nanofiber because of 

evaporation rate of solvent during solidification of electrospun jet. Solvent used to 

prepare solution of polyurethane has 153 oC boiling point and low evaporation rate 

[114].  

 

Figure 5.28 : SEM photographs of electrospun products from polyurethane solution 
on PET spunbond fabric a) 200X magnification b) 1000X 
magnification. 



 110

Electrospinning of this solution gave products in film form (see Figures 5.28 and 

5.29) Therefore, mixed solvent systems were prepared for solving thermoplastic 

polyurethane pellets to increase evaporation rate of solution during solidification 

phase of electrospinning.  

 
Figure 5.29 : a) Photograph of electrospun layer on PET spunbond fabric b) SEM 

photograph of electrospun layer at 200X magnification c) 1000X 
magnification. 

Elastollan® B64D11 coded polyester based thermoplastic polyurethane pellets were 

obtained from ENPAŞ Ltd. and a variety of polyurethane solution which contains 

different mixed solvent systems at various proportions were electrospun on pilot unit. 

• DMF/THF solvent system at 80/20, 60/40/, 50/50and 40/60 ratios 

• DMF/DCM solvent system at 80/20, 60/40, 50/50 and 40/60 ratios 

• DMF/ethyl acetate solvent system at 80/20, 60/40, 50/50, 40/60 and 30/70 

ratios 

Mixed solvent systems above were experimented to produce electrospun nanofiber. 

However, in all experiments wet film layers were produced.  

In the electrospinning process, whipping phenomena plays important role on 

elongation and solidification of polymer jet. Polymer jet goes through hundreds of 

meters path at a collector distance that can be expressed as a few centimeters by 

whipping action (see Figure 5.30). Whipping action can be controlled with 

adjustment of polymer solutions or process parameters.  
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Figure 5.30 : Whipping action during electrospinning. 

To increase solidification rate of polymer or evaporation of solvent from the jet, 

whipping action should form with high speed and low amplitude. That effect can be 

realized with increasing conductivity of jet by adding a bit of ionic salt compound to 

the solution. However, high salt content can disturb regime of jets and causes 

generating fiber bundles between the needles and the collector. These bundles 

quickly affect jets and can stop whole process on the machine.  

 

Figure 5.31 : SEM photographs of nanofibers electrospun by 0,005 % wt NaCl 
added PU/DMF solution. 

To prepare more conductive solution 0.008 wt% NaCl was added to the solution, 

which was obtained from Polychem Company. Many experiments were conducted to 

optimize the electrospinning process of this solution, the parameters are given below. 
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• Positive voltage: + 48 kV 

• Negative Voltage: - 12 kV 

• Needle to collector distance: 27 cm 

• Feed rate: 1.4 mlh-1 needle 

In Figure 5.31, SEM photographs of electrospun PU solution are shown. Many bead 

defects, which were 5-8 micron diameter, are existed on PET spunbond substrate.  

Diameter distribution of PU nanofibers are given in Figure 5.32, average diameter of 

fiber web is about 360 nm. Diameter distribution spreads from 150 nm to 600 nm. 

Nanofibers are not smooth and nanofibers adhere with each other on the contact 

points.  

 

Figure 5.32 : Diameter distribution of PU nanofibers. 

Another solution was prepared to minimize the bead defects on nanofiber web. 

15%wt TPU pellets were solved in 85 wt% 3/1 ratio of DMF/ethyl acetate solvent 

blend. 0.008 wt% NaCl was added to the solution in order to increase conductivity. 

Optimal electrospinning conditions of that polymer solution are given below. 

•  Positive voltage: + 50 kV 

• Negative Voltage: - 20 kV 

• Needle to collector distance: 18 cm 

• Feed rate: 1.9 mlh-1.needle 
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Figure 5.33 : SEM photographs of TPU/DMF/ethyl acetate solution a) 1500X b) 
5000X c,d)15000X. 

 

Figure 5.34 : Fiber distribution of TPU/DMF/ethyl acetate solution. 

Parameters 64 needle 128 256 
Negative voltage (kV) -24 -11 -16 
Positive voltage (kV) 46,5 47 50 
Needle to collector distance 19 16 18 
Positive current (µA) -200 -200 -200 
Negative current (µA) 225 330 520 
Feed rate (mlh-1needle-1) 4.8 5.3 4.3 

Table 5.7 : Optimization parameters of electrospinning on pilot unit. 



 114

Diameters of nanofibers were well distributed and average fiber diameter was about 

160 nm (see Figure 5.34). Dielectric constant and conductivity of ethyl acetate is 

higher than DMF, so fiber was produces smoother and thinner than other solutions 

(see Figure 5.33).  

