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ABBREVIATIONS 

The following abbreviations will appear in the report. 

 

AACCFPUUT : An angled center crack in a finite plate under uniform tension 

AAECFPUUT : An angeled edge crack in a finite plate under uniform tension 

ACCRPUUD :  A center cracked rectangular plate under uniform displacement 

ACECHRPUT : A crack emanating from a circular hole in a rectangular plate under 

tension 

ACERHRPUT : A crack emanating from a rectangular hole in a rectangular plate 

under tension 

AFWPCCPCE : A finite a finite width plate with a center crack parallel to the 

clamped edges 

AFWPECPCE : A finite width plate with an edge crack parallel to the clamped 

edges 

ASSBC : A skew – symmetric bent crack 

DOF : Degree of freedom 

FEA : Finite element analysis 

FEM : Finite element method 

LEFM : Linear elastic fracture mechanics 

MTS : Maximum Tangential Stress 

S : Minimum Strain Energy Density 

SSY : Small-scale yielding 

xFEM : Extended finite element method 
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SYMBOLS 

List of important symbols which may be used in different combinations including 

superscripts and subscripts 

 

         Current crack length or current half crack length 

         Area 

        Area of an element 

         Length of a branch  

         Heaviside enriched nodal degree of freedom 
[ ]     Strain-displacement matrix 

C         Paris law constant 

          Branch function enriched nodal degree of freedom 

         The constitutive law 

         A material constant for crack growth law given by Equation (8.4) 

[ ]     Constitutive matrix relating strains to stresses 

         i
th

 crack tip 

        Crack incensement 

        Number of cycle 

         Unit normal vector to crack path 

         Unit tangential vector to crack path 

         Young’s modulus 

         Effective Young’s modulus for plane stress or plane strain 

        Body forces  

         Tractıon vectors 

{ }      Force vector 

F         The work done by external forces 

          Branch function or set of branch functions in linear combination 
[ ]      Matrix of branch functions 
[ ]      Matrix of branch function derivatives with respect to global coordinates 

          Mode I shape factor 

          Mode II shape factor 

          The shape factor for the plane stress by Isida [16] 

          The function used to define a hole 

          Energy release rate 

g          The step wise linear function used to define an arbitrary shaped crack 

          The shape factor for the plane strain by Isida [16] 

           The characteristic length of a crack tip element 

          Height of a specimen 

 ( )    Heaviside funcition 

           The interacting integral 

J           J-integral 

[J]        Jacobian matrix 

| |        Jacobian, determinant of Jacobian matrix 
[ ]       Local stiffness matrix 



xiv 

 

[ ]      Global stiffness matrix 

          Mode I stress intensity factor 

          Mode II stress intensity factor 

          Mode III stress intensity factor 

        The change of the threshold value 

         Effective stress intensity factor 

          Range of stress intensity factor 

        Range of effective stress intensity factor 

[ ]        Matrix transforming displacement derivatives to strains 

           Applied moment 
[ ]        Shape funcition matrix 
[  ]      Matrix of shape function derivatives with respect to natural coordinates 

            A material constant for crack growth law given by Equation (8.4) 

            Number of gauss points 

n            Paris law constant 

            Applied force 

            Weighting function 

             Radius in local crack tip coordinate system 

             The radius of J-evaluation 

             Size of plastic zone based on elastoplasticity 

            Size of plastic zone based on elasticity 

            The ratio         ⁄  

           Critical value of strain energy density factor 

            Strain energy density factor 

             Thickness of specimen 

            Classical degree of freedom 

            The strain energy stored in the body 

W          Width of specimen 

           Weight factor in numerical integration 

            Global coordinates 

 ̃   

           The ratio of crack length to the width of plate 

           The ratio of the height of plate to the width of plate 

           Curve 
[ ]       Inverse of Jacobian 

           Indication of virtual quantity 

          Kronecker’s delta 

          Strain tensor 

          Element natural coordinate 

          Angle of crack growth in local crack tip coordinate system 

         Critical value of crack growth angle for the maximum tangential stress   

           criterion and The minimum strain energy density factor 

         Kolosov constant,      ( ) defined for plane stress or plane strain 

         Poisson’s ratio 

         Element natural coordinate 

        Applied tensile stress 

        Stress tensor 

       Yield stress 
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        Shear stress 

       Critical value of Tangential stress 

       Griffith’s expression for the stress field near the crack tip 

       The potential energy of an elastic body 

       Any field variable 

       The integrand of the interaction integral 

       The domain 

       The plastic work per unit area of surface created 

       The elastic work per unit area of surface created 
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FATIGUE CRACK GROWTH UNDER NON-PROPORTIONAL LOADING 

SUMMARY 

In the literature, there are several methods to demonstrate the all modes of fracture 

where any domain with an arbitrary shaped crack is discretized into elements and the 

discretization is necessary to be upload for each crack extension so that the elements 

defines the shape of the arbitrary growing crack correctly. Thus, to simulate the 

fatigue crack growth under non-proportional loading, Extended Finite Element 

Method (xFEM) is selected.  

The extended finite element method is a powerful tool to simulate the crack growth 

by means of that it is capable of defining discontinuities, such as cracks, holes and 

inclusions, within elements easily. Any discontinuities within elements are modeled 

by introducing extra degrees of freedom with enrichment functions into the nodes. 

That is why xFEM removes the need for matching element boundaries with a crack, 

a hole boundary and/or an inclusions.  

This enables usage of a single mesh even if the crack propagates in many times. 

Thus, there is no need for remeshing in each step of crack propagation except the 

mesh refinement may be necessary in any stage. 

Numerical modeling of a fatigue crack growth under non-proportional loading has 

been done by implementing the extended finite element method (X-FEM) into a 

MATLAB code, which is capable of handling crack propagation. Heaviside function 

has been used to model crack faces inside elements and four branch functions has 

been applied to model crack tips inside elements.  

To handle the stress intensity factors, the path independent J-integral has been 

implemented into the program by the way of interacting integral. The program is 

tested for several cracked plate to determine the mixed mode stress intensity factors. 

After that a model based on effective stress intensity factor is succeeded to determine 

both crack growth rate and crack growth angle to illustrate the propagation of fatigue 

crack under non-proportional loading with high cycle. 

Furthermore, the crack analyses carried out in this paper are based on linear elastic 

fracture mechanic by neglecting the plastic zone that is sufficiently small near the 

crack tips. That is why the problems cowered are considered linear elastic all the way 

to brittle fracture. The crack is subject to the mixed mode loadings that force the 

evaluation of the both of KI and KII stress intensity factors. The stress intensity 

factors for each mode are evaluated by means of the interaction integral based on the 

path-independent J-integral. The interaction integral has been converted into a 

domain integral, which simplifies implementation of the interaction integral into 

numerical integration, by applying the divergence theorem and making tensor 

calculus. As the J-integral is path-independent, the domain form of the interaction 

integral is domain independent as long as it surrounds the crack tip. 
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 On the other hand, to verify results obtained by the developed xFEM program, many 

problems are solved to ensure that the program is works properly. The results have 

good agreement with reference ones. Thus, it can be said that the xFEM program can 

be used to simulate the mixed mode fatigue crack growth with a sufficient accuracy.  

To sustain the non-proportional loading, the four cases are covered. For each case, 

several loadings are tested and in this paper each case has been presented with an 

illustrative example 

At the end of this paper, the fatigue crack growth under mixed mode non-

proportional loading is analyzed for four cases that used to describe the non-

proportional loading. To compare the crack growth rate and the crack angle given by 

several Keff formulas, a test case will be also derived. 
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ORANTISIZ YÜKLEME DURUMUNDA YORULMA ÇATLAK BÜYÜMESİ 

ÖZET 

Yüksek lisans tezi olarak oldukça yeni ve çalışılmamış bir alan olması hasebiyle 

orantısız yükleme durumunda yorulma çatlak büyümesi ele alınmıştır. Öncelikli 

olarak orantısız yükleme durumunda yorulma çatlak büyümesi konulu yüksek lisan 

tezin de kırılma mekaniği kısmında yapılan temel varsayımlar ve kabuller 

irdelenmiştir. Yapılan bukabuller liner elastik kırılma mekaniği ve küçük ölçekli 

akmadır. Bu iki kabu yüksek tekrarlı yorulma içiçin geçerlidir. Yorulma durumunda 

malzeme ler akla dayanımından düşük değerlerde bile hasara uğrayabilmette ve 

yorulma çatlağı ilerlemeye başlamaktadır. Liner elastisite kabulü yapılmasının 

temelnedeni yapılan çalışmada kulanılan malemeler için hesaplanan plastic zonun 

oldukça küçük çıkması ve dolayısıyla ihmaledilmesinden kaynaklanmaktadır. Ayrıca 

butez boyunca sadece 2 boyutlu plane problemler elealınmış ve dolayısıyla kırılma 

mekaniğinin Mode I (açılma - oppening) ve Mode II (kayma - sliding) durumları 

gözlenmektedir. 

Çatlak büyümesinin modellenmesi için sonlu elemanlar yöntemi ve genişletilmiş 

sonlu elemanlar yöntemi en çok kullanılan iki methot tur. Klasik sonlu elemanlar 

yönteminde çatlak, boşluk ve yapısal düzensiliklerin tanımlanması oldukça karmaşık 

ve zorlayıcır. Bu düzensiliklerin tanımlanmasında klasıl sonlu elemanlar 

haklaşımında düzansizlikler eleman sınırlarında yer almalıdır. Deformasyon veya 

çatlak büyümesi gerçekleştiğinde meshin yenilenmesi gerekir. Yapılan bu mesh 

ortagonalikten uzak olmaklabir likle birden fala eleman çeşidinin kullanılmasına 

ihtiyaç vardır. Genişleilmiş sonlu elemanlar yönteminde ise her adımda meshin 

yenilenmesine ihtiyaç yoktur. Çünkü çatlak, boşluk ve yapısal bozukluklar 

zenginleştirme fonksiyonları yardımıyla kolayca tanımlanabilir. Çatlak 

modellemesinde iki tip zenginleştirme fonksiyonu kullanılmıştır. Bunlar Heaviside 

ve çatlak ucu zenginleştirmesi dir. Heaviside zenginleştirilmesi çatlak gövdesinin 

tanımlanması ve modellemesinde, çatlak ucu zenginleştirmesi ise çatlak ucunun bir 

eleman içinde tanımlanması ve modellenmesi için kullanıldı. Bu sayede her iterasyon 

adımın da tekrardan başa dönüp mesh yapma ihtiyacı ortadan kalkmış oldu. 

Genişletilmiş sonlu elemanlar yönteminin for mülas yonunu oluşturmak ve genel 

teorisini açıklamak maksadı ile öncelikli olarak klasik sonlu elemanlar yönte mi 

tanımlandı ve formülasyonu verildi. Bunun içinde denge konumun dabulunan bir 

body ele alınarak virtüel iş denklemi yazılmış ve genel sonlu elemanlar yöntemi 

korunum denklemleri vasırasıyla elde edildi. Genişletilmş sonlu elemanlar yön 

teminin formülasyonuda aynı yaklaşımla elde edildi. Heaviside ve çatlak ucu 

zenginleştirme fonksiyonlarıda çatlağın tanımlan ması ve modellenmesinde 

kullanıldı. Sürekliliği çatlak tarafın dan bozulan elemanlar ve çatlak ucunu içeren 

elemanlar düzensizliğin oryantasyonuna bağlı olarak 4+4 veya 5+3 üçhene bölünerek 

stiffness matrisleri hesaplandı. Stiffness matrisleri yesaplamada “Gauss integrasyon 

methodu” kullanıldı. Eğer kare eleman crack gövdesini içeriyorsa 7 gauss 
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integrasyon noktalı üçgen elemanlar, eğer kare eleman çatlak ucu içeriyo ise 3 gauss 

integrasyon noktalı üçgen elemanlar kullanıldı. Bu sayede sayısal integras yon 

kolayca gerçekleştirilmiş oldu. Çatlağı tanımlamak için parçalı liner fonk siyon 

kullanıldı. Bu sayede her çatlak büyümesi kolayca programa eklene bilmektedir. 

Mode I ve Mode II gerilme şiddet faktörlerini J-integral teorisi yardımıyla hesaplaya 

bilmek için interaction integral formülas yonları çıkartıldı. J-integrallin en önemli 

özelliği yoldan bağımsız olması ve kolayca hesaplana bilmesidir. J-integralini 

hesaplamak için J-yarıçapı denen ve hangi elemanların integrali hesaplamada 

kullanılacağını belirlememizi sağlar. J-integral yarıçapı genelde eleman boyunun 4-8 

katı arasında seçilmesi önerilmektedir. Mode I gerilme şiddet fakörünü hesaplamak 

için 2. Durum pure mode I olarak seçildi ve gerilme, yerdeğiştirme ve geriinim 

denklemleri appendis A’da verildi. Mode II gerilme şiddet fakörünü hesaplamak için 

2. Durum pure mode II olarak seçildi ve gerilme, yerdeğiştirme ve geriinim 

denklemleri appendis A’da verildi. Bu sayede gerilme şiddet fak törleri kolay ca 

hesaplana bilmektedir.  

Mode I ve Mode II gerilme şiddet faktörlerini hesaplamak amacıyla genişletilmiş 

sonlu elemanlar yöntemi formülasyonu ve J-integral teorisi yardımıyla MATLAP’ta 

bir xFEM xprogramı yazıldı. Program tarafından elde edilen sonuçların doğrulunu 

irdelemek amacıyla 6 farklı problem irdelendi. Bu problemler 

- metkez çatlağı içeren dörtgen bir plaka yer değişrirme sınır koşulu altında 

- sabit mesnetli kenarlara paralel olarak uzanan merkez çatlağı içeren sonlu genişlikli 

bir plaka  

- sabit mesnetli kenarlara paralel olarak uzanan köşe çatlağı içeren sonlu genişlikli 

bir plaka 

- döndürülmüş metkez çatlağı içeren dörtgen bir plaka düzgün dağılımlı çekme 

gerilmesi altında 

- döndürülmüş köşe çatlağı içeren dörtgen bir plaka düzgün dağılımlı çekme 

gerilmesi altında 

- çarpık simetrik dönmüş çatlak 

şeklinde listelene bilir. Hapılan karşılaşmakar da hesapalamlarda görülen en büyük 

hata %6’dan az olduğu görülmüştür. Bu da MATLAP’ta yazılan xFEM peogramı ile 

Mode I ve Mode II gerilme şiddet faktörlerinin istene doğruluk ile hesaplana 

bildiğini göstermekte dir. 

Yorulma çatlak büyümesi tekrarlı yükleme altında çatlağıl ilerlemesi şeklinde 

tanımlanabilir. Yorulma çatlak büyümesini anlamak için iki temel büyüklüğün 

bilinmesi gerekir. Bunlar çatlak ilerleme oranı ve çatlak ilerleme doğrultusu dur. 

Çatlak ilerleme oranı ve stiffnesstaki değişme arasınsa ilişkiyi gösteren eğri üç farklı 

bölümden oluşmaktadır. Birinci bölüm de çatlak ilerleme oranı oldukça düşüktür ve 

stiffnesstaki değişme Keşik değerine ulaşmadan çatlak ilerlemeye başlamaz. Üçüncü 

bölümde ise çatlak ilerleme oranı oldukça büyüktür ve plastik zone dikate 

alınmalıdır. Ayrıca bu bölümde nonliner malzeme özelikleri de işin içine girmekte ve 

elastikplastik krılma mekaniğinin kullanılmasını zorunlu kılmaktadır. İkinci bölgede 

ise çatlak ilerleme oranı 10
-9

 – 10
-6

 m/cycle aralığında kalır ve liner elastik kırılma 

mekaniği ve küçük ölçekli akmanın (britle krılma) geçerli olduğu bölgedir. Diğer 

taraftan yorulma çatlak ilerleme doğrultusunu göstermek için litaratürde pek çok 

kriter mevcuttur. Fakat bunlardan ençok kullanılan ikisi maksimum teğetsel gerilme 
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kriteri ve minimum gerilme enerji yoğunluğu faktörü kriteri dir. Maksimum teğetsel 

gerilme kriteri çatlağın teğetsel gerilmenin maksimum olduğu doğrultuda 

geçekleşeceğini söyler. Buda kayma gerilmesinin sıfır omasını gerektirir. Minimum 

gerilme enerji yoğunluğu faktörü kriteri çatlağın gerilme enerji yoğunluğu 

faktörünün minimum olduğu doğrultuda geçekleşeceğini söyler. Yapılan 

karşılaştırmada minimum gerilme enerji yoğunluğu faktörü kriteri için gereken 

çözüm zamanının çok fazla olduğundan, çatlak ilerleme doğrultusunu belirlemede 

maksimum teğetsel gerilme kriteri kullanıldı. 

