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SUPERVISED AND SEMI-SUPERVISED LEARNING USING 
INFORMATIVE FEATURE SUBSPACES 

SUMMARY 

Ensemble of classifiers aims to produce accurate recognition results by training 
several classifiers and combining their outputs. It may also benefit from diversity of 
classifiers used. However, for high dimensional data choosing subspaces randomly, 
as in RAS (Random Subspaces) algorithm, may produce diverse but inaccurate 
classifiers. On the other hand, in many different fields ranging from web mining to 
speech recognition, unlabeled data have become abundant and there have been many 
efforts to benefit from unlabeled data. Co-training is one of the successful semi-
supervised learning algorithm that trains two classifiers on different feature views 
and uses the unlabeled data in an iterative way for re-training these classifiers. 
Recently, a multi-view Co-training algorithm, RASCO (Random Subspace Method 
for Co-training), which obtains different feature splits using random subspace 
method was proposed and shown to result in smaller errors than the traditional Co-
training. However RASCO has the possibility to use diverse but inaccurate classifiers 
during Co-training on account of selecting subspaces randomly.  

In this thesis we propose to obtain subspaces for classifier ensembles by means of 
drawing features with probabilities which are generated in an intelligent way. Two 
feature subspace selection methods for ensemble of classifiers are proposed and 
applied on different supervised and semi-supervised learning scenarios.  

The first algorithm is the relevant random subspace method which produces the 
relevant random subspaces using the relevance values obtained by mutual 
information between features and class labels. This method is used in Rel-RAS and 
Rel-RASCO algorithms where Rel-RAS is the relevant random subspace method for 
supervised learning and Rel-RASCO is the relevant random subspace method for Co-
training. 

 The second algorithm is the minimum redundancy and maximum relevance feature 
subspace selection method that modifies the mRMR (Minimum Redundancy 
Maximum Relevance) feature selection algorithm to produce random feature 
subspaces that are relevant and non-redundant. The second method is used in the 
mRMR-RAS and mRMR-RASCO algorithms where mRMR-RAS is the minimum 
redundancy maximum relevance random subspace method for supervised learning 
and mRMR-RASCO is the minimum redundancy maximum relevance random 
subspace method for Co-training.  



 xx

Experimental results on five real and synthetic datasets with K-Nearest Neighbour 
(KNN), Linear Discriminant (LDC), decision tree and Support Vector Machines 
(SVM) classifiers show that the proposed algorithms generally outperform 
supervised algorithm, RAS and semi-supervised algorithms, RASCO and Co-training 
(at the beginning and end of semi-supervised algorithms) based on the accuracy 
achieved. On the other hand diversity of the classifiers in ensemble is suspected to 
affect the ensemble accuracy and there have been many works investigating the 
relationship between classifier diversity and ensemble accuracy. The proposed 
algorithms are also evaluated in terms of classifier diversity using Kohavi Wolpert 
(KW) Variance. We have shown that the classifier diversity with Rel-RAS, mRMR-
RAS and Rel-RASCO, mRMR-RASCO are slightly less than the classifier diversity 
with RAS and RASCO respectively. This result is due to the fact that classifiers 
combined in Rel-RAS, mRMR-RAS and Rel-RASCO, mRMR-RASCO algorithms 
more agree on class labels of test data than RAS and RASCO algorithms 
respectively. In the experiments algorithms are also evaluated using approximately 
Recursively More characteristic (RM characteristic) definition of feature subspaces. 
It is shown that the subspaces generated using the proposed algorithms are more RM 
characteristic than the subspaces generated in RAS and RASCO in terms of mean 
accuracies of the individual classifiers. Besides, t-tests of the test results are given. 

In addition to KW-Variance diversity measure, information theory based low order 
diversity (LOD) and information theoretic scores (ITS) of the classifier ensembles 
are analyzed. In our experiments it is found that information theory based low order 
diversity has a similar tendency with KW-variance. On the other hand we found out 
that ensemble accuracy of the algorithms can be explained with information theoretic 
score (ITS) and under the same conditions (same number of classifiers in the 
ensembles, same training set etc.), higher the ITS higher the classification accuracy. 

 

 

 

 



 xxi

BİLGİ İÇEREN ÖZNİTELİK ALT UZAYLARI İLE EĞİTMENLİ VE YARI 
EĞİTMENLİ ÖĞRENME 

ÖZET 

Sınıflandırıcı toplulukları (classifier ensembles) birçok sınıflandırıcıyı eğitip, bu 
sınıflandırıcıların kararlarını birleştirerek, sınıflandırma başarımını arttırmayı 
hedeflemektedir. Aynı zamanda sınıflandırıcıların çeşitliliği (diversity) sınıflandırma 
başarımın arttırılmasına yarar sağlayabilmektedir. Fakat yüksek boyutlu öznitelik 
vektörlerinin bulunduğu verilerde öznitelik altuzaylarını (subspace), RAS (Random 
Subpaces) algoritmasında olduğu gibi rastgele seçmek sınıflandırıcı çeşitliliğini 
sağlamakta fakat düşük başarımlı sınıflandırıcılar oluşturabilmektedir. Öte yandan, 
web madenciliğinden ses tanımaya kadar birçok alanda çok miktarda etiketsiz veriye 
erişilebilmekte ve bu etiketsiz verilerden yararlanmak için yoğun çalışmalar 
yapılmaktadır. Birlikte Öğrenme (Co-training) algoritması, farklı iki öznitelik 
görünümünde sınıflandırıcı eğiterek, özyineli olarak etiketsiz veriyi etiketleyen ve bu 
yeni etiketlenmiş verileri de kullanarak sınıflandırıcıları yeniden eğiten başarılı bir 
yarı-eğiticili öğrenme algoritmasıdır. Son dönemde, rastgele seçilmiş öznitelik 
altuzaylarını kullanan RASCO (Random Subspace Method for Co-training) 
algoritması önerilmiş ve geleneksel Birlikte Öğrenme algoritmasından daha düşük 
hataya sahip olduğu gösterilmiştir. Bununla beraber RASCO algoritması öznitelik alt 
uzaylarını rastgele seçtiği için sınıflandırıcı çeşitliliği arttırmakta fakat başarım oranı 
düşük sınıflandırıcılara sahip olabilme olasılığı bulunmaktadır.  

Bu tez çalışması kapsamında sınıflandırıcı toplulukları için öznitelik altuzaylarının, 
daha akıllı bir şekilde elde edilmiş olasılık değerleri kullanılarak seçilmesi 
önerilmiştir. Sınıflandırıcı toplulukları için iki öznitelik alt uzay seçim yöntemi 
önerilmiş; eğiticili ve yarı-eğiticili farklı öğrenme yöntemlerine uygulanmıştır. 

Tez kapsamında önerilen ilk yöntem; öznitelik altuzaylarını öznitelikler ve sınıf 
etiketleri arasındaki karşılıklı bilgi miktarını (mutual information) kullanarak 
oluşturan ilişkili rastgele altuzaylar (relevant random subspaces) yöntemidir. Bu 
yöntem, eğiticili öğrenme için ilişkili ve rastgele alt uzay metodu kullanan, Rel-RAS, 
ve yarı-eğiticili Birlikte Öğrenme için ilişkili ve rastgele alt uzay metodu kullanan, 
Rel-RASCO, algoritmalarında öznitelik altuzaylarının seçimi için kullanılmıştır. 

İkinci yöntem; mRMR (Minimum Redundancy Maximum Relevance)  öznitelik 
seçme algoritması üzerinde değişiklik yapılarak elde edilen öznitelik altuzaylarını 
öznitelikler ve sınıf etiketleri arasındaki karşılıklı bilgi miktarını ve özniteliklerin 
kendi aralarındaki karşılıklı bilgi miktarını dikkate alarak oluşturan en düşük artıklık 
ve en yüksek ilişkili rastgele altuzaylar (minimum Redundancy Maximum Relevance 
random subspaces) yöntemidir. Bu ikinci yöntem, eğiticili öğrenme için en düşük 
artıklık ve en yüksek ilişkili rastgele alt uzay metodu kullanan, mRMR-RAS, ve yarı-
eğiticili Birlikte Öğrenme için ilişkili ve artıksız rastgele alt uzay metodu kullanan, 
mRMR-RASCO, algoritmalarında öznitelik alt uzaylarının seçimi için kullanılmıştır. 
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Beş adet gerçek ve sentetik veri kümeleri üzerinde K-En Yakın Komşu (K-Nearest 
Neighbour, KNN), Doğrusal Ayırtaç (Linear Discriminant, LDC), Karar Ağacı 
(decision tree) ve Destek Vektör Makinaları (Support Vector Machines) 
sınıflandırıcıları ile elde edilen sonuçlar, önerilen algoritmaların eğiticili 
algoritmalarda RAS'tan ve yarı-eğiticili algoritmalarda RASCO ve Birlikte Öğrenme 
(yarı-eğiticili öğrenme algoritmalarının başlangıcındaki ve algoritma sonundaki 
başarımlarından) algoritmalarından elde edilen sınıflandırma başarımı açısından daha 
başarılı olduklarını göstermektedir. 

Öte yandan sınıflandırıcı topluluklarında, sınıflandırıcı çeşitliliğinin sınıflandırma 
başarımına etkisi bulunduğu düşünülmekte ve sınıflandırıcı çeşitliliği ile 
sınıflandırma başarımı arasındaki ilişki ile ilgili birçok çalışma bulunmaktadır. Tez 
çalışması kapsamında önerilen algoritmaların çeşitliliği Kohavi Wolpert (KW) 
Varyans'ı ile incelenmiştir. Test sonuçlarından Rel-RAS, mRMR-RAS ve Rel-
RASCO, mRMR-RASCO algoritmalarının sınıflandırıcı çeşitliliği RAS ve RASCO 
algoritmalarının sınıflandırıcı çeşitliliğinden çok az düşük olduğu görülmüştür. Bu 
sonuç Rel-RAS, mRMR-RAS ve Rel-RASCO, mRMR-RASCO algoritmaları ile 
birleştirilen sınıflandırıcıların test kümelerindeki sınıf etiketleri üzerinde RAS ve 
RASCO algoritmalarına göre elde edilen sonuçlardan daha fazla uyuşmalarından 
kaynaklanmaktadır. Algoritmalar öznitelik alt uzaylarının, yaklaşık özyineli olarak 
daha fazla karakteristik  (approximately Recursively More characteristic (RM 
characteristic)) olma tanımı kullanılarak da incelenmiştir. Önerilen algoritmalarla 
elde edilen öznitelik alt uzaylarının RAS ve RASCO algoritmalarına göre 
sınıflandırıcıların bireysel başarımlarının ortalamaları dikkate alındığında daha RM-
karateristik olduğu gösterilmiştir. Buna ek olarak test sonuçları üzerinde t-test 
sonuçları verilmiştir.   

Sınıflandırıcı çeşitliliklerinin KW-Varyans ölçümlerine ek olarak, bilgi kuramı 
(information theoretic) tabanlı düşük düzeyli çeşitlilik ölçütü (low order diversity) ve 
sınıflandırıcı topluluklarının bilgi kuramı sayısı (information theoretic scores-ITS) 
incelenmiştir. Testlerden elde edilen sonuçlarda bilgi kuramı tabanlı düşük düzeyli 
çeşitlilik ölçütünün KW-varyansı ile benzer bir davranış gösterdiği görülmüştür. Öte 
yandan bilgi kuramı sayısı (ITS) ve sınıflandırıcı toplulukları arasında doğrudan bir 
ilişki görülmüştür. Aynı koşullar altında (toplulukta bulunan eşit sayıda sınıflandırıcı, 
aynı eğitim kümesi vs.) ITS değerinin yükselmesi sınıflandırma başarımının 
yükselmesine karşı geldiği görülmüştür. 



1. INTRODUCTION

The easy access of data in manyfields produced pattern recognition problems

with high dimensional feature spaces. Generally one can either train a single

classifier with/without feature selection/extraction or train multiple classifiers on

feature subspaces and combine them [2]. However, when the number of instances

are small compared to the number of features, we may face small sample size problem

(curse of dimensionality) [3]. Feature selection methods have been shown to increase

classification performance while defying the curse of dimensionality [4, 5]. They

estimate the feature quality using a measure such as information gain, Gini index

or chi-square test [6]. However they usually do not consider redundancy of the

selected features. Recently Peng et. al. proposed a powerful method called, minimum

Redundancy and Maximum Relevance (mRMR) [7] feature selection algorithm that

gives an ordering of the features based on their relevance to the class label and

redundancy between features. The mRMR method aims to select the next feature as

uncorrelated as possible with the current subspace of selected features.

In addition to high dimensional feature spaces, it is also common to face unlabeled data

in many fields ranging from bioinformatics to web mining. Semi-supervised learning

methods have gained great importance with the availability of unlabeled data and they

stand between supervised and unsupervised learning. Based on the availability of one

or more sets of input features, with or without labels and ability to query some inputs,

different combinations of datasets and hence learning algorithms to learn them can

be considered. Scenarios of different input/output feature availability given in [1] are

shown in Figure 1.1.

The learning methods that are applicable to each of the scenarios in Figure 1.1 is

described as follows [1]:

a) Unsupervised learning:Without label information, each object is represented by

one set of features. There isn’t any information about data labels. Unsupervised

learning or clustering aims to find the similar structure among the objects and cluster
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the similar objects into same groups [8,9]. This is the scenario shown in Figure 1.1(a).

An illustration of clustering ontwo dimensional feature space is given in Figure 1.2(a)

where objects are separated into two clusters. Note that, defining a similarity measure

for clustering is one of the crucial steps in unsupervised learning and depending on

the similarity measure, cost function and input patterns different clustering algorithms

lead to different results.

 

 

a b c d e f

Figure 1.1: Scenarios of different input/output feature availability (Extended from
[1]). Rows correspond to objects/instances. Wide boxesare feature
matrices, narrow boxes correspond to labels. Available data are
represented in blue, missing data that can be queried by a learning
algorithm are represented in purple color.

b) Supervised learning: Each object is represented by one set of features and one

label. In supervised learning a set of training data is available and classifier/regressor

is designed by using this a priori information [8–10]. This is the scenario shown in

Figure 1.1(b). If the target label of the problem is continuous then the supervised

learning problem is calledregression. Otherwise, if the labels have discrete values

then the supervised learning problem is calledclassification. The aim is to find a

mapping from input features to output labels and the mapping needs to minimize an

appropriate error function on training data. An illustration of classification in two

dimensional feature space is given in Figure 1.2(b), where objects are classified into

two different classes.

c) Semi-Supervised learning:Some object labels are available however the other

parts’ labels are missing and not available. Learning in this case, using both labeled

and unlabeled data, is known as semi-supervised learning [11] (Figure 1.1(c)). Detailed

description of Semi-Supervised learning methods is given in Chapter 4. Transductive

learning is a special case of semi-supervised learning where the unlabeled instances

are actually test instances [12]. There are many extensions [13] to semi-supervised

learning and some of them based on active learning and Co-training are defined below.

Co-training is detailed Section 4.2.
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Figure 1.2: a) Unsupervised and b) supervised learning algorithms illustration on two
dimensional feature space.

d) Active learning of labels: Some object labels are available however the other parts’

labels are missing but can be acquired [14] (Figure 1.1(d)). Any algorithm for the

labeled and unlabeled data can be also used for active learning by selecting random

points for collecting the labeled data and selecting the remaining part as unlabeled.

However the aim of active learning is to outperform such algorithms [10]. Also this

approach assumes the availability of an "oracle" that can label the unlabeled data

points in the presence of a question. The intention of active learning is to select the

most informative unlabeled examples by asking minimum number of questions to the

"oracle" [13].

e) Co-training: A number of feature sets are available, but some of the objects have

missing labels that cannot be acquired (Figure 1.1e). Co-training algorithm [15] is

an iterative algorithm, that trains different classifiers on different feature views and

updates these views by labeling the unlabeled data and adding them to the training set

during the iterations. Detailed description of Co-training algorithm is given in Chapter

4.

f) Active learning of labels with co-training: A number of feature sets are available,

but some of the objects have missing labels that can be acquired by asking questions

to an "oracle" (Figure 1.1f).

g) Active learning of features and labels:Some of the features have missing values

and some of the objects have not been labeled. However active learning of features and

labels can be achieved by asking an "oracle" (Figure 1.1g). More detailed description

can be found in [1].
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In some applications data samples obtained from various sources may be represented

in different multiple ways (or views), for example, web pages can be represented

using text, image and video information. The learning problems summarized in

Figure 1.1 e), f) and g) work on two different feature views. When multiple feature

views are available, instead of training one classifier on the concatenated feature

views, using multiple classifier systems can be useful [16]. On the other hand, on

high dimensional feature spaces one can obtain different feature views artificially

as in Random Subspaces Method (RAS) [17]. The RAS method selects the feature

subspaces randomly for classifier ensembles and are shown to perform well using

different classifiers such as K-Nearest Neighbors (KNN) [18], decision trees [17],

pseudo Fisher linear classifier [19]. However, RAS method may not perform well

when there are irrelevant or redundant features.

1.1 Contributions of the Thesis

The main contributions of this thesis are on relevant and non redundant random

subspaces for supervised and semi-supervised learning.

1) Relevant Random Subspaces (Rel-RAS) and minimum Redundancy Maximum

Relevance Random Subspaces (mRMR-RAS) Algorithms:

Feature selection and classifier ensembles, on both supervised and semi-supervised

learning, are crucial problems in pattern recognition. On the other hand, selecting the

relevant features and eliminating the redundant ones is a big issue in feature selection

[20]. It has been found that selecting the most relevant features may not result in

good classification performance [4]. Therefore redundancy among features is also

studied [7, 21]. However training one classifier alone on the selected feature subset

may not always give good classification accuracy. Besides, depending on the pattern

recognition problem one can obtain many feature views and use classifier ensembles.

