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FERROREZONANCE FAULT DETECTION IN ELECTRIC POWER 

NETWORKS BY NEURAL NETWORKS 

SUMMARY 

Ferroresonance is a complicated nonlinear waving which can appear in electrical 

circuits with a series or parallel connection of nonlinear inductance and capacitance. 

Cause of the current of ferroresonance on the transmission line elements such as cables 

or transformers can be partially or completely damaged. This destruction not only 

creates huge material losses on the system but also creates unjust suffering. 

It is important for the sustainability of the system that a devastating error such as 

ferroresonance can be detected. If ferroresonance can detecting in advance prevent the 

loss of time and money for the user by destroying the elements such as power 

transformer and cables used in the system 

Ferroresonance is nonlinear situation and learning in artificial neural networks has 

advantages such as working with missing or uncertain data, processing real conditions, 

handling nonlinear situations, being more successful than traditional methods, fault 

tolerance. 

Artificial neural networks are referred to by this name because they are based on 

learning of the human neural cell in principle. One nerve cell receives information 

from other cells from the dendrites department, which corresponds to input in artificial 

neural networks, while axon in human nerve cells corresponds to output in artificial 

neural networks. Artificial neural networks mainly consist of three layers. There are 

hidden tabs determined by the number of layers between the input and the output. The 

learning process is multiplied by the randomly assigned weight value of the input 

value, and the NET value is created, and if it is determined, the bias others are summed 

and output from the cell where this total value is found according to the activation 

function. This output value is the input of the next hidden layer and continues until the 

same process reaches the output value. The output value gives the result of the learning 

operation according to the specified value ranges. The activation function is important 

in solving the problem used. Various activation functions are mentioned in the thesis. 

A successful algorithm was investigated by using an artificial neural network method 

to detect ferroresonance error. 

In this study, four different ferroresonance data emerging with different scenarios in 

the transmission line which used energy transmission line modeling from western 

Anatolia Turkey Seydisehir-Oymapınar transmission line has 380 kV were used as 

input values. 

 

Work steps; literature search on the subject, detection of the moment when 

ferroresonance starts in voltage outputs, creating input, training and example data from 

ferroresonance data, to create the appropriate algorithm for nonlinear ferroresonance. 
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ELEKTRİK GÜÇ HATLARINDA FERROREZONANS ARIZASININ YAPAY 

SİNİR AĞLARI İLE BELİRLENMESİ 

ÖZET 

Günümüzde artan enerji ihtiyacı sonucunda iletimde enerji kayıplarının azaltılması 

için iletim hatlarında gerilim değerleri arttırılma yoluna gidilmiştir, artan gerilimin 

akımı düşürmesiyle iletim kayıplarının azalması hedeflenmiştir. Aynı zamanada artan 

enerji ihtiyacı dağıtım ağında da kablo artışına sebep olmaktadır. Oluşan yüksek 

gerilimler ve artan kablolar hatlardaki kapasitif yükleri arttırmaktadır Kapasitif yükün 

artması iletim ve dağıtım hatlarında endüktif transformatör, şönt reaktör,güç trafoları 

gibi doyuma gidebilen ve lineer olmayan endüktif özellik sergileyebilen manyetik 

çekirdeğe sahip elektrik makinaların çakirdek endüktanslarının doyuma gitmesine 

neden olmakta ve doğrusal olmayan endüktans karakteristiğine sebep olmaktadır. Bu 

doğrusal olmayan karakteristik kararlı ve geçici rejimlerde tahmini zor ani elektriksel 

haraketlere sebep olmaktadır. Bu tür ani elektriksel olayların yaşanmaması için 

transformatörler tasarlanırken, sisteme alma sırasında oluşabilecek ani akımları göz 

önünde bulundurup çekirdek tasarım değerleri, genellikle devreye alma sırasında 

çekirdekte kullanılan tanecikleri yönlendirilmiş soğuk haddelenmiş silisyumlu demir 

nüveye ait üretici tarafından verilen akı yoğunluğu ile manyetik alan yoğunluğu 

grafigindeki dirsek bölgesi kırılma noktası değerinin  kullanılan sacın 0.9 ile 0.85 katı 

arasında çalışılarak önlem almaktadırlar. 

 

Devredeki ögelerden birinde meydana gelen bu ani değişmeler hat üzerindeki 

elemanların gerilim ve akımlarında ani ve riskli yükselmelere sebep olur. 

Ferrorezonans, doğrusal olmayan endüktans ve kapasitansın seri veya paralel 

bağlantısı olan elektrik devrelerinde meydana gelebilecek karmaşık doğrusal olmayan 

salınımlardır. Pratik tecrübe ve teorik çalışmalara göre bu fenomen, yüksek seviyede 

harmonik bozulma ile yüksek aşırı gerilim ve aşırı akım oluşumuna yol açar ve 

geleneksel aşırı gerilim ve aşırı akım baskılama yöntemleriyle ortadan kaldırılamaz. 

Elektrik şebekelerinde, oluşabilcek ani bir ferrorezonas sonucu ortaya çıkan yüksek 

akımla sistem üzerindeki koruma ya da iletim elemanlarında maddi oolarak kısmi 

hasalar ya da geri dönüşü mümkün olmayan kalıcı hasarlar meydana getirebilmektedir. 

Örneğin kablolarda koruyucu kılıfların erimesi ya da kopması, trafolarda 

ferrorezonansın olduğu fazda bobinde deformasyonlar,ani akım artışıyla anı 

ısınma,kazanlarda patlama yırtılma,transformatörlerde yangın,yağ sızması gibi sadece 

şebekeyi değil çevreyi de etkileyen tehlikeye atan tehlikeli arızaları mümkün kılmakta 

arızanın meydana gediği şebekede uzun süreli güç kaynağı kesintisine neden 

olabilmekte ve bu hat üzerindeki dağıtım ya da iletim şirketinde maddi za zamansal 

kayıplara sebep olduğu gibi kullanıcılarında enerjisiz kalmasına ve maduriyet 

yaşamalarına sebep olabilmektedir. Bu nedenle, ferrorezonas arızasından kesinlikle 

kaçınılması gerekir. Ağın işleyişinde ferrorezonansın neden olduğu arızaların sayısı 

azaltılmadığından, verilen sorun günümüzde önemlidir.  
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Elektriksel güç sistemlerinde, ferrorezonans, temel frekansta veya subharmonik veya 

daha yüksek dereceli harmonik frekanslardan birinde oluşabilir. Doğrusal olmayan 

transformatör bu akım ve gerilim harmoniklerini tanıtır. Ferrorezonans, bir kapasitans 

ve bir endüktans bu harmoniklerden birine girdiğinde ortaya çıkar. Ferrorezonans, 

temel frekansta meydana gelirken, bazen subharmonik ferrorezonans da olabilir. İkinci 

durumda, ferroresonant aşırı gerilimler daha az şiddetlidir ve hafifletilmesi daha 

zordur. Bu tür ferrorezonans, bazen bir gerilim trafosunun enerjilendirilmiş bir hat 

boyunca uzanan enerjisiz bir iletim hattına bağlandığı ekstra yüksek gerilim iletim 

ağında meydana gelir. 

 

Bu çalışmada; Tahir Çetin Akıncı tarafından oluşturulan Türkiye Batı Anadolu enerji 

iletim hattı parçası olan 380kV’luk Seydişehir-Oymapınar iletim hattı modeli ile 

model üzerinde muhtemel ferrorezonans senaryoları oluşturulmuş R fazına ait dört 

farklı ferrorezonans verisi kullanılmıştır. 

Yapay sininir ağları, makine öğreniminin alt dallarından biridir. Günümüzde tıpta 

hastalık tespiti ya da tahmini, mühendislikte arızaların belirlenmesi, üretim, hata 

öngörüsü, sosyal ağlarda kişiye özel reklamların gelmesi için kullanıcının ilgi 

alanlarının tanımlanması gibi pek çok alanda farklı amaçlarla kullanılmaktadır. 

 

Yapay sinir ağları prensipte insan sinir hücresinin öğrenmesini baz aldığı için bu isimle 

anılmaktadır. Bir sininir hücresi dentrit bölümünden diğer hücrelerden gelen bilgiyi 

alır bu durum yapay sinir ağlarında inputa tekabul ederken, insan sinir hücresinde 

akson yapay sinir ağlarında outputa tekabül etmektedir.Yapay sinir ağları temelde üç 

katmandan oluşur. İnput ile outpt arasında katmansayısı kullanıcı tarafından belirlenen 

gizli sekmeler bulunmaktadır.  

 

Öğrenme işlemi input değerinin rastgele atanan ağırlık değeri ile çarpılarak NET 

değerin oluşturulması ve belirlenmişse bias dğerlerinin toplanıp bu toplam değerinin 

aktivasyon fonksiyonuna göre bulunduğu hücreden çıkışı alınır. Bu çıkış değeri bir 

sonraki gizli katmanın girişi olup aynı işlem çıkış değerina ulaşıncayakadar devam 

eder.Belirlenen değer aralıklarına göre çıkış değeri öğrenme işleminin sonucunu verir. 

Aktivasyon fonksiyonu kullanılan problemin çözümünde önem teşkil etmektedir. 

Tezin içerisinde çeşitli aktivasyon fonksiyonlarından bahsedilmiştir.  