Bu tezin temel konusu orantısız yükleme durumunda yorulma çatlak büyümesi dir. 

Bunun içinde eğilme ve çekme gerilmeleri altında ve merkez çatlağı içeren ince 

cidarlı bir boru dan dan oluşan bir deney düeneği düşünüldü. Hem eğilme gerilmesi 

hem de çekme gerilmesi sabit ve cyclic kısımlardan oluşmaktadır. Bu sayede 

orantısız mixed mode yükleme durumu sağlanmıştır. Önerilen deney düzeneyi ise 

kayma ve çekme gerilmeleri altında merkez çatlağı içeren bir dikdörtgen plaka ile 

tanımlanmıştır. Orantısız mixed mode yükleme durumu sağlanmak için, hem kayma 

gerilmesi hem de çekme gerilmesi sabit ve cyclic kısımlardan oluşmaktadır. 

Orantısız mixed mode yükleme durumu sağlanmak için 4 farklı birleşim 

- Durum 1: orantılı cyclic mix mode yükleme + sabit mode I ve/veya II 

- Durum 2: cyclic mode I or II yükleme + orantılı sabit mix mode yükleme 

- Durum 3: cyclic mode II + sabit mode I yükleme 

- Durum 4: cyclic mode I + sabit mode II yükleme 

düşünülebilir. Orantısız yükleme durumunda yorulma çatlak ilerlemesini belirlemek 

için hem çatlak ilerleme oranın hem de çatlak ilerleme doğrultusunun belirlenmesi 

gerekir. Çatlak ilerleme oranı hesaplamak üzere Paris Law’ın efektif gerilme şidet 

foktörü ile modifiye edilmiş hali kullanıldı. Efektif gerilme şidet foktörü Mode I ve 

Mode II gerilme şidet faktörlerinin fonksiyonu olup, literatürde sıklıkla mix mode 

yorulma çatlak ilerleme oranın belirlemede kullanılır. Literatürde ençok kullanılan 4 

farklı efektif gerilme şidet foktörü formülü vardır. Bu formüller arasındaki fark 

sadece Mode I and Mode II gerilme şidet faktörlerinin efektif gerilme şidet foktörü 

içindeki ağırlıklarıdır. Çatlak ilerleme doğrultusu daha öncede belirtildiği üzere 

maksimum teğetsel gerilme kriteri uyarınca hesaplanmaktadır. Bir yükleme çevrimi 

boyunca çatlak ilerleme doğrultusu ortalama şeklinde Keff ile ağırlıklandırılarak 

hesaplandı. Hesaplama sırasında Keff değerlerinin yalnızca artan kısımları dikate 

alındı. Diğer taraftan, yorulma çatlağı belirli sayıdaki yükleme çevrimi için çatlağın 

aynı çatlak ilerleme oranı ve çatlak ilerleme doğrultusu ile ilerler. 

Daha öncede belirtildiği üzere orantısız yükleme durumunda yorulma çatlak 

ilerlemesini simule etmek için 4 farklı durum ele alındı. Dört farklı durum birer örnrk 

ile sunulmuştur. Her örnekte 4 farklı Keff formülü için orantısız yükleme durumunda 

yorulma çatlak ilerlemesi simule edilmiştir. Yapılan bu hesaplamalar neticesinde 

elde edilen sonuçlar yazılan bu tezde detaylı olarak sunulmutur. Elde edilen sonuçlar 

uyarınca daha önceden yapılan liner elastik kırılma mekaniği ve küçük ölçekli akma 

kabulerinin geçerli olduğu görülmüştür. Çatlak ilerlemesi tüm Keff formüleri için 

aynı olarak tahmin edilmiştir. Çatlak ilerleme oranı 10
-9

 – 10
-6

 m/cycle aralığında 

kalmakla birlikte yorulma çatlağı için tanımlanan ikinci bölgede kalmaktadır. Bu 

bölge liner elastik kırılma mekaniği ve küçük ölçekli akma kabulerinin geçerli 

olduğu bölgedir.  

Bu tezin diğer önemli bir amacı ise 4 farklı Keff formülü için bir karşılaştırma criteri 

bulmaktır. Bu doğrultuda pek çok denemeden sonra bi test durumu bulundu. Bu 

durum için yapılan simulasyon sonucunda elde edilen sonuşlar da göstermektedirki  
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orantısız yükleme durumunda yorulma çatlak ilerlemeleri her formül için farklılık 

göstermektedir. Buyüzden bulunan test durumu hangi Keff formülü orantısız yükleme 

durumunda yorulma çatlak ilerlemesinin belirlenmesinde en iyi neticeyi verdiğini 

tespit etmekte kullanılabilir. 
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1.  INTRODUCTION 

The most of advanced mechanical application includes both static load and cycle 

load like engine components. The crack growth for such components is consisting of 

both growth due to static loading and growth due to cyclic loading. The combination 

of two loadings creates non-proportional loading where the crack growth behavior is 

slightly different from proportional loading. To examine the fatigue crack growth, 

many parameters and several methods are suggested for obtaining enough 

correlations between numerical and experimental anabasis under all loading 

conditions. The experiments done by Qian and Fatemi [1] on fatigue crack growth 

imply that the crack growth associates with material properties, load magnitude and 

its modes, initial crack tip conditions, and mean stress. That is why multiple 

comparisons between numerical and experimental results are needed to evaluate the 

fatigue crack growth correctly. 

In the literature, there are several methods to demonstrate the all modes of fracture 

where any domain with an arbitrary shaped crack is discretized into elements and the 

discretization is necessary to be upload for each crack extension so that the elements 

defines the shape of the arbitrary growing crack correctly. Thus, to simulate the 

fatigue crack growth under non-proportional loading, Extended Finite Element 

Method (xFEM) is selected. The extended finite element method is a powerful tool to 

simulate the crack growth by means of that it is capable of defining discontinuities, 

such as cracks, holes and inclusions, within elements easily. Any discontinuities 

within elements are modeled by introducing extra degrees of freedom with 

enrichment functions into the nodes. That is why xFEM removes the need for 

matching element boundaries with a crack, a hole boundary and/or an inclusions. 

This enables usage of a single mesh even if the crack propagates in many times. 

Thus, there is no need for remeshing in each step of crack propagation except the 

mesh refinement may be necessary in any stage. 
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The analyzed problems in this paper are limited with Linear Elastic Fracture 

Mechanics and Small Scale Yielding where it is valid for high cycle fatigue. The low 

cycle fatigue is ignored in this paper where large deformation occurs and the effects 

of plasticity cannot be vanished. The modes of fracture are represented at each crack 

tip by stress intensity factors, generally based on the path independent J integral by 

Rice [2]. The first expression between the stress intensity factor and the crack growth 

rate was derived by Paris and Erdogan [3]. It is known as Paris law and demonstrates 

the region II on the plot of the crack growth rate respect to the stress intensity factors 

in logarithmic scale. Latterly, another expression was derived by Erdogan and 

Ratwani [4] which takes the ratio           ⁄  into account. The expression 

describes all three regions between the threshold stress intensity factor and the 

critical stress intensity factor. Although Paris law was derived for cracks only 

exposed to mode I loading, it have been suggested by several researchers for mixed 

mode loading by introducing an effective stress intensity factor into Paris law. 

Furthermore, beside the fatigue crack growth rate it is important to determine the 

crack growth angle for the fatigue crack growth. Maximum tangential stress criterion 

and Minimum strain energy density criterion are the most used criterions to 

determine the crack growth direction. The two criteria will be discussed in more 

detail in the later sections.  

To simulate fatigue crack growth under mixed mode non-proportional loading, linear 

elastic fracture mechanic and small scale yielding (concept of brittle fracture) are 

assumed by employing the modified Paris law and maximum tangential stress 

criterion where the mixed mode non-proportional loading is sustain with four 

different cases. The non-proportional loading can be sustained by four cases, 

depending on definition of the torsion and the tension,  

Case 1: a cyclic proportional mixed mode loading + a static mode I and/or II 

Case 2: a cyclic mode I or II + a static proportional mixed mode loading. 

Case 3: a cyclic mode II + a static mode I loading 

Case 4: a cyclic mode I + a static mode II loading 

The modified Paris law is used to evaluate fatigue crack growth rate while the fatigue 

crack growth angle is calculated as an average where it is weighted by Keff for 
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increasing part of Keff. Furthermore, four examples are performed for determination 

of the fatigue crack growth under mixed mode non-proportional loading. 

At the end of this paper, the fatigue crack growth under mixed mode non-

proportional loading is analyzed for four cases that used to describe the non-

proportional loading. To compare the crack growth rate and the crack angle given by 

several Keff formulas, a test case will be also derived. 
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2.  FRACTURE MECHANICS  

An overview of the Linear Elasric Fracture Mechanic concept will be mentioned in 

this section related to xFEM. 

2.1 Origin of Linear Elastic Fracture Mechanics 

One of the most useful tools for simulating crack in fracture mechanic is extended 

finite element method, used in this paper to simulate mix-mode fatigue crack growth 

under non proportional loading. The mix-mode fatigue crack growth or propagation 

is simulated based on linear elastic fracture mechanic. So that, in this section of the 

paper the basic concept of linear elastic fracture mechanic is presented. 

In recent years in fracture mechanic much study has been done. It is not an 

exaggeration if anyone says that one of the earliest work done by Inglis [5] who 

analyzed elliptical holes in flat plates under tension as illustrated in Figure 2.1.  

 

Figure 2.1 : Elliptical hole in a flat plate - if 2b goes to near zero, the elliptical hole 

is converted to a sharp crack where point A becomes the crack tip. 

If the length of any ellipse is kept constant while the width is closing to zero, the 

elliptical hole will turn into a sharp crack. Inglis’ works showed that at the crack tip 
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of the crack shaped elliptical hole, the stress went to infinity while the radius of 

curvature ρ approaches to zero. But in reality no material can be kept infinite stress at 

crack tip before fracture occurs. To solve the paradox, Griffith [6] successes a n 

energy based fracture theorem such as the crack initiate or propagate only if such a 

process results in the total energy to decrease or no change. Based on the energy 

balance theory, Griffith derived an expression for the stress at crack tip of an infinite 

plate. The expression for an ideally brittle solid, like glass, becomes as: 

   (
      

   
)
 

 ⁄

                                                                                                                           

where E is Young’s modulus, a is half crack length and   is the elastic work per unit 

area of surface created. The Griffith’s expression of the remote stress is lack of 

capturing the plastic flow. It is enlarged to materials, capable to plastic flow – like 

metals, by both Irwin [7] and Orowan [8] independently. The modified Griffith’s 

expression is  

   (
    (     )

   
)

 
 ⁄

                                                                                                                  

where    is the plastic work per unit area of surface created and mostly larger than 

  .  In 1956, Irwin [9] derived a fracture theory, fundamentally equivalent to 

Griffith’s model, based on energy.  Irwin defined an energy release rate G, which is a 

measure of the energy available for an increscent of crack extension: 

   
  

  
                                                                                                               

where   is the potential energy of an elastic body, U is the strain energy stored in the 

body and F is the work done by external forces. All of the works that briefly 

mentioned above made an essential contribution to Linear Elastic Fracture Mechanic.  

Linear elastic fracture predicts that the stress reaches infinity in the crack tip, but in 

practice it is just assumed as creating a plastic zone at the crack tip. If the size of the 

plastic zone is sufficiently small, the LEFM or Brittle Fracture is still valid. Thus 

elastic analysis for many different mechanical problems, like mix-mode fatigue crack 

growth under non-proportional loading, is still valid if plastic zone is too small. 
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2.2 Basics Modes of the Fracture Mechanic 

Examination of many different types of catastrophic fractured strictures shows that 

the fracture is originate from stress concentration and geometrical discontinues, a 

sharp change of geometry like an opening, a hole, a notch, a crack, etc. For isotopic 

linear elastic materials the stress field in a cracked body under any loading condition 

can be easily derived as a closed form expression. Westergaard [10], Irwin [9] and 

Williams [11] published many salutations for the stress fields. For such 

configurations as illustrated in Figure 2.2, the stress field     near the crack tribe is 

given by  

    (
 

√ 
)       ∑    

 
    

   

 

   

                                                                           

where r and θ are local polar coordinates at crack tip, k is a constant,     is a function 

of θ and Higher order terms,    is aplitute and    
   

 is a dimensionless function of θ 

depends, on the configuration. 

The solution for any configuration the stress field has a singularity of  √ ⁄  near 

crack tip while the displacement field has a √  singularity because of the term  √ ⁄   

approaching to infinity while r goes to zero and first part of stress equation also 

approaching to infinity although the higher order terms remains finite. The full 

expressions for the pure mode I and mode II stresses and displacements are given in 

Appendix A, reproduced from Jensen [12], for both Cartesian and Polar coordinate  

  

Figure 2.2 : Definition of the coordinate systems, the Polar coordinates-     and, 

the Cartesian coordinates -      .
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systems. Figure 2.3 illustrates the tree independent crack opening modes. In the 

opening mode I, crack surfaces are pulled apart in the normal direction    but remain 

symmetric about the      and       planes. The shearing mode II represents the 

sliding mode of movement of crack surfaces in the    direction, while remaining 

symmetric about the      plane and skew symmetric about the      plane. Finally, 

in the tearing mode III, the crack surfaces slide over each other in the    direction, 

while remaining skew symmetric about the      and      planes. 

 

Figure 2.3 : Basic modes of fracture: Mode I, II and III. 

In this paper, only 2D plane problems are going to cower to simulate mix-mode 

fatigue crack growth under non proportional loading. Thus, mod III is not considered 

any more in this paper. 

2.3 Size of Plastic Zone and Concept of Small Scale Yielding 

Linear elastic fracture mechanic is valid for a sufficiently small plastic zone. Linear 

elastic fracture mechanic can be applied to plastically deforming materials provided 

the region of plastic deformation is small. To estimate the size plastic zone, two 

approaches, elastic and elastoplastic models, can be considered. As seen from the 

Figure 2.4 (a), the elastic model simply ignores all the stresses that exceed the yield 

stress near crack tip, where    is the radius of plastic zone. The elastic model is lack 

of satisfying the equilibrium anymore. Thus, more complicated model is needed. The 

elastoplastic model was developed by Irwin by means of redistribution of the stress 

near the crack tip to satisfy the equilibrium in Figure 2.4 (b). the elastoplastic model 

estimates the radius of plastic zone    as twice of   .  
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The size of plastic zone can be estimated as 

       

{
 
 

 
  

 
(
 

  
)

 

                 

 

  
(
 

  
)

 

                 

                                                                        

 

Figure 2.4 : Plastic zone models: Elastic and Elastoplastic. 

where K is the stress intensity factor it gives exact solution just for pure mode III and 

it becomes a circle.   

The stress reaches theoretically infinity at the crack tips under the assumptions of 

linear elastic fracture mechanics. But, in fact, any material cannot resist infinite 

stress, and a small plastic zone will be formed around the crack tip. But, during this 

report the effect of the plastic zone is ignored due to fact that brittle crack 

propagation will be modeled based on linear elastic fracture mechanics (LEFM) 

where small scale yielding still valid. 

2.4 Path Independent J-integral 

The path independent J-integral was firstly defined by Eshelby [13] and then it was 

applied to the fracture mechanic by Rice [14]. The J-integral is given by  

  ∫(            )    
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where   
 

 
       is the strain energy dencity for linear elasticmaterial and    is the 

outward normal of the path  . The integral is independent for any choice of the path 

 .  LEFM with small-scale yielding leads the J-integral to be written as a function of 

the stress intensity factors,  

  
  

 

  
 

   
 

  
                                                                                                                             

where plane stress and plane strain conditions can be written as 

   {

                 
 

    
                

                                                                                       

E and   are Young modulus and passion’s ratio, respectively. 