One of the main contributions of this thesis is made on classifier ensembles. Ensemble

learning algorithms may benefit from diversity of classifiers used. However, for

high dimensional data choosing subspaces randomly, as in Random Subspaces (RAS)

algorithm, may produce diverse but inaccurate classifiers. On the other hand, if there

are many irrelevant features and redundancy, RAS may produce subspaces of features
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that are not suitable for good classification (See Section 3.2 for RAS algorithm).

In order to eliminate these problems,we introduce two subspace selection methods

for ensemble of classifiers. The first algorithm is the relevant random subspace

method which produces relevant random subspaces using the relevance scores of the

features obtained by mutual information between features and class labels. The second

algorithm is the relevant and non-redundant random subspace selection that modifies

the mRMR feature selection algorithm to produce random feature subspaces that are

relevant and non-redundant. These feature subspace selection methods are used in

Rel-RAS (Relevant Random Subspaces) and mRMR-RAS (minimum Redundancy

Maximum Relevance Random Subspaces) supervised algorithms respectively during

subspace selection.

2) Relevant Random Subspaces for Co-training (Rel-RASCO) and minimum

Redundancy Maximum Relevance Random Subspaces for Co-training

(mRMR-RASCO) Algorithms:

The use of unlabeled data is a challenging problem. Many algorithms have been

proposed to benefit from unlabeled data [12]. It has been shown that using ensemble

of classifiers increases the classification performance on semi-supervised learning as

well [22, 23]. Co-training is a type of semi-supervised learning that uses unlabeled

data on two different feature views. Previously we proposed a classifier combination

method for Co-training algorithm [24]. The Co-training algorithm is extended for

multiple feature views by Wang et. al. [23] and named as Random Subspace Method

for Co-training (RASCO).

The next contribution of the thesis is made on semi-supervised ensemble

learning by using the proposed feature subspace selection algorithms. Relevant

Random Subspaces for Co-training (Rel-RASCO) and Relevant and Non-Redundant

Random Subspaces for Co-training (mRMR-RASCO) algorithms are proposed for

semi-supervised learning and they outperform the RASCO [23] algorithm which uses

random subspaces for Co-training. The proposed algorithms are compared using

the RM-characteristics of feature subspaces on both supervised and semi-supervised

learning cases. It is shown that the proposed algorithms are more RM-characteristics

in the mean of the classification accuracy.
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3) Diversity Analysis of the Classifier Ensembles:

The last contribution of the thesis ison diversity analysis of the classifier ensembles.

The analysis of the algorithms are based on KW-Variance diversity measure [2],

information theoretic based low order diversity (LOD) [25] and information theoretic

scores (ITS) [26]. It is shown that the increase in the ensemble classifier accuracy can

be explained with the information theoretic score. On the other hand KW-Variance

diversity measure and information theoretic based low order diversity have similar

behavior and the performance increase in the ensemble cannot be explained directly

with these measures.

The rest of the thesis chapters are organized as follows:

• In Chapter 2, first classifier ensemble methods, namely Bagging, Boosting, Stacked

Generalization, Mixture of Experts, Input Decimated Ensembles are summarized and

combination methods are given. Next measures of diversity for classifier ensembles

and mutual information based classifier ensemble analysis are given.

• Chapter 3 includes the Random Subspaces (RAS), proposed Relevant Random

Subspaces (Rel-RAS) and minimum Redundancy and Maximum Relevance Random

Subspace (mRMR-RAS) algorithms. Next theoretical analysis of the algorithms is

presented. Experimental results on supervised learning are given in terms of accuracy

and diversity.

• In Chapter 4, first semi-supervised learning algorithms are summarized. Then

RASCO, Rel-RASCO and mRMR-RASCO algorithms are presented and experimental

results are given.

• Chapter 5 concludes the thesis by discussing the outcomes and the possible future

directions for the work.
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2. CLASSIFIER ENSEMBLES AND DIVERSITY

2.1 Classifier Ensembles

During the last decade computational intelligencecommunity started to benefit from

different experts to reduce the probability of making mistake [27,28]. Kittler states that

in statistical pattern recognition most of the progress has been on modeling probability

density function, feature selection and classification context and describes the classifier

ensembles as one of the exciting directions [29]. Besides, in pattern recognition, the

models that deal with real-world problems have their own limitations and errors [30].

Classifier Ensembles aim to produce accurate recognition results by training several

classifiers [31] and combining their outputs by managing the strengths and weaknesses

of the classifiers [30]. In literature various terms have been used for the same notions

in classifier combination [2], i.e. classifier ensembles have different names, such as,

ensemble based systems, mixture of experts, classifier fusion, committee of classifiers,

multiple classifier systems [28].

There are many reasons to build ensembles. Dietterich states statistical, computational

and representational reasons to construct ensemble based systems [32]. Statistically,

with sufficient data different classifiers can be obtained [32] and combining several

classifiers may reduce the risk of making the wrong decision [28]. Computationally,

when a classifier is stuck in a local optima it may not perform well or some classifiers,

such as neural networks, may perform different based on the initial parameters. Hence

combining separately trained classifiers may perform better than selecting the best

network and eliminating the others. On the other hand, different classifiers trained on

the same dataset may perform differently. In the feature space each classifier may have

its own region that it performs best. In some applications different types of features

(representation/description) can be obtained and different types of classifiers can be

trained on each set of features. For example: in person identification, one can obtain

face, voice and handwriting information. Also in neurological disorder diagnosis MRI

scan, EEG recording, blood test results can be obtained [28]. In addition to different
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representations, different training sets recorded at different times and using different

features may also beavailable.

Different taxonomies of classifier ensembles have been suggested in the literature.

Kuncheva [2] divides classifier ensemble framework into four parts: instance, feature,

classifier and combination levels (see Figure 2.1). Lam [33] categorizes classifier

combination methods into multiple, conditional, hierarchical and hybrid topologies.

On the other hand, in a recent work, Rokach [34] presents a new taxonomy on classifier

ensembles: inducer, combiner, diversity, size and members’ dependency. Please refer

to [2,28,34] for further information on classifier ensemble taxonomies.
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Figure 2.1: General framework of classifier ensembles [2].

In instance level classifier combination, different datasets are bootstrapped from a

training dataset and different classifiers are trained. These techniques work well

with unstable classifiers [35], such as decision trees, neural networks, where a small

change in the dataset, may causes a major change in the hypothesis [32]. Well known

ensemble algorithms in instance level combination category are; Bagging [36] and

Boosting algorithms [35]. Feature level approach aims to reduce the dimensionality

of feature vectors of the base learners in order to reduce the curse of dimensionality.

Some of the feature level algorithms are RAS (Random Subspace Method) [17], Input

Decimation Approach [37], and Mixture of Experts [2]. Details of the RAS algorithm

will be given in the next chapter. In classifier level, different types of classifiers can be

used. Classifier decision combination can be either a classifier selection or classifier

8



combination. In classifier selection a classifier is selected to give the final decision.

Classifier ensemblemembers can be generated either in parallel or sequentially where

subsequent classifiers are created based on the preceding classifiers [38]. The next

sections summarize some of the well known classifier ensemble algorithms.

2.1.1 Bagging

Bootstrap Aggregation (Bagging) [36] generates multiple versions of a classifier by

training individual classifiers on bootstrapped samples of the training set, using them

as new learning sets. Each example in each data subset is selected randomly with

replacement and each classifier is trained on the average on 63.2 percent of the entire

training set [39]. The generated classifiers are aggregated by majority or weighted

voting methods. Bagging performs well with unstable algorithms such as decision

trees and multilayer perceptrons where small change in the training set creates a large

difference in the classifier [39]. Pseudo code of Bagging is given in Algorithm 1.

Algorithm 1 Bagging Algorithm

// X =(X1,X2, ...,Xn) be the training dataset withn samples.
// Xi: ith training instance(i = 1,2, ...,n) andXi = (xi1,xi2, ...,xid)
// d: the dimensionality of training instance
Training:
for k = 1 to K do

Take a bootstrap samplêXk from X
Train classifierCk usingX̂k

end for
Testing:
Given a test instance t
RunC1...Ck on the input t
Choose the class with the maximum number of votes as the label of t

2.1.2 Boosting

In boosting methods, at each iteration learning algorithmsuse a different weighting or

distribution for training. The probability of selecting an individual is adapted at each

iteration based on the performance of previous classifiers. The weights of misclassified

instances are increased at each iteration. Experimental results show that while boosting

is sensitive to noise, bagging is effective with noisy data [35]. The most popular

boosting algorithm is adaptive boosting (Adaboost) that keeps adding components until
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a predetermined error rate on training dataset is reached [40, 41]. The Adaboost.M1

algorithm [28] for multi-class problemsis given in Algorithm 2.

Algorithm 2 Adaboost Algorithm

// X =(X1,X2, ...,Xn) be the training dataset withn instances.
// Xi: ith training instance(i = 1,2, ...,n) andXi = (xi1,xi2, ...,xid)
// d: the dimensionality of training instances
// c: number of classes
// Initialize the probability of selectingith instance:D1(i) = 1/n, i = 1,2, ...,n
Training:
for t = 1 to K do

Select a training instance subsetX̂t drawn from the distributionDt

Train classifierCt usingX̂t

Calculate,et , the error ofCt

if et>05 then
abort

end if
βt = et/(1−et)
Zt = ∑i Dt(i) // Normalization constant
if Ct(xi) = l i then

Dt+1(i) = Dt(i)×βt/Zt

else
Dt+1(i) = Dt(i)/Zt

end if
end for
Testing:
Given a test instance x
RunC1...CK on input x
Obtain total vote for each classj = 1,2, ...,c
Vj = ∑

t:Ct(x)=l j

log(1/βt)

Choose the class that receives the highest total vote

2.1.3 Mixture of experts

Mixture of Experts is also another layered classifierensemble algorithm. In this

algorithm in the second layer instead of a classifier there is a selector which determines

the participation of the classifiers in the final decision. This algorithm was initially

proposed for Neural Networks where each Neural Network is responsible for a portion

of the feature space [2]. The outputs of each Neural Network are given to a gating

network and the outputs of the gating network is the probability of each classifier to

participate for decision. The selector uses these probabilities to give the outputs of the

examples.

10



2.1.4 Stacked generalization

Stacked generalization is a layered algorithm thataims to find a mapping between

ensemble classifier outputs and original class labels. Thus at the first level the ensemble

classifiers receive the data as input and at the second layer the outputs of the classifiers

in the first layer are given as inputs [42]. The algorithm works as follows: Specifically

the training data is divided intoK folds. Each first level classifierCk is trained on the

different K− 1 fold of the training data. For each classifier the remaining one fold

of the training data is used as a test set. The outputs of the classifiers and their true

labels are used as an input for the second layer classifier [28]. The aim is to learn the

classifiers that consistently classify instances correctly or incorrectly.

2.1.5 Input decimated ensembles

The aim of the Input Decimated Ensembles is to de-correlate the base classifiers by

training them on different subsets of the input features, selected from the ones that

are most correlated with a particular class label [37, 43]. In ac class problem, Input

Decimation trainsc classifiers, each of them corresponds to one class. For each

classifier a user determined number of features, having the absolute correlation to the

class label are selected. The objective is to get rid of the features that are not related

to each class. In [37] Input Decimation results are evaluated over a synthetic dataset

and multi-layer perceptrons are used as base classifiers and combination is achieved

by averaging.

2.1.6 Classifier combination methods in classifier ensembles

The decisions of the ensemble of classifiers depend on the output of each classifier.

The combination of the classifier outputs can be considered under the categories of:

combination of abstract level outputs, combination of ranked lists and combination of

continuous level outputs [31, 44]. Kuncheva adds one more type, the oracle level,

where the output of a classifier for a given example is only known as correct or

incorrect [2].

For further information we refer the Kuncheva’s book on classifier combination [2]

and [27,28,31,45,46].
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2.1.6.1 Combinations of abstract level outputs

Combination of abstract level outputs consistsof the combination methods that use

the classifiers whose output is a unique class label. This combination scheme consists

of majority vote, weighted majority vote, Bayesian formulation, a Dempster-Shafer

theory of evidence, the Behavior-Knowledge Space method [31].

Voting methods:

Since the combination is achieved only on the outputs of the classifiers without training

any combiner, majority voting is the simplest method to implement [2, 31]. The

output class label of a data point is decided by the major class label obtained by

different classifiers. The general majority vote is the special kind of weighted majority

vote where each weight is equal. If the classifiers in the ensemble have different

accuracies then giving more weights to the accurate classifiers may improve the

ensemble accuracy. Weighting can be obtained using a genetic algorithm according to

an objective function or the performance of the classifiers on the training dataset [31].

Bayesian combination rule:

Bayesian combination rule finds the weights of classifiers by using their performances

on the training dataset. Therefore the confusion matrix of each classifier is used as

an indicator for its performance. For a problem withc class possibilities and plus

reject option, the confusion matrix size will bec(c+ 1). Confusion matrices for all

classifiers are calculated and based on these matrices using Bayesian formulabelief

values for each class are obtained. For any input sample, the class whosebelief value

is the highest is chosen. Formulation and detailed descriptions about the Bayesian

combination can be found in [31].

Behavior-Knowledge space:

Bayesian method assumes the conditional independence of the decisions of the

classifiers. Behavior-Knowledge Space method also finds the ensemble from the

decisions of the classifiers and can be considered as a refinement of the Bayesian

method without assuming conditional independence [31]. High order probabilities

are computed from the frequencies on the training set. The algorithm keeps the output

combination of the classifiers in the training dataset and creates a table from these

combinations. During training, the output combinations of the classifiers and correct
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labels are kept on the table. The output combinations are assigned to a class based on

the maximum trueclass decision in the training set [47].

2.1.6.2 Combinations of ranked lists

Some classifiers may output order (ranking) of possible class labels [48]. Instead of

the best guess of the classifiers they give a complete ranking of the possible classes.

Borda count [28], is a ranked lists combination method used to determine the ranking

of the experts without training. Variations of Borda count are used in many real

life applications; such as European Song Contest (Eurovision), electing officers at

certain university senate elections. The class label of the dataset can be obtained by

considering all the ranks obtained from different classifiers.

2.1.6.3 Combinations of continuous outputs

These combination schemes deal with the classifiers that output confidence or distance

values for each input sample which can usually be accepted as an estimate of

the posterior probability of a particular class given an input instance [28]. Basic

combination operators used in this scheme are: Maximum, minimum, mean, median,

sum and product rules [49] [50].

2.2 Measures of Diversity for Classifier Ensembles

In many pattern recognition problems, it is difficult to obtain a classifier that has

a perfect generalization performance. Classifier ensembles aims to train different

classifiers and combine their outputs to perform better than a single classifier [28].

Intuitionally, if we have classifiers in an ensemble that make errors on different data

points, it is likely to obtain an ensemble superior to a single classifier. If the classifiers

in the ensemble make different errors it is probable that they will be corrected in the

ensemble. Diversity of a classifier ensemble measures of how likely are classifiers to

give different results on the same data point [2]. In general a good ensemble consists of

the base classifiers that are as accurate and diverse as possible [38]. Classifier diversity

can be achieved using different training datasets, training parameters, classifiers and

feature subsets [28]. Most of the popular algorithms such as bagging and boosting

provide diversity with generating datasets by re-sampling instances. Similarly with
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different initialization parameters, number of layers and etc. Neural Networks may

provide diversity in the ensemble. Another way of providing diversity is to use

different types of base classifiers such as decision trees, support vector machines and

etc.

In literature there are many works to explain the relationship between classifier

diversity and accuracy [2, 51–53]. In order to explain this relationship pairwise and

non-pairwise diversity measures are proposed [2, 52]. While pairwise diversity is

computed between two classifiers, non-pairwise diversity considers the decision of

the classifier ensembles. However there is no consensus on what a good measure

of diversity should be [52, 53]. Although there are proven connections between

diversity and accuracy, in real-world problems there are some doubts on using diversity

measures to build classifier ensembles [54].

Commonly used pairwise and non-pairwise diversity measures are given in the

following sections [2]:

2.2.1 Pairwise measures

Pairwise diversity measures are simple to compute and evaluated between two

classifiers. ForK classifiersK(K − 1)/2 pairwise measures are computed and the

ensemble diversity is obtained by averaging. The pairwise diversity measures are based

on the joint output of two classifiersCi andCk as shown in Table 2.1 [52].

Table 2.1: The 2x2 relationship between classifiers with probabilities

Ck correct (1) Ck wrong (0)
Ci correct (1) a b
Ci wrong (0) c d
Total: a+b+c+d = 1

The Q-statistics: The Q statistics for classifiersCi and Ck gives positive values

if instances are correctly classified by both classifiers and negative otherwise. It’s

calculated as follows:

Qi,k =
ad−bc
ad+bc

(2.1)

Q value varies between -1and 1 and the maximum diversity is obtained forQ= 0.
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The correlation coefficient (ρ): is defined as the correlation between the outputs of

the classifiers:

ρi,k =
ad−bc

√

(a+b)(c+d)(a+c)(b+d)
(2.2)

If the classifiersare uncorrelated,ρ = 0, then maximum diversity is obtained.

