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ABSTRACT

in recent years there has been extensive interest on feedback control
systems that automatically adjust their controller settings to compensate for
changes in the process or.the environment. Such systems are referred to
adaptive controliers.

Using a conventional control scheme is often not very satisfactory. in
spite of having large usage in the industry, fixed parameter PID controi
algorithm suffers from many draw backs such as the ones listed below.

e Time delays cannot be handled properly.

e Physical constraints of a process cannot be incorporated in the control
algorithm.

e Tuning of a conventional controller loop is usually time consuming
operation. In the absence of a mathematical model, tuning of a PID
controller is performed on-line by an iterative experimental approximation
like trial and error. The mathematical modeling of a process accounting for
all the non-linearities in the process is a problem. The linear model of a
process can help in selecting initial tuning constants but is not good
enough to give the best performance along the complete period of
operation.

Because of the changes in process dynamics (catalyst decay, change
in production levels, fouling of heat exchangers or variation in raw material
quality and quantity etc.) controller has to be retuned and this leads to a
degraded performance until it has been done.



in this thesis a PID and a self-tuning control scheme are used (and at
the same time compared) to control the temperature of a heating system by
choosing fine-tuning elements. Using self-tuning controlier gives better and

faster controlier together with the ability of expert tuning of the controlier by
non-experts.

xiii



OzZET

1970’lerden beri adaptive kontrol stratejileri ve otomatik kontrol bliylk
ilgi kazanmigtir. Bir ¢cok aragtirmaci kimya endustrisinde var olan kontrol
problemlerini ¢ézmek igin yeni bir ¢ok &zel metotlar geligtirmeye
calismaktadir. Endustriyel prosesierde otomatk kontrol kullanimi blyik
zaman gecikmeleri, non-lineerlik, karmasik proses dinamikieri ve diger
kontrol cevrimleri arasindaki etkilesimden ve oi¢llemeyen yiklenme
degerleri yUziinden zor bir olaydir. Kiasik kontrol metotlari kullanimi
belirtilen bu sorunlardan dolayr memnuniyet verici degildir. Ginimuzde
sanayiide kullanim alani genis olan PID kontrol ediciler iyi sonu¢ vermesinin
yaninda agagida da belirtildigi gibi bazi sorunlarla kargilagsmaktadir.

e Zaman gecikmelerinin etkilerini ortadan kaldiramadidi i¢in kontrol sistemi
yavas davranir.

o Klasik bir PID tipi kontrol ediciyi ayarlamak zaman alan bir operasyondur.
Deneme yaniima yolu ile yapilir, bu da kimyasal reaksiyon igeren
proseslerde istenmeyen bir durumdur.

o Katalizér bozunmasi, Uretim hattindaki degisiklikler, 1s1 degistiricilerindeki
kirlenmeler, sicakiik algilayicisindaki gecikmeler, debi ve basing
degisimleri gibi proses dinamigini etkileyen degisiklikier kontrol edicilerde
yeni ayarlamalara neden olur.

Kontrol ettigi prosesin dinamiklerindeki degisikligi fark edip, kendi
parametrelerini buna gbére ayarlayan, ve bu anlamda prosesi tanityan bir
kontrol edici klasik sabit parametreli bir kontrol ediciden daha iyidir. Bu tip bir
bakis agisini ilk defa Kalman (1958) calismalarinda kullanmistir. Adaptive
kontrol edicilerin temelini olusturan bu g¢aligmalar sonunda, kullanilan kontrol



ediciye, Kalman ‘Kendi Kendini Optimize Eden Kontrol Sistemieri adini
vermigtir.

Sundugu basit kullanim avantajiyla uzman olmayanlarinda rahatga
kontrol hakimiyeti kurdugu kendinden ayarh kontrol ediciler (STC), ayn
zamanda daha hizli ve givenlidir de.

Bu galigmada klasik PID ve Kendinden Ayarli Geneliestiriimis Minimum
Degisimi Kontrol Edicilerin ana elemanlarinin nasil dizenlenebilecegi
gosterilmigtir. Ayrica bu iki ayn tipteki kontrol edicilerin servo ve regilator
calismalarindaki karsilastirmalari yaptimigtir.

Bu galismada kullanilan kendiliginden ayarli kontrol ediciler {i¢ ana
bilesenden olugsmaktadir. llk olarak bir parametre tahmin edici (Parameter
Estimator), ikinci olarak bir kontrol edici (Controller) ve son olarak da tahmin
edilmig proses parametrelerinden kontrol edici parametrelerini hesaplayan bir
parametre hesaplayicisi (Parameter Calculation) bulunmaktadir.

Kendiliginden ayarlanan kontro! ediciler baglangigta bilinen bir sistem
ve tasarim yéntemi ile olusturulabilirier. Burada bilinen girdi degerlerine
karsilik sistemin verdigi ¢iktilar belirli bir zaman araliginda éigllerek sistemin
transfer fonksiyonu elde edilmistir.

