ISTANBUL TECHNICAL UNIVERSITY * GRADUATE SCHOOL OF SCIENCE

ENGINEERING AND TECHNOLOGY

FATIGUE CRACK GROWTH UNDER
NON-PROPORTIONAL LOADING

M.Sc. THESIS

Nait MUTLU

Department of Mechanical Engineering

Solid Mechanics Programme

Thesis Advisor: Prof. Dr. Ata MUGAN

DECEMBER 2011






ISTANBUL TECHNICAL UNIVERSITY * GRADUATE SCHOOL OF SCIENCE

ENGINEERING AND TECHNOLOGY

FATIGUE CRACK GROWTH UNDER
NON-PROPORTIONAL LOADING

M.Sc. THESIS

Nait MUTLU
(503091528)

Department of Mechanical Engineering

Solid Mechanics Programme

Thesis Advisor: Prof. Dr. Ata MUGAN

DECEMBER 2011






ISTANBUL TEKNIiK UNIiVERSITESI * FEN BIiLIMLERI ENSTITUSU

ORANTISIZ YUKLEME DURUMUNDA
YORULMA CATLAK BUYUMESI

YUKSEK LiSANS TEZI

Nait MUTLU
(503091528)

Makina Miihendisligi Anabilim Dah

Kati Cisimlerin Mekanigi Program

Tez Damismani: Prof. Dr. Ata MUGAN

ARALIK 2011






Nait Mutlu, a M.Sc. student of ITU Graduate School of Science, Engineering and
Technology - student ID 503091528, successfully defended the thesis entitled
“FATIGUE CRACK GROWTH UNDER NON-PROPORTIONAL
LOADING”, which he prepared after fulfilling the requirements specified in the
associated legislations, before the jury whose signatures are below.

Thesis Advisor :  Prof. Dr. Ata MUGAN .,
Istanbul Technical University

Jury Members : Prof. Dr. Alaaddin ARPACI e,
Istanbul Technical University

Prof. Dr. Zahit MECITOGLU oo,
Istanbul Technical University

Date of Submission : 30 September 2011
Date of Defense : 07 December 2011

\Y



Vi



FOREWORD

This thesis is submitted in partial fulfililment of the requirements for obtaining the
degree of Master of Since in mechanical engineering. The work was carried out at
the Department of Mechanical Engineering, Solid Mechanics, Technical University
of Denmark in Copenhagen during the period Agust 2010 to Agust 2011.
Supervision was received from Professor Dr. Viggo Tvergaard and associate
professor Christian Frithiof Niordson at DTU and Professor Dr. Ata Mugan at ITU as
university supervisors and Tore Lucht from MAN Diesel A/S as industrial
supervisor.

I am very grateful to all my supervisors for their outstanding guidance during the
project and my family.

I have had close collaboration with Chris Valentin Nielsen and | have been pleased
with always to get a positive and quick response from him when | have reported
errors and suggested improvements.

Finally I wish to thank colleagues and fellow PhD and MScD students at the
Department of Mechanical Engineering, Solid Mechanics for creating a friendly and
stimulating environment.

August 2011 Nait MUTLU
(Mechanical Engineer)

vii



viii



TABLE OF CONTENTS

Page

FOREWORD ...ttt sttt e et e e e na e e e neeeaneeeas Vil
TABLE OF CONTENTS ..ottt e IX
ABBREVIATIONS ... .ottt sttt Xi
SYMBOLS e X1l
LIST OF TABLES ... oot Xvii
LIST OF FIGURES ..o XiX
101 o R XXi
OZET ...t et ettt ans xxiii
1. INTRODUCTION. ...ttt sttt sttt sne e naenaeneens 1
2. FRACTURE MECHANICS.. ..ottt 5
2.1 Origin of Linear Elastic Fracture Mechanics ...........cccovvviiiiniiiiiniiicicee, 5
2.2 Basics Modes of the Fracture MechanicC ............ccoovvveiiiennne i, 7
2.3 Sie of Plastic Zone and Concept of Small Scale Yielding ..........cc.ccoovvvrirnnnnne. 8
2.4 Path Independent J-INtegral..........ccoveiiiieii e 9
3. FINITE ELEMENT METHOD.......ccoiiieeiere e 11
3.1 Governing EQUAtIONS.........ccccoiviiiiiiiiiiiii e 11
3.2 Element DiSCretiZatioN ........cccveveiieiieie e se ettt 12
3.3 Element Stiffness and Global Stifness Matrices ..........cccvevviienieniiniinienrienienns 14
3.4 Gauss Integration Method ...........ccoiiiiiiii e 15
4. EXTENDED FINITE ELEMENT METHOD ....cccooiiiiiienese e, 17
4.1 Element DISCretiZatiON ..........ccvevueiierieiesie e sie e see st eesnee e 17
4.1.1 Heaviside enriChMent............coiiiiiiieneie e 17
4.1.2 Crack tip NFiChMENT........cccoiiiiiicee s 19
4.1.3 General X-FEM approximation for crack modeling..........c.cccccoevvevvenenne. 20

4.2 Element Stiffness and Global Stifness Matrices for XFEM .............c.ccoovenenee. 21
4.3 Integration of Discontinuous EIements............cccccooveiiiieiic i 24
5. DEFINATION OF THE CRACK PATH ....oco i 27
5.1 Defining Heaviside FUNCLION ..........cc.coiiiiiieii e 29
6. STRESS INTENSITY FACTORS FOR A MIXED MODE CRACK ............ 31
7. PROGRAM VERIFICATION FOR DIFERENT CRACKED PLATES....... 35
7.1 Center Cracked Rectangular Plate Under Uniform Displacement................... 35
7.2 Finite Width Plate with a Center Crack Parallel to the Clamped Edges........... 38
7.3 Finite Width Plate with a Edge Crack Parallel to the Clamped Edges............. 39
7.4 An Angled Center Crack in a Finite Plate Under Uniform Tension ................ 40
7.5 An Angled Edge Crack in a Finite Plate Under Uniform Tension................... 43
7.6 A Skew — Symmetric Bent Crack ........cccovveiiiiiieiiieiiic e 45

8. FATIGUE CRACK GROWTH .....ciiiieece et 49
8.1 Fatigue Crack Growth RAE..........c.ccciiiiieiiiiie e 51
8.2 Prediction of Mixed Mode Fatigue Crack Growth Direction ............c.ccccueueee. 51
8.2.1 Maximum tangential Stress Criteration ..........cccocceeviveeiievie e 52

iX



8.2.2 Minimum strain energy density Criteration ...........ccccccevvvierieeiesieseereene 53
9. FATIGUE CRACK GROWTH UNDER MIXED MODE NON-

PROPORTIONAL LOADING ...ttt 55
9.1 Experimental Suggestion: Thin Walled Tube Under Tension P and
TOISION IVl bbbttt bbbt e 55
9.2 Mixed Mode Fatigue Crack GrOWEN.........cccoouiiiiiiiiiiiee e 58
9.3 Numerical Similation of a Fatigue Crack Growth Under Non-proportional
Loading GIVEN DY CaSE | .......ooiiiiiiiieeese e 60
10. PROGRAM FLOW CHART ..ot 65
11, CONCLUSION .. ..ociiieieee ettt ra e eneens 67
REFERENCES. ..ottt 71
APPENDICES ..ottt nes 75
APPENDIX A ettt bbbttt 76
APPENDIX Bttt sttt re e 78
APPENDIX B.L...oiiiiiiieiiieie ettt ettt sttt 78
F N o LN G = SRS 79
APPENDIX B.3...c ittt bbb 80
APPENDIX Bttt sttt st 82
APPENDIX C.o ettt 84
APPENDIX D ..ottt sttt et 85
APPENDIX D.1 ..ottt st 85
APPENDIX D.2 ..ottt sttt 87
APPENDIX D.3 ..ot bbbt 88
APPENDIX E ...ttt sttt nes 92
APPENDIX E. Lottt sttt 92
APPENDIX E.2....ciiitiieeictee ettt sttt et anaena e nes 94
APPENDIX E.3.. .ottt bbbt 96
APPENDIX E.4 ...ttt ettt na e 98
APPENDIX F ..ottt bbb 101
CURRICULUM VITAE ...ttt 105



ABBREVIATIONS

The following abbreviations will appear in the report.

AACCFPUUT : An angled center crack in a finite plate under uniform tension

AAECFPUUT : An angeled edge crack in a finite plate under uniform tension

ACCRPUUD : A center cracked rectangular plate under uniform displacement

ACECHRPUT : A crack emanating from a circular hole in a rectangular plate under
tension

ACERHRPUT : A crack emanating from a rectangular hole in a rectangular plate
under tension

AFWPCCPCE: A finite a finite width plate with a center crack parallel to the
clamped edges

AFWPECPCE : A finite width plate with an edge crack parallel to the clamped

edges
ASSBC : A skew — symmetric bent crack
DOF : Degree of freedom
FEA : Finite element analysis
FEM : Finite element method
LEFM : Linear elastic fracture mechanics
MTS : Maximum Tangential Stress
S : Minimum Strain Energy Density
SSY : Small-scale yielding
XFEM : Extended finite element method

Xi



Xii



SYMBOLS

List of important symbols which may be used in different combinations including
superscripts and subscripts

> Q

4]

S ogsS ™
e

Cijki

Current crack length or current half crack length
Area
Area of an element
Length of a branch
Heaviside enriched nodal degree of freedom
Strain-displacement matrix

Paris law constant

Branch function enriched nodal degree of freedom

The constitutive law
A material constant for crack growth law given by Equation (8.4)
Constitutive matrix relating strains to stresses

i crack tip
Crack incensement

Number of cycle

Unit normal vector to crack path

Unit tangential vector to crack path
Young’s modulus
Effective Young’s modulus for plane stress or plane strain
Body forces

Traction vectors

Force vector

The work done by external forces

Branch function or set of branch functions in linear combination
Matrix of branch functions

Matrix of branch function derivatives with respect to global coordinates
Mode | shape factor

Mode 11 shape factor

The shape factor for the plane stress by Isida [16]

The function used to define a hole

Energy release rate

The step wise linear function used to define an arbitrary shaped crack
The shape factor for the plane strain by Isida [16]

The characteristic length of a crack tip element

Height of a specimen

Heaviside funcition

The interacting integral

J-integral

Jacobian matrix

Jacobian, determinant of Jacobian matrix

Local stiffness matrix
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[K] Global stiffness matrix
K; Mode | stress intensity factor
K;; Mode 11 stress intensity factor
K;;; Mode Il1 stress intensity factor
AK;;, The change of the threshold value
K.rr Effective stress intensity factor
AK Range of stress intensity factor

AK.rr Range of effective stress intensity factor

[L] Matrix transforming displacement derivatives to strains
M Applied moment

[N] Shape funcition matrix

[N,]  Matrix of shape function derivatives with respect to natural coordinates
ng A material constant for crack growth law given by Equation (8.4)
ng Number of gauss points

Paris law constant

Applied force
Weighting function

Radius in local crack tip coordinate system

The radius of J-evaluation

Size of plastic zone based on elastoplasticity

Size of plastic zone based on elasticity

The ratio K,/ Kimin

Critical value of strain energy density factor

Strain energy density factor

Thickness of specimen

Classical degree of freedom

The strain energy stored in the body

Width of specimen

Weight factor in numerical integration

Global coordinates

ﬁ:_woz;gn:gggg N9 9>

RIS

The ratio of crack length to the width of plate

The ratio of the height of plate to the width of plate

Curve

Inverse of Jacobian

Indication of virtual quantity

Kronecker’s delta

Strain tensor

Element natural coordinate
Angle of crack growth in local crack tip coordinate system

6.  Critical value of crack growth angle for the maximum tangential stress

criterion and The minimum strain energy density factor

K Kolosov constant, k = x(v) defined for plane stress or plane strain
v Poisson’s ratio

& Element natural coordinate

o  Applied tensile stress

o;j  Stress tensor

g, Yield stress
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Shear stress

Critical value of Tangential stress

Griffith’s expression for the stress field near the crack tip
The potential energy of an elastic body

Any field variable

The integrand of the interaction integral

The domain

The plastic work per unit area of surface created

The elastic work per unit area of surface created
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FATIGUE CRACK GROWTH UNDER NON-PROPORTIONAL LOADING

SUMMARY

In the literature, there are several methods to demonstrate the all modes of fracture
where any domain with an arbitrary shaped crack is discretized into elements and the
discretization is necessary to be upload for each crack extension so that the elements
defines the shape of the arbitrary growing crack correctly. Thus, to simulate the
fatigue crack growth under non-proportional loading, Extended Finite Element
Method (XFEM) is selected.

The extended finite element method is a powerful tool to simulate the crack growth
by means of that it is capable of defining discontinuities, such as cracks, holes and
inclusions, within elements easily. Any discontinuities within elements are modeled
by introducing extra degrees of freedom with enrichment functions into the nodes.
That is why XFEM removes the need for matching element boundaries with a crack,
a hole boundary and/or an inclusions.

This enables usage of a single mesh even if the crack propagates in many times.
Thus, there is no need for remeshing in each step of crack propagation except the
mesh refinement may be necessary in any stage.

Numerical modeling of a fatigue crack growth under non-proportional loading has
been done by implementing the extended finite element method (X-FEM) into a
MATLAB code, which is capable of handling crack propagation. Heaviside function
has been used to model crack faces inside elements and four branch functions has
been applied to model crack tips inside elements.

To handle the stress intensity factors, the path independent J-integral has been
implemented into the program by the way of interacting integral. The program is
tested for several cracked plate to determine the mixed mode stress intensity factors.
After that a model based on effective stress intensity factor is succeeded to determine
both crack growth rate and crack growth angle to illustrate the propagation of fatigue
crack under non-proportional loading with high cycle.

Furthermore, the crack analyses carried out in this paper are based on linear elastic
fracture mechanic by neglecting the plastic zone that is sufficiently small near the
crack tips. That is why the problems cowered are considered linear elastic all the way
to brittle fracture. The crack is subject to the mixed mode loadings that force the
evaluation of the both of KI and KII stress intensity factors. The stress intensity
factors for each mode are evaluated by means of the interaction integral based on the
path-independent J-integral. The interaction integral has been converted into a
domain integral, which simplifies implementation of the interaction integral into
numerical integration, by applying the divergence theorem and making tensor
calculus. As the J-integral is path-independent, the domain form of the interaction
integral is domain independent as long as it surrounds the crack tip.

XXi



On the other hand, to verify results obtained by the developed XxFEM program, many
problems are solved to ensure that the program is works properly. The results have
good agreement with reference ones. Thus, it can be said that the XFEM program can
be used to simulate the mixed mode fatigue crack growth with a sufficient accuracy.

To sustain the non-proportional loading, the four cases are covered. For each case,
several loadings are tested and in this paper each case has been presented with an
illustrative example

At the end of this paper, the fatigue crack growth under mixed mode non-
proportional loading is analyzed for four cases that used to describe the non-
proportional loading. To compare the crack growth rate and the crack angle given by
several K formulas, a test case will be also derived.
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ORANTISIZ YUKLEME DURUMUNDA YORULMA CATLAK BUYUMESI

OZET

Yiiksek lisans tezi olarak oldukc¢a yeni ve g¢alisilmamis bir alan olmasi hasebiyle
orantisiz yiikleme durumunda yorulma catlak biiyiimesi ele almmistir. Oncelikli
olarak orantisiz yiikleme durumunda yorulma c¢atlak biiylimesi konulu yiiksek lisan
tezin de kirilma mekanigi kisminda yapilan temel varsayimlar ve kabuller
irdelenmistir. Yapilan bukabuller liner elastik kirilma mekanigi ve kiiclik olgekli
akmadir. Bu iki kabu yiiksek tekrarli yorulma igigin gegerlidir. Yorulma durumunda
malzeme ler akla dayanimindan diisiik degerlerde bile hasara ugrayabilmette ve
yorulma c¢atlagi ilerlemeye baslamaktadir. Liner elastisite kabulii yapilmasinin
temelnedeni yapilan ¢alismada kulanilan malemeler i¢in hesaplanan plastic zonun
oldukea kiigiik ¢ikmasi ve dolayisiyla ihmaledilmesinden kaynaklanmaktadir. Ayrica
butez boyunca sadece 2 boyutlu plane problemler elealinmis ve dolayisiyla kirilma
mekaniginin Mode I (ag¢ilma - oppening) ve Mode Il (kayma - sliding) durumlari
gozlenmektedir.

Catlak biiylimesinin modellenmesi igin sonlu elemanlar yontemi ve genisletilmis
sonlu elemanlar yontemi en ¢ok kullanilan iki methot tur. Klasik sonlu elemanlar
yonteminde catlak, bosluk ve yapisal diizensiliklerin tanimlanmasi olduk¢a karmasik
ve zorlayicir. Bu diizensiliklerin tanimlanmasinda klasil sonlu elemanlar
haklasiminda diizansizlikler eleman smirlarinda yer almalidir. Deformasyon veya
catlak biliylimesi gerceklestiginde meshin yenilenmesi gerekir. Yapilan bu mesh
ortagonalikten uzak olmaklabir likle birden fala eleman c¢esidinin kullanilmasina
ithtiya¢ vardir. Genisleilmis sonlu elemanlar yonteminde ise her adimda meshin
yenilenmesine ihtiyag yoktur. Ciinkii catlak, bosluk ve yapisal bozukluklar
zenginlestirme  fonksiyonlar1  yardimiyla kolayca  tanimlanabilir.  Catlak
modellemesinde iki tip zenginlestirme fonksiyonu kullanilmistir. Bunlar Heaviside
ve catlak ucu zenginlestirmesi dir. Heaviside zenginlestirilmesi c¢atlak gdvdesinin
tanimlanmas1 ve modellemesinde, catlak ucu zenginlestirmesi ise ¢atlak ucunun bir
eleman i¢inde tanimlanmasi ve modellenmesi i¢in kullanildi. Bu sayede her iterasyon
adimin da tekrardan basa doniip mesh yapma ihtiyaci ortadan kalkmais oldu.

Genigsletilmis sonlu elemanlar yonteminin for miilas yonunu olusturmak ve genel
teorisini agiklamak maksadi ile oncelikli olarak klasik sonlu elemanlar yonte mi
tanimlandi ve formiilasyonu verildi. Bunun i¢inde denge konumun dabulunan bir
body ele alinarak virtiiel is denklemi yazilmis ve genel sonlu elemanlar yontemi
korunum denklemleri vasirasiyla elde edildi. Genisletilms sonlu elemanlar yon
teminin formiilasyonuda ayni yaklasimla elde edildi. Heaviside ve c¢atlak ucu
zenginlestirme fonksiyonlarida c¢atlagin tanimlan mast ve modellenmesinde
kullanildi. Siirekliligi catlak tarafin dan bozulan elemanlar ve g¢atlak ucunu igeren
elemanlar diizensizligin oryantasyonuna bagli olarak 4+4 veya 5+3 tichene boliinerek
stiffness matrisleri hesaplandi. Stiffness matrisleri yesaplamada “Gauss integrasyon
methodu” kullanildi. Eger kare eleman crack govdesini igeriyorsa 7 gauss
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integrasyon noktali iggen elemanlar, eger kare eleman ¢atlak ucu igeriyo ise 3 gauss
integrasyon noktali iicgen elemanlar kullanildi. Bu sayede sayisal integras yon
kolayca gerceklestirilmis oldu. Catlagi tanimlamak i¢in pargali liner fonk siyon
kullanildi. Bu sayede her catlak biiylimesi kolayca programa eklene bilmektedir.