The disagreement measure(D):is defined as the probability that the classifiers

disagree:

Di,k = b+c (2.3)

The double-fault measure (DF):is defined as the probability that the classifiers are

both incorrect:

DFi,k = d (2.4)

2.2.2 Non-pairwise measures

Non-pairwise diversity measures consider the decision of the classifiers in the

ensemble. Some of the most commonly applied non-pairwise diversity measures are

as follows [2,25]:

Kohavi-Wolpert Variance (KW) : Kohavi and Wolpert derived a formula for the

variability of the predicted class labels for a specific classifier model. Kohavi Wolpert

variance diversity is derived from this formula [2]. LetX = (X1,X2, ...,Xn) be the

training dataset withn samples.Xi be thed dimensionalith training instance,Xi =

(xi1,xi2, ...,xid) and(i = 1,2, ...,n). Let f (Xj) be the number of classifiers that correctly

recognizes theXj , among o total ofK classifiers, the KW-variance is computed as

follows:

kw=
1

nK2

n

∑
j=1

f (Xj)(K− f (Xj)) (2.5)

KW and disagreement measuresare linearly related to each other [2].

The Entropy Measure (Ent): If half of the classifiers in the ensemble are correct and

the rest are wrong then the highest diversity will be obtained. Letyi = [y1i,y2i, ...,yni]
T

be n dimensional binary vector such thaty ji = 1 if the classifierCi recognizesXj
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correctly andy ji = 0 otherwise,i = 1,2, ...,K. The highest diversity among classifiers

are for a particularXj is obtained by⌊K/2⌋ of votes iny with the same value and the

other partK−⌊K/2⌋ with the alternative value. Thus Entropy measure is defined as

follows:

Ent=
1
n

n

∑
j=1

1
K−⌊K/2⌋

min(
K

∑
i=1

y ji ,K−
K

∑
i=1

y ji ) (2.6)

Entropyvalue varies between 0 and 1. 0 indicates that there is no diversity between

classifiers and 1 indicates their complete dependence.

Generalized Diversity(GD): Let Y be a random variable expressing the proportion

of classifiers that fail on a randomly drawn objectx∈Rn. Let pi denote the probability

that Y = i/K . p(i) be the probability that i randomly chosen classifier will fail on

randomly chosenx. The GD is defined as:

p(1) =
K

∑
i=1

i
K

pi , p(2) =∑K
i=1

i−1
K−1 pi , GD= 1−

p(2)
p(1)

(2.7)

GD varies between 0 and 1.Minimum diversity is obtained whenp(2) = p(1) and

maximum diversity is achieved whenp(2) =0.

Coincident Failure Diversity (CFD): CFD is a modified version of GD and is

calculated as:

CFD=

{

0 p0 = 1
1

1−p0
∑K

i=1
K−i
K−1 pi p0 < 1 (2.8)

The maximum value of CFDis 1 and it is achieved when all misclassifications are

unique.

2.3 Information Theoretic Analysis of the Classifier Ensembles

Diversity measures introduced in this chapter have been used in many applications.

Especially they have been used for classifier selection. However it is observed that

maximizing diversity does not always result in successful classifiers [26]. There

are also some studies showing that diversity measures are confusing and ineffective

[2,54]. Therefore alternative attempts to analyze the classifier ensembles are emerging.

Recently Brown in [25] and Meynet and Thiran in [26, 55] examine the classifier
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ensembles in an information theoretic view. Information theory has been applied to

many fields fromcommunication to biology and machine learning [25]. It has also

been used for feature extraction, selection and pattern classification [26].

Brown analyzed the classifier ensembles in an information theoretic view and

expanded mutual information among classifiers in an ensemble intoaccuracyand

diversity components [25]. On the other hand Meynet and Thiran analyzed the

dependency between classifiers and their accuracies using information theoretic

approach by considering classifiers trained on data coming from the same physical

distribution [26,55].

In this thesis first we will give Brown’s information theoretic approach. Then we will

relate it with Meynet and Thiran’s approach.

Let X be the dataset,l represent the labels, andC be any classifier. The aim of any

classification algorithm is to estimate the labels:l̂ = C(X). Error of any classifier,

p(l̂ 6= l), is bounded by the following inequalities [25]:

H(l)− I(X; l)−1
log(|l|)

≤ p(l̂ 6= l)≤
1
2

H(l |X) (2.9)

Where H(l) is the entropy ofl and I(X; l) is the mutual information betweenX

and l . Details of the entropy and mutual information are given in Appendix B.

In order to increase the classification accuracyH(l |X) should be minimized and

I(X; l) maximized. Similarly, in a classifier ensemble with a set ofK classifiers,

S= {C1,C2, ...,CK} (Ci, represents the output of the classifier andi = 1,2, ...K),

mutual information between classifier outputs and class labels,I(C1:K; l), should be

maximized. Shannon mutual information computes the dependency between variable

pairs. In order to compute the dependencies between multiple variables, multivariate

mutual information,Interaction Informationcan be used [25]. Then using Interaction

Information the ensemble mutual information,I(C1:K; l), can be expanded as follows:

I(C1:K; l) =
K

∑
i=1

I(Ci ; l)− ∑
C⊆S,|C|=2..K

I({C})+ ∑
C⊆S,|C|=2..K

I({C}|l) (2.10)

In Equation10, the first term,∑K
i=1 I(Ci; l), is therelevancyof a classifier output to the

class label. The second term is a subtractive term independent of the class labelsl . It
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is the interaction information among the possible subsets of the classifiers and referred

as ensembleredundancy. Thelast term is an additive term, contains the class labels,

and is referred to asconditional redundancy. In order to maximize Equation10, the

second term should be minimized while the others are maximized. The summation is

obtained over all possible subsets of classifiers and it can be splitted into low-order and

high-order diversity terms as follows:

I(C1:K; l) =
K

∑
i=1

I(Ci; l)− ∑
|C|=2

I({C})+ ∑
|C|=2

I({C}|l)

− ∑
|C|=3

I({C})+ ∑
|C|=3

I({C}|l)

− . . . + . . .

− ∑
|C|=K

I({C})+ ∑
|C|=K

I({C}|l) (2.11)

This equation can be interpreted as:

I(C1:K; l) = Individual Mutual Information+2-way diversity

+3-way diversity

+ . . . -way diversity

+K-way diversity (2.12)

If the classifiers are statistically independent, then the diversity would be;I(C1:K; l) =

∑K
i=1 I(Ci; l). However in real applications it is difficult to obtain independent

classifiers. In [25] 3-way and above diversities are omitted and the ensemble mutual

information is approximated using only pairwise interactions:

I(C1:K; l)≈
K

∑
i=1

I(Ci; l)−
K−1

∑
j=1

K

∑
k= j+1

I(Cj ;Ck)+
K−1

∑
j=1

K

∑
k= j+1

I(Cj ;Ck|l) (2.13)

Similarly Meynet and Thiran also tried to measure the quality of classifier ensembles

with information theoretic perspective [26, 55]. They aimed to design a global score

that can be used in different classifier ensembles and avoid the limitations of the

traditional diversity based techniques. Thus an empiricalinformation theoretic score

(ITS) is given to measure the goodness ofK classifier ensembles combined by majority
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voting and this score is also used to select optimal ensemble of classifiers. The

proposed (ITS) is:

ITS= (1+ ITA)3(1+ ITD) (2.14)

whereITA is the information theoretic accuracy which is relevance term normalized

by the number of classifiers,K, in Equation13:

ITA=
1
K

K

∑
i=1

I(Ci ; l) (2.15)

ITD is the information theoretic diversity which is the ratio between the number of

pairwise classifiersC(K,2) and diversity term in Equation13:

ITD =

(K
2

)

∑K−1
j=1 ∑K

k= j+1 I(Cj ;Ck)
(2.16)

While ITA aims to favour the most accurate classifiers, the second term inITSaims to

increase the diversity of an ensemble with sameITA. ITSwas shown to outperform the

diversity based selection techniques while selecting classifiers in an ensemble. Note

that the proposed model ofITS is a choice and as will be shown in the experiments

other similar modeling approaches can be used [26].
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3. SUPERVISED LEARNING USING INFORMATIVE FEATURE
    SUBSPACES

In supervised learning a set of training data isavailable and classifiers that aim to

minimize error on an unseen test data are designed using this a priori information [8].

In this chapter we assume that we are only given a training dataset and no unlabeled

data is available. First we give related work on supervised learning with Random

Subspaces (RAS). Then we introduce the Relevant Random Subspaces (Rel-RAS) and

minimum Redundancy and Maximum Relevance Random Subspaces (mRMR-RAS)

algorithms. Next these algorithms are analyzed using RM-characteristics of feature

subspaces. Finally, experimental results on 5 real datasets, a synthetic dataset and a

real dataset with added redundant and noisy features are given. In the experiments,

diversity analyses of ensembles are given using both Kohavi Wolpert variance and

information theoretic analysis.

3.1 Related Work

In the previous chapter we summarized the well known off-the-shelf classifier

ensemble algorithms. Bagging and Boosting algorithms are well known classifier

ensemble methods work on the instance space. However, these algorithms require large

number of instances to perform well. If the number of features are much larger than the

number of instances, algorithms that work on feature subspaces may perform better. In

this section, we summarize the previous supervised feature ensemble algorithms. One

of the most well known algorithms that trains classifiers on randomly selected feature

subspaces is the Random Subspaces algorithm [17]. This algorithm is detailed in the

next section.

There are also some algorithms that work both on instance and feature spaces. Random

Forest [56] is a modified version of Bagging algorithm and it differs from Bagging

in the construction of decision trees. For each node of the decision tree, features

that split the node are selected from the best features among the randomly selected
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feature subset. Rotation Forest [57] is also another algorithm that uses bootstrapped

data. First the feature spaceis randomly divided into subsets and Principal Component

Analysis (PCA) is applied on these subsets. The training dataset for a base classifier

is obtained by rotating the original dataset using the PCA coefficients. Decision tree is

used as a base classifier and Rotation Forest was shown to perform better than Bagging,

Adaboost and Random Forest.

Genetic algorithms were also used for feature subset selection in classifier ensembles

and they performed well [58]. Opitz [59] proposed a genetic algorithm based feature

selection method for classifier ensembles. The algorithm creates the initial classifiers

by selecting random feature subsets. Then feature subsets are updated by crossover

and mutation operations. The fitness of each member is obtained using the classifier

accuracy and diversity. The ensemble is constructed using the most fit individual

classifiers. Oliveira et. al. [60] proposed 2-level hierarchical multi-objective genetic

algorithm approach for ensemble creation. Where in the first level a set of good

classifiers are generated by conducting feature selection and in the second level the best

ensemble is searched among the classifiers generated in the previous level. However

genetic algorithms need to have enough population size to be successful and their

computational complexity is very high.

On the other hand, a number of studies investigated the use of feature selection methods

in classifier ensembles. Vale et. al. [61] proposed a class based feature selection

method to be used in the classifier ensembles. Important features corresponding to

each class are selected and based on these features a classifier becomes responsible

for each class. However in this method the system needs at least one classifier to

correctly recognize each class. In [62], hill climbing, a genetic algorithm, forward

sequential selection and backward sequential selection are considered for ensemble

feature selection. These search strategies incorporate different diversity measures in

the search of the best feature subsets and employ the same fitness function. It is

shown that ensemble feature selection can be sensitive to the diversity criteria and

the performance of the diversity measures depend on the data being processed.

In this thesis, the proposed algorithms differ from the ones in previous works in terms

of feature subspace selection. Instead of the best features as in most of the previous

works, the algorithms proposed in this thesis select features randomly. The probability
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of selection can be either random (RAS), random based on relevance (Rel-RAS) or

based on a randomized versionof the minimum Redundancy and Maximum Relevance

(mRMR) [7] feature selection algorithm (mRMR-RAS).

3.2 Random Subspaces (RAS)

The Random Subspace (RAS) method was proposed by Ho [17] to construct

decision forest by combining multiple decision trees trained on randomly selected

feature subspaces. The aim is to avoid overfitting of the decision trees while

satisfying maximum accuracy. Later, in addition to decision trees, nearest neighbour

classifiers [18], linear classifiers (Pseudo Fisher Linear Discriminant and Nearest Mean

Classifier) [19] and Support Vector Machines [63, 64] are also used together with the

RAS method and they were shown to perform better than a single classifier.

We assume that we are given a classification problem withc classes. LetXi (i =

1,2, ...,n)be thed dimensionalith training sample,Xi = (xi1,xi2, ...,xid), in the training

dataset X =(X1,X2, ...,Xn) with n samples. Sk be the randomly selected subspace

with m (m < d) features. The labelsl are represented using 1-of-ccoding. Let

Ck be the classifier constructed using the training datasetX̂k that are produced from

randomly selected subspaces,Sk (k = 1,2, ...,K). In the RAS method,Ck classifiers

(k= 1,2, ...,K) are constructed and then they are combined by simple majority voting

to obtain ensemble classifierCE. Let the decision of classifierCk be dk, j ∈ {0,1},

k = (1,2, ...,K) and j = (1,2, ...,c). dk, j is obtained using the decision of thekth

classifier as follows:

dk, j =

{

1, Thekth classifier chooses classj
0, otherwise

(3.1)

Then the ensemble classifierCE is:

CE = argmax
j∈{1,2,...,c}

K

∑
k=1

dk, j (3.2)

The RAS method is given in Algorithm 3. Since the feature subspaces are selected

randomly, RAS has the advantage of systematically constructing classifier ensembles

that are mutually independent to a certain extent [18]. If the number of instances is

small compared to the number of features, one may face with the small sample size
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problem (curse of dimensionality). In the RAS method the selected features for each

subspace is smaller than theoriginal feature space. The number of instances does

not change. Therefore the RAS method may be able to produce feature subspaces

that eliminate the curse of dimensionality problem. However, if the dataset has a

large number of irrelevant features, RAS may select feature subspaces which do not

contain (m)any relevant features. This may result in classifiers which perform poorly,

resulting in poor ensemble performance. Therefore more intelligent feature subset

selection methods should be used. In the next sections, the Rel-RAS and mRMR-RAS

algorithms are proposed to remedy these problems.

Algorithm 3 RAS Algorithm

for k = 1 to K do
Sk← Rand(m) //Select random subspacesS1...SK

ProjectX to X̂k usingSk

Train classifierCk usingX̂k

end for
//Combine classifiers by majority voting:
CE = MajorityVote(C1,...,CK):

3.3 Relevant Random Subspaces (Rel-RAS)

While the RAS method produces subspaces by randomlyselecting features, the

Rel-RAS selects each feature in the subset based on the relevance scores of the features

obtained using the mutual information between feature and class labels. Note that any

other method, that computes the correlation between features and labels and gives a

probability of selection for each feature could also be used.

Training datasetX can be written in terms of feature vectors,F . LetFj , j = {1,2, ...,d}

denote then dimensional feature vector of thejth feature andFj =
(

x1 j ,x2 j , ...,xn j
)

.

The relevanceRel(Fj) of a featureFj , i.e. the mutual information,I(Fj , l), betweenFj

and the target classesl can be written as:

Rel(Fj) = I(Fj , l) =
n

∑
i=1

c

∑
t=1

p(xi, j , l i,t)log
p(xi, j , l i,t)

p(xi, j)p(li,t)
(3.3)

where xi, j denotes theith feature valueof Fj and l i,t denotes thetth class label

(t = 1,2, ...,c) for the ith training sample.
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In order to be able to compute the probabilities in Equation3, if features are continuous

valued, we first discretizethem. For discretization we use 10 equal sized bins placed

between the minimum and maximum value observed for the particular feature in

the labeled training set. We approximate the probabilities by means of counting the

samples that fall into each bin. The details of the discretization algorithm is given in

Appendix A.

In the Rel-RAS algorithmK subspaces(S1, . . . ,SK), each containingm (m> 0)

features are created. Each feature subspace is produced using tournament selection

[65] between pairs of individual features (i.e. tournament size is 2). The tournament

selection is performed as follows: Two features are randomly selected from the set

of all available features. Among these two features, the one with higher relevance is

added to the subset of selected features. The selected feature is extracted from the

set of available features and the procedure is repeated until the set of selected features

contains the required number of features. Similar to RAS, in Rel-RAS also, a classifier

is trained on each one of the feature subspaces(S1, ...,SK) and the final classifier is

obtained by majority voting.

The main difference between RAS and Rel-RAS is the feature subspace selection. The

goal of Rel-RAS’ selection scheme is to select random feature subspaces which are as

relevant as possible to the class labels. While RAS selects feature subspaces according

to a uniform distribution on features, Rel-RAS uses feature probabilities proportional

to relevance scores. Using probability of selection proportional to relevance scores

ensures that more informative features are selected. Especially for larged, when there

is a large number of irrelevant features and a small number of relevant features, in

each selected subspace, RAS may select feature subspaces which does not contain any

relevant features. This may result in classifiers which perform very poorly, resulting in

poor ensemble performance. As the feature subspaces selected contain more features,

RAS can select relevant features, however, the larger the subspaces the longer it takes

to train and test each classifier.The Rel-RAS algorithm is given in Algorithm 4. The

experimental results show that generally Rel-RAS results in better classifiers than RAS

algorithm.

In a related work [43], input decimated ensembles, instead of mutual information

based relevance scores authors used correlation to select subspaces. The features in the
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subspaces consisted of the top most relevant features for discrimination of each class

from the rest of the classes.However in the input decimated ensembles the number

of the classifiers is limited to the number of classes. On the other hand, selecting the

best features may not always give the best classifier. Our approach enables selection

of as many random subspaces as needed and the number of classifiers is not limited.

We also enable classifier diversity by selecting features randomly.