5.5 Modifications on Pilot Electrospinning System 

Plastic pipe material was preferred for solution transfer system in the first design of 

the pilot machine because of electrical insulation properties of the PTFE material. 

Although plastic pipe-needle system satisfies expected properties such as chemical 

durability, electrical insulation and operating temperature, low glass transition 

temperature and low hardness properties of pipe made some difficulties.  

To provide equivalent flow rate for each needle on a pipe-needle block, pipe must be 

gravimetrically balanced along its length. In addition to this, area under the pipes 

must be free in order to prevent electric loses and discharges. Elastic structure of 

PTFE pipe causes bending of pipe if any support material is not placed under pipes 

(see Figure 5.35). Though two blocks of polyacetal rods were constructed under 

PTFE pipes, sufficient flow rate regularity for each needle could not be realized. 

Therefore, aluminum tubes were installed to test of energy loses in the pilot machine 

as solution transfer system instead of PTFE pipes because of rigid structure of the 

aluminum tubes (see Figure 5.36). The test was conducted with ampermeter of the 

power supply. No difference was observed between the PTFE pipes and the 

aluminum tubes for energy loses. It was concluded that aluminum tubes can be used 

as solution transfer system if its electrical insulation from the main frame can be 

effectively achieved.  

New needle-aluminum tube solution transfer system was manufactured with same 

size with former solution transfer system except inner diameter of tube, which is 11.5 

mm. Needle-aluminum tubes were assembled on rectangular aluminum sigma profile 

frame by suitable connection equipments. To insulate frame of needle-aluminum 

tubes from mainframe of machine cast PA 6 rods were used. Four pieces of PA 6 

rods, which has 100 mm diameter and 80 mm length, were assembled under bends of 

frame of tube needle as shown in Figure 5.37.   
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Figure 5.35 : PTFE pipe-needle block in pilot unit. 

 

Figure 5.36 : Aluminum tube-needle block in pilot unit. 

 

Figure 5.37 : Insulation of solution transfer system form main fame. 
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Modified solution transfer system provides regular flow rate during electrospinning 

process. In addition to this, copper tapes were used to connect needles on the PTFE 

pipe in the former solution transfer system. Because aluminum is conductive, it does 

not need any connection equipment to contact with needles. 
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6.  OVERALL RESULTS, DISCUSSION AND RECOMMENDATIONS FOR 

FURTHER WORK 

Research and development activities on nanotechnology have been continuously 

increasing. In parallel with this development, nanofiber production via 

electrospinning is an attractive topic of research. Nanofiber materials produced by 

electrospinning method, come into prominence with their high surface area to 

volume ratio and high porosity properties. In addition to these, nanocomposite 

materials can be easily produced by adding nanoparticles or nanorods into the 

continuous nanofiber structure by electrospinning method. In this work, nanofiber 

membranes, which may be defined as a product of nanotechnology, have been 

designed. Additionally, design and manufacture of a pilot unit for electrospun 

nanofiber web production were successfully carried out.  

Despite the fact that the electrospinning process is an easily applicable and 

reproducible nanofiber production method at laboratory scale, the process is affected 

by numerous parameters which may be easily observed on large scale 

electrospinning set-ups. Solution viscosity, surface tension, solution conductivity, 

applied voltage, needle to collector distance and flow rate of the solution are the 

main group of these parameters. A jet of a polymer solution is converted into a nano-

filament by a chaotic process influenced by these and additional parameters. This 

chaotic process named whipping instability of the polymer jet gives extreme 

properties to the final nanofiber product with respect to the fiber diameter. High 

surface area to volume ratio and high porosity are the significant examples of the 

phenomena. Nanofiber materials produced by electrospinning method are potential 

alternatives to selectively permeable products by small pore structures with high 

porosity.  

Waterproof breathable membranes chosen as target products for this work have been 

designed and successfully produced. These types of membranes are used in daily 

clothes, shoes, sport clothes, building materials and demand for these types of 

materials continuously increasing. In order to produce such selectively permeable 
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barrier materials, different types of polyurethane solutions with various additives 

were prepared. Nanofiber webs were produced from the prepared solutions and they 

were tested. Nanofibers produced from polyester based thermoplastic polyurethane 

have smooth structures without bead. On the other hand, polyether based 

polyurethane and poly(methylphenylsiloxane) added polyester based polyurethane 

solutions give nanofibers with beaded structures. Nanofiber webs obtained from 

polyester based polyurethane solution without any additive have higher water 

penetration resistance than polyether based polyurethane nanofiber webs with no 

poly(methylphenylsiloxane) addition. Polyether based polyurethane nanofiber webs 

are able to bear a hydrostatic pressure of 18 cm water, while polyester based 

nanofiber webs are able to 62 cm water.  On the other hand, 

poly(methylphenylsiloxane) added polyester based polyurethane nanofiber webs are 

able to bear a hydrostatic pressure of 250 cm water. So medium level water resistant 

breathable material were produced. A final product electrospun from 

poly(methylphenylsiloxane) added polyester based polyurethane solution and 

laminated onto a cotton woven fabric was compared with a commercially best selling 

waterproof breathable membrane having high water penetration resistance and water 

vapor transmission rates. Nanofiber web laminated woven product can be grouped in 

high water resistant materials even though it has not reached the water penetration 

value of the commercial product.  