Mode I ve Mode II gerilme siddet faktorlerini J-integral teorisi yardimiyla hesaplaya
bilmek i¢in interaction integral formiilas yonlar1 ¢ikartildi. J-integrallin en 6nemli
Ozelligi yoldan bagimsiz olmasi ve kolayca hesaplana bilmesidir. J-integralini
hesaplamak icin J-yarigapt denen ve hangi elemanlarin integrali hesaplamada
kullanilacagin1 belirlememizi saglar. J-integral yarigapi genelde eleman boyunun 4-8
kat1 arasinda secilmesi onerilmektedir. Mode I gerilme siddet fakoriinii hesaplamak
icin 2. Durum pure mode I olarak se¢ildi ve gerilme, yerdegistirme ve geriinim
denklemleri appendis A’da verildi. Mode II gerilme siddet fakoriinii hesaplamak igin
2. Durum pure mode II olarak se¢ildi ve gerilme, yerdegistirme ve geriinim
denklemleri appendis A’da verildi. Bu sayede gerilme siddet fak torleri kolay ca
hesaplana bilmektedir.

Mode 1 ve Mode II gerilme siddet faktorlerini hesaplamak amaciyla genisletilmis
sonlu elemanlar yontemi formiilasyonu ve J-integral teorisi yardimiyla MATLAP ta
bir xFEM xprogrami yazildi. Program tarafindan elde edilen sonuglarin dogrulunu
irdelemek amaciyla 6 farkli problem irdelendi. Bu problemler

- metkez c¢atlagi iceren dortgen bir plaka yer degisrirme sinir kosulu altinda

- sabit mesnetli kenarlara paralel olarak uzanan merkez catlagi iceren sonlu genislikli
bir plaka

- sabit mesnetli kenarlara paralel olarak uzanan kose catlagi i¢eren sonlu genislikli
bir plaka

- dondiiriilmiis metkez catlagi iceren dortgen bir plaka diizgiin dagilimli ¢ekme
gerilmesi altinda

- dondiiriilmiis kose catlagi iceren dortgen bir plaka diizglin dagilimli ¢ekme
gerilmesi altinda

- carpik simetrik donmiis ¢atlak

seklinde listelene bilir. Hapilan karsilagsmakar da hesapalamlarda goriilen en biiytik
hata %6°dan az oldugu goriilmiistiir. Bu da MATLAP’ta yazilan XFEM peogramu ile
Mode 1 ve Mode II gerilme siddet faktorlerinin istene dogruluk ile hesaplana
bildigini gostermekte dir.

Yorulma catlak biiylimesi tekrarli ylikleme altinda catlagil ilerlemesi seklinde
tanimlanabilir. Yorulma c¢atlak biiylimesini anlamak icin iki temel biiytikliglin
bilinmesi gerekir. Bunlar catlak ilerleme oran1 ve ¢atlak ilerleme dogrultusu dur.
Catlak ilerleme oram ve stiffnesstaki degigsme arasinsa iliskiyi gosteren egri {i¢ farklh
boliimden olusmaktadir. Birinci boliim de ¢atlak ilerleme orani oldukga diistiktiir ve
stiffnesstaki degisme Kegx degerine ulasmadan catlak ilerlemeye baslamaz. Uglincii
boliimde ise catlak ilerleme orani1 oldukca biiyiiktiir ve plastik zone dikate
alinmalidir. Ayrica bu boliimde nonliner malzeme 6zelikleri de isin igine girmekte ve
elastikplastik krilma mekaniginin kullanilmasini zorunlu kilmaktadir. kinci bolgede
ise catlak ilerleme oram 10 — 10°® m/cycle araliginda kalir ve liner elastik kirilma
mekanigi ve kii¢iik olcekli akmanin (britle krilma) gecerli oldugu bolgedir. Diger
taraftan yorulma catlak ilerleme dogrultusunu gostermek i¢in litaratiirde pek ¢ok
kriter mevcuttur. Fakat bunlardan encok kullanilan ikisi maksimum tegetsel gerilme
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kriteri ve minimum gerilme enerji yogunlugu faktorii kriteri dir. Maksimum tegetsel
gerilme kriteri catlagin tegetsel gerilmenin maksimum oldugu dogrultuda
geceklesecegini soyler. Buda kayma gerilmesinin sifir omasini gerektirir. Minimum
gerilme enerji yogunlugu faktorii kriteri ¢atlagin gerilme enerji yogunlugu
faktoriiniin - minimum oldugu dogrultuda gegeklesecegini sdyler. Yapilan
karsilagtirmada minimum gerilme enerji yogunlugu faktorii kriteri ig¢in gereken
¢Ozliim zamaninin ¢ok fazla oldugundan, catlak ilerleme dogrultusunu belirlemede
maksimum tegetsel gerilme kriteri kullanildi.

Bu tezin temel konusu orantisiz yiikleme durumunda yorulma catlak biiyiimesi dir.
Bunun iginde egilme ve ¢ekme gerilmeleri altinda ve merkez catlagi iceren ince
cidarli bir boru dan dan olusan bir deney diienegi diistiniildii. Hem egilme gerilmesi
hem de g¢ekme gerilmesi sabit ve cyclic kisimlardan olusmaktadir. Bu sayede
orantisiz mixed mode yiikleme durumu saglanmistir. Onerilen deney diizeneyi ise
kayma ve ¢cekme gerilmeleri altinda merkez catlagi iceren bir dikddrtgen plaka ile
tanimlanmigtir. Orantisiz mixed mode ylikleme durumu saglanmak icin, hem kayma
gerilmesi hem de ¢ekme gerilmesi sabit ve cyclic kisimlardan olusmaktadir.
Orantisiz mixed mode yiikleme durumu saglanmak icin 4 farkli birlegim

- Durum 1: orantili cyclic mix mode ylikleme + sabit mode I ve/veya II

- Durum 2: cyclic mode I or II ylikleme + orantili sabit mix mode yiikleme

- Durum 3: cyclic mode II + sabit mode I yiikleme

- Durum 4: cyclic mode I + sabit mode II yiikleme

distintilebilir. Orantisiz yiikleme durumunda yorulma catlak ilerlemesini belirlemek
icin hem catlak ilerleme oranin hem de catlak ilerleme dogrultusunun belirlenmesi
gerekir. Catlak ilerleme orani hesaplamak ilizere Paris Law’in efektif gerilme sidet
foktorii ile modifiye edilmis hali kullanildi. Efektif gerilme sidet foktorii Mode I ve
Mode II gerilme sidet faktorlerinin fonksiyonu olup, literatiirde siklikla mix mode
yorulma ¢atlak ilerleme oranin belirlemede kullanilir. Literatiirde encok kullanilan 4
farkli efektif gerilme sidet foktorii formiilii vardir. Bu formiiller arasindaki fark
sadece Mode I and Mode II gerilme sidet faktorlerinin efektif gerilme sidet foktorii
icindeki agirliklaridir. Catlak ilerleme dogrultusu daha oncede belirtildigi iizere
maksimum tegetsel gerilme kriteri uyarinca hesaplanmaktadir. Bir yiikleme ¢evrimi
boyunca catlak ilerleme dogrultusu ortalama seklinde Keg ile agirliklandirilarak
hesaplandi. Hesaplama sirasinda Kefr degerlerinin yalnizca artan kisimlari dikate
alindi. Diger taraftan, yorulma catlag: belirli sayidaki yiikleme ¢evrimi igin gatlagin
ayni ¢atlak ilerleme orani ve catlak ilerleme dogrultusu ile ilerler.

Daha o©ncede belirtildigi ilizere orantisiz yilikleme durumunda yorulma catlak
ilerlemesini simule etmek i¢in 4 farkli durum ele alindi. Dort farkli durum birer 6rnrk
ile sunulmustur. Her 6rnekte 4 farkli Kegs formiilii igin orantisiz yiikleme durumunda
yorulma c¢atlak ilerlemesi simule edilmistir. Yapilan bu hesaplamalar neticesinde
elde edilen sonuglar yazilan bu tezde detayli olarak sunulmutur. Elde edilen sonuglar
uyarinca daha dnceden yapilan liner elastik kirilma mekanigi ve kiigiik 6l¢ekli akma
kabulerinin gegerli oldugu goriilmiistiir. Catlak ilerlemesi tiim Kef formiileri igin
ayni olarak tahmin edilmistir. Catlak ilerleme oram1 10° — 10 m/cycle araliginda
kalmakla birlikte yorulma catlagi i¢in tanimlanan ikinci bolgede kalmaktadir. Bu
bolge liner elastik kirilma mekanigi ve kiigiik ol¢ekli akma kabulerinin gegerli
oldugu bolgedir.

Bu tezin diger 6nemli bir amaci ise 4 farkli Keg formiilii icin bir karsilagtirma criteri
bulmaktir. Bu dogrultuda pek ¢ok denemeden sonra bi test durumu bulundu. Bu
durum i¢in yapilan simulasyon sonucunda elde edilen sonuslar da gostermektedirki
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orantisiz yiikleme durumunda yorulma catlak ilerlemeleri her formiil i¢in farklilik
gostermektedir. Buyiizden bulunan test durumu hangi Ket formiilii orantisiz yiikleme
durumunda yorulma ¢atlak ilerlemesinin belirlenmesinde en iyi neticeyi verdigini
tespit etmekte kullanilabilir.
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1. INTRODUCTION

The most of advanced mechanical application includes both static load and cycle
load like engine components. The crack growth for such components is consisting of
both growth due to static loading and growth due to cyclic loading. The combination
of two loadings creates non-proportional loading where the crack growth behavior is
slightly different from proportional loading. To examine the fatigue crack growth,
many parameters and several methods are suggested for obtaining enough
correlations between numerical and experimental anabasis under all loading
conditions. The experiments done by Qian and Fatemi [1] on fatigue crack growth
imply that the crack growth associates with material properties, load magnitude and
its modes, initial crack tip conditions, and mean stress. That is why multiple
comparisons between numerical and experimental results are needed to evaluate the

fatigue crack growth correctly.

In the literature, there are several methods to demonstrate the all modes of fracture
where any domain with an arbitrary shaped crack is discretized into elements and the
discretization is necessary to be upload for each crack extension so that the elements
defines the shape of the arbitrary growing crack correctly. Thus, to simulate the
fatigue crack growth under non-proportional loading, Extended Finite Element
Method (XFEM) is selected. The extended finite element method is a powerful tool to
simulate the crack growth by means of that it is capable of defining discontinuities,
such as cracks, holes and inclusions, within elements easily. Any discontinuities
within elements are modeled by introducing extra degrees of freedom with
enrichment functions into the nodes. That is why XFEM removes the need for
matching element boundaries with a crack, a hole boundary and/or an inclusions.
This enables usage of a single mesh even if the crack propagates in many times.
Thus, there is no need for remeshing in each step of crack propagation except the

mesh refinement may be necessary in any stage.



The analyzed problems in this paper are limited with Linear Elastic Fracture
Mechanics and Small Scale Yielding where it is valid for high cycle fatigue. The low
cycle fatigue is ignored in this paper where large deformation occurs and the effects
of plasticity cannot be vanished. The modes of fracture are represented at each crack
tip by stress intensity factors, generally based on the path independent J integral by
Rice [2]. The first expression between the stress intensity factor and the crack growth
rate was derived by Paris and Erdogan [3]. It is known as Paris law and demonstrates
the region Il on the plot of the crack growth rate respect to the stress intensity factors
in logarithmic scale. Latterly, another expression was derived by Erdogan and
Ratwani [4] which takes the ratio R = K4,/ Kmin INt0 account. The expression
describes all three regions between the threshold stress intensity factor and the
critical stress intensity factor. Although Paris law was derived for cracks only
exposed to mode | loading, it have been suggested by several researchers for mixed
mode loading by introducing an effective stress intensity factor into Paris law.
Furthermore, beside the fatigue crack growth rate it is important to determine the
crack growth angle for the fatigue crack growth. Maximum tangential stress criterion
and Minimum strain energy density criterion are the most used criterions to
determine the crack growth direction. The two criteria will be discussed in more

detail in the later sections.

To simulate fatigue crack growth under mixed mode non-proportional loading, linear
elastic fracture mechanic and small scale yielding (concept of brittle fracture) are
assumed by employing the modified Paris law and maximum tangential stress
criterion where the mixed mode non-proportional loading is sustain with four
different cases. The non-proportional loading can be sustained by four cases,

depending on definition of the torsion and the tension,

Case 1: a cyclic proportional mixed mode loading + a static mode | and/or Il
Case 2: a cyclic mode I or Il + a static proportional mixed mode loading.
Case 3: a cyclic mode Il + a static mode I loading

Case 4: a cyclic mode | + a static mode 11 loading

The modified Paris law is used to evaluate fatigue crack growth rate while the fatigue

crack growth angle is calculated as an average where it is weighted by K for



increasing part of K. Furthermore, four examples are performed for determination

of the fatigue crack growth under mixed mode non-proportional loading.

At the end of this paper, the fatigue crack growth under mixed mode non-
proportional loading is analyzed for four cases that used to describe the non-
proportional loading. To compare the crack growth rate and the crack angle given by

several Kes formulas, a test case will be also derived.






2. FRACTURE MECHANICS

An overview of the Linear Elasric Fracture Mechanic concept will be mentioned in

this section related to xFEM.

2.1 Origin of Linear Elastic Fracture Mechanics

One of the most useful tools for simulating crack in fracture mechanic is extended
finite element method, used in this paper to simulate mix-mode fatigue crack growth
under non proportional loading. The mix-mode fatigue crack growth or propagation
is simulated based on linear elastic fracture mechanic. So that, in this section of the
paper the basic concept of linear elastic fracture mechanic is presented.

In recent years in fracture mechanic much study has been done. It is not an
exaggeration if anyone says that one of the earliest work done by Inglis [5] who

analyzed elliptical holes in flat plates under tension as illustrated in Figure 2.1.

O

Figure 2.1 : Elliptical hole in a flat plate - if 2b goes to near zero, the elliptical hole
is converted to a sharp crack where point A becomes the crack tip.

If the length of any ellipse is kept constant while the width is closing to zero, the

elliptical hole will turn into a sharp crack. Inglis’ works showed that at the crack tip



of the crack shaped elliptical hole, the stress went to infinity while the radius of
curvature p approaches to zero. But in reality no material can be kept infinite stress at
crack tip before fracture occurs. To solve the paradox, Griffith [6] successes a n
energy based fracture theorem such as the crack initiate or propagate only if such a
process results in the total energy to decrease or no change. Based on the energy
balance theory, Griffith derived an expression for the stress at crack tip of an infinite

plate. The expression for an ideally brittle solid, like glass, becomes as:

of = (”_Ys)l/ 2 (2.1)

mTa

where E is Young’s modulus, a is half crack length and y;is the elastic work per unit
area of surface created. The Griffith’s expression of the remote stress is lack of
capturing the plastic flow. It is enlarged to materials, capable to plastic flow — like
metals, by both Irwin [7] and Orowan [8] independently. The modified Griffith’s

expression is

o = (M)l/2 2.2)

mTa

where y, is the plastic work per unit area of surface created and mostly larger than
¥s. In 1956, Irwin [9] derived a fracture theory, fundamentally equivalent to
Griffith’s model, based on energy. Irwin defined an energy release rate G, which is a

measure of the energy available for an increscent of crack extension:

G = il dll=U-F 2.3
=—gz mdll= (2.3)

where IT is the potential energy of an elastic body, U is the strain energy stored in the
body and F is the work done by external forces. All of the works that briefly

mentioned above made an essential contribution to Linear Elastic Fracture Mechanic.

Linear elastic fracture predicts that the stress reaches infinity in the crack tip, but in
practice it is just assumed as creating a plastic zone at the crack tip. If the size of the
plastic zone is sufficiently small, the LEFM or Brittle Fracture is still valid. Thus
elastic analysis for many different mechanical problems, like mix-mode fatigue crack

growth under non-proportional loading, is still valid if plastic zone is too small.



2.2 Basics Modes of the Fracture Mechanic

Examination of many different types of catastrophic fractured strictures shows that
the fracture is originate from stress concentration and geometrical discontinues, a
sharp change of geometry like an opening, a hole, a notch, a crack, etc. For isotopic
linear elastic materials the stress field in a cracked body under any loading condition
can be easily derived as a closed form expression. Westergaard [10], Irwin [9] and
Williams [11] published many salutations for the stress fields. For such

configurations as illustrated in Figure 2.2, the stress field o;; near the crack tribe is

given by
k = moon
oy = () fu® + mZO Anr2g (" (6) @4

Where r and 0 are local polar coordinates at crack tip, k is a constant, f;; is a function

of 0 and Higher order terms, A,, is aplitute and gi(;.n) is a dimensionless function of 0

depends, on the configuration.

The solution for any configuration the stress field has a singularity of 1/+/r near
crack tip while the displacement field has a +/r singularity because of the term 1/+/r
approaching to infinity while r goes to zero and first part of stress equation also
approaching to infinity although the higher order terms remains finite. The full
expressions for the pure mode | and mode |1 stresses and displacements are given in

Appendix A, reproduced from Jensen [12], for both Cartesian and Polar coordinate

xz A

O1p ——
L3
- 3

'\9

Figure 2.2 : Definition of the coordinate systems, the Polar coordinates- r, 8 and,
the Cartesian coordinates - X4, X5.

X1




systems. Figure 2.3 illustrates the tree independent crack opening modes. In the
opening mode I, crack surfaces are pulled apart in the normal direction x, but remain
symmetric about the x;x; and x;x, planes. The shearing mode Il represents the
sliding mode of movement of crack surfaces in the x; direction, while remaining
symmetric about the x,x, plane and skew symmetric about the x;x5 plane. Finally,
in the tearing mode I11, the crack surfaces slide over each other in the x5 direction,

while remaining skew symmetric about the x,x, and x; x5 planes.

Figure 2.3 : Basic modes of fracture: Mode I, Il and 11I.

In this paper, only 2D plane problems are going to cower to simulate mix-mode
fatigue crack growth under non proportional loading. Thus, mod Il is not considered

any more in this paper.