Algorithm 4 Rel-RAS Algorithm

XD = Discretize(X)
V = Relevance(XD,l) //Mutual Information between featuresand labelsl
//Select subspacesS1...Sk

for k = 1 to K do
Sk← Tournament(V,m)
ProjectX to X̂k usingSk

Train classifierCk usingX̂k

end for
//Combine classifiers by majority voting:
CE = MajorityVote(C1,...,CK):

3.4 Minimum Redundancy and Maximum Relevance Random Subspaces

         (mRMR-RAS)

Rel-RAS algorithm selects each feature based on the relevance score between features

and class labels. However the redundancy of the features in each feature subspace

is not concerned. On the other hand most of the powerful feature selection

algorithms consider redundancy between features in order to improve the classification

performance by selecting the relevant and non-redundant best features [7, 66]. We

also propose mRMR-RAS (minimum Redundancy and Maximum Relevance Random

Subspaces) algorithm that considers both the relevance and redundancy in each feature

subspace. During the computations we modified mRMR (minimum Redundancy and

Maximum Relevance) [7] feature selection scheme. mRMR is a feature selection

method which tries to find an ordering of features based on their relevance to the class

label. mRMR also aims to select the next feature as uncorrelated as possible with

the current subspace of selected features. Mutual information is used as a measure of

feature-feature or feature-label similarity.
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Let Sbe the feature subspace that mRMR seeks, the redundancy ofScan be described

using the within mutual information,W, of S:

W =
1
|S|2 ∑

Fi ,Fj∈S

I(Fi ,Fj) (3.4)

WhereI(Fi ,Fj) is the mutual information between featurevectorFi and feature vector

Fj . |S|, is the size of the feature subspaceS. In order to measure the relevance of

features to the target class, again mutual information is used. LetI(Fi , l) denote the

mutual information between featureFi and the target classesl . V, the relevance ofS,

is computed as:

V =
1
|S| ∑

Fi∈S

I(Fi , l) (3.5)

Feature selection tries to choose anS with as small W and as largeV as possible.

So that the selected features are as relevant and as non-redundant as possible. The

mRMR method achieves both goals by maximizing either (V −W) which is called

MID (Mutual Information Distance) orV/W which is called MIQ (Mutual Information

Quotient). MID is used in our computations.

mRMR-RAS algorithm, selects the first feature using the Relevance scores,V, as

a probability distribution. Then using redundancy the scores,W, MID scores are

calculated andV −W are used as the probability of selecting the next feature. By

adding randomness we are able to create diverse, relevant and non-redundant feature

subspaces, therefore we try to obtain diverse enough and accurate classifiers. Pseudo

code of the proposed algorithm is given in Algorithm 5.

3.5 Accuracy Analysis of the Subspace Selection Algorithms

In this section, we aim to explain why we expect our feature subspace selection

methods, Rel-RAS and mRMR-RAS to perform better than random subspace selection

RAS. The accuracy analysis of Rel-RAS and mRMR-RAS algorithms will be

performed using the RM (Recursively More) characteristic property of feature spaces

[7]. Let S1 andS2 be two subspaces withm features.S1 is morecharacteristic, if the

classification error,e1 onS1 obtained by classifierC is less than the classification error,
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Algorithm 5 mRMR-RAS Algorithm

XD = Discretize(X)
V = Relevance(XD,l) //Mutual Information between featuresand labelsl
W = Redundancy(XD) // Mutual Information between features
//Select random subspacesS1...Sk

for k = 1 to K do
for i = 1 to mdo

if i = =1 then
Sk(i) ← Tournament(V,1)

else
Sk(i) ← Tournament(V−W,1)

end if
ProjectX to X̂k usingSk

Train classifierCk usingX̂k

end for
end for
//Combine classifiers by majority voting:
CE = MajorityVote(C1,...,CK):

e2 on S2 obtained by classifierC. Let a series of subsetsof S1 obtained by a feature

selection algorithm be:

S1
1⊂ S2

1⊂ ...⊂ Sk
1⊂ ...⊂ Sm−1

1 ⊂ Sm
1 = S1 (3.6)

and similarly subsets ofS2 be:

S1
2⊂ S2

2⊂ ...⊂ Sk
2⊂ ...⊂ Sm−1

2 ⊂ Sm
2 = S2 (3.7)

S1 is Recursively More characteristic(RM characteristic) thanS2, if ∀k (1≤ k≤ m)

the classification errorek
1 < ek

2. However in most cases it is difficult to obtainek
1 < ek

2,

∀k. Let ρ (0≤ ρ ≤ 1) be a confidence score that gives the percentage ofk values that

satisfyek
1 < ek

2. Whenρ = 0.9, S1 is said to beapproximatelyRM-characteristic [7].

For the case of Rel-RAS, mRMR-RAS and RAS, let ¯eRel−RAS, ēmRMR−RASandēRASbe

the mean of the individual classification errors for Rel-RAS, mRMR-RAS and RAS

algorithms, respectively. The mean individual classification error, ¯e, for any of the

algorithm can be computed as follows:

ē=
1
K

K

∑
k=1

ek (3.8)

Where ek is the classification error obtained by theclassifierCk trained on the

kth subspace (k= 1,2, ...,K) obtained from a subspace selection algorithm. We
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experimentally show that ¯eRel−RAS< ēRAS and ēmRMR−RAS< ēRAS, i.e. mean of the

individual classification errors for Rel-RAS and mRMR-RAS are smaller than that

of RAS for different subspace sizes (See the mean individual classifier accuracies in

experimental results in the next section).

3.6 Experimental Results

In this section, we present the experimental results obtained using ensembles of

classifiers with RAS, Rel-RAS, mRMR-RAS and single classifiers. First, results on

5 different real datasets: Audio Genre, Optdigits, Classic-3, Isolated Letter Speech

and MFeat and one synthetic dataset are presented. Then results on Audio Genre

dataset appended with different redundant features are given. Detailed descriptions

of the datasets are given in Appendix C. For each dataset, experimental results of

Rel-RAS, mRMR-RAS and RAS are obtained on 10 different random runs. At each

random run, the whole dataset is divided equally into a training partition and a test

partition. Training set is further splitted into unlabeled training set andµ portion of

the rest of the training data is used as the labeled training set. In order to compare the

supervised and semi-supervised learning results the same data splitting is applied for

both learning schemes. Note that unlabeled training set is only used in semi-supervised

learning experiments, given in the next chapter and theµ is defined as follows:

µ =
#labeled training set used to train classifier

# labeled training set
(3.9)

First, we investigate theeffect of theµ and experimental results are given for different

values ofµ on Audio Genre dataset. The number of selected features,m, is 25 for RAS,

Rel-RAS and mRMR-RAS algorithms. Then in order to evaluate the classification

accuracies under small number of training datasets and small number of classifier

ensembles, theµ is fixed to 0.3 and theK is selected as 5 and 25. The mean ensemble

and individual classification accuracies and their standard error bars are given in the

figures obtained for Audio Genre dataset. The standard error bars for all results are too

low and we give the mean ensemble classification accuracies for all datasets. On the

other hand supervised learning results without classifier ensembles, single classifiers,

are also given. These results are represented as "Allfeature" in the figures.
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Implementation details of classifiers used are as follows: PRTools [67] implementation

of KNN (k-nearest neighbor) and LDC(linear Bayes normal classifier) classifiers,

Weka J48 [68] implementation of decision tree classifier and Libsvm [69]

implementation of Support Vector Machines (SVM) are used as base classifier in the

algorithms. The KNN classifier implementation in PrTools uses the value of 3. The

LDC classifier [9] computes the linear classifier between the classes, assuming the

same class covariance matrix for all the classes. Unregularized class covariance matrix

is used in the experiments. The J48 decision tree implementation is used with the

default parameters. Linear kernel is used in SVM.

3.6.1 Real data results

Audio Genre Dataset:Mean ensemble and mean individual classification accuracies

for KNN classifier with respect toµ are given in Figure 3.1(a) and Figure 3.1(b),

respectively. Similarly, mean ensemble and mean individual classification accuracies

for LDC, decision tree and SVM classifiers are given in Figure 3.2, Figure 3.3 and

Figure 3.4 respectively.
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Figure 3.1: Mean ensemble and individual test accuracies on Audio Genre dataset
obtained by mRMR-RAS, Rel-RAS, RAS and singleclassifier with
respect toµ for K = 5, m= 25 and classifier = KNN.

When KNN, LDC and SVM classifiers are used, both proposed algorithms outperform

the RAS algorithm. When decision tree is used, RAS algorithm performs better than

Rel-RAS and mRMR-RAS. However mean ensemble classification accuracies with

decision tree are less than classification accuracies obtained with KNN, LDC and SVM

classifiers for differentµ. On the other hand except for SVM, single classifier does not

perform better than ensemble algorithms. However when small amount of training

samples are used single SVM performs slightly better than Rel-RAS and mRMR-RAS
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algorithms. But still proposed algorithms perform better than RAS whenµ = 0.1 and

SVM classifier is used as base classifier. Note that increaseµ increases the accuracies

of the proposed algorithms and whenµ > 0.3 and SVM classifier is used, proposed

algorithms outperforms the single SVM and RAS algorithm.
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Figure 3.2: Mean ensemble and individual test accuracies on Audio Genre dataset
obtained by mRMR-RAS, Rel-RAS, RAS and singleclassifier with
respect toµ for K = 5, m= 25 and classifier = LDC.
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Figure 3.3: Mean ensemble and individual test accuracies on Audio Genre dataset
obtained by mRMR-RAS, Rel-RAS, RAS and singleclassifier with
respect toµ for K = 5, m= 25 and classifier = J48.

Mean individual classification accuracies of the algorithms show that the proposed

algorithms create RM characteristic feature subspaces than RAS algorithm except for

decision tree whenµ < 0.3. RM characteristic feature subspace also translates into

better ensemble accuracy.

Experimental results show that increase in the number of training samples increases the

ensemble accuracy for all algorithms and the proposed algorithms outperform single

classifiers and RAS algorithm. In order to evaluate the performance of the algorithms

with small number of instances, classification accuracies are also obtained whenµ =
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Figure 3.4: Mean ensemble and individual test accuracies on Audio Genre dataset
obtained by mRMR-RAS, Rel-RAS, RAS and singleclassifier with
respect toµ for K = 5, m= 25 and classifier = SVM.

0.3 andK = 5, 25. Classification accuracies on Audio Genre dataset with respect

to different classifiers and different algorithms are given forµ = 0.3 andK = 5, 25 in

Figure 3.5. In the figures, the RR, mR, R and All represent the Rel-RAS, mRMR-RAS,

RAS and single classifier results respectively. In Figure 3.5, except for decision tree,

the proposed algorithms outperform the RAS algorithm and single classifier. The best

classification accuracy is obtained by Rel-RAS algorithm with SVM classifier.
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Figure 3.5: Mean ensemble test accuracies on Audio Genre dataset obtained by
Rel-RAS (RR), mRMR-RAS (mR), RAS (R) andsingle classifier using
All features (All) form= 25.

UCI Optdigits dataset: Mean ensemble test accuracies on Optdigits dataset obtained

by mRMR-RAS, Rel-RAS, RAS and All Features with respect to different classifiers

are given in Figure 3.6 forK=5 andK=25. WhenK=5 classifiers are used, the single

classifiers perform as good as ensemble learning algorithms. WhenK=25 classifiers

are used, the proposed algorithms perform better than RAS and single classifiers with

KNN, LDC and SVM classifiers. Whenµ = 0.3, the number of instances and attributes
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are 425 and 64 respectively. Depending on the classifier used, the number of training

instances in the dataset is enoughfor a single classifier to perform well.
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Figure 3.6: Mean ensemble test accuracies on Optdigits dataset obtained by Rel-RAS
(RR), mRMR-RAS (mR), RAS (R) and singleclassifier using All features
(All) for m= 25.

Classic-3 dataset: In Figure 3.7, the mean ensemble test accuracies on Classic-3

dataset obtained by mRMR-RAS, Rel-RAS, RAS and All Features with respect to

different classifiers are given forK=5 andK=25. The best classification accuracy is

obtained by mRMR-RAS algorithm with decision tree forK=25 classifiers. Due to

the sparsity of features in this dataset, any subspace of features may not perform well.

On the other hand,m is also another parameter that effects the performance of the

algorithms. The effect of them parameter on the datasets is given in the next section.

Note that the proposed algorithms perform better than the RAS and single classifier

when decision tree is used as a base classifier.
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Figure 3.7: Mean ensemble test accuracies on Classic-3 dataset obtained by Rel-RAS
(RR), mRMR-RAS (mR), RAS (R) and singleclassifier using All features
(All) for m= 25.
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UCI Isolated Letter Speech dataset:The mean ensemble test accuracies on Isolated

Letter Speech datasetobtained by mRMR-RAS, Rel-RAS, RAS and All Features

with respect to different classifiers are given in Figure 3.8. The proposed algorithms

outperform both RAS and single classifier when KNN, LDC and SVM classifiers are

used. When the decision tree is used, the RAS algorithm performs better than the

proposed algorithms. Additionally, the single LDC classifier performs less than 50

%. Note that whenµ = 0.3, the number of instances and attributes are 36 and 617

respectively. Therefore LDC classifier is effected by the small sample size problem.

When we increase the number of instances in the training set to 240, the mean test

classification accuracy of single LDC increases to 80 %.
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Figure 3.8: Mean ensemble test accuracies on Isolated Letter Speech dataset obtained
by Rel-RAS (RR), mRMR-RAS (mR), RAS (R)and single classifier using
All features (All) form= 25.

MFeat dataset: The mean ensemble test accuracies on MFeat dataset obtained by

mRMR-RAS, Rel-RAS, RAS and All Features with respect to different classifiers

are given in Figure 3.9. The best classification accuracy is obtained by single

SVM classifier. Additionally, mRMR-RAS algorithm with LDC classifier forK =

25 performs as good as single SVM classifier. Note that the proposed algorithms

outperform RAS algorithm. On the other hand single decision tree and LDC classifiers

do not perform well on MFeat dataset. Whenµ = 0.3, the number of instances and

attributes are 150 and 649 respectively. Therefore LDC classifier is affected by small

sample size problem.

The significance of the experiments is also evaluated with t-test. We have obtained

p values for 10-fold cross validation accuracies of RAS, Rel-RAS and mRMR-RAS

algorithms. The significance values, whenK = 25 subspaces are selected for the
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Figure 3.9: Mean ensemble test accuracies on Mfeat dataset obtained by Rel-RAS
(RR), mRMR-RAS (mR), RAS (R) and singleclassifier using All features
(All) for m= 25.

algorithms are given in Table 3.1 and Table 3.2. Details of the t-test can be found

in Appendix H.

Table 3.1: t-testp values of RAS and Rel-RAS algorithms for each dataset, K=25,µ
= 0.3 and m=25.

Classifier audio optdigits classic-3 isolet mfeat

KNN 0.15 0.00 0.00 0.01 0.15
LDC 0.85 0.01 0.32 0.18 0.31
J48 0.00 0.00 0.22 0.31 0.18

SVM 0.31 0.00 0.00 0.48 0.35

Table 3.2: t-testp values of RAS and mRMR-RAS algorithms for each dataset, K=25,
µ = 0.3 and m=25.

Classifier audio optdigits classic-3 isolet mfeat

KNN 0.15 0.00 0.00 0.05 0.03
LDC 0.15 0.02 0.34 1 0.00
J48 0.04 0.00 0.13 1 0.00

SVM 0.78 0.02 0.00 0.533 0.6

According to Table 3.1, except for the Audio genre dataset, with 90% probability,

generally Rel-RAS ensemble accuracy isbetter than that of RAS. In Table 3.2p values

for the 10-fold cross validation accuracies of RAS and mRMR-RAS algorithms are

given. Similarp values obtained between RAS and Rel-RAS algorithms are generally

valid between RAS and mRMR-RAS algorithms. Except for isolet dataset, with 90%

probability, generally mRMR-RAS ensemble accuracy is better than that of RAS.
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3.6.2 Robustness to redundant features

In these experiments we evaluate algorithms’robustness to redundant features. Real

datasets used in our experimental results are carefully obtained and they do not have

redundant features. Audio Genre dataset has the highest average feature relevance to

class labels in the experimental datasets. Therefore the feature space in this dataset is

appended with different powers of the original features in order to obtain redundancy.

Three datasets, App_1, App_2 and App_3, are generated with different powers of the

original features. Dataset App_1 represents the case where the orginal feature space[x]

is appended with 2nd and 3rd powers of the original features[x2x3]. The new feature

space in App_1 dataset contains 150 features. Similarly App_2 dataset represents the

case where the original feature space[x] is appended with 2nd, 3rd,..., 5th powers of

the original features[x2x3x4x5]. The total number of features in App_2 dataset is 300.

The last toy dataset App_3, where the original feature space[x] is appended with 2nd,

3rd,..., 8th powers of the original features[x2, ...,x7x8], has 450 features.
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Figure 3.10:a) Relevance, redundancy analysis and b) redundancy map of Audio
Genre dataset appended with redundant features.

In Figure3.10(a) the mean relevance and the mean redundancy values in the datasets

are given. We see that increase in the appended features decreases the mean

redundancy in the dataset. This is because of the increase of the number of features

and their possible pairwise combinations. Although the mean redundancy values in

the datasets decrease the mean relevance values in the datasets are also decreased.

Therefore datasets start to have less relevant features when we append different powers

of the features to the original feature space. Figure 3.10(b) reports the pairwise

redundancy between features of the App_2 dataset. The diagonal elements of the
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appended features have the highest mutual information. These results show that there is

a strong mutualinformation between each feature and features obtained by it’s powers.

In Figure 3.11(a) and Figure 3.11(b) the mean classification accuracies obtained using

SVM classifier on Audio Genre dataset appended with redundant features are given for

K = 5 andK = 25 classifiers, respectively. The proposed algorithms outperform both

RAS and single classifier. On the other hand, increase in the number of classifiers in

the ensemble increases the classification accuracy. Figure 3.11 shows that, even the

redundancy of the dataset is low (App_1 dataset), the proposed algorithms outperform

both RAS and single SVM classifier. Note that increase in the redundant features

decreases the single SVM’s and classification performance of the ensembles.
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Figure 3.11:Mean ensemble test accuracies on Audio Genre dataset appended with
redundant features obtained by Rel-RAS (RR), mRMR-RAS(mR), RAS
(R) and single classifier using All features (All) forµ = 0.3, m= 25 and
classifier = SVM.