Kontrol algoritmalart parametre tahmin ediciler kullanilarak
bulunabilirier. Parametre tahmin ediciler proses girdi ve ¢iktisina gére besap
yaparlar. Burada tekli giris tekli cikis (SISO) sistemleri kendiliginden
ayarlanan ve PID kontrol ediciler kullanilarak incelenmigtir. Gergek zaman
uygulamalarinda her yeni data aliniginda sistemin transfer fonksiyonu
izlenebilir ve bunun iginde gelistiriimis teknikler mevcuttur. Numunelendirme
sirasinda data yiklenmesini azaltmak ve sistemi son alinan numunelere
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daha agirlik vererek dagerlendirmek igin ‘unutma faktoérd’ (Forgetting fadtor)
kullamimigtir. Bu 0 ile 1 arasinda degerlerden olugsmalidir. Bu sistemdeki
unutma faktdri 0.95 ile 0.999 arasinda bir deger olarak segilmistir. Bu da
20 ila 1000 numunelendirme aralidina esittir.

Kendiliginden ayarianan kontrol edicilerin minimum degisimli kontrol
algoritmasini  kullanmalari son kontrol elemaniarinin  agin  siddetli
davranmalarna yol agabilir. Sistemdeki bu elemanlarda aginma yipranma ve
doygunluk olusabilir. Kontrol ediciler bazi sinirlandirmalar getirilerek optimize
edilebilir.

Kendiliginden ayaralanan kontrol algoritmalari baglica iki ana grupta
incelenebilir. Dogrudan yontemler ve dolaylh ydntemler olarak
adlandirilabilecek bu yéntemlerin arasindaki en 6nemli fark birincisinde
parametre tahmin edicinin kontrol edici parametrelerini dogrudan vermesi,
digerinde ise tahmin edicinin sistem parametrelerini Ureterek kontrol edici
parametrelerini hesaplamasdir.

Bir prosesin modelinin bilinmesi o sistem icin tasarlanacak kontrol
edicinin analizi igin bir avantajdir. Herhangi bir proses igin de model ya
fiziksel ya da deneysel yollarla bulunur. Bunlardan ilki ile elde edileni baz
durumlarda mumkin degildir, ya da yeterince hassas degildir, bu nedenle
deneysel veriler kullanilarak sistem parametreleri belirlenmelidir.

Uyarlamah kontrolde kontrol kanununun tesbiti parametre tahmininden
(sistem tanimlanmasindan) sonra ikinci temel asamadir. Uyarlamali kontrol
mekanizmalarinin tasariminda iki kademe vardir. Bunlardan ilki, sistem
Uizerinde olabildidince deney yaparak eksik bilgileri tamamlamaktir (of-line).
ikincisi proses parametrelerinin tahminlerine bagli olarak kontrol edici

parametrelerinin srekli olarak ayarlandigi mekanizmadir (on-line).



Bu c¢aligmada yavas cevap veren bir sistem deneysel yollarla
tanimilanmig ve birinci derece bir sistem elde ediimigtir. Elde edilen sistemin
parametreleri hem Cohen ve Coon hem de numerik hesaplama yéntemi ile iki
ayn sekilde bulunmustur. Bunlardan ikki PID kontrol edicisinin
parametrelerinin  belirlenmesinde digerleri de wuyarlamah kontrolde
kullanimigtir. PID kontrol edicisi icin kullanilan parametreler sistem icin uygun
cevabi verememistir, ama bunlar iyi baglangi¢ degerleri olmustur.

Bu deneyde kullanilan sistem, 4.0 kW giiciinde, bogluk hacmi kigiik
olan (yaklagik 0.4 I) tlip rezistansli bir isitici ile bunun girig ve ¢ikis hattina
yerlestiriimig bir yan iletken sicaklik algilayicisindan olusmaktadir. Bu
sicaklik algilayicisi 0-100 °C araliginda calisan 4-20 mA lik bir sicakhk
ileticisine baghdir.

Yapilan deneylerde cesitli kontrol edici filtreleri incelenmis, gerekli
fitre parametreleri tesbit ediimis sisteme cesitli bozan etkenler yiikienerek
birinci mertebeden bir sistemin kendiliginden ayarli Genellestirilmis minimum
degisimli kontrol edicilere verdigi cevaplar elde edilmis ve bir sicaklik
kontrolil igin kullanilabilecek filtre ayar degerleri belirlenmeye cahsiimistir.
Kontrol edici filtre degerinin istenen ayar degerine bagh olarak degisken
halde olmas! sistem igin en uygun cevabi vermistir. Sistemin servo ve
regulasyon kontroli: zaman-oransal kondaktdr modiill ile gergeklestirilmigtir.
Bu durum sistemde gurilitilerin daha fazla olmasina yol agmis, buna ragmen
istenen ayar deg@erine kabul edilebilir hatalarla yaklagildi§i, kontrol edici
giriglerinin proses ¢iktilan ile uyumlu oldugu géziemlenmigtir.