2.3 Size of Plastic Zone and Concept of Small Scale Yielding

Linear elastic fracture mechanic is valid for a sufficiently small plastic zone. Linear
elastic fracture mechanic can be applied to plastically deforming materials provided
the region of plastic deformation is small. To estimate the size plastic zone, two
approaches, elastic and elastoplastic models, can be considered. As seen from the
Figure 2.4 (a), the elastic model simply ignores all the stresses that exceed the yield
stress near crack tip, where 7, is the radius of plastic zone. The elastic model is lack
of satisfying the equilibrium anymore. Thus, more complicated model is needed. The
elastoplastic model was developed by Irwin by means of redistribution of the stress
near the crack tip to satisfy the equilibrium in Figure 2.4 (b). the elastoplastic model

estimates the radius of plastic zone 7, as twice of 7,,.
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The size of plastic zone can be estimated as

(1(K)
| =(—] for plane stress
y

T \o
rp—Zry—

1 (K\° Jone strai
k37T o for plane strain

(2.5)

g oA
Oy
0y
5 r ‘
4 p
Ty r
(a) Elastic Model (b) Elastoplastic Model

Figure 2.4 : Plastic zone models: Elastic and Elastoplastic.

where K is the stress intensity factor it gives exact solution just for pure mode Il and

it becomes a circle.

The stress reaches theoretically infinity at the crack tips under the assumptions of
linear elastic fracture mechanics. But, in fact, any material cannot resist infinite
stress, and a small plastic zone will be formed around the crack tip. But, during this
report the effect of the plastic zone is ignored due to fact that brittle crack
propagation will be modeled based on linear elastic fracture mechanics (LEFM)

where small scale yielding still valid.

2.4 Path Independent J-integral

The path independent J-integral was firstly defined by Eshelby [13] and then it was
applied to the fracture mechanic by Rice [14]. The J-integral is given by

] = I(W(Slj - Uijui,l)njdr (26)
r



where W = %O-ijgij is the strain energy dencity for linear elasticmaterial and n; is the

outward normal of the path I'. The integral is independent for any choice of the path
I'. LEFM with small-scale yielding leads the J-integral to be written as a function of

the stress intensity factors,

K? Kp
=t o (2.7)
where plane stress and plane strain conditions can be written as
E for plane stress
= T _Evz for plane strain (2.8)

E and v are Young modulus and passion’s ratio, respectively.

The J-integral will be used through this report for the problems which involves the
small strains (SSY), no body force (the stress are negligible due to gravity or

magnetic field) and linear elastic material behavior.
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3. FINITE ELEMENT METHOD

Classical FEM is mentioned in this section to establish some matrix necessary for
XFEM. The classical FEM is applied to solve mechanical problems, like crack
growth, by discretizing a domain into a finite number of elements. For increase the
accuracy of the solution, it is necessary to decrease the element length. But,
decreasing the element length too much is unnecessary due to fact that the
approximated solution does not converge any more. Thus, it is necessary to use a

proper element length to save both solution time and storage capacity.

3.1 Governing Equations

Consider a body in the state of equilibrium with the boundary conditions, the traction
and the displacement conditions, as shown in Figure 3.1. In domain Q, the

equilibrium equation of elasticity can be written as:
Gij,j + fib =0 (31)
with the associated boundary conditions according to the domain Q:

o = ff on T
u=1u on [}, 3.2)
oj*n;=0 onl;

where T}, I, and I, are traction, displacement and crack boundaries, c is stress
tensor and, f? and f* are body forces and traction vectors. The weak form of the

principle of virtual work can be defined as:

W internal — yyyexternal

or
(3.3)

fac?ed.()zf P oudn+ ft6ud1“)
0 o) rt

where constitutive law is given by o;; = Cjjx; & and the strain - displacement

relations for small scale yielding is given by g, = %(uk_l + ul_k). Without any body
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X3
Figure 3.1 : A body in the state of equilibrium with a traction free crack.

forces and an initial strain and, by substituting constitutive law (the strain -

displacement relations) in to principle of virtual work, one can easily find that:

j (8)7 [C] {e}da2 = ] (UMY {Fydr 3.4)
o) rt

over T means transpose of variable matrices it is added to take care for matrices

dimensions.

The principle of virtual work states that the stored strain energy due to an applied
admissible virtual displacement field is balanced by the applied outer work. The
principle of virtual work can be applied to the full domain as well as to a subdomain
corresponding to the boundary conditions. That is why the principle of virtual work
can be applied to each element by composing the necessary element matrices.

3.2 Element Discretization

The body is discretized in many elements that consist of a set of nodes, each having a
number of degrees of freedom. Those unknowns are generally displacements and/or

rotations for mechanical problems. In the present project only 2D plane problems
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are going to be covered by using 2D quadrilateral elements with four nodes. As seen
from Figure 3.2 (a), each node has two unknown displacements, means two degrees

of freedom. The approximation of the standard FEM is of the form

W) = Y N (3.5)
i€l

where | is the set of nodes, N;(x) are values of classical finite element shape

functions at each nodes. For 2D quadrilateral elements with four nodes, the shape

functions are

1 1
Np=7(1=A=m), N =7(1+HUA-n)
(3.6)

1 1
Ny =2+ OA+m, Ny=7 (A=A +7)

which takes value of one at the current node and value of zero at all other nodes. In
matrix notation the approximation of the standard FEM is of the form

N, O N, O Ny O N, O
hy _ 1 2 3 4

By using the strain-displacement matrix [B], the strain field can be write as

{e} = [Bl{u} (3.8)

where the strain-displacement matrix includes derivatives of the shape functions
according to the global coordinate system. But, the shape functions cannot be
directly differentiated respect to the global coordinate system in the isoperimetric
formulation that enables to use non-rectangular elements. By following the
mythology in Cook et al. [15], the link between derivatives of shape functions
respect to global coordinate system (x; — X») and derivatives of shape functions
respect to mapped coordinate system (& - 1) can be easily set up for any field variable

¢ by applying chain rule as:

{cb,g} _ {d),l X+ P Xz,s} [ {(l’,l} . {"5'1} (3.9)

(O] b1X1+ P2 X2y X1n Xznl (@, 0P
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where [/] is the Jacobean matrix. Referring to Appendix B.1 the strain-displacement

matrix [B] can be written as

[B] = [L]IT][N, ] (3.10)
I
Ug i
[ ’
X2
411 311) ° ! °
i
‘ f ° ] >
= * 4 o
14 ‘ 21
X
(a) Bilinear elment ilustration (b) Element ilustration inthe  (c) Gauss integration points

paremetric space

Figure 3.2 : Element illustration in global and mapped coordinates systems and,
gauss integration point illustration for number of order of 3.

where [N,] is derivatives of shape functions respect to the mapped coordinate system,

[T] = [J]71 is the inverse of the Jacobean matrix and [L] is link matrix.

3.3 Element Stiffness and Global Stiffness Matrices

From {u"} = [N]{u} virtual displacements and {e} = [B]{u} virtual strains can be
written as {u™}T = {su}T[N]",{6e}" = {6u}T[B]". By means of Su and &¢

formulations, the principle of virtual work can be written as:

] (3w [BI"[C][B] (u} d? = j (w)" N7 (T} dr (3.11)
N

I';

Due to the virtual displacements {§u}” and its independency of the coordinates of

nodes, the principle of virtual work can be rearranged as:

{6u}’ <j [B]T[C][B] {u} dn —f [N]T{T} dF) =0 (3.12)
0

Ip

where the volume integral takes place over current element and the surface integral

on the current element surfaces, which contains applied loads, like tension or shear.
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Equation (3.11) can be written for an element as:

[kl{u} = [f] (3.13)

where [k] the element stiffness matrix and [f] the load vector for the current element

are expressed by

K= Bricsde, 1= [ ey (3.14)
n It

To assemble the global equation system, [K][{U} = [F], for the whole body, it is

necessary to set up the link between Kj,; and k;;. During the assemble presses, the

K}, become summation of the k;; for any elemant and ij mapes the k;; for the current

element to ki, indicate the location of the K;; in the global equation system. The

force vector is also assembled the similar way, except it just a vector.

To solve the global equation system it is necessary to apply the sufficient boundary
conditions to avoid singularity. Boundary condition is generally to fix the
displacements in x; and/or X, in any node. To fix the displacement for the current
node, n, nth row and coulomb are skipped from the global equation system and then

it is solved by any solver.

3.4 Gauss Integration Method

Due to usage of the shape functions in the isoperimetric formulation to interpolate
many field variables in the equation system, especially in the stiffness matrix, it is
necessary to assemble a numerical integration procedure. One of the most popular
and the best suited procedures is the Gauss quadrature method, cf. Cook et al. [15],
enables to write the integral as a summation of the integrand over a set of Gauss
points indicated in Figure 3.2 (c). Let qb(fi,nj) as the integrands in the stiffness
matrix, in Equation (3.13). The stiffness matrix for the current element, by using the

Gauss integration method, can be evaluated as

Ng nNg

el = > > wiwp(§eny) ¢ dédn (3.15)

i=1j=1

where |J] is the determinant of the Jacobian matrix defined in Equation (B.3) and t is
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the thickness of the current element.

Depending on number of Gauss order, the values of &;,n; and W; are presented in

Appendix C.
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4. EXTENDED FINITE ELEMENT METHOD

In this section formulations and methodology of XFEM is described by extended the
FEM described in the previous section. Extension is mainly based on enrichment
functions. Any arbitrarily oriented discontinuities, for example a crack, an inclusion
and a hole etc., can be modeled independent of the finite element mesh by enriching
all elements cut by a discontinuity using enrichment functions, which satisfy the
discontinuous behavior and result in additional nodal degrees of freedom. Thus,

XFEM is one of the most useful tools to simulate the crack problems.

4.1 Element Discretization

The discretization of the body is made by the enrichment functions in XFEM, remove
the necessity of that the discontinuities must take place in the element boundary in
standard FEM. Although different types of Enrichment function exists in the
literature, only the Heaviside enrichment for defining the crack body and the crack

tip enrichment for defining the crack tip will be covered in this paper.

4.1.1 Heaviside enrichment

To illustrate the heavy side enrichment and the discretization by means of XFEM
formulations, consider an edge crack modeled by four elements illustrated in Figure
4.1(a) According to standard FEM formulation (3.5), any displacement for the mesh
in Figure 4.1(a) is given by

10
{u"} = Z N; u; 4.1)

To formulate Equation (4.1) according to XxFEM formulation with a Heaviside
enriched node, the mesh is used as illustrated in Figure 4.1(b). The edge crack
problem has the uniform mesh shown in Figure 4.1(b) and a strong discontinuity, the
crack. Both the mesh in Figure 4.1(a) and the mesh in Figure 4.1(b) represent the

17



same edge crack problem. For reformulation of Equation (4.1) in the XFEM, the way,

followed, is represented by Moés et al. [16].

Although the uniform mesh in Figure 4.1(b) is lack of defining the crack
geometrically as the mesh defines in Figure 4.1(a), by introducing the function f(x),
it is possible to define the crack. The function f(x) is defined according to the local
coordinate system at the crack tip and changes its sign by passing the discontinuity,
the crack. Heaviside function, in terms of f(x), can be defined as

-1, 0
H(r) ={7) ;83:0 (4.2)

The evaluation of the Heaviside function, in terms of f(x), will be cover in the next

section in more detail.

1 2 3 1 2 3
& @ ] [ $ $

- 2

4 ; 11 H=#1 4 <

:>o—o ¢ * 9

10 H=-1

6 7 8 6 7
2 & -+ & @ .s
(a) Finite element mesh represents () Uniform mesh represents the same
an edge crack edge crack by mens of heaviside funcition

Figure 4.1 : Crack tip represented by a classical mesh and by a uniform mesh with
an enriched node used in the extended finite element formulation.

By defining a and b as

Ug + Uygp Ug — Uy
= , b= 4.3
a > > (4.3)
and the displacement uq and u,, can be written in terms of a and b as
Ug=a+b, Ug=a-—> 4.4)
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By substituting (4.4) into (4.1), it gives

10 8
{uh} = ZNiui = ZNiui +N9(a+ b) +N10(a+ b)
i=1 i=1

8
== z Nl ul‘ + (Ng + NlO) a+ (Ng - NIO) b (4‘. 5)

=1

Heaviside function takes the values of minus one at the node 9, where f(x) > 0 and
one at the node 10, where f(x) < 0, it yields that

(Ng — Nyp) = H(f(x))(N9 + Nyo) (4.6)

As seen from the mesh in Figure 4.1(b), Ny + N;, can be replaced by N;; and, a by

uy1. The FEM approximation in Equation (4.5) transform into

8
{u"} = Z Niu; + Nyguyy  + H(f(x))Nnb 4.7)
i=1
sclassical FEM formulation

As seen from Equations (4.7) and (4.1), the FEM discretization transform into the
XFEM discretization. The discretization according to the standard finite element

method formulation is equivalent of the extended finite element method formulation.

4.1.2 Crack tip enrichment

Crack tip enrichment is done by the way of the branch functions, which enable to
define the crack tip ended inside of an element as illustrated in Figure 4.2. To define
the branch functions, the local crack tip coordinate system is used. The branch

functions are given by the formula

0 0 0 0
F, = {\/7 sin > \r cos > \/r sin @ sin > \/r sin @ cos E} (4.8)

where r and 6 are the local crack tip coordinate system for each of the crack. By
using a linear combination of four branch functions in Equation (4.8), eight

additional degree of freedoms must be added to each crack tip enriched node.
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The branch functionF;, only, is discontinues at the crack faces due to 8 = +m while
the tree remaining branch functions F,s, are continuous. Although, the branch
function F; is enough to simulate the discontinuity, the crack tip - ends inside of an
element, all of the branch functions will be used through this report to increase the

accuracy of the solution, obtained by XFEM.

<\ e o oL oD <. F— N

-2 e o < < b o8 -3
[—

& Pz NI N b P= NN N

- D ] T I o - o \:—’

1‘:} Fa st

Figure 4.2 : Uniform mesh to define an edge crack, where nodes marked by open
circles are enriched by the Heaviside function to define the crack body,
and nodes marked by filled circles are enriched by branch functions to
define the crack tip.

4.1.3 General X-FEM approximation for crack modeling

Moés et al. [16] proposed that in order to model crack surfaces and tips the extended

finite element method can be generalized as below

n m mct, 4
ul = Z N;(x) u; + Z H(f(x))N](x) b, + kz: Ni () (l cmtl (x) CIE})
i=1 = - —

mct,

+ N(x)( F2(x) c12> (4.9)

=

n is the set of nodes that follows the classical finite element approximation due to not
containing any discontinuity where u; are the nodal displacements ( standard DOFs).
m is the set of nodes that includes the discontinuity such that starts and ends on the

element faces, not inside of the element. Those set of nodes are the nodes, are used to
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describe the crack faces. mct,; and mct, are the set of nodes associated with crack
tip 1 and 2 due to fact that they describe the discontinuity ends inside of the two
elements, include each of crack tips separately. b;, cir and c}? are the vectors of
additional degrees of nodal freedom for modeling crack faces by means of Heaviside

enrichment and the two crack tips by means of Crack tip enrichment, respectively,
and E*(x) and E(x) represent the crack tip enrichment functions at each of the

crack tips.

4.2 Element Stiffness and Global Stiffness Matrices for the xFEM

The XFEM approximation presented in Equation (4.9) on the element level can be

written with matrix notation as

{u} 01 = [Nloxg {ulexs + H[Nb]Zij {b}2jx1 + [Nloxar [Flokx16k {C}16kx1(4.10)

The matrix formulation of discretization above allows the crack tips to be implicit
and the evaluation of Heaviside function or the branch functions based on the nodal
values of the shape functions at the current point (in practice at the current gauss
integration point). The superscripts b and ¢ present the shape functions related to b —
DOFs and ¢ — DOFs, respectively. jand k in the equation (4.10) represent the
number of the nodes associated with b — enrichment (Heaviside enrichment) and ¢ —
enrichment ( the crack tip enrichment ), respectively. The structures of the last two
terms of Equation (4.10) are given by Appendix B.2 and B.3, separately.

As the procedure followed in the previous section, it is necessary to recall the
principle of virtual work to evaluate the necessary matrices for the XFEM

approximation. The principle of virtual work from Equation (3.4) is

f (66)7 [C] {e}d = f (SuyT(fdr (4.11)
0 rt

Strain-displacement matrices are needed to obtain the strains from {u}, {b} and {c}.
The Strain-displacement matrices related with the classical degree of freedom is
already given in Equations (3.8). The strain-displacement matrix relates the b —
DOFs is similar the matrix obtained for the classical degree of freedom previously
due to fact that the derivation just incudes shape function. The Heaviside function
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takes the values of -1 and +1 when passing the crack where its derivative is zero and
it appears as a coefficient in front of the strain-displacement matrix. The evaluation
of Strain-displacement matrix [B”] for b — DOFs is presended in Appendix B.2. [B?]
IS given by

[B®] = [L][T][N?] (4.12)

For the ¢ — DOFs the situation is not similar because both derivatives of the shape
functions and the branch functions. The derivatives can be obtained easily by
employing the chain rule. The evaluation of strain-displacement matrix [B€] for ¢ —

DOFs is presented in Appendix B.3. [B€] is given by

[B] = [L] ([T] [N¢] [F]+ [N“T [F']) (4.13)
By means of the evaluation of the [B?] and [B€] matrices, the strain can be writen as
{e} = [Bl{u} + H[B"]{b} + [B]{c} (4.14)

Equations (4.10) and (4.14) can be rewritten for the virtual displacements and stains

as
{5u™YT = {Su}T[N]T + H{6b}T[NP]T + {6c}T[F]T[N€]T (4.15)
{6e}T = {6u}T[B]T + H{6b}T[BP]T + {6c}T[B]T (4.16)

Implementing the virtual fields (4.15) and (4.16) into the principle of virtual work
yields to

J ({6u}"[B]" + H{sb} [B"]" + {6c}"[B€]") [C] ([BI{u} + H[B"]{b}
n
+ [B€]{c})d
= | {8w}"[N]" + H{8b}T[NP]" + {8} [FIT[NC]D){f }dr (4.17)
rt

Equation (4.17) is kinematical admissible for any choice of {su}7, {6bh}" and {5c}”
where {u"} becomes, also, admissible. Thus, Equation (4.17) can be separate into
three Equations for any choice of {su}”,{5b}" and {6c}"as:
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Related to {su}T field:

f [BI [C] [B]d (u} + f HIBI" [C] [B*]d2 (b} + j [BI [C] [B<]d {c)

n n n
=[kyul =[kyp] =[kyc]

_ f INT(rr (4.18)
=

Related to {5b}" field:

f H[BY]" [C] [B1d2 (u} + f [B]" [C] [BP]d2 (b} + f H[BY]" [C] [B]d2 (6¢)

n n n
=[kpyl =[kpp] =[kpc]

_ f INIT(Fyar (4.19)

={r*}

Related to {5c}7 field:

f [B<]" [C] [B1d {u} + f H [BC]" [C] [B®]d22 {b} + f [B<]" [C] [B)d22 (5c)

n n n
=[keyl =[kcp] =[kec]

_ f NI ar (4.20)
=7

Some necessary equations to simplify the stiffness matrices are given below as

[c]=[c]" w
[y = b]T =[ (€] (8] = [l
lee] = [B<T [€1 1B = [1BT7 () [8<1]" = [kl | *20
[keep] = C]T =[ [ (81| = [knel")

By using Equations from (4.18) to (4.21), the element formulation of XFEM is given
by
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[kuu] [kub] [kuc] {U} {fu}
[kub]T lkpp]  [kpcl | (b} = {fb} (4.22)
[kuc]T [kbc]T [kcc] {C} {fc}

The dimension of the element equation varies from 8x8 to 40x40 according to the
element to be enriched or not. The minimum size 8x8 occurs for the elements that
only have u — degree of freedom. For the elements that have the four nodes enriched
by Heaviside function, the size of the element equation is 16x16. If the four nodes

are enriched by only Branch functions, the size increases to its maximum as 40x40.