 

Ferrorezonans gibi yıkıcı etkisi yüksek bu arızanın tespitinde algılamaya göre 

sınıflandırma veyahut tanıma yapabilmeleri, yapay sinir ağlarının öğrenebilmesi, eksik 

ya da belirsiz datalarla da çalışabilmesi, gerçek zamanlı bilgiyi işleyebilmesi, lineer 

olmayan durumları işleyebilmesi, geleneksel yöntemlere göre daha başarılı olması, 

hata toleransının olması,ferrorezonans gibi lineer olmayan ani ortaya çıkan yıkıcı 

etkisi fazla olan olayın tespitinde avantajlı olacağı için bu durumun tespitinde yapay 

sinir ağları yönteminin kullanılmasının avantajlı olacağı düşünülmüş ve başarılı bir 

algoritma araştırılmıştır. 

 

Bu tezde girdi olarak kullandığımız Seydişehir-Oymapınar iletim hattı pi modeli ile 

modellenmiş olup ile model üzerinde muhtemel ferrorezonans senaryoları üzerinden 

oluşturulmuş R fazına ait dört farklı ferrorezonans datsı birleştirilerek input datası 

öğrenme için kullanılan data oluşturulmuş, Matlab© nntool kullanılarak bu hat 

üzerinde ki olasılı ferrorezonans durumunda hangi algoritmanın, bu algoritmada 

kullanılan aktvasyon fonksiyonu gibi değerler değiştirilip hangisinin daha optimum 

olduğu araştırılmıştır. 



xxiv 

 

Tezin hazırlanma aşamasında; literatür çalışması yapılmıştır .Bu safhada konu ile ilgili 

akademik yayınlar ya da kitaplar araştırılmıştır. 

Dört farklı ferrorezonans verileri 500 veriden oluşan parçlara ayrılıp, ferrorezonans 

olayının başladığı nokta tespit edilip, ferrorezonans olayının meydana geldiği kısımlar 

her dört veri için toplanıp bu olulşan verilerden giriş değerleri oluşturulmuştur. 

Matlab© programı kullanılarak çeşitli algoritmalarla lineer olmayan ferrorezonans 

olayını belirleyen durum için uygun lagoritma arayışına gidilmiştir. 
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 INTRODUCTION 

Today, as a result of technological advances, the need for energy is increasing. The 

consumption and need of electricity is increasing every year due to reasons such as 

preferring electric vehicles instead of petroleum-based fuels, increasing the number of 

domestic appliance used in the home, producing a special electrical device for every 

need and an increase in industrialization. Providing quality and reliable electricity that 

consumers will need in the electrical energy system is of great importance socially and 

economically. The generation, transmission and distribution of electrical energy is a 

rather complicated event. During this event, it may be necessary to add new elements 

to the system or maneuver the system. These events can cause various failures such as 

ferroresonance (Akinci, et al., 2009), (Dimitriyev, et al., 2003). 

Increasing energy demand not only caused a rise in energy production but also 

increased the elements required for the transmission of energy, for instance 

underground transmission and distribution cables, circuit protection elements, 

transformers, capacitors, etc. Energy is transmitted with high voltage in order to 

minimize losses while transmitting energy. In order to reduce losses that occur in 

cables, energy is transmitted to high stress. High voltages and increased cables 

resulting from this increasing energy need increase the capacitive loads in the lines, 

increase in capacitive load induction transformer, shunt reactor, power transformers, 

electrical machines with magnetic cores lead to saturation of core inductances and 

cause non-linear inductance characteristics. This non-linear characteristic of stable and 

transient regimens difficult to predict sudden electrical movements. Paul Boucherot 

first used definition of ferroresonance for this nonlinear condition in the 1920s. 

(Boucherot, 1920) The first analytical experiment and work about ferroresonance were 

carried out in the 1950s by R. Rudenberg (Rudenberg, 1950) and later in the 1950s by 

C. Hayashi (Hayashi, 1964). 
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 Literature Study 

There are different approaches to detecting ferroresonance; 

Akinci, et al.(2009), investigated the effect of the ferroresonance event, which has a 

destructive effect on energy transmission lines, in a phase system. In this study, a 

general approach is obtained by modeling the Ferroresonance event with the ATP 

package program in the 36 kV transmission systems. FFT analysis of the harmonics 

formed in the modeled system was made and this analyze and results were evaluated. 

With the formation of ferroresonance in the transmission line, high-frequency 

components appeared. High-frequency components dominate between 0 and 2000 Hz 

by FFT analysis. It can be seen that it contains the working frequency in particular. 

Although the arrow above 2000 Hz has high amplitude frequencies, it is rarely seen. 

These frequencies are likely to be inter-harmonics. With the formation of 

ferroresonance, the system contains high-frequency components other than 50 Hz 

frequency. These voltage and high-frequency changes are harmful to the system. 

Seker, et al. (2011), by using Seyitömer-Işıklar model data to determine the frequency 

and statistical properties of the event using the voltage values in the R phase, power 

spectral density approach, and Fourier analysis. In this study, it is mentioned that inter 

harmonics are important in ferroresonance detection. In this study, frequency-domain 

analysis and related to the statistical studies were conducted, frequency ranges 

resulting from ferroresonance are determined and it is concluded that the 

ferroresonance effect will be explained by inter harmonics. 

Sharbain, et al., 2017, In the 60 Hz frequency system, they modeled the 32 km 

transmission line with the pi section. In this study, it was observed that the highest 

recognition rate was achieved in Dd6 and after learning the changes in the number of 

neurons and layers. It has been observed that in most of the tested cases, ferroresonance 

can be detected with an average accuracy of more than 95%. 

Wahyudi, et al.(2017), in this article, maneuvers were performed with cutters in a step-

down transformer in 20kV distribution network and ferroresonance was created, this 

data was used for ANN and it was concluded that ANN is a successful ferroresonance 

analysis method. 

Valverde, et al.(2012), The voltage output in the fundamental ferroresonance mode of 

the fault generated by the voltage transformer used, Matlab© analysed using artificial 
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neural network tool and concluded that artificial neural network is extremely 

successful in determining this malfunction. 

 Outline of the Thesis 

In this thesis; Western Anatolia, Turkey was part of the power transmission line 

Seydisehir-Oymapınar transmission fault data obtained models made in accordance 

with the actual data of the line is used. Four different ferroresonance faults were 

created with different scenarios from the model and the voltage outputs of this fault 

were used as the inputs of the neural network used, to use these inputs in the artificial 

neural network to investigate which algorithm is most suitable for this type of non-

linear situation and to be a guide in matters compatible with a neural network that can 

be developed for this type of failure. 

 

This thesis consists of six main chapters. In the first part, the introduction of the thesis 

is mentioned. Studies on the subject of the literature survey and ferroresonance are 

mentioned. In the second part, the phenomenon of ferroresonance is explained. In the 

third chapter, the artificial neural network is explained, in the fourth chapter; the 

fractions obtained from the actual modelling of the Seyitömer-Işıklar line and in which 

scenarios are explained. In the fifth section, various algorithms were created using the 

Matlab© tool and in the last section, the algorithms tested were compared and the 

successes of the established algorithms were evaluated. 
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 FERRORESONANCE PHENOMENA 

 
Excessive voltages and currents that occur in systems where ferroresonance occurs, 

especially over-currents, cause the insulation materials to go above their thermal 

resistance due to the high heat they generate and thus loss of insulation. As a result of 

this loss of insulation, short circuits occur in the system and irreversible failures may 

occur (Akgun, et al., 2019). Because in the case of ferroresonant, the voltage in the 

system can be approximately (1.5-3.5) times the nominal voltage. The fact that these 

malfunctions are highly charged and cause disruptions in energy transmission and 

distribution creates both a substantial material record and victimization. 

Ferroresonance not only causes problems in insulation materials but also causes the 

protection devices to work and break down untimely. Before understanding 

ferroresonance, the concept of resonance should be considered. (Pejic, et al., 2017), 

(Akinci, et al., 2013), (Akinci & Ekren, 2011). 

 

 2.1 Resonance 

 

Resonance circuits, capacitive elements and inductor elements are needed for 

resonance to occur. The resonance circuits are obtained by connecting the inductance 

in series or parallel a capacitor as shown in figure 2.1. In equation 2.1 and equation 2.2 

shows that resonance formula, in formula ƒ is resonance frequency in hertz, L is the 

inductance in henry, C is the capacitance in farads. For resonance inductive reactance 

and capacitive reactance must be equal, this equation shows equation 2.3.  

 

 

𝜔 = 2π𝑓 (2.1) 

 

𝜔𝐿 =
1

𝜔𝐶
 

(2.2) 

  

ƒ =
𝜔

2π
=

1

2π√𝐿𝐶
 

(2.3) 
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(a)                                                                         (b) 

Figure 2.1 : (a) Parallel resonance circuit (b) Series resonance circuit. 

 

2.2 Physical Approach to Ferroresonance 

 

In linear circuits, resonance occurs when the capacitive reactance is equal to the 

inductive reactant at the frequency at which the circuit is driven (Serhat, et al., 2012). 

For ferroresonance circuits need iron core inductors that have a nonlinear property to 

have inductance values (Short, 2004). In a power system, ferroresonance occurs when 

a non-linear inductor is a feed from a series capacitor. The non-linear inductor in the 

power system may be caused by the magnetic core of the transformers or reactors in 

the transmission or distribution lines (Akinci, et al., 2012). The circuit capacitance in 

the power system can be caused by elements such as the following or during 

commissioning or deactivation of the transmission and distribution lines or circuit 

elements. (Endahl, 2017). Some examples of circuit capacitors elements grounding 

capacitance of the conductor, capacitance of bus bars, parallel line capacitance, 

capacitance in bushings. 

In short, the effect of ferroresonance is a ferromagnetic material, in the system 

ferromagnetic materials are found in the cores of transformers or reactors (Short, 

2004), (Valverde, 2012). 