Water vapor transmission rates of designed nanofiber membrane has the same values 

as it is compared to commercial product named Gore-Tex® which is highly 

breathable. The other commercial material with trademark of Eurodach® has much 

less water vapor transmission rate than the polyurethane nanofiber membrane. In 

addition to this, increasing thickness of nanofiber web improves the water 

penetration resistance of the nanofiber membranes while water vapor transmission 

rate is not significantly affected from the thickness of the fiber web. It can therefore 

be concluded that this is the result of a fully open pore structure of the nanofiber 

web.  

For some waterproof breathable products, the air permeability is an important 

requirement. The air permeability of nanofiber membranes is four times higher than 

commercially available membranes. The air permeability of a nanofiber web 

laminated cotton woven fabric by polyurethane hotmelt adhesive is low however, it 



 119

is higher than the commercially available barrier materials. A waterproof breathable 

product with these properties may be a potential candidate for membranes used in 

construction.  

The other product designed within this work is a nanofiber battery separator material, 

which can be also categorized as a nanocomposite material. Commercially available 

battery separator materials have low porosity and durability problems under high 

temperatures. The experimental work has done with PAN/SiO2 nanofiber membranes 

in order to produce highly porous and thermally stable membrane separators. 

Membranes contains nano sized fibers were successfully produced from 10%wt 

PAN/DMF solution with different silica content. Morphological, physical and 

thermal characterizations of membrane material were also carried out. An 

agglomeration of 21 nm silica nanoparticles is observed on nanofibers, though 

nanoparticles spread onto nanofibers, so approximately homogeneous separator 

material was obtained.  

The air permeability of PAN/SiO2 nanocomposite membrane is approximately 20 

times higher than commercially available micro porous separator material. This 

means that porosity of nanofiber web is higher than micro porous membrane. Ideal 

properties of battery separator materials are small pore size, high porosity, selective 

permeability and thermal stability. The thermal properties of nanofiber membranes 

compared to the commercially available material gives better results. In fact, 

nanofiber web electrospun from 2 wt% silica added PAN/DMF solution shows better 

dimensional stability and total area protection than micro porous membrane separator 

under high thermal conditions. 

The final section of this work is formed with experimental works directed towards 

industrialization of designed membranes and electrospinning process. The drawbacks 

of the industrialization of the electrospinning process are the use of very high voltage 

power supply, the difficulty in measuring the voltage values and inhomogeneous 

products. Laboratory scale electrospinning set-ups were designed and constructed in 

order to observe and remove these difficulties. Nanofiber production was 

successfully carried out on these electrospinning set-ups. A prototype unit of 

electrospun nanofiber web production machine was also designed and constructed by 

these results and data obtained from the electrospinning experiments conducted with 
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the small-scale set-ups. Prototype unit which has 2x2x4 m size can effectively 

produce 1 meter width nanofiber web.  

After many optimization efforts on the electrospinning unit, the final electrospinning 

pilot machine accommodating 256 needles. Each of these needles can produce 

nanofiber filaments by consuming 0-5 mlh-1 polymer solution. The prototype unit 

was designed and manufactured with controls of solution flow rate, fabric velocity, 

voltage and solvent exhaust. The remaining short falls in the design and construction 

of the pilot machine may be stated as the electrical insulation, voltage discharges and 

flow rate variations.  

Moreover, the adjustment of the solution properties loaded to the machine and 

configuration of the spinning system are the other requirements for efficient 

nanofiber production. Especially the viscosity, concentration, conductivity and the 

volatility of the solution, the distance between spinnerets, applied voltage to the 

spinnerets and the type of the collector are the parameters, which have to be adjusted 

accurately. 

This work carried out under three main topics was successfully completed. In 

addition to these efforts, these recommendations for further work may be listed as 

follows: 

• The performance tests of the waterproof breathable membrane were done 

only once for each specimen. To the improve performance properties of the 

material water penetration resistance, water vapor transmission rate of the 

material should be measured many times after use or after washing each 

specimen. Therefore, modification should be applied to the material after 

additional tests. In addition to this, poly(methylphenylsiloxane) is added to 

the thermoplastic polyurethane/DMF solution in order to increase water 

penetration resistance of the nanofiber membrane. Preparing the solution with 

suitable homogeneity is very difficult and phase separation of solution with 

time is the other disadvantage of the polymer/solvent/additive system. 