The global stiffness matrix can be written as

[Kup]™  [Kpp]  [Kic] (4.23)

respect to the sizes of the local stiffness matrices that are

[Kuu] [Kub] [Kbb] [Kuc] [Kuu] and [Kuu]
8nx8n’ 8nx2j’2jx2j’ 8nx16k’ 2jx16k 16kx16k

DOFs (the number of the un-enriched nodes), b — DOFs (the number of the
Heaviside enriched nodes) and ¢ — DOFs (the number of the Crack tip enriched

where n, j and k are u —

nodes) , respectively.

During the assemble process of the global stiffness matrix, the additional DOFs (b —

enrichment and ¢ — enrichment, respectively) are placed after the classical DOFs.

4.3 Integration of Discontinuous Elements

To evaluate the global stiffness matrix, it is necessary not only the integration of the
continuous elements, as done in the classical finite element method, but also the
integration of the discontinuous elements, b or c¢ enriched elements. The elements
divided by the crack or the elements that the crack ends inside of them could not be
integrated as the elements, involve no discontinuity and the standard Gauss
integration method could not be applied adequately to integrate the discontinuity, the

crack. To integrate the discontinuity, the elements include any discontinuity (lies
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Figure 4.3 : Discontinuous elements divided into two subpolygons which are further
divided into three, four or five subtriangles depending on the orientation
of the discontinuity. The 3th and 4th elements include a crack tip, and
the subpolygons are formed by means of the imaginarily extension of
the crack.

through an element or ends inside of an element) can be integrated by dividing the
elements into two subpolygons depending on the orientation of the discontinuity in
Figure 4.3 by following Mo¢s et al. [16].

The sub polygons are divided into 3, 4 or 5 triangles that enable the integration of the
discontinuity numerically as illustrated by Cook et al. [15]. No additional degree of
freedom is necessary for integration of the discontinuity. The integration takes part
into the sub triangles that mapped on the reference coordinate system, & —7j. The
triangulation of the sub polygons and the gauss integration points are illustrated in
the Figure 4.3-4, respectively. Then, the gauss integration method can be applied to
the elements include any discontinuity with the 3 gauss points for the elements

involve the crack body and the 7 gauss points for the elements involve the crack tip.

Depending on number of Gauss point, the values of Ei,ﬁj and W; are presented in

Appendix C.2.
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(a) Mapped triangle with seven

. : , (b) Mapped triangle with three
integration points

integration points
Figure 4.4 : Mapped triangles for the c and b - enriched elements.
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5. DEFINATION OF THE CRACK PATH

The crack must be well defined to simulate the crack correctly by selecting the nodes
that are enriched by Heaviside function or the four branch functions. For this reason,
to define the crack properly with minimal meshing a mapping procedure, defined by
Belytschko and Black [17], is applied. The mapping procedure can be done by
defining any curved crack as a stepwise linear function. The crack, the stepwise

linear function g, can be expressed as
g = g0x:()), i={12}andj={1234...n;} (5.1)

where g is linear between the points (x;(j), x2(j)) and n; is the number of point,
defining the crack in Figure 5.1. This is similar with the procedure is followed to
calculate analytically an integral over a line. The accuracy of the approximated
integral can be improved by an increase in the number of point used in

approximation. A similar approximation can be applied to the crack by increasing the

—_
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—~
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. . N
j=2 stepwise linear NG
approximated crack & \;\\3 4
path by g D) f\ 4
A 4
cuved crack path & K AR

Va 2N s
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—~
ﬂ

=6

(6] Civad Ktk o, (b) Stepwise linear path g within elments,
O X ATVEa CIACT DAL AP OAINGIa where g is approximated linearly (dashed

by a stepwise linear path g between line) if it changes its direction inside of the
points s={1,2,3,4,3,6,7}. current element

Figure 5.1 : Arbitrary crack path approximSated by a stepwise linear function g.
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n; and mesh density, simultaneously. The mesh density is important for accuracy of
the solution of any FEM approximation. The improvement in the accuracy of the
crack defined as the stepwise linear function g by increasing the mesh density is
presented in Figure 5.2. As seen from the Figure 5.2, increasing the mesh too much is
unnecessary because of its to be in need of more solution time and memory. That is
why selecting the proper mesh density is an important part of the solution according
to the accuracy is needed by the problem.

After the crack, initially defined as x;(1) first crack tip and x;(n;) second crack tip,

starts to propagate step by step in both crack tips, the stepwise linear function must

be redefined.

Figure 5.2 : An edge crack with an additional branch (dashed line) while mesh
refinement is applied step by step. The last two sketch show that it
makes no change in the crack definition although the mesh density is
increased. May, the forth sketch can be selected to increase the
accuracy, but not the fifth one. Since it just increases the solution time
and need of more memory but cause no big change in the accuracy.

28



5.1 Defining Heaviside Function

To defining the crack body by mans of Heaviside function it is necessary to obtain
the value of Heaviside function previously described according to the function f. at
the current node. e, and eg are the normal and the tangential vectors on each
segment of g lies from j = mto j = m + 1 as illustrated in Figure 5.3. The value of
Heaviside function for a given point x is defined by the sign of the scalar product

en ' (x — x(j = m)). The Heaviside function is given by

-1, e (x—x(i=m))<o0

H(x)={ 1, en-(x—x(G=m))>0

(5.2)

Figure 5.3 : The normal and the tangential vectors for a segment of the crack path
and value of Heaviside function on each side of the crack segment.
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6. STRESS INTENSITY FACTORS FOR A MIXED MODE CRACK

The evaluation of the stress intensity factors for the mixed mode crack (K; and Kj;)

will covered in this section. Let’s starts by recalling the J integral formula, which is

given by
K?  Ki
J=Frtg (6.1)

The interaction integral is employed to calculate the stress intensity factors
individually by e.g. Moés et al. [16], Belytschko and Black [17], Yau et al. [18],
Moran and Shih [19], Shih and Asaro [20], and, many others. Two stage of a
cracked body is considered to obtain the interacting integral from J integral where the
first stage is the presented stage and the auxiliary stage is the second. The J integral

for the superposition of two stages is given by

() (2 )
JOD = e

1 1 2

_ M, @ @, @ D) @, 1) (@)

—E(K, + K )+F(K, + K )+E(K1 K2+ kPKP)  (6.2)
=j =@ =1(12)

where superscripts (1) and (2) denote stage 1 and 2, respectively, and 12 is the
interacting intedral for the stage 1 and 2. Using Equation (2.6) derived by Rice [14]

fort the given stages, the interacting integral can be written as

1(1.2) =](1+2) _](1) _](2)
- €Y @\(,,@ ()

—fr (W(l)Slj — ai(jl)ui(’ll))njdf' - Jr (W(Z)Slj - ai(].z)ul(’zl))njdf'
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tj

= f (W —w @ —w®) 5, — 6 Pu? — 0 Pul) [nyar (6.3)
r

=w2)

where W2 s the interaction strain energy for a linear elastic material between the

two states and can be evaluated as

1
1,2) — . .@ @ @ O @ _ @ 1
W ¢ )_-E(oﬁ &; toE; ) 0;; & = 0y & (6.4)

by means of C;;; = Cyy;j, @ 4rht order symetric tensor.

Equation (6.3) is not well suited for finite element calculations so that it must be
reformulated. To simplify the calculations, W is assigned as the integrand of the

interaction integral as
142 = fr Wndl, ¥ =w0ds,; —oPu® — oPuly (6.5)

Equation (6.5) is rearranged, by defining the integration paths and the weighting

function g in Figure 6.1, as

112 = —f lPjnjqdl‘—f ‘}'jnjquJrf Lpj'"J'CIdl“—f ¥jn;qdl’  (6.6)
To r_ur r

+ r_ur,
where g=0 on I, and n; = —m;. Thus, Equation (6.6) is still equivalent of Equation

® (2) @M —
(6.5). The third term in Equation (6.6) is zero due to (a 0 ¢€; =0 ) and

8;;m; = 0 and, the interacting integral yields to a closed curve integral as

142 = —56 Win;qdl (6.7)
Ul Urur_

142 = — j (tqu)j dA (6.8)
A :

where A is the area that is enclosed by the curve To,UT, UT UT_. The term

(¥ ) Wi q+ ¥ g reduces to (leq)J, =W, q; because of ¥; ; = 0, which can

be found easily by tensor calculus. At the end, the interacting integral between stages
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Figure 6.1 : The two integration contours near crack tip which are I" and Iy U T, U
' UT_, respectively. Unit normal is m; on I, I, and I'_ and, n; = —my

on I'. A is the area enclosed by the curve I, UT, UT UT_. Weight
function is defined as a value of unity on I" and zero on T},

By applying the divergence theorem to the integral in Equation (6.7) result in a

domain integral as

(1) and (2) takes the best form suited for finite element calculations as

[12) = f W, q, dA = f [gig.ﬂug? + o Pu) - wids, j] q;dA (6.9)
A A

By recall the last term of Equation (6.2), the stress intensity factors (K; and K;;) can

be evaluate as a funcition of the interacting integral,
2 1 2 1 2
102 = —(KPKP + K PKD) (6.10)

The stage (2) is selected as pure mode I, where K,(Z) =1and K,(,z) = 0. Equation
(6.10) yields to

!

E
KI(l) — ?I(l,mode i) (6.11)

Similarly, the stage (2) is selected as pure mode Il, where K,(Z) = 0 and K,(IZ) =1.

Equation (6.10) yields to

!

E
KI(I1) _ 7 J(mode I1) (6.12)
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At the present stage the stress intensity factors (K, and K;;) can be calculated easily
with (6.9), (6.11) and (6.12). The interacting integral can be calculated numerically
over the domain A described in Figure 6.2. The radius of the dashed dot circle, used
here to describe the domain A (the enclosed area by the curve I, UT, UT UT.), is

known as the radius of J-evaluation. The radius r; can be selected as
ru=nh n={1,23,.... } (6.13)

where h is described as the characteristic length of a crack tip element by Moés et al.
[16]. To increase the accuracy of the J-evaluation, n higher value of n can be
selected. It can be calculated as h = \/A—e for plane problems. For the presented
project the characteristic length of a crack tip element is the element length due to the
usage of the square elements. Figure 6.2 describes the selection of the element that
takes part in the domain integral.

The thin and thick dashed lines have the values of weight function that vary 0 and 1
respect to g ;. The elements in the area A are used to evaluate the interacting integral
numerically and then the stress intensity factors, given by Equations (6.11) and

(6.12), can be calculated easily for mixed mode crack.
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Figure 6.2 : The selection of the elements take part in the domain integral respect to
the radius of J-evaluation (dashed dot circle). All element inside of the
area limited by thick dashed line (T in Figure 6.1) have g=1, so that the
gradient q;; is zero. Also, the elements outside of the thin dashed line
(Tp in Figure 6.1) The elements, inside of the area A is limited by the
thick and thin lines, are the elements take part in the domain integral.
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7. PROGRAM VERIFICATION FOR DIFFERENT CRACKED PLATES

The program, firstly, is tested for three cases that given by

l. &1 — 0001 and E1p = &Exp = 0
IR Exp = 0001 and E11 = &2 = 0
I” 812 = 0001 and 811 = 822 = 0

For the given three cases a rectangular plate with uniform mesh is simulated to
ensure that the program could be able to calculate the strains and stresses correctly.
To simulate the three cases with the program, the strains are described as uniform
displacement boundary conditions that the displacements are known for the given

strains in the three cases.

The program could be able to calculate the three cases easily and follows the finite
element method formulation because of the problem includes no crack — no
discontinuity. That is why the strains (€11, €5, Or &€,) and the stresses (014, g5, OF

012) are uniformly distributed through the plate, respectively.

After that the selection of the Heaviside nodes and the Crack tip nodes are verified
for many cases by describing the crack as a stepwise linear function as illustrated in
Figure 7.1. And then the program extended to the XFEM formulation given in
previous sections. The developed program must be also verified to ensure that it
works properly. In this sections many cracked body used to verify the programs will

be presented.

7.1 Center Cracked Rectangular Plate Under Uniform Displacement

The first example is a center cracked rectangular plate under uniform displacement
(ACCRPUUD) in Figure 7.2. To simulate the presented example, the element length
used in the uniform mesh is 1/50. During the analysis of the center cracked

rectangular plate under uniform displacement, the weight W kept constant while
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Figure 7.1 : Illustration of the selection of the nodes enriched by Heaviside function
or Branch functions for a crack defined with a step wise linear function.
Nodes marked by open circles are enriched by branch functions, and
nodes marked by filled circles are enriched by the Heaviside function.

half-length of height H is varying with  and the crack length 2a is varying with a.

The ratios 3 and o are given by

_2H
B_W

_2a
=W

(7.1)

(7.2)

Figure 7.2 : A center cracked rectangular plate under uniform displacement.

The ratio of the stress intensity factors for the plane stress condition is given by

Ki
fs(a,p) = 77—

chalculated
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and it can be taken as f; ~ gswhere gs is the ratio for plane strain condition given by
Isida [21]. The ratio f5 and g5 are also known as shape factors for plane stress and

plane strain. The stress intensity factor K; in Equation (7.3) is given by

vo E
K, =
JH +v)2(1 - 2v)

gs(a, B) (7.4)

where v, is the given uniform displacement and, v and E are poison’s ratio and
young modulus, respectively. The ratio g5 is calculated with MATLAB code for a
center cracked rectangular plate under uniform displacement. The results are
presented in Table 7.1 and Table 7.2 for several « and § values and, compared with

the values taken from Isida [21]. The results have a good agreement with the

Table 7.1 : The ratio g5 taken from Isida [21] and g5 caiculatea fOr ACCRPUUD
while B is varying from 0.4 to 0.8.

B 04 0,6 0,8
) With My . With My . With My
I[SZIT? MATLAB '[52";;" MATLAB '[Sz"lj;‘ MATLAB
Code Code Code
CTI CTI CTI

andCT | CTI CTH | andCT CTI CTH | andCT CTI CTll
o 1 1 I

0,1 0,8460 | 0,8688 | 0,8688 | 0,7200 | 0,7260 | 0,7260 | 0,6300 | 0,6274 | 0,6274

0,2 0,9890 | 1,0035 | 1,0034 | 0,9160 | 0,9189 | 0,9189 | 0,8350 | 0,8299 | 0,8299

0,3 1,0040 | 1,0055 | 1,0055 | 0,9830 | 0,9758 | 0,9758 | 0,9340 | 0,9214 | 0,9214

04 0,9980 | 0,9913 | 0,9913 | 0,9970 | 0,9798 | 0,9798 | 0,9750 | 0,9537 | 0,9537

0,5 0,9940 | 0,9807 | 0,9807 | 0,9940 | 0,9690 | 0,9690 | 0,9860 | 0,9576 | 0,9576

Table 7.2 : The ratio g5 taken from Isida [21] and gs caiculatea fOr ACCRPUUD
while B is 1.0 and 1.2.

B 1,0 1,2
With My With My
Isida [21] MATLAB Isida [21] MATLAB
Code Code
CTland CTland
. cT Il CTI CTll CT Il CTlI CTII
0,1 0,5640 0,5554 | 0,5554 0,5120 0,5000 | 0,5000
0,2 0,7640 0,7522 | 0,7522 0,7030 0,6869 | 0,6869
0,3 0,8780 0,8602 | 0,8602 0,8230 0,8014 | 0,8014
0,4 0,9400 0,9148 | 0,9148 0,8980 0,8707 | 0,8707
0,5 0,9700 0,9376 | 0,9376 0,9440 0,9103 | 0,9103

reference ones even if they are not exact for plain strain conditions. During the

calculation the max error is less than 4% and it is considered acceptable for the
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presented problem. The ratio is independent of material properties that are why the
material properties used during the analysis is not presented here.

7.2 Finite Width Plate with a Center Crack Parallel to the Clamped Edges

The next example for verifying the program is a finite width plate with a center crack
parallel to the clamped edges (AFWPCCPCE) in Figure 7.3. For the presented
problem, it is recommended that select the ratio a as larger than or equal to 0,5 in

Rice [2] where the ratio is given by

_2a -
a=1 (7.5)

The stress intensity factor is given in Rice [2] for plane strain by

K;

1 ( 2 )1/2 Ev (7.6)

T1+vv\a-2v) W
where the accuracy of the formula is better than 1%. During the simulation of the

crack, the ratio a and the width of plate — in the reference it is infinite- are kept

constant where a=0,5 and the width=10 and, the half crack length 2a is also

Figure 7.3 : A finite width plate with a center crack parallel to the clamped edges.

increased while the width of plate is increasing to keep the ratio o constant. The
calculated stress intensity factors according to both the formula (7.6) and the
developed XFEM program are presented in Table 7.3. Although the infinite length
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plate approximates as a finite plate, the maximum error have been made during the
simulation is less than 4%. As seen from results the error decreases while the height

W and 2a increase.

Table 7.3 : The stress intensity factors for AFWPCCPCE, respect to Equation (7.6)
by Rice [2] and the MATLAB code.

K, Calculated
With MATLAB
K, by Rice [2] Code
%
Length | Width | CT land CT Il CTI CT Il Error
10 2 6081,30 6275,40 | 6275,40 | -3,19
10 3 4965,40 5029,00 | 5029,00 | -1,28
10 4 4300,10 4315,00 | 4315,00 | -0,35
10 5 3846,20 3787,10 | 3787,10 | 1,54
10 6 3511,00 3422,00 | 3422,00 | 2,53

After some increase in 2a the error starts to increase because of the finite plate
approximation. The error can be easily improved by decreasing the element size or

more easily by increasing the length of the plate which seems infinite respect to 2a.

7.3 Finite Width Plate with an Edge Crack Parallel to the Clamped Edges

The next problem is a finite width plate with an edge crack parallel to the clamped
edges (AFWPECPCE) in Figure 7.4. Although this example seems similar with
previous one, It will be used to show how the accuracy increases with higher value of

a. The ration a for the current problem is given in Rice [2] by

(7.7)

_a
=1

where a is the length of the edge crack and L is the width of the plate. The srress

intensity factor for plane strain condition is given Rice [2] by

1 ( 2 )1/25\;

“1+v\—2v (7.8)

K

1 Ll/z
The simulation takes part into the different plates (only the length of plate kept
constant) and increasing a values for the current plate. The results are illustrated in
Table 7.4. In the previous problem the largest error occurred for the largest value of
the crack length 2a because of the lack of the simulation of the plate with infinite
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Figure 7.4 : A finite width plate with an edge crack parallel to the clamped edges.

length (the fifth plate). Although the infinite length plate approximation employed
again, the error, in the fifth plate, have been made during the simulation decreases up
to 0.4% for higher a.