 

2.3 Nonlinear Magnetization Characteristic  

 

The cores of the transformers are made of cold-rolled grain-oriented (CRGO) silicon 

steel. In order to prevent eddy losses in the core of the transformer, CRGO materials 

are produced and used in thicknesses ranging from 0.23 mm to 0.35 mm also cold 

rolled grain oriented steel is a ferromagnetic material. 
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The current characteristic versus voltage of a voltage transformer is usually known as 

the magnetic curve core of transformers design in knee area because when the core 

designed at a value higher than the elbow, goes into saturation. When the magnetic 

core is saturated, the magnetic core exhibits a characteristically that is different from 

the calculated or predictable, causing unpredictable oscillations in the system. B⃗⃗  is 

magnetic flux density it is seen in equation 2.6 and unit is Weber/m2 or Tesla, A is area 

unit is m2 is used in equation 2.7, �⃗⃗�  is magnetic field intensity and the unit is A/m, N 

is the turn of the coil. 𝜇 magnetic permeability (μ0.= 4.π.10-7 H/m) the permeability is 

shown equality 2.4. 

 

μ=μ0. 𝜇𝑟 (2.4) 

  

∮ �⃗⃗� ⅆ𝑠  =Ι (2.5) 

  

       B⃗⃗ (t)=μ0. 𝜇𝑟. �⃗⃗�  (2.6) 

  

                   U(t)=-N
𝑑

𝑑𝑡
∫ B⃗⃗ (t) . 𝑑A⃗⃗  (2.7) 

 

The sinusoidal current I starts from zero and increases to the maximum point Im H 

increases in direct proportion to I, this is seen in equation 2.5. However, flux density 

B does not increase linearly in this increase. An example of hysteresis cure shown at 

figure 2.2.; as explained in figure follows the path 0A (Aydın, 2019). As the current 

decreases from Im to 0, B⃗⃗  follows the path AB and remains at 𝐵𝑟
⃗⃗⃗⃗ . 𝐵𝑟

⃗⃗⃗⃗ . called residual 

flux density (Jiles & Atherton, 1983). This time when the current is increased from 

zero to –Im the magnetic field strength increases to –�⃗⃗�  and following the path of flux, 

density BCD takes the value of –Bm. The HC value, where the flux density is zero, 

called the cleaning area (Lin, et al., 1989). Flux density follows path DEF when the 

magnetic field decreases to zero with current (Boduroglu, 1960), (Udpa & Lord, 1985), 

(Jiles, 1993). When the residual current starts in the second period, the flux density 

follows the fa path, not the 0A path. This loop named hysteresis loop (Allan & Moore, 

2004). In other words, the curve does not close in the first period. (S.V.Kulkarni & 

S.A.Khaparde, 2004). 

https://tureng.com/en/turkish-english/residual%20flux%20density
https://tureng.com/en/turkish-english/residual%20flux%20density
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Figure 2.2 : Hysterisis curve (Patsios, et. al 2011). 

 

2.4 Harmonics  

 

Harmonics are high-frequency sine-shaped components of the fundamental frequency 

of the system. The frequencies of the harmonics, for example, when the basic 

frequency is 50 Hz, (50 Hz) x degree of harmonic. So 3rd Harmonic 150Hz, 5th 

Harmonic 250 Hz, 7th harmonic 350 Hz. figure 2.3 shows that one main signals with 

3rd and 5th harmonic signals and signals with harmonics (Dandan, 2003). On sinusoidal 

function as seen equation 2.8 in other words, because there is no odd function, there 

are no cosine terms in Fourier expansion, there are only sinusoidal terms also this 

situation can be seen in figure 2.8. Therefore, only odd harmonics are formed (Rosa, 

2006). 

 

f(ωt)= ˗f(-ωt) (2.8) 

 

Calculation of harmonics by fourier analysis shown below equation 2.9; 

 

                                             f(t)=
a0

2
 +∑ (𝑎𝑛 cos 𝑛𝜔𝑡 + 𝑏𝑛 sin 𝑛𝜔𝑡)∞

𝑛=1                                                 

 

(2.9) 
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Figure 2.3 : Harmonics plot of the main signal, third and fifth signal and signals with 

harmonics.  

 

Harmonics in the system can occur for many reasons. For example; 

Grooves in electrical machines, sudden load changes in synchronous machines, 

distortion of magnetic flux waveforms, magnetizing currents of transformers working 

in saturation zone, nonlinear loads in the network such as rectifier, inverter, welding 

machines. Also arc furnaces, voltage regulators, frequency inverters, engine speed 

control devices, energy transfer with high voltage direct current (HVDC), static volt-

ampere reactive generators, uninterruptible power supply (UPS), effects of battery 

charging circuits, devices and methods used for energy saving 

 

2.5 Subharmonics 

 

The harmonics formed by dividing the main frequency by the main frequency in the 

system are called subharmonic. For example; 

Network frequency f0: 50 Hz 

Subharmonic oscillations, f0/2 : 25 Hz 

Subharmonic oscillations, f0/3 : 16 2/3 Hz 

Subharmonic oscillations, f0/5 :10 Hz 

Single subharmonics can be observed in ferroresonance events occurring in single-

phase or three-phase systems, double subharmonics were observed only in 

ferroresonance events occurring in three-phase systems (Çetin, 2019). 

https://en.wikipedia.org/wiki/Volt-ampere_reactive
https://en.wikipedia.org/wiki/Volt-ampere_reactive
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2.6 Type of Ferroresonance  

 

Electrical excitation that triggers the formation of ferroresonance in systems can be 

named as soft and hard excitation. 

2.6.1 Soft excitation 
 

When the system reaches ferroresonance conditions, used for oscillations where 

oscillation change is slow 

2.1.6.1.a Steady state ferroresonance oscillations. 

2.1.6.1.b Non-steady state increasing ferroresonance oscillations (Däumling & 

Hofstetter, 2018). 

2.6.2 Hard excitation  
 

Failures caused by saturation of the transformer core as a result of sudden changes 

such as a phase, phase earth or switching operations. 

2.1.6.2.a: Steady-state ferroresonance oscillations 

2.1.6. 2.b: Non-steady state increasing ferroresonance oscillations 

2.1.6.2.c: Non-steady state decreasing ferroresonance oscillations (Däumling & 

Hofstetter, 2018). 

 

2.7 Ferroresonance Waveforms  

 

During the explanation ferroresonance waveforms, power system’s period (T) 

depending on the systems frequency content, ferroresonant oscillations are normally 

classified. 

2.7.1 Fundamental mode  
 

Currents and voltage period are same period (T) with the system, fundamental mode 

has odd harmonics. Figure 2.4 is shown in fundamental mode graphs.  
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Figure 2.4 : Fundamentals mode graphs (Ferracci, 1998). 

 

2.7.2 Subharmonic Mode  
 

The sub-harmonic mode is the signal that involves the n times the system frequency 

signals (T/n) and also subharmonic frequency oscillations in. Figure 2.5 is shown in 

sub-harmonic mode graphs. 

 

 

Figure 2.5 : Subharmonic Mode Graphs (Ferracci, 1998). 

2.7.3 Quasi-Periodic Mode 
 

This mode is not periodic. The spectrum is disorderly but it has a repetitious period. 

The frequency spectrums are impermanent identified as nf1+mf2 where m and n are 

integers. Figure 2.6 is shown quasi-periodic mode graphs. (Valverde, 2012), (Ang, 

2010). 
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Figure 2.6 : Quasi-periodic mode graphs (Ferracci, 1998). 

2.7.4 Chaotic Mode  
 

The chaotic form differs than other forms; this form has not steady and not predictable 

form from other waveforms. Figure 2.7 is shown chaotic mode graphs. 

 

 
 

Figure 2.7 : Chaotic mode graphs (Ferracci, 1998). 

 

2.8 Single Phase Ferroresonance Oscillation  

 

In single-phase system, ferroresonance may happen the occasion of subharmonics. 

System capacitance and voltage transformer can cause ferroresonance formation 

Figure 2.8 is shown single-phase non-resonance oscillation (Däumling & Hofstetter, 

2018), (Chen, et al., 2012).  
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Figure 2.8 : Single-phase ferroresonance sample circuit. 

 

A major circuit element is breakers that makeup capacitance in single-phase systems 

then overhead lines and capacitive load. Cg is capacitance of circuit breaker, LH is non-

linear main inductance of transformer coil, RFe is represent of non-linear resistance of 

transformer coil, Ce is total ground capacitance of facility. 

. 

2.9 Ferroresonance on Tree Phase System  

 

All along many years, the three-phase ferroresonance was believed to be only 

difficulties of the transformer with non-grounding primary connections, as open delta, 

delta or ungrounded wye. However, the ferroresonance base on many other 

circumstance and motivation, for instance, transformer steel core saturation 

characteristic, type of transformer winding connection, residual fluxes density in the 

transformer iron core, initial conditions of the system, the circuit’s capacitance, point-

of-wave switching operation, total losses. So its predictability may be considered as 

quite complex and difficult (Mork, 2006), (Moses & Masoum, 2009). 

When three-phase protective, switching are not used, possible that ferroresonance may 

appear. But a factor that may impact on it is not just limited to connection also to 

various constructive, operation, protective parameters and design. Thus Network 

characteristic, shunt capacitors, underground cables, transformer stray capacitance of 

circuit breakers, overhead conductors. The figure represent that three-phase circuit, 

which is ferroresonant, the circuit, can show that interrupting devices, three-phase 

transformer and overhead lines which represents by just capacitors. Ground connection 

represented by C0 and connection phase to phase in wye connection C1-C0.All 

inductive and resistive parameters are negligible.  When two or one lines of switches 
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are closed for that cause where C1=C0 the transformer neutral must be ungrounded and 

circuit became ferroresonant circuit. Figure 2.9 shown possible ferroresonant circuit. 