The J-integral will be used through this report for the problems which involves the 

small strains (SSY), no body force (the stress are negligible due to gravity or 

magnetic field) and linear elastic material behavior. 
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3.  FINITE ELEMENT METHOD  

Classical FEM is mentioned in this section to establish some matrix necessary for 

xFEM. The classical FEM is applied to solve mechanical problems, like crack 

growth, by discretizing a domain into a finite number of elements. For increase the 

accuracy of the solution, it is necessary to decrease the element length. But, 

decreasing the element length too much is unnecessary due to fact that the 

approximated solution does not converge any more. Thus, it is necessary to use a 

proper element length to save both solution time and storage capacity. 

3.1 Governing Equations 

Consider a body in the state of equilibrium with the boundary conditions, the traction 

and the displacement conditions, as shown in Figure 3.1. In domain Ω, the 

equilibrium equation of elasticity can be written as:  

         
                                                                                                                              

with the associated boundary conditions according to the domain Ω: 

           
 

    ̅           
           

   
      
      
      

}                                                                                                           

where     ,    and    are traction, displacement and crack boundaries, σ is stress 

tensor and,    and    are body forces and tractıon vectors. The weak form of the 

principle of virtual work can be defined as: 

                   

  

∫  
 

        ∫   

 

       ∫   

  

      

   

}
 

 

                                                          

where constitutive law is given by                  and the strain - displacement 

relations for small scale yielding is given by     
 

 
(         ).  Without any body
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Figure 3.1 : A body in the state of equilibrium with a traction free crack.

forces and an initial strain and, by substituting                  (the strain - 

displacement relations) in to principle of virtual work, one can easily find that: 

∫ {  }  [ ] { }  
 

    ∫ {   } {  }  
  

                                                                      

over T means transpose of varıable matrices it is added to take care for matrices 

dimensions. 

The principle of virtual work states that the stored strain energy due to an applied 

admissible virtual displacement field is balanced by the applied outer work. The 

principle of virtual work can be applied to the full domain as well as to a subdomain 

corresponding to the boundary conditions. That is why the principle of virtual work 

can be applied to each element by composing the necessary element matrices.  

3.2 Element Discretization 

The body is discretized in many elements that consist of a set of nodes, each having a 

number of degrees of freedom. Those unknowns are generally displacements and/or 

rotations for mechanical problems.  In the present project only 2D plane problems 
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are going to be covered by using 2D quadrilateral elements with four nodes. As seen 

from Figure 3.2 (a), each node has two unknown displacements, means two degrees 

of freedom. The approximation of the standard FEM is of the form  

      ∑       

   

                                                                                                               

where I is the set of nodes,       are values of classical finite element shape 

functions at each nodes. For 2D quadrilateral elements with four nodes, the shape 

functions are  

   
 

 
              

 

 
          

   
 

 
              

 

 
          

}                                                       

which takes value of one at the current node and value of zero at all other nodes.  In 

matrix notation the approximation of the standard FEM is of the form 

{  }  [ ]{ } [ ]  [
            
            

]                                           

By using the strain-displacement matrix [B], the strain field can be write as 

{ }  [ ]{ }                                                                                                                              

where the strain-displacement matrix includes derivatives of the shape functions 

according to the global coordinate system. But, the shape functions cannot be 

directly differentiated respect to the global coordinate system in the isoperimetric 

formulation that enables to use non-rectangular elements. By following the 

mythology in Cook et al. [15], the link between derivatives of shape functions 

respect to global coordinate system (x1 – x2) and derivatives of shape functions 

respect to mapped coordinate system (ξ - η) can be easily set up for any field variable 

  by applying chain rule as: 

{
   

   
}  {

                 

                 
}  [

        

        
] {

   

   
}  [ ] {

   

   
}                                    
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where [ ] is the Jacobean matrix. Referring to Appendix B.1 the strain-displacement 

matrix [B] can be written as  

[ ]  [ ][ ][  ]                                                                                                                     

 
Figure 3.2 : Element illustration in global and mapped coordinates systems and, 

gauss integration point illustration for number of order of 3. 

where [N,] is derivatives of shape functions respect to the mapped coordinate system,  

[ ]  [ ]   is the inverse of the Jacobean matrix and [L] is link matrix. 

3.3 Element Stiffness and Global Stiffness Matrices 

From {  }  [ ]{ } virtual displacements and  { }  [ ]{ }  virtual strains can be 

written as {   }  {  } [ ]   {  }  {  } [ ] . By means of δu and δε 

formulations, the principle of virtual work can be written as: 

∫ {  }  [ ] [ ][ ] { }    
 

 ∫ {  }  [ ] { }    
  

                                              

Due to the virtual displacements {  }  and its independency of the coordinates of 

nodes, the principle of virtual work can be rearranged as: 

{  } (∫  [ ] [ ][ ] { }    
 

 ∫  [ ] { }    
  

)                                               

where the volume integral takes place over current element and the surface integral 

on the current element surfaces, which contains applied loads, like tension or shear. 



15 
 

Equation (3.11) can be written for an element as: 

[ ]{ }  [ ]                                                                                                                             

where [ ] the element stiffness matrix and [ ] the load vector for the current element 

are expressed by  

[ ]  ∫  [ ] [ ][ ] { }    
 

 [ ]  ∫  [ ] { }    
  

                                       

To assemble the global equation system, [ ]{ }  [ ], for the whole body, it is 

necessary to set up the link between     and    . During the assemble presses, the 

    become summation of the     for any elemant and ij mapes the     for the current 

element to kl, indicate the location of the     in the global equation system. The 

force vector is also assembled the similar way, except it just a vector. 

To solve the global equation system it is necessary to apply the sufficient boundary 

conditions to avoid singularity. Boundary condition is generally to fix the 

displacements in x1 and/or x2 in any node. To fix the displacement for the current 

node, n, nth row and coulomb are skipped from the global equation system and then 

it is solved by any solver. 

3.4 Gauss Integration Method 

Due to usage of the shape functions in the isoperimetric formulation to interpolate 

many field variables in the equation system, especially in the stiffness matrix, it is 

necessary to assemble a numerical integration procedure. One of the most popular 

and the best suited procedures is the Gauss quadrature method, cf. Cook et al. [15], 

enables to write the integral as a summation of the integrand over a set of Gauss 

points indicated in Figure 3.2 (c). Let  (     ) as the integrands in the stiffness 

matrix, in Equation (3.13). The stiffness matrix for the current element, by using the 

Gauss integration method, can be evaluated as 

[ ]  ∑∑     (     )

   

   

  

   

   | |                                                                                 

where | | is the determinant of the Jacobian matrix defined in Equation (B.3) and t is 
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the thickness of the current element. 

Depending on number of Gauss order, the values of       and    are presented in 

Appendix C. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



17 
 

 

4.  EXTENDED FINITE ELEMENT METHOD 

In this section formulations and methodology of xFEM is described by extended the 

FEM described in the previous section. Extension is mainly based on enrichment 

functions. Any arbitrarily oriented discontinuities, for example a crack, an inclusion 

and a hole etc., can be modeled independent of the finite element mesh by enriching 

all elements cut by a discontinuity using enrichment functions, which satisfy the 

discontinuous behavior and result in additional nodal degrees of freedom. Thus, 

xFEM is one of the most useful tools to simulate the crack problems.  

4.1 Element Discretization 

The discretization of the body is made by the enrichment functions in xFEM, remove 

the necessity of that the discontinuities must take place in the element boundary in 

standard FEM. Although different types of Enrichment function exists in the 

literature, only the Heaviside enrichment for defining the crack body and the crack 

tip enrichment for defining the crack tip will be covered in this paper.  

4.1.1 Heaviside enrichment 

To illustrate the heavy side enrichment and the discretization by means of xFEM 

formulations, consider an edge crack modeled by four elements illustrated in Figure 

4.1(a)  According to standard FEM formulation (   ), any displacement for the mesh 

in Figure 4.1(a) is given by   

{  }  ∑  

  

   

                                                                                                                          

To formulate Equation (4.1) according to xFEM formulation with a Heaviside 

enriched node, the mesh is used as illustrated in Figure 4.1(b). The edge crack 

problem has the uniform mesh shown in Figure 4.1(b) and a strong discontinuity, the 

crack. Both the mesh in Figure 4.1(a) and the mesh in Figure 4.1(b) represent the 
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same edge crack problem. For reformulation of Equation (4.1) in the xFEM, the way, 

followed, is represented by Moës et al. [16]. 

Although the uniform mesh in Figure 4.1(b) is lack of defining the crack 

geometrically as the mesh defines in Figure 4.1(a), by introducing the function     , 

it is possible to define the crack. The function      is defined according to the local 

coordinate system at the crack tip and changes its sign by passing the discontinuity, 

the crack. Heaviside function, in terms of     , can be defined as  

 (    )  {
                  

           
                                                                                             

The evaluation of the Heaviside function, in terms of     , will be cover in the next 

section in more detail. 

 

Figure 4.1 : Crack tip represented by a classical mesh and by a uniform mesh with 

an enriched node used in the extended finite element formulation. 

By defining a and b as 

  
      

 
   

      

 
                                                                                         

and the displacement            can be written in terms of a and b as 
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By substituting (4.4) into (4.1), it gives 

{  }  ∑  

  

   

   ∑  

 

   

                                                                        

          ∑  

 

   

                                                                                     

Heaviside function takes the values of minus one at the node 9, where        and 

one at the node 10, where       , it yields that  

          (    )                                                                                              

As seen from the mesh in Figure 4.1(b),        can be replaced by     and, a by 

   . The FEM approximation in Equation (4.5) transform into 

{  }  ∑  

 

   

         

⏟            
                          

  (    )                                                                

As seen from Equations (4.7) and (4.1), the FEM discretization transform into the 

xFEM discretization. The discretization according to the standard finite element 

method formulation is equivalent of the extended finite element method formulation.  

4.1.2 Crack tip enrichment 

Crack tip enrichment is done by the way of the branch functions, which enable to 

define the crack tip ended inside of an element as illustrated in Figure 4.2. To define 

the branch functions, the local crack tip coordinate system is used. The branch 

functions are given by the formula 

   {√    
 

 
    √    

 

 
    √        

 

 
    √        

 

 
}                                        

where         are the local crack tip coordinate system for each of the crack. By 

using a linear combination of four branch functions in Equation (4.8), eight 

additional degree of freedoms must be added to each crack tip enriched node.  
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The branch function  , only, is discontinues at the crack faces due to      while 

the tree remaining branch functions        are continuous. Although, the branch 

function    is enough to simulate the discontinuity, the crack tip - ends inside of an 

element, all of the branch functions will be used through this report to increase the 

accuracy of the solution, obtained by xFEM.  

 

Figure 4.2 : Uniform mesh to define an edge crack, where nodes marked by open 

circles are enriched by the Heaviside function to define the crack body, 

and nodes marked by filled circles are enriched by branch functions to 

define the crack tip. 

4.1.3 General X-FEM approximation for crack modeling 

Moёs et al. [16] proposed that in order to model crack surfaces and tips the extended 

finite element method can be generalized as below  

   ∑     

 

   

    ∑ (    )        

 

   

  ∑      (∑  
         

  

 

   

)

    

   

                  

                                                                                 ∑      (∑  
         

  

 

   

)

    

   

            

n is the set of nodes that follows the classical finite element approximation due to not 

containing any discontinuity where    are the nodal displacements ( standard DOFs). 

m is the set of nodes that includes the discontinuity such that starts and ends on the 

element faces, not inside of the element. Those set of nodes are the nodes, are used to 
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describe the crack faces.               are the set of nodes associated with crack 

tip 1 and 2 due to fact that they describe the discontinuity ends inside of the two 

elements, include each of crack tips separately.        
         

   are the vectors of 

additional degrees of nodal freedom for modeling crack faces by means of Heaviside 

enrichment and the two crack tips by means of Crack tip enrichment, respectively, 

and   
             

       represent the crack tip enrichment functions at each of the 

crack tips. 

4.2 Element Stiffness and Global Stiffness Matrices for the xFEM 

The xFEM approximation presented in Equation (4.9) on the element level can be 

written with matrix notation as 

{  }    [ ]    { }     [  ]     { }     [  ]    [ ]       { }            

The matrix formulation of discretization above allows the crack tips to be implicit 

and the evaluation of Heaviside function or the branch functions based on the nodal 

values of the shape functions at the current point (in practice at the current gauss 

integration point). The superscripts b and c present the shape functions related to b – 

DOFs and c – DOFs, respectively.         in the equation (4.10) represent the 

number of the nodes associated with b – enrichment (Heaviside enrichment) and c – 

enrichment ( the crack tip enrichment ), respectively. The structures of the last two 

terms of Equation (4.10) are given by Appendix B.2 and B.3, separately. 

As the procedure followed in the previous section, it is necessary to recall the 

principle of virtual work to evaluate the necessary matrices for the xFEM 

approximation. The principle of virtual work from Equation (3.4) is  

∫ {  }  [ ] { }  
 

    ∫ {  } {  }  
  

                                                                       

Strain-displacement matrices are needed to obtain the strains from { } { }     { }. 

The Strain-displacement matrices related with the classical degree of freedom is 

already given in Equations (3.8). The strain-displacement matrix relates the b – 

DOFs is similar the matrix obtained for the classical degree of freedom previously 

due to fact that the derivation just incudes shape function. The Heaviside function 
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takes the values of -1 and +1 when passing the crack where its derivative is zero and 

it appears as a coefficient in front of the strain-displacement matrix. The evaluation 

of Strain-displacement matrix [  ] for b – DOFs is presended in Appendix B.2. [  ] 

is given by  

[  ]  [ ][ ][  
 ]                                                                                                                  

For the c – DOFs the situation is not similar because both derivatives of the shape 

functions and the branch functions. The derivatives can be obtained easily by 

employing the chain rule. The evaluation of strain-displacement matrix [  ] for c – 

DOFs is presented in Appendix B.3. [  ] is given by 

[  ]  [ ] ([ ] [  
 ] [ ]  [  ] [  ])                                                                               

By means of the evaluation of the [  ]     [  ] matrices, the strain can be writen as  

{ }  [ ]{ }   [  ]{ }  [  ]{ }                                                                                  

Equations (4.10) and (4.14) can be rewritten for the virtual displacements and stains 

as  

{   }  {  } [ ]   {  } [  ]  {  } [ ] [  ]                                            

{  }  {  } [ ]   {  } [  ]  {  } [  ]                                                         

Implementing the virtual fields (4.15) and (4.16) into the principle of virtual work 

yields to  

∫  {  } [ ]   {  } [  ]  {  } [  ]   [ ]  [ ]{ }   [  ]{ }
 

 [  ]{ }                                                                                                        

                ∫  {  } [ ]   {  } [  ]  {  } [ ] [  ]  {  }  
  

                  

Equation (4.17) is kinematical admissible for any choice of {  }  {  }  and {  }  

where {  } becomes, also, admissible. Thus, Equation (4.17) can be separate into 

three Equations for any choice of {  }  {  }  and {  } as: 
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Related to {  }  field: 

∫ [ ]  [ ] [ ]  
 

{ }
⏟              

 

 [   ]

∫  [ ]  [ ] [  ]  
 

{ }
⏟                

 

 [   ]

∫ [ ]  [ ] [  ]  
 

{ }
⏟              

 [   ]

         

                                                                                  ∫ [ ] {  }  
  ⏟          

 {  }

                                 

Related to {  }  field: 

∫  [  ]  [ ] [ ]  
 

{ }
⏟                

 

 [   ]

∫ [  ]  [ ] [  ]  
 

{ }
⏟                

 

 [   ]

∫  [  ]  [ ] [  ]  
 

{  }
⏟                  

 [   ]

              

                                                                               ∫ [  ] {  }  
  ⏟          

 {  }

                                  

Related to {  }  field: 

∫ [  ]  [ ] [ ]  
 

{ }
⏟              

 

 [   ]

∫   [  ]  [ ] [  ]  
 

{ }
⏟                

 

 [   ]

∫ [  ]  [ ] [  ]  
 

{  }
⏟                

 [   ]

 

                                                                                    ∫ [  ] {  }  
  ⏟          

 {  }

                            

Some necessary equations to simplify the stiffness matrices are given below as 

[ ]  [ ] 

[   ]  [  ]  [ ] [ ]  [[ ]  [ ] [  ]]
 

 [   ]
 

[   ]  [  ]  [ ] [ ]  [[ ]  [ ] [  ]]
 
 [   ]

 

[   ]  [  ]  [ ] [  ]  [[  ]  [ ] [  ]]
 

 [   ]
 
}
 
 

 
 

                                              

By using Equations from (4.18) to (4.21), the element formulation of xFEM is given 

by 
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[

[   ] [   ] [   ]

[   ]
 [   ] [   ]

[   ]
 [   ]

 [   ]

] {

{ }
{ }
{ }

}  {

{  }

{  }

{  }

}                                                                     

The dimension of the element equation varies from 8x8 to 40x40 according to the 

element to be enriched or not. The minimum size 8x8 occurs for the elements that 

only have u – degree of freedom. For the elements that have the four nodes enriched 

by Heaviside function, the size of the element equation is 16x16. If the four nodes 

are enriched by only Branch functions, the size increases to its maximum as 40x40.  