As it is recommended that select the ratio a as larger than or equal to 0.5 in previous
example to increase the accuracy, the results larger in the ratio a are better in the

accuracy.

Table 7.4 :  The stress intensity factors for AFWPECPCE respect to Equation (7.8)
by Rice [2] and the MATLAB code.

K, Calculated

With MATLAB
o= = K, by Rice [2] Code
Width | Height exact 0,4 0,5 0,6 0,8
10 2 6081,30 5870,00 | 5978,40 | 6030,10 | 6066,80
10 3 4965,40 4791,40 | 4879,00 | 4920,20 | 4952,40
10 4 4300,10 4147,30 | 4218,90 | 4251,60 | 4288,70
10 5 3846,20 3706,10 | 3763,60 | 3787,70 | 3834,80
10 6 3511,00 3379,20 | 3424,10 | 3440,30 | 3497,80

7.4 An Angled Center Crack in a Finite Plate Under Uniform Tension

After verifying the program for several of mode | problems, it is necessary to show

that the program properly works for mixed mode problems. To illustrate that, an
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angled center crack in a finite plate under uniform tension (AACCFPUUT) in Figure
7.5 will be presented here. The crack angle 0 is defined respect to the horizontal axis.

I I

2H

Figure 7.5 : An angled center crack in a finite plate under uniform tension.

In illustrated problem, it is preferred to calculate the two factors related to mode |
and I, respectively. The factors for mode | and Il are given in Kitagawa and Yuuki
[22] and Wilson [23] by

K
F=—2 (7.9)
ovNvmTa
K
F; = —2 (7.10)
o1 a

where K; and K;; are the calculated stress intensity factors for mode 1 and mode 11

respectively, o is the tensional stress and a is the half of the crack length.

The results for F; and F;; are shown in Table 7.5 for the various values of 6, angle of
crack, and a/W ratio. The calculations take place in a plate has the ratio of H/W = 2
due to the results, Kitagawa and Yuuki [22] and Wilson [23], prepared for that ratio
too. The results that obtained by means of the program have better agreement with
the reference ones as the examples done before in this report. The errors occurred
during the calculations plotted in Figure 7.6. As seen from the figure the max error,

which less than 3%, occurs at 6=30° and a/W = 0,8 for FII.
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Various angles and different ratios enable how the program will act in various crack
propagation although the presented problem is simple beside the mixed mode crack

Table 7.5: The F; and Fy; factors for AACCFPUUT by Kitagawa and Yuuki [22]
and Wilson [23], and the MATLAB code.

0=30° 0=45° 0 =60°
With My With My With My
By [22] MATLAB By [22] MATLAB By [22] MATLAB
and [23] Code and [23] Code and [23] Code
CT land CT land CT land
ENW CTh CT1 CTH CTll CTI CT I CTHl CTI CT I

0,1 0,7557 0,7453 | 0,7453 0,5046 0,4994 | 0,4994 0,2527 0,2480 | 0,2480
0,2 0,7730 0,7696 | 0,7696 0,5181 05135 | 0,5135 0,2605 0,2584 | 0,2584
0,4 0,8456 0,8376 | 0,8376 0,5719 0,5685 | 0,5685 0,2896 0,2857 | 0,2857

0,6 0,9840 0,9658 | 0,9658 0,6611 0,6543 | 0,6543 0,3332 0,3259 | 0,3259

F, 0,8 1,2450 1,2342 | 1,2342 0,7950 0,7808 | 0,7808 0,3880 0,3842 | 0,3842
0,1 0,4339 0,4454 | 0,4454 0,5018 0,5146 | 0,5146 0,4352 0,4453 | 0,4453
0,2 0,4267 0,4273 | 0,4273 0,5072 0,5181 | 0,5181 0,4417 0,4516 | 0,4516
04 0,4497 0,4578 | 0,4578 0,5290 0,5393 | 0,5393 0,4660 0,4734 | 0,4734
0,6 0,4800 0,4885 | 0,4885 0,5674 05772 | 0,5772 0,5022 0,5075 | 0,5075

Fyy 0,8 0,5500 0,5658 | 0,5658 0,6300 0,6390 | 0,6390 0,5490 0,5580 | 0,5580

propagation. The program could be easily finds the nodes enriched by Heaviside

funcition or branch functions although the crack has various angle.

3,00
2,00 A
1,00 ——0=30°F|I
N ==0=30°F Il
o
E 0,00 =0 = 45° F |
° 01 03 04 05 06 0,7 0,8
° =>=0 =45° F Il
1,00 ==ie=0 = 60° F |
=0=0=60°F Il
-2,00
-3,00
a/W

Figure 7.6 : Errors in the F; and Fy; factors for several of the crack angle 6 and
various of the ratio a/W for a center crack.
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7.5 An Angled Edge Crack in a Finite Plate Under Uniform Tension

The similar with pervious example, the other example is an angled edge crack in a
finite plate under uniform tension (AAECFPUUT) as illustrated in Figure 7.7.
During the calculations, the ratio a/W and crack angle vary to illustrate the factors FI

and FIl. The factors for mode | and Il are given in Freese [24] and Wilson [25] by

K
F=—1 (7.11)
cvma
K
FII = 11 (7. 12)
ocvma

where Kl and KII are the calculated stress intensity factors for mode I and mode Il

respectively, o is the tensional stress and a is the crack length.

The calculations take place in a plate has the ratios of H, /W = H,/W = 1 wkere H,
and H, are illustrated in Figure 7.7. The results of FI and FII are shown in Table 7.6
for the various values of 0, angle of crack according to horizontal axis, and a/W ratio.
The results have better agreement with the reference ones as the angled center crack.
The errors occurred during the calculations plotted in Figure 7.8. As seen from the

figure the max error, which less than 3%, occurs at 6=60° and a/W = 0,4 for FII.

Hy

H;

| A A

Figure 7.7 : An angled edge crack in a finite plate under uniform tension.
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Table 7.6 : The F; and Fy; factors for AAECFPUUT by Freese [24] and the the

MATLAB code.

0=30° 0=45° 0 =60°
byree | WO | oypee | WO | oypee | MO

Code Code Code

a/w cT CT CT CT CT CT

0,1 0,9697 0,9599 0,7030 0,7073 0,4606 0,4676

0,2 1,0909 1,0737 0,7879 0,7858 0,4998 0,491

Fl 03 1,2485 1,2579 0,8788 0,8859 0,5212 0,5285
0,4 1,5455 1,5313 1,0182 1,0331 0,5939 0,5868

0,5 1,9273 1,933 1,2364 1,2486 0,6788 0,6805

0,1 0,3293 0,3298 0,3780 0,3869 0,3415 0,342

0,2 0,3537 0,3615 0,4122 04143 0,3537 0,3557

Fil 03 04123 0,4122 0,4463 0,4568 0,3780 0,3879
0,4 0,4695 0,4799 0,5078 0,512 0,4146 0,4192

0,5 0,5780 0,571 0,5780 0,5784 0,4513 0,4579

Both of angled edge crack and angled crack illustrates that the developed program
could evaluate the stress intensity factors K; and K;; correctly for a mixed mode
crack problems. Although both example lack of showing how the crack propagates, it
can be said that the program could be able to calculate the stress intensity factors

correctly for any crack extension.

——0=30°F|
—8—0=30°F Il
=0 = 45° F |

% Error

=>6=0=45°F |
=3ie=0=60°F |
=0—0=60°F Il

Figure 7.8 : Errors in the F; and Fy; factors for several of the crack angle 6 and

several of the ratio a/W for an edge crack.
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7.6 A Skew — Symmetric Bent Crack

In the Definition of the crack path section, the crack is defined by a stepwise linear
function. This example is the first time of the usage of the stepwise linear function.
The skew — symmetric bent crack (ASSBC) in Figure 7.9 is defined by four points
illustrated in Figure 7.10. The first and fourth points are the first and second crack
tips. This problem can be thought as a problem that initially the crack lays from 2"
point ( initially 1% point of the crack) to 3" point (initially last point of the crack) and

then it propagates in both end where it turns into the bent crack problem.

After the initially center crack propagates with a crack growth angle 8;and da; (it is

b in bent crack problem), the locations of the new crack tips can be found easily by

X1 of ct;-new = X1of ct;—old T da; cos 61’} (7.13)

X2 of cti—new = X2 of ct;—old T da; sin9;

where the stepwise linear function is redefined for each crack propagation in the
program. Let’s turn back to the crack with a bended branch on both ends which has
an angel of 0 according to horizontal. The factors for mode | and mode |1 are defined

by Kitagawa and Yuuki [26] as

(7.14)

A A e

Figure 7.9 : A skew — symmetric bent crack: the bent crack illustrates the situation
after a center crack propagated with the angle of 6 and b symmetrically
in both crack tips.

45



A
i ot
7%

cty

2 :
e rcseeod
1

(@) Initial center crack

(b) The crack propagates
with 6 and b where the
crack tips moves as
illustrated

(c) The skew symmetric
bent crack illustrated by
four point where the

stepwise linear function

lies from 1% point to last
point
Figure 7.10 : Illustration of the step wise linear function, used to describe the
bended crack.

K
F =

(7.15)

where c =a+ b cosf, K; and K;; are the calculated stress intensity factors for
mode | and mode 11, b is the length of branch and , a is the half length of smooth part

of the bent crack.

The results for ¢, = 90° (uniaxial tension) are presented in Table 7.7, 7.8 and 7.9

while 0 varies as 30°, 45° and 60°, respectively.

The results for ¢, = 0° (shear stress for top and bottom surface of the plate) are
presented in Table 7.10, 7.11 and 7.12 while 6 varies as 30°, 45° and 60°,

respectively.

Table 7.7 : The F; and Fy; factors for ASSBC with 6=30° and ¢, =90° by Kitagawa
and Yuuki [26] and the MATLAB code.

0 =30" and @, =90°
By Kitagawa and Yuuki [26] With My MATLAB Code
b/a Fl Fll Fl Fll
CTland CT2 CTland CT2 CT1 CT2 CT1 CT2
0,4 0,8242 0,4021 0,8236 | 0,8236 | 0,4199 | 0,4199
0,6 0,8187 0,4176 0,8241 | 0,8241 | 0,4350 | 0,4350
0,8 0,8156 0,4271 0,8152 | 0,8152 | 0,4417 | 0,4417
1,0 0,8135 0,4335 0,8181 | 0,8181 | 0,4482 | 0,4482
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Table 7.8 : The F; and Fy; factors for ASSBC with 6=45° and ¢,=90° by Kitagawa
and Yuuki [26] and the MATLAB code.

6 =45 and @, =90°

By Kitagawa and Yuuki [26] With My MATLAB Code
b/a Fl Fll Fl Fll

CTland

CT2 CTland CT2 CT1 CT2 CT1 CT2

0,4 0,6280 0,5284 0,6183 0,6167 | 05417 | 05376
0,6 0,6161 0,5491 0,6199 0,6197 | 0,5697 | 0,5696
0,8 0,6095 0,5617 0,6107 0,6107 | 05785 | 0,5784
1,0 0,6054 0,5698 0,6101 0,6102 | 05892 | 0,5892

Table 7.9 : The F; and Fy; factors for ASSBC with 6=60° and ¢, =90° by Kitagawa
and Yuuki [26] and the MATLAB code.

0 =60° and @, =90°

By Kitagawa and Yuuki [26] With My MATLAB Code

b/a Fl Fil Fl Fll
CT1land

CTland CT2 CT2 CT1 CT2 CT1 CT2
0,4 0,3934 0,5794 0,3932 0,3932 | 0,5962 | 0,5962
0,6 0,3734 0,6031 0,3739 0,3739 | 0,6228 | 0,6228
0,8 0,3629 0,6170 0,3622 0,3622 | 0,6309 | 0,6309
1,0 0,3576 0,6253 0,3577 0,3577 | 0,6423 | 0,6423

As seen from the results the error decreases for higher b. For each case, the
maximum error done during the calculations is less than %6 and in acceptable range.
The maximum error is a little bit high compared to previous examples due to fact that
the dimensions of plate must be sufficiently larger than a and b to simulate the plate
as an infinite plate. In Matlab, simulation is done for a 40x40 plate with a crack

Table 7.10 : The F; and Fy; factors for ASSBC with 6=30° and ¢,=0" by Kitagawa
and Yuuki [26] and the MATLAB code.

0=30"and g, =0°

By Kitagawa and Yuuki [26] With My MATLAB Code

b/a Fl Fll Fl Fil
CT1 and

CTland CT2 CT2 CT1 CT2 CT1 CT2
0,4 0,1291 -0,2214 0,1275 0,1275 -0,2336 | -0,2336
0,6 0,1506 -0,2572 0,1501 0,1501 -0,2692 | -0,2692
0,8 0,1661 -0,2832 0,1638 0,1638 -0,2911 | -0,2911
1,0 0,1780 -0,3031 0,1770 0,1770 -0,3121 | -0,3121
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Table 7.11 : The F; and Fy; factors for ASSBC with 6=45° and ¢,=0° by Kitagawa
and Yuuki [26] and the MATLAB code.

0=45"and @, =0°

By Kitagawa and Yuuki [26] With My MATLAB Code

b/a Fl Fll Fi Fll
CTland CT2 CTland CT2 CT1 CT2 CT1 CT2

0,4 0,2670 -0,2691 0,2605 0,2605 | -0,2768 | -0,2768
0,6 0,3140 -0,3150 0,3139 0,3139 | -0,3291 | -0,3291
0,8 0,3485 -0,3487 0,3453 0,3453 | -0,3578 | -0,3578
1,0 0,3753 -0,3749 0,3792 0,3792 | -0,3896 | -0,3896

Table 7.12 : The F; and Fy; factors for ASSBC with 6=60° and ¢,=0° by Kitagawa
and Yuuki [26] and the MATLAB code.

0=60°" and @, =0’

By Kitagawa and Yuuki [26] With my x_FEM

b/a Fl Fll FI Fll
CTland

CTland CT2 CT2 CT1 CT2 CT1 CT2
0,4 0,4206 -0,2562 0,4151 0,4151 -0,2676 -0,2676
0,6 0,5003 -0,3030 0,5011 0,5011 -0,3155 -0,3155
0,8 0,5608 -0,3384 0,5523 0,5523 -0,3425 -0,3425
1,0 0,6086 -0,3636 0,6056 0,6056 -0,3732 -0,3732

length 2a=2 and 400x400 element mesh. But, neither an increase in the dimensions
of the plate nor an increase in mesh density is not possible due to lack of memory to
simulate the problem where presented simulation is done with highest mesh density
of 400x400. So that to handle more accurate results that correlate with the standards
either dimensions height and width of plate or mesh density must be increased by

adding more memory.

The mixed mode fatigue crack growth will be simulated in a finite plate that
maximum size of mesh is enough to obtain more accurate results. That is why the

more memory is unnecessary.

In this section different types of examples are covered to illustrate the program is
working properly and the evaluated results have good agreement with the references.
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8. FATIGUE CRACK GROWTH

Fatigue crack growth can be describes the propagation of the crack under cycling
loading. The needed force magnitude for fatigue crack growth is highly less than one
necessary fort the crack growth under monotonic loading. That is why many
structures under cycling loading failure earlier than expected due to fatigue. The

linear elastic fracture mechanic is valid for high cycle fatigue crack growth.
Over the years, many fatigue crack growth law was developed and can be expressed
in the form of

da_

ay = f(AK) (8.1)

where a is the length of the crack, N is the number of cycles and AK is the range of
the stress intensity factor as AK = K4 — Kimin. Although that fatigue crack growth
law says that the fatigue crack growth rate- da/dN - just varies as a fonction of AK

for one load cycle, it gives a good approximation for quick estimations.

Many experiments shows that the link between da/dN and AK in logarithmic scale

takes the form in Figure 8.1.
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Kun log AK K.

Figure 8.1 : Typical relation between the fatigue load AK and the crack growth rate
for metals.
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The fatigue crack propagation behavior divided into three regions as shown in the
Figure 8.1. Region | is the fatigue threshold region where the AK is too low to
propagate a crack, less than the order 10”° m/cycle. This region is extremely sensitive
and is largely influenced by the microstructure features of the material such as grain
size, the mean stress of the applied load, the operating temperature and the
environment present. The most important feature of this region is the existence of a
stress intensity factor range below which fatigue cracks should not propagate. This
value is defined as the fatigue crack growth threshold and is represented by the

symbol AKg,.

Region Il encompasses data where the rate of crack growth changes roughly linearly
with a change in stress intensity fluctuation. Region Il represents the intermediate
crack propagation zone where the length of the plastic zone ahead of the crack tip is
long compared with the mean grain size, but much smaller than the crack length. The
use of linear elastic fracture mechanics (LEFM) concepts is acceptable and the data
follows a linear relationship between log da/dN and log A K. The crack growth rate is
typically on the order of 10”° to 10°® m/cycle, which corresponds to the majority of
the test data results. This region corresponds to stable crack growth and the influence

of microstructure, mean stress, ductility, environment and thickness are small.

In region Ill, small increases in the stress intensity amplitude, produce relatively
large increases in crack growth rate since the material is nearing the point of unstable
fracture. Region I11 represents the fatigue crack growth at very high rates, da/dN >
10 m/cycle due to rapid and unstable crack growth just prior to final failure. The
da/dN versus AK curve becomes steep and asymptotically approaches the fracture
toughness K for the material. The corresponding stress level is very high and causes
a large plastic zone near the crack tip as compared with the specimen geometry.
Because large scale yielding occurs, the influence of the nonlinear properties of the
material cannot be ignored. Therefore, the use of LEFM is not entirely correct and
nonlinear fracture mechanics should be applied to this stage. The mean stress,
materials microstructure and thickness have a large influence in this region and the
environment has little influence. Fatigue crack propagation analysis is very complex
in this region but often ignored because it has little importance in most fatigue
situations. The reason that the fatigue crack growth rates are very high and little

fatigue life is involved.
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8.1 Fatigue Crack Growth Rate

Many fatigue crack growth law was developed in recent years, but the best known is
formulated by Paris and Erdogan [3], and it can be expressed as
da

oy = € @Kr (8.2)

where C and n are material constants such that they are generally determinated by
curve fitting to the experiment results. Although it gives relatively good
approximation for the fatigue crack growth rate in the region Il, this law does not
take into account the effect of the R ratio. The R ratio is described as R =
Kinax/ Kmin Where K,,;,, is generaly negative, and it tends to shift to left the fatigue
crack growth rate curve for increasing values. That is why a modification is need for
Paris law to take into account the effect of R. An extension of the Paris law was
proposed by Erdogan and Ratvani [15] and it can be expressed by

da C (AK — AK)"
— = (8.3)
dN ~ (1-R)K, — AK

where C and n are material constants, AK;,;, is the change of the threshold value and

K_ is the fracture toughness of the material.

Another fatigue crack growth law, which is a Paris type equation, has been used by
Sih and Barthelemy [27], and Badaliance [28]. They use strain energy density factor

to correlate fatigue crack growth rate which can be expressed by

da n
N = Cs (AS)™s (8.4)

where C; and ng are material constants, and AS is the strain energy density factor

range.