 

 

Figure 2.9 : Possible three phase ferroresonant circuit (Csanyi, 2020). 
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 ARTIFICIAL NEURAL NETWORK  

   

With the development of computer technology, mathematical and statistical methods 

can be analyzed with software tools. The application of computational and decision-

making capabilities of the human brain to engineering analysis with the model 

approach started with the development of Artificial Neural Networks. With Artificial 

Neural Networks, it is possible to create trainable, self-learning, adaptive, decision 

making structures. Artificial Neural Networks can be applied to almost any discipline 

and offer very meaningful results. The artificial neural network is an artificial learning 

method created with inspiration from the biological neural network and whose 

mathematical expression is compared to biological neuron. 

 

3.1 Biological Neuron  
 

Since artificial neural networks based on biological models, the structure of a natural 

nerve cell must be understood before understanding artificial neural networks (Mishra 

& Srivastava, 2014), (Reed & MarksII, 1999). The figure 3.1 below shows a biological 

neuron. The biological neuron consists of a nucleus, soma and two types of appendages 

(Martınez, et al., 2012). One of them is dendrite, which is short and branched, also 

receives input information from other cells, and the other is axons, which is the 

structure that transmits the information in the long cell to other cells, that is, transmits 

the outputs. (Brink, et al., 2013). The combination of axon and dendrite is called a 

synapse (Lin, 2017), (Bose, 2001), (Watson, et al., 2010).  

 

 

Figure 3.1 : Biological neuron (Watson, et al., 2010). 
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3.2 Modelling Neuron  

 

The artificial neural network, the data to be learned in artificial neural networks entered 

as input. These input data can consist of data such as sound, image, voltage and picture. 

The artificial neural network performs learning by imitating the event that takes place 

in nerve cells and reveals the relationships between the cases. Inputs show as X(n) 

while mathematical modelling of artificial neural networks is shown. Information 

processing is done when the inputs go to the middle layer. Inputs are values that are 

referred to as weight in mathematical modelling and are symbolized as W(n), 

expressing the effect of the input set or another processing element in a layer before it 

on this process element (Mehrotra, et al., 2000). Weights can be positive or negative 

the input data is multiplied by a weight and summed with the bias value. The weights 

are randomly selected and may vary in the applied skew. 

 

3.2.1 Single layer  
 

The inputs are collected by multiplying them by the randomly assigned weight values 

according to the learning method chosen, as this explanation is equation 3.1. This 

summing process is symbolized by NET (Çakır, 2018) as equation 3.2. Addition of 

NET collection with b symbolized by bias, bias determines the neuron's response 

partner addition symbolized by V passes through the activation function and returns 

the output indicated by y. 𝜑 symbolized activation function as equation 3.5 while the 

matrix representation of the input information is the column, the weight values are 

shown in rows in the matrix. This is seen in equation 3.3 and 3.4. Epoch is the number 

of times weights are updated for possible inputs (Gurney, 2003), (Patel & Stonham, 

1991), (Specht, 1991), (Huang & Xing, 2002), (Hassoun & Clark, 1988), (Sergio, et 

al., 2015). 
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Figure 3.2 : Single layer artificial neural network (Sergio, et al., 2015). 

 

𝑣 = (𝑊1x𝑋1) + (𝑊2x𝑋2) + (𝑊3x𝑋3) + ⋯ .+(𝑊𝑛x𝑋𝑛) + 𝑏 

 

(3.1) 

NET=∑ 𝑊𝑖x𝑋𝑖
𝑛
𝑖=1  

 

(3.2) 

X=

[
 
 
 
 
𝑋1

𝑋2

𝑋3

…
𝑋𝑛]

 
 
 
 

 

(3.3) 

       W=[W1  W2  W3 …Wn] 
  

(3.4) 

Y=𝜑(𝑣) (3.5) 

 

3.2.2 Activation function  
 

Many different activation functions can be used in artificial neural networks. Although 

the activation is not required in the function, it is expected that the output should not 

be linear, it can be differentiated, it does not have a lower and upper limit, it is 

monotonous increasing or decreasing, it converges at the origin point. Some examples 

of activation functions are as follows. 

 

3.2.2.1 Linear (Purelin) function  
 

This function has net input is produced exactly as output. It is linear, differentiable, 

has no upper and lower bounds, monotonous increasing and decreasing, converging at 

the origin point. Below figure 3.3 shows the linear function and mathematical equation 

of this function can show at equation 3.6.  

 

                  x=y (3.6) 
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Figure 3.3 : Linear function. 

3.2.2.2 Logsig (Sigmoid) function 

 

Looking at the literature, one of the most applied activation functions is the sigmoid 

function. Sigmoid function is not linear, but modelling can be done by producing 

balanced outputs for both linear and nonlinear functions, it is differentiable, it has 

lower limit, upper limit, monotonous increasing and decreasing function. In figure 3.4 

below sigmoid function can be seen. The equation 3.7 is a mathematical representation 

of the sigmoid function. (Karlik & Olgac, 2011), (Nguyen & Widrow, 1990). 

 

f(NET)=
1

1+ⅇ−𝑁𝐸𝑇 

 

(3.7) 

 

 
 

Figure 3.4 : Logsig function.  
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3.2.2.3 Hyperbolic tangent (Tansig) function 

 

This is another most frequently used activation function in ANN. In order to use this 

function, input values normalized in the range -1 between 1, first, output values are 

also in this range increasing and decreasing, converges at the point of origin (Habibi 

& Jahani, 2017). In figure 3.5 below hyperbolic tangent (Tansig) function can be seen. 

The equation 3.8 is a mathematical representation of the tansig function. 

 

f(NET)= 
2

1+ⅇ−2∗𝑁𝐸𝑇
 -1 

 

(3.8) 

 

Figure 3.5 : Hyperbolic tangent (Tansig) function. 

 

3.2.2.4 Hard sigmoid function 
 

This function has a linear, differentiable, lower limit, upper limit features. 

 

3.2.2.5 Softsign Function 
 

Not linear, derivable, no lower limit, no upper limit, monotonous increasing and 

decreasing. Converges to itself at the point of origin Where |x| = absolute value of the 

input. The soft sign usually using for regression computing problems. In figure 3.6 

below soft-sign function can be seen. The equation 3.9 is a mathematical 

representation of the soft-sign function. 

 

f (NET) =
𝑁𝐸𝑇

|𝑁𝐸𝑇|+1
 

 

(3.9) 
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Figure 3.6 : Soft-sign function. 

 

3.2.2.6 ReLU Function 
 

This function has linear, differentiable, low limit, no upper limit, monotonous 

ascending and descending; antithetical converges to itself at the point of origin features 

(Habibi & Jahani, 2017). In the figure 3.7 below ReLU function can be seen. The 

equation 3.10 is a mathematical representation of the ReLU function. 

𝑓(𝑁𝐸𝑇) = {
0 for 𝑁𝐸𝑇 < 0

𝑁𝐸𝑇 for 𝑁𝐸𝑇 ≥ 0
 

 

(3.10) 

 

Figure 3.7 : ReLU function. 

 

3.2.2.7 Softplus Function 
 

This function has not linear, differentiable, has a lower limit, no upper limit, 

monotonous ascending and descending, do not converge at him at the point of origin 

features (Wang, et al., 2020). In figure 3.8 below soft-plus function can be seen. The 

equation 3.11 is a mathematical representation of the soft-plus function. 
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𝑓(𝑁𝐸𝑇)=ln(𝑒𝑁𝐸𝑇 + 1) (3.11) 

 

 

Figure 3.8 : Soft-plus function. 

 

3.2.2.8 ELU Function 
 

This function has not linear, derivable, no lower limit, no upper limit, monotonous 

increasing and decreasing, converges to itself at the origin point features (Basirat & 

Roth, 2019). In figure 3.9 below ELU function can be seen. The equation 3.12 is a 

mathematical representation of the ELU function. α is constant gradient 

(Normally, α=0.01). 

 

𝑓(𝑁𝐸𝑇) = {
α(ⅇ𝑁𝐸𝑇 − 1) for 𝑁𝐸𝑇 < 0
NET                  for 𝑁𝐸𝑇 ≥ 0

 
(3.12) 

 

 

Figure 3.9 : ELU function. 
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3.2.2.9 Selu Function 
 

This function has not linear, derivable, no lower limit, no upper limit, monotonous 

increasing and decreasing, converges to itself at the origin point features. 

 

3.2.2.10 Swish Function 
 

Not linear, derivable, has lower limit, no upper limit, monotonous increasing and 

decreasing, converges to itself at the origin point features. 

 

3.2.2.11 Poslin Function 
 

Positive linear Transfer Function is a positive linear function. If the net value is greater 

than zero and the net value is less than zero, it takes the value 0. 

 

3.2.2.12 Step or Heaviside Function 
 

Values with a threshold less than T T will be zero. In figure 3.10 below step function 

can be seen.  

 

Figure 3.10 : Step function. 

3.2.4 Multiple Layer 
 

Unlike the single-layer system, the multi-layer system has hidden layers (Zhang & 

Morri, 1998). Each hidden layers outputs are inputs the other hidden layers inputs 

(Lippmann, 1987). A single layer, multiple layers has input data shown by Xn and 

outputs data shown by Yn and between inputs and outputs multiple layer neural 

networks has hidden layer, the number of layers in the hidden layer can vary 

experimentally according to the method chosen and the most accurate learning (Park, 

et al., 1991).  
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Neurons in a layer are not related to each other and they perform the work of 

transferring the information that is in the system to the next layer or exit. Neurons in 

two layers in a row affect each other with different activation values and perform a 

transfer that determines the learning level of the mode figure 3.11 is shown multiple-

layer figure (Zhang, et al., 1995). 

