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DESIGN AND CONTROL OF AN AUTONOMOUS BLIMP 

SUMMARY 

Until the Hindenburg disaster in 1937, airships have been used widely both military 

missions and commercial transportations, including transatlantic flights. Even if this 

incident had been a misfortune for the usage of airships, since 40 years, because of 

oil and energy crises, the popularity of airship has been increased. 

In recent years autonomous vehicle applications are increasing gradually, besides 

unmanned aerial vehicles are the most used at these applications that are related to 

military and defense industry, commercial or academic projects. 

 Although airships are used in autonomous aerial vehicle projects, some 

disadvantages, such as bigger structure and lower maneuverability than other aerial 

vehicles, have made airships less preferred.  

In this thesis, a blimp is used for an indoor robotics application. An indoor image 

dataset consisting 3090 images is recorded by grabbing image frames from a point 

which are specified before, by rotating the camera 15 degrees  for all points for 3 

different heights at Mechatronics Education and Research Center building. These 

images are used to determine the position of the blimp by matching with real time 

grabbed frames and then to fuse this data with position result which is obtained from 

IMU data. 

Another onboard sensor that is integrated to the blimp is 9DoF IMU. IMU data is 

obtained wirelessly via an XBee and Arduino board. By double integrating IMU data 

the positions at three axes are obtained with errors because of drift and integration 

constants. Besides, IMU data is used to identify the blimp system in Matlab by 

validating experimental results with the basic dynamical model simulation results. 

As a part of this thesis, some electronic circuits are designed and integrated to the 

blimp . A voltage regulator circuit is designed and used onboard with 3 different 

voltage outputs to blimp motors, camera and IMU-Arduino-XBee. At the same time, 

default RC of the blimp is connected to the serial port of ground station via Arduino 

board and an electronic circuit to increase and regulate the input voltages of remote 

controller is used. Control signals that are generated in the main program are sent via 

this part which includes an Arduino board to send PWM signal over 6 relays for 

direct&reverse rotations of motors to the motors. 

In an addition to experimental parts of this thesis, a basic dynamical model is derived  

and simulated, and then results are validated with experimental results. The 

simulation is visualized in VRML. Next, the optimized simulation results are 

compared with experimental results. 

The thesis project consists of four different parts that are modeling and simulation of 

the system, reading IMU data and calculating the position, grabbing images from 

wireless camera and matching grabbed images with images from dataset, comparing 
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simulated blimp positions with experimental results that are obtained after  hardware 

integration. 
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OTONOM HAVA ARACI (ZEPLİN) TASARIMI VE KONTROLÜ 

ÖZET 

Hava araçları icat edildikleri günden beri kesintisiz bir şekilde askeri, ticari ve 

akademik çalışmalarda ilgi odağı olmuşlardır. Her ne kadar 1937 yılındaki 

Hindenburg faciası ve 2. Dünya Savaşı zeplin kullanımı açısından olumsuz bir 

kırılma noktası olsa da bu durum, zeplinlerin tarihte, hava araçları arasındaki 

önemini değiştirmez. Günümüzde yolcu taşımacılığı yapan, yolcu kapasitesi 

bakımından en büyük uçakların görevini, 1920-1940 yılları arasında, okyanus ötesi 

uçuşlarda zeplinlerin yaptığı gözönünde bulundurulursa zeplinlerin havacılık 

tarihindeki önemi daha da iyi anlaşılabilecektir. 

Bilindiği gibi zeplinler yapıları itibariyle diğer hava araçlarına göre enerji verimli 

araçlardır. Bu verimlilik genelde elips şeklinde olan dış yüzeylerinin içinde bulunan, 

havadan daha hafif taşıyıcı gaz yardımıyla belli ağırlıklardaki donanımları, 

kapasiteleri ölçüsünde taşımak için dışarıdan herhangi bir enerji girdisine ihtiyaç 

duymamalarından ileri gelir. Diğer hava araçları teknolojik gelişimleriyle 

kıyaslandığında geride kaldığı düşünülen zeplinlere olan ilgi, özellikle enerji 

darboğazlarının yaşandığı son 40 yılda kademeli olarak artış göstermektedir. Bu 

gelişmelerden en önemlisi zeplinlerde taşıyıcı gaz olarak patlayıcı özelliği bulunan 

Hidrojen gazı yerine, herhangi yanıcı ve patlayıcı özelliği olmayan bir asal gaz 

Helyum kullanılmasıdır. Bu ilginin karşılığı olarak, zeplinlere tekrar yolcu ve kargo 

taşımacılığında ticari görevler yüklenmekte, zeplinler askeri ve akademik projelerde, 

özellikle farklı tür ve boyutlardaki algılayıcı taşıyabilme özellikleri nedeniyle yer 

almaktadırlar.  

Otonom (insansız) hava araçları, özellikle savunma sanayi ve akademik dünyanın 

son 15 yıldır en çok ilgi gösterdiği konuların başında gelmektedir. Bu araçlara 

entegre edilebilen yer istasyonları, koordineli bir şekilde çalışabildikleri otonom veya 

otonom olmayan yer araçları, farklı tür ve boyutlardaki sensörler bu alanı daha da 

karmaşık ve ilgi çeker hale getirmiştir. Bu alanda yapılan yenilikçi yaklaşımlara 

örnek olarak farklı otonom araçların birbirleriyle etkileşimli ve koordineli bir şekilde 

çalışabilmesi ve bir görevin farklı bölümlerini gerçekleştirebilmeleri gösterilebilir. 

En yaygın belirlenen görevler olarak gözetleme, takip, nesne tanıma ve uzaktan 

müdahale gibi örnekler gösterilebilir. Bunların yanında kullanıcı dostu ve kullanıcı 

etkileşimli sistemler de, yarı-otonom sistemlerde sıkça yer almaktadır. Yarı-otonom 

sistemler son dönemlerde sıkça otomotiv sektöründe kullanılmakta ve kullanıcılara 

yardımcı olacak teknolojiler şeklinde sunulmaktadır. 

Bu tez kapsamında, iç-mekan kullanımına uygun boyutlardaki uzaktan kumandalı bir 

zeplinin otonom hale getirilmesi, modellenmesi ve kontrolüyle ilgili deneysel, teorik 

ve benzetim çalışmaları yapılmıştır. Bu çalışmalarda İstanbul Teknik Üniversitesi, 

Mekatronik Eğitim ve Araştırma Merkezi binası iç ortamda yapılan deneylerde 
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kullanılmıştır. Bina içinde bir odanın belirlenen noktalarından görüntüler alınarak bir 

görüntü veri seti oluşturulmuştur. Ayrıca zeplinin standart haline ek olarak kablosuz 

kamera, 7.4 V gücünde bir Lityum-Polimer pil, dokuz serbestlik dereceli ataletsel 

ölçüm ünitesi, telemetrik haberleşme cihazı verici XBee, üzerinde Atmega 328 

mikro-kontrolör ve dijital giriş-çıkışlar bulunan Arduino Uno marka bir elektronik 

kart ve özel olarak tasarlanmış farklı voltaj seviyelerinde güç sağlayabilen bir voltaj 

regülatörü gibi donanımlar eklenmiştir. Bunlara ek olarak yer istasyonunda 

oluşturulan sinyaller zeplinin kumandası ile motorlara gönderilmektedir. Zeplin 

kumandası ile bilgisayar arasında Arduino Mega ve her üç motorun 2 yönünü de 

kontrol eden, anahtarlama devre elemanlarından oluşan bir elektronik devre 

bulunmaktadır. Kablosuz kameradan gerçek zamanlı görüntüler yer istasyonuna, 

kameranın alıcısı ile aktarılmaktadır. 9 serbestlik dereceli ataletsel ölçüm ünitesinden 

gelen veriler ise yer istasyonuna bağlı alıcı telemetrik haberleşme cihazı olan XBee 

ile sisteme aktarılmaktadır. 

İç ortamdan toplanan görüntü verisi tezin ilk aşaması olarak düşünülebilir. Bu ilk 

aşamada bir veri toplama düzeneği ve zeplinin üzerinde bulunacak kablosuz kamera 

yardımıyla iç-ortamda 3 farklı yükseklikte, belirlenen her bir noktadan görüntü 

toplama düzeneği saat yönünde döndürülmek şartıyla 15’er derecelik açılarla, uygun 

bir noktadan 24 adet görüntü alınarak, görüntü veri-seti oluşturulmuştur. Görüntü 

veri-seti toplama işlemi Matlab programında yazılan bir kod ile gerçekleştirilmiştir. 

Görüntü veri-setindeki her bir görüntü 3-boyutlu eksene aktarılmış ve görüntülerin 

pozisyonlarının iç ortamda hangi noktada olduğu bilgisi yer istasyonunda çalışan 

yazılıma işlenmiştir. 

Zeplinin matematik modeli, Matlab programında dinamik model üzerine gerekli 

doğrusallaştırmalar yapılarak 4’er serbestlik dereceli boylamsal ve yanal modeller 

halinde 2 ayrı şekilde oluşturulmuştur. Herhangi bir kontrol yöntemi uygulanmadan 

yapılan benzetim çalışmaları sonucu zeplin modelinin kararsız bir sistem olduğu 

sonucu elde edilmiştir. Kararsız zeplin sisteminin kontrol edilebilirliği incelenmiş ve  

kontrol edilebilirlik matrisinin rankı her iki model için de 4 olarak elde edilmiştir. 

Sistemin kontrol edilebilir olduğu sonucu elde edildikten sonra literatürde yer alan 

zeplin kontrolüyle ilgili çalışmalarda diğer alanlara göre kullanımı daha yaygın olan, 

tüm durum geribeslemeli bir kontrol yöntemi olan doğrusal-karesel regülasyon 

(LQR) yönteminin kullanımı uygun görülmüştür. Doğrusal-karesel regülasyon 

yönteminin kullanımı zeplin üzerinde bulunan ataletsel ölçüm ünitesinden, zeplinin 

tüm durumları alınabildiği için de kolayca uygulanabilecek durumdadır. Doğrusal-

karesel regülasyon yöntemi uygulandıktan sonra Matlab programında benzetim 

çalışması yapılmış ve bu benzetim çalışması sonucu zeplin sisteminin kararlı hale 

geldiği sonucu elde edilmiştir. Ayrıca Simulink programında zeplin modeli 6 

serbestlik dereceli hazır blok yardımıyla oluşturulmuş, buna ek  olarak rastgele 

kontrol sinyalleri üreten bir başka alt sistem ile zepline itki kuvveti veren motorlara 

entegre edilmiştir ve VRML (sanal gerçeklik modelleme dili) arayüzü ile benzetim 

görsel hale getirilmiştir.  