8.2 Prediction of Mixed Mode Fatigue Crack Growth Direction

A crack subject to mixed mode loadings changes its crack growth direction in non-
self-similar manner. Therefore, either the fatigue crack growth rate or the fatigue
crack growth direction is of importance during the crack propagation under mixed
mode loading conditions. Several mix-mode fatigue crack growth criteria have
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developed regarding to the crack growth direction under mixed mode loadings. Some

of them are reviewed in this section.

8.2.1 Maximum tangential stress criterion (MTS criterion)

The maximum tangential stress criterion is one of the mostly used theories for mix-
mode fatigue crack growth, derived by Erdogan and Sih [29]. It is states for starting
the crack growth that:

(i) Crack propagation starts at the radial direction, 8 = 6., on which ggg
becomes maximum, where it can be mathematically sumurized as :
60'99 _ 2

60'99
20 =0 and 392

<0 (8.5)

(i)  And fracture starts when the maximum tangential stress reaches a critical

value as
Opg = O (8.6)

The stress field near the crack tip according to polar coordinates is given by

= ! —|K 2 —_K;;si 0 (8 7)
0 Cos cos Sin .
1 0
0 = cos—|K;sin8 + K;;(3cos0 — 1 8.8
ré ,—2 2 [ I II( )] ( )

where gy is the stress normal to the direction given by 6 and o, is the shear stress.
The tangential stress becomes maximum at the maximum principle directions which

is defined by zero shear stress and results in

1 0
0,9 =——cos—|K;sinf + K;;(3cosf —1)| =0 8.9
réo \/2—7_[7_ 2[ 1 II( )] ( )
K;sin8 + K;(3cos8 —1) =0 (8.10)

By using the equation above, the crack growth angle can be expressed as

52



2
6 =2tant| L 41 (i) 8 (8.11)
2k, ~ 3 |\axk,

8.2.2 Minimum strain energy density criterion (S criterion)

The minimum strain energy density factor has been used to predict the mixed mode
fatigue crack growth direction by Sih [30]; Sih and Barthelemy [27] and Badaliance
[28]. The S criterion is based on the local energy density near the crack tip. The S
criterion assumes that the crack will extend in the direction that the strain energy
density factor becomes minimum. The strain energy density factor can be determined

for any crack propagation by

S(0) = a1 K} + 2a1,K,Ky; + azKfi + azsKf; (8.12)
where
- 3-4 8)(1 + cos ) 8.13

a1 = Tomu U — cos cos (8.13)
1

a; = ﬁsm 0 (cos6 — 1+ 2v) (8.14)
1

ay, = @ [4(1 —v)(1 —cosB)+ (3cosO —1)(1 + cosh)] (8.15)
1

a33 —_ m (8 16)

= £ 8.17
K=o+ (8.17)

It is states the initial crack growth takes place in the direction along which S criterion

results in a minimum value,

65_0 d625>0 6=26 8.18
30 = an 392 for 0 =0, (8.18)

and crack propagation occurs when it reaches a critical value
S=S8, ford =46, (8.19)
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For mixed mode | and 11 loading, the minimum strain energy density criterion result

in the equation for the determination of the crack growth angle as

sin 26 — 0.92 sin @ + 4R (cos 20 — cos 8) + R?(0.92 sinf — 3sinf) = 0 (8.20)

where = K, /K; .

The maximum tangential stress formula and minimum strain energy density factor

formula are compared for an load cycle and the results are given in Table 8.1. To

calculate the crack

Table 8.1 : The deviation of the crack growth angles for a loading cycle respect to

MTS criterion and S criterion.

Load step 1 5 10 15 20 25 30 36
MTS criterion 4322 44.44 23,58 13,15 52,39 60,03 30,50 40,24
CTlI S criterion 43,28 44,48 23,64 13,27 52,63 60,08 30,57 40,29
MTS criterion 223,25 | 224,47 | 203,61 | 193,17 | 232,41 | 240,04 | 210,52 | 220,26
CTII| Scriterion 223,35 | 224,37 | 203,55 | 193,29 | 232,44 | 240,06 | 210,42 | 220,28

growth angle according to the strain energy density factor, it is necessary to solve

Equation (8.20) by an iterative method. The iterative solution is performed by

Newton-Rapson method where the maximum tangential creation is used to initialize

the point where the iterative solution is performed. As seen from Table 8.1 the result

obtained for both case is nearly the same. Thus, MTS criterion is decided to

demonstrate the crack growth angle for each loading stem to increase the efficiency

of the program.
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9. FATIGUE CRACK GROWTH UNDER MIXED MODE NON-
PROPORTIONAL LOADING

In this section, fatigue crack growth under mixed mode non-proportional loading will
be cowered. To cover non-proportional loading, it is necessary to describe the
problem as being equivalent of the experiment will be done to compare the obtained
results. That is why it is needed to describe a fatigue crack growth under mixed mode
non-proportional loading that reflects the experimental suggestion correctly.

9.1 Experimental Suggestion: Thin Walled Tube Under Tension P and Torsion
M

The one of the objectives of this paper is to derive a test condition to compare
different models that will be discussed in the next sub sections. To cover non-
proportional loading, it is necessary to describe the problem as being equivalent of
the experiment will be done to compare the obtained results. That is why it is needed
to describe a fatigue crack growth under mixed mode non-proportional loading that
reflects the experimental suggestion correctly. That is why in this sub section the
experiment specimen and how it will be described in the developed program will be

presented.

The Figure 9.1 illustrates the specimen that will be used in the experiment. The thin
walled tube in Figure 9.1 is under tension P and torsion M. Both tension and torsion
consist of static and cycle parts to establish non-proportional loading case for mixed
mode fatigue crack growth. The non-proportional loading can be sustained by four

cases, depending on definition of the torsion and the tension,

Case 1: a cyclic proportional mixed mode loading + a static mode I and/or 11
Case 2: a cyclic mode | or 11 + a static proportional mixed mode loading.
Case 3: a cyclic mode Il + a static mode | loading

Case 4: a cyclic mode | + a static mode 11 loading
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To include all those four cases, the stress intensity factors can be written as

‘ M=Mo+M1xsin (w t)

| P=Po+P1xsin (w t) |

M=Mo+Mz1xsin (w t)

Py

Figure 9.1 : Thin tube under tension P and torsion M.

I P=Po+P1xsin (w t) |

K, = KI,stat + KI,cycl (9.1)
Kir = K stat + Kineye (9-2)
where

K stqr - Static part of Kl origates from Po (the static part of tension)

K cyer - cyclic part of Kl origates from P1 * sin (wt) (the cyclic part of tension)
Ki; staqr - Static part of KII origates from Mo (the static part of torsion)

K} cycr - Cyclic part of Kl origates from M1 * sin (wt) (the cyclic part of torsion)

The term sin (wt) in cycle part of loads can be replaced by any trigonometric
function and it is just used to illustrate the cycle part of both tension P and torsion M.
The experimental suggestion, thin walled tube under tension P and torsion M, is
approximated in the developed XxFEM program as illustrated in Figure 9.2. Since the
problem illustrated in Figure 9.2 with applied loads ¢ and 7 is equivalent of the test
illustrated in Figure 9.1, The non-proportional loading can be easily perform on the
current program. The loads illustrated in the Figure 9.2 can be described as
P

0= =0 + o0, sin(a wt) (9.3)
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=55 = To + 7, sin(b wt) (9.4)

where

o, . static part of our normal stress

o, sin(a wt) : cycle part of our normal stress
T, - Static part of our shear stress

7, sin(b wt) : cycle part of our shear stress and, a and b are arbitrary chosen
constants to establish cycle part of loadings change in different manner. And the
calculated stress intensity factors are given depending on the loading case by
Equations (9.1) and (9.2) where they vary during a load cycle due to the cycle part of
the load.

To avoid the singularity of the solution, the bottom left edge of the plate is fixed in
both direction and the bottom right edge off the plate is also fixed in x, direction.
The experimental suggestion can be approximated by the problem illustrated in
Figure 9.2 with the boundary conditions on the bottom left and right edges of the
problem.

T
T
—
T
T

H — — — — —

-t R -« -«

A A 4 A 4 A 4 v A 4 A 4 A 4 y G

Figure 9.2 : The definition of the thin walled tube problem in the xFEM program.

Due to fact that the loads o and 7 vary during the load cycle, it is necessary divide a

load cycle into sub cycles.
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9.2 Mixed Mode Fatigue Crack Growth

To analyze the mixed mode fatigue crack, the Paris law, given by Equation (8.1),
must be redefined where in this form it is generally initial with Mode I. Paris law is

selected to simplify the calculations.

Analyses of mixed-mode fatigue crack growth based on Paris law are possible by the
definition of an effective stress intensity factor which takes all two modes of fracture
into account for the plate problem in Figure 9.2. Redefined Paris law by means of the

effective stress intensity factor is given by

da
= Wk (9.5)

where C and n are material constants that are generally determinate by curve fitting

to the experiment results illustrated in Figure 9.3 taken from Lucht [31] by curve

1.00E -06 ~
1.00E -07 - ®
1.00E -08 -+

1.00E -09 A

da/dN (m)

1.00E -10

1.00E -1 1 T T T T T T T T T
5 10 20 30 40

AK (MPavm)

Figure 9.3 : Fitting Paris law to measurements of crack growth in SENB test
specimens.

fitting, it is found that C = 9x10™* and n = 3.25 in Eq. (9.5) when the unit of AK is
MPavm and the crack growth distance is calculated in meters. These values are in
agreement with values of standard construction steel with E=200GPa and v = 0.3.

In the literature, AK, is illustrated by two different ways for the 2D plane problem

as
AKepp = f(AK;, AKyp) (9.6)
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ARers = Keff* — Kejf' (9.7)

where Equation (9.6) does not takes into account the relative variation of the K; and
K;; while Equation (9.6) does. Thus, AK, s is selected to calculate the fatigue crack
growth rate where the relative variation of the K; and Kj; is important. There are four
effective stress intensity factor formulas, commonly used to illustrate the fatigue

crack growth in the literature. These can be listed as

Kepr = [KP +Kfi (9.8)

HH

Kops = 'K/ + 8K (9.10)
1 6 .
Kepp = ECOSE [K;(1 + cos @) — 3K}, sin6] (9.11)

where K; and K;; are the calculated stress intensity factors and 6 is the crack growth
angle at current load step. Equations from (9.8) to (9.11) are given by Rhee [32],
Gerstle [33], Tanaka [34] and Yan eta. [35], respectively. By using different K, .f
formulas and the modified Paris law by means of K., the four cases can be
simulated for fatigue crack growth under non-proportional loading. But during a load
cycle, it is necessary to illustrate the fatigue crack growth direction beside the crack
growth rate. To illustrate the crack growth angle the maximum tangential stress will
be used where it gives more accurate results and is easier to implement in to the
Matlab codes than minimum strain energy density. To calculate the crack growth
angle during a load cycle, tree models are considered as

0 = 60(KJ¢" (9.12)

o _ S(KEFIKE + (KGR

. (9.13)
Kers™ + Keps
Y 0(Kirp) KL . .
g = 20Werr) Keys for Kier > Kiz} (9.14)

2 Kery
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The first example assumes the crack deviation occurs at the maximum value of the
K.rr Where it is a function of current KI, KII and the crack growth angle 6, also
function of current stress intensity factors. The superscript max over K., does not
mean that it occurs at the maximum load. The second formula assumes that the crack
growth angle varies linearly and the K;¢#* and e’}}” are used as a weight. And both
formulas are lack of taking into account each load step and fluctuation of K. Thus,
to consider the fluctuation of K., the third formula is assumed to use during the

simulation and K/ is used as a weight for K. > K7} says just ignore the

decreasing values of K;'ff during the one cycle loading.

9.3 Numerical Simulation of a Fatigue Crack Growth Under Non-proportional

Loading Given by Case |

To illustrate the fatigue crack growth under non-proportional loading, the first case
will be presented here and for other three cases will be presented by three separate
examples in Appendix E. The crack growth for the case I is illustrated in Figure 9.4
by different K, ¢, formulas for a 0.16*0.12 m rectangular plate with a center crack
lies from (0.055, 0.08) to (0.065, 0.08). The non-proportional loading illustrated in

Figure 9.2 is given for the case | by

o =12x107(1 + 0.6sin(wt)) Pa }

9.15
T =-85x%107(1 + 0.8sin(2wt)) Pa ( )

The crack path estimated nearly the same by each of K formulas. As expected, the
crack growth rate fluctuates on the order of 10”° to 10 m/cycle where the modified
Paris law with K, ¢ for mix mode fatigue crack growth describes the region Il in
Figure 8.1. To visualize the crack incensement in each crack propagation, it is
assumed that the crack grows in the same direction, given by (9.14) and the same
crack growth rate given by (9.5) during 10° cycle. If the calculated crack rates are
directly used, it is necessary to increase the mess density as much as possible that the
program could be able to catch the kicking (~10°® m in length). That is why it is used
as a scale factor. The crack angles, estimated by Equations from (9.8) to (9.11) in the
first propagation, are 50.36°- 230.37°, 49.27°- 229.28°, 49,28°- 229,30° and 49.16°-

229.18° for both crack tips, respectively. The estimations perfectly correlate with
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0,16
0,14
0,12
0,1 / .t
-§0,08 —
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Keff by Eq.
0,04 (9-10)
----- Keff by &q.
0,02 (9-8)
0
0 0,0 0,1
§z [m]

Figure 9.4 : Estimated crack paths for Case | by each K¢ formula.

each other where the calculated set of K, and K;; are the same. For next iterations

also correlates with each other too as illustrated in Figure 9.4 for the current loads.

The loads are applied in 36 steps to catch the change of K, correctly. The change
of K.rs according to the different K,r, formulas is illustrated in Figure 9.5 for the
first iteration. As seen from Figure 9.5, K, s makes the maximum at the 5" load step
and the minimum at the 30" load step. To calculate the crack growth direction

related to each of K., definitions, the increasing parts of each K., are take into

account to evaluate 6 given by Equation (9.14).

40,00
30,00 f:\
-
20,00
! / el
e 4
£ 10,00 . \
(C ! \
a
s
w 0,00
7 ) .
-10,00 m
—a—KIl
——a— Keff by Eq. (9.10
-20,00 —— Keff by Eq. (9.8)
—#— Keff by Eq. (9.9)
30,00 —o— Keff by Eq. (9.11]
’ Load step

Figure 9.5 : Stress intensity factors calculated at the first iteration for Case I.
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Figure 9.6 shows that chances of K;, Kj; and K. for each formula at the fifth

iteration. The calculated stiffness’s vary differently due to the fact that the crack

grow rate determined by AK,sr are different for previous four iteration. Eighter the
crack tips not take place inside the same element for each K., formula or the crack
tips not in the same position inside of an element, even if they end in the same

element for each K, formula is the cause of the different K; and K;, values.

CT I —o— Keff by
Eqg. (9.10)
40 —a— Keff by
35 Eq. (9.8)
Keff by
30 Eq. (9.9)
7E 25 —s— Keff by
© Eq. (9.11)
a 2 q
E, 0
w 15
n
10
5
0
0 10 20 30
Load step
CT I I —o— Keff by
Eq. (9.10)
40 —a— Keff by
35 Eq. (9.8)
Keff by
30 Eq. (9.9)
7E 25 —»— Keff by
© Eq. (9.11)
a2
E, 0
w 15
n
10
5
0
0 10 20 30
Load step

Figure 9.6 : Variation of the effective stiffness on the crack tips for each of K
formulas at the fifth iteration.
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Figure 9.7 shows the change of crack growth rate respect to the employed K.sf
formula at each crack tip with Case | loadings. The both crack tip grow
symmetrically as seen in Figures 9.4 and 9.7. The crack grow rates are in the range
of 10® to 10° m/cycle. The last grow rates are slightly different from each other due
to fact that the deviations in each propagation stage are added for next stage. The
deviations originate from the difference of the locations of the crack tip for the same
propagation stage and the difference in AK,rr. That is why crack growths vary

differently for each formula due to the crack growth rates are scaled with dN=10*

1,0E-06 /

8,0E-07
)
> 6,06-07
E ’ —— Keff by Eq. (9.10)
= —a—Keff by Eq. (9.8
5 4,0E-07 y Eqg. (9.8)
3 Keff by Eq. (9.9)

2,0E-07 —»— Keff by Eq. (9.11)

0,0E+00

0 20 40 60 80
DK [MPaym]

1,0E-06

8,0E-07
o
S 6,0E-07
% ’ —— Keff by Eq. (9.10)
= —a—Keff by Eq. (9.8
5 4,0E-07 y Eqg. (9.8)
8 Keff by Eq. (9.9)

2,0E-07 —— Keff by Eq. (9.11)

0,0E+00

0 20 40 60 80
DK [MPavm]

Figure 9.7 : The change of crack growth rate respect to the employed K¢ formula
at each crack tip for Case I.
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cycle (increase the rate of the deviations). Although, the crack propagation varies for

each K, ¢, formula, the crack path is approximated nearly the same by each of them.

On the other hand, the other objective of this paper is to find a loading case that the
crack grows differently for each K., formula. To obtain an experimental case, the
same plate is subject to different loading cases. After many try the case is found as

o =44x107(1+ 0.8sin(wt)) Pa }

9.16
T =-5.9x107(0.5 + sin(2Zwt)) Pa ( )

The same cracked plate in the Case | is used to illustrate the crack propagation.
During the simulation the crack propagates with a constant incensement of 0.0025 m.
The constant deviation is assumed to eliminate the effects of crack growth rate where
already varies due to AK.sr. The deviation of crack angle respect to each K.s
formula is given in Table 9.1 for initial five crack propagation. The crack growth
angle deviates slightly different from each other. That is why the succeeded test case
can be used to illustrate which of the K., formula is the best to estimate the crack
path by means of the crack growth rate and the crack growth angle for non-

proportional loading.

Table 9.1 : Deviation of the crack growth angle determined by each K¢ formula

separately.
K.fr by (9.10) K.rr by (9.8) K.rr by (9.9) K.fr by (9.11)
N”g}ber cti | ctu | cTl ol cTti | ctu | cTi CTII
iteration | [Degree] | [Degree] | [Degree] | [Degree] | [Degree] | [Degree] | [Degree] | [Degree]
1 45,38 225,39 38,21 218,22 35,18 216,16 34,53 214,54
2 15,67 | -164,32 | 29,11 -150,88 36,00 | -14541 | 37,10 -142,88
3 39,79 | -140,20 | 42,74 -137,24 41,63 | -137,78 | 39,36 -140,62
4 24,74 | -155,23 | 29,97 -150,02 30,15 | -150,41 [ 35,83 -144,15
5 31,30 | -148,67 | 39,44 -140,54 40,45 | -139,29 | 35,67 -144,31
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10. PROGRAM FLOW CHART

A code for the XFEM has been built in the present work based on the theory,
previously discussed. The program has been used to produce the presented examples
and to simulate the fatigue crack growth under non-proportional loading. The written
MATLAB source code will be explained in the following in relation to the flow
diagram in Figure 10.1 and with reference to the listed source code in Appendix E,
where the sours code given in a CD is briefly described. Referring to Figure 10.1 an
overview of the X-FEM code is given. After starting the calculations the program

firstly reads the impute file, which defines the problem to be solved.