Nonhomogeneous solution or disruption of the solution homogeneity with 

time negatively affects the nanofiber web production on the pilot 

electrospinning unit. As a solution of this problem and as an alternative 

method to increase the water penetration resistance of nanofiber web, work 
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should be conducted with copolymers containing polyurethane and siloxane 

groups  

• The battery separator material designed and manufactured from PAN/silica 

nanocomposite material accomplished porosity and thermal stability 

requirements of lithium-ion batteries better than micro porous membranes. 

However, silica nanoparticles have not homogeneously dissipated into the 

fibers. Various solution and process parameters should be experienced with 

more experiments. Agglomeration problem of nanoparticles should be solved 

by conducting more experiments. In addition to the tests completed with this 

work, electrical properties and mechanical behavior of nanofiber separator 

membrane should be measured and necessary optimizations on the nanofiber 

product should be applied.  

• In the designed and manufactured pilot electrospinning unit, electrical 

insulation of the system should be improved by preparing vacuum chamber 

for the electrospinning area and making better insulation of electrical parts 

from the main frame to increase efficiency of the machine. In addition to this, 

one or two additional high voltage power supply should be added to the 

system to increase production rate of nanofiber web. A solvent recovery 

system should be adapted to the pilot unit to decrease the solvent cost and to 

reduce the emission of the solvent to the environment. 

 



 122



 123

REFERENCES 

[1] <http://www.nanowerk.com/spotlight/spotid=1792.php>, accessed at 11.12.2008. 

[2] <http://www.nanowerk.com/spotlight/spotid=1328.php>, accessed at 11.12.2008. 

[3] <http://www.ml.com/media/14504.pdf>, accessed at 11.12.2008. 

[4] <http://vienna.bioengr.uic.edu/RET/Reports/Final%20Reports/ZufanRETFinal 
Report.pdf>, accessed at 11.12.2008. 

[5] Ramakrishna, S., Fujihara, K., Teo, W.E., Yong, T., Ma, Z.W. and 
Ramaseshan, R.,  2006: Electrospun nanofibers: solving global 
issues, Materials Today, 9(3), 40-50. 

[6] Teo, W.E. and Ramakrishna, S. , 2006: A review on electrospinning design and 
nanofibre assemblies, Nanotechnology, 17(14), R89-R106. 

[7] Benjamin, C., S., H.B. and Dufei, F., 2006. Apparatus for electro-blowing or 
blowing-assisted electro-spinning technology and process for post 
treatment of electrospun or electroblown membranes, United States 
Patent, No: 20060049542 dated 03.09.2006. 

[8] Huang, Z.M., Zhang, Y.Z., Kotaki, M. and Ramakrishna, S., 2003: A review 
on polymer nanofibers by electrospinning and their applications in 
nanocomposites, Composites Science and Technology, 63(15), 2223-
2253. 

[9] Greiner, A. and Wendorff, J.H., 2007: Electrospinning: A fascinating method 
for the preparation of ultrathin fibres, Angewandte Chemie-
International Edition, 46(30), 5670-5703. 

[10] Ramakrishna, S., Thavasi, V. and Singh, G., 2008: Electrospun nanofibers in 
energy and environmental applications, Energy & Environmental 
Science,  1(2), 205-221. 

[11] Gray, S., 1731: A letter concerning the electricity of water, from Mr. Stephen 
Gray to Cromwell Mortimer, M.D.Secr.R.S Phil. Trans, 37, 227. 

[12] Larmor, J., 1898: Note on the complete scheme of electrodynamic equations of 
a moving material medium, and on electrostriction, Proceedings of the 
Royal Society of London, 63, 365-372. 

[13] Cooley, J.F., 1902. Apparatus for electrically dispersing fluids, United States 
Patent, No:692631 dated 04.02.1902. 

[14] Morton, W.J., 1902. Method of dispersing fluids. United States Patent,No: 
705691 dated 29.06.1902. 

[15] Hagiwara, K., 1929. Process for manufacturing artificial silk and other 
filaments by applying electric current, United States Patent, No: 
1699615 dated 21.01.1929. 



 124

[16] Formhals, A., 1934. Process and apparatus for preparing artificial threads, 
United States Patent, No: 1975504 dated 02.10.1934. 

[17] Vonnegut, B. and Neubauer, R.L., 1952: Production of monodisperse liquid 
particles by electrical atomization, Journal of Colloid Science, 7(6), 
616-622. 

[18] Drozin, V.G., 1955: The electrical dispersion of liquids as aerosols, Journal of 
Colloid Science, 10, 158-164. 