The global stiffness matrix can be written as  

[

[   ]  [   ]  [   ]

[   ]
 [   ]  [   ]

[   ]
 [   ]

 [   ]

]                                                                                                    

respect to the sizes of the local stiffness matrices that are 

[   ]
     

  
[   ]
     

  
[   ]
     

  
[   ]

      
   

[   ]

      
      

[   ]

       
  where n, j and k are u – 

DOFs (the number of the un-enriched nodes), b – DOFs (the number of the 

Heaviside enriched nodes) and c – DOFs (the number of the Crack tip enriched 

nodes) , respectively.  

During the assemble process of the global stiffness matrix, the additional DOFs (b – 

enrichment and c – enrichment, respectively) are placed after the classical DOFs.   

4.3 Integration of Discontinuous Elements 

To evaluate the global stiffness matrix, it is necessary not only the integration of the 

continuous elements, as done in the classical finite element method, but also the 

integration of the discontinuous elements, b or c enriched elements. The elements 

divided by the crack or the elements that the crack ends inside of them could not be 

integrated as the elements, involve no discontinuity and the standard Gauss 

integration method could not be applied adequately to integrate the discontinuity, the 

crack. To integrate the discontinuity, the elements include any discontinuity (lies 
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Figure 4.3 : Discontinuous elements divided into two subpolygons which are further 

divided into three, four or five subtriangles depending on the orientation 

of the discontinuity. The 3th and 4th elements include a crack tip, and 

the subpolygons are formed by means of the imaginarily extension of 

the crack. 

through an element or ends inside of an element) can be integrated by dividing the 

elements into two subpolygons depending on the orientation of the discontinuity in 

Figure 4.3 by following Moës et al. [16]. 

The sub polygons are divided into 3, 4 or 5 triangles that enable the integration of the 

discontinuity numerically as illustrated by Cook et al. [15]. No additional degree of 

freedom is necessary for integration of the discontinuity. The integration takes part 

into the sub triangles that mapped on the reference coordinate system,  ̃   ̃. The 

triangulation of the sub polygons and the gauss integration points are illustrated in 

the Figure 4.3-4, respectively. Then, the gauss integration method can be applied to 

the elements include any discontinuity with the 3 gauss points for the elements 

involve the crack body and the 7 gauss points for the elements involve the crack tip. 

Depending on number of Gauss point, the values of  ̃   ̃  and  ̃  are presented in 

Appendix C.2. 

 

Figure 4.4 : Mapped triangles for the c and b - enriched elements. 
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5.  DEFINATION OF THE CRACK PATH 

The crack must be well defined to simulate the crack correctly by selecting the nodes 

that are enriched by Heaviside function or the four branch functions. For this reason, 

to define the crack properly with minimal meshing a mapping procedure, defined by 

Belytschko and Black [17], is applied. The mapping procedure can be done by 

defining any curved crack as a stepwise linear function. The crack, the stepwise 

linear function  , can be expressed as 

                       {   }       {           }                                                     

where g is linear between the points (           ) and    is the number of point, 

defining the crack in Figure 5.1. This is similar with the procedure is followed to 

calculate analytically an integral over a line. The accuracy of the approximated 

integral can be improved by an increase in the number of point used in 

approximation. A similar approximation can be applied to the crack by increasing the  

 

Figure 5.1 : Arbitrary crack path approximSated by a stepwise linear function g. 
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   and mesh density, simultaneously. The mesh density is important for accuracy of 

the solution of any FEM approximation. The improvement in the accuracy of the 

crack defined as the stepwise linear function g by increasing the mesh density is 

presented in Figure 5.2. As seen from the Figure 5.2, increasing the mesh too much is 

unnecessary because of its to be in need of more solution time and memory. That is 

why selecting the proper mesh density is an important part of the solution according 

to the accuracy is needed by the problem.  

After the crack, initially defined as       first crack tip and        second crack tip, 

starts to propagate step by step in both crack tips, the stepwise linear function must 

be redefined.  

 

Figure 5.2 : An edge crack with an additional branch (dashed line) while mesh 

refinement is applied step by step. The last two sketch show that it 

makes no change in the crack definition although the mesh density is 

increased. May, the forth sketch can be selected to increase the 

accuracy, but not the fifth one. Since it just increases the solution time 

and need of more memory but cause no big change in the accuracy. 
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5.1 Defining Heaviside Function 

To defining the crack body by mans of Heaviside function it is necessary to obtain 

the value of Heaviside function previously described according to the function f. at 

the current node.    and    are the normal and the tangential vectors on each 

segment of g lies from     to       as illustrated in Figure 5.3. The value of 

Heaviside function for a given point x is defined by the sign of the scalar product 

   (        ). The Heaviside function is given by 

     {
                    (        )   

              (        )   
                                                                

 

Figure 5.3 : The normal and the tangential vectors for a segment of the crack path 

and value of Heaviside function on each side of the crack segment. 
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6.  STRESS INTENSITY FACTORS FOR A MIXED MODE CRACK 

The evaluation of the stress intensity factors for the mixed mode crack (          ) 

will covered in this section. Let’s starts by recalling the J integral formula, which is 

given by 

  
  

 

  
 

   
 

  
                                                                                                                             

The interaction integral is employed to calculate the stress intensity factors 

individually by e.g. Moës et al. [16], Belytschko and Black [17], Yau et al. [18], 

Moran and Shih [19], Shih  and Asaro  [20],  and, many others. Two stage of a 

cracked body is considered to obtain the interacting integral from J integral where the 

first stage is the presented stage and the auxiliary stage is the second. The J integral 

for the superposition of two stages is given by  

       
(  

   
   

   
)
 

  
 

(   
   

    
   

)
 

  
                                                                              

             
 

  
(  

   
    

   
)

⏟          
     

 
 

  
(  

   
    

   
)

⏟          
     

 
 

  
(  

   
  

   
    

   
   

   
)

⏟                
       

            

where superscripts (1) and (2) denote stage 1 and 2, respectively, and        is the 

interacting intedral for the stage 1 and 2. Using Equation (2.6) derived by Rice [14] 

fort the given stages, the interacting integral can be written as  

                                                                                                                                 

          ∫ [          (   
       

   )(    
        

   )]     
 

                                               

                                   ∫ (           
       

   )    
 

 ∫ (           
       

   )    
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          ∫ [(                )⏟                
       

       
       

       
       

   ]     
 

                    

where        is the interaction strain energy for a linear elastic material between the 

two states and can be evaluated as 

       
 

 
(   

   
   
   

    
   

   
   

)     
   

   
   

    
   

   
   

                                                 

by means of            , a 4rht order symetric tensor.  

Equation (6.3) is not well suited for finite element calculations so that it must be 

reformulated. To simplify the calculations,    is assigned as the integrand of the 

interaction integral as 

       ∫       
 

                      
       

       
       

                                          

Equation (6.5) is rearranged, by defining the integration paths and the weighting 

function q in Figure 6.1, as 

        ∫        
  

 ∫        
     

 ∫        
     

 ∫        
 

            

where q=0 on    and       . Thus, Equation (6.6) is still equivalent of Equation 

(6.5). The third term in Equation (6.6) is zero due to (   
   

   
   

    
   

   
   

   ) and 

        and, the interacting integral yields to a closed curve integral as 

        ∮        
          

                                                                                            

        ∫ (   )     
 

                                                                                                       

where A is the area that is enclosed by the curve           . The term 

(   )                 reduces to (   )          because of        , which can 

be found easily by tensor calculus. At the end, the interacting integral between stages 
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Figure 6.1 : The two integration contours near crack tip which are   and       
    , respectively. Unit normal is    on              and,        

on  . A is the area enclosed by the curve           . Weight 

function is defined as a value of unity on   and zero on   . 

By applying the divergence theorem to the integral in Equation (6.7) result in a 

domain integral as 

 (1) and (2) takes the best form suited for finite element calculations as 

        ∫          
 

 ∫ [   
       

       
       

             ]      
 

                     

By recall the last term of Equation (6.2), the stress intensity factors (          ) can 

be evaluate as a funcition of the interacting integral,  

       
 

  
(  

   
  

   
    

   
   

   
)                                                                                      

The stage (2) is selected as pure mode I, where   
   

          
   

  . Equation 

(6.10) yields to  

  
   

 
  

 
                                                                                                                          

Similarly, the stage (2) is selected as pure mode II, where   
   

          
   

  . 

Equation (6.10) yields to  
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At the present stage the stress intensity factors (          ) can be calculated easily 

with (6.9), (6.11) and (6.12). The interacting integral can be calculated numerically 

over the domain A described in Figure 6.2. The radius of the dashed dot circle, used 

here to describe the domain A (the enclosed area by the curve           ), is 

known as the radius of J-evaluation. The radius    can be selected as  

            {         }                                                                                               

where h is described as the characteristic length of a crack tip element by Moës et al. 

[16]. To increase the accuracy of the J-evaluation, n higher value of n can be 

selected. It can be calculated as   √   for plane problems. For the presented 

project the characteristic length of a crack tip element is the element length due to the 

usage of the square elements. Figure 6.2 describes the selection of the element that 

takes part in the domain integral. 

The thin and thick dashed lines have the values of weight function that vary 0 and 1 

respect to    . The elements in the area A are used to evaluate the interacting integral 

numerically and then the stress intensity factors, given by Equations (6.11) and 

(6.12), can be calculated easily for mixed mode crack. 

 

Figure 6.2 : The selection of the elements take part in the domain integral respect to 

the radius of J-evaluation (dashed dot circle). All element inside of the 

area limited by thick dashed line (               ) have q=1, so that the 

gradient     is zero. Also, the elements outside of the thin dashed line  

(                ) The elements, inside of the area A is limited by the 

thick and thin lines, are the elements take part in the domain integral.  
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7.  PROGRAM VERIFICATION FOR DIFFERENT CRACKED PLATES 

The program, firstly, is tested for three cases that given by 

I.                         

II.                         

III.                         

For the given three cases a rectangular plate with uniform mesh is simulated to 

ensure that the program could be able to calculate the strains and stresses correctly. 

To simulate the three cases with the program, the strains are described as uniform 

displacement boundary conditions that the displacements are known for the given 

strains in the three cases. 

The program could be able to calculate the three cases easily and follows the finite 

element method formulation because of the problem includes no crack – no 

discontinuity. That is why the strains     ,    , or      and the stresses     ,    , or 

     are uniformly distributed through the plate, respectively.  

After that the selection of the Heaviside nodes and the Crack tip nodes are verified 

for many cases by describing the crack as a stepwise linear function as illustrated in 

Figure 7.1. And then the program extended to the xFEM formulation given in 

previous sections. The developed program must be also verified to ensure that it 

works properly. In this sections many cracked body used to verify the programs will 

be presented. 

7.1 Center Cracked Rectangular Plate Under Uniform Displacement 

The first example is a center cracked rectangular plate under uniform displacement 

(ACCRPUUD) in Figure 7.2. To simulate the presented example, the element length 

used in the uniform mesh is 1/50. During the analysis of the center cracked 

rectangular plate under uniform displacement, the weight W kept constant while  
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Figure 7.1 : Illustration of the selection of the nodes enriched by Heaviside function 

or Branch functions for a crack defined with a step wise linear function. 

Nodes marked by open circles are enriched by branch functions, and 

nodes marked by filled circles are enriched by the Heaviside function. 

half-length of height H is varying with β and the crack length 2a is varying with α. 

The ratios β and α are given by  

  
  

 
                                                                                                                                       

  
  

 
                                                                                                                                       

 

Figure 7.2 : A center cracked rectangular plate under uniform displacement. 

The ratio of the stress intensity factors for the plane stress condition is given by  
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and it can be taken as      where    is the ratio for plane strain condition given by       

Isida [21]. The ratio    and    are also known as shape factors for plane stress and 

plane strain. The stress intensity factor    in Equation (7.3) is given by  

   
    

√             
                                                                                           

where    is the given uniform displacement and,         are poison’s ratio and 

young modulus, respectively. The ratio    is calculated with MATLAB code for a 

center cracked rectangular plate under uniform displacement. The results are 

presented in Table 7.1 and Table 7.2 for several   and   values and, compared with 

the values taken from Isida [21]. The results have a good agreement with the  

Table 7.1 : The ratio    taken from Isida [21] and                for ACCRPUUD 

while β is varying from 0.4 to 0.8. 

β 0,4 0,6 0,8 

 

Isida 

[21] 

With My 

MATLAB 

Code 

Isida 

[21] 

With My 

MATLAB 

Code 

Isida 

[21] 

With My 

MATLAB 

Code 

α 

CT I 

and CT 

II 

CT I CT II 

CT I 

and CT 

II 

CT I CT II 

CT I 

and CT 

II 

CT I CT II 

0,1 0,8460 0,8688 0,8688 0,7200 0,7260 0,7260 0,6300 0,6274 0,6274 

0,2 0,9890 1,0035 1,0034 0,9160 0,9189 0,9189 0,8350 0,8299 0,8299 

0,3 1,0040 1,0055 1,0055 0,9830 0,9758 0,9758 0,9340 0,9214 0,9214 

0,4 0,9980 0,9913 0,9913 0,9970 0,9798 0,9798 0,9750 0,9537 0,9537 

0,5 0,9940 0,9807 0,9807 0,9940 0,9690 0,9690 0,9860 0,9576 0,9576 

Table 7.2 : The ratio    taken from Isida [21] and                for ACCRPUUD 

while β is 1.0 and 1.2. 

β 1,0 1,2 

 

Isida [21] 

With My 

MATLAB 

Code 

Isida [21] 

With My 

MATLAB 

Code 

α 

CT I and 

CT II 
CT I CT II 

CT I and 

CT II 
CT I CT II 

0,1 0,5640 0,5554 0,5554 0,5120 0,5000 0,5000 

0,2 0,7640 0,7522 0,7522 0,7030 0,6869 0,6869 

0,3 0,8780 0,8602 0,8602 0,8230 0,8014 0,8014 

0,4 0,9400 0,9148 0,9148 0,8980 0,8707 0,8707 

0,5 0,9700 0,9376 0,9376 0,9440 0,9103 0,9103 

reference ones even if they are not exact for plain strain conditions. During the 

calculation the max error is less than 4% and it is considered acceptable for the 
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presented problem. The ratio is independent of material properties that are why the 

material properties used during the analysis is not presented here. 

7.2 Finite Width Plate with a Center Crack Parallel to the Clamped Edges 

The next example for verifying the program is a finite width plate with a center crack 

parallel to the clamped edges (AFWPCCPCE) in Figure 7.3. For the presented 

problem, it is recommended that select the ratio α as larger than or equal to 0,5 in 

Rice [2] where the ratio is given by  

  
  

 
                                                                                                                                       

The stress intensity factor is given in Rice [2] for plane strain by  

   
 

   
 (

 

    
)

 
 ⁄

 
   

 
 

 ⁄
                                                                                             

 where the accuracy of the formula is better than 1%. During the simulation of the 

crack, the ratio α and the width of plate – in the reference it is infinite- are kept 

constant where α=0,5 and  the width=10 and, the half crack length 2a is also  

 

Figure 7.3 : A finite width plate with a center crack parallel to the clamped edges. 

increased while the width of plate is increasing to keep the ratio α constant. The 

calculated stress intensity factors according to both the formula (7.6) and the 

developed xFEM program are presented in Table 7.3.  Although the infinite length 
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plate approximates as a finite plate, the maximum error have been made during the 

simulation is less than 4%.  As seen from results the error decreases while the height 

W and 2a increase. 