Then it creates the mesh and connectivity matrices, which includes nod numbering,
coordinates of nodes etc. After the Heaviside nodes and crack tip nodes, the initial
crack, are defined in the file Discontinuity.m, the total DOF is calculate to initialize
the force and displacement vectors, and the global stiffness matrix. By finding the
elements to be enriched by Heaviside function or/and branch functions, the global
stiffness matrix is assembled in GlobalStifnessMatrixK.m.

For each load step during the current load cycle, the global force vector is defined
and by mans of the boundary condition the global equation system is set up and
solved. Regarding to the calculated displacement the stress intensity factors are
evaluated in the file Jintegral.m. After a load cycle is finished, in the file
CrackGrowth.m the crack growth rate da/dN and the crack growth angle 6 are
evaluated for each crack tip. Furthermore, by using da/dN and 6 the crack is
redefined as a step wise linear function as illustrated in Figure 7.10. The new crack

increments have been defined, and the next step can begin.

The iterations consist of two different iterations. The sub iteration is 36 steps which
each step represents the current loading step during a load cycle. The each step of
main iteration represents the each crack incensement. After a load cycle is finished,
according to the calculated K;, K;; and 6 values the crack growth rate and the crack

growth angle are calculated by the way of Equations (9.5) and (9.14), respectively.
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Read Input file:

Start
inputfile.m

A

Main Executable:

XFEMmain.m
Redefine Crack tip
¢ Enriched Connectivity
Define Connectivity: ¢
CreateMesh.m - T
Redefine Heaviside nodes and crack
¢ tin nodes levelset.m

Define Heaviside nodes and
crack tip nodes: Discontinuity.m

Calculate Total DOF: TotalDOF

Calculate Total DOF: TotalDOF . .
Find the enriched elements:
EnrichedElements.m

Find the enriched elements:
EnrichedElements.m

Update the global Stiffness matrix:
UpdateGlobalStifnessMatrixK.m

Assemble global Stiffness matrix:

GlobalStifnessMatrixK.m
Create Force Vector for Each loading step

¢ during a load cycle: ForceVector.m

Create Force Vector for Each loading step
durina a load cvcle: ForceVector.m L

Boundary Conditions:

BoundaryCond.m

Boundary Conditions:
BoundaryCond.m

Solver <

A\ 4

\4

Stress Intensity Factors:
Jintegral.m

NO and i#1

NO and i=1

isub =36

YES

NO

i=Number of Crack Growth:

iterations CrackGrowth.m

YES

Plotting » END

Figure 10.1 : Program flow chart.
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11. CONCLUSION

The extended finite element method has been implemented into a MATLAB code to
solve mixed mode crack problem. The classical FEM formulation extended to the
XFEM by introducing the enriched functions, Heaviside function and Branch
functions. The crack body (where the crack passing through elements) is defined by
means of Heaviside function and the crack tips (where the crack tips end inside of an
element) are illustrated by four branch functions to increase the accuracy of the
calculations. The major benefit of using the X-FEM is that the crack path, defined by
a step wise linear function, does not have to be known in advance, and there is no
need for remeshing. The remashing can only be necessary to catch the crack tips

correctly. That is why the mesh is kept in minimal.

Furthermore, the crack analyses carried out in this paper are based on linear elastic
fracture mechanic by neglecting the plastic zone that is sufficiently small near the
crack tips. That is why the problems cowered are considered linear elastic all the way
to brittle fracture. The crack is subject to the mixed mode loadings that force the
evaluation of the both of KI and KII stress intensity factors. The stress intensity
factors for each mode are evaluated by means of the interaction integral based on the
path-independent J-integral. The interaction integral has been converted into a
domain integral, which simplifies implementation of the interaction integral into
numerical integration, by applying the divergence theorem and making tensor
calculus. As the J-integral is path-independent, the domain form of the interaction
integral is domain independent as long as it surrounds the crack tip.

On the other hand, to verify results obtained by the developed XxFEM program, many
problems are solved to ensure that the program is works properly. The results have
good agreement with reference ones. Thus, it can be said that the XFEM program can
be used to simulate the mixed mode fatigue crack growth with a sufficient accuracy.

The main problem of this paper is the fatigue crack growth under mixed mode non-

proportional loading illustrated in Figure 9.2. Both maximum tangential stress
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criterion and minimum strain energy density criterion are employed to illustrate the
crack growth angle for a load cycle. It is found that the crack growth angle can be
evaluated either with MTS criterion or with S criterion. MTS criterion is preferred to
determine the crack growth angle for each step of load cycle because it minimizes
the solution time respect S criterion. The strain energy density citation is in need of
much time than maximum tangential stress criterion due to fact that it is necessary to
employ an iterative solution to obtain the crack growth angle with the minimum
strain energy density citation. Furthermore, to determine the crack growth rate the

Paris law is modified with AK, ¢ to cover mixed mode cracks.

By the way, the four case is covered to demonstrate the fatigue crack grow angle and
the fatigue crack growth rate. The results obtained for the all cases are identical in
the Region 11 where the linear elastic fracture mechanic is valid. The crack growth
rates for each case under the variation of the K, s, formulas is in the range of 10° to
10 m/cycle as expected. The crack growth angle is approximated with Equation
(9.14) during a load cycle. It takes into account increasing part of the K, s for a load
cycle where K., values are used as a weight. This means that the larger K, results
in larger effect on the crack growth direction. Under the variation of crack growth
rates (evaluated for each K,rr formula) the crack growth angle is evaluated nearly
the same by each of K, formulas for all cases. The crack path is determined by
different K¢, are follows the same direction with a negligible deviation as seen from

Figure 9.4, i.e.

The test case is derived to show which of the crack propagation evaluated by any of
the K.rr formulas is the best suitable to determine the crack path correctly. After
examining the many of load combinations for four cases, a test condition is found
where the loads are given by (9.15) for a 0.16x0.12 m plate. The material properties
of the plate, used during the simulation, are E=200GPa and v = 0.3 and, Paris law
constants are C = 9x10 * and n = 3.25. For the succeeded test case, the crack growth
angle deviates slightly deferent from each other where the crack growth rate also
deviates respect to AK,;. The succeeded test case is one that the larges deviation
occurs within covered loadings to find a test condition and can be used to

demonstrate the best estimated crack path according to K.
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In conclusion, an XFEM program developed to demonstrate the fatigue crack growth
under non-proportional loading and to derive a test condition that demonstrates
which of the K.r formula is the best suitable for determining the crack path
correctly. Although good results are obtained for fatigue crack growth under non-
proportional loading and a good test condition is derived, the experimental

observation is needed for both with given material properties and Paris coefficients.
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APPENDIX A

The stress fields and the displacement fields near the crack tip for the Auxiliary
stages derived by Westergaard [10], Williams [11] and Jensen [12] are listed below

for Cartesian Coordinates x; for 2D problems.

For Pure Mode I: KII=0 and KIII =0

Stress field:

1 0 .6 36
011 = o {K, cos7 [1 - smzsm?]} + of + (V)
O3 = — 1€0S sin- sin— (V)

1 0 0 30
{K, sin = cos = cos —} + d(r)

012 = 021 = _'_Zm‘ ) > )
_ { 0 for plane stress }
933 = v(0oyy + 0z0) for plane strain

all other a;j = 0

Displacement field:

(1+v)K, 0 30
U = W\/ZTH‘{[ZK —1] cos > — cos7} + ®(1)
(1+v)K; 6 36
U, = W\/ZTIT{[ZK + 1] sinz — sm7} + O(r)
v
— _f(o'n + 0,5)dx; for plane stress
u3 = E
0 for plane strain

For Pure Mode Il: KI=0 and KIII =0
Stress field:

1

27T

011 = —

9 6 36
{K,, sin > [2 + cos — cos 7]} d(r)

1 {K 0 0 39}(1)\/_
Oy = — ,,smzcoszcos > (Vr)

1

=0y = {K 9[1 ino s 36]}+¢>\/_
012_021_\/2_m‘ ,,cos2 sm251n > (Wr)
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(A.2)

(A.3)

(A.4)

(A.5)

(A.6)

(A.7)

(A.8)

(A.9)

(A.10)

(A.11)



_ 0 for plane stress

933 = { v(oy1 + 0y) for plane strain} (A-12)
all other o;; = 0 (A.13)
Displacement field:

(1+v)Ky .6 . 36
u, = T\/Zm‘ {[ZK + 3] smE + sin 7} + ®(r) (A.14)

(1+v)K; 0 30
u, = W\/an {[ZK —13] cos + cos 7} + &(r) (A.15)

e d z
"y = —Ef(an + 03,)dx;3 for plane stress (A.16)
0 for plane strain

where v is passion’s ratio, E is Young’s modulus , 8 and r are respectively the polar
coordinates at the crack tip, the term @ is includes just the higher order terms that nor
considered in this paper and x is the Kolosov constant. The Kolosov constant is
defined as

3—v
= Y for plane stress (A.17)

3—4v for plane strain
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APPENDIX B

It is preferred to present some of matrices and expressions in this section for
avoiding confusion of the report.

APPENDIX B.1

The constitutive law for linear elastic materials under plane stress (033 = 013 =

023 = 0) |S
011 E 1 v 0 €11
022 ¢ = 1—z|7 1 0 €22 (B.1)
012 0 0 1—vilérn

and the constitutive law under plane strain condition (e33 = €3 = €53 = 0) IS

011 5 1—v v v 0 €11
O22 | _ v 1—v v 0 €22
o33 (— 1—v2| v v 1-—v 0 £33(= 0) (B.2)
012 0 0 0 1-2v €12

The strain — displacement matrix in Equation (3.10) defined by the three matrix can
be defined as:

[B] = [L][T][N, ] (B.3)

The [L] matrix in (C.1) is the link matrix between strains and displacement
derivatives according to global coordinates. The matrix [L] for plane stress is

€11 0 0 O Ui U1
0 0 0 1 Uq,2 Uy,
{?2}= R R Rl R (B.4)
12 0 2 2 0 Uz Uz
and for plane strain;
€11 [ 1000 1 U1 U1
€22 _I 8 8 8 (1) ! Uiz | L Uq,2 B.5
£33(=0) _| 1 1 } Uz = [L] Uz 1 (B.5)
0 = =0 u u
812 2 > 2,2 2,2

It can be simplify as
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€11 1 0 0 O Uy U1
0 0 0 1 Uy Uq,2

{izz } = . 1 1 uyq (= [L] Usy (B.6)
12 2 2 0] (uy, Uz,2

where it enables the [L] matrix to be the same for both plane stress and plane strain.

The [I'] matrix is used in (C.1) connects the displacement derivatives in the global
coordinates with the displacements differentiated according to the mapped
coordinates, n — &. The [I'] matrix can be written as an expansion of the invers of
Jacobian matrix to take the two dimensions of the displacements, u; and u,, into
account. It takes the following form

Uy,1 Iy Ty 0 0 Uy ¢ Uy ¢
Uz (_[Ter Tz 0 0 Ui (| _ Uiy
Uza 0 0 Ihy Iy Uze [r] Uz (B.7)
Uz,2 0 0 [ Ty Uz Uzn

The [N, ] matrix is the matrix of derivatives of shape functions respect to the mapped
coordinate system. Is enables to write the displacement derivatives respect to the
mapped coordinates, n — £. In matrix notation [N, ] can be expressed as

( u1 ( ul
U, Uz
Uy ¢ I[Nl,g 0 Nzg O N3z 0 Nye O ]I Us Us
u N 0 N 0 N 0 N 0
ul‘" _ 1,n 2n 3n 4m | { 34 » = [N,] < 34 > (B.8)
2,5 0 Nl,f O Nznf 0 N3,§ 0 N4,§' 5 5
Uzn lO Niz 0 Ny, 0 Nz, 0 Ny Zs Zs
7 7
& Ug J & Ug /

And the strain displacement matrix transforms for both case to

Nip 0 Npy 0 Nyg 0 Ny 0
[B]=| 0 Np, 0 N, 0 N3, 0 Ny (B.9)
N1,2 Nl,l NZ,Z N2,1 N3,2 N3,1 N4—,2 N4-,1

where numbers 1,2,3 and 4 shows the set of nodes initial with the current node.

APPENDIX B.2

[BP] can be easily evaluated as the previous strain-displacement matrix found for
the classical elements. Displacement formulation of an element, initial with
Heaviside function, is given in matrix notation by

("), = H [N?]{b} (B.10)

The differentiation of the b-enriched displacement respect to global coordinates is
given by
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WMy = (H [N’D'{b} = H(IND'{b} (B.11)

The strain-displacement matrix can be evaluated as

[BP] = H([N?])" where the comma means the derivatives respect to global
coordinates, x; and x,. The derivation of the Heaviside function will not appear on
the strain-displacement formulation due to fact that it takes the values of +1 and -1
by passing the discontinuity.

The strain-displacement matrix can be evaluated as
[B”] = H[L][T][N?] (B.12)

where the all matrices are already available from Appendix B.1. It has a similar form
with Equation (B.9) as

HN,; 0
Bb=| 0 HN;, (B.13)
HNg, HN,

where i = {1,2,3,4} is the linear combinations of nodes that are enriched by
Heaviside function. For example, for any element that has b-enriched nodes of 1,3
and 4, the strain displacement matrix initial with b-DOFs becomes as

HN,;, O HNy; 0 HN, 0
[B']=| 0 HN,, O HNy;, 0 HN,, (B.14)
HN,, HNyy HNy, HN;; HN,, HN,,

APPENDIX B.3

The contributions of the displacements connected with the four branch functions —
cDOFs, see Equation (4.9), are for each element has crack tip enrichment

ult = Z Ny (x) <Z F(x) c,i) (B.15)
k=1 =1

The summation of shape functions over four nodes can be written in matrix notation
as

=[S o e e w16
and similarly the four branch function in matrix form can be expressed as

[F*] *
[F] = [F°] [F°] (B.17)
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where the blanks are zero and

[F*] =

FfF 0 Fb 0 F, 0 F, 0] (8.18)

O FfF 0 Fb 0 F, 0 F,

Displacement formulation of an element, initial with the four branch function, is
given in matrix notation by

WM. = [N“][Fl{c} (B.19)

a fully crack tip enriched element is shown n Figure B.1 with u-DOFs and cDOFs.
Usg, C26, C28, €305 C32
Ue, €185 C20, €22, C24

Uz, C25,C27,C29,C31

e — C
C ﬁsl C17,C19,C21, C23

Uy, Cp,Cq,Cq, Cg U4, C10,C12,C14, C16

(_L— U4y,€1,C3,Cs, C7 L U3, Cq, €11, €13, C15

Figure B.1 : An element with four crack tip enriched nodes.

The differentiation of the c-enriched displacement respect to global coordinates is
given by

W = (INCI[FD'{c} = [NT'[F] {c} + [N°][F] {c} (B.20)
The strain-displacement matrix for the c-enrichment can be evaluated as
[B] = [N“I'[F] + [N“][F]' (B.21)

where the comma means the derivatives respect to global coordinates, x; and x,. By
applying the chain rule the shape function derivatives matrix [N€]’ can be evaluated
easily as

[N€] = [L][T][N¢] (B.22)
The strain-displacement matrix can be rewritten as

[B] = [LI[T][NC][F] + [N°][F]' (B.23)
It has a similar form with Equation (B.13) as

Bf = [Bf* Bf* Bf® Bf*] (B.24)
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where Bf' are given as

cl
Bi

c2
Bi

c3 _
Bi

c4
Bi

[ N;1F; + N;Fy 4

0

| NioFy + NiFy

[ N;1F, + N;F,,
0
| NioF, + NiF5 ),
[ N;1F3 + N;Fs,
0

| NioF3 + NiF3),

[ Ni1Fy + NiFy
0

0 )
N Fy + NiFy,
Ni1Fy + NiFy 4
0 :
Ny F; + NiF,
N 1F; + NiF3 4
0
NiF3 + NiF3,
Ni1F3 + NiF31 |
0 :
Ny Fy + NiFy

Tt (B.25)

| NioFy + NiFyp  NijiFp + NiFyq |)

For example, for any element that has b-enriched nodes of 1 and 2, the strain
displacement matrix initial with b-DOFs becomes as

[B€] = [Bf* Bf? Bf* B{* B5' B5* Bs® B5*] (B.26)
APPENDIX B.4

The four branch functions have already been defined in terms of the local crack tip
polar coordinates system (r, 6) as

0
{\/_sm \/_cos— \/_smesm— \/_smecosz} (B.27)

Derivatives of F;(r.8) with respect to the crack tip polar coordinates (r.8) become

1 9 Vro 6 w
E ——sm _yr. .z
W Fio 5 €0
1 9 0
FZ,T=_COS F29=—\/—Fsin—
2vr ' 2 532

g (B.28)
F =isinesin€ Fop =7 osi 6 1 0 0

3r 2T 2’ I39= r(cos sm§+§sm cos§>

F _ 1 ino o F —f( 0 o 1'9'9>

4r = 2\/?5111 COSZ' 39 = Vr|cos cos2 2sm sm2 )

and the derivatives of F;(r. 8) with respect to the local crack coordinate system
(¥, X,) ,by means of coordinate transformation, can then be defined as:
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1 6
Fl,f1 = _ESIHE;
1 0
Foz, = ﬁcosi’
1 30
F3’f1 = —ﬁsmﬁ 51n7, F3,552
1 30
F4_‘551 = ﬁsm 0 C087’ F3,55-2

1 ) - 360
= —(sm— + cos @ sm—)

1 7] 30
= — (cos —+ cos @ cos —)J

1 6 3
F 3, = —=cos>

2Vr 2
1 6
FZ,J?z = Z_WSIHE >

2r\ 2 2

2\r 2 2

(B.29)

Finally, the derivatives in the global coordinate system,(x,, x,), are obtained as

Fi1 = Fy 5, cos(a) — Fy 5, sin(a)
Fi; = F, 5, sin(a) + F; 5, cos(a)

where « is the angle of crack path with respect to the x; axis.
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APPENDIX C

Table C.1: Gauss points and weights for rectangular elements.