Zeplin üzerine yerleştirilen 9 serbestlik dereceli ataletsel ölçüm ünitesi, 3 eksenli 

ivme ölçer, 3 eksenli jiroskop ve manyetik alan ölçen manyetometre(pusula) 

içermektedir. Ataletsel ölçüm ünitesinden elde edilen veri, bir adet Arduino Uno, 

verici XBee ve yer istasyonundaki alıcı XBee vasıtasıyla bilgisayara iletilmektedir. 9 

serbestlik dereceli ataletsel ölçüm ünitesine, üzerindeki ATmega328 mikroişlemci 

vasıtasıyla kosinüs-yön matrisi (DCM) tabanlı AHRS kodu, ivme ve pusula 
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vektörlerine bağlı jiroskop sapmalarını düzeltecek şekilde düzenlenerek bir firmware 

olarak yüklenmiştir. Sonuç olarak yer istasyonuna ataletsel ölçüm ünitesi verisi, üç 

eksendeki ivmeler, üç eksendeki açılar, pusulanın yönü ve zaman değerlerini içeren, 

8 elemanlı bir vektör şeklinde gönderilmektedir. Alınan ivme verilerinin alınarak üç 

eksendeki hız değerleri ve bu hız değerlerinin integralleri alınarak da zeplinin 

pozisyonu integral hesaplarında integral sabitlerinden doğan hatalarla da olsa 

hesaplanabilmektedir. İntegrasyondan ve sürtünmeden doğan hataları azaltmak için 

lokalizasyon ve navigasyon içeren akademik çalışmalarda sıkça kullanılan Kalman 

filtresi tasarımı ve uygulaması ileriki dönemde bu çalışmanın devamı olarak  

eklenecektir. 

Zeplin üzerinde bulunan ve kablosuz görüntü aktarımı yapabilen kamera ile SURF 

algoritması kullanılarak görüntü işleme ve alınan görüntülerin veri setinde bulunan 

görüntülerle eşlenmesi uygulamaları yapılmaktadır. Görüntü işleme uygulaması 

olarak iç ortamda bulunan ve yer tahmininde önemi yüksek olan nesnelerin tanınması 

işlemi yapılmaktadır. Bu tanıma işleminin ardından gerçek zamanlı görüntüde 

algoritmalar tarafından bazı tanımlayıcı özellikler sayısal olarak belirlenmektedir ve 

bu özelliklerle veri setindeki görüntülerin tanımlayıcı özellikleri arasında bir uzaklık 

ilişkisi kurulmaktadır. Bu uzaklık ilişkisi 0 ile 100 arasındaki sayılara indirgenmiştir. 

Örneğin birbirinin aynı görüntüler arasındaki uzaklık 0 (sıfır) olacak şekilde 

indirgeme ve hesaplama işlemi yapılmıştır. Böylece görüntü eşleme algoritması ile 

zeplinin konumu oda içinde başka bir sensör bilgisine ihtiyaç olmadan kabaca 

bulunabilmektedir. Alınan herhangi bir gerçek zamanlı görüntü ile veri-setinde 

bulunan bir görüntünün eşleştirilmesi çevrimi yer istasyonunda bulunan yazılımda 

yaklaşık Ubuntu 12.10 işletim sistemi ve Eclipse yazılım geliştirme ortamı kullanılan 

yazılımda renkli görüntülerle yapılan çalışmalar için 1600  milisaniye, siyah-beyaz 

görüntülerle yapılan çalışmalar için 1610 mili saniye, Microsoft Windows 7 işletim 

sistemi ve Microsoft Visual Studio 2010 yazılım geliştirme ortamı kullanılan 

yazılımda renkli görüntülerle yapılan çalışmalarda 6598 milisaniye, siyah-beyaz 

görüntülerle yapılan çalışmalar için ise 6560 milisaniye sürmektedir. Bu süre sisteme 

verilecek görevler düşünüldüğünde kabul edilebilir durumdadır. 

Tez kapsamında deneysel olarak görüntü eşleme ve ataletsel ölçüm ünitesinden gelen 

verilerle yapılan işlemler sonucu ayrı ayrı bulunan pozisyonlar birleştirilerek daha 

güvenilir bir pozisyon verisi, her iki yer tayini işleminin hatalarının ortalamarı 

alınarak elde edilmektedir. Elde edilen pozisyon verisine göre yer istasyonundan 

üretilen kontrol sinyalleri zeplin kumandası aracılığıyla zepline gönderilmektedir.  

Son olarak Simulink ve VRML arayüzünde çalışan model ile deneysel sonuçlar 

karşılaştırılmakta ve matematiksel model doğrulanmaktadır. Bu işlem sayesinde 

gelecekte tez kapsamında oluşturulan zeplin matematiksel modeli geliştirilerek, 

model üzerinde yapılacak değişikliklerle benzetim çalışmalarında kullanılan 

modelin, deneysel sonuçlara daha yakın bir hareket yapması sağlanacaktır. 
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1. INTRODUCTION 

Unmanned vehicle is a remotely controlled or autonomous vehicle which has no 

person on board to control or drive it. These devices should be capable of analyzing 

sensory data for the perception and based on the “perceived world” they make 

decisions to complete their tasks.  

In this work, the aim is to design and control of an autonomous aerial vehicle, 

blimp/, as a part of unmanned aerial vehicle fleet project at Mechatronics Education 

and Research Center, Istanbul Technical University. The focus of the work is 

information fusion using multiple sensors located conveniently on the blimp gondola. 

In addition, using autonomous blimp, the semantic mapping of indoor environments 

is achieved for intelligent task planning and execution.  

1.1 Use of Unmanned Airship in Research 

Blimp is a non-rigid airship and it differs from a big-scale airship because it does not 

have any rigid structure to help the airbag maintain its shape.  

Blimps have a wide range of potential applications. Although usage areas had 

decreased sharply after Hindenburg disaster (1937) and World War II, in recent years 

blimps became popular in commercial applications, defense industry and reflected in 

academic research, especially focusing on navigation, perception and control abilities 

of blimps. Blimps are mostly used as advertising environments commercially. They 

are also used in TV camera platforms and as a means of transportation both touristic 

and cargo.  In addition, defense industry uses blimps for surveillance, exploration, 

monitoring, and transportation.  

Blimps could also be used in examining the flock behavior of co-operating animals. 

For example, a blimp has been used to investigate and reconstruct the principles 

underlying biological navigations systems such as insect flight [1]. Similarly, another 

study investigates the navigation behavior of bees for the purpose of long-range goal-
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directed navigation in 3D environment by using a biological model of motion 

detector [2].  

One of the researches investigate emergency management using unmanned airships 

investigates emergency management. The research  reports several applications on  

monitoring natural disasters, such as flood, earthquakes, fire, drought, severe storms 

etc., search and rescue, and communication [3]. Blimps can also be used in unknown 

environments conveniently to search for the indication of life. In [4] , the researchers 

discuss an approach to field-testing methods relevant to three scientific thrusts in the 

detection of life and pre-biotic organics on other worlds by deploying a mobile 

organic laboratory on Earth to demonstrate the required techniques. Additionally, an 

R&D research introduces results for aerial robot systems for urban search and rescue 

(USAR). In this research, different types of aerial vehicles are used and these 

vehicles are combined to obtain quick and continuous service for disaster 

information. Autonomous helicopters collect disaster situation data from the sky for 

first decision making. Then, a blimp and a cable-driven mobile robot survey victims 

by detecting faint signs of life. A captive balloon system monitors the area and relays 

wireless communication among working teams on the ground [5]. In fact, one of the 

most promising applications of an unmanned airship is environmental observation 

system for large-scale gas pipeline network to monitor gas leakage and to cope with 

other dangerous situations [6]. A similar use of airships is in the field of automatic 

forest fire monitoring and measurement. In [7], such an application contains several 

aerial vehicles working co-operatively to detect fires by sensors, and a central station 

to guide the aerial vehicles (an airship, two helicopters) for forest fire monitoring.  

1.2 Components of an Autonomous Blimp  

Autonomous blimps have electronic, mechanical and electromechanical components 

for perception, navigation and motion control. These components may vary 

according to the different uses of blimps. The size of the blimp is usually the most 

important specification, which may change the equipment variety because of the 

available payload due to buoyancy limits and efficiency. 
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1.2.1 Envelope 

The envelope is the outer surface of the blimp and it gives the shape to the blimp. It 

usually has a shape of ellipsoid but also it could have different shapes considering 

aerodynamic conditions, such as cigar, spherical etc. The material of the envelope 

varies depending on the usage area of the blimp. Usually blimps have helium-proof 

envelope with Mylar foil. In some cases, the material of the envelope may be latex or 

polyurethane. In some applications calendared ripstop Nylon or calendared, Silicone-

coated, and laminate materials, which are usually used to as parachute materials, has 

been used as envelope material. The ideal properties which are desired from 

envelope materials: 

 High strength to determine the maximum possible size of the envelope, 

 High ‘strength to weight ratio’ to minimize the weight of the envelope, 

 Resistance against to the environmental properties,  

 Low permeability to minimize the lifting gas loss, 

1.2.2 Gondola 

Gondola is attached to envelope underneath the airship. Electric motors, propellers, 

cables, battery, and some other components as sensors, microprocessor and 

microcontroller are carried by gondola.  Depending on the requirements, types, 

specifications, numbers and sizes of components may vary. 

1.2.3 Fins 

Fins are usually located at the tail of the blimp. The number of fins may vary 

according to the required navigation and stability of the blimp since they are used to 

help to rotate and provide a better stabilization to the blimp. In motion control 

applications, the fins are actuated by servomotors for active control of orientation.  

1.2.4 Remote control device 

Autonomous blimps are usually controlled by embedded systems but in some cases, 

the device which processes the data and sends control signals to motors can be an 

external and ground-based system that controls the blimp remotely. 
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1.3 Previous Projects and Their Application Areas 

As is well known, airships were as popular as aircrafts/airplanes until the Hindenburg 

Disaster (1937) and World War II. These two incidents decreased the use of airships. 

From 1970s the researches about airships has increased and so many commercial, 

military and academic airships have been developed the evolutionary development 

was in since 1970s has been the change of lifting gas from Hydrogen to Helium.   In 

addition, some extra tasks has been added to airships and today the use of airships 

are not just carrying people/military personnel but also executing autonomous 

missions such as surveillance, monitoring, transporting etc. Developments in 

autonomous blimp research are not limited just to the co-operative missions. There 

have been also unconventional structural designs and some of them are covered in 

this section.  

Although the airship projects are related to each other to some extent, they can be 

classified in three groups such that commercial, academic and military projects. 

1.3.1 Commercial airship projects 

LZ 127 Graf Zeppelin is the most stunning work in the airship history because it is a 

production, which is identified by its trademark. Many people would understand 

airship if anybody tells about Zeppelins. LZ 127 Graf Zeppelin was built in Germany 

and carried passengers during its operating life. Lifting gas of airship was Hydrogen 

and rigid airship has operated from 1928 to 1937 commercially. The name Graf 

Zeppelin comes from Ferdinand von Zeppelin who was the father of airships and was 

a Graf/Count in the German Nobility. In Figure 1.1, LZ 127 Graf Zeppelin is shown 

while it was leaving the storage area in Friedrichshaven for its First Flight on 

September 18, 1928. 
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Figure 1.1 Before Its First Flight, LZ 127 Graf Zeppelin is in Front of Its Hanger. [8] 

During its operating life, the airship made 590 flights covering more than a million 

miles (1.6 million km). It was designed to be operated by a crew of 36 officers and 

men. In Table 1.1, the general specifications of LZ 127 Graf Zeppelin is given. 