 

 
 

Figure 3.11: Multiple layers of artificial neural network. 

 

3.3 Artificial Neural Network Models  

 

There are two types of feed-forward and feed-back networks depending on the 

direction of the signal in the neural networks. 

3.3 1 Feed Forward Neural Networks 
 

In feed-forward ANN, cells are arranged in layers and the outputs of cells in one layer 

are given as input to the next layer via weights ANN, which is used to solve any 

problems, is as precise as the number of layers and the number of cells in the middle 

layer (Binev & Aires-de-Sousa, 2004), (Cybenko, 1996). 

Despite undetermined information, besides areas such as object recognition and signal 

processing, feed-forward ANN is also widely used in the diagnosis and control of 

systems (Sazlı, 2006). Figure 3.12 is shown that feed-forward neural networks. 
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Figure 3.12 : Feed forward neural networks. 

3 3 2 Feedback Neural Networks 
 

In the feedback ANN, at least one cell is output as input to itself or other cells, and 

usually, feedback is done through a delay element. Feed-back can be between cells in 

a layer as well as cells between layers. Figure 3.13 is shown that Feed-back neural 

networks. 

 

 Figure 3.13 : Feed-back neural networks. 

3 .4 Learning Rules in Artificial Neural Networks 
 

Below are the information about Learning Rules in Artificial Neural Networks. 

3.4.1 Error Correction Learning 
 

It is the method used to train the error. With an algorithm such as the back-propagation 

algorithm, error values used to adjust the weights. If the system output is known to be 



25 

y and home, the output of the desired system can be shown as the error (e) = k-y. Error 

correction learning algorithms try to minimize the error signal in each training repeat 

(Komendantskaya, 2011), by doing this by adjusting the weight values. The most 

popular learning algorithm for this learning is the Gradient descent algorithm. 

3.4.2 Self (Unsupervised) Learning 
 

In this learning style, only sample inputs are given. No sample output information is 

given. The system is expected to learn the relationships between the parameters in the 

examples by itself (Kriesel, 2005). This is the learning method used mostly for 

classification problems. According to the information given in the introduction, the 

network creates its own rules so that each sample is classified among themselves. 

3.4.3 Supervised Learning  
 

During the training, an input and a target output vector are given to the system in pairs 

(Balaji & K.Baskaran, 2013), and the weight values in the system are updated and 

changed accordingly (Priddy & Keller, 2005).  

3.4.4 Reinforcement Learning 

This learning rule is a close method with a consultant. Instead of a learning to give the 

target output, there is no output to the artificial neural network, but a criterion that 

evaluates the goodness of the output obtained against the given input is used. Boltzman 

Rule or Genetic Algorithms developed by Hinton and Sejnowski are examples of 

reinforced learning to solve optimization problems (Sutton & Barto, 1998). 

3.5 According to the learning time 

 

Below is the information about the learning time. 

3.5.1 Static  
 

The ANN is trained with the training data and the structure of the network is recorded. 

The network always works with the same structure from now on. It does not change 

anything during its use (Fyfe, 2005). 

3.5.2 Dynamic 
 

After training of the ANN training data, it continues to regulate itself during its use, 

thus obtaining a constantly learning ANN. 
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3.6 Artificial Neural Network Advantages and Disadvantages  

 

For detection ferroresonance in years researcher tried many difference method as 

power spectral density, current wavelet transform, short time Fourier transform and 

continuous wavelet transform. While these methods are basically determined by the 

statistical values of the frequencies, neural network method is a more dynamic 

determination method for nonlinear problems compared to these methods. ANN has 

obtained fame over alternative techniques, as it is a client in discovering relationships 

among large frames of data, to learn the certain status or operating condition of the 

objective schemes. (Pan & Chen, 2012). ANN has ability to work incomplete 

knowledge, has fault tolerance; corruption of one or higher cells of ANN does not 

prohibit it from engendering output. This feature makes the networks fault tolerance 

(Mijwil, 2018). 

On the other hand it is created as a result of efficient algorithm an experience that 

works. There is no specific formula, the duration of the network is unidentified for 

example for this thesis NN27 duration was forty one minute, NN18 duration was one 

hour forty minutes. 

It should not be ignored that the disadvantages of ANN networks, which are an ever-

evolving science branch, are eliminated one by one and their advantages are widening 

day by day. This means that artificial neural networks will come an essential part of 

our lives increasingly relevant (Mijwil, 2018). 
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 DATA ACQUISITION AND MODELLING  

 

The overvoltages in this system can reach levels greater than 2.5 times the nominal 

voltage, and the ferroresonance event formed has a sinusoidal characteristic that is 

voltage-stressed. This property of voltage can be measured by harmonics and inter 

harmonics of the system. In this thesis, since the ferroresonance detection will be 

performed with ANN rather than the characteristic structure of the system, the signal 

characteristics have not been examined. 

In figure 4.1, a schematic representation of the Seyitomer-Işıklar Electric Power 

transmission line transmission. It was created by using real parameters on the model 

given for the energy transmission line. As can be seen in the figure, ferroresonance 

scenarios were obtained by sudden cutting of the line by switching. As can be seen in 

the figure, ferroresonance scenarios were obtained by sudden cutting of the line by 

switching. 

 

Bus

SEYITOMER-ISIKLAR
ELECTRIC POWER NETWORK

362 MVA, 50 Hz

Bus Fault

G

π Line 284,341 km

ISIKLAR LOAD
P=361 MW
QL=6MVAr

QC=0

TR

   362 MVA
15,75 kV / 380 kV 

 

Figure 4. 1: Schematic representation of the transmission line. 

 

The electrical parameters of the power plant and the line feeding the energy 

transmission line are given in table 4.1 below. 

Table 4.1: Parameters of Electrical Components used in Seyitomer-Isıklar Power 

Networkfor Figure 4.1. 

Electrical 

Components 

Parameters 

Generator 362 MVA, 15.75kV, 50Hz 

Transformers 362 MVA, 15.75kV/380kV 

Lengt of Line 284.341km 

Load 
P=361 MW 

QL=6MVAr 
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BusBus

OYMAPINAR 
POWER PLANT

180 MVA, 50 Hz

G

Line 85,104 km

LOAD
P=50 MW

Qc=17MVAr

TR1

   180 MVA
14,4 kV / 380 kV 

TR2

   600 kVA
380 / 154 kV 

Fault

 

Figure 4. 2 : Schematic representation of the Oymapinar transmission line. 

 

These different data were obtained from different branches on the line, and different 

time intervals were selected and different scenarios were created for Ann. 

 

Table 4.2 : Parameters of Electrical Components used in Oymapinar Power 

Networkfor Figure 4.2. 

 

Electrical 

Components    
Parameters  

Generator 180 MVA, 14.4 kV, 50 Hz 

Transformers  
TR1:180 MVA, 14.4kV/ 380kV  

TR2: 600kVA, 380kV / 154kV 

 Lines 

 π Line(B1-B2): 85.104 km 

R:0.2568 Ω/km 

 L: 2e-3 H/km  

 C: 8.6e-9 F/km  

Line(B2-B3):  R:1Ω  L:1e-3 H 

  Loads   L1:P=50 MW, Qc=17 MVAR 

Switch  
  S:   2.5 – 5 sec.- On 

 0 – 2.5 sec.- Off  

 

4.1 Ferroresonance Detection 

 

We have four signals calls as R1, R2, R3, and R4. Which inform below. In order to 

process these signals more easily, to capture the moment when they are ferroresonance, 

and to process the ferroresonance data, the data divided into 500 slices. 

4.1.1 R1 Data 
 

R1 has 49488 data. It divided into 98 pieces of 500 data. It is observed that 

ferroresonance started in part 62, figure 4.3 shows that when ferroresonance started in 

R1 data, mean is around 3-second failure started also this voltage change is visible in 
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figure 4.5. This ferroresonance form is chaotic form, heading 2.7.4 has information 

about chaotic ferroresonance. 

 

 
 

Figure 4. 3: R1 data’s plot. 

 
 

Figure 4.4 : The moment when ferroresonance failure started in R1. 
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4.1.2 R2 Data 
 

R2 has 57005 data. It divided into 114 pieces of 500 data. It observed that 

ferroresonance started in part 57 figure 4.6 shown that starting point of ferroresonance. 

As shown figure 4.7, ferroresonance falure voltage magnitude of R2 data 

approximately 2.5x105 V. This kind of overvoltage failure can be dangerous for 

electrical equipment. 

 

 

Figure 4.5 : R2 data. 

 

 
 

Figure 4.6 : The moment when ferroresonance failure started in R2. 

https://tureng.com/en/turkish-english/approximately
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4.1.3 R3 Data 

 

R3 has 57005 data. It divided into 114 pieces of 500 data. We observed that 

ferroresonance started in part 57 figure 4.8 shown that beginning of ferroresonance 

fault, figure 4.9 shown that R3 data has over-voltage as R2 but the oscillation of R3 

different than R2  

 

 

Figure 4.7 : R3 data. 

 

Figure 4.8 : The moment when ferroresonance failure started in R3. 
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4.1.4 R4 Data 

 

R4 has 71054 data. It divided into 142 pieces of 500 data. It observed that 

ferroresonance started in part 29 shown in figure 4.11. Figure 4.10 shown R4 data 

which ferrorezonance fault has overvoltage oscillation. This kind of oscillations can 

damage system equipment, which is on the same line with failure. 