Elde edilen PID kontrol edici sonuglari ile Kendiliginden Ayarlanan

Genellestiriimig Minimum Degisimii Kontrol Edici'nin sonuglari kargilagtiriimis,
kiasik PID tipi bir kontrol edicinin parametre ayarlamasindan sonra daha hizli
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ve kabul edilebilir sonuglar verdigi gézlemlenmigti. Ancak bu durum
deneylerin  sistem dinamiginde degisimlere neden olacak kadar uzun
sirmemesi, ve bdylece PID kontrol edicisinin parametrelerinde ayarlamaya
gidiimemesi durumunda s6z konusu olmustur. Herhangi bir degisim
durumunda Kendiliginden Ayarianan Genellestiriimis Minimum Degigimli
Kontrol Edici'nin avantajlari kendini agikga gdsterecektir. Kendiliginden
Ayarlanan Genellestiriimis Minimum Degisimli Kontrol Edici’'nin regulator
caligma sirasinda bozan etkendeki %60'lik degigimierde bile sistemi kararli
halde tuttugu gézlemienmigtir.

Bu galigma sonunda uzman olmayanlarin da ¢ok daha karmasik ve
soruniu sistemlerin kontrolinde kullanabilecedi ve parametre tahmini
sayesinde prosesin daha iyi taninabilecegi elde edilen modele bilinen bozan
etkenler géz 6nline alinarak ileri beslemeli kontrol adimlarinin da eklenmesi
ile klasik kontrol edicilerden cok daha iyi bir kontrol saglama imkani oldugu
g6ralmustir.
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Chapter 1. INTRODUCTION

Chapter 1.1 OBJECTIVE OF THE STUDY

This thesis reports on the results of an investigation of the fine tuning
parameters of self-tuning controller of single-input single-output (SISO)
systems. The project studies self-tuning adaptive controllers’ control algorithm
and PID control algorithm. The adaptive algorithm used is based on the
Generalized Minimum Variance control law, but its implementation
considerations are applicable to other self-tuning strategies. This study shows
the result of updating PID controller parameters from reaction curve compared
with the tuned ones. And it also shows the advantage of applying adaptive
control to chemical process elements and systems by using predicted
feedbacks and provides dead-time compensation as well as the ability of

adaptive control algorithms to tune feedforward load compensation terms.

As Generalized Minimum Variance (GMV) control algorithm includes a
number of parameters which can be chosen by the user to generate different
control philosophies, different filters used to obtain good results. At the end

variable weight function is used to obtain satisfactory results.

In this study, the model order, the type of the model, choice of sample type,



determination of the process delay and the choice of Q filter were made before
implementations of the GMV control law. Some of these parameters set
obtained by using process reaction curve from the pilot plan and some are by
using Recursive Least Square Parameter Estimation method with SVD to

identify to the controlled system.

Chapter 1.2 STRUCTURE AND LAYOUT OF THE THESIS

The first part of this thesis gives a general definition about terms used in this
thesis, then from Chapters 2 to 4, it concentrates on the basic elements of the
Self Tuning Regulator, PID Controller and the literature review. The second part
deals with the controller algorithm and its applications on the controlled system.

The structure and the layout of the thesis are as follows:

Chapter 2 provides a brief account of the advances in adaptive controllers and

in particular, Self-Tuning Controllers.

Chapter 3 describes the parameter estimation methods and the system
identification techniques. Recursive Least Squares Parameter Estimation
method is described in details and shown how to be derived. The Singular

Value Decomposition is also discussed in short.

In Chapter 4, the self-tuning controllers and PID Controllers are described and

o



derived, special cases of the STC control law are discussed and time delay

compensation is explained.

Chapter 5 shows the experimental implementation of the two controllers

experimental conditions and results.

Chapter 6 summarizes the results of the project and provides further

suggestions for the direction of the future work.

Chapter 1.3 DYNAMICAL SYSTEMS

In loose terms a system is an object in which variables of different kinds
interact and produce observable signals and dynamic, which means that the
output value depends not only on the current external stimuli but also on their
earlier values. The observable signals that are of interest to us are usually
called outputs. The system is also affected by external stimuli. External signals
that can be manipulated by the observer are called inputs. Others are called
disturbances and can be divided into those that are directly measured and

those that are only observed through their influence on the output.



Chapter 1.4 PROCESS IDENTIFICATION

In practice many of the industrial processes to be controlled are too complex to
be described by the application of fundamental principles. Either the task
requires too much time and effort or the fundamentals of the process are not
understood. By means of experimental tests, one can identify the dynamic
nature of such processes and from the results obtain a process model, which is
at least satisfactory for use in designing control systems. The experimental
determination of the dynamic behaviour of a process is called process

identification.

The need for process models arises in many control applications, as we have
seen in the use of tuning methods. Process models are also needed in
developing feed-forward control algorithms, self-tuning algorithms, and internal

model control algorithms.

Process identification provides several forms that are useful in process control;

some of these forms are:

Process reaction curve (obtained by step input)
Frequency response diagram (obtained by sinusoidal input)