3.6.3 Synthetic data results

The classification accuracies of the algorithms are also evaluated with a synthetic two

class dataset. The dataset is generated from Gaussian distributions with a covariance

matrix 10 at diagonal and mean−1 for one class and 1 for the other class. The

total number of features and instances are chosen to be 50 and 300 respectively. In

the experiments in order to obtain redundant features, the feature space is appended

with different powers of the original features. As in the previous experiments, App_1

represents the case where the original feature space[x] is appended with 2nd and 3rd

powers of the features[x2x3]. App_2 and App_3 datasets are obtained using the same

way used to obtain redundant features in Audio Genre dataset.
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Figure 3.12:a) Relevance, redundancy analysis and b) redundancy map of synthetic
dataset appended with redundant features.

The mean relevance and the mean redundancy values in the synthetic datasets are

given in Figure 3.12(a). As in the Audio Genre dataset appended with redundant

features results, in the synthetic dataset results we see that increase in the appended

features decreases the mean redundancy and the mean relevance in the dataset. In

Figure 3.12(b) the pairwise redundancy between features of the App_2 dataset is given.

The diagonal elements of the appended features have the highest mutual information.

These results show that there is a strong mutual information between different powers

of appended features.
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Figure 3.13:Mean ensemble test accuracies on synthetic dataset appended with
redundant features obtained by Rel-RAS (RR), mRMR-RAS(mR), RAS
(R) and single classifier using All features (All) forµ = 0.3, m= 25 and
classifier = SVM.

In Figure 3.13(a) and Figure 3.13(b) mean classification accuracies obtained using

SVM classifier on synthetic dataset appended with redundant features are given for

K = 5 andK = 25 classifiers, respectively. From the figures it can be seen that increase

in the number of classifiers in the ensemble increases the classification accuracy.
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Single SVM classifier performs better than the ensemble algorithms when there is no

redundancy in the features.WhenK = 25 classifiers are used the proposed algorithms

outperform both RAS and single SVM classifier even the redundancy is low (App_1

dataset). The features in the synthetic dataset are uncorrelated and single SVM

performs better than ensemble algorithms whenK = 5 are selected.

3.6.4 Classifier diversity and information theoretic analysis of the algorithms in

           supervised learning

Classifier diversity is suspected to affect the ensemble accuracy and there have been

efforts to explain the relationship between classifier diversity and ensemble accuracy

[2]. In our experiments, classifier diversities are measured on the test dataset using the

Kohavi Wolpert variance diversity measure [2] given in Equation5. KW-variance and

most of the diversity measures only consider the outputs of the classifiers and there are

some doubts about using these diversity measures. In order to analyze the classification

performance, two mutual information based accuracy and diversity analysis are given

in Section 2.3. The first one is Brown’s [25] information theory based low order

diversity and the second one is Meynet’s ITS [26]. In our experiments in addition to

KW-variance we first used the Brown’s low order diversity and examined the ensemble

mutual information using Equation13. Next we also analyzed the ensemble accuracies

with ITS. Except for the Classic-3 dataset we found that there is a direct relationship

between the ITS given in Equation14 and classification accuracy. However as stated

in [26] the model choice for ITS can be changed. Therefore to capture the relationship

between ensemble diversity and accuracy in all datasets, without changing the order,

Equation14 is modified as follows:

ITS= (A+ ITA)3(B+ ITD) (3.10)

Where A and B are the constant terms forITA and ITD respectively. We

experimentally foundA andB, 0.12 and 0.08, respectively.

In Figure 3.14 KW-variance, low order diversity and ITS analysis of Audio Genre

dataset with KNN, LDC, decision tree and SVM classifiers are given. We see that

KW-variance and LOD have the same tendency and the proposed algorithms are less

diverse than RAS algorithm. On the other hand, the best classification accuracy is
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Figure 3.14:Classification accuracy versus diversity on Audio Genre dataset obtained
by mRMR-RAS, Rel-RAS and RAS forµ = 0.3, K = 5,25 andm= 25
a)KW-variance b) LOD c) ITS.

obtained with Rel-RAS using SVM classifier and it has the highest ITS. Similarly,

KW-variance, low order diversity and ITS analysis of Optdigits, Classic-3, Isolated

and MFeat datasets with KNN, LDC, decision tree and SVM classifiers are given in

Figure 3.15, Figure 3.16, Figure 3.17 and Figure 3.18, respectively.

We found out that the KW-variance classifier diversity with Rel-RAS and mRMR-RAS

algorithms are slightly less than the classifier diversity with RAS. Also a direct

relationship between increase in the ensemble accuracies and ensemble mutual

information could not found with low order diversity measure. But it can be seen

that KW-variance and mutual information based low order diversity measure have

the same tendency for all datasets. These results show that, classifiers combined in

Rel-RAS and mRMR-RAS algorithms more agree on class labels of test data than RAS

algorithm. Even though the KW-variance diversity of RAS is better than Rel-RAS and

mRMR-RAS, generally ensemble accuracy of Rel-RAS and mRMR-RAS are better,

which may be due to the fact that the individual classifier accuracies are better (RM

Characteristic). Besides in order to express the relationship between classification

accuracy and low order diversity, 3-way and more diversity should be used.
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Figure 3.15:Classification accuracy versus diversity on Optdigits dataset obtained by
mRMR-RAS, Rel-RAS and RAS forµ = 0.3, K = 5,25 andm= 25
a)KW-variance b) LOD c) ITS.
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Figure 3.16:Classification accuracy versus diversity on Classic-3 dataset obtained by
mRMR-RAS, Rel-RAS and RAS forµ = 0.3, K = 5,25 andm= 25
a)KW-variance b) LOD c) ITS.
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Figure 3.17:Classification accuracy versus diversity on Isolated dataset obtained by
mRMR-RAS, Rel-RAS and RAS forµ = 0.3, K = 5,25 andm= 25
a)KW-variance b) LOD c) ITS.
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Figure 3.18:Classification accuracy versus diversity on Mfeat dataset obtained by
mRMR-RAS, Rel-RAS and RAS forµ = 0.3, K = 5,25 andm= 25
a)KW-variance b) LOD c) ITS.
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3.7 Discussion

In this chapter, the Rel-RAS and mRMR-RASalgorithms which use more informative

feature subspaces for classifier ensembles are introduced. The classification accuracies

of RAS, Rel-RAS, mRMR-RAS and single classifiers are compared on 5 real datasets:

Audio Genre, Optdigits, Classic-3, Isolated letter speech, Mfeat and one synthetic

dataset. Besides feature space of the Audio Genre dataset is increased with different

powers of the original features in order to obtain redundant features and classification

accuracies of the algorithms are also evaluated using these features. In the experiments

KNN, LDC, decision tree and SVM are used as base classifier.

Experimental results on real datasets show that the proposed algorithms generally

outperform both RAS and single classifier when KNN and LDC classifiers are

used. Except for the Classic-3 dataset ensemble algorithms give good classification

accuracies when KNN classifier is used. KNN classifier uses the Euclidian distance to

find the nearest neighbours. The computed distances are affected from the sparsity

of the Classic-3 dataset. Therefore on Classic-3 dataset, KNN classifier is less

accurate than the other classifiers. Additionally, single LDC classifier only performs

well on Optdigits dataset. In the experiments each dataset use different number

of training samples and features: Audio Genre dataset has 45 instances and 50

attributes, Optdigits dataset has 435 instances and 64 attributes, Classic-3 dataset has

228 instances and 273 attributes, Isolet dataset has 38 instances and 617 attributes

and Mfeat dataset has 160 instances and 649 attributes. We see that except for

Optdigits dataset, the number of training instances is less than the number of attributes

in the training samples. Therefore single LDC classifiers are affected from small

sample size problem on real datasets. On the other hand, when decision tree is used

the proposed algorithms perform better than RAS and single classifier on Classic-3

and Mfeat datasets. Generally decision tree classifier performs worse than the other

classifiers except for the sparse Classic-3 dataset. One possible reason of these results

is that decision tree uses attributes to distinguish the instances. However the other

algorithms use the instances to determine the classification boundaries. The pruning

in the decision tree can potentially collapse the leaves that belong to minority classes.

Therefore the classification performance may degrade depending to the confidence

factor of the pruning. However in the experimental results we didn’t change the
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pruning parameter and we used J.48 with it’s default pruning parameter. When SVM

classifier is used, the proposed algorithmsperform better than RAS and single SVM

on Audio Genre, Optdigits and Isolated letter speech dataset. On the other datasets

single SVM performs better than ensemble learning algorithms. Previously Sun and

Zhang in [70] showed that single SVM classifier performed better than RAS in 3 of the

different 6 datasets. Also they found that single classifier performed worse than RAS

algorithm on all datasets when 1-NN and decision trees are used. Similarly in [71],

single SVM performed better than RAS algorithm for EEG signal classification in

5 of the 9 datasets. When synthetic and Audio Genre dataset’s feature spaces are

increased with different powers of the original features we found that the proposed

algorithms outperform both single SVM and RAS algorithm. Bertoni et. al. [64]

found that different number ofm may lead to different results and for low dimension

of feature space ensemble may perform less than single SVM. We also analyzed

the ensemble algorithms on Classic-3 dataset where single SVM outperforms the

Rel-RAS, mRMR-RAS and RAS algorithms. The classification accuracies of the

Rel-RAS, mRMR-RAS, RAS and single SVM classifier versusm are given in Figure

3.19. As stated in [64], we also show that increase in the number of selected features,

m, also increases the classification accuracy. The proposed algorithms outperform both

RAS and single SVM whenm> 50 on classic-3 dataset.
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Figure 3.19:Classification accuracy versusm on Classic-3 dataset obtained by
Rel-RAS (RR), mRMR-RAS (mR), RAS (R) andsingle classifier using
All features (All) for µ = 0.3, K = 25 and Classifier = SVM.

Note that in the ensemble algorithmsmneeds to be chosen so that individual classifiers

have accuracies of more than 50 % For a certain value ofm, (where average classifier
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accuracy is more than 50 %) asK increases up to a certain value ofK, sayK∗, the

ensemble accuracy increases. It stabilizes for values ofK larger thanK∗.

In the experiments KW-variance, low order diversity and ITS of the algorithms against

classification accuracies are also analyzed. From the experiments we found that

KW-variance and low order diversity have the same tendency. Classifiers combined

in the proposed algorithms more agree on class labels of test data than RAS algorithm.

Then the Rel-RAS and mRMR-RAS algorithms are less diverse than RAS algorithms

in terms of KW-variance and low order diversity. On the other hand, ITS is also found

to be useful to explain the classification performance of the ensemble algorithms and

the proposed methods are generally shown to have higher ITS than RAS.
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4. SEMI-SUPERVISED LEARNING USING INFORMATIVE FEATURE
    SUBSPACES

Unlabeled data have become abundant inmany different fields ranging from

bioinformatics to web mining, where obtaining the inputs for data points is cheap;

however, labeling them is time, money and effort consuming. For example, in speech

recognition, recording huge amount of audio does not cost a lot. However, labeling

it requires someone to listen and type. Similarly, billions of web pages can be

obtained from web servers. However, classifying these web pages into classes is a

time consuming and difficult task. Similar situations are valid for remote sensing,

face recognition, medical imaging, content based image retrieval [72] and intrusion

detection in computer networks [13].

With the availability of unlabeled data and difficulty of obtaining labels,

semi-supervised learning methods have gained great importance. On the other hand,

in some applications data samples obtained from various sources may be represented

in different multiple ways (or views), for example, web pages can be represented

using both text information from the web page and text information from the other

linked web pages [15]. Generally, when multiple feature views are available, they

are concatenated to form the whole feature space. However, this may sometimes

be problematic, because the concatenated features may lack physical meaning or

may have redundancies [16]. These different views can also be used for training

multiple classifiers. Co-training algorithm [15] is an iterative algorithm, proposed to

train classifiers on different feature splits and it aims to achieve better classification

error by producing classifiers that compensate for each others’ classification error.

Under certain assumptions, starting with a weak classifier, Co-training algorithm can

learn from unlabeled data. The first assumption,compatibility, means that the target

function over each feature set predicts the same label. The second assumption is, given

the class of the instance, the feature sets areconditionally independent[15]. It is,
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however, difficult for real datasets to satisfy compatibility and especially conditional

independence.

Recently, a multi-viewCo-training algorithm, RASCO (Random Subspace Method for

Co-training) [23], which obtains different feature splits using random subspace method

was proposed and shown to result in smaller errors than the traditional Co-training

and Tri-training [22] algorithm. RASCO uses random feature splits in order to train

different classifiers. The unlabeled data samples are labeled and added to the training

set based on the combination of decisions of the classifiers trained on different feature

splits. However, if there are many irrelevant features, RASCO may often end up

choosing subspaces of features not suitable for good classification.

Instead of totally random feature subspaces, we propose to use Rel-RAS (Relevant

Random Subspaces) and mRMR-RAS (minimum Redundancy and Maximum

Relevance Random Subspaces) algorithms for Co-training. These algorithms will

be detailed in this section. The first proposed algorithm, Rel-RASCO (Relevant

Random Subspaces for Co-training) [73, 74], produces relevant random subspaces

using relevance scores of features which are obtained using the mutual information

between features and class labels. In order to also maintain randomness, each

feature for a subspace is selected based on probabilities proportional to relevance

scores of features. The second algorithm, mRMR-RASCO (minimum Redundancy

and Maximum Relevance Random Subspaces for Co-training) [73], aims to produce

random feature subsets that are relevant and non-redundant as possible. In our

applications we modified the mRMR feature selection algorithm to produce relevant

and non-redundant subspaces. Experimental results on five real and one synthetic

datasets show that the proposed algorithms outperform RASCO and traditional

Co-training. The work presented in [75] is related to our work in terms of using

relevant feature subspaces instead of random ones. However, they use a genetic

algorithm to obtain the relevant feature subspaces and do not consider unlabeled data.

The rest of the section is organized as follows. In Section 4.1 literature summary on

Co-training style algorithms are given. In Section 4.2 and Section 4.3 Co-training

algorithm and RASCO algorithms are given, respectively. Section 4.4 and Section

4.5 provide the details of the proposed algorithms, Rel-RASCO and mRMR-RASCO,

48



respectively. In section 4.6 the experimental results obtained on different datasets are

provided. Section4.7 concludes the chapter.

4.1 Related Work

Semi-supervised learning methods use unlabeled data in addition to the labeled data

for better classification [10,12]. According to the feature spaces used, semi-supervised

learning (SSL) algorithms can be divided into single-view and multi-view algorithms.

One of the most successful single view learning algorithms is the Expectation

Maximization algorithm which estimates the parameters of a generative model [76].

On the other hand, Self-Training algorithm trains classifier on a single view and it

adds unlabeled data incrementally into the labeled dataset [77]. Single-view SSL

approaches use either multiple same or multiple different classification algorithms.

Statistical Co-learning [78] and Democratic Co-learning [72] are examples of

SSL algorithms which train different classification schemes on single-view and do

ensemble. On the other hand Tri-training algorithm [22] and Co-training by Committee

[79] are single-view SSL that use multiple same classification schemes. Co-training

is one of the most well-known multi-view SSL algorithms [15]. Some of the other

multi-view SSL algorithms are Co-EM [77] and RASCO [23].

Co-training algorithm has been shown to be successful [15]. However compatibility

and independence are strong assumptions of Co-training and many real datasets can

not satisfy these assumptions. Therefore, many extensions of Co-training have been

proposed in the literature to remedy this problem. In [77], Co-EM algorithm, which

incorporates Expectation Maximization into Co-training, was introduced. Instead of

assigning each unlabeled data point to a class, Co-EM assigns them to each class with

a probability. At each iteration one classifier assigns weighted class values to be used

by the other classifier in the next iteration. Co-EM was shown to be less sensitive to

independence of classifiers and performed slightly better than Co-training on a text

classification problem.

Yan and Naphade proposed semi-supervised cross feature learning to tackle with the

strong assumptions of Co-training [80]. They initially train two classifiers two label

unlabeled data. Then another two classifiers are trained on the new labeled dataset for
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weighted combination. They also extended their work to multiple views. However the

classifiersfor ensemble is duplicated with the number of views.

Recently Zhou and Li proposed an ensemble method, Co-Forest, that uses random

forests in Co-training paradigm [81]. Co-Forest uses bootstrap sample data from

training set and trains random trees. At each iteration each random tree is reconstructed

by newly selected examples for its concomitant ensemble. Similarly, in [82] a

Co-training algorithm is evaluated by multiple classifiers on bootstrapped training

examples. Each classifier is trained on the whole feature space and unlabeled data are

exploited using multiple classifier systems. Another similar application, Co-training

by Committee, is given by Hady and Schwenker in [79]. Co-training by Committee is

evaluated using three successful ensemble learning algorithms: Bagging, Adaboost

and random subspace method. The committee, i.e. the classifier ensemble, is

constructed by using one of these three algorithms and is named as CoBag (Co-training

with Bagging), CoAdaBoost (Co-training with AdaBoost) and CoRSM (Co-training

with Random Subspace Method). CoBag and CoAdaBoost algorithms work on single

feature view and construct the different classifiers by bootstrapping on the training

dataset. J48 decision tree was used as the base classifier and CoAdaBoost was

generally shown to perform better than CoBag and CoRSM. Experimental results were

obtained on different UCI datasets [83] which at most have 60 features.

It should be noted that extensions of Co-training that require bootstrapping may need

a lot of labeled samples in order to be successful. For high dimensional datasets, the

classifiers trained on small bootstrapped data samples using single feature view may

face the "large p, small n problem" [84] (p is the dimensionality and n is the number

of data points).