 

 

Figure 4.9 : R4 data. 

 

 
 

Figure 4.10 : The moment when ferroresonance failure started in R4. 

https://tureng.com/en/turkish-english/equipment
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5. APPLICATION OF ARTIFICIAL NEURAL NETWORK FOR 

FERRORESONANCE IDENRIFICITION 

 

In this thesis, Turkey's energy transmission line Seyitomer-Isıklar and Oymapınar 

transmission line models were examined. In the analysis, firstly, the model of the 

transmission line was created by using the actual parameters on the Matlab-Simulink 

© model. Afterwards, the load parameters and synthetic faults were created on the 

Simulink model and the system was dragged into ferroresonance. Data on 

ferroresonance over voltages are collected ANN analyzes were performed and 

ferroresonance failures in the model were detected and separated. For the data created 

for the thesis study, the interface of the Matlab © tool used for created algorithm. 

Detailed analyzes of the variable parameters used in the study are also given in the 

appendix. 

 

5.1 Matlab Tool 

 

In this section, some variables in the algorithm will be mentioned. In this way, it will 

be easier for us to understand the results of the algorithm. 

5.1.1 Variables 

 

Figure 5.2 shown that the interface where input, target data entry, function etc. values 

are selected. 
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Figure 5.1 : Variables input interface. 

 

5.1.1.1 Network name  

 

For identify network, itis used this section. 

5.1.1.2 Network type 

 

For this case, choose feed-forward back propagation other than this there are many 

network types as  

Cascade-forward back-propagation, feed-forward distributed time delay, feed-forward 

time delay, generalized regression, Hopfield, Layer recurrent, Linear layer, Learning 

vector quantization (LVQ), Non-linear auto-regressive exogenous model (NARX), 

NARX series-parallel, perception, Probabilistic, Radial Basis (exact fit), Radial basis 

(fewer neurons), Self-organizing map (Demuth & Beale, 2004). 

Back propagation is an algorithm method that calculates how weights and allegiances 

will change during network learning. Backpropagation steps basically; feed forward 

computation, to calculate output layer error, weights and bias update and output. 

(Rojas, 1996). 
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5.1.1.3 Input & train data 

 

Here figure 5.2 form A to J we have variables. Input data and target data is the same it 

is ferroresonance data. Our input data is 13x500 matrix and our training data is 35x500 

matrix. 

 

5.7.1.4 Training function  

 

Below table 5.1 shows that some training functions of nntool. It is working with 

performance function as given chapter 5.7.1.6. These algorithms using for find 

optimizations algorithm and stop the process if calculations catch the minimum error 

value. There are many various optimization algorithms, which have a variety of 

different calculation and storage preconditions table 5.1 is options for using training 

algorithms in the table. The optimization algorithm detects how the arrangement of the 

frameworks in the neural network takes place.  

 

Table 5.1: Training function table (Demuth & Beale, 2004). 

 

Acronym Algorithm Description 

LM trainlm Levenberg-Marquardt 

BFG trainbfg BFGS Quasi-Newton 

RP trainrp Resilient Backpropagation 

SCG trainscg Scaled Conjugate Gradient 

CGB traincgb 

Conjugate Gradient with Powell/Beale 

Restarts 

CGF traincgf Fletcher-Powell Conjugate Gradient 

CGP traincgp Polak-Ribiére Conjugate Gradient 

OSS trainoss One Step Secant 

GDX traingdx Variable Learning Rate Backpropagation 

 

Quasi-Newton method uses Hessian of loss function, conjugate gradient is performed 

forward with conjugate controls, which makes generally faster convergence than 

gradient descent directions. Train LM, Levenberg-Marquardt function, is common and 

most applied function in this tool also it is used in this thesis. Levenberg-Marquardt 

algorithm was developed to solve nonlinear least-squares problems.     (Du & 

Stephanus, 2018) The Levenberg-Marquardt algorithm blends two minimization 

methods that are the gradient descent method and the Gauss-Newton method (Gavin, 

2019), (Demuth & Beale, 2004).  

https://de.mathworks.com/help/deeplearning/ref/trainlm.html
https://de.mathworks.com/help/deeplearning/ref/trainbfg.html
https://de.mathworks.com/help/deeplearning/ref/trainrp.html
https://de.mathworks.com/help/deeplearning/ref/trainscg.html
https://de.mathworks.com/help/deeplearning/ref/traincgb.html
https://de.mathworks.com/help/deeplearning/ref/traincgf.html
https://de.mathworks.com/help/deeplearning/ref/traincgp.html
https://de.mathworks.com/help/deeplearning/ref/trainoss.html
https://de.mathworks.com/help/deeplearning/ref/traingdx.html
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5.7.1.5 Adaption Learning Function  

 

For adaptation function program has two choices LEARNGD and LEARNGDM. 

LEARNGDM is used to calculate the change in weight using the input from the neuron 

and the error. (Siddique & Adeli, 2013). When momentum is not handled, the net can 

be installed at a regional minimum and oscillates. When momentum is used, it can gain 

the possibility of jumping. Momentum is between 0 and 1. If the momentum value is 

0, the weight change is completely gradient dependent LEARNGDM is used in this 

thesis. 

 

5.7.1.6 Performance Function  

 

Three performance functions can be chosen; 

MSE mean is mean square error, other one is MSEREG which main is Mean squared 

error w/reg performance function which includes MSE one term proportional to 

modulus of the weights of ANN (Grassi, 2007/06/20) (Gao, et al., 2010) the last one 

is SSE and mean is sum square Error. In this thesis MSE and SSE used for performance 

function when training data. The first basic cost evaluation function. Equation 5.1 

shown SSE mathematical representation and equation 5.2 shows the MSE function. In 

order to understand equality, where ypi is actual value for the data point i, N is total 

number of data points, tpi is predicted value for data point i. (Singh, et al., 2013). 

 

SSE=∑ (𝑡𝑝𝑖 − 𝑦𝑝𝑖)
2𝑁

𝑖=1  (5.1) 

 

    MSE=
1

𝑁
∑ (𝑡𝑝𝑖 − 𝑦𝑝𝑖)

2𝑁
𝑖=1  (5.2) 

 

MAE=
1

𝑁
∑ |𝑥𝑖 − 𝑥|𝑁

𝑖=1  (5.3) 

  

5.7.1.7 Transfer Function  

 

For transfer function, we have tree choices TANSİG, LOGSIG, PURELIN. These 

functions are mentioned in third chapter. 
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5.7.1.8 Performance 

 

Plotted versus each of epochs for training in which the over training prevent while the 

MSE error for validation is at its min value (Hajian, 2018). An epoch refers to one 

cycle through the full training dataset.  

 

5.7.1.9 Training state  

 

In this plot, each window checks are plotted versus each epochs. 

 

5.1.1.10 Regression 

 

They show how much the input and output data overlap  

 

5.2.Results of Training  

 

The characteristics of the education groups classified in this section are explained. Five 

different groups and their features are explained. R1 divided into 98 pieces of 500 data. 

R1 of ferroresonance stars 62. 500 data and until 98. 500 data. R2 divided into 114 

pieces of 500 data R2 of ferroresonance stars 57. 500 data till 114.500 data. R3 divided 

into 114 pieces of 500 data R3 of ferroresonance stars 57. 500 data and until 114. R4 

divided into 142 pieces of 500 data. R4 of ferroresonance stars 29. 500 data and until 

142.Input data, target data and created using data pieces as mentioned chaper 3. Input, 

target and example data created using this ferroresonance data from four-failure period 

used as input and target on  

5.2.1 First group of training 

 

For first group training chosen network type feed-forward back-propogation, for 

training function preferred trainlm, learngdm is chosen as adaptation learning 

function, for performance function MSE and transfer function TANSIG, for epochs 

1000, and max fails 1000 table 5.2 show that group’s information. Some examples of 

training below, Here are a few examples of this training group, not all of them are 

included. The rest is in the appendix. 
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5.2.1.1 NN28 

 

For NN28 neuron number is 20. We can see figures performance of NN28. Figure 5.2 

shown that performance output of NN28 and figure 5.3 shown that regression output 

of NN28 training. Figure 5.2 plot shows that the network training has stopped at the 

209tt iteration but it has concluded the best performance at the 9th iteration. For figure 

5.3 output data match with target data 0,99459 this matches shows us the training is 

successful.  

 

Figure 5.2 : Performance plot for NN28. 

 

 

Figure 5.3 : Regression plot for NN28. 
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5.2.1.2 NN11 

For NN11 neuron number is 35. The figure 5.4 shown that performance output of 

NN11 and figure 5.5 shown that regression output of NN11 training. İn the chart, the 

network training has ended at the 1000th iteration but it has acquired the best 

performance on the 28th, best performance value is 3884189436,99. The regression 

output for 35 neuron of first training group input and target data match 0,98113. 

 

 

Figure 5.4 : Performance plot for NN11. 

 

 

Figure 5.5 : Regression plot for NN11. 
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5.2.1.3 NN12 

For NN12 for neuron number is 50. Figure 5.6 shown that performance output of NN12 

and in the chart, the network training has ended at the 1000th iteration but it has 

acquired the best performance on the 6th. The regression output of 50 neuron of first 

training group input and target data match 0,99576 figure 5.7 shown that regression 

output of NN12 training. 

 

Figure 5.6 : Performance plot for NN12. 

 

Figure 5.7 : Regression plot for NN12. 
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Table 5.2 : First Group of Training. 