Ordern | Location of Gauss Points (¢;,7;) Weight factors W;, W;

6 +0.932469514203152 0.171324492379170
+0.661209386466265 0.360761573048139
+0.238619186083197 0.467913934572691

Table C.2 : Gauss points and weights for triangular elements.
Number of Location of Gauss Points Weight factors W;
Gauss & nj
Points

0.166666666666667 0.166666666666667 0.333333333333333

3 0.666666666666667 0.166666666666667 0.333333333333333

0.166666666666667 0.666666666666667 0.333333333333333

0.101286507323456 0.101286507323456 0.125939180544827

7 0.470142064105115 0.059715871789770 0.132394152788506

0.797426985353087 0.101286507323456 0.125939180544827

0.333333333333333 0.333333333333333 0.225030000300000

0.059715871789770 0.470142064105115 0.132394152788506

0.470142064105115 0.470142064105115 0.132394152788506

0.101286507323456 0.797426985353087 0.125939180544827
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APPENDIX D

APPENDIX D.1

The next problem is simulation of a crack emanating from a circular hole in a
rectangular plate under tension (ACECHRPUT) in Figure D.1. To calculate the stress

2h

2a

2w

Figure D.1: A crack emanating from a circular hole in a rectangular plate under
tension.

intensity factor for current example, it is necessary to define the hole and additional
boundary conditions. The circular hole is defined by a piecewise function f, in
Figure D.2 (a). the piecewise function fh is given by

-1 ifd—-r>0

fa={ 0 ifd-r=0 (D.1)
+1 ifd-r<0

where d is the distance of any node from the center of the circular hole and r is the

radius of the circular hole. Figure D.2 (b) illustrates an element has a discontinuity
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due to the circular hole. The nodes on the hole boundary is kept stress free and the
nodes inside of the hole are skipped during the calculation of the global stiffness

fh=+1 4 3

cracks

the hole baundary 7/
fh=0 ’
/
/
/
1 ! 2
-I
(a) The piecewise function fh for a (b) An element has a discontinuity due
circular hole to circular hole
Figure D.2 : Illustration of the piecewise function fy, for a circular hole.

matrix. The factor F; is given in Stress Intensity Factors Handbook [36] by:

Ki

F =
! ovr L

(D.2)

where K; is the calculated mode I stress intensity factor, ¢ is tensional stress and a is
half of the crack length where the crack has a circular hole (R is the radius of circular
hole) at the center; a=R-+c. The parameters, o and B, given by

(D.3)

=< D.4
ﬁ—ﬁ (D.4)

The results for the Crack Emanating From A Circular Hole in A Rectangular plate
Under Tension is represented in Table D.1 for various values of a and p for h/w=2
and R/w=0.25, which are kept constant during the analysis. The results have a good
agreement with the reference ones even if they are not exact. The maximum of error
is less than 4%.

The error decreases while o and  are increased and it starts to increase for higher
values of o and B than 0=0.5 and B=1.0. It is because of the dimensions of plate kept
constant while both a and R were increasing.
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Table D.1: The factor F; for ACECHRPUT with variation of o and B by Stress
Intensity Factors Handbook [36] and the MATLAB code.

Stress Intensity Factors Handbook
[36] With My MATLAB Code
FI FI (Newman) Fl
o B CTland CT2 CT1land CT2 CT1 CT2

0,30 0,20 1,0750 1,0776 1,0385 1,0385
0,35 0,40 1,1780 1,1783 1,1584 1,1584
0,40 0,60 1,2216 1,2156 1,1996 1,1996
0,50 1,00 1,2850 1,2853 1,2692 1,2692
0,60 1,40 1,3960 1,3965 1,3765 1,3765
0,70 1,80 1,5760 1,5797 1,5511 1,5511
0,80 2,20 1,8900 1,9044 1,8553 1,8553

APPENDIX D.2

The new example is similar with pervious one except the hole is a square turned 45°
in clockwise direction and the crack lies at the corner of the square in Figure D.3.

Figure D.3: A crack emanating from a rectangular hole in a rectangular plate
under tension.

The square hole described similarly in Figure D.4 (a) with
—1 if the nodes is inside of the hole

fn =1 0 if thenodes is on the baundary of the hole (D.5)
+1 if the nodes is outside of the hole
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4 3
the hole baundary / /7
e fh=+1 /
/
/
/
fh=-1 <
7/  fh=1
/
fieey cracks //\1
// fh=0 (the baundary)
K
1 2
(@) The piecewise function fh for a (b) An element has a discontinuity due
rectangular hole to rectangular hole
Figure D.4 : Illustration of the piecewise function f,, for a rectangular hole.

The factor F; is given in Murakami [37] by:

ovr L

where K; is the calculated mode I stress intensity factor, ¢ is tensional stress and L is
half of the crack length where the crack has a rectangular hole at the center; L=a+c.

F, (D.6)

The analysis of the crack emanating from a rectangular hole in a rectangular plate
under tension (ACERHRPUT) is represented in Table D.2 and D.3 for various values
of c/a ratio. First situation has a maximum error of 2% for h/w=1 and R/w=0.05
while the second has the maximum error of 4% for h/w=1 and a/w=0.1. The results
have a good agreement with the reference ones and have the maximum error of 4%.
As discussed for the circular hole, the plate includes largest hole is the plate where
the largest error occurs.

APPENDIX D.3

the hole is described as discussed in the Crack Emanating from a Circular Hole in A
Rectangular plate Under Tension problem and it is also described as a hard inclusion
such that the nodes lies on the boundary of the hole and inside of the hole are fixed in
both direction.

The crack growth angle is given by

2
0 = 2tan™? i+1 (i) +8 (D.7)
4K, — 4 |\aK,,
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where K; and K; are the calculated mode | and mode Il stress intensity factors,
respectively. The crack growth direction given by Equation (D.7) is known as
Maximum tangential stress criterion and was covered in the previous sections in
more detail.

Table D.2 : The factor F; for ACERHRPUT with h/w=1 and a/w=0.05 and variation
of c/a by Murakami [37] and the MATLAB code.

For h/w=1 and a/w=0.05
by Murakami [37] With My MATLAB Code

Fl Fl
cla CTlandCT2 CT1 CT2
0,30 1,0635 1,0499 1,0499
0,40 1,0580 1,0485 1,0485
0,50 1,0520 1,0470 1,0470
0,60 1,0460 1,0442 1,0442
0,80 1,0370 1,0396 1,0396
1,00 1,0300 1,0366 1,0366

Table D.3 : The factor F; for ACERHRPUT with h/w=1 and a/w=0.10 and variation
of c/a by Murakami [37] and the MATLAB code.

For h/w=1 and a/w=0.1
by Murakami [37] With My MATLAB Code

Fl Fl
cla CTland CT2 CT1 CT2
0,30 1,0635 1,0869 1,0869
0,40 1,0580 1,0866 1,0866
0,50 1,0520 1,0862 1,0862
0,60 1,0460 1,0862 1,0862
0,80 1,0370 1,0781 1,0781
1,00 1,0300 1,0629 1,0629

Figure D.5 shows a series of crack part for different positions of the rectangular hole
that described as

—1 if the nodes is inside of the hole
fn =1 0 if the nodes is on the baundary of the hole (D.8)
+1 if the nodes is outside of the hole

The hole boundary is stress free which means nodes are stress free if they are on the
boundary of the hole. This means the hole boundary also deforms during the load is
applied. And the nodes, inside of the hole, have no participation for the calculation of
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global stiffness matrix and they are decrease the number of the total degree of
freedom.

The each line shows how the crack propagates near the hole. The hole starts to
extend from the dark red line to the magenta. The crack path has directed to the
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Figure D.5: A series of crack part for different positions of the rectangular hole
defined by (D.8).

downward of the plate and after the crack tip start to get closer to the hole it starts to
change the direction to the upward of the plate. After the crack path reaches a pick, it
starts to go downward again. During the simulation at each step of crack path, the
crack grows with a constant crack growth of 0.25. The crack tip where there is no
hole near by the crack paths are nearly the same. The hole centers are placed to (15,
15) and the dimensions of rectangular hole increase. While the hole becomes larger,
it starts to get closer to the crack. That is why the deviation of the crack path near the
hole becomes larger as expected.

Figure D.6 shows a series of crack part for different positions of the rectangular hole
that described as

—1 if the nodes is inside of the hole
fn =1 0 if the nodes is on the baundary of the hole (D.9)
+1 if the nodes is outside of the hole
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The hole in Figure D.6 is simulated as a hard rectangular inclusion. It means that
both nodes inside of hole and nodes lies on the hole boundary are fixed in both
direction. Those nodes, inside of the hole and on boundary of hole, have no
participation for the number of the total degree of freedom due to their fixed
displacements.

The each line shows how the crack propagates near the hole, defined as a hard
inclusion and placed to the center at (15, 15). The hole starts to extend from the light
blue line to the black one. The crack path has directed to the downward of the plate
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Figure D.6 : A series of crack part for different positions of the rectangular hole
defined as a hard inclusion .

away from the inclusion as expected. The deviation of the hole to downward of the
plate increases while the rectangular hole is getting closer to the crack.

In this section different types of examples are covered to illustrate the program is
working properly and the evaluated results have good agreement with each other.
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APPENDIX E

APPENDIX E.1

The crack growth for additional Case I is illustrated in Figure E.1 by different K, ¢
formulas for a 0.16*0.12 m rectangular plate with a center crack lies from (0.055,
0.08) to (0.065, 0.08). The non-proportional loading illustrated in Figure E.1 is given
for additional Case | by

o=12x107(1+ 0.6 sin(wt)) Pa } (E.1)

7 = —8.5 X 1070.84bs(sin(2wt)) Pa

0,14

0,12

0,1

/

Keff by Eq! (9.10)

004 b e Keff by Eq. (9.8)
)

= = == KeffbyEq. (9.9)

0,02

............. Keff by Eq: (9.11)

0 0,02 0,04 0,06 0,08 0,1 0,12
X, [m]

Figure E.1 : Estimated crack paths for additional Case | by each K¢ formula.

The loads are applied in 36 steps to catch the change of K, ¢ correctly. The change
of K, according to the different K s, formulas is illustrated in Figure E.2 for the
first iteration. As seen from Figure E.2, K, ;s makes the maximums at the 5, 13",
22" and 32" load steps and, the minimums at the 9", 19", 27" and 35" load steps.
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Figure E.2 : Stress intensity factors calculated at the first iteration for additional
Case I.

Figure E.3 shows the change of crack growth rate respect to the employed K¢,
formula at each crack tip with Case | loadings. The both crack tip grow symmetrically as
seen in Figures E.1 and E.3. The crack grow rates are in the range of 10 to 10 m/cycle.

2,0E-06 CT I

1,5E-06

—o— Keff by Eq.
1,0E-06 (9.10)
—— Keff by Eq.
(9.8)
——a— Keff by Eq.
5,0E-07 (9.9)
——— Keff by Eq.
(9.11)

da/dN [m/cycle]

0,0E+00

0 20 40 60 80 100
DK ¢ [MPavm]
2,0E-06 CT I I
. 15E-06
(]
o
3 ——o— Keff by Eq.
L (9.10)
£ 1,0e-06 —@— Keff by Eq.
2 (9.8)
E ——a—— Keff by Eq.
3 (9.9)
5,0E-07 ——— Keff by Eq.
(9.11)
0,0E+00
0 20 40 60 80 100
BK . [MPaVm]

Figure E.3: The change of crack growth rate respect to the employed K¢ formula
at each crack tip for additional Case 1.
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APPENDIX E.2

The crack growth for Case Il is illustrated in Figure E.4 by different K, ., formulas
for a 0.16*0.12 m rectangular plate with a center crack lies from (0.055, 0.08) to
(0.065, 0.08). The non-proportional loading illustrated in Figure E.4 is given for Case
Il by

o =20x107Pa

13
T=-5g% 107 (1 + 0.8 sin(2wt)) Pa

(E.2)

0,16

0,14

>
/
0,1

E 008 ]
~

/
0,06 e

P —Keff by Eq. (9:10)
. rd
0,04 Keff-byEq-{9-8}
- Keff by Eq:(9:9]
0,02 Keff-by Ea—{9-11)
0
0 0,02 0,04 0,06 0,08 0,1 0,12

X, [m]

Figure E.4 : Estimated crack paths for Case Il by each K¢ formula.

The loads are applied in 36 steps to catch the change of K, ¢ correctly. The change
of K. according to the different K, formulas is illustrated in Figure E.5 for the
first iteration. As seen from Figure E.5, K, ;s makes the maximums at the 4" or 5"

and 22" or 23" load steps and, the minimums at the 13" or 14™ and 31" or 32" load
steps.

Figure E.6 shows the change of crack growth rate respect to the employed K¢,
formula at each crack tip with Case Il loadings. The both crack tip grow symmetrically as
seen in Figures E.4 and E.6. The crack grow rates are in the range of 107 to 10°® m/cycle.
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Figure E.5 : Stress intensity factors calculated at the first iteration for Case I1.
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Figure E.6 : The change of crack growth rate respect to the employed K¢ formula
at each crack tip for Case II.
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APPENDIX E.3

The crack growth for Case Il is illustrated in Figure E.7 by different K., formulas
for a 0.16*0.12 m rectangular plate with a center crack lies from (0.055, 0.08) to
(0.065, 0.08). The non-proportional loading illustrated in Figure E.7 is given for Case
11 by

=B 07 p
O'—ﬁx a (E3)

T =—40 X 107 sin(2wt) Pa

0,1

X, [m]
o
S
U
U
1

0,06

= Keff by Eq. (9.10)

..... eff by Eq. (9.8)
0,04

= = = = Keff by Eq. (9.9)

............. eff by Eq. (9.11)

0,02

0 0,02 0,04 0,06 0,08 0,1 0,12
X,[m]

Figure E.7 : Estimated crack paths for Case Il by each K¢ formula.

The loads are applied in 36 steps to catch the change of K, ¢ correctly. The change
of K, ¢ according to the different K, s, formulas is illustrated in Figure E.8 for the
first iteration. As seen from Figure E.8, K, makes the maximums at the 4" or 5™

13" or 14™, 22" or 23" and 31" or 32" load steps and, the minimums at the 9™, 18"
27" and 36" load steps.
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Figure E.8 : Stress intensity factors calculated at the first iteration for Case IlI.

Figure E.9 shows the change of crack growth rate respect to the employed K.,
formula at each crack tip with Case 111 loadings. The both crack tip grow symmetrically as
seen in Figures E.7 and E.9. The crack grow rates are in the range of 10 to 10 m/cycle.
The K, given by Equation (9.8) has the slowest crack grow rate due to fact that the cycle
mode |1 loading is larger than the static mode | loading and K, is weighted with 1. The mode
Il loading is selected such largely to sustain the crack growth that is identical the Region 1.
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Figure E.9 :

The change of crack growth rate respect to the employed K¢ formula

at each crack tip for Case IlI.

APPENDIX E.4

The crack growth for Case IV is illustrated in Figure E.10 by different K, . formulas
for a 0.16*0.12 m rectangular plate with a center crack lies from (0.055, 0.08) to
(0.065, 0.08). The non-proportional loading illustrated in Figure E.10 is given for

Case IV by
o =30 x 107 sin(wt) Pa
5 7
7T=——X10’ Pa
0.8
0,16
0,14
0,12
0,1
//
EN 0,08 e —
= )
/__‘,,.«-""'

0,06

———— Keff by Eq. (9.10)

004 —1t L L1 l-a.- Keff by Eq. (9.8)

- = = = Keff by Eq. (9.9]

002 —t 1L e eff by Eq. (9.11)
0

0 0,02 0,04 0,06 0,08 0,1 0,12
X, [m]

Figure E.10 : Estimated crack paths for Case VI by each K¢ formula.
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The loads are applied in 36 steps to catch the change of K, ¢, correctly. The change
of K, according to the different K, formulas is illustrated in Figure E.11 for the
first iteration. As seen from Figure E.11, K, makes the maximums at the 9™ and
27" load steps and, the minimums at the 18" and 36" load steps.
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Figure E.11 : Stress intensity factors calculated at the first iteration for Case 1V.

Figure E.12 shows the change of crack growth rate respect to the employed K.,
formula at each crack tip with Case 111 loadings. The both crack tip grow symmetrically as
seen in Figures E.10 and E.12. The crack grow rates are in the range of 10”° to 10
m/cycle.
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Figure E.12 : The change of crack growth rate respect to the employed K¢ formula
at each crack tip for Case IV.
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APPENDIX F

The implemented MATLAB source code is listed on the following pages for the
Flow chart is illustrated in Section 10. The MATLAB code has been prepared such
that the user modifies the InputFile.m file, then runs xfemMain.m from the
MATLAB Command Window to solve a fatigue crack problem under mixed mode
non-proportional loading. A detailed description of the input variables follows as
well as a brief summary of the functions which make up the complete code follows.

- BoundaryCond.m

This function applies the specified boundary conditions to the domain. For the hole,
the additional fixed degrees of freedom are also calculated and added to the global

system of equations.
- TotalDOF.m

This function calculates the total number of degrees of freedom in the system

considering traditional, Heaviside, and crack tip degrees of freedoms.
- CreateMesh.m

This function calculates the global coordinates of all the nodes, generates the mesh,
defines element connectivity and also begins to build the Nodes matrix which keeps

track of the numbering for the enriched degrees of freedom.
- ElementStresses.m

This function calculates the stresses at each node for the given geometry to plot the

nodal stress values.
- EnrichedElements.m

This function identifies the enriched elements and redefines the enriched elements

which will cause from the crack propagation.

- ForceVector.m
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This function creates the global force vector and redefines the global force vector for

each load step during a load cycle.
- GaussPoints.m

This function contains the values of integration points and weights that will be used

for Gauss quadrature in quadrilaterals and triangles.
- CrackGrowth.m

This function evaluates the angle and magnitude of the next crack growth increment
for both crack tips. The direction of future crack growth is determined based on the
Maximum tangential stress criterion. If the Paris Law constants are assigned in
InputFile.m then the Paris Law with different Keff formulas are used to determine
the increment of crack growth. If the Paris Law constants are not defined, the crack

will propagate with the specified amount of crack growth.
- InputFile.m

The following input variables are used to define the problem of interest: Domain,
MAT, CRACK, HOLE, GROW, FORCE, BC, PLOT. In order for an analysis to
successfully run, the minimum required variables to be defined are DOMAIN, MAT,
GROW, FORCE and BC.

- Jintegral.m

This function calculates the mixed-mode stress intensity factors for the crack tip
enrichment functions. The default J-domain search radius is 4 elements around the
crack tip. The stress intensity factors are retuned such that the last tip in CRACK is
first and the first tip in CRACK is second.

- Discontinuty.m

This function creates the functions used to track the crack tips, crack body, and holes.
In addition this file defines the locations of the enriched degrees of freedom and

assigns these enriched nodes tracking values in the Nodes matrix.
- plotDeformation.m

This function plots the deformed mesh. If it is needed, node and element numbers,

the enriched nodes can be plotted

- plotStress.m
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This function plots the stress distribution within each element and discontinuities. As
an option, the average nodal stress values are also available.

- GlobalStifnessMatrixK.m
This function calculates the global stiffness matrix for the global equation system.
- Triangularization.m

This function subdivides elements containing discontinuities into triangles so that

accurate integration can be performed in these elements.
- UpdateGlobalStifnessMatrixK.m

This function redefines the global stiffness matrix according to redefined crack tip

elements and Heaviside elements.
- xfemMain.m

This function controls the calling of the various functions to perform the desired
analysis. The analysis or the simulation consists of main and sub iterations. The sub
iterations calculate the KI and KII for a load cycle with the crack described by the
step wise linear function. The main iterations calculate the crack growth rate and the
crack angle for each crack tip according to the calculated Kl and KIIl. And then the
crack incensements are added to each crack tip to define the crack as a step wise

linear function.

The source codes are given in a CD at the end of the thesis to avoid the unnecessary

paper consumption and to simplify the usage of the program.
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