Table 1.1 General Specifications of LZ 127 Graf Zeppelin [8] 

 LZ 127 Graf Zeppelin 

Crew 40 

Capacity 20 passengers 

Length 236.53 m 

Diameter 30.48 m 

Volume 105000 m
3 

Useful Lift 60000 kg 

Powerplant 5xMaybach Engines, 410 kW (550 hp) each 

Maximum Speed 128 km/h 

There is another German-built airship as famous as Zeppelin, LZ 129 Hindenburg, 

but its fame comes from an accident and its enormous dimensions. LZ 129 

Hindenburg was a large commercial passenger-carrying rigid airship, also the longest 

class of flying machine and the largest airship by envelope volume. Table 1.2 

demonstrates the specifications of the airship. 
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Table 1.2 LZ 129 Hindenburg General Characteristics. [9] 

 LZ 127 Graf Zeppelin 

Crew 40 to 61 

Capacity 50-72 passengers 

Length 245 m 

Diameter 41.18 m 

Volume 200000 m
3 

Powerplant 4xDaimler-Benz diesel engines,  

890 kW (1200 hp) each 

Maximum Speed 135 km/h 

With its dimensions LZ 129 Hindenburg is the biggest flying machine ever built, the 

moment of the explosion during its landing is shown in Figure 1.2. 

 
Figure 1.2 The Explosion Moment of LZ 129 Hindenburg. [9] 

After first North American transatlantic flight, on 6 May 1937 14 months later from 

its first take-off, LZ 129 Hindenburg destroyed by fire during landing and 36 people 

died in the accident. The main reason of the accident was the explosion of lifting gas, 

hydrogen. The choice of hydrogen is just about the prevalence and the lighter weight 

of hydrogen comparing with helium. 

Since 1925, Goodyear (tire and rubber company) has produced many blimps. The 

Goodyear Blimp may be the most popular advertisement blimp in the world.  In 

addition to advertising purposes, Goodyear built rigid airships for the US Navy in the 

1930s. Furthermore, in the 1940s and 1950s, Goodyear has manufactured a series of 

large surveillance airships used to protect merchant fleets along the coast. Today 

Goodyear fleet consists of four airships, these are; Spirit of America, Spirit of 

Goodyear, Spirit of Innovation and Navigator. In Figure 1.3, Spirit of America 

named Goodyear blimp is landing and crew are working for a safety landing. This 
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blimp purposed to transport people as it can be seen from the gondola part of the 

blimp there are seats.     

 

Figure 1.3 Goodyear Blimp "Spirit of America". [10] 

A company, named World SkyCat Ltd., has developed two airships, SkyCat-20 and 

SkyCat-220 and on 23
rd

 July 2000 their one-sixth fully working model made its first 

flight at Cardington, UK. This company can modulate these airships for several 

specific missions such as surveillance and border control, emergency relief, 

firefighting, luxury tourism, mass passenger transport, passenger and car transport, 

natural gas transport, pipeline transport, heavy-lift cargo, etc. and the names of the 

airships may vary according to their mission. In Table 1.3, there are parametric 

values of SkyCat-20 and SkyCat-220. 

Table 1.3 Properties of SkyCat-20 and SkyCat-220. [11] 

Overall Dimensions SkyCat-20 SkyCat-220 

Length 81 m 185 m 

Height 24.1 m 47 m 

Width 41 m 77.3 m 

Payload Module 

Length 25.5 m 64 m 

Height 2.6 m 4.8 m 

Width 3.5 m 7.8 m 

Payload 

Standard STOL Mode 20 tons 220 tons 

Hover/VTOL Mode 14.5 tons 160 tons 

Range 

Max. Payload at Cruise 2400 n.miles 3225 n.miles 

Speed 

Cruise 75 kts 80 kts 

Sprint 85 kts 95 kts 
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These airships are hybrid because of lifting is made by the help of lifting gas 

(Helium) and maneuvers are made by thrusters and the energy sources  of the 

thrusters may be electricity or fuel, in an addition SkyCat-20 has vertical take-off and 

landing capacity as can be seen in Figure 1.4. 

 

Figure 1.4 World SkyCat-20, Landing to Water. [11] 

In the 1980s, Airship Industries was an active company, which manufactured modern 

non-rigid airships (blimps). There are two remarkable blimps, which are 

manufactured completely by this company, Skyship 500 and the larger model 

Skyship 600. The first flight of Skyship 500 was on 28 September 1981, taken place 

from Cardington. The first Skyship 600 flew from Cardington on 6 March 1984. The 

general specifications of Skyship 500 and Skyship 600 are given in Table 1.4. 

Table 1.4 General Characteristics of Skyship 500 and Skyship 600. [12] 

 Skyship 500 Skyship 600 

Length 52 m 66 m 

Diameter 14 m 22 m 

Speed 40 km/h 40 km/h 

Volume 5153.666 m
3 

7600 m
3
 

Both Skyship 500 and Skyship 600 were first used in advertising and camera 

platform, and then tested in touristic transportation in a number of cities worldwide 

such as Paris, Toronto, Montreal, Sydney, Brisbane, Melbourne, San Francisco, 

London and Zurich and military services. As can be seen in Figure 1.5, there is a 

Skyship 600 which is carrying peoples during a sightseeing in 2006 at Swiss Alps 

[12]. 
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Figure 1.5 A Skyship 600 During Sightseeing. [12] 

The Zeppelin Company is a manufacturing company settled in in Friedrichshafen, 

Germany and it builds airships for flying passengers, scientist or TV cameras. These 

airships are called Eureka. Information about airships, which are manufactured by 

Zeppelin and have rigid structured bodies, is shown in Table 1.5. Currently, this 

airship is used regularly on flight-seeing tours and custom charters above the San 

Francisco Bay Area, San Diego and Greater Los Angeles.  

Table 1.5 Specifications of Eureka.  

Dimensions Cabin 

Length 
75 m 

Number of Seats 2 crew + up to 

12 passengers 

Width 19.5 m Restroom Yes 

Height 17.4 m Volume 26 m
3 

Envelope Volume 8400 m
3 

Length 10.7 m 

Ballonet Volume 2200 m
3 

Parameter 

Envelope Surface Area 2630 m
3 

Mission 

Duration/Endurance 

High (>12 h) 

Mass 
Crew/Passenger 

Comfort 

High 

(noise < 20dB) 

Maximum take-off 

Weight 8040 kg 
Noise/Other 

Emissions Low 

Useful Load 1950 kg Fuel Consumption Low (50kg/h) 

Performance 
Minimum Speed Hover 

Capability 

3xLycoming IO-360 150 kW(200 hp) VTOL Capacity Yes 

Maximum Level Flight 

Speed 125 km/h 
Very Low Altitude 

Mission Yes 

Range 900 km  

Ceiling 2850 m 

Maximum Endurance ~24 h 
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1.3.2 Academic airship projects 

Generally, academic airship projects support commercial or military airship projects. 

Therefore, the academic airship projects, which are independent from commercial or 

military airship projects, are covered in this section.  

Autonomous airships provide interesting and attractive research areas to academic 

world because of difficulty of controlling big volumes of airships with great 

dimensions such as an aircraft or bigger under different weather conditions, energy 

efficient movements that are based on lifting gas effects and possible use of solar 

panels and potential of using sensors separately or together. In particular, fluid 

mechanics, mechanical design and manufacturing methods of blimps are important 

areas that require further research and development.  

One of the most popular academic works about airships is Project AURORA 

(Autonomous Unmanned Remote Monitoring Robotic Airship) [13]. This research 

mainly discusses developing the fundamental technology of an autonomous airship 

which completely includes the subjects such that landing and ground hardware and 

software infrastructures; airship dynamic modeling and simulation; control and 

guidance methods; visual servoing strategies; robotic air-ground cooperation; 

dynamic target recognition; and hybrid airship robotic software architecture.  

Considering developing technology objective, Project AURORA was conceived as a 

multi-phase project; at this section of my thesis the first phase of this project, AS800, 

is covered. AURORA I, AS800, is a non-rigid airship and Table 1.6 demonstrates the 

parametric specifications of this model. 

Table 1.6 AURORA I Airship AS800 Specifications. [13] 

 AURORA I Airship AS800 

Length 10.5 m 

Diameter 3 m 

Volume 34 m
3 

Payload 10 kg 

Maximum Airspeed 50 km/h 

In Figure 1.6 AURORA I AS800 is demonstrated. AS800 has three main parts: the 

onboard components, the ground station and the communication system elements. 

The onboard station is composed of processors, sensors, actuators and part of 
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communication system. Sensor unit contains a GPS receiver, an IMU, a wind sensor 

and cameras. Additionally, there are propeller speed sensors, control surface and 

vectoring position sensors, engine temperature and fuel and battery level sensors.  

 

Figure 1.6 AURORA I AS800, During Its Test Flight. [13] 

The ground station includes a portable computer, human-machine interface (HMI) 

for visualizing and interaction mechanism between the operator and the airship 

onboard system. The communication system is based on two radio links which the 

first one transmits analog video imagery from the airship to ground station and the 

second one transmits digital sensor telemetry and command data between both 

stations.  

A second important example project is LOTTE which is a remotely controlled 

airship, built by an Airship Research Group called FOGL (ForscherGruppe 

Luftschifftechnologie) at the University of Stuttgart, Germany [14]. The aim of this 

research group, FOGL, is to use LOTTE as a test-bed to get a better understanding 

and wide information about LTA technologies. In Table 1.7, there is some general 

information about LOTTE. 

Table 1.7 General Information About the Airship LOTTE. [14] 

 LOTTE 

Length 16 m 

Maximum Diameter 4 m 

Total Envelope Volume 109 m
3
 

Installed Ballonet Volume 19 m
3 

Maximum Payload 15 kg 

Area of Solar Cells Max. 4.8 m
2 

Solar Power Max. 720 W 

Maximum Flight Altitude Approximately 1000 m 

Maximum Flight Speed 45 km/h 
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LOTTE is not only special because it is a solar powered airship, but it is special 

because it is equipped with sensors such that an IMU, a GPS, ultrasonic anemometer, 

compass, pressure gauge and thermometer to have the full perception capabilities. In 

the project the modeling was given a significant importance. To obtain a reliable 

theoretical model, experimental investigations and in-flight tests (medium wind 

tunnel, gust wind tunnel and large water tunnel) have been applied to a scaled model 

of the airship. The remotely controlled airship has an electric engine which is 

powered by battery/cell units. In order to recharge these batteries there are solar 

panels on the airship. There are 12 modules of solar cells and each of them has 0.4 

m
2
 area to collect solar energy, the power consumption of the electric engine is 1500 

W. In Figure 1.7, the structural components and the solar panels of the airship 

LOTTE are demonstrated. 

 

Figure 1.7 Structural Components and Solar Panels of Airship LOTTE. [14] 

1.3.3 Military airship projects 

Even if major numbers of military airship projects are developed by universities, 

there are some companies which builds airships for military applications. In this 

section, the significant projects will be discussed considering historical development. 

USS Akron is one of the biggest airship projects in the history that is designed and 

operated for US Navy. This is a rigid airship and gets involved in memories by a 

weather-related accident with the loss of 73 of the 76 crew and passengers on board. 