In [78] supervised learning is enhanced with unlabeled data without assuming two

compatible and independent feature views. The only requirement for the proposed

Co-training algorithm in [78] is that, each hypothesis partitions the input space into a

set of classes with equal sizes. Instead of two different feature views, two different

supervised algorithms, ID3 and HOODG, are used on the labeled dataset. During

the iterations, each classifier labels the unlabeled data points to be used as a labeled

example in the next iteration for the other classifier. When a classifier labels an
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example, the algorithm uses a statistical test which may require enough amounts of

labeled samples.

Democratic Co-learning [72], extends the work of [78] and instead of multiple views, it

uses multiple classifiers. As different learning algorithms have different inductive bias,

Democratic Co-learning does not need two independent and redundant feature sets.

Statistical confidence interval and majority voting is used to decide on the unlabeled

data points that are to be added to the labeled dataset. In [22] Zhou and Li proposed

Tri-training algorithm where three classifiers are used for Co-training without requiring

sufficient and redundant features. The algorithm trains classifiers on bootstrapped data

samples and does not require any feature splits.

Random subspace methods [17] are one of the successful methods used for producing

an ensemble of classifiers. RASCO algorithm combines the ideas of Co-training and

random subspace methods. Instead of using two feature subspaces, it generates a

number of subspaces. The labeled dataset is projected onto those random subspaces

and a classifier is trained using each feature projection. The intuition behind this is

that each classifier can complement another one. RASCO has been shown to perform

better than Co-training and Tri-training methods on three different datasets in [23]. The

datasets used in [23] have at most 34 features. Another similar approach to RASCO,

that uses support vector machines, was proposed to be used for content based image

retrieval [85]. Later the work in [85] was extended by using bagging and random

subspace method in the same framework in [86].

In many high dimensional datasets, features could be correlated or there may be

irrelevant features. When there are a lot of correlated or irrelevant features RASCO

may select these features and performance of each individual classifier may decrease.

This drawback can be avoided by selecting features which are more relevant, which

implies that a more intelligent selection algorithm than random selection could be used.

In the next subsections we give the details of the Rel-RASCO and mRMR-RASCO

algorithms that use more intelligent feature subset selection algorithms for Co-training.

In the context of multi-view Co-training, feature selection was also used to reduce the

input space dimensionality and make computation faster. In [87], an algorithm that

maximizes the independence between two feature sets was used in Co-training with
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Radial Basis Function neural networks. Similarly, correlation based feature selection

was used in [88].Also in [89], a wrapper approach with forward feature selection in

Co-training for predicting emotions with spoken dialogue data was used and it was

shown that if a good set of features are selected, Co-training can be highly effective.

4.2 Co-Training

The Co-training algorithm works on two feature subsets which are referred as views

and it is assumed that two different views are available [15]. The overall feature setF

is the concatenation of different views (In Co-training there are two feature subsetsS1

andS2).

We assume that we are given a classification problem withc classes.Li (i = 1,2, ...,n)

be thed dimensionalith labeled training sample,Li = (xi1,xi2, ...,xid), in the labeled

training datasetL, L = (L1,L2, ...,Ln) with n samples. There is also an unlabeled

datasetU , U = (Un+1,Un+2, ...,Un+r) which consists of inputs only whereU j =

(x j1,x j2, ...,x jd) and( j = n+1,n+2, ...,n+ r).

The Co-training algorithm starts with a set of labeled dataL and unlabeled dataU .

It creates a pool of examplesU ′ by choosing u examples randomly fromU . The

algorithm iterates a specified number of times and does the following: By usingL it

trains classifiersC1 andC2 that use only theS1 andS2 portion of the feature space

respectively.C1 andC2 label examples fromU ′ and select the most surely classified

single example from each class. (In [15] the number of added examples for each class

depends on the class sizes. We assume that class sizes are similar and a single example

for each class is added.) Each classifier adds self-labeled examples toL. Then the

algorithm randomly chooses examples fromU to replenishU ′. Two classifiers,C1

andC2, predict class labels for data samples. At each iteration, the samples fromU ′

for which a classifier is sure about that sample above a threshold are selected. This

process is continued until the number of data samples inU ′ are less than a number of

data samples threshold. Afterwards the predictions are combined. Most of the previous

studies combined the predictions by multiplying their class probability scores together

and then renormalizing them. Previously, we proposed to use and adaptive Bayesian

classifier combination for Co-training [24] and it performed slightly better than the

product combination.
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The pseudo code of the Co-training algorithm is given in Algorithm 6.

Algorithm 6 Co-training Algorithm

U ′ = Select u random examples fromU
for i = 1 to I do

for j = 1 to2 do
ProjectL to L̂ j usingSj

Train classifierCj usingL̂ j

ClassifyU ′ by Cj

Select the most surely classified example onU ′

Remove this example fromU ′ and add toL
end for

end for
CombineC1 andC2

4.3 Random Subspaces for Co-training (RASCO)

Random subspace method for Co-training is an iterative semi-supervised classification

scheme that uses ensembles of classifiers constructed on randomly generated feature

subspaces. It was proposed by Wang et al in [23] and was also used by Hady et al

[79] and compared with CoBag, CoAdaBoost algorithms that use bootstrapped data.

The RASCO algorithm is inspired from the random subspaces given by Ho [17], in

which decision trees are constructed on the feature subsets selected randomly. RASCO

algorithm uses the RAS algorithm in semi-supervised learning framework.

Let d be the dimension of original feature space andmbe the dimension of each feature

subset. The algorithm selectsK random subspaces each withm features. A classifier

Ck is trained on the labeled training setL̂k obtained from random selected subsetSk.

Then unlabeled datasetU is labeled by majority voting of the classifiers. For each

class one most surely classified example from unlabeled data is added to theL. The

algorithm terminates after a number of iterations. The pseudo-code of the RASCO

algorithm is given in algorithm 7.

As stated previously in RAS algorithm, if there are many irrelevant or correlated

features in the dataset RASCO also may select these features and performance of each

individual classifier may decrease. For supervised case we proposed to use Rel-RAS

and mRMR-RAS algorithms to remedy this problem. Similarly for semi-supervised
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Algorithm 7 RASCO Algorithm

for k = 1 to K do
Sk← Rand(m) //Select random subspacesS1...Sk

ProjectL to L̂k usingSk

Train classifierCk usingL̂k

end for
//Combine classifiers:
//DefineCk asdk, j ∈ {0,1}
for i = 1 to I do

//Combine classifiers by majority voting:
CE = MajorityVote(C1,...,CK):
Label examples onU by usingCE

Select one most surely classified example from U for each class, add them toL.
end for

case we propose the Rel-RASCO and mRMR-RASCO algorithms to remedy this

problem.

4.4 Relevant Random Subspace Method forCo-training (Rel-RASCO)

Rel-RASCO algorithm uses the same subspace selection method with Rel-RAS

algorithm [74] given in Section 3.3. When producing each feature subspace,

Rel-RASCO selects each feature based on its relevance score which is obtained using

mutual information between the feature and the class labels.

We createK subspacesS1, . . . ,SK, each containingm> 0 features using the relevance

values between features and class labels. Similar to RASCO, in Rel-RASCO also, a

classifier is trained on each one of the feature subspacesS1, ...,SK and the final classifier

is obtained by majority voting. At each iteration of Co-training, one most surely

classified example fromU for each class is added toL. The Rel-RASCO algorithm

is given in Algorithm 8.

4.5 Minimum Redundancy and Maximum Relevance Random Subspace Method

       for Co-training (mRMR-RASCO)

Rel-RASCO algorithm selects feature subsets using the relevance scores obtained

between features and class labels. The redundancy of the features in each feature subset

is not concerned. In supervised learning scenario this problem is considered with

mRMR-RAS algorithm. In semi-supervised case we also propose mRMR-RASCO
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Algorithm 8 Rel-RASCO Algorithm

Discretize(L)
Rel = Relevance(L,l) //Mutual Information betweenfeatures and labelsl
//Select random subspacesS1...Sk

for k = 1 to K do
Sk← Tournament(Rel,m)
ProjectL to L̂k usingSk

Train classifierCk usingL̂k

end for
//Combine classifiers:
//DefineCk asdk, j ∈ {0,1}
for i = 1 to I do

//Combine classifiers by majority voting:
CE = MajorityVote(C1,...,CK):
Label examples onU by usingCE

Select one most surely classified example from U for each class, add them toL.
end for

(minimum Redundancy and Maximum Relevance Random Subspace Method for

Co-training) algorithm considers both the relevance and redundancy in each feature

subset. mRMR-RASCO algorithm uses the same method with mRMR-RAS algorithm

for subset generation.

mRMR-RAS uses,W, redundancy between features in a subset and,V, relevance

between features and class labels. In mRMR-RASCO, the first feature is selected

using the Relevance,V, as a probability distribution. Then redundancy scores,W,

are calculated andV −W are used as the probability of selecting the next feature.

Detailed description of the subspace selection in mRMR-RAS is given in Section

3.4. By adding randomness we are able to create diverse, relevant and non-redundant

feature subsets, therefore Co-training has diverse enough and accurate classifiers.K

subspacesS1, . . . ,SK, each containingm> 0 features are generated using the relevance

and redundancy sores. Similar to RASCO and Rel-RASCO, in mRMR-RASCO also,

a classifier is trained on each one of the feature subspacesS1, ...,SK and the final

classifier is obtained by majority voting. At each iteration of Co-training, one most

surely classified example fromU for each class is added toL. Pseudo code of the

proposed algorithm is given in Algorithm 9.
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Algorithm 9 mRMR-RASCO Algorithm

Discretize(L)
V = Relevance(L,l) //Mutual Information betweenfeatures and labelsl
W = Redundancy(L) // Mutual Information between features
//Select random subspacesS1...Sk

for k = 1 to K do
for i = 1 to mdo

if i = =1 then
Sk(i) ← Tournament(V,1)

else
Sk(i) ← Tournament(V−W,1)

end if
end for
ProjectL to L̂k usingSk

Train classifierCk usingL̂k

end for
//Combine classifiers:
//DefineCk asdk, j ∈ {0,1}
for i = 1 to I do

//Combine classifiers by majority voting:
CE = MajorityVote(C1,...,CK):
Label examples onU by usingCE

Select one most surely classified example from U for each class, add them toL.
end for

4.6 Experimental Results

In this section, we present the experimentalresults comparing performances of

Rel-RASCO, mRMR-RASCO, RASCO and Co-training. First, results on 5 different

real datasets: Audio Genre, Optdigits, Classic-3, Isolated Letter Speech (Isolet) and

MFeat are presented. Then results on Audio Genre and synthetic datasets appended

with different redundant features are given. Detailed descriptions about the datasets are

given in Appendix C. Besides classifier diversity and information theoretic analysis of

the algorithms are also presented.

4.6.1 Real data results

Experimental results are obtained on 5 different datasets: ’Optdigits’ (Optical

Recognition of Handwritten Digits), ’MFeat’ (Multiple Features) and ’Isolet’ (Isolated

Letter Speech) datasets from the UCI machine learning repository [83], ’Classic-3’ text
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dataset from [90] and the ’Audio Genre’ dataset of [91]. Table C.1 shows the number

of features, instances andclasses of the features for all 5 datasets.

For each dataset, experimental results for Rel-RASCO, mRMR-RASCO and RASCO

are obtained on 10 different random runs. At each random run, the whole dataset is

splitted equally into a training partition and a test partition. Training set is further

splitted into unlabeled training set andµ portion of the rest of the training data is used

as the labeled training set.

In supervised learning experiments, we see that increase the number of training dataset

(µ parameter) also increases the classification accuracy. In semi-supervised learning

experiments we also did the same experiments by increasing the number of training

samples in the dataset. Experiments are reported for different number of subspaces,K

= 5, 25.

In the figures RelRASCO-B, RASCO-B, mRMR-RASCO-B and RelRASCO-E,

RASCO-E, mRMR-RASCO-E represent the Rel-RASCO, RASCO and

mRMR-RASCO results at the beginning and end of Co-training respectively.

First we report the averages of the ensemble accuracies and averages of the individual

classifier accuracies of Audio Genre dataset with respect toµ. Standard errors of the

results depend to the base classifier used. However they are generally around 2%

and in order to keep the figures readable standard error bars are not given. On the

other hand, unlabeled data degrade the classification accuracies of self-training when

µ = 0.3. Therefore they are not given in the figures. Co-training results are less than

RASCO and the other algorithms therefore we don’t give them in the figures.

Audio Genre Dataset: The 5 least confused genres of Tzanetakis dataset [91],

Classical, Hiphop, Jazz, Pop and Reggae, each with 100 samples, are used. Two

different sets of audio features are computed. First, timbral, rhytmic content and pitch

content features yielding 30 features are extracted using the Marsyas Toolbox [91].

Next, 20 features covering temporal and spectral properties are extracted using the

Databionic Music Miner framework [92].

Mean ensemble classification accuracies and mean individual classification accuracies

at the beginning and end of Co-training with respect to different values ofµ for KNN

classifier are given in Figure 4.1(a) and Figure 4.1(b) respectively. In the figures, RR-B
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and RR-E represent the classification accuracy of Rel-RASCO at the beginning and

Rel-RASCO at the end of Co-training, respectively. Similarly mR-B, mR-E, R-B and

R-E represent the classification accuracies of the mRMR-RASCO (mR) and RASCO

(R) at the beginning (B) and at the end (E) of the Co-training. ALL represents the single

classifier performance on supervised learning. We see that the proposed algorithms

outperform both RASCO and single classifier. Increase in theµ also increases the

classification accuracies of the algorithms. Note that, ensemble algorithms benefit

from unlabeled data and they perform better than the individual classifiers.
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Figure 4.1: Mean ensemble and individual test accuracies on Audio Genre dataset
obtained by mRMR-RASCO, Rel-RASCO and RASCOwith respect to
µ for m= 25, classifier = KNN.

In Figure 4.2(a) and Figure 4.2(b) mean ensemble and mean individual classification

performances on Audio Genre dataset with LDC classifier are given, respectively. At

the beginning of the Co-training the proposed algorithms perform better than RASCO.

On the other hand at the end of Co-training the proposed algorithms perform slightly

better than RASCO. Note that, Figure 4.2(b) shows that the proposed algorithms are

more RM characteristic than RASCO.

In Figure 4.3(a) and Figure 4.4(a) mean ensemble classification accuracies with

decision tree and SVM classifiers are given. RASCO performs better than the proposed

algorithms when decision tree is used. The proposed algorithms select more relevant

features than random selection. Therefore similar features may be used during tree

production and proposed methods may perform less than the RASCO. However when

SVM classifier is used, the Rel-RASCO and mRMR-RASCO perform better than

RASCO and single classifier.
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Figure 4.2: Mean ensemble and individual test accuracies on Audio Genre dataset
obtained by mRMR-RASCO, Rel-RASCO and RASCOwith respect to
mu for m= 25, classifier = LDC.
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Figure 4.3: Mean ensemble and individual test accuracies on Audio Genre dataset
obtained by mRMR-RASCO, Rel-RASCO and RASCOwith respect to
mu for m= 25, classifier = J48.
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Figure 4.4: Mean ensemble and individual test accuracies on Audio Genre dataset
obtained by mRMR-RASCO, Rel-RASCO and RASCOwith respect to
mu for m= 25, classifier = SVM.

Supervised learning experimental results showed that increase in the number of

training samples increases the ensemble accuracy for all algorithms and the proposed

algorithms outperform single classifiers and RAS algorithm. Similar results are

also obtained on semi-supervised learning case. The classification accuracies of
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the algorithms are evaluated with small number of instances and small number of

classifiers with fixingµ = 0.3 andK = 5, 25.

In Figure 4.5 mean ensemble classification accuracies of Audio Genre dataset at the

beginning and at the end of the Co-training with different classifiers are given forK=

5 and 25, respectively. We see that Rel-RASCO and mRMR-RASCO perform better

than RASCO at the beginning and at the end of Co-training. On the other hand when

KNN, LDC and SVM classifiers are used the algorithms benefit from unlabeled data.
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Figure 4.5: Mean ensemble test accuracies on Audio Genre dataset, at the beginning
(-B) and end (-E) of Co-training,obtained by Rel-RASCO (RR),
mRMR-RASCO (mR), RASCO (R) and single classifier using all features
(All) for m= 25.

UCI Optdigits dataset: The mean ensemble classification accuracies of Optdigists

dataset with different classifiers are given forK=5 and 25 classifiers in Figure 4.6. We

see that the proposed algorithms benefit from unlabeled data when KNN classifier is

used. Semi-supervised ensemble learning algorithms do not benefit from unlabeled

data when the LDC and decision tree classifiers are used as base classifier. On the

other hand ensemble algorithms benefit from unlabeled data when SVM classifier is

used as base classifier forK=5.

Classic-3 dataset: Term Frequencies of words are used as features and they

are obtained using Term-to-Matrix generator (TMG) Matlab Toolbox [93]. Mean

ensemble classification accuracies of Classic-3 dataset for different classifiers are given

in Figure 4.7. We see that single SVM and single decision tree performs better than

the ensemble methods whenK = 5. When decision tree is used as base classifier forK

= 25 the proposed algorithms perform better than RASCO and single classifier.
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Figure 4.6: Mean ensemble test accuracies on Optdigits dataset, at the beginning
(-B) and end (-E) of Co-training,obtained by Rel-RASCO (RR),
mRMR-RASCO (mR), RASCO (R) and single classifier using all features
(All) for m= 25.