[19] Simons, H.L., 1966. Process and apparatus for producing patterned non-woven 
fabrics, United States Patent, No:3280229 dated 18.10.1966.  

[20] Taylor, G.I., 1969: Electrically driven jets, Proceedings of the Royal Society of 
London Series A Mathematical and Physical Sciences, 313, 453-475. 

[21] Baumgarten, P., 1971: Electrostatic Spinning of Acrylic Microfibers, Journal 
of Colloid and Interface Science, 36(1), 71-79. 

[22] Martin, G.E., Cockshott, I.D. and Fildes, J.T., 1977. Fibrillar lining for 
prosthetic device. United States Patent, No: 4044404 dated 
30.08.1977.  

[23] Simm, W., Gosling, C., Bonart, R. and VON Falkai, B., 1978. Filter made of 
electrostatically spun fibres, United States Patent, No:4069026 dated 
17.01.1978.  

[24] Larrondo, L. and Manley, R.S.J., 1981: Electrostatic Fiber Spinning from 
Polymer Melts 2, Examination of the Flow Field in an Electrically 
Driven Jet. Journal of Polymer Science Part B-Polymer Physics, 
19(6), 921-932. 

[25] Bornat, A., 1982. Electrostatic spinning of tubular products, United States 
Patent, No:4323525 dated 06.04.1982 

[26] Bornat, R., 1987. Production of electrostatically spun products., United States 
Patent,,No: 4689186 dated 25.08.1987. 

[27] <http://www.etpbc.ca/content/view/64/84/>, accessed at 12.12.2008 

[28] Doshi, J. and Reneker, D.H., 1995 Electrospinning Process and Applications 
of Electrospun Fibers, Journal of Electrostatics, 35(2-3), 151-160. 

[29] Subbiah, T., 2004, Development of nanofiber protective substrates,MSc Thesis, 
Texas Tech University, Lubbock 

[30] Ramakrishna, S., Fujihara, K., Teo, W.E., Ma, Z.W. and Lim, T.C., 2005: 
An Introduction to Electrospinning and Nanofibers, World Scientific 
Publishers, Singapore. 

[31] Demir, A., 2007.  Elektrospinning  Yöntemiyle  Nanolif  Üretim  Teknolojisi, 
TUBITAK report No:105M045, Ankara, Türkiye. 

[32] <http://en.wikipedia.org/wiki/File:Electrospinning_Diagram.jpg>, accessed at 
02.01.2009  

[33] Heikkila, P. and Harlin, A., 2008: Parameter study of electrospinning of 
polyamide-6, European Polymer Journal, 44(10), 3067-3079. 



 125

[34] Lee, K.H., Kim, H.Y., Bang, H.J., Jung, Y.H. and Lee, S.G., 2003: The 
change of bead morphology formed on electrospun polystyrene fibers, 
Polymer, 44(14), 4029-4034. 

[35] Deitzel, J.M., Kleinmeyer, J., Harris, D. and Tan, N.C.B., 2001: The effect of 
processing variables on the morphology of electrospun nanofibers and 
textiles, Polymer, 42(1), 261-272. 

[36] Mit-uppatham, C., Nithitanakul, M. and Supaphol, P., 2004: Ultratine 
electrospun polyamide-6 fibers: Effect of solution conditions on 
morphology and average fiber diameter, Macromolecular Chemistry 
and Physics, 205(17), 2327-2338. 

[37] Fong, H., Chun, I. and Reneker, D.H., 1999: Beaded nanofibers formed 
during electrospinning, Polymer, 40(16), 4585-4592. 

[38] Supaphol, P., Mit-Uppatham, C. and Nithitanakul, M., 2005: Ultrafine 
electrospun polyamide-6 fibers: Effect of emitting electrode polarity 
on morphology and average fiber diameter, Journal of Polymer 
Science Part B-Polymer Physics, 43(24), 3699-3712. 

[39] Tan, S.H., Inai, R., Kotaki, M. and Ramakrishna, S., 2005: Systematic 
parameter study for ultra-fine fiber fabrication via electrospinning 
process, Polymer, 46(16), 6128-6134. 

[40] Deitzel, J.M., Tan, N.C.B., Kleinmeyer, J.D., Rehrmann, J., Tevault, D., 
Reneker, D. and Sendijarevic, I., 1999. Generation of Polymer 
Nanofibers Through Electrospinning, Army Research Laboratory, 
Adelphi, USA. 

[41] Gomes, D.S., da Silva, A.N.R., Morimoto, N.I., Mendes, L.T.F., Furlan, R. 
and Ramos, I., 2007: Characterization of an electrospinning process 
using different PAN/DMF concentrations, Polimeros-Ciencia E 
Tecnologia, 17(3), 206-211. 