Table 7.3 : The stress intensity factors for AFWPCCPCE, respect to Equation (7.6) 

by Rice [2] and the MATLAB code. 

 

 Kı by Rice [2] 

Kı Calculated 

With MATLAB 

Code 

Length Width CT I and CT II CT I CT II 

% 

Error 

10 2 6081,30 6275,40 6275,40 -3,19 

10 3 4965,40 5029,00 5029,00 -1,28 

10 4 4300,10 4315,00 4315,00 -0,35 

10 5 3846,20 3787,10 3787,10 1,54 

10 6 3511,00 3422,00 3422,00 2,53 

After some increase in 2a the error starts to increase because of the finite plate 

approximation. The error can be easily improved by decreasing the element size or 

more easily by increasing the length of the plate which seems infinite respect to 2a. 

7.3 Finite Width Plate with an Edge Crack Parallel to the Clamped Edges 

The next problem is a finite width plate with an edge crack parallel to the clamped 

edges (AFWPECPCE) in Figure 7.4. Although this example seems similar with 

previous one, It will be used to show how the accuracy increases with higher value of 

α. The ration α for the current problem is given in Rice [2] by  

  
 

 
                                                                                                                                          

where a is the length of the edge crack and L is the width of the plate. The srress 

intensity factor for plane strain condition is given Rice [2] by  
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The simulation takes part into the different plates (only the length of plate kept 

constant) and increasing α values for the current plate. The results are illustrated in 

Table 7.4. In the previous problem the largest error occurred for the largest value of 

the crack length 2a because of the lack of the simulation of the plate with infinite 
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Figure 7.4 : A finite width plate with an edge crack parallel to the clamped edges. 

length (the fifth plate).  Although the infinite length plate approximation employed 

again, the error, in the fifth plate, have been made during the simulation decreases up 

to 0.4% for higher α.  

As it is recommended that select the ratio α as larger than or equal to 0.5 in previous 

example to increase the accuracy, the results larger in the ratio α are better in the 

accuracy.  

Table 7.4 : The stress intensity factors for AFWPECPCE respect to Equation (7.8) 

by Rice [2] and the MATLAB code. 

α= a/W= Kı by Rice [2] 

KI Calculated 

With MATLAB 

Code 

Width Height exact 0,4 0,5 0,6 0,8 

10 2 6081,30 5870,00 5978,40 6030,10 6066,80 

10 3 4965,40 4791,40 4879,00 4920,20 4952,40 

10 4 4300,10 4147,30 4218,90 4251,60 4288,70 

10 5 3846,20 3706,10 3763,60 3787,70 3834,80 

10 6 3511,00 3379,20 3424,10 3440,30 3497,80 

7.4 An Angled Center Crack in a Finite Plate Under Uniform Tension  

After verifying the program for several of mode I problems, it is necessary to show 

that the program properly works for mixed mode problems. To illustrate that, an 
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angled center crack in a finite plate under uniform tension (AACCFPUUT) in Figure 

7.5 will be presented here. The crack angle θ is defined respect to the horizontal axis. 

 

Figure 7.5 : An angled center crack in a finite plate under uniform tension. 

In illustrated problem, it is preferred to calculate the two factors related to mode I 

and II, respectively. The factors for mode I and II are given in Kitagawa and Yuuki 

[22] and Wilson [23] by 

   
  

  √   
                                                                                                                              

    
   

  √   
                                                                                                                           

where    and     are the calculated stress intensity factors for mode I and mode II 

respectively, σ is the tensional stress and a is the half of the crack length.   

The results for    and     are shown in Table 7.5 for the various values of θ, angle of 

crack, and a/W ratio. The calculations take place in a plate has the ratio of     ⁄  

due to the results, Kitagawa and Yuuki [22] and Wilson [23], prepared for that ratio 

too. The results that obtained by means of the program have better agreement with 

the reference ones as the examples done before in this report. The errors occurred 

during the calculations plotted in Figure 7.6. As seen from the figure the max error, 

which less than 3%, occurs at θ=30˚ and   ⁄       for FII.  
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Various angles and different ratios enable how the program will act in various crack 

propagation although the presented problem is simple beside the mixed mode crack 

Table 7.5 : The    and     factors for AACCFPUUT by Kitagawa and Yuuki [22] 

and Wilson [23], and the MATLAB code. 

  

θ = 30° θ = 45° θ = 60° 

  

By [22] 

and [23] 

With My 

MATLAB 

Code 

By [22] 

and [23] 

With My 

MATLAB 

Code 

By [22] 

and [23] 

With My 

MATLAB 

Code 

 

a/W 

CT I and 

CT II CT I CT II 

CT I and 

CT II CT I CT II 

CT I and            

CT II CT I CT II 

   

0,1 0,7557 0,7453 0,7453 0,5046 0,4994 0,4994 0,2527 0,2480 0,2480 

0,2 0,7730 0,7696 0,7696 0,5181 0,5135 0,5135 0,2605 0,2584 0,2584 

0,4 0,8456 0,8376 0,8376 0,5719 0,5685 0,5685 0,2896 0,2857 0,2857 

0,6 0,9840 0,9658 0,9658 0,6611 0,6543 0,6543 0,3332 0,3259 0,3259 

0,8 1,2450 1,2342 1,2342 0,7950 0,7808 0,7808 0,3880 0,3842 0,3842 

    

0,1 0,4339 0,4454 0,4454 0,5018 0,5146 0,5146 0,4352 0,4453 0,4453 

0,2 0,4267 0,4273 0,4273 0,5072 0,5181 0,5181 0,4417 0,4516 0,4516 

0,4 0,4497 0,4578 0,4578 0,5290 0,5393 0,5393 0,4660 0,4734 0,4734 

0,6 0,4800 0,4885 0,4885 0,5674 0,5772 0,5772 0,5022 0,5075 0,5075 

0,8 0,5500 0,5658 0,5658 0,6300 0,6390 0,6390 0,5490 0,5580 0,5580 

propagation. The program could be easily finds the nodes enriched by Heaviside 

funcition or branch functions although the crack has various angle. 

 

Figure 7.6 : Errors in the    and     factors for several of the crack angle   and 

various of the ratio a/W for a center crack. 
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7.5 An Angled Edge Crack in a Finite Plate Under Uniform Tension 

The similar with pervious example, the other example is an angled edge crack in a 

finite plate under uniform tension (AAECFPUUT) as illustrated in Figure 7.7. 

During the calculations, the ratio a/W and crack angle vary to illustrate the factors FI 

and FII. The factors for mode I and II are given in Freese [24] and Wilson [25] by 

   
  

  √   
                                                                                                                             

    
   

  √   
                                                                                                                           

where KI and KII are the calculated stress intensity factors for mode I and mode II 

respectively, σ is the tensional stress and a is the crack length.   

The calculations take place in a plate has the ratios of    ⁄     ⁄    wkere    

and    are illustrated in Figure 7.7. The results of FI and FII are shown in Table 7.6 

for the various values of θ, angle of crack according to horizontal axis, and a/W ratio. 

The results have better  agreement with the reference ones as the angled center crack. 

The errors occurred during the calculations plotted in Figure 7.8. As seen from the 

figure the max error, which less than 3%, occurs at θ=60˚ and   ⁄      for FII. 

 

Figure 7.7 : An angled edge crack in a finite plate under uniform tension. 
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Table 7.6 : The    and     factors for AAECFPUUT by Freese [24] and the the 

MATLAB code. 

  
θ = 30° θ = 45° θ = 60° 

  

By Freese 
[24] 

With My 

MATLAB 

Code 

By Freese 
[24] 

With My 

MATLAB 

Code 

By Freese 
[24] 

With My 

MATLAB 

Code 

 
a/W CT CT CT CT CT CT 

F I 

0,1 0,9697 0,9599 0,7030 0,7073 0,4606 0,4676 

0,2 1,0909 1,0737 0,7879 0,7858 0,4998 0,491 

0,3 1,2485 1,2579 0,8788 0,8859 0,5212 0,5285 

0,4 1,5455 1,5313 1,0182 1,0331 0,5939 0,5868 

0,5 1,9273 1,933 1,2364 1,2486 0,6788 0,6805 

F II 

0,1 0,3293 0,3298 0,3780 0,3869 0,3415 0,342 

0,2 0,3537 0,3615 0,4122 0,4143 0,3537 0,3557 

0,3 0,4123 0,4122 0,4463 0,4568 0,3780 0,3879 

0,4 0,4695 0,4799 0,5078 0,512 0,4146 0,4192 

0,5 0,5780 0,571 0,5780 0,5784 0,4513 0,4579 

 

Both of angled edge crack and angled crack illustrates that the developed program 

could evaluate the stress intensity factors    and     correctly for a mixed mode 

crack problems. Although both example lack of showing how the crack propagates, it 

can be said that the program could be able to calculate the stress intensity factors 

correctly for any crack extension. 

 

Figure 7.8 : Errors in the    and     factors for several of the crack angle   and 

several of the ratio a/W for an edge crack. 
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7.6 A Skew – Symmetric Bent Crack 

In the Definition of the crack path section, the crack is defined by a stepwise linear 

function. This example is the first time of the usage of the stepwise linear function. 

The skew – symmetric bent crack (ASSBC) in Figure 7.9 is defined by four points 

illustrated in Figure 7.10. The first and fourth points are the first and second crack 

tips. This problem can be thought as a problem that initially the crack lays from 2
nd

 

point ( initially 1
st
 point of the crack) to 3

rd
 point (initially last point of the crack) and 

then it propagates in both end where it turns into the bent crack problem.  

After the initially center crack propagates with a crack growth angle   and     (it is 

b in bent crack problem), the locations of the new crack tips can be found easily by 

                                     

                                     
}                                                                       

where the stepwise linear function is redefined for each crack propagation in the 

program. Let’s turn back to the crack with a bended branch on both ends which has 

an angel of θ according to horizontal. The factors for mode I and mode II are defined 

by Kitagawa and Yuuki [26] as 

   
  

  √   
                                                                                                                             

 

Figure 7.9 : A skew – symmetric bent crack: the bent crack illustrates the situation 

after a center crack propagated with the angle of   and b symmetrically 

in both crack tips. 
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(a) Initial center crack 

 

 

 
(b) The crack propagates 

with   and b where the 

crack tips moves as 

illustrated  

 
(c) The skew symmetric 

bent crack illustrated by 

four point where the 

stepwise linear function 

lies from 1
st
 point to last 

point  

Figure 7.10 : Illustration of the step wise linear function, used to describe the 

bended crack. 

 

    
   

  √   
                                                                                                                            

where           ,    and     are the calculated stress intensity factors for 

mode I and mode II, b is the length of branch and , a is the half length of smooth part 

of the bent crack.  

The results for φo = 90˚ (uniaxial tension) are presented in Table 7.7, 7.8 and 7.9 

while θ varies as 30˚, 45˚ and 60˚, respectively.  

The results for φo = 0˚ (shear stress for top and bottom surface of the plate) are 

presented in Table 7.10, 7.11 and 7.12 while θ varies as 30˚, 45˚ and 60˚, 

respectively.  

Table 7.7 : The    and     factors for ASSBC with θ=30˚ and φo =90˚ by Kitagawa 

and Yuuki [26] and the MATLAB code. 

b/a 

θ = 30˚ and φo = 90˚ 

By Kitagawa and Yuuki [26] With My MATLAB Code 

FI FII FI FII 

 

CT1 and CT2 CT1 and CT2 CT1 CT2 CT1 CT2 

0,4 0,8242 0,4021 0,8236 0,8236 0,4199 0,4199 

0,6 0,8187 0,4176 0,8241 0,8241 0,4350 0,4350 

0,8 0,8156 0,4271 0,8152 0,8152 0,4417 0,4417 

1,0 0,8135 0,4335 0,8181 0,8181 0,4482 0,4482 
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Table 7.8 : The    and     factors for ASSBC with θ=45˚ and φo=90˚ by Kitagawa 

and Yuuki [26] and the MATLAB code. 

b/a 

θ = 45˚ and φo = 90˚ 

By Kitagawa and Yuuki [26] With My MATLAB Code 

FI FII FI FII 

 

CT1 and 

CT2 CT1 and CT2 CT1 CT2 CT1 CT2 

0,4 0,6280 0,5284 0,6183 0,6167 0,5417 0,5376 

0,6 0,6161 0,5491 0,6199 0,6197 0,5697 0,5696 

0,8 0,6095 0,5617 0,6107 0,6107 0,5785 0,5784 

1,0 0,6054 0,5698 0,6101 0,6102 0,5892 0,5892 

Table 7.9 : The    and     factors for ASSBC with θ=60˚ and φo =90˚ by Kitagawa 

and Yuuki [26] and the MATLAB code. 

b/a 

θ = 60˚ and φo = 90˚ 

By Kitagawa and Yuuki [26] With My MATLAB Code 

FI FII FI FII 

 

CT1 and CT2 

CT1 and 

CT2 CT1 CT2 CT1 CT2 

0,4 0,3934 0,5794 0,3932 0,3932 0,5962 0,5962 

0,6 0,3734 0,6031 0,3739 0,3739 0,6228 0,6228 

0,8 0,3629 0,6170 0,3622 0,3622 0,6309 0,6309 

1,0 0,3576 0,6253 0,3577 0,3577 0,6423 0,6423 

As seen from the results the error decreases for higher b. For each case, the 

maximum error done during the calculations is less than %6 and in acceptable range. 

The maximum error is a little bit high compared to previous examples due to fact that 

the dimensions of plate must be sufficiently larger than a and b to simulate the plate 

as an infinite plate. In Matlab, simulation is done for a 40x40 plate with a crack 

Table 7.10 : The    and     factors for ASSBC with θ=30˚ and φo=0˚ by Kitagawa 

and Yuuki [26] and the MATLAB code. 

b/a 

θ = 30˚ and φo = 0˚ 

By Kitagawa and Yuuki [26] With My MATLAB Code 

FI FII FI FII 

 

CT1 and CT2 

CT1 and 

CT2 CT1 CT2 CT1 CT2 

0,4 0,1291 -0,2214 0,1275 0,1275 -0,2336 -0,2336 

0,6 0,1506 -0,2572 0,1501 0,1501 -0,2692 -0,2692 

0,8 0,1661 -0,2832 0,1638 0,1638 -0,2911 -0,2911 

1,0 0,1780 -0,3031 0,1770 0,1770 -0,3121 -0,3121 
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Table 7.11 : The    and     factors for ASSBC with θ=45˚ and φo=0˚ by Kitagawa 

and Yuuki [26] and the MATLAB code. 

b/a 

θ = 45˚ and φo = 0˚ 

By Kitagawa and Yuuki [26] With My MATLAB Code 

FI FII FI FII 

 

CT1 and CT2 CT1 and CT2 CT1 CT2 CT1 CT2 

0,4 0,2670 -0,2691 0,2605 0,2605 -0,2768 -0,2768 

0,6 0,3140 -0,3150 0,3139 0,3139 -0,3291 -0,3291 

0,8 0,3485 -0,3487 0,3453 0,3453 -0,3578 -0,3578 

1,0 0,3753 -0,3749 0,3792 0,3792 -0,3896 -0,3896 

Table 7.12 : The    and     factors for ASSBC with θ=60˚ and φo=0˚ by Kitagawa 

and Yuuki [26] and the MATLAB code. 

b/a 

θ = 60˚ and φo = 0˚ 

By Kitagawa and Yuuki [26] With my x_FEM 

FI FII FI FII 

 

CT1 and CT2 

CT1 and 

CT2 CT1 CT2 CT1 CT2 

0,4 0,4206 -0,2562 0,4151 0,4151 -0,2676 -0,2676 

0,6 0,5003 -0,3030 0,5011 0,5011 -0,3155 -0,3155 

0,8 0,5608 -0,3384 0,5523 0,5523 -0,3425 -0,3425 

1,0 0,6086 -0,3636 0,6056 0,6056 -0,3732 -0,3732 

length 2a=2 and 400x400 element mesh. But, neither an increase in the dimensions 

of the plate nor an increase in mesh density is not possible due to lack of memory to 

simulate the problem where presented simulation is done with highest mesh density 

of 400x400. So that to handle more accurate results that correlate with the standards 

either dimensions height and width of plate or mesh density must be increased by 

adding more memory. 