UCI Isolated Letter Speech dataset:A high dimensional dataset with 617 features

and 480 instances from B and C letters are used in this experiment. In Figure 4.8 the

mean ensemble classification accuracies of Isolet dataset with different classifiers are

given forK= 5 and 25. When KNN and LDC are used the algorithms may benefit from

unlabeled data. On the other hand the proposed algorithms generally perform better

than the RASCO and single classifier.
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Figure 4.7: Mean ensemble test accuracies on Classic-3 dataset, at the beginning
(-B) and end (-E) of Co-training,obtained by Rel-RASCO (RR),
mRMR-RASCO (mR), RASCO (R) and single classifier using all features
(All) for m= 25.

MFeat dataset:Mfeat dataset is also a high dimensional dataset with 649 features. In

Figure 4.9 the mean ensemble classification accuracies of Mfeat dataset with different

classifiers are given forK= 5 and 25. We see that algorithms benefit from unlabeled

data and the best classification accuracy at the end of the Co-training is obtained with

Rel-RASCO algorithm using SVM classifier.
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Figure 4.8: Mean ensemble test accuracies on Isolated Letter Speech dataset, at the
beginning (-B) and end (-E)of Co-training, obtained by Rel-RASCO
(RR), mRMR-RASCO (mR), RASCO (R) and single classifier using all
features (All) form= 25.

We also obtained thep values using t-test for the 10-fold cross validation accuracies

of RASCO, Rel-RASCO and mRMR-RASCO algorithms at the beginning and end

of Co-training whenK = 25 subsets are used (Table 4.1). Details of the t-test are

given in Appendix H. According to Table 4.1, when KNN classifier is used with 90%

probability, at the end of Co-training Rel-RASCO ensemble accuracy is better than

that of RASCO. We think that the performance increase obtained by Rel-RASCO is

related to a number of factors, including the number of features in the dataset, their

average relevance, the number of samples available and also the size and number of

feature subspaces used.
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Figure 4.9: Mean ensemble test accuracies on Mfeat dataset, at the beginning (-B) and
end (-E) of Co-training, obtained byRel-RASCO (RR), mRMR-RASCO
(mR), RASCO (R) and single classifier using all features (All) form= 25.

When there are many features as in Mfeat and Isolet or the features are not so

relevant as in Classic-3 and Optdigits, Rel-RASCO has advantage over RASCO.

Rel-RASCO’s performance is significantly better than RASCO’s performance at the
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end of Co-training with SVM classifier except for Isolet dataset. However LDC and

decision tree resultsare not as significant as SVM results at the end of Co-training.

Table 4.1: t-testp values of RASCO and Rel-RASCO at the beginning and at the end
of the algorithms for each dataset, K=25, m=25.

Classifier audio optdigits classic-3 Isolet mfeat

KNN (Beg) 0.15 0.00 0.00 0.01 0.15
KNN (End) 0.06 0.00 0.00 0.02 0.05
LDC (Beg) 0.85 0.01 0.32 0.18 0.31
LDC (End) 0.31 0.00 0.59 0.77 0.01
J48 (Beg) 0.00 0.00 0.22 0.31 0.18
J48 (End) 0.94 0.00 0.56 0.27 0.9

SVM (Beg) 0.31 0.00 0.00 0.48 0.35
SVM (End) 0.063 0.00 0.00 0.79 0.04

In Table 4.2 p values for the 10-fold cross validation accuracies ofRASCO and

mRMR-RASCO algorithms at the beginning and end of Co-training are given. We see

the similar results obtained between RASCO and Rel-RASCO. With 90% probability,

at the end of Co-training mRMR-RASCO ensemble accuracy is better than that of

RASCO when KNN and SVM classifiers are used. On the other hand LDC and

decision tree results are not as significant as KNN and SVM results at the end of

Co-training.

Table 4.2: t-testp values of RASCO and mRMR-RASCO at the beginning and at the
end of the algorithms for each dataset, K=25, m=25.

Classifier audio optdigits classic-3 isolet mfeat

KNN (Beg) 0.15 0.00 0.00 0.05 0.03
KNN (End) 0.08 0.00 0.00 0.05 0.01
LDC (Beg) 0.15 0.02 0.34 1 0.00
LDC (End) 0.82 0.01 0.46 0.76 0.00
J48 (Beg) 0.04 0.00 0.13 1 0.00
J48 (End) 0.91 0.00 0.3 0.87 0.19

SVM (Beg) 0.78 0.02 0.00 0.533 0.6
SVM (End) 0.02 0.01 0.00 0.85 0.18

Next the effect of the parameterm, which is the number of features selected, is

evaluated on the Audio Genre dataset.In Section 3.7 we have shown that increase in

the m also increases the classification accuracy. In Figure 4.10 Audio Genre dataset

accuracies with SVM classifier are given forK=5 andµ = 0.3. Figure 4.10(a) shows the

ensemble classification accuracy with respect tom. Rel-RASCO and mRMR-RASCO

outperform both RASCO and single classifier whenm > 10. The best classification
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accuracy is obtained whenm = 25. Previously [23] has given thebest m simply

as m = d/2 for RASCO. However for high dimensional datasets, increase in the

m also increases the complexity of the algorithm. Figures 4.10(b) shows the mean

classification accuracies of individual classifiers. Single SVM classifier performs

better than the mean individual classification accuracies of the ensemble algorithms

whenm<10.
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Figure 4.10:Mean ensemble and individual classifier test accuracies on Audio Genre
dataset at the beginning (-B) and end (-E) of Co-training, obtained
by Rel-RASCO (RR), mRMR-RASCO (mR), RASCO (R) and single
classifier using all features (All), with respect tom for K=5 and classifier
= SVM.

As a general guideline,m should not be too large to overfit the training data and

it should not be too small to result in too weak classifiers. As the number of

feature subspaces and hence classifiers increase, the same ensemble accuracy can

be achieved using smaller size feature subspaces. The number of features used by

Rel-RASCO should be at least as much as the number of features that results in a

good accuracy when feature selection is performed on all the available data. It is

possible to determine this lower bound using a fast feature selection algorithm such as

mRMR [94]. The value ofm could also be selected using a model selection method

such as cross-validation, however this could be a time-intensive task.

4.6.2 Robustness to redundant features

In supervised learning experiments we evaluate the robustness of the algorithms with

redundant features and we show that the proposed subspace selection algorithms

outperform RAS and single classifier. In order to evaluate algorithms’ robustness to

redundant features in semi-supervised learning, again Audio Genre dataset’s feature
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space is appended with different powers of the original features. Real dataset

experiments show that proposed algorithmsoutperform the RASCO with KNN, LDC

and decision tree. On the other hand the best classification accuracies are generally

obtained with SVM and we see that proposed algorithms with SVM generally perform

better than RASCO.

Three datasets, App_1, App_2 and App_3, generated in supervised learning

experiments are also used in this experiment (Please see Section 3.6.2 for details of

the datasets). In Figure 4.11 the mean classification accuracies obtained on Audio

Genre dataset appended with redundant features are given for SVM classifier at the

beginning and at the end of the algorithms forK = 5 andK = 25. It can be seen from

the figure that, the proposed algorithms outperform the RASCO and single classifier at

the beginning and at end of the algorithms. Besides all of the algorithms benefit from

unlabeled data and the proposed algorithms perform better than RASCO algorithm at

the end of Co-training and single classifier.
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Figure 4.11:Mean ensemble test accuracies on Audio Genre dataset appended with
redundant features, at the beginning(-B) and end (-E) of Co-training,
obtained by Rel-RASCO (RR), mRMR-RASCO (mR), RASCO (R) and
single classifier using all features (All), forµ = 0.3,m= 25 and classifier
= SVM.

4.6.3 Synthetic data results

Classification accuracies of the RASCO, Rel-RASCO and mRMR-RASCO algorithms

are also evaluated with a synthetic two class dataset. The dataset is generated from

Gaussian distributions with a covariance matrix 10 at diagonal and mean−1 for one

class and 1 for the other class. The total number of features is chosen to be 50.

Three synthetic datasets, App_1, App_2 and App_3, generated in supervised learning
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experiments are also used in this experiment (Please see Section 3.6.3 for details of the

datasets).

The mean classification accuracies at thebeginning and at the end of the algorithms

obtained using SVM classifier on synthetic dataset appended with redundant features

are given forK = 5 and K = 25 classifiers in Figure 4.12(a) and Figure 4.12(b),

respectively.
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Figure 4.12:Mean ensemble test accuracies on synthetic dataset appended with
redundant features, at the beginning(-B) and end (-E) of Co-training,
obtained by Rel-RASCO (RR), mRMR-RASCO (mR), RASCO (R) and
single classifier using all features (All), forµ = 0.3, m= 25, classifier =
SVM.

It can be seen from Figure 4.12(a) that the single SVM classifier performs better than

the ensemble algorithms forK = 5. However the proposed algorithms perform better

than the single SVM and RASCO whenK = 25 classifiers are used as shown in Figure

4.12(b). Note that the original dataset has uncorrelated features. Therefore the single

SVM performs slightly better than the ensemble algorithms at the beginning of the

Co-training on original synthetic dataset. On the other hand, ensemble algorithms

benefit from unlabeled data and we see that the proposed algorithms outperform single

SVM and RASCO when the datasets are too redundant (Please see App_2 and App_3

datasets results in Figure 4.12(b)).

4.6.4 Classifier diversity and information theoretic analysis of the algorithms in

           semi-supervised learning

In Section 3.6.4 classifier diversities and information theoretic analysis of the

algorithms have shown that, although the proposed algorithms are less diverse than the

RAS algorithm in terms of KW-variance and LOD, they perform better than RAS. On
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the other hand we found that the classification accuracy of the ensemble methods can

be analyzed with ITS. Similar experiments and analysis given in supervised learning

scenarios are also done for semi-supervised learning scenarios.

In figures KW-Variance, LOD and ITS versus classification accuracies are given for all

datasets at the end of the Co-training. Note that KW-Variance, LOD and ITS versus

classification accuracies at the beginning of the algorithms are given in the previous

chapter. Figures are obtained using the classification accuracies and diversities of

different number of classifiers (K=5, 25) in the ensembles.

In Figure 4.13 classification accuracy versus diversity analysis on Audio Genre dataset

at the end of the Co-training is given. Rel-RASCO and mRMR-RASCO algorithms are

less diverse than RASCO algorithm at the end of Co-training in terms of KW-variance.

Also at the end of Co-training KW-variances of the algorithms decrease. In figure

it is shown that LOD has a similar tendency with KW-variance. On the other hand

the proposed algorithms have higher ITS than the RASCO algorithm at the end of

Co-training. Note that the proposed algorithms have the best ITS with SVM at the end

of Co-training.

In Figure 4.14, Figure 4.15, Figure 4.16 and Figure 4.17 classification accuracy

versus diversity analysis on Optdigits, Classic-3, Isolet and Mfeat datasets at the

end of the Co-training are given, respectively. Similar results obtained with the

Audio Genre dataset are obtained for Optdigits, Classic-3, Isolet and Mfeat datasets

and KW-variance and LOD of the proposed algorithms are less than RASCO.

Increasing the ITS of the algorithms also increases the classification accuracy and

the best ITS at the end of the algorithms are obtained with the proposed algorithms.

Generally KW-variances of the algorithms at the end of Co-training are less than the

KW-variances at the beginning of Co-training. Even though the KW-variance diversity

of RASCO is better than Rel-RASCO and mRMR-RASCO, generally ensemble

accuracy of Rel-RASCO and mRMR-RASCO are better, which may be due to the fact

that the individual classifier accuracies are better (RM Characteristic of the proposed

algorithms). Besides in order to express the relationship between classification

accuracy and low order diversity, 3-way and more diversity should be used.
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Figure 4.13:Classification accuracy versus diversity on Audio Genre dataset obtained
by mRMR-RASCO, Rel-RASCO and RASCO (Endof the algorithms)
for µ = 0.3, m= 25 a)KW-variance b) LOD c) ITS.
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Figure 4.14:Classification accuracy versus diversity on Optdigits dataset obtained by
mRMR-RASCO, Rel-RASCO and RASCO (End ofthe algorithms) for
µ = 0.3, m= 25 a)KW-variance b) LOD c) ITS.
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Figure 4.15:Classification accuracy versus diversity on Classic-3 dataset obtained by
mRMR-RASCO, Rel-RASCO and RASCO (End ofthe algorithms) for
µ = 0.3, m= 25 a)KW-variance b) LOD c) ITS.
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Figure 4.16:Classification accuracy versus diversity on Isolet dataset obtained by
mRMR-RASCO, Rel-RASCO and RASCO (End ofthe algorithms) for
µ = 0.3, m= 25 a)KW-variance b) LOD c) ITS.
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Figure 4.17:Classification accuracy versus diversity on Mfeat dataset obtained by
mRMR-RASCO, Rel-RASCO and RASCO (End ofthe algorithms) for
µ = 0.3, m= 25 a)KW-variance b) LOD c) ITS.

4.7 Discussion

In this chapter, the Rel-RASCO and mRMR-RASCO algorithms which use more

informative feature subspaces for Co-training are introduced. Classification accuracies

of RASCO, Rel-RASCO and mRMR-RASCO on 5 real datasets: Audio Genre,

Optdigits, Classic-3, Isolated letter speech, Mfeat and one synthetic dataset with

redundant features are obtained. Besides classification accuracies of the algorithms

on Audio Genre dataset appended with redundant features are also investigated. We

showed that, at the beginning of Co-training, before unlabeled data are used, classifier

ensembles of the proposed algorithms have in general better accuracies than RASCO.

When unlabeled data are labeled iteratively, the ensemble accuracy of Rel-RASCO

and mRMR-RASCO are still better than RASCO or single classifier. Generally

mRMR-RASCO and Rel-RASCO perform significantly better than RASCO or single

classifier when there are many irrelevant features. As the number of classifiers in

the ensemble increase, especially at the end of Co-training, the ensemble accuracy

of RASCO approaches the ensemble accuracy of Rel-RASCO. Additionally mean

individual classification accuracies show that the Rel-RASCO and mRMR-RASCO

algorithms are more RM-characteristic than the RASCO algorithm.
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The diversity analysis of the algorithms are also obtained for KNN, LDC, decision

tree and SVM classifiers withdifferent number of classifiers (K) in the ensemble.

KW-variance, LOD and ITS are given for all datasets at the end of the Co-training.

Although Rel-RASCO and mRMR-RASCO have less KW-variance and LOD than

RASCO algorithm, they generally perform better classification accuracy than RASCO.

In the experiments we also found that the KW-variance and LOD decrease at the end

of the algorithms. Besides Rel-RASCO and mRMR-RASCO algorithms are shown to

have higher ITS than RASCO.

4.7.1 The effect of unlabeled data

Do unlabeled data improve the classification performance? There have been many

studies trying to find an answer to this question [95, 96]. Some studies for example

[12] showed that unlabeled data may help to increase the classification accuracy. On

the other hand Cozman and Cohen [95] showed that unlabeled data can degrade the

classification performance if the model assumption and the data distribution do not

match. This result was obtained by generative classifiers on an artificial dataset that

has dependent features. The percentage of unlabeled data among the training set was

fixed and Naive Bayes classifier was used. Besides Tian et. al. [97] showed that if

the model assumption does not hold, the performance of unlabeled data is affected by

the complexity of the classifier. They considered semi-supervised learning problems

where the labeled and unlabeled data do not come from the same distribution and

analyzed the effect of unlabeled data on content based image retrieval problem. It is

shown that unlabeled data help if both labeled and unlabeled data come from the same

distribution. Otherwise depending on the difference between labeled and unlabeled

data, more unlabeled data may decrease the performance. In [98] Co-training and EM

algorithm degraded the classification performance of text categorization task. Catal

and Diri [99] also analyzed unlabeled data effect on software fault prediction problem

and they showed that unlabeled data may decrease the performance of software fault

prediction problem.

In our experiments, unlabeled data generally increases the classification performance

of Rel-RASCO, mRMR-RASCO and RASCO algorithms. In the experiments it is

observed that KNN and SVM classifiers always benefit from unlabeled data. On the
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other hand depending on the dataset, unlabeled data generally improves classification

accuracy of thealgorithms with LDC and decision tree classifiers. Performance

decrease of the algorithms depends to some factors such as: model assumption, base

classifier used in the algorithms and overlearning of the classifiers that makes them to

select incorrect examples from unlabeled dataset. LDC and decision tree classifiers on

Optdigits dataset do not benefit from unlabeled data. Similarly Classic-3 dataset is too

sparse and LDC classifier may not generate accurate model parameters.
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5. CONCLUSION AND FUTURE WORK

The advent of the technology enables usto access all kinds of data easily from many

fields of science and industry. It is so common to obtain vast of image, audio and video

files or any type of measurements for the surveillance systems, medical applications

and military target recognition and so on. Internet is also another source of data

for many applications such as social network analysis. This phenomenon brings

unlimited pattern recognition problems from many domains, with huge amount of data

and features. Generally one can either train a single classifier with/without feature

selection/extraction. However it is still time, money and effort consuming to label

these datasets. Therefore training one classifier alone may be useless due to small

amount of instances compared to the number of features (curse of dimensionality)

[3]. On the other hand feature selection/extraction may not always improve the

classification accuracy. Additionally, in some applications different types of sensors or

measurement methods can be used to acquire the data samples. Thus features can be

represented in multiple views and concatenation to form the whole feature space may

sometimes be problematic. Therefore, instead of training one classifier with/without

selection/extraction, alternative methods such as; ensemble of classifiers could be used.

In this thesis we focused on feature subspace selection methods for classifier ensembles

and proposed two novel feature subspace selection methods. The proposed methods

are evaluated under both supervised and semi-supervised learning scenarios. In

supervised learning the proposed algorithms are compared with Random Subspaces

(RAS) algorithm that randomly selects the feature subspaces used in the ensembles.