[42] Srivastava, Y., Marquez, M. and Thorsen, T., 2007: Multijet electrospinning 
of conducting nanofibers from microfluidic manifolds, Journal of 
Applied Polymer Science, 106(5), 3171-3178. 

[43] Qin, X.H., Yang, E.L., Li, N. and Wang, S.Y., 2007: Effect of different salts 
on electrospinning of polyacrylonitrile (PAN) polymer solution, 
Journal of Applied Polymer Science, 103(6), 3865-3870. 

[44] Zong, X.H., Kim, K., Fang, D.F., Ran, S.F., Hsiao, B.S. and Chu, B. 
Structure and process relationship of electrospun bioabsorbable 
nanofiber membranes. Polymer, 2002, 43(16), 4403-4412. 

[45] Demir, M.M., Yilgor, I., Yilgor, E. and Erman, B., 2002: Electrospinning of 
polyurethane fibers, Polymer, 43(11), 3303-3309. 

[46] Son, W.K., Youk, J.H., Lee, T.S. and Park, W.H., 2004: The effects of 
solution properties and polyelectrolyte on electrospinning of ultrafine 
poly(ethylene oxide) fibers, Polymer, 45(9), 2959-2966. 

[47] Jung, Y.H., Kim, H.Y., Lee, D.R., Park, S.Y. and Khil, M.S., 2005: 
Characterization of PVOH nonwoven mats prepared from surfactant-
polymer system via electrospinning, Macromolecular Research, 
13(5), 385-390. 



 126

[48] Kataphinan, W., 2004, Electrospinning and potential applications, PhD 
Thesis,University of Akron, Ohio. 

[49] Zhao, S.L., Wu, X.H., Wang, L.G. and Huang, Y., 2004: Electrospinning of 
ethyl-cyanoethyl cellulose/tetrahydrofuran solutions, Journal of 
Applied Polymer Science, 91(1), 242-246. 

[50] Kessick, R., Fenn, J. and Tepper, G., 2004: The use of AC potentials in 
electrospraying and electrospinning processes, Polymer, 45(9), 2981-
2984. 

[51] Sano, Y., 2001: Drying behavior of acetate filament in dry spinning, Drying 
Technology, 19(7), 1335-1359. 

[52] Yuan, X.Y., Zhang, Y.Y., Dong, C.H. and Sheng, J., 2004: Morphology of 
ultrafine polysulfone fibers prepared by electrospinning, Polymer 
International, 53(11), 1704-1710. 

[53] Jalili, R., Hosseini, S.A. and Morshed, M., 2005: The effects of operating 
parameters on the morphology of electrospun polyacrilonitrile 
nanofibres, Iranian Polymer Journal, 14(12), 1074-1081. 

[54] Macossay, J., Marruffo, A., Rincon, R., Eubanks, T. and Kuang, A., 2007: 
Effect of needle diameter on nanofiber diameter and thermal 
properties of electrospun poly(methyl methacrylate), Polymers for 
Advanced Technologies, 18(3), 180-183. 

[55] Mo, X.M., Xu, C.Y., Kotaki, M. and Ramakrishna, S., 2004: Electrospun 
P(LLA-CL) nanofiber: a biomimetic extracellular matrix for smooth 
muscle cell and endothelial cell proliferation, Biomaterials, 25(10), 
1883-1890. 

[56] Mit-uppatham, C., Nithitanakul, M. and Supaphol, P., 2004: Effects of 
solution concentration, emitting electrode polarity, solvent type, and 
salt addition on electrospun polyamide-6 fibers: A preliminary report, 
Macromolecular Symposia, 216, 293-299. 

[57] Kilic, A., Oruc, F. and Demir, A., 2008: Effects of polarity on electrospinning 
process, Textile Research Journal, 78(6), 532-539. 

[58] Megelski, S., Stephens, J.S., Chase, D.B. and Rabolt, J.F., 2002: Micro- and 
nanostructured surface morphology on electrospun polymer fibers, 
Macromolecules, 35(22), 8456-8466. 

[59] Casper, C.L., Stephens, J.S., Tassi, N.G., Chase, D.B. and Rabolt, J.F. 
Controlling surface morphology of electrospun polystyrene fibers: 
Effect of humidity and molecular weight in the electrospinning 
process. Macromolecules, 37(2), 573-578. 

[60] Kim, G.T., Lee, J.S., Shin, J.H., Ahn, Y.C., Jeong, K.H., Sung, C.M., and 
Lee, J.K., 2004: Effect of humidity on the microstructures of 
electrospun polystyrene nanofibers, Microscop. Microanalysis 
Microstruc., 10, 554-555.  

[61] <http://www.ultrawebisalwaysbetter.com/>, accessed at 06.01.2009 

[62] <http://www2.dupont.com/Separation_Solutions/en_US/tech_info/hmt/hmt. 
html>, accessed at 06.01.2009. 