During its operating life (1931-1933), USS Akron also served as a flying aircraft 

carrier. USS Macon which is the sister of USS Akron is operated by US Navy for 
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scouting and carrying aircrafts and the dimensions were same. Both USS Macon and 

USS Akron are the largest helium filled flying objects ever. In Table 1.8 general 

characteristics of these airships are shown. 

Table 1.8 General Characteristics of USS Akron [8] 

 USS Akron 

Length 239 m 

Diameter 40.4 m 

Height 46.5 m 

Weight 100 tons 

Volume 180000 m
3 

Powerplant 
8xMaybach VL-2 gasoline 420 kW 

(560 hp) engines 

Speed 
Cruising: 93 km/h 

Maximum: 133 km/h 

Range 19590 km 

Useful Load 83000 kg 

Capacity 89 officers and men 

Aircraft Capacity 4xF9C Sparrowhawk biplane fighters 

Armament 7xmachine guns 

Furthermore, starting from 1910s until 1960s, US Navy had used so many blimps. 

Their  intended uses are mostly about coastal military patrol and  rescue, additionally 

aircraft carrying was one of their activities, too. These blimps are called some 

alphabetic letter classes such that; B Class, C Class, D Class, E Class, F Class, G 

Class, H Class, J Class, K Class, L Class, M Class, N Class. These all classes are 

manufactured by Goodyear-Zeppelin Corporation and/or Goodyear Aircraft 

Corporation.  

Even though YEZ-2A is a military project that Airship Industries could not complete 

which was originally intended for the US Navy, there is a PhD thesis completed and 

presented in 1990, at the Cranfield Institute of Technology, College of Aeronautics, 

Aerodynamics Department, by S. B. V. Gomes. The bankruptcy of Airship Industries 

is the main reason of this unsuccessful project. The PhD thesis covers construction of 
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flight dynamics model for computer simulation of YEZ-2A by obtaining 

aerodynamic data from its prototype.   

One of recent blimp projects that are manufactured by military purposes for the US 

Navy is named American Blimp MZ-3. Being different from previous projects, 

American Blimp Corporation manufactured this blimp and its modified model of 

commercial type A-170 series. MZ-3A operates as an advanced flying laboratory 

used to evaluate affordable sensor payloads, the development of new lighter-than-air 

(LTA) technologies and general flight support for other related R&D projects for US 

Navy. In Table 1.9, general information of MZ-3A is shown. 

Table 1.9 General Characteristics of American Blimp MZ-3A.  [15] 

 American Blimp MZ-3 

Length 54 m 

Volume 4800 m
3 

Speed Max. 93 km/h 

Powerplant 2x130 kW (180 hp, Lycoming IO-360) 

Capacity 1 pilot, 9 passengers 

Ceiling 2900 m 

Range >350 NM 

Additionally, MZ-3A is equipped with various sensors to support of technology 

development for command, control, communications, computers, intelligence, 

surveillance and reconnaissance (C4ISR) and R&D purposes. In Figure 1.8, MZ-3A 

is shown in hangar. 

 

Figure 1.8 MZ-3A  Pending in Hanger. [15] 

The Long Endurance Multi-Intelligence Vehicle (LEMV) is a hybrid airship which is 

recently undergoing flight tests developed by Northrop Grumman and Hybrid Air 
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Vehicles for the US Army to provide intelligence, surveillance and reconnaissance 

support for ground troops. Determined project cost will be $ 154 million. The 

unconventional design seems like twin envelopes attached to each other, LEMV is 

shown in Figure 1.9.  

 

Figure 1.9 LEMV During Hovering. [16] 

1.4 Aim and Objective of This Thesis 

The thesis focuses on integration of sensors, data fusion and motion control of the 

blimp to achieve several tasks with semantic mapping. Because of the blimp size and 

specifications a control system cannot be embedded on it, the gondola carries only a 

wireless camera and an IMU.   

A mathematical model is created in Simulink and connected to VRML for tracking 

the blimp motion in ground station and comparing it to the real data taken from on-

board sensors. The remote control is connected to the PC. The control of blimp is 

achieved remotely using the RC link between PC and blimp.  A wireless camera is 

attached to the envelope to identify the location of the blimp which compares the 

frames with an image dataset which is collected before to construct the map/model of 

indoor environment. Furthermore, IMU is used to identify the location and the 

outputs are compared with camera localization results.  
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2. LITERATURE REVIEW 

Autonomous airships are used generally for monitoring and surveillance in research 

projects. However, a major part of research also focuses on improving the perception 

and cognition capabilities of airships as a part of intelligent cooperative UAV team.   

2.1 Computer Vision in Blimp 

In order to have good perception capabilities, autonomous blimps often carry a on-

board camera employing several computer vision algorithms such as monitoring, 

surveillance, detection and tracking depending on the task of the robot itself or the 

UAV team.  

In [10], for detecting and tracking of predefined features, an autonomous blimp, 

which circles around a specified target, is designed and for this purpose, an extension 

of Lucas-Kanade algorithm is used. However, it was seen that Lucas-Kanade 

algorithm does not have efficient performance for rotation and scaling of images as 

mentioned at the same work.  

Sometimes autonomous airships are used as a part of the team as they are employed 

in [18]. They used autonomous blimp for forest monitoring, being a member of a 

UAV team that contains of 2 helicopters, 1 blimp and a central station. In their work 

they define the shape, position of the fire front, its rate of spread (how this front 

evolves with time) and the maximum height of the flames as the most important 

parameters for the fire detection. The scenario, which is described in the paper, is 

tested with these vehicles and the mission of the blimp is to patrol the area to look for 

fire spots.   If the fire is detected, one of the helicopters is sent to the fire zone to 

confirm the situation and localize the fire precisely. After confirmation of the fire, 

the team generates tasks to take and process pictures of the event from the correct 

viewpoints at the same time. In that work, two helicopters are just used to confirm 

and take more pictures from the fire area. Instead of using helicopters for the 

missions such as confirmation and taking pictures, the airship might have been a 
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better solution having the accuracy and quality of the localization. Additionally this 

would prevent the delay which occurs during the confirmation. In this way, some 

other missions, such as urgent response to the fire or rescuing people from the 

dangerous area, could be assigned to two helicopters suiting to their agility in 

motion.  

In a different approach, a  computer vision based navigation application can be used 

to estimate the states of an airship from an image database of visual beacons in the 

image dataset created before and the geometric specifications of the objects that are 

known [19].   

The vision system is not only employed for navigation but it can be also used for  

tracking and image projection. In [20], an external system tracks the blimp and 

estimates its states during the flight of the blimp that the blimp flies along a given 

spatial path to follow a wall. This system is just suitable for the areas where the 

blimp is clearly seen by the projection system. For this reason, the system is 

inconvenient in some cases such as outdoor environments since an object or  may 

interfere between the projection system and blimp.  

 Not all the UAV teams should have a ground station. The blimps can also be 

designed as a search -rescue or surveillance system operating autonomously. The 

blimp can carry many sensors such as IMU, GPS, stereo camera and the processor; 

therefore, without using any external station the blimp can track and estimate its own 

states. [20]. A study framework only uses one camera to control the blimp and then 

reference trajectory is generated from images [21] and a different work uses an 

object detection and tracking algorithm for visual tracking [22]. 

2.2 Navigation, Localization and Mapping 

Although navigation, localization and mapping applications of autonomous blimps 

can be performed by using cameras and computer vision algorithms, usually IMU, 

GPS, sonar sensor and similar sensors are used  in addition to make the sensing 

capability better.  The necessity of using other sensors comes from obtaining more 

robust measurement results such as the localization of the blimp or the objects 

around the blimp, and dynamic states of the blimp such as position, velocity, and 

orientation to be used in control algorithm. 
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One of the studies using autonomous blimps which works connected to a ground 

station, used to acquire information on  position and status of the victims in a disaster 

scenario in the urban area over a rescue communicator recording sound for five 

seconds in every minute [24]. The experimental outdoor results show that the height 

of the blimp is the most important factor in obtaining the voice data of victims. This 

means in order to obtain healthy voice data, the height of the blimp has to be limited 

according to the capturing capability of the voice sensor. 

Similarly, another research uses ultrasound sensors to determine location of an 

indoor blimp using particle filter [20]. Sonar sensors, which are used at that research, 

have 6 m measurement range and this capability may limit the area in which the 

blimp can be accurately localized. 

As a mapping application, we may give the example in [25]. Here, they use 

stereovision, GPS, fluxgate compass and wind sensor.  They obtain experimental 

mapping of the area using optical odometry. As a result of using optical odometry, 

the traveled distance measurements have errors and accumulation of these errors 

caused the drift.  

2.3 Control and Co-Operative Control 

Many control algorithms and techniques are applied to control the autonomous 

blimps either individually or as a member of an UAV team. The most popular two of 

these algorithms are predictive control and adaptive control methods. Usually, in 

order to obtain the dynamic model. A Gaussian process (GP) is used to identify the 

systems or correct the measurement results. In some cases, two or more algorithms or 

control techniques can be used in combination. 

Usually GP is extended or synthesized with extended Kalman filter (EKF), unscented 

Kalman filter (UKF) [26], adaptive value iteration [27], Bayesian filtering [22] and 

reinforcement learning algorithms [29], [30]. Learning and adaptive algorithms do 

not require pre-defined dynamical models of the blimps. In [27], the approach of 

applying Monte Carlo reinforcement learning utilizing Gaussian process is used.  

The advantage of this approach is that the algorithm is able to learn the dynamics of 

the blimp.  
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Predictive control techniques are widely used on autonomous blimps. Model 

predictive control (MPC) and state-predictive control are compared in  [31], and in 

[32] constrained model predictive control (MPC) is studied. Since we can include 

input and output constraints distinctly in MPC, this method will be considered in this 

thesis.  

Co-operative control of autonomous blimps is a complex problem. This type of 

control method is inspired from animal aggregations such as fish, bird flocks, and 

deer herds.  These animal teams coordinate their collective motions to perform useful 

tasks and understanding their behavior may help us build mobile autonomous agents 

such as AUV (autonomous underwater vehicles) schools, UAV flocks that might be 

instructed to cooperate in a similar manner. In these teams, the missions of all 

members can be different or identical.  

In [27] two unique experimental setups are introduced to demonstrate the cooperative 

control of teams of UAVs. The first experimental setup uses eight rovers and four 

blimps operated indoors to emulate a team of heterogeneous vehicles performing a 

combined reconnaissance and strike mission. The second experimental setup uses 

eight small aircraft that are flown autonomously using a commercially available 

autopilot. This combination of experimental setups provides platforms for both 

advanced research and realistic demonstrations. Numerous trajectory optimization 

and team coordination algorithms have been developed to execute these UAV 

missions.  Another research project studies a team which consists of a ground mobile 

robot and a blimp.  The behavior of the vehicles belong to this team for target 

detection is as follows: The autonomous ground robot moves along a pre-planned 

path, and, at periodic waypoints along that path, it stops and conducts a 360
o
 visual 

sweep of the area with the camera, looking for targets. The human-controlled UAV, 

being less-precisely controllable than the autonomous ground robot, follows its 

predefined path and, as deemed necessary by the human pilot, rotates and changes 

altitude to visually scan the surrounding area for targets. Upon detecting a target, the 

robot or UAV then localizes the target to the best of its ability [28]. 
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3.  PROBLEM DEFINITION 

This work includes four different parts, which are modeling the blimp, image processing, 

inertial navigation, data fusion and integrating the hardware. In this section the purpose of this 

thesis and workflow of all parts of the system are covered. Then, in section 4, detailed 

information about modeling a 6 DoF blimp and the model of blimp used in this thesis is 

detailed. In section 5, experimental results for navigation that are obtained from blimp via 

camera and IMU are given. Finally in section 6, depending on our results the reviews are 

given. 