 
 

NETWORK 

NAME 

NETWORK 

TYPE 

TRAINING 

FUNCTION  

ADAPTATİON 

LEARNING 

FUNCTION  

PERFORMANCE 

FUNCTION 

NUMBER 

OF 

LAYERS 

NUMBER 

OF 

NEURONS 

TRANSFER 

FUNCTION  
EPOCHS 

MAX 

FAIL 
REGRESSION  

NN7 fbc traınlm learngdm MSE 2 2 TANSIG 1000 1000 0.27793 

NN23 fbc traınlm learngdm MSE 2 5 TANSIG 1000 1000 0.96002 

NN8 fbc traınlm learngdm MSE 2 10 TANSIG 1000 1000 0.98113 

NN31 fbc traınlm learngdm MSE 2 15 TANSIG 1000 1000 0.99306 

NN28 fbc traınlm learngdm MSE 2 20 TANSIG 1000 1000 0.99459 

NN11 fbc traınlm learngdm MSE 2 35 TANSIG 1000 1000 0.99592 

NN12 fbc traınlm learngdm MSE 2 50 TANSIG 1000 1000 0.98554 
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5.2.2 Second Group of Training 
 

For second group training chosen network type feed-forward back-propitiation, for 

training function preferred trainlm, learngdm is chosen as adaptation learning 

function, for performance function MSE and transfer function TANSIG, for epochs 

1000, and max fails 500 table 5.3 shown that group’s information. Some examples of 

training below, Here are a few examples of this training group, not all of them are 

included. The rest is in the appendix. 

 

5.2.2.1 NN18 

 

For NN18 is neuron number 20. Figure 5.8 shown that performance output of NN18 

in the chart, the network training has ended at the 506th iteration but it has acquired the 

best performance on the 6th. The regression output 20 neuron for second training group 

input and target data match 0,9943 and figure 5.9 shown that regression output of 

NN18 training. 

 

 
 

Figure 5.8 : Performance plot for NN18. 
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Figure 5.9 : Regression plot for NN18. 

5.2.2.2 NN24 

 

For NN24 is neuron number 35. Figure 5.10 shown that performance output of NN24 

in the chart, the network training has ended at the 515th iteration but it has acquired the 

best performance on the 15th. The regression output 35 neuron for second training 

group input and target data match 0,99752 and figure 5.11 shown that regression 

output of NN24 training. 

 
 

Figure 5.10 : Performance plot for NN24. 
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Figure 5.11 : Regression plot for NN24. 

5.2.2.3 NN6 

 

For NN6 neuron number is 50. The figure 5.12 shown that performance output of NN6 

in the chart, the network training has ended at the 510th iteration but it has acquired the 

best performance on the 10th. The regression output 50 neuron for second training 

group input and target data match 0,99279 and figure 5.13 shown that regression 

output of NN6 training. 
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Figure 5.12 : Performance Plot for NN6. 

 

 

Figure 5.13 : Regression plot for NN6. 
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Table 5.3 : Second Group of Training. 

 

NETWORK 

NAME 

NETWORK 

TYPE 

TRAINING 

FUNCTION  

ADAPTATİON 

LEARNING 

FUNCTION  

PERFORMANCE 

FUNCTION 

NUMBER 

OF 

LAYERS 

NUMBER 

OF 

NEURONS 

TRANSFER 

FUNCTION  
EPOCHS 

MAX 

FAIL 
REGRESSION  

NN4 fbc traınlm learngdm MSE 2 2 TANSIG 1000 500 0.52888 

NN22 fbc traınlm learngdm MSE 2 5 TANSIG 1000 500 0.77428 

NN5 fbc traınlm learngdm MSE 2 10 TANSIG 1000 500 0.98554 

NN17 fbc traınlm learngdm MSE 2 15 TANSIG 1000 500 0.99306 

NN18 fbc traınlm learngdm MSE 2 20 TANSIG 1000 500 0.99430 

NN24 fbc traınlm learngdm MSE 2 35 TANSIG 1000 500 0.99752 

NN6 fbc traınlm learngdm MSE 2 50 TANSIG 1000 500 0.99279 
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5.2.3 Third Group of Training 
 

For third.group training choosen network type feed forward backprop for training 

function preferred trainlm,learngdm is chosen as adaptation learning function,for 

performance function MSE and trensfer function TANSIG,for epochs 1000,and max 

fail 200 table 5.4 shown that group’s information. Some examples of training below, 

Here are a few examples of this training group, not all of them are included. The rest 

is in the appendix. 

5.2.3 1 NN29 

 

For NN29 neuron number is 35. The figure 5.14 shown that performance output of 

NN29 and figure 5.15 shown that regression output of NN29 training.at the graph for 

performance NN29 training stopped at the 1000th iteration but it has acquired the best 

performance on the 21th. The regression output of 35 neuron of fourth training group 

input and target data match 0,99635. 

 

 
 

Figure 5.14 : Performance plot for NN29. 
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Figure 5.15 : Regression plot for NN29. 

5.2.3 2 NN30 

 

For NN30 neuron number is 50. The figure 5.16 shown that performance output of 

NN30 at the graph for performance NN30 training stopped at the 213th iteration but it 

has acquired the best performance on the 13th. The regression output of 50 neuron of 

third training group input and target data match 0,9901. and 5.17 shown that regression 

output of NN30 training. 

 
 

Figure 5.16 : Performance plot for NN30. 
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Figure 5.17 : Regression plot for NN30. 
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Table 5.4 : Third group of training. 

 

NETWORK 

NAME 

NETWORK 

TYPE 

TRAINING 

FUNCTION  

ADAPTATİON 

LEARNING 

FUNCTION  

PERFORMANCE 

FUNCTION 

NUMBER 

OF 

LAYERS 

NUMBER 

OF 

NEURONS 

TRANSFER 

FUNCTION  
EPOCHS 

MAX 

FAIL 
REGRESSION  

NN20 fbc traınlm learngdm MSE 2 2 TANSIG 1000 200 0.58136 

NN21 fbc traınlm learngdm MSE 2 5 TANSIG 1000 200 0.95854 

NN25 fbc traınlm learngdm MSE 2 10 TANSIG 1000 200 0.99045 

NN26 fbc traınlm learngdm MSE 2 15 TANSIG 1000 200 0.99615 

NN27 fbc traınlm learngdm MSE 2 20 TANSIG 1000 200 0.99477 

NN29 fbc traınlm learngdm MSE 2 35 TANSIG 1000 200 0.99635 

NN30 fbc traınlm learngdm MSE 2 50 TANSIG 1000 200 0.99010 
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5.2.4 Fourth Group of Training 
 

For fourth group training choosen network type feed forward backprop ,for training 

function preferred trainlm,learngdm is chosen as adaptation learning function,for 

performance function SSE and transfer function tansig,for epochs 1000,and max fail 

500 table 5.5 shown that group’s information. This group training could not success 

for our ferroresonance data. When regression output between 0 and -1 means the 

higher level of error for this domain of data train and test are very much larger than 

the error value for validation second group of training of table 5.3 can be shown below. 

5.2.5 Fifth Group of Training 
 

For fourth group training chosen network type feed forward backprop, for training 

function preferred trainlm, learngdm is chosen as adaptation learning function, for 

performance function MSE and transfer function logsig for epochs 1000, and max fail 

1000 table 5.6 shown that group’s information. This group training could not as 

successful as transfer function tansig for our ferroresonance data. 
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Table 5.5 : Fourth group of training. 

 

NETWORK 

NAME 

NETWORK 

TYPE 

TRAINING 

FUNCTION  

ADAPTATİON 

LEARNING 

FUNCTION  

PERFORMANCE 

FUNCTION 

NUMBER 

OF 

LAYERS 

NUMBER 

OF 

NEURONS 

TRANSFER 

FUNCTION  
EPOCHS 

MAX 

FAIL 
REGRESSION  

NN1 fbc traınlm learngdm SSE 2 2 TANSIG 1000 500 0.13512 

NN15 fbc traınlm learngdm SSE 2 5 TANSIG 1000 1000 0.0778 

NN2 fbc traınlm learngdm SSE 2 10 TANSIG 1000 500 0.225 

NN3 fbc traınlm learngdm SSE 2 50 TANSIG 1000 500 -0.059251 
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Table 5.6 : Fifth group of training. 

 

NETWORK 

NAME 

NETWORK 

TYPE 

TRAINING 

FUNCTION  

ADAPTATİON 

LEARNING 

FUNCTION  

PERFORMANCE 

FUNCTION 

NUMBER 

OF 

LAYERS 

NUMBER 

OF 

NEURONS 

TRANSFER 

FUNCTION  
EPOCHS 

MAX 

FAIL 
REGRESSION  

NN13 fbc traınlm learngdm MSE 2 10 LOGSİG 1000 1000 0.78735 

NN14 fbc traınlm learngdm MSE 2 15 LOGSİG 1000 1000 0.86119 

NN32 fbc traınlm learngdm MSE 2 20 LOGSİG 1000 1000 0.75319 

NN33 fbc traınlm learngdm MSE 2 35 LOGSİG 1000 1000 0.99636 

NN34 fbc traınlm learngdm MSE 2 50 LOGSİG 1000 1000 0.97117 
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6. CONCLUSION 

 

In this study, using the actual parameters have been created using Turkey's Seyitömer-

Işıklar energy transmission line model. The main purpose is to observe the algorithms 

created in artificial neural networks using ferroresonance voltage values, which is a 

nonlinear condition used as input of artificial neural network. In the algorithms created, 

the contribution of the variables to the successful result was examined and the results 

of the algorithms were compared. Changes were made on the number of layers; 

transfer function, performance function and max fail variables. The created algorithms 

can be examined in detail in chapter 5.2. The results of the algorithms created, their 

success and comparison are given below. Below is figure 6.1. the number of layers 

and learning graph used in the first education group, figure 6.2. the number of layers 

and learning graph used in the second education group, figure 6.3. the number of layers 

and learning graph used in the third education group, the effect of the transfer function 

used in this research on success was obtained by comparing the fourth training group 

and the first training group. 