The mixed mode fatigue crack growth will be simulated in a finite plate that 

maximum size of mesh is enough to obtain more accurate results. That is why the 

more memory is unnecessary.  

In this section different types of examples are covered to illustrate the program is 

working properly and the evaluated results have good agreement with the references. 
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8.  FATIGUE CRACK GROWTH 

Fatigue crack growth can be describes the propagation of the crack under cycling 

loading. The needed force magnitude for fatigue crack growth is highly less than one 

necessary fort the crack growth under monotonic loading. That is why many 

structures under cycling loading failure earlier than expected due to fatigue. The 

linear elastic fracture mechanic is valid for high cycle fatigue crack growth. 

Over the years, many fatigue crack growth law was developed and can be expressed 

in the form of  

  

  
                                                                                                                                    

where a is the length of the crack, N is the number of cycles and ∆K is the range of 

the stress intensity factor as             .  Although that fatigue crack growth 

law says that the fatigue crack growth rate-     ⁄  - just varies as a fonction of ∆K 

for one load cycle, it gives a good approximation for quick estimations.  

Many experiments shows that the link between     ⁄  and ∆K in logarithmic scale 

takes the form in Figure 8.1. 

 

Figure 8.1 : Typical relation between the fatigue load ΔK and the crack growth rate 

for metals. 
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The fatigue crack propagation behavior divided into three regions as shown in the 

Figure 8.1. Region I is the fatigue threshold region where the ∆K is too low to 

propagate a crack, less than the order 10
-9

 m/cycle. This region is extremely sensitive 

and is largely influenced by the microstructure features of the material such as grain 

size, the mean stress of the applied load, the operating temperature and the 

environment present. The most important feature of this region is the existence of a 

stress intensity factor range below which fatigue cracks should not propagate. This 

value is defined as the fatigue crack growth threshold and is represented by the 

symbol ΔKth.  

Region II encompasses data where the rate of crack growth changes roughly linearly 

with a change in stress intensity fluctuation. Region II represents the intermediate 

crack propagation zone where the length of the plastic zone ahead of the crack tip is 

long compared with the mean grain size, but much smaller than the crack length. The 

use of linear elastic fracture mechanics (LEFM) concepts is acceptable and the data 

follows a linear relationship between log da/dN and log Δ K. The crack growth rate is 

typically on the order of 10
-9

 to 10
-6

 m/cycle, which corresponds to the majority of 

the test data results. This region corresponds to stable crack growth and the influence 

of microstructure, mean stress, ductility, environment and thickness are small.  

In region III, small increases in the stress intensity amplitude, produce relatively 

large increases in crack growth rate since the material is nearing the point of unstable 

fracture. Region III represents the fatigue crack growth at very high rates, da/dN > 

10
-3

 m/cycle due to rapid and unstable crack growth just prior to final failure. The 

da/dN versus ΔK curve becomes steep and asymptotically approaches the fracture 

toughness Kc for the material. The corresponding stress level is very high and causes 

a large plastic zone near the crack tip as compared with the specimen geometry. 

Because large scale yielding occurs, the influence of the nonlinear properties of the 

material cannot be ignored. Therefore, the use of LEFM is not entirely correct and 

nonlinear fracture mechanics should be applied to this stage. The mean stress, 

materials microstructure and thickness have a large influence in this region and the 

environment has little influence. Fatigue crack propagation analysis is very complex 

in this region but often ignored because it has little importance in most fatigue 

situations. The reason that the fatigue crack growth rates are very high and little 

fatigue life is involved. 
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8.1 Fatigue Crack Growth Rate 

Many fatigue crack growth law was developed in recent years, but the best known is 

formulated by Paris and Erdogan [3], and it can be expressed as 

  

  
                                                                                                                                  

where C and n are material constants such that they are generally determinated by 

curve fitting to the experiment results. Although it gives relatively good 

approximation for the fatigue crack growth rate in the region II, this law does not 

take into account the effect of the R ratio. The R ratio is described as   

        ⁄  where      is generaly negative, and it tends to shift to left the fatigue 

crack growth rate curve for increasing values. That is why a modification is need for 

Paris law to take into account the effect of R.  An extension of the Paris law was 

proposed by Erdogan and Ratvani [15] and it can be expressed by  

  

  
 

           
 

          
                                                                                                           

where C and n are material constants,      is the change of the threshold value and 

   is the fracture toughness of the material. 

Another fatigue crack growth law, which is a Paris type equation, has been used by 

Sih and Barthelemy [27], and Badaliance [28]. They use strain energy density factor 

to correlate fatigue crack growth rate which can be expressed by  

  

  
        

                                                                                                                          

where    and    are material constants, and ∆S is the strain energy density factor 

range. 

8.2 Prediction of Mixed Mode Fatigue Crack Growth Direction 

A crack subject to mixed mode loadings changes its crack growth direction in non-

self-similar manner. Therefore, either the fatigue crack growth rate or the fatigue 

crack growth direction is of importance during the crack propagation under mixed 

mode loading conditions. Several mix-mode fatigue crack growth criteria have 
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developed regarding to the crack growth direction under mixed mode loadings. Some 

of them are reviewed in this section. 

8.2.1 Maximum tangential stress criterion (MTS criterion) 

The maximum tangential stress criterion is one of the mostly used theories for mix-

mode fatigue crack growth, derived by Erdogan and Sih [29]. It is states for starting 

the crack growth that: 

(i) Crack propagation starts at the radial direction,     , on which     

becomes maximum, where it can be mathematically sumurized as : 

    

  
        

     

   
                                                                                  

(ii) And fracture starts when the maximum tangential stress reaches a critical 

value as 

                                                                                                                       

The stress field near the crack tip according to polar coordinates is given by  
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where     is the stress normal to the direction given by   and     is the shear stress. 

The tangential stress becomes maximum at the maximum principle directions which 

is defined by zero shear stress and results in  
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By using the equation above, the crack growth angle can be expressed as 
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        (
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8.2.2 Minimum strain energy density criterion (S criterion) 

The minimum strain energy density factor has been used to predict the mixed mode 

fatigue crack growth direction by Sih [30]; Sih and Barthelemy [27] and Badaliance 

[28]. The S criterion is based on the local energy density near the crack tip. The S 

criterion assumes that the crack will extend in the direction that the strain energy 

density factor becomes minimum. The strain energy density factor can be determined 

for any crack propagation by 

          
                  

         
                                                              

where  

    
 

    
                                                                                           

    
 

   
                                                                                                     

    
 

    
[                                ]                                

    
 

   
                                                                                                                               

  
 

      
                                                                                                                           

It is states the initial crack growth takes place in the direction along which S criterion 

results in a minimum value,  

  

  
        

   

   
                                                                                                

and crack propagation occurs when it reaches a critical value 
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 For mixed mode I and II loading, the minimum strain energy density criterion result 

in the equation for the determination of the crack growth angle as  

                                                              

where       ⁄  . 

The maximum tangential stress formula and minimum strain energy density factor 

formula are compared for an load cycle and the results are given in Table 8.1. To 

calculate the crack  

Table 8.1 : The deviation of the crack growth angles for a loading cycle respect to 

MTS criterion and S criterion. 

Load step 1 5 10 15 20 25 30 36 

CT I 

MTS criterion 
43,22 44,44 23,58 13,15 52,39 60,03 30,50 40,24 

S criterion 43,28 44,48 23,64 13,27 52,63 60,08 30,57 40,29 

CTII 

MTS criterion 
223,25 224,47 203,61 193,17 232,41 240,04 210,52 220,26 

S criterion 223,35 224,37 203,55 193,29 232,44 240,06 210,42 220,28 

growth angle according to the strain energy density factor, it is necessary to solve 

Equation (8.20) by an iterative method. The iterative solution is performed by 

Newton-Rapson method where the maximum tangential creation is used to initialize 

the point where the iterative solution is performed. As seen from Table 8.1 the result 

obtained for both case is nearly the same. Thus, MTS criterion is decided to 

demonstrate the crack growth angle for each loading stem to increase the efficiency 

of the program. 
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9.  FATIGUE CRACK GROWTH UNDER MIXED MODE NON-

PROPORTIONAL LOADING 

In this section, fatigue crack growth under mixed mode non-proportional loading will 

be cowered. To cover non-proportional loading, it is necessary to describe the 

problem as being equivalent of the experiment will be done to compare the obtained 

results. That is why it is needed to describe a fatigue crack growth under mixed mode 

non-proportional loading that reflects the experimental suggestion correctly. 

9.1 Experimental Suggestion: Thin Walled Tube Under Tension P and Torsion 

M 

The one of the objectives of this paper is to derive a test condition to compare 

different models that will be discussed in the next sub sections. To cover non-

proportional loading, it is necessary to describe the problem as being equivalent of 

the experiment will be done to compare the obtained results. That is why it is needed 

to describe a fatigue crack growth under mixed mode non-proportional loading that 

reflects the experimental suggestion correctly. That is why in this sub section the 

experiment specimen and how it will be described in the developed program will be 

presented. 

The Figure 9.1 illustrates the specimen that will be used in the experiment. The thin 

walled tube in Figure 9.1 is under tension P and torsion M. Both tension and torsion 

consist of static and cycle parts to establish non-proportional loading case for mixed 

mode fatigue crack growth. The non-proportional loading can be sustained by four 

cases, depending on definition of the torsion and the tension,  

Case 1: a cyclic proportional mixed mode loading + a static mode I and/or II 

Case 2: a cyclic mode I or II + a static proportional mixed mode loading. 

Case 3: a cyclic mode II + a static mode I loading 

Case 4: a cyclic mode I + a static mode II loading 
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 To include all those four cases, the stress intensity factors can be written as 

 

Figure 9.1 : Thin tube under tension P and torsion M. 

                                                                                                                                 

                                                                                                                                 

where  

        : static part of KI origates from  Po (the static part of tension) 

        : cyclic part of KI origates from  P1 * sin (wt) (the cyclic part of tension) 

         : static part of KII origates from  Mo (the static part of torsion) 

        : cyclic part of KI origates from  M1 * sin (wt) (the cyclic part of torsion) 

The term sin (wt) in cycle part of loads can be replaced by any trigonometric 

function and it is just used to illustrate the cycle part of both tension P and torsion M. 

The experimental suggestion, thin walled tube under tension P and torsion M, is 

approximated in the developed xFEM program as illustrated in Figure 9.2. Since the 

problem illustrated in Figure 9.2 with applied loads   and   is equivalent of the test 

illustrated in Figure 9.1, The non-proportional loading can be easily perform on the 

current program. The loads illustrated in the Figure 9.2 can be described as  

  
 

     
                                                                                                          



57 
 

   
 

      
                                                                                                       

where 

   : static part of our normal stress  

             : cycle part of our normal stress  

   : static part of our shear stress  

             : cycle part of our shear stress and, a and b are arbitrary chosen 

constants to establish cycle part of loadings change in different manner. And the 

calculated stress intensity factors are given depending on the loading case by 

Equations (9.1) and (9.2) where they vary during a load cycle due to the cycle part of 

the load.  

To avoid the singularity of the solution, the bottom left edge of the plate is fixed in 

both direction and the bottom right edge off the plate is also fixed in    direction. 

The experimental suggestion can be approximated by the problem illustrated in 

Figure 9.2 with the boundary conditions on the bottom left and right edges of the 

problem.  

 

Figure 9.2 : The definition of the thin walled tube problem in the xFEM program. 

Due to fact that the loads   and   vary during the load cycle, it is necessary divide a 

load cycle into sub cycles.  
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9.2 Mixed Mode Fatigue Crack Growth 

To analyze the mixed mode fatigue crack, the Paris law, given by Equation (8.1), 

must be redefined where in this form it is generally initial with Mode I. Paris law is 

selected to simplify the calculations.  

Analyses of mixed-mode fatigue crack growth based on Paris law are possible by the 

definition of an effective stress intensity factor which takes all two modes of fracture 

into account for the plate problem in Figure 9.2. Redefined Paris law by means of the 

effective stress intensity factor is given by 

  

  
   (     )

 
                                                                                                                    

where C and n are material constants that are generally determinate by curve fitting 

to the experiment results illustrated in Figure 9.3 taken from Lucht [31] by curve  

 

Figure 9.3 : Fitting Paris law to measurements of crack growth in SENB test 

specimens. 

fitting, it is found that C = 9x10
−13

 and n = 3.25 in Eq. (9.5) when the unit of ΔK is 

MPa√m and the crack growth distance is calculated in meters. These values are in 

agreement with values of standard construction steel with E=200GPa and      .  

In the literature,       is illustrated by two different ways for the 2D plane problem 

as  
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where Equation (9.6) does not takes into account the relative variation of the    and 

    while Equation (9.6) does. Thus,       is selected to calculate the fatigue crack 

growth rate where the relative variation of the    and     is important. There are four 

effective stress intensity factor formulas, commonly used to illustrate the fatigue 

crack growth in the literature. These can be listed as 

     √  
     

                                                                                                                     

     √  
      

                                                                                                                  

     √  
      

  
                                                                                                               

     
 

 
   

 

 
 [                    ]                                                                 

where    and     are the calculated stress intensity factors and   is the crack growth 

angle at current load step. Equations from       to        are given by Rhee [32], 

Gerstle [33], Tanaka [34] and Yan eta. [35], respectively. By using different      

formulas and the modified Paris law by means of     , the four cases can be 

simulated for fatigue crack growth under non-proportional loading. But during a load 

cycle, it is necessary to illustrate the fatigue crack growth direction beside the crack 

growth rate. To illustrate the crack growth angle the maximum tangential stress will 

be used where it gives more accurate results and is easier to implement in to the 

Matlab codes than minimum strain energy density. To calculate the crack growth 

angle during a load cycle, tree models are considered as 

   (    
   )                                                                                                                          

  
 (    

   )    
          

        
   

    
        

   
                                                                               

  
∑      
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The first example assumes the crack deviation occurs at the maximum value of the 

     where it is a function of current KI, KII and the crack growth angle  , also 

function of current stress intensity factors. The superscript max over      does not 

mean that it occurs at the maximum load. The second formula assumes that the crack 

growth angle varies linearly and the     
    and     

    are used as a weight. And both 

formulas are lack of taking into account each load step and fluctuation of     . Thus, 

to consider the fluctuation of     , the third formula is assumed to use during the 

simulation and     
  is used as a weight for     

       
    says just ignore the 

decreasing values of     
  during the one cycle loading. 

9.3 Numerical Simulation of a Fatigue Crack Growth Under Non-proportional 

Loading Given by Case I 

To illustrate the fatigue crack growth under non-proportional loading, the first case 

will be presented here and for other three cases will be presented by three separate 

examples in Appendix E. The crack growth for the case I is illustrated in Figure 9.4 

by different      formulas for a 0.16*0.12 m rectangular plate with a center crack 

lies from (0.055, 0.08) to (0.065, 0.08). The non-proportional loading illustrated in 

Figure 9.2 is given for the case I by 

                                    

                            
}                                                                    

The crack path estimated nearly the same by each of      formulas. As expected, the 

crack growth rate fluctuates on the order of 10
-9

 to 10
-6

 m/cycle where the modified 

Paris law with      for mix mode fatigue crack growth describes the region II in 

Figure 8.1. To visualize the crack incensement in each crack propagation, it is 

assumed that the crack grows in the same direction, given by (9.14) and the same 

crack growth rate given by (9.5) during 10
4 

cycle. If the calculated crack rates are 

directly used, it is necessary to increase the mess density as much as possible that the 

program could be able to catch the kicking (~10
-8

 m in length). That is why it is used 

as a scale factor. The crack angles, estimated by Equations from (9.8) to (9.11) in the 

first propagation, are 50.36°- 230.37º, 49.27º- 229.28°, 49,28°- 229,30º and 49.16°- 

229.18º for both crack tips, respectively. The estimations perfectly correlate with 
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Figure 9.4 : Estimated crack paths for Case I by each      formula. 

each other where the calculated set of    and     are the same. For next iterations 

also correlates with each other too as illustrated in Figure 9.4 for the current loads.  

 The loads are applied in 36 steps to catch the change of      correctly. The change 

of      according to the different      formulas is illustrated in Figure 9.5 for the 

first iteration. As seen from Figure 9.5,      makes the maximum at the 5
th

 load step 

and the minimum at the 30
th

 load step. To calculate the crack growth direction 

related to each of      definitions, the increasing parts of each      are take into 

account to evaluate   given by Equation (9.14). 