 127

[63] Graham, K., Ouyang, M., Raether, T., Grafe, T., McDonald, B., Knauf, P., 
2002. Polymeric Nanofibers in Air Filtration Applications, Fifteenth 
Annual Technical Conference & Expo of the American Filtration & 
Separations Society,Galveston, Texas,USA, April 9-12. 

[64] Kim, G.T., Ahn, Y.C. and Lee, J.K., 2008: Characteristics of Nylon 6 
nanofilter for removing ultra fine particles, Korean Journal of 
Chemical Engineering, 25(2), 368-372. 

[65] <http://www.finetextech.com/ftt_application1_3.jsp>, accessed at 06.01.2009.  

[66] <http://www.surmodics.com/pdf/What_is_Nanofiber.pdf>, accessed at 
27.12.2008. 

[67] <http://www.surmodics.com/technologies-invitro-ecm.html>, accessed at 
06.01.2009.  

[68] <www.nicast.com>, accessed at 26.12.2008. 

[69] <http://www.nanowerk.com/news/newsid=1156.php>, accessed at 27.12.2008. 

[70] Vasita, R. and Katti, D.S., 2006: Nanofibers and their applications in tissue 
engineering, International Journal of Nanomedicine, 1(1), 15-30. 

[71] Venugopal, J.R., Zhang, Y.Z. and Ramakrishna, S., 2006: In vitro culture of 
human dermal fibroblasts on electrospun polycaprolactone collagen 
nanofibrous membrane, Artificial Organs, 30(6), 440-446. 

[72] <http://www.alltracel.com/Portals/1/hcn08_nanospider-brief_rd3.pdf>, 
accessed at 27.12.2008.  

[73] Choi, S.S., Lee, Y.S., Joo, C.W., Lee, S.G., Park, J.K. and Han, K.S., 2004: 
Electrospun PVDF nanofiber web as polymer electrolyte or separator, 
Electrochimica Acta, 50(2-3), 339-343. 

[74] <http://www2.dupont.com/Energy_Storage/en_US/tech_info/technical 
_info.html>, accessed at 06.01.2009  

[75] Takeshi, K., Masaaki, K., Fuminori, K. and Masahiro, A., 2007. Separator 
for electric double layer capacitor and electric double layer capacitor 
containing same. United States Patent, No:20070247785 dated 
25.10.2007.  

[76] <http://www2.dupont.com/Allergen_Barrier/en_US/products/benefits.html>, 
accessed at 15.03.2008.  

[77] <http://old.elmarco.com/download/Antimicrobeweb_line.pdf>,  accessed at 
25.03.2008. 

[78] Ding, B., Yamazaki, M. and Shiratori, S., 2005: Electrospun fibrous 
polyacrylic acid membrane-based gas sensors, Sensors and Actuators 
B-Chemical, 106(1), 477-483. 

[79] Lomax, G.R., 2007: Breathable polyurethane membranes for textile and related 
industries, Journal of Materials Chemistry, 17(27), 2775-2784. 

[80] Horrocks, A.R., Anand, S.C. and Raton, B., 2000: Handbook of technical 
textiles:Waterproof breathable fabrics, Woodhead Pub. 
Ltd.,Cambridge.  



 128

[81] <http://www.torayentrant.com>, accessed at 06.01.2009. 

[82] <http://www2.dupont.com/Tyvek/en_US/index.html>, accessed at 12.12.2008  

[83] <http://www.albe24.com/tyvek1.jpg>, accessed at 06.12.2008. 

[84] <http://upload.wikimedia.org/wikipedia/commons/1/1d/Tyvek_house_wrap. 
jpg>, accessed at 06.12.2008. 

[85] <http://upload.wikimedia.org/wikipedia/commons/9/9a/John_wearing_Tyvek_ 
suit.jpg>, accessed at 06.12.2008. 

[86] Mukhopadhyay, A. and Midha, V.K., 2008: A review on designing the 
waterproof breathable fabrics part I: Fundamental principles and 
designing aspects of breathable fabrics, Journal of Industrial Textiles, 
37, 225-262. 

[87] Baker, R.W., 2004: Membrane Technology and Applications, John Wiley & 
Sons Ltd, West Sussex. 

[88] Fung, W., 2002: Products from coated and laminated fabrics: Coated and 
laminated textiles, Woodhead Publishing Ltd, Florida. 

[89] <http://www.gore-tex.com/remote/Satellite/content/what-is-gore-tex- 
membrane>, accessed at 07.01.2009.  

[90] Brzeziński, S., Malinowska, G., Nowak, T., Schmidt, S., Marcinkowska, D. 
and Kaleta, A., 2005: Structure and properties of microporous 
polyurethane membranes designed for textile-polymeric composite 
systems, Fibres Textiles in Eastern Europe, 13(6), 53-58. 