 

 
 

Figure 6.1 : First group of training graph. 

 
Figure 6.2, it was created by using regression and neuron numbers from the 

information given in Table 5.3. 
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Figure 6.2 : Second group of training graph. 

 

Figure 6.3, it was created by using regression and neuron numbers from the 

information given in Table 5.4. 

 

 
 

Figure 6.3 : Third group of training graph. 

 

First, second, third group function, tansig function has provided more successful 

learning with fewer layers. When tansig function is successful, when we examine the 

number of layers; while there was not much difference in the learning results of 20-35 
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layers, it was observed that the learning level decreased between 35-50 layers. Since 

the increase in the number of layers means an increase in the analysis process, it has 

been observed that the most optimal learning is third training group’s 10th layer 

because the number of failures also affects the process. As can be seen from the 

obtained results, this proposed algorithm has been very successful in detecting 

malfunctions. 

 

 

Figure 6.4 : Chart comparing the first three groups. 

In the 4th group, the algorithm used was not suitable for the detection of ferroresonance 

failure, for performing function chosen When the SSE performance function was 

chosen, a successful training could not be observed. As the number of layers increases, 

a linear output is expected while a nonlinear process is observed. In 50 layers, the 

regression value decreased to minus. When regression output between 0 and -1 means 

the higher level of error for this domain of data train and test are very much larger than 

the error value for validation. Also this algorithm, it had the chance to observe that the 

trainlm training function does not work efficiently with the SSE performance function 

and that it works more efficiently with MSE. While trainlm training function is 

expected to work more efficiently with MSE, the result of SSE performance function 

outputs is that this performance function will not yield rational results. As shown in 

figure 6.7, it is the graph of the values shown in Table 5.3. As can be seen in this chart, 

education not offers a predictable chart.  
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Figure 6.5: Fourth group of training graph. 

For fifth group training all, while all inputs in the fifth education remain the same as 

the values in the first education group, not only the transfer function has been changed 

from tansig to logsig. While the training chart of the logsig function is expected to be 

close to the output of the tansig function, in figure 6.6 shown that there is a noticeable 

decline in education in 20th layers, while learning in the 35th layer was close to the first 

education group, while there was a decrease in 50th layers. The logsig function for the 

training function did not give the expected result in this ferroresonance data, layer 

numbers and learning dynamics.  

 

 
 

Figure 6.6: Fifth group of training graph. 
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Figure 6.7 is compared between the first group of training and the fifth group of 

training it shown that the first group is more successful than the fifth group for 

nonlinear ferroresonance failure. The logsig function did not display a predictable 

graph, such as the tansig function, and this training algorithm failed more than the first 

group. 

 

 
 

Figure 6.7: Graph comparing the first and fifth learning groups. 

 

For this case for algorithm in backpropagation algorithm, trainlm training function, 

MSE performance function and tansig as a transfer function is successful then other 

algoritm. In nonlinear systems such as ferroresonance, the first third algorithms were 

successful in neural network application, while the fourth and fifth algorithms could 

not display a predictable graphic. Although the lack of a specific algorithm is a 

disadvantage of the neural network, uncertainties about this issue will decrease as 

successful algorithm trials increase. 

This thesis introduces a novel ferroresonance detection technique based on ANNs. 

This technique has the capability of detect fundamental ferroresonance situations with 

high degree of accuracy.  
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In nonlinear systems such as ferroresonance, the first third algorithms were successful 

in neural network applications, while the fourth and fifth algorithms could not display 

a predictable graphic. 

A regression value of over 99% was detected as from 10th layer to 50th layer in the 3rd 

group, which is a very successful result. This success started from the 20th layer in the 

first group. It was observed that the max fail value was effective on learning this is the 

expected result when looking at the mathematics of the algorithm.  

For training algorithm, third training algorithm has best in these groups, but more 

changes can be made regarding the max fail value and the optimum value can be 

determined. 

ANN techniques, black box sometimes negative because they show they can produce 

results .So, the forecast tool when used as a traditional method, results found in 

supporting ANN techniques can be used as an aid. The nature of the problem a properly 

established network will yield good result. Therefore, suitable network structures 

should result be investigated according to the problem examined. .In this thesis that 

may best solution for detection of using that ferroresonance signal is feedforward 

backpropagation algorithm, for training function Levenberg-Marquardt (trainlm) ,for 

cost function mean square error function, learning function learngdm and transfer 

function is tansig. 

Although the lack of a specific algorithm is a disadvantage of the neural network, 

uncertainties about this issue will decrease as successful algorithm trials increase. 

Since all error scenarios that may occur in the system are not tried, learning success 

could not be tried for the error that may occur in another scenario. By using the third 

training group algorithm, an algorithm can be tried on the failure caused by another 

scenario. 
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APPENDICES 

APPENDIX A: 

NN7, NN23, NN8, NN31 from the first training group output's performance and 

regression outputs are below. For first training group, chosen network type is as feed-

forward back-propagation, for training function preferred trainlm, learngdm is chosen 

as adaptation learning function, for performance function MSE and transfer function 

TANSIG, for epochs 1000 and max fail 1000 

 

NN7 

 

For NN7 neuron number is 2. We can see figure A.1 performance of NN7. Regression 

output is not on below there by, as regression output is below 0.95. İn the chart, the 

network training has ended at the 36st iteration but it has acquired the best performance 

on the 18th iteration. 

 

 

Figure A.1: Performance plot for NN7. 
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NN23 

For NN23 neuron number is 5. The figure 5.3 shown that performance output of NN23 

and figure A.2 shown that regression output of NN23 training. İn the chart, the network 

training has ended at the 1000th iteration but it has acquired the best performance on 

the 37th. The regression output for 5 neuron input and target data match 0,96. 

 

 

Figure A.2 : Performance plot for NN23. 

 

 

Figure A.3 : Regression plot for NN23. 
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NN8 

 

For NN8 neuron number is 10. The figure A.4 shown that performance output of NN8 

and figure A.5 shown that regression output of NN8 training. İn the chart, the network 

training has ended at the 1000th iteration but it has acquired the best performance on 

the 28th. The regression output for 10 neuron input and target data match 0,98113 

 

 
 

Figure A.4 : Performance plot for NN8. 

 

 

Figure A.5 : Regression plot for NN8. 
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NN31 

 

For NN31, neuron number is 15. Figure A.6 shown that performance output of NN31 

in the chart, the network training has ended at the 1000th iteration but it has acquired 

the best performance on the 9th. The regression output of 15 neuron of first training 

group input and target data match 0,99306 and figure A.7 shown that regression output 

of NN31 training. 

 

 

Figure A.6 : Performance plot for NN31. 

 

 

Figure A.7 : Regression plot for NN31. 
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NN4, NN22, NN5, NN17 from the second training group output's performance and 

regression outputs are below. For second training group, chosen network type is as 

feed-forward back-propagation, chosen network type is as feed-forward back-

propagation, for training function preferred trainlm, learngdm is chosen as adaptation 

learning function, for performance function MSE and trensfer function TANSIG, for 

epochs 1000 and max fail 500 

 

NN4 

For NN4 neuron number is 2. The figure A.8 shown that performance output of NN4. 

 

Figure A.8 : Performance plot for NN4. 

NN22 

 

For NN22 neuron number is 5. Figure A.9 shown that performance output of NN22 

and figure A.10 shown that regression output of NN22 training. 

 

 

Figure A.9 : Performance plot for NN22. 
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Figure A.10 : Regression plot for NN22. 

NN5 

 

For NN5 neuron number is 10. We can see figures performance of NN5. Figure A.11 

shown that performance output of NN5 and figure A.12 shown that regression output 

of NN5 training. 

 

 

Figure A.11 : Performance plot for NN5. 
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Figure A.12 : Regression plot for NN5. 

NN17 

 

For NN17 neuron number is 15. Figure A.13 shown that performance output of NN17 

and figure A.14 shown that regression output of NN17 training. 

 

 

 Figure A.13 : Performance plot for NN17. 
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Figure A.14: Regression plot for NN17. 

NN20, NN21, NN25, NN26, NN27 from the third training group output's performance 

and regression outputs are below.  

 

NN20 

 

For NN20 is neuron number 2. We can see figure A.15 performance of NN20. 

 

 

Figure A.15: Performance plot for NN20. 

 

 



75 

NN21 

 

For NN21 neuron number is 5. The figure A.16 shown that performance output of 

NN21 and figure A.17 shown that regression output of NN21 training. 

 

 

Figure A.16 : Performance plot for NN21. 

 

 

Figure A.17 : Regression plot for NN21. 
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NN25 

 

For NN25 neuron number is 10. The figure A.18 shown that performance output of 

NN33 and figure A.19 shown that regression output of NN25 training. 

 

Figure A.18 : Performance plot for NN25. 

 

 

Figure A.19 : Regression plot for NN25. 
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NN26 

 

For NN26 neuron number is 15. The figure A.20 shown that performance output of 

NN26 and figure A.21 shown that regression output of NN26 training. 

 
 

Figure A.20: Performance plot for NN26. 

 

 

Figure A.21: Regression plot for NN26. 
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NN27 

 

For NN27 neuron number is 20. The figure A.22 shown that performance output of 

NN27 and figure A.23 shown that regression output of NN27 training. 

 

 
 

Figure A.22 : Performance plot for NN27. 

 

 
 

Figure A.23 : Regression plot for NN27. 
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