  

Figure 9.5 : Stress intensity factors calculated at the first iteration for Case I. 
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Figure 9.6 shows that chances of   ,     and       for each formula at the fifth 

iteration. The calculated stiffness’s vary differently due to the fact that the crack 

grow rate determined by         are different for previous four iteration. Eighter the 

crack tips not take place inside the same element for each       formula or the crack 

tips not in the same position inside of an element, even if they end in the same 

element for each      formula is the cause of the different    and     values.  

 

Figure 9.6 : Variation of the effective stiffness on the crack tips for each of Keff 

formulas at the fifth iteration. 

0

5

10

15

20

25

30

35

40

0 10 20 30

SI
F 

[M
P

a√
m
] 

Load step 

CT I Keff by
Eq. (9.10)

Keff by
Eq. (9.8)

Keff by
Eq. (9.9)

Keff by
Eq. (9.11)

0

5

10

15

20

25

30

35

40

0 10 20 30

SI
F 

[M
P

a√
m
] 

Load step 

CT II 
Keff by
Eq. (9.10)

Keff by
Eq. (9.8)

Keff by
Eq. (9.9)

Keff by
Eq. (9.11)



63 
 

Figure 9.7 shows the change of crack growth rate respect to the employed      

formula at each crack tip with Case I loadings. The both crack tip grow 

symmetrically as seen in Figures 9.4 and 9.7.  The crack grow rates are in the range 

of 10
-9

 to 10
-6

 m/cycle. The last grow rates are slightly different from each other due 

to fact that the deviations in each propagation stage are added for next stage. The 

deviations originate from the difference of the locations of the crack tip for the same 

propagation stage and the difference in      . That is why crack growths vary 

differently for each formula due to the crack growth rates are scaled with dN=10
4
  

 

Figure 9.7 : The change of crack growth rate respect to the employed      formula 

at each crack tip for Case I. 
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cycle (increase the rate of the deviations). Although, the crack propagation varies for 

each        formula, the crack path is approximated nearly the same by each of them.  

On the other hand, the other objective of this paper is to find a loading case that the 

crack grows differently for each       formula. To obtain an experimental case, the 

same plate is subject to different loading cases. After many try the case is found as  

                                     

                           
}                                                                    

The same cracked plate in the Case I is used to illustrate the crack propagation. 

During the simulation the crack propagates with a constant incensement of 0.0025 m. 

The constant deviation is assumed to eliminate the effects of crack growth rate where 

already varies due to      . The deviation of crack angle respect to each       

formula is given in Table 9.1 for initial five crack propagation.  The crack growth 

angle deviates slightly different from each other. That is why the succeeded test case 

can be used to illustrate which of the       formula is the best to estimate the crack 

path by means of the crack growth rate and the crack growth angle for non-

proportional loading.  

Table 9.1 : Deviation of the crack growth angle determined by each      formula 

separately. 

Number 

of 

iteration 

     by (9.10)      by (9.8)      by (9.9)      by (9.11) 

CTI CTII CTI CTII CTI CTII CTI CTII 

[Degree] [Degree] [Degree] [Degree] [Degree] [Degree] [Degree] [Degree] 

1 45,38 225,39 38,21 218,22 35,18 216,16 34,53 214,54 

2 15,67 -164,32 29,11 -150,88 36,00 -145,41 37,10 -142,88 

3 39,79 -140,20 42,74 -137,24 41,63 -137,78 39,36 -140,62 

4 24,74 -155,23 29,97 -150,02 30,15 -150,41 35,83 -144,15 

5 31,30 -148,67 39,44 -140,54 40,45 -139,29 35,67 -144,31 
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10. PROGRAM FLOW CHART 

A code for the xFEM has been built in the present work based on the theory, 

previously discussed. The program has been used to produce the presented examples 

and to simulate the fatigue crack growth under non-proportional loading. The written 

MATLAB source code will be explained in the following in relation to the flow 

diagram in Figure 10.1 and with reference to the listed source code in Appendix E, 

where the sours code given in a CD is briefly described. Referring to Figure 10.1 an 

overview of the X-FEM code is given. After starting the calculations the program 

firstly reads the impute file, which defines the problem to be solved.  

Then it creates the mesh and connectivity matrices, which includes nod numbering, 

coordinates of nodes etc. After the Heaviside nodes and crack tip nodes, the initial 

crack, are defined in the file Discontinuity.m, the total DOF is calculate to initialize 

the force and displacement vectors, and the global stiffness matrix. By finding the 

elements to be enriched by Heaviside function or/and branch functions, the global 

stiffness matrix is assembled in GlobalStifnessMatrixK.m.  

For each load step during the current load cycle, the global force vector is defined 

and by mans of the boundary condition the global equation system is set up and 

solved. Regarding to the calculated displacement the stress intensity factors are 

evaluated in the file JIntegral.m. After a load cycle is finished, in the file 

CrackGrowth.m the crack growth rate     ⁄  and the crack growth angle   are 

evaluated for each crack tip. Furthermore, by using     ⁄  and   the crack is 

redefined as a step wise linear function as illustrated in Figure 7.10. The new crack 

increments have been defined, and the next step can begin. 

The iterations consist of two different iterations. The sub iteration is 36 steps which 

each step represents the current loading step during a load cycle. The each step of 

main iteration represents the each crack incensement. After a load cycle is finished, 

according to the calculated   ,     and   values the crack growth rate and the crack 

growth angle are calculated by the way of Equations (9.5) and (9.14), respectively. 
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Figure 10.1 : Program flow chart. 
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11. CONCLUSION 

The extended finite element method has been implemented into a MATLAB code to 

solve mixed mode crack problem. The classical FEM formulation extended to the 

xFEM by introducing the enriched functions, Heaviside function and Branch 

functions. The crack body (where the crack passing through elements) is defined by 

means of Heaviside function and the crack tips (where the crack tips end inside of an 

element) are illustrated by four branch functions to increase the accuracy of the 

calculations. The major benefit of using the X-FEM is that the crack path, defined by 

a step wise linear function, does not have to be known in advance, and there is no 

need for remeshing. The remashing can only be necessary to catch the crack tips 

correctly. That is why the mesh is kept in minimal. 

Furthermore, the crack analyses carried out in this paper are based on linear elastic 

fracture mechanic by neglecting the plastic zone that is sufficiently small near the 

crack tips. That is why the problems cowered are considered linear elastic all the way 

to brittle fracture. The crack is subject to the mixed mode loadings that force the 

evaluation of the both of KI and KII stress intensity factors. The stress intensity 

factors for each mode are evaluated by means of the interaction integral based on the 

path-independent J-integral. The interaction integral has been converted into a 

domain integral, which simplifies implementation of the interaction integral into 

numerical integration, by applying the divergence theorem and making tensor 

calculus. As the J-integral is path-independent, the domain form of the interaction 

integral is domain independent as long as it surrounds the crack tip. 

 On the other hand, to verify results obtained by the developed xFEM program, many 

problems are solved to ensure that the program is works properly. The results have 

good agreement with reference ones. Thus, it can be said that the xFEM program can 

be used to simulate the mixed mode fatigue crack growth with a sufficient accuracy.  

 The main problem of this paper is the fatigue crack growth under mixed mode non-

proportional loading illustrated in Figure 9.2. Both maximum tangential stress 
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criterion and minimum strain energy density criterion are employed to illustrate the 

crack growth angle for a load cycle. It is found that the crack growth angle can be 

evaluated either with MTS criterion or with S criterion. MTS criterion is preferred to 

determine the crack growth angle for each step of load cycle because it minimizes 

the solution time respect S criterion. The strain energy density citation is in need of 

much time than maximum tangential stress criterion due to fact that it is necessary to 

employ an iterative solution to obtain the crack growth angle with the minimum 

strain energy density citation.  Furthermore, to determine the crack growth rate the 

Paris law is modified with       to cover mixed mode cracks. 

By the way, the four case is covered to demonstrate the fatigue crack grow angle and 

the fatigue crack growth rate. The results obtained for the all cases are identical in 

the Region II where the linear elastic fracture mechanic is valid. The crack growth 

rates for each case under the variation of the      formulas is in the range of 10
-9

 to 

10
-6

 m/cycle as expected. The crack growth angle is approximated with Equation 

(9.14) during a load cycle. It takes into account increasing part of the      for a load 

cycle where       values are used as a weight. This means that the larger      results 

in larger effect on the crack growth direction. Under the variation of crack growth 

rates (evaluated for each      formula) the crack growth angle is evaluated nearly 

the same by each of      formulas for all cases. The crack path is determined by 

different      are follows the same direction with a negligible deviation as seen from 

Figure 9.4, i.e.  

The test case is derived to show which of the crack propagation evaluated by any of 

the      formulas is the best suitable to determine the crack path correctly. After 

examining the many of load combinations for four cases, a test condition is found 

where the loads are given by (9.15) for a 0.16x0.12 m plate. The material properties 

of the plate, used during the simulation, are E=200GPa and       and, Paris law 

constants are C = 9x10
−13

 and n = 3.25. For the succeeded test case, the crack growth 

angle deviates slightly deferent from each other where the crack growth rate also 

deviates respect to      . The succeeded test case is one that the larges deviation 

occurs within covered loadings to find a test condition and can be used to 

demonstrate the best estimated crack path according to     . 
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In conclusion, an xFEM program developed to demonstrate the fatigue crack growth 

under non-proportional loading and to derive a test condition that demonstrates 

which of the      formula is the best suitable for determining the crack path 

correctly. Although good results are obtained for fatigue crack growth under non-

proportional loading and a good test condition is derived, the experimental 

observation is needed for both with given material properties and Paris coefficients. 
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APPENDIX A  

The stress fields and the displacement fields near the crack tip for the Auxiliary 

stages derived by Westergaard [10], Williams [11] and Jensen [12] are listed below 

for Cartesian Coordinates    for 2D problems. 

 

For Pure Mode I:  KII=0 and KIII =0 

Stress field: 
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For Pure Mode II:  KI=0 and KIII =0 

Stress field: 
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Displacement field: 
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where   is passion’s ratio, E is Young’s modulus ,         are respectively the polar 

coordinates at the crack tip, the term   is includes just the higher order terms that nor 

considered in this paper and    is the Kolosov constant. The Kolosov constant is 

defined as 
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APPENDIX B  

It is preferred to present some of matrices and expressions in this section for 

avoiding confusion of the report.  

APPENDIX B.1 

    The constitutive law for linear elastic materials under plane stress (        

     ) is  
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and the constitutive law under plane strain condition (             ) is 
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The strain – displacement matrix in Equation (3.10) defined by the three matrix can 

be defined as: 

[ ]  [ ][ ][  ]                                                                                                                      

The [ ] matrix in (C.1)  is the link matrix between strains and displacement 

derivatives according to global coordinates. The matrix [ ] for plane stress is  
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and for plane strain;  
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It can be simplify as  
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where it enables the  [L] matrix to be the same for both plane stress and plane strain.  

The [ ] matrix is used in (C.1) connects the displacement derivatives in the global 

coordinates with the displacements differentiated according to the mapped 

coordinates,     . The [ ] matrix can be written as an expansion of the invers of 

Jacobian matrix to take the two dimensions of the displacements,          , into 

account. It takes the following form  
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The [  ] matrix is the matrix of derivatives of shape functions respect to the mapped 

coordinate system. Is enables to write the displacement derivatives respect to the 

mapped coordinates,     . In matrix notation [  ] can be expressed as 
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And the strain displacement matrix transforms for both case to   

[ ]  [

     

     

        

     

     

        

     

     

        

     

     

        

]                                         

where numbers 1,2,3 and 4 shows the set of nodes initial with the current node. 

APPENDIX B.2 

[  ]  can be easily evaluated as the previous strain-displacement matrix found for 

the classical elements. Displacement formulation of an element, initial with 

Heaviside function, is given in matrix notation by  

        [  ]{ }                                                                                                               

The differentiation of the b-enriched displacement respect to global coordinates is 

given by  
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     [  ]  { }    [  ]  { }                                                                             

The strain-displacement matrix can be evaluated as  

[  ]    [  ]    where the comma means the derivatives respect to global 

coordinates,          . The derivation of the Heaviside function will not appear on 

the strain-displacement formulation due to fact that it takes the values of +1 and -1 

by passing the discontinuity.  

The strain-displacement matrix can be evaluated as  

[  ]   [ ][ ][  
 ]                                                                                                             

where the all matrices are already available from Appendix B.1. It has a similar form 

with Equation (B.9) as 
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]                                                                                                         

where   {       } is the linear combinations of nodes that are enriched by 

Heaviside function. For example, for any element that has b-enriched nodes of 1,3 

and 4, the strain displacement matrix initial with b-DOFs becomes as 

[  ]  [

       

       

            

   

       

       

            

  

       

       

            

]                                      

APPENDIX B.3  

The contributions of the displacements connected with the four branch functions – 

cDOFs, see Equation (4.9), are for each element has crack tip enrichment   
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The summation of shape functions over four nodes can be written in matrix notation 

as  
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]                                                            

and similarly the four  branch function in matrix form can be expressed as 
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where the blanks are zero and  

[  ]  [
   
   

   
   

   
   

   
   

]                                                                

Displacement formulation of an element, initial with the four branch function, is 

given in matrix notation by  

      [  ][ ]{ }                                                                                                               

a fully crack tip enriched element is shown ın Figure B.1 with u-DOFs and cDOFs. 

 

Figure B.1 : An element with four crack tip enriched nodes.

The differentiation of the c-enriched displacement respect to global coordinates is 

given by  

     
   [  ][ ]  { }  [  ] [ ] { }   [  ] [ ]  { }                                               

The strain-displacement matrix for the c-enrichment can be evaluated as  

[  ]  [  ] [ ]    [  ] [ ]                                                                                              

where the comma means the derivatives respect to global coordinates,          . By 

applying the chain rule the shape function derivatives matrix [  ]  can be evaluated 

easily as   

[  ]  [ ][ ][  
 ]                                                                                                               

The strain-displacement matrix can be rewritten as   

[  ]  [ ][ ][  
 ][ ]    [  ] [ ]                                                                                    

It has a similar form with Equation (B.13) as 
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where   
   are given as 
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For example, for any element that has b-enriched nodes of 1 and 2, the strain 

displacement matrix initial with b-DOFs becomes as 
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  ]                                                                     

APPENDIX B.4  

The four branch functions have already been defined in terms of the local crack tip 

polar coordinates system       as 
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Derivatives of         with respect to the crack tip polar coordinates       become  
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and the derivatives of         with respect to the local crack coordinate system 

( ̃   ̃ ) ,by means of coordinate transformation, can then be defined as: 
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Finally, the derivatives in the global coordinate system,       , are obtained as 
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where   is the angle of crack path with respect to the    axis.  
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APPENDIX C  

Table C.1 : Gauss points and weights for rectangular elements. 

Order n Location of Gauss Points (     ) Weight factors       

 

6 

 

                   
 

                   

 

                   
 

 

0.171324492379170 

 

0.360761573048139 

 

0.467913934572691 

Table C.2 : Gauss points and weights for triangular elements. 