[91] <www.sympatex.com>, accessed at 12.12.2008.  

[92] <http://prospector.ides.com/DataView.aspx?E=84376>, accessed at 
11.01.2009. 

[93] <http://prospector.ides.com/DataView.aspx?E=83945>, accessed at 
11.01.2009. 

[94] CEN EN 20811, 1992. Textiles — Determination of resistance to water 
penetration — Hydrostatic pressure test, European Committee for 
Standardization, Brussels. 

[95] ASTM E96, 2005. Standard test methods for water vapor transmission of 
materials, American Society for Testing and Materials, West 
Conshohocken. 

[96] ISO 9237, 1995. Textiles - Determination of the permeability of fabrics to air 
first edition, International Organization for Standardization, Geneva. 

[97] <http://www.textest.ch/pages_en/3300-III_en.htm>, accessed at 12.01.2009. 

[98] R.W. Gore., 1980: Porous products and process therefor, United States Patent, 
No:4187390 dated 05.02.1980.  

[99] Danino, A.M., Malka, G., Revol, M. and Servant, J.M., 2005: A scanning 
electron microscopical study of the two sides of polypropylene mesh 
(Marlex®) and PTFE (Gore Tex®) mesh 2 years after complete 
abdominal wall reconstruction. A study of 15 cases, British Journal of 
Plastic Surgery, 58(3), 384-388. 



 129

[100] Kang, Y.K., Park, C.H., Kim, J. and Kang, T.J., 2007: Application of 
electrospun polyurethane web to breathable water-proof fabrics, 
Fibers and Polymers, 8(5), 564-570. 

[101] Holmer, I., 2005: Textiles for protection against cold: Textiles for protection, 
p. 390, Woodhead Publishing Ltd Cambridge. 

[102] <http://www.allbusiness.com/automotive/automotive-industry-
environment/11506958-1.html>, accessed at 28.12.2008.  

[103] Chen, H.S., Cong, T.N., Yang, W., Tan, C.Q., Li, Y.L. and Ding, Y.L., 
2009: Progress in electrical energy storage system: A critical review, 
Progress in Natural Science, 19(3), 291-312. 

[104] Wang, C., M., Chen, J., M., 2003. Nanotechnology Prospect for 
Rechargeable Li-ion Batteries, Materials Science and Technology in 
Engineering Conference,Hong Kong, January 15-17. 

[105] Zhang, S.S., 2007: A review on the separators of liquid electrolyte Li-ion 
batteries. Journal of Power Sources, 164, 351-364. 

[106] Bohnstedt, W., 1999: Separators. In Besenhard: Handbook of Battery 
Materials,Wiley-VCH, Graz. 

[107] <rsbook.googlepages.com/sszhang.pdf>, accessed at 06.01.2009. 

[108] Spotnitz, R., 1999: Separators for Lithium-Ion Batteries: Handbook of Battery 
Materials,Wiley-VCH Graz. 

[109] Kritzer, P., 2006: Nonwoven support material for improved separators in Li-
ion polymer batteries, Journal of Power Sources, 161(2), 1335-1340. 

[110] Cho, T.H., Tanaka, M., Onishi, H., Kondo, Y., Nakamura, T., Yamazaki, 
H., Tanase, S. and Sakai, T., 2008: Battery performances and 
thermal stability of polyacrylonitrile nano-fiber-based nonwoven 
separators for Li-ion battery, Journal of Power Sources, 181(1), 155-
160. 

[111] <http://www.csc-jaekle.de/fileadmin/MeBl/150/MeBl_150053_EN.pdf>, 
accessed at 14.03.2009. 

[112] <http://www.celgard.net/documents/2320_Data_Sheet_2008-12_20002.pdf>, 
accessed at 14.03.2009. 

[113] Ji, L., Medford, A.J. and Zhang, X., 2009: Electrospun polyacrylonitrile 
/zinc chloride composite nanofibers and their response to hydrogen 
sulfide, Polymer, 50, 605-612. 

[114] <http://www.jtbaker.com/msds/englishhtml/d6408.htm>, accessed at 
12.04.2009. 

 



 130



 131

CURRICULUM VITAE 

 

Candidate’s full name:  Tuncay GÜMÜŞ 

Place and date of birth:  DÜZCE - 01.09.1983 

Permanent Address:  Kürkçübaşı M. Sulubostan S. No:21/17  
  Cerrahpaşa/İSTANBUL 

Universities and 
Colleges attended:   ITU Textile Technology and Design Faculty, 
    Textile Engineering 

    Düzce Anatolian Teacher Training High School 

 


	1 
	tuncay_gumus_tez