In semi-supervised learning the algorithms are compared with RASCO (Random

Subspace Method for Co-training) algorithms. In high dimensional feature spaces if

there are many irrelevant features and redundancy, it is possible to obtain diverse but

inaccurate classifiers with the RAS and RASCO algorithms. The subspace selection

methods proposed in this thesis are also aimed to remedy these problems. The

first method is used in Rel-RAS and Rel-RASCO algorithms where Rel-RAS is the

73



relevant random subspace method for supervised learning and Rel-RASCO is the

relevant random subspace methodfor Co-training. The second method modifies the

mRMR (minimum Redundancy Maximum Relevance) feature selection algorithm and

is used in the mRMR-RAS and mRMR-RASCO algorithms where mRMR-RAS is the

minimum redundancy maximum relevance random subspace method for supervised

learning and mRMR-RASCO is the minimum redundancy maximum relevance

random subspace method for Co-training.

The superiority of the proposed methods are given with the experiments on five real

and synthetic datasets with KNN, LDC, decision tree and SVM classifiers based

on the accuracy achieved. We found out that in supervised learning Rel-RAS and

mRMR-RAS algorithms outperform the RAS algorithm and single classifiers when

KNN, LDC and decision tree are used. On the other hand single SVM also performs

as good as the ensemble methods. However, when the dataset has redundant features,

the proposed algorithms outperform both RAS and single SVM classifier. Besides

in semi-supervised learning Rel-RASCO and mRMR-RASCO algorithms generally

outperform the RASCO algorithm and single classifier at the beginning and at the

end of the Co-training. These results are explained with the RM-characteristics of

feature subspaces in terms of mean accuracies of the individual classifiers. The

proposed algorithms provide feature subsets agree on the class labels more than

RAS and RASCO. This also tends the classifiers to be less diverse. Diversity

analysis of the classifiers is obtained using, non-pairwise diversity measure, Kohavi

Wolpert (KW) Variance. Besides information theoretic based low order diversity

(LOD) and information theoretic scores (ITS) of the classifier diversities are evaluated.

KW-variance and LOD results show that the proposed algorithms produce less diverse

classifier ensembles than the ensembles generated with RAS and RASCO. On the other

hand the superiority of an ensemble algorithm can be explained with the information

theoretic score (ITS) [26] and it is shown that there is a relationship between ITS and

ensemble classifier accuracy. Unlike the RAS and RASCO, the proposed algorithms

have high ITS on both supervised and semi-supervised learning scenarios.

This work can be extended in different steps. Analysis of the algorithms are obtained

with RM-characteristics of feature subspaces, KW-Variance diversity measure,

information theoretic based low order diversity and information theoretic scores.
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Previously there have been some attempts [100] to understand the behavior of

Co-training in terms of PAC analysis (Probably Approximately Correct). PAC

analysis of the classifier ensembles can be a way to extend this work. Bias-Variance

decomposition [101] is also another analysis that can be applied to classifier ensembles.

The proposed algorithms only select features based on a probability distribution.

However the algorithms do not consider redundancy between the feature subspaces.

It seems to be an open issue and a new subspace selection method that considers

both relevance and redundancy between feature subsets may produce good classifier

ensembles and may also increase the classification accuracy. On the other hand in this

thesis ITS is only used to explain the superiority of the classifier ensembles. It can also

be used as a classifier selection criteria in ensembles as shown in [26].
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APPENDIX A. Feature Discretization

Feature discretization is used when the features are continuousin the Rel-RAS,
RelNR-RAS, Rel-RASCO and RelNR-RASCO algorithms. In order to compute the
mutual information in these algorithms we first discretize the features into 10 bins.

Let Fk, k = {1,2, ...,d} denote then dimensional feature vector for thekth feature in
the dataset andFk = {x1k,x2k, ...,xnk}. The feature discretization algorithm is given
below.

Algorithm 10 Feature Discretization

// b: Number of bins
// Fk: feature vector to be discretized
// DF : Discretized featurevector
// n: Number of features
disc= [(-floor(b/2)):(floor(b/2))];
mn = min(Fk), mx = max(Fk)
binwidth = (mn - mx)/b
E = mn + binwidth * (0:b);
E(1) = -inf, E(end) = inf;
for i = 1 to ndo

for j = 1 to bdo
if Fk(i) >= E(j) AND Fk(i) < E(j+1) then

DF(i) = disc(j)
end if

end for
end for
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APPENDIX B. Basics of Information Theory

The uncertainty present in a distribution of arandom variableX, can be measured by
entropy,H(X), and is denoted as follows [25]:

H(X) =−
|X|

∑
i=1

p(xi) log(p(xi)) (B.1)

An estimate of the probability distribution is obtained using frequency counts.
Thereforep(xi) =

#xi
N , where #xi is the number of observations onxi and N is the

number of total observations. The entropy is maximal if all events are equally likely.
Using the rules of probability theory, the conditional entropy ofX given Y can be
written as follows:

H(X|Y) =
|Y|

∑
j=1

|X|

∑
i=1

p(xi |y j) log(p(xi |y j)) (B.2)

The mutual information betweenX and Y, I(X;Y), is the difference between the
uncertainty present in the distribution ofX and uncertainty remained inX after Y
occured:

I(X;Y) = H(X)−H(X|Y) (B.3)

I(X;Y) can be expanded as follows:

I(X;Y) =
|Y|

∑
j=1

|X|

∑
i=1

p(xi ,y j) log(
p(xi ,y j)

p(xi)p(yj)
) (B.4)

The information shared betweenX1 andX2 afterY occured is the conditional mutual
information,I(X1;X2|Y) and can be written as follows:

I(X1;X2|Y) = H(X1|Y)−H(X1|X2,Y) (B.5)

I(X1;X2|Y) =
|Y|

∑
k=1

p(yk)
|X2|

∑
j=1

|X1|

∑
i=1

p(xi ,x j |yk) log(
p(xi ,x j |yk)

p(xi |yk)p(yj |yk)
) (B.6)
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APPENDIX C. Datasets

In this thesis, experimental results are obtained on 5different real datasets from
different application areas: ’OptDigits’ (Optical Recognition of Handwritten Digits),
’MFeat’ (Multiple Features) and ’Isolet’ (Isolated Letter Speech) datasets from the UCI
machine learning repository [83], ’Classic-3’ text dataset from [90] and the ’Audio
Genre’ dataset of [91]. Table C.1 shows the number of features, instances and classes
of the features for all 5 datasets.

Table C.1: Real Datasets

Dataset # features # instances # classes

Audio Genre 50 500 5
OptDigits 64 5620 10
Classic-3 273 3000 3

Isolet 617 480 2
MFeat 649 2000 10

Audio Genre Dataset: The 5 least confused genres of Tzanetakis dataset [91],
Classical, Hiphop,Jazz, Pop and Reggae, each with 100 samples, are used [102].
Two different sets of audio features are computed. First, timbral, rhytmic content and
pitch content features yielding 30 features are extracted using the Marsyas Toolbox
[91]. Timbral features are generally used for music-speech discrimination and speech
recognition. They differentiate mixture of sounds with the same or similar rhythmic
content. Rhythmic content features characterize the movement of music signals over
time and contain such information as the regularity of the rhythm, the beat, the tempo,
and the time signature. The melody and harmony information about the music signal
is obtained by pitch detection techniques. Next, 20 features covering temporal and
spectral properties are extracted using the Databionic Music Miner framework [92].

UCI Optdigits Dataset: Optical Recognition of Handwritten Digits Dataset
(optdigits) contains 64 features with 10 classes. Features are extracted from normalized
bitmaps of handwritten digits from a preprinted form. Images are 32×32 bitmaps and
they are divided into nonoverlapping blocks of 4×4. In each subblock the number of
pixels are counted to generate an input matrix of 8×8 where each element is an integer
in the range 0. . . 16 [83].

Classic-3 Dataset:Classic-3 data corpus contains the paper abstracts of 3 different
types of journals. They are namely MEDLINE, CISI and CRAN. MEDLINE contains
the abstracts from medical journals, CISI contains the abstracts from information
retrieval field and CRAN contains the abstracts from aeronautical systems area. In
the experiments Term Frequencies (TF) of words are used as features and they are
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obtained using Term-to-Matrix generator (TMG) Matlab Toolbox [93]. For each class
equal number ofinstances are selected in order to balance the dataset.

UCI Isolated Letter Speech Recognition Dataset:This dataset contains the 617
speech features (contour, sonorant, pre-sonorant and post-sonorant features) with 480
instances from B and C letters [83].

Multiple Features (Mfeat) dataset: Multiple Features (Mfeat) dataset consist of 2000
instances of handwritten digits with 10 classes. There are 649 features: 76 Fourier
coefficients of the character shapes, 216 profile correlations, 64 Karhunen-Love
coefficients, 240 pixel averages in 2× 3 windows, 47 Zernike moments and 6
morphological features [83].
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APPENDIX D. Linear Discriminant Classifier

When the underlying probability density functions (pdf’s)are known, Bayes classifier
gives the minimum error [2] [103]. A posteriori probability function of classci given
x is:

p(ci |x) =
p(x|ci)p(ci)

p(x)
(D.1)

wherep(x|ci) is the class conditional pdf ofci andp(x) is the mixture density. The class
with the highest posterior probability will be the choice for a givenx. The posterior
probabilities can be written with discriminant functions,gi , as follows:

gi(x) = p(ci |x), i = 1, ...,c (D.2)

The decision forx , D(x), is:

D(x) = max
1,..,c
{p(ci |x)}= max

1,..,c
{gi(x)} (D.3)

The p(x) for all classes are same thengi(x) can be written as:

gi(x) = log[p(ci)p(x|ci)], i = 1, ...,c (D.4)

Let all classes are normally distributed,p(x|ci) ∼ N(µi ,Σi), with µi means andΣi

covariance matrices andi = 1, ...,c. Thengi(x) can be obtained as:

gi(x) = log[p(ci)]+ log

{

1

(2π)n/2
√

|Σi |
exp

[

1
2
(x−µi)

TΣ−1
i (x−µi)

]

}

= log[p(ci)]−
n
2

log(2π)−
1
2

log(|Σi |)−
1
2
(x−µi)

TΣ−1
i (x−µi) (D.5)

wherei = 1, ...,c In our computations all covariance matrices are assumed to be same
andp(x|ci)∼N(µi ,Σ), and if we eliminate all the terms that are constant for allci then
the discriminant functions can be written as follows:

log[p(ci)]−
1
2
(µi)

TΣ−1(µi)+(µi)
TΣ−1(x) = wi0 +wT

i x (D.6)

wherewi0 andwi are the coefficients of the linear discriminant function [2]. Mean
values and covariance matrix are estimated from training data [2].
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APPENDIX E. K-Nearest Neighbour Classifier

K-Nearest Neighbour (KNN) method can be used to estimatedensity. In K-Nearest
Neighbour density estimation, the aim is to find the volume,V, while fixing the
probability ofk/n. However the density estimation does not work very well. On the
other hand KNN method can be used for non-parametric classification [39].

Let ki be the samples belonging to classci in k samples andni be the total number of
examples in classci. Then the estimate of the class conditional density can be written
as follows:

p̂(x|ci) =
ki

niV
(E.1)

The estimate of the prior probability is:

p̂(ci) =
ni

n
(E.2)

Using the Bayes’ theorem, the estimate of theposterior probability is:

p̂(ci |x) =
p̂(x|ci)p̂(ci)

p̂(x)
=

ki
niV

ni
n

k
nV

=
ki

k
(E.3)

The algorithm works as follows: For each test instance thek nearest examples are
identified using Euclidean distance. The number of sampels,ki, that belong to class
ci is obtained out of thesek samples. Then the test instance is assigned to the classci

with the maximum number ofki [39] [104].
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APPENDIX F. Decision Tree Classifier

Classification of patterns through questions, where the nextquestion depends on the
answer of the current one, is an intiutive way [9]. The sequence of the questions is
described as decision tree where the first question constitutes the root node and the
others constitute the branches. Classification of a data sample starts from the root
node and based on the value of the sample the the subsequent or descending nodes
are evaluated. Therefore the feature that best divides the classes should be selected
as the root node. Different algorithms have been proposed to find the best feature
that splits the data such as; information gain, gain ratio and gini index [9] [105]. In our
experiments we used weka implemantation of decision tree J48 with default parameters
[68]. J48 implements the C4.5 Quinlan’s algorithm [105]. The algorithm works by
evaluating the cases in the training set.

Let S be the set of cases andc be the number of classes. Then entropy ofS can be
obtained as follows:

Entropy(S) =
c

∑
j=1

p j log2 p j (F.1)

wherep j is the probability of the cases belong to classj in S. The information gain for
a featureF is Gain(S,F):

Gain(S,F) = Entropy(S)− ∑
v∈values(F)

|Sv|

|S|
Entropy(Sv) (F.2)

wherevalues(F) represents the values thatF may have and|Sv| represents the number
of samples in each subset. The algorithm selects the feature which increases the
information gain as a node. The algorithm is applied recursively to obtain other nodes
in the tree [105].
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APPENDIX G. Support Vector Machines

Support vector machines were developed byVapnik et al. [106]. LetXi (i = 1,2, ...,n)
be thed dimensionalith training sample,Xi = (xi1,xi2, ...,xid), in the training dataset
X =(X1,X2, ...,Xn) with n samples. We consider two class case wherel represents
the labels (l∈ {−1,1}) and our aim is to learn a functiong(Xi) = l . Each example
Xi is assumed to be generated from an unkown but fixed probability distribution
P(X, l) [107]. The learning problem can be expressed as an optimization problem
which aims to minimize the misclassification of the new instances drawn from the
same pdf. Goodness of the classifierg can be measured using expected risk,R(g):

R(g) =
∫

ℓ(g(X), l)dP(X, l) (G.1)

Where ℓ is the loss function that penalizes the difference between predicted and
true labels. Since the underlying distribution isn’t known the risk,R(g), can not be
minimized directly. Instead the risk over the training set, emprical risk, is minimized:

Remp(g) =
1
n∑ℓ(g(X), l) (G.2)

With a probability of 1−µ, the expeceted risk has the following boundary [107]:

R(g)≤ Remp(g)+

√

h(ln(2n/h)+1)− ln(µ/4)
n

(G.3)

Whereh is the Vapnik-Chervonenkis (VC) dimension ofg, andn is the number of
training instances,n > h. VC dimension is the maximum number of data points that
can be separated by anyg(X). A simple hypothesis space (small VC-dimension) may
provide classifiers with high training error. On the other hand a hypothesis with a
high VC dimension and small training error may fit the training data and inaccurately
classify the new instances which is called "overfitting". Therefore using the hypothesis
space with right complexity, optimum VC-dimension, is very important. It was shown
that margin, the distance between the hperplane to the closest instance, can be used to
upper bound the VC-dimension [107] and it is used for the fundamental derivations of
the SVM.

SVM aims to find a separating hyperplane with the largest margin for linearly separable
case. Letw be the weight vector andb be the threshold. The hyperplane separates the
positive training examples into one side of the hyperplane and negative examples to
the other side. This can be formulated for each training data(Xi , l i) as follows:

l i(w.Xi +b)> 0 (G.4)
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There is only one hyperplane with maximum largest margin for separable case and
the examples closest to thehyperplane are called support vectors [107]. The margin
is 2/‖w‖ and maximizing the margin is equivalent to the following optimization
problem:

min
w,b

1
2
‖w‖2 (G.5)

subject to:

l i(w.Xi +b)≥ 1, ∀i (G.6)

Thisconstraint optimization problem is solved by introducing the Lagrangian:

Lp(w,b,α) =
1
2
‖w‖2−

n

∑
i=1

αi [l i(w.Xi +b)−1] (G.7)

This function should be minimized with respect tow, b and miximized with respect
to Lagrange multipliers,α. The saddle point is found at:∂L/w and ∂L/b. After
differentiating the following dual optimization problem is obtained:

LD(α) =
n

∑
i=1

αi−
1
2

n

∑
i=1

n

∑
j=1

αiα j l i l jXi
TXj (G.8)

subject to:

αi ≥ 0, i = 1,2, ...,n
n

∑
i=1

αi l i = 0 (G.9)

The solution of this optimization problem is a linear decision function. The solution
up to here only considers the separable case. However for noisy datasets this may not
be the optimal choice. An alternative way to find a trade-off between emprical risk and
capacity is to introduce slack variables,ξ , in Equation6:

l i(w.Xi +b)≥ 1−ξi , ξ ≥ 0 i = 1,2, ...,n (G.10)

The trade-off between emprical risk and capacity is controled by adding a constant
C that penalizes the instances fall into the margin. Then the optimization problem
becomes:

min
w,b

1
2
‖w‖2+C

n

∑
i=1

ξi (G.11)

This can be turned into another dual optimization problem:

LD(α) =
n

∑
i=1

αi−
1
2

n

∑
i=1

n

∑
j=1

αiα j l i l jXi
TXj (G.12)
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subject to:

0≤ αi ≤C, i = 1,2, ...,n
n

∑
i=1

αi l i = 0 (G.13)

Solving quadratic optimization problems in order to find theα and support vector
values can be cumbersome for large scales. Several algorithms have been proposed to
find the support vectors, i.e. Sequential Minimal Optimization [107]. More details on
SVM can be found in [107] [108] and [9].
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APPENDIX H. T-Test

In the experiments accuracies are also evaluated with the hypothesis testing. A t-test
is applied to determine whether the means of the experimental results are different
enough from each other. Letx andy be the two vectors with size ofn, the t score can
be found as follows:

t =
x̄− ȳ

√

varx+vary
n

(H.1)

wherevarx andvary are the variance ofx andy respectively.

Thesignificance,p, value is found using t-distribution table [8].
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