3.1 Purpose of This Thesis 

The main purpose of this thesis is to fuse two different types of data which are obtained from 

IMU and camera wirelessly to estimate the position of an indoor blimp in a known 

environment by the whole system.  

As being a ground station, one laptop computer and one desktop computer are used 

alternatively to prevent an unexpected situation and both ground stations are equipped with 

necessary software to operate for the system in this thesis. In Table 3.1, technical 

specifications of these computers are given, besides technical specifications of other hardware 

that are  wireless camera, Arduino 2560 Mega and Arduino Uno boards, XBee, Razor 9 DoF 

IMU are given in Appendix A. 

Table 3.1 Technical Specifications of Ground Stations. 

 Desktop Computer Laptop Computer 

Operating System 

Windows 7 

Professional 

(64-bit) 

Windows 8 (64-bit) 

(Alternatively Ubuntu 12.10 

is installed) 

Processor Intel® Core™ i7 Intel® Core™ i7-33632QM 

CPU @ 2.80 GHz @2.20 GHz 

Installed Memory (Ram) 6,00 GB 8,00 GB 

Hard Disk 

Capacity 
400 GB 750 GB 
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Therefore, determining the exact position of indoor blimp is not covered in this thesis but by 

fusing IMU and camera data the position is estimated such as in a cube which is  as shown in 

Figure 3.1. Additionally, in Figure 3.1, an illustration of all 45 points, testbed and a flying 

blimp is shown. 

At the beginning in order to apply visual algorithms using SURF method, an image dataset 

consisting 3090 images of indoor environment is created by grabbing images from all 

appropriate 45 points by rotating the testbed, which is fitted from a representation rack for this 

work, fifteen degrees for all images for three different heights. The code of grabbing images 

from indoor environment is written in Matlab and given in Appendix B. 

 

Figure 3.1 Schematic illustration of testbed, 45 points which images are grabbed from, and 

the blimp. 

3.2 Hardware Integration 

In order to send control signals to motors of blimp, the default remote control is connected to 

an Arduino board via an electronic circuit. Arduino board PWM outputs give 3.3V but remote 

control of blimp needs 9V, therefore our electronic circuit includes relays to regulate and 

increase the voltage coming from Arduino board to desired voltage level for remote control. 
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This integration provides to send signals directly from control software via serial port of 

ground station. In Figure 3.2 this connection is shown. 

 

Figure 3.2 Remote control-Arduino board connection via an electronic circuit. 

In this work, an onboard sensor system is integrated to blimp. This system includes a 9 DoF 

IMU sending data via an XBee connected to an Arduino board, a wireless camera, a 2-cell Li-

Po 7.4V, 800 mAh battery, besides blimp’s default equipment is connected to this system to 

be given power. Additionally, a voltage regulator is designed and produced at MEAM to feed 

this system at three different voltage levels that they are 3V for motors of blimp, 6V for 

Arduino board, 7.4V for camera. In Figure 3.3, onboard hardware integration is shown. 

 

Figure 3.3 Onboard hardware integration includes voltage regulator, sensor system, battery 

and default gondola of blimp. 
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3.3 The Schematic Workflow of Whole System 

In order to show and explain the work step-by-step covered in this thesis a schematic 

workflow diagram is created and shown in Figure 3.4. Initially the states of the system are 

known, and then blimp sends both IMU and grabbed image data to ground station separately. 

Images are matched by dataset images and this gives identified region and identified object 

data. On the other hand, by integrating IMU data we obtain velocities at 3 axes then filtering 

(in order to reduce the effect of errors coming from integration constants), by double-

integrating IMU data we obtain estimated position results for 3 axes.  After we have 2 

different data source reporting on positions, we fuse them to locate blimp in one of cubes 

which are created virtually by drawing lines between points that are shown in Figure 3.1. 

When we have results that are obtained by fusing IMU and camera data, we create control 

signals by comparing experimental results with our model’s movements running at the same 

time and then we send control signals to blimp via remote control. Thus, a self-contained 

system which can sense the environment and perform localization is obtained. In future work, 

this system will be used to design an indoor surveillance application and the autonomous 

blimp will be a part of co-operative robot team which can simulate search-rescue scenarios. In 

future studies, the robot may perform semantic mapping functions as well, hence the project 

could be extended to have more artificial intelligence applications. 
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Figure 3.4  Schematic workflow diagram of autonomous blimp system for indoor use. 
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4.  MATHEMATICAL MODELING 

Models systematically help humans to understand the functionalities of systems at 

different areas. In mathematical modeling, these systems are translated into the 

language of mathematics for our understanding. In another words, mathematical 

models are very useful to test different situations and parameters those effect directly 

or indirectly to the systems. In this thesis mathematical model is used to compare 

real-system with a mathematical model and analyze the differences. Thus, 

mathematical that is used in this thesis is used to obtain the results of different 

control methods to stabilize the system.  

There are many parameters which effect on the result of the modeled system output 

and by mathematical modeling some parameters  are not included in the model and 

some parameters have smaller effect on the result than they do in reality. These 

assumptions made it easier and faster that to have a better adoption and then many 

simulations can be run to observe the limits of the system model. The meaning of 

adapting mathematical models to computers through a software is to transform a 

physical, financial or any modeled situation with all known and considered 

parameters to a language which software and computer understand. Moreover, this is 

a very useful and easy way to analyze the simulation results depending on 

parameters. 

This thesis includes kinematic modeling and dynamical modeling parts of the 

system. The blimp or airship, which is considered for this thesis, is used in an indoor 

environment; therefore, its model consists of three translational and three rotational 

degrees of freedom (DOF). The blimp is autonomous and the control signals to 

propellers is transmitted through a remote control which is generated using Matlab. 

The blimp has two propellers oriented along the longitudinal axis and a single 

propeller oriented along the vertical axis of the airship carriage. The mathematical 

model of the system is created to perform and simulate a 6-DoF rigid body model of 

the blimp in Matlab/Simulink. The simulation results of this model have been 

compared with the real system and this comparison is discussed in Section 6.  
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Two reference frames are considered in the derivation of the kinematics and 

dynamical equations of motion. 

4.1 Kinematic Model 

Kinematics is the study of motion of an object without any consideration about the 

inertial and external forces acting on the object causing the motion. There are several 

methods to represent rotations move a reference frame to a given referred frame. In 

this thesis, the most common one of these methods, which is Euler angles, is used to 

convert earth-fixed reference frame to body-fixed reference frame. This method 

represents the spatial orientation of any frame of the space as a composition of 

rotations from a reference frame. [30]. 

A general spatial displacement of a rigid body consists of a finite rotation about a 

spatial axis and a finite translation along some vector. The rotational and 

translational frames in general need not be related to each other. Both frames, earth 

fixed inertial frame Ƒ0 and body fixed frame ƑB, form a right handed orthogonal 

frame. The blimp motion has to be referenced to a system of orthogonal body axes 

fixed in the vehicle with the origin at the CV as can be seen in Figure 4.1. The CV is 

also assumed to coincide with the gross CB [31], but this leads to a more 

complicated dynamic model together with a controller that is more complex. Because 

the blimp used in our study is relatively small and thealtitude variation is negligible 

the blimp is not actuated by any fules which might be consumed through time, the 

position of the CG will not change considerably and can therefore be used as the 

origin of the body fixed frame ƑB.  

Since there is orthogonality between Ƒ0 and ƑB, it can be said that the rotation [R] is 

an orthogonal matrix and the inverse of [R] equals to its transpose.  

                         (4.1) 
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Figure 4.1 Blimp body axes coordinate system showing the CV, CG and linear 

(u,v,w) and angular (p,q,r) velocities around the X, Y, and Z axes 

respectively. 

The relation between the orientation of the blimp frame ƑB and the inertial reference 

frame Ƒ0 can be expressed via a rotation matrix R
0B

: 

                               (4.2) 

The rotation matrix allows conversion easily between the ƑB and Ƒ0 back and forth 

and it consists of cosines and sinuses of angles of all possible combinations of body 

and earth fixed frames. Therefore, the rotation matrix is given by: 

    [

    
    

                           
                           

                                  
]             (4.3)  

where           and          . This description is valid in the region 

 
 

 
   

 

 
. A singularity of this transformation exists for   

 

 
   

     . 

The 6x1-velocity vector contains the three linear (translational) velocities u, v, w and 

three angular (rotational) velocities p, q, r all written with respect to ƑB in (4.4). 

                                      (4.4) 

 Whereas the position and orientation of the blimp is given in (4.5) 

                                  (4.5) 



30 

are expressed in the Ƒ0. The angles           represent the roll, pitch and yaw 

rotation of the blimp respectively. 

Then by deriving the positions an earth-fixed velocity vector can be written as in 

(4.6), 

 ̇  [
 ̇
 ̇
 ̇

]                          (4.6) 

where   is the position vector which contains the positions of three axial coordinates. 

So, multiplying[
 
 
 

], three linear velocities, by rotation matrix, which is given in 

(4.2),  ̇ can be obtained: 

[
 ̇
 ̇
 ̇

]     [
 
 
 

]              (4.7) 

Also similarly, the linear velocities can be obtained multiplying  ̇ by the transpose of 

rotation matrix: 

[
 
 
 

]      [
 ̇
 ̇
 ̇

]                     (4.8) 

Euler rates   ̇  ̇  ̇  can be transformed from body-fixed frame to earth-fixed frame 

multiplying angular velocities (p, q, r) by a new transformation matrix [T]: 

[

 ̇

 ̇
 ̇

]     [
 
 
 
]              (4.9) 

where T is: 

    [

         
      
            

]           (4.10) 

where                      and          . 

By the small angle assumption, angular rotations can be inferred from that as it can 

be seen in (4.11): 
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 ̇

 ̇
 ̇

 
 
 

 
 
 

             (4.11) 

Although the rotation matrix [R] is orthogonal and its inverse is equal to its 

transpose, transformation matrix [T] is not orthogonal, therefore [T]
-1

  [T]
 T

. 

Therefore, the rates of change of Euler angles in terms of earth-fixed frame are equal 

to mulitplication of the inverse of transformation matrix by angular velocity vector 

which can be obtained from the Equation (4.9) by inverting the transformation 

matrix: 

    [
 
 
 
]       [

 ̇

 ̇
 ̇

]             (4.12) 

Thus, the earth-fixed frame velocities can be written by deriving Q, which is given in 

the Equation (4.5) to obtain (4.13): 

         ̇  ̇  ̇  ̇  ̇  ̇              (4.13) 

Using rotation and transformation matrices, we can find both the earth-fixed frame 

velocities and the body-fixed frame velocities transformation easily. 