Number of 

Gauss 

Points 

Location of Gauss Points Weight factors    

      

 

3 
                  

                  

                  

                  

                  

                  

0.333333333333333 

0.333333333333333 

0.333333333333333 

 

7 

0.101286507323456 

0.470142064105115 

0.797426985353087 

0.333333333333333 

0.059715871789770 

0.470142064105115 

0.101286507323456 

0.101286507323456 

0.059715871789770 

0.101286507323456 

0.333333333333333 

0.470142064105115 

0.470142064105115 

0.797426985353087 

0.125939180544827 

0.132394152788506 

0.125939180544827 

0.225030000300000 

0.132394152788506 

0.132394152788506 

0.125939180544827 
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APPENDIX D 

APPENDIX D.1 

The next problem is simulation of a crack emanating from a circular hole in a 

rectangular plate under tension (ACECHRPUT) in Figure D.1. To calculate the stress  

 

Figure D.1 : A crack emanating from a circular hole in a rectangular plate under 

tension. 

intensity factor for current example, it is necessary to define the hole and additional 

boundary conditions. The circular hole is defined by a piecewise function    in 

Figure D.2 (a). the piecewise function fh is given by 

   {

          

             
          

                                                                                                    

where d is the distance of any node from the center of the circular hole and r is the 

radius of the circular hole. Figure D.2 (b) illustrates an element has a discontinuity 
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due to the circular hole. The nodes on the hole boundary is kept stress free and the 

nodes inside of the hole are skipped during the calculation of the global stiffness 

 
(a) The piecewise function fh for a 

circular hole 

 

 
(b) An element has a discontinuity due 

to circular hole 

Figure D.2 : Illustration of the piecewise function fh for a circular hole. 

matrix. The factor    is given in Stress Intensity Factors Handbook [36] by: 

   
  

 √   
                                                                                                                               

where    is the calculated mode I stress intensity factor, σ is tensional stress and a is 

half of the crack length where the crack has a circular hole (R is the radius of circular 

hole) at the center; a=R+c. The parameters, α and β, given by 

  
 

 
                                                                                                                                        

  
 

 
                                                                                                                                         

The results for the Crack Emanating From A Circular Hole in A Rectangular plate 

Under Tension is represented in Table D.1 for various values of α and β for  h/w=2  

and R/w=0.25, which are kept constant during the analysis. The results have a good 

agreement with the reference ones even if they are not exact. The maximum of error 

is less than 4%.   

The error decreases while α and β are increased and it starts to increase for higher 

values of α and β than α=0.5 and β=1.0. It is because of the dimensions of plate kept 

constant while both a and R were increasing.  
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Table D.1 : The factor    for ACECHRPUT with variation of α and β by Stress 

Intensity Factors Handbook [36] and the MATLAB code. 

α β 

Stress Intensity Factors Handbook 

[36] With My MATLAB Code 

FI FI (Newman) FI 

CT1 and CT2 CT1 and CT2 CT1 CT2 

0,30 0,20 1,0750 1,0776 1,0385 1,0385 

0,35 0,40 1,1780 1,1783 1,1584 1,1584 

0,40 0,60 1,2216 1,2156 1,1996 1,1996 

0,50 1,00 1,2850 1,2853 1,2692 1,2692 

0,60 1,40 1,3960 1,3965 1,3765 1,3765 

0,70 1,80 1,5760 1,5797 1,5511 1,5511 

0,80 2,20 1,8900 1,9044 1,8553 1,8553 

APPENDIX D.2  

The new example is similar with pervious one except the hole is a square turned 45° 

in clockwise direction and the crack lies at the corner of the square in Figure D.3.  

 

Figure D.3 : A crack emanating from a rectangular hole in a rectangular plate 

under tension. 

The square hole described similarly in Figure D.4 (a) with 

   {
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(a) The piecewise function fh for a 

rectangular hole 

 
(b) An element has a discontinuity due 

to rectangular hole 

Figure D.4 : Illustration of the piecewise function fh for a rectangular hole. 

The factor    is given in Murakami [37] by: 

   
  

 √   
                                                                                                                               

where    is  the calculated mode I stress intensity factor, σ is tensional stress and L is 

half of the crack length where the crack has a rectangular hole at the center; L=a+c. 

The analysis of the crack emanating from a rectangular hole in a rectangular plate 

under tension (ACERHRPUT) is represented in Table D.2 and D.3 for various values 

of c/a ratio. First situation has a maximum error of 2% for h/w=1 and R/w=0.05 

while the second has the maximum error of 4% for h/w=1 and a/w=0.1. The results 

have a good agreement with the reference ones and have the maximum error of 4%.  

As discussed for the circular hole, the plate includes largest hole is the plate where 

the largest error occurs. 

APPENDIX D.3 

the hole is described as discussed in the Crack Emanating from a Circular Hole in A 

Rectangular plate Under Tension problem and it is also described as a hard inclusion 

such that the nodes lies on the boundary of the hole and inside of the hole are fixed in 

both direction.  

The crack growth angle is given by  
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  )                                                                            
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where    and     are the calculated mode I and mode II stress intensity factors, 

respectively. The crack growth direction given by Equation (D.7) is known as 

Maximum tangential stress criterion and was covered in the previous sections in 

more detail.  

Table D.2 : The factor    for ACERHRPUT with h/w=1 and a/w=0.05 and variation 

of c/a by Murakami [37] and the MATLAB code. 

For  h/w=1 and a/w=0.05 

c/a 

by Murakami [37] With My MATLAB Code 

FI FI 

CT1 and CT2 CT1 CT2 

0,30 1,0635 1,0499 1,0499 

0,40 1,0580 1,0485 1,0485 

0,50 1,0520 1,0470 1,0470 

0,60 1,0460 1,0442 1,0442 

0,80 1,0370 1,0396 1,0396 

1,00 1,0300 1,0366 1,0366 

 

Table D.3 : The factor    for ACERHRPUT with h/w=1 and a/w=0.10 and variation 

of c/a by Murakami [37] and the MATLAB code. 

For  h/w=1 and a/w=0.1 

c/a 

by Murakami [37] With My MATLAB Code 

FI FI 

CT1 and CT2 CT1 CT2 

0,30 1,0635 1,0869 1,0869 

0,40 1,0580 1,0866 1,0866 

0,50 1,0520 1,0862 1,0862 

0,60 1,0460 1,0862 1,0862 

0,80 1,0370 1,0781 1,0781 

1,00 1,0300 1,0629 1,0629 

Figure D.5 shows a series of crack part for different positions of the rectangular hole 

that described as  

   {

                                                          
                                              
                                                         

                                    

The hole boundary is stress free which means nodes are stress free if they are on the 

boundary of the hole. This means the hole boundary also deforms during the load is 

applied. And the nodes, inside of the hole, have no participation for the calculation of 
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global stiffness matrix and they are decrease the number of the total degree of 

freedom.  

The each line shows how the crack propagates near the hole. The hole starts to 

extend from the dark red line to the magenta. The crack path has directed to the  

 

Figure D.5 : A series of crack part for different positions of the rectangular hole 

defined by (D.8). 

downward of the plate and  after the crack tip start to get closer to the hole it starts to 

change the direction to the upward of the plate. After the crack path reaches a pick, it 

starts to go downward again. During the simulation at each step of crack path, the 

crack grows with a constant crack growth of 0.25. The crack tip where there is no 

hole near by the crack paths are nearly the same. The hole centers are placed to (15, 

15) and the dimensions of rectangular hole increase. While the hole becomes larger, 

it starts to get closer to the crack. That is why the deviation of the crack path near the 

hole becomes larger as expected.   

Figure D.6 shows a series of crack part for different positions of the rectangular hole 

that described as  

   {
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The hole in Figure D.6 is simulated as a hard rectangular inclusion. It means that 

both nodes inside of hole and nodes lies on the hole boundary are fixed in both 

direction. Those nodes, inside of the hole and on boundary of hole, have no 

participation for the number of the total degree of freedom due to their fixed 

displacements.  

The each line shows how the crack propagates near the hole, defined as a hard 

inclusion and placed to the center at (15, 15). The hole starts to extend from the light 

blue line to the black one. The crack path has directed to the downward of the plate  

 

Figure D.6 : A series of crack part for different positions of the rectangular hole 

defined as a hard inclusion . 

away from the inclusion as expected. The deviation of the hole to downward of the 

plate increases while the rectangular hole is getting closer to the crack. 

In this section different types of examples are covered to illustrate the program is 

working properly and the evaluated results have good agreement with each other. 
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APPENDIX E 

APPENDIX E.1  

The crack growth for additional Case I is illustrated in Figure E.1 by different      

formulas for a 0.16*0.12 m rectangular plate with a center crack lies from (0.055, 

0.08) to (0.065, 0.08). The non-proportional loading illustrated in Figure E.1 is given 

for additional Case I by 

                                    

                             
}                                                                            

 

Figure E.1 : Estimated crack paths for additional Case I by each      formula. 

The loads are applied in 36 steps to catch the change of      correctly. The change 

of      according to the different      formulas is illustrated in Figure E.2 for the 

first iteration. As seen from Figure E.2,      makes the maximums at the 5
th

, 13
th

, 

22
th

 and 32
th

 load steps and, the minimums at the 9
th

, 19
th

, 27
th

 and 35
th

 load steps. 
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Figure E.2 : Stress intensity factors calculated at the first iteration for additional 

Case I. 

Figure E.3 shows the change of crack growth rate respect to the employed      

formula at each crack tip with Case I loadings. The both crack tip grow symmetrically as 

seen in Figures E.1 and E.3.  The crack grow rates are in the range of 10
-9

 to 10
-6

 m/cycle. 

 

 

Figure E.3 : The change of crack growth rate respect to the employed      formula 

at each crack tip for additional Case I. 
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APPENDIX E.2 

The crack growth for Case II is illustrated in Figure E.4 by different      formulas 

for a 0.16*0.12 m rectangular plate with a center crack lies from (0.055, 0.08) to 

(0.065, 0.08). The non-proportional loading illustrated in Figure E.4 is given for Case 

II by 

                     

   
  

   
                      

}                                                                                

 

Figure E.4 : Estimated crack paths for Case II by each      formula. 

The loads are applied in 36 steps to catch the change of      correctly. The change 

of      according to the different      formulas is illustrated in Figure E.5 for the 

first iteration. As seen from Figure E.5,      makes the maximums at the 4
th

 or 5
th

 

and 22
th

 or 23
th

 load steps and, the minimums at the 13
th

 or 14
th

 and 31
th

 or 32
th

 load 

steps. 

Figure E.6 shows the change of crack growth rate respect to the employed      

formula at each crack tip with Case II loadings. The both crack tip grow symmetrically as 

seen in Figures E.4 and E.6.  The crack grow rates are in the range of 10
-9

 to 10
-6

 m/cycle. 
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Figure E.5 : Stress intensity factors calculated at the first iteration for Case II. 

 

 

Figure E.6 : The change of crack growth rate respect to the employed      formula 

at each crack tip for Case II. 
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APPENDIX E.3  

The crack growth for Case III is illustrated in Figure E.7 by different      formulas 

for a 0.16*0.12 m rectangular plate with a center crack lies from (0.055, 0.08) to 

(0.065, 0.08). The non-proportional loading illustrated in Figure E.7 is given for Case 

III by 

         
  

   
           

                    
}                                                                                                  

 

Figure E.7 : Estimated crack paths for Case III by each      formula. 

The loads are applied in 36 steps to catch the change of      correctly. The change 

of      according to the different      formulas is illustrated in Figure E.8 for the 

first iteration. As seen from Figure E.8,      makes the maximums at the 4
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 or 5
th

, 

13
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 or 14
th

, 22
th

 or 23
th

 and 31
th

 or 32
th

 load steps and, the minimums at the 9
th

, 18
th

, 

27
th

 and 36
th

 load steps. 
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Figure E.8 : Stress intensity factors calculated at the first iteration for Case III. 

Figure E.9 shows the change of crack growth rate respect to the employed      

formula at each crack tip with Case III loadings. The both crack tip grow symmetrically as 

seen in Figures E.7 and E.9.  The crack grow rates are in the range of 10
-9

 to 10
-6

 m/cycle. 

The      given by Equation (9.8) has the slowest crack grow rate due to fact that the cycle 

mode II loading is larger than the static mode I loading and KII is weighted with 1. The mode 

II loading is selected such largely to sustain the crack growth that is identical the Region II. 
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Figure E.9 : The change of crack growth rate respect to the employed      formula 

at each crack tip for Case III. 

APPENDIX E.4  

The crack growth for Case IV is illustrated in Figure E.10 by different      formulas 

for a 0.16*0.12 m rectangular plate with a center crack lies from (0.055, 0.08) to 

(0.065, 0.08). The non-proportional loading illustrated in Figure E.10 is given for 

Case IV by 

                             

   
 

   
       

}                                                                                              

 

Figure E.10 : Estimated crack paths for Case VI by each      formula. 
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The loads are applied in 36 steps to catch the change of      correctly. The change 

of      according to the different      formulas is illustrated in Figure E.11 for the 

first iteration. As seen from Figure E.11,      makes the maximums at the 9
th

 and 

27
th

 load steps and, the minimums at the 18
th

 and 36
th

 load steps. 

 

Figure E.11 : Stress intensity factors calculated at the first iteration for Case IV. 

Figure E.12 shows the change of crack growth rate respect to the employed      

formula at each crack tip with Case III loadings. The both crack tip grow symmetrically as 

seen in Figures E.10 and E.12.  The crack grow rates are in the range of 10
-9

 to 10
-6

 

m/cycle.  
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Figure E.12 : The change of crack growth rate respect to the employed      formula 

at each crack tip for Case IV. 
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APPENDIX F  

The implemented MATLAB source code is listed on the following pages for the 

Flow chart is illustrated in Section 10. The MATLAB code has been prepared such 

that the user modifies the InputFile.m file, then runs xfemMain.m from the 

MATLAB Command Window to solve a fatigue crack problem under mixed mode 

non-proportional loading. A detailed description of the input variables follows as 

well as a brief summary of the functions which make up the complete code follows.  

- BoundaryCond.m 

This function applies the specified boundary conditions to the domain. For the hole, 

the additional fixed degrees of freedom are also calculated and added to the global 

system of equations. 

- TotalDOF.m 

This function calculates the total number of degrees of freedom in the system 

considering traditional, Heaviside, and crack tip degrees of freedoms. 

- CreateMesh.m  

This function calculates the global coordinates of all the nodes, generates the mesh, 

defines element connectivity and also begins to build the Nodes matrix which keeps 

track of the numbering for the enriched degrees of freedom. 

- ElementStresses.m 

This function calculates the stresses at each node for the given geometry to plot the 

nodal stress values. 

- EnrichedElements.m 

This function identifies the enriched elements and redefines the enriched elements 

which will cause from the crack propagation. 

- ForceVector.m 
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This function creates the global force vector and redefines the global force vector for 

each load step during a load cycle. 

- GaussPoints.m 

This function contains the values of integration points and weights that will be used 

for Gauss quadrature in quadrilaterals and triangles. 

- CrackGrowth.m 

This function evaluates the angle and magnitude of the next crack growth increment 

for both crack tips. The direction of future crack growth is determined based on the 

Maximum tangential stress criterion. If the Paris Law constants are assigned in 

InputFile.m then the Paris Law with different Keff formulas are used to determine 

the increment of crack growth.  If the Paris Law constants are not defined, the crack 

will propagate with the specified amount of crack growth. 

- InputFile.m 

The following input variables are used to define the problem of interest: Domain, 

MAT, CRACK, HOLE, GROW, FORCE, BC, PLOT. In order for an analysis to 

successfully run, the minimum required variables to be defined are DOMAIN, MAT, 

GROW, FORCE and BC.  

- JIntegral.m 

This function calculates the mixed-mode stress intensity factors for the crack tip 

enrichment functions. The default J-domain search radius is 4 elements around the 

crack tip. The stress intensity factors are retuned such that the last tip in CRACK is 

first and the first tip in CRACK is second. 

- Discontinuty.m 

This function creates the functions used to track the crack tips, crack body, and holes. 

In addition this file defines the locations of the enriched degrees of freedom and 

assigns these enriched nodes tracking values in the Nodes matrix. 

- plotDeformation.m 

This function plots the deformed mesh. If it is needed, node and element numbers, 

the enriched nodes can be plotted  

- plotStress.m 
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This function plots the stress distribution within each element and discontinuities. As 

an option, the average nodal stress values are also available. 

- GlobalStifnessMatrixK.m 

This function calculates the global stiffness matrix for the global equation system. 

- Triangularization.m 

This function subdivides elements containing discontinuities into triangles so that 

accurate integration can be performed in these elements. 

- UpdateGlobalStifnessMatrixK.m 

This function redefines the global stiffness matrix according to redefined crack tip 

elements and Heaviside elements. 

- xfemMain.m 

This function controls the calling of the various functions to perform the desired 

analysis. The analysis or the simulation consists of main and sub iterations. The sub 

iterations calculate the KI and KII for a load cycle with the crack described by the 

step wise linear function. The main iterations calculate the crack growth rate and the 

crack angle for each crack tip according to the calculated KI and KII. And then the 

crack incensements are added to each crack tip to define the crack as a step wise 

linear function. 

The source codes are given in a CD at the end of the thesis to avoid the unnecessary 

paper consumption and to simplify the usage of the program. 
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