In summary, matrix notation from body to earth transformation can be expressed in 

(4.14): 

         [
    
    

]                   (4.14) 

 It is also possible to express the body velocities in terms of earth velocities using 

(4.15): 

        [
     

      ]                       (4.15) 

Equation (4.14) can easily be expanded by replacing       with the Equation (4.13), 

   with the Equation (4.3) and     with the Equation (4.10), thus the rates of change 

of earth-fixed frame positions and Euler angles can be produced as: 
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[
 
 
 
 
 
 
 ̇
 ̇
 ̇
 ̇

 ̇
 ̇]
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            ]
 
 
 
 
 

          (4.16) 

4.2 Dynamical Model 

In this section dynamic model of the blimp is given subject to three limiting 

assumptions: 

1. The blimp forms a rigid body such that aero-elastic effects can be ignored, 

because of indoor conditions there is no forces to disturb the shape of the 

blimp; 

2. The airframe is symmetric about the XZ plane, thus both the CV and the CG 

lie in the plane of symmetry. 

3. The CG lies below the CB, so that the blimp is stabilized about the roll and 

pitch axes. 

Adhering to these assumptions the required parameters for dynamic equation of 

motion is derived. The dynamic model consists of all forces and moments which has 

effect on the blimp. Therefore, the dynamical model can be stated as: 

  ̇                ,          (4.17) 

where each of the components is described in the  following sub-sections .  

4.2.1 Mass and inertia 

The 6x6 mass matrix contains all masses and inertias of the blimp with added mass 

effect accounted for as well. The mass matrix is the sum of the mass and inertia 

matrix of the rigid-body and added mass matrix.  Since buoyant vehicle is under 

examination, air resistance is also taken in to account. This resistance effect on the 

blimp is modeled by consisting added mass (also called virtual mass) to the inertia 

terms.  

The mass and inertia matrix of rigid-body MRB is given in (4.18): 

                                   (4.18) 
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In addition, the added mass and inertia matrix MA is written in (4.19): 

           
    

    
    

    
    

           (4.19) 

Due to the low speed of the blimp, the off-diagonal elements can be neglected. By 

combining these two matrices given in the Equation (4.18) and Equation (4.19), the 

total mass and inertia matrix can be calculated. 

         

[
 
 
 
 
 
 
  

      

   
     

    
    

     
   

      
  

       
 ]
 
 
 
 
 
 

             (4.20) 

where   
       

,   
       

,    
       

,   
        

,   
        

 

and   
        

. 

Taking into account of the shape of the envelope    
    

    
    

   and 

   
    

. The virtual masses and inertia can be estimated using a geometrical 

method based on the kinetic energy of an ideal unbounded liquid around the hull of 

the blimp in motion [32]. The kinetic energy and the force necessary to accelerate the 

blimp can be computed by adding to the actual mass of the solid a fictitious mass. 

This added mass is equal to the density of the fluid multiplied by a volume 

depending on the geometry of the blimp only. As a result the Lamb’s k-factors, k1 

and k2 are the Lamb’s inertia ratios for movements along the longitudinal (OX) and 

lateral (OY) axes respectively, k’ is Lamb’s inertia ratio for the rotation about the 

lateral axis (OY), and l and d are the blimp length and maximum diameter, which are 

shown in Figure 4.3, respectively stated in [37], [38]. To calculate the added mass 

terms Lamb’s k factors are used as follows: 

   
                 (4.21) 

   
    

                (4.22) 

   
               (4.23) 

   
    

      
            (4.24) 
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where    
is the inertia of displaced air and it can be calculated in terms of ellipsoid: 

   
 

 

   
                        (4.25) 

The lamb’s k-factors can be obtained by using three constants  ,   and   the 

eccentricity of the ellipsoid, which is calculated using the blimp diameters: 

   
 

   
,              (4.26) 

   
 

   
,              (4.27) 

   
       

                       
,            (4.28) 

where the two constants   and   are: 

  
       

  
 
 

 
  (

   

   
)    ,         (4.29) 

  
 

  
 

      

   
  (

   

   
)            (4.30) 

Moreover, the eccentricity   is: 

   √   
 

 
               (4.31) 

4.2.2 Coriolis effect (Fc) 

Coriolis effect (also called the Coriolis force) is an inertial force, which depends on 

the deflection of a moving object relatively to the reference frame that is earth-fixed 

frame.  Fc contains the fictitious forces, which appear in the non-inertial frames. The 

Coriolis effect occurs when a motion which consists linear (u, v, w) and rotational (p, 

q, r) velocities. The Coriolis force can be written as: 

                         (4.32) 

where      is Coriolis matrix and it is given as: 
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 (     )  [
                

                        
]      (4.33) 

where     is 3x3 matrix which includes zeros, S is the skew-symmetric matrix 

operator and Mij are 3x3 submatrices. So the      is: 

     

[
 
 
 
 
 
 

       
    

  

     
      

  

      
    

   

    
    

      
     

  

  
      

    
      

  

   
    

      
    

   ]
 
 
 
 
 
 

              (4.34) 

     includes the added-mass terms. 

4.2.3 Buoyancy and gravity forces (Fg) 

The buoyancy or aerostatic lift force is, as explained by Archimedes’ principle, is an 

upward force which opposes the weight of the air, which is displaced by the blimp.  

The magnitudes of the buoyancy and gravitational forces can be explained as 

follows: 

       and       , with the volume   
 

  
              (4.35) 

where  m is the mass of the blimp, g is the gravitational acceleration,   is the density 

of air and V is the volume of the blimp.  

Fg is the net force vector which is the difference between magnitudes of the 

buoyancy force and the force of gravity. 

   

[
 
 
 
 
 
 

 (      )  

(      )    

 (      )    

         
       

 ]
 
 
 
 
 
 

            (4.36)  

where    is the distance between CG and CB. 

4.2.4 Aerodynamic forces (Fa) 

Aerodynamic forces vector contains the aerodynamic terms of the model, arising 

from the aerodynamics of the airship’s hull and control surfaces. 



36 

                                    (4.37) 

     contains the non-dimensional linear coefficients of drag          , side 

          and lift           and quadratic coefficients of yaw            , pitch 

            and roll            .      can be written as: 

     

[
 
 
 
 
 
 
      | |

      | |

      | |

      | |

      | |

      | | ]
 
 
 
 
 
 

            (4.38)  

4.2.5 Propulsion forces (Fp) 

Propulsion forces are generated by the propellers which are connected to DC motors.  

There are three thrusters which are attached to the gondola. Two of the thrusters 

attached laterally and they provide thrust in the forward/backward direction. These 

two lateral thrusters are attached to the starboard side and to the port side of the 

gondola and they are also used to steer the blimp. The third thruster provides thrust 

in the vertical direction to change the altitude. In Figure 4.2, the schematic display of 

the propellers of the blimp is given. Also in the model, three thrusters are assumed to 

have ideal characteristic that the effects of the motor commands are directly 

proportional.  

 

Figure 4.2 The location of the thrusters, the length, and the maximum diameter of 

the blimp.  
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Now, the propulsion vector Fp can be derived which contains the terms associated 

with the propulsive forces and moments, and it is a function of the geometrical 

arrangement of the propulsive units around the body axes.  

   

[
 
 
 
 
 
         

  

  

  

  

  ]
 
 
 
 
 

            (4.39) 

where           ,    and    indicates the total thrust along the OX, OY and OZ axes 

respectively. There is no propeller to generate thrust along OY, then      ;   ,    

and    are the total thrust moments along the same axes and considering the 

distances, the moments can be written as: 

                 (4.40) 

   (         )                (4.41) 

   (         )              (4.42) 

where    is the horizontal y distance from CB to propeller perpendicular to main axes 

of the blimp and    is the horizontal distance from CB to propeller along the  main 

axis of the blimp. The blimp does not have any thrust vectoring capability and simply 

relies on the either forward or reverse thrust to maneuver. 

4.3 Longitudinal and Lateral Models, LQR Method  

In this section linearization of blimp’s model underlying longitudinal and lateral 

models are given. Using these models state-space forms are arranged and detailed 

transfer function results are given at Appendix C. To obtain the linearized 

longitudinal and lateral equations of motions for blimp used in this thesis are taken 

from [38].  

Without using a controller, it is seen that the blimp model is unstable and by 

investigating the results, the controllability is obtained 4 for both linearized 

longitudinal and lateral state-space models. Since the system can be stabilized, linear 

quadratic regulation (LQR) method is used in this thesis. 
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4.3.1 Longitudinal equations 

The linearized longitudinal equations of motions for blimp used in this thesis are 

given in the following equation set in (4.43) to (4.47).  

   ̇  (     ̇ ̇) ̇

     ̇    ̇  ( ̇      )   ̇          ̇      

                                                                              

   ̇  (     ̇ ̇) ̇

     ̇    ̇   ( ̇      )   ̇  
  

       (       ̇     )                                                         

   ̇  (     ̇ ̇) ̇  (     ̇ ) ̇

   (                               )

                

                                                                                   

Thus the longitudinal state-space matrix Along and the control matrix Blong are given as 

follows in (4.46) and (4.47): 

      

[
 
 
 
 
 ̇  ̇   ̇                   

 ̇  ̇   ̇                   

 ̇  ̇   ̇                                          

    ]
 
 
 
 

  

(4.46) 

      [

    

   
    

  

]             (4.47) 

4.3.2 Lateral equations 

Similarly, with longitudinal equations lateral equations are obtained as follows given 

in (4.48) to (4.52): 
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   ̇  (     ̇ ) ̇  (     ̇ ̇) ̇

     ̇   ( ̇      )  ( ̇      )   ̇  
  

                                                                                            

   ̇      ̇  (     ̇ ) ̇

     ̇   ( ̇       )  ( ̇       )   ̇  
  

                                                                                        

   ̇      ̇  (     ̇ ̇) ̇

     ̇   ( ̇       )  ( ̇       ) 

      

                                                                                      

Finally, state-space matrix Alat and the control matrix Blat are obtained as follows: 

     [

        

        

        

    

]            (4.51) 

     [

  

 
  

 

]                       (4.52) 

4.3.3 Linear quadratic regulation 

Linear quadratic regulation method is used in different areas and it is a well-known 

effective optimization problem that aims to minimize the accuracy of control 

opposite power exacting;      ∫                       
 

 
 (where x(t) state of 

the system, Q is a weighting matrix for the states and R is a weighting matrix for the 

input signals, u(t) control input) [39] as being a cost function. Additionally, a brief 

description of LQR state feedback design is given below which is used to stabilize 

both linearized longitudinal and lateral models: 

Considering the linear time invariant system, 

 ̇                                                        

                     (4.53) 
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where y(t) is output vector. The state feedback is obtained as follows if all states are 

measurable (through 9 DoF IMU, all states of the blimp used in this thesis are 

measurable), 

                  (4.54) 

where K is the state feedback gain matrix that can give desirable closed loop 

properties.  

 ̇                        (4.55) 

where Ac is closed loop plant matrix. Then rearranging the cost function of LQR 

controller with (4.54) yields: 

  
 

 
∫               

 

 
                 (4.56) 

To minimize the cost function, (4.56) must be finite. In order to find the optimal 

feedback, K, a constant matrix, P, is assumed to be existed such that: 

 

  
                               (4.57) 

Substituting (4.57) into (4.56) results in 

       
 

 
∫

 

  

 

 
         

 

 
                    (4.58) 

From this equation, it is clear that J is a constant that only depends on the matrix P 

and the initial conditions. Hence, substituting the differentiated form of (4.57) into 

(4.55) yields: 

     
                            (4.59) 

And thus, 

  
                          (4.60) 

Substituting (4.55) into (4.60) yields 

                                     (4.61) 
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Assuming that          is selected, the following result, which is the Algebraic 

Riccati Equation, can be obtained. 

                                (4.62) 

4.4 Simulation Model of Blimp 

After obtaining linearized longitudinal and lateral trimmed equations, a basic blimp 

model is formulated in Matlab using real parameters of the blimp used in thesis, 

which are given in Table 4.1, to simulate and compare results with experimental 

data. On the other hand, this model is used to analyze the stability of blimp.  

Table 4.1 Dimensional Parameters of Blimp. 

Mass (kg) 0.255 

Distance Between CG and CB (m) (in x-axis) 0 

Distance Between CG and CB (m)(in z-axis) 0.21 

Distance Between CB and CV (m)(in x-axis) 0 

Distance Between CB and CV (m)(in z-axis) 0.14 

Maximum Diameter (d) (m)  0.9 

Maximum Length (l) (m) 1.16 

Vertical Diameter (c) (m) 0.5 

Volume (m
3
) 0.492 

Reference Area (m
2
) 0.6232 

First of all, it is analyzed that whether the open-loop system (without any control) is 

stable to see if the system is inherently stable. To investigate the stability, the 

eigenvalues of the system matrix, A, is used to determine the stability, and the poles 

for longitudinal system matrix, Along, and lateral system matrix, Alat, are obtained: 

          

        
      

              
              

    ,           

        
      

       
       

 

These values are obtained using “eig” function at Matlab, which computes a vector 

containing the eigenvalues of a square matrix. It is clear for both systems that one of 

the poles has positive values and this means that these systems are unstable in open-
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loop. Briefly, at pole-zero plots, there is real-axis at horizontal and imaginary-axis is 

at vertical, furthermore left side of imaginary-axis indicates stable situations and 

right side of imaginary-axis shows unstable situations. 

In order to check our system without a controller, initial conditions are set to 0.1 and 

these results are given in Figure 4.3. From Figure 4.3, it is clear that blimp’s 

longitudinal model states are increasing harmonically to infinite, on the other hand it 

can be seen that there 3 positive poles and 2 of them are imaginary, as a result this 

system is unstable. Therefore, lateral states directly go to infinity, lateral model has 

one positive pole, and there are no lateral model poles at imaginary axis. 

 

Figure 4.3 Longitudinal and Lateral models without a controller. 

Considering our system is a continuous linear time-invariant system, controllability 

is computed using “ctrb” command of Matlab. On the other hand, it is said that 

supposing A is nxn state matrix, B is nxr input matrix R is nxnr controllability matrix 

which includes [B AB A
2
B … A

n-1
B], the system is controllable if the controllability 

matrix has full rank. Since the controllability is obtained four for each models, it is 
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possible to get these models stable. Thus, as mentioned before, LQR is applied as a 

controller to our system. 

              

         
        

               
               

    ,             

        
               
               

       

 

After LQR is applied as a controller method, it can be seen from the poles of each 

models have negative values, in other words, poles are at the left side of plots and 

this means these models are stable after applying LQR.  

In Figure 4.4, LQR applied longitudinal and lateral positions obtained from 

simulation are given. It is clear that the states of both models are being stabilized. 

Even if unstable lateral model has no imaginary poles, after LQR is applied, lateral 

model has two symmetric (according to the real-axis) poles.  

 

Figure 4.4 Longitudinal and Lateral models after LQR applied. 

In an addition to these simulations, a basic Simulink model without a controller of 

blimp including a VRML visualization is created as shown in Figure 4.5, this model 

is also unstable. As a future work, an LQR controller with a Kalman filter will be 



44 

added to this simulation to obtain better results, additionally this model will be 

validated after comparing real system data using system identification tools.  

In order to run this simulation, a Simulink built-in block called 6 DoF (Euler Angles) 

is used mainly. This block determines any 6 DoF system as a rigid body and 

considers the rotation of a body-fixed frame about a flat Earth reference frame.  

There are simply 2 inputs to the 6 DoF block that are forces and moments at 3-axes. 

Three DC motors of blimp generate forces, besides for the simulation motors are 

triggered by random signal generators. Moments are generated with respect to blimp 

parameters and forces also. Same as forces, random signal generators to obtain a 

simulation result generate moments.  

 

Figure 4.5 Basic Blimp Model in Simulink. 

In order to visualize this simulations results, two different tools are used. Firstly, 

using Matlab’s standard “plot3” function, the position of blimp is displayed, 

secondly using VRML interface a 3D simple blimp is created, and the movement due 

to simulation is shown by this interface translational parameters. In Figure 4.6, blimp 

position is displayed at three axes. Sampling time of this simulation is 0.2 seconds 

and these samples are indicated by red triangles at this figure. It is clear from the 

figure that red triangles are much more at the beginning of the movement because 

blimp movement is congested and slower at the beginning then blimp moves faster. 
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As discussed before any controller is applied this simulation and as expected blimp 

movement is meaninglessly ends at -10 meters at z-axis such as there is an 

underground movement has been made. 

 

Figure 4.6 Blimp position visualization. 

With the help of “VR Tracer”, a Simulink block, blimp’s virtual scene trajectory is 

traced. In order to connect the blimp as an object to this block, a blimp is created 

using VRML. Therefore, blimp’s trajectory is made available to trace and visualize 

by creating marker nodes in regular time steps that is 0.2 seconds for this simulation.  

In Figure 4.7, this simulation is displayed. 

 

Figure 4.7 Blimp’s movements in VRML. 
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5. EXPERIMENTS AND RESULTS 

At this section, the methods, which are used in this thesis to estimate the position of 

the blimp, are given. Firstly, in section 5.1 vision experiments are covered by 

analyzing the compatibility of the method, which is used to match real-time grabbed 

images from wireless onboard camera with dataset, within this study underlying its 

theoretical basics. Secondly, in Section 5.2 navigation method and simulation results 

are given.  

5.1 Vision Experiments 

To handle the dataset images easily in software running at VS using OpenCV, 

images are given a special coded name and documented with respect to an order as 

shown in Figure 5.1. First character of the documentation “p” is used to show the 

points and 2 digits following point character are used to indicate the point number 

from 1 to 45 which are created while creating the image dataset. The character “h” is 

used to specify the next 3 digits shown by “YYY” indicate the height in centimeters 

from 100 to 200 by increasing 50 and the last 3 digits show the degree from 0 to 345 

increasing 15.  

 

Figure 5.1 Documentation style and explanation of dataset image entitles. 

In order to match images or template objects between dataset images and real-time 

grabbed images, Speeded-Up Robust Features (SURF) method [40] is used. SURF is 

a method that is mainly used to match images using detectors and descriptor which 

are specific for images. Additionally, SURF’s novelty comes from to have scale and 
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rotation invariant detector and descriptor. Because of these specialties of SURF, to 

avoid any wrong or worse localization while matching images, a distance value, 

which indicates differences between images, is assigned and lowest distance between 

matched images is accepted matched images. 

This method uses a very basic Hessian-matrix approximation to detect interest 

points. In an addition, relying on integral images for image convolutions descriptors 

are achieved distribution-based.  

As a sample in Figure 5.2, a collage of images is shown which are grabbed from 

same point (p9) and same height (h200) by rotating the test-bed with 15 degrees 

(from 000 to 345) clockwise.  

 

Figure 5.2 A sample of dataset images as a collage. 

As a result of using a low-cost frame grabber, sometimes colors of images 

deteriorate. To avoid any unexpected situations while matching images, both colored 

and greyscale images are used. Localization experiments are made at both operating 

systems (Ubuntu 12.10 and Windows) using each color options (colored or 

greyscale). Additionally, at Windows Visual Studio 2010 Professional IDE and at 

Ubuntu 12.10 Eclipse 3.8 IDE are used to run image matching and localization using 

matched image data algorithms.  

In Figure 5.33, a brief visualization and interpretation of the relation between titled 

dataset images with their titles and the localization of points, which titles are derived 

from, are shown. 
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Figure 5.3 Relation between images and titles, which are derived from points that are images, grabbed from. 
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In Figure 5.4, a matching experiment is shown which is made at Windows for each 

both color options. Blue circle indicates matched specification between grabbed and 

dataset images at most number, additionally there are some matching points with 

other dataset images but blue circles images distance is the lowest to the grabbed 

image.   

 

Figure 5.4 Image matching at Windows using SURF for greyscale and colored. 

Also detector (keypoint 2) and descriptor (keypoint 2) numbers for colored and 

greyscale images which are generated by image matching algorithm used in this 

thesis are given in Figure 5.5. Based on these results it is clear that algorithm time for 

matching colored images is lower than matching greyscale images, at the same time 

minimum distance for colored images is much than greyscale images likewise the 

maximum distance is. 
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Figure 5.5 Keypoint results comparison between colored and greyscale images 

matching at Windows. 

In Figure 5.6, image matching for localization results are shown which are obtained 

running our program at Ubuntu operating system. Similarly with results which are 

obtained from Windows, though matches with some other images blue circled 

images have most matched keypoints for each color options at Ubuntu. The reason of 

these matched keypoints with other images is that the SURF algorithm detects some 

keypoints those come from same objects or similarities of different images. 

 

Figure 5.6 Image matching at Ubuntu using SURF for greyscale and colored. 
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In Figure 5.7 image matching algorithm, which is run at Ubuntu, outputs are given 

for both colored and greyscale images. Although keypoint and minimum distance 

values are same with Windows results, maximum distance and process time values 

are very different.  

 

Figure 5.7 Keypoint results comparison between colored and greyscale images 

matching at Ubuntu. 

5.2 Localization Experiments 

In this section, detailed information about 9 DoF IMU used in this thesis and its 

firmware, localization algorithm, data structure and data types, wireless 

communication and hardware are given. 

As discussed before Razor 9 DoF IMU is used in this thesis and its open source 

AHRS firmware [41] is uploaded to it directly via an FTDI interface. In Figure 5.8 

board layout of 9 DoF IMU is shown with default directions at 3-axes for sensors. 

 

Figure 5.8 Board layout and components of Razor 9 DoF IMU. 
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Using open source firmware, regulated data is obtained easily being an array, of 

which first three columns are from accelerometer, second three columns are from 

gyroscope, seventh column is computed magnetometer heading and last columns is 

time in milliseconds as shown in Figure 5.9. Besides, when the algorithm is run, 

IMU gives the initial conditions at first and then waits for 1000 milliseconds (this 

value can be changed to any desired value) to transmit regular data. This 

specification is very useful for simple localization applications. 

 

Figure 5.9 IMU Data Structure. 
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With the aim of having localization result from IMU data, a simple algorithm is 

created for both C++ and Matlab.  

In order to compute velocity following equation is used and as a future work an 

appropriate Kalman filter will be developed and this filter will be supported with 

experiments to decrease integration and drift based errors. 

         (               )                                    (5.1) 

Similarly, position can be computed as follows: 

         (               )                       
              (5.2) 

Afterwards computed velocity and position data are used to have a plot at 3-axes to 

visualize system outputs. Additionally position data is used to both fuse with image 

matching algorithm localization output and comparison with it. 
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6. CONCLUSION AND RESULTS 

In this thesis a blimp is modified to be an autonomous aerial vehicle by equipping 

with camera for localization by matching real-time grabbed frames with a 3090-

image dataset that are titled the locations, and IMU for computing the position of the 

vehicle. Additionally, an onboard power regulator board designed and manufactured 

to give power to default motors of blimp (3V), to camera (7.5V) and to IMU (6V). 

Besides, power regulator board is directly connected to the Li-Po battery. 

In order to obtain IMU data wirelessly, 9 DoF IMU is connected to an XBee with the 

help of Arduino Uno board and XBee shield on it. At this part of onboard 

components, Arduino Uno board and XBee shield are just used to regulate the data 

from any interrupters and to avoid any noise which may cause from power levels. 

Before this connection is completed, direct IMU-XBee connection is tried and it has 

seen that it is impossible to obtain regular data, besides there is some missing data. 

As discussed before, after completing flight experiments two localization outputs 

obtained from this additional equipment will be fused and in order to have better 

results Kalman filter algorithm will be applied to the IMU data and image-matching 

algorithm will be appropriate for using in semantic object recognition applications.  

 We have run image-matching algorithm on two operating systems that are Ubuntu 

and Windows. Although the keypoint numbers and minimum distances are exactly 

the same, which may be related to the robustness of SURF algorithm for images 

matching, there are some crucial differences between results. Such as while 

maximum distance  at Windows for greyscale images is 0.990940 and for colored 

images is 1.003013, maximum distance at Ubuntu for greyscale images is 1.019230 

and for colored images is 0.948940. Additionally, process time, which indicates the 

time, while matching algorithm has run, has passes, at Windows for colored images 

is 6.566000 seconds, for greyscales images is 6.598000, and at Ubuntu for colored 

images is 1.640000 seconds, for greyscale images is 1.600000 seconds. 



56 

After obtaining these results for each operating system and colored or greyscale 

options, it is clear that the Ubuntu and Eclipse performance is much better to run 

image matching and localization algorithm to than Windows and Visual Studio 

option.  
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APPENDIX C.1: Transfer Functions of the System 

  



62 

APPENDIX A.1 

Technical Parameters of Transmitting Unit 

 

o Video Camera Parts: 1/3" 1/4" Image Sensors 

o System: PAL/CCIR NTSC/EIA 

o Effective Pixel: PAL: 628X582 NTSC: 510X492 

o Image Area:PAL: 5.78X4.19mm NTSC: 4.69X3.45mm 

o Horizontal Definition: 380 TV Lines 

o Scanning Frequency: PAL/CCIR: 50HZ NTSC/EIA: 60HZ 

o Minimum Illumination: 3LUX 

o Sensitivity: +18DB-AGL ON-OFF 

o Output Electrical Level: 50MW 

o Output Frequency: 1.2G/2.4G 

o Transmission Signal: Video, Audio 

o Linear Transmission Distance: 50-100M 

o Voltage: DC+9V 

o Current: 300mA 

o Power Dissipation:<=640MW 

 

Technical Parameters of Receiving Unit 

 

o Wireless Audio Receiver 

o Receiving Method:Electronic Frequency Modulation 

o Reception Sensitivity: +18DB 

o Receiving Frequency: 1.2G/2.4G 

o Receiving Signal: Video, Audio 

o Voltage: DC 12V 

o Current: 500mA 

 

Figure 10 Wireless Camera Used in This Thesis.  
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APPENDIX A.2 

o Microcontroller   : ATmega2560 

o Operating Voltage   : 5V 

o Input Voltage (recommended) : 7-12V 

o Input Voltage (limits)   : 6-20V 

o Digital I/O Pins   : 54 (of which 15 provide PWM output) 

o Analog Input Pins   : 16 

o DC Current per I/O Pin  : 40 mA 

o DC Current for 3.3V Pin  : 50 mA 

o Flash Memory   : 256 KB of which 8 KB used by 

bootloader 

o SRAM     : 8 KB 

o EEPROM    : 4 KB 

o Clock Speed    : 16 MHz 

 

 
Figure 11 Arduino Mega 2560 Board Front View. 
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APPENDIX A.3 

o 3.3V @ 40mA 

o 250kbps Max data rate 

o 2mW output (+3dBm) 

o 400ft (120m) range 

o Built-in antenna 

o Fully FCC certified 

o 6 10-bit ADC input pins 

o 8 digital IO pins 

o 128-bit encryption 

o Local or over-air configuration 

o AT or API command set 

 
Figure 12 XBee 2mW Chip Antenna - Series 2 
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APPENDIX A.4 

o 9 Degrees of Freedom on a single, flat board: 

o LY530ALH - 300°/s single-axis gyro 

o LPR530ALH - 300°/s dual-axis gyro 

o ADXL345 - 13-bit resolution, ±16g, triple-axis accelerometer 

o HMC5843 - triple-axis, digital magnetometer 

o Outputs of all sensors processed by on-board ATmega328 and sent out via a 

serial stream 

o Autorun feature (hit 'Ctrl-z') and help menu integrated into the example 

firmware 

o Output pins match up with FTDI Basic Breakout, Bluetooth Mate, XBee 

Explorer 

o 3.5-16 VDC input 

o ON-OFF control switch and reset switch 

o Dimensions: 1.95 x 1.10 " (49.53 x 27.94 mm) 

 

 
Figure 13 9 Degrees of Freedom - Razor IMU. 
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APPENDIX B.1 

 

 
%% Matlab Code to Grab Images to Create Dataset 

clear all 
clear all hidden 
clc 
%% Starting Video Camera 
vid = videoinput('winvideo', 1, 'I420_640x480'); 
set(vid, 'ReturnedColorspace', 'rgb') 
src = getselectedsource(vid); 
% Configure the object for manual trigger mode. 
triggerconfig(vid, 'manual'); 
vid.FramesPerTrigger = 1; 
vid.ROIPosition = [0 85 555 480]; 
vid.FrameGrabInterval = 1; 
start(vid) 
pause(0.5) 

  
tic 
for n=0:15:360 
    frame1=getsnapshot(vid); 
    imshow(frame1) 
    if n < 10 
    imwrite(frame1, ['p1h19500' num2str(n) '.tif']); 
    save(['p1h19500' num2str(n) '.mat'],'frame1') 
    end 
    if n > 10 && n < 100 
    imwrite(frame1, ['p1h1950' num2str(n) '.tif']); 
    save(['p1h1950' num2str(n) '.mat'],'frame1') 
    end 
    if n > 100 
    imwrite(frame1, ['p1h195' num2str(n) '.tif']); 
    save(['p1h195' num2str(n) '.mat'],'frame1') 
    end 
    pause(0.2) 
end 
stop(vid) 
delete(vid) 
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APPENDIX C.1 

 

Longitudinal Transfer Functions for Unstable System: 

 

Transfer function from input to output... 

         4.443 s^3 + 95.31 s^2 - 75.82 s + 4591 

 #1:  -------------------------------------------- 

      s^4 + 31.15 s^3 + 21.57 s^2 + 1720 s - 874.8 

  

        -1.365 s^3 - 12.89 s^2 - 83.49 s + 453.2 

 #2:  -------------------------------------------- 

      s^4 + 31.15 s^3 + 21.57 s^2 + 1720 s - 874.8 

  

            -10.25 s^3 - 5.507 s^2 + 493.8 s 

 #3:  -------------------------------------------- 

      s^4 + 31.15 s^3 + 21.57 s^2 + 1720 s - 874.8 

  

              -10.25 s^2 - 5.507 s + 493.8 

 #4:  -------------------------------------------- 

      s^4 + 31.15 s^3 + 21.57 s^2 + 1720 s - 874.8 

 

 

Longitudinal Transfer Functions for LQR Controller Applied Situation: 

 

Transfer function from input to output... 

            4.443 s^3 + 95.31 s^2 - 75.82 s + 4591 

 #1:  -------------------------------------------------- 

      s^4 + 357 s^3 + 8644 s^2 + 3.596e004 s + 3.247e005 

  

           -1.365 s^3 - 12.89 s^2 - 83.49 s + 453.2 

 #2:  -------------------------------------------------- 

      s^4 + 357 s^3 + 8644 s^2 + 3.596e004 s + 3.247e005 

  

               -10.25 s^3 - 5.507 s^2 + 493.8 s 

 #3:  -------------------------------------------------- 

      s^4 + 357 s^3 + 8644 s^2 + 3.596e004 s + 3.247e005 

  

                 -10.25 s^2 - 5.507 s + 493.8 

 #4:  -------------------------------------------------- 

      s^4 + 357 s^3 + 8644 s^2 + 3.596e004 s + 3.247e005 
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Lateral Transfer Functions for Unstable System: 

 

 

Transfer function from input to output... 

      -0.008083 s^3 - 31.35 s^2 - 85.05 s + 1710 

 #1:  ------------------------------------------ 

      s^4 + 33.17 s^3 + 281 s^2 + 283.3 s - 2757 

  

              161.5 s^2 + 664.7 s - 3324 

 #2:  ------------------------------------------ 

      s^4 + 33.17 s^3 + 281 s^2 + 283.3 s - 2757 

  

           35.93 s^3 + 349.1 s^2 + 258.4 s 

 #3:  ------------------------------------------ 

      s^4 + 33.17 s^3 + 281 s^2 + 283.3 s - 2757 

  

             35.93 s^2 + 349.1 s + 258.4 

 #4:  ------------------------------------------ 

      s^4 + 33.17 s^3 + 281 s^2 + 283.3 s – 2757 

 

 

Lateral Transfer Functions for LQR Controller Applied Situation: 

 

 

Transfer function from input to output... 

      -0.008083 s^3 - 31.35 s^2 - 85.05 s + 1710 

 #1:  ------------------------------------------ 

      s^4 + 57.51 s^3 + 739 s^2 + 3210 s + 4652 

  

             161.5 s^2 + 664.7 s - 3324 

 #2:  ----------------------------------------- 

      s^4 + 57.51 s^3 + 739 s^2 + 3210 s + 4652 

  

           35.93 s^3 + 349.1 s^2 + 258.4 s 

 #3:  ----------------------------------------- 

      s^4 + 57.51 s^3 + 739 s^2 + 3210 s + 4652 

  

             35.93 s^2 + 349.1 s + 258.4 

 #4:  ----------------------------------------- 

      s^4 + 57.51 s^3 + 739 s^2 + 3210 s + 4652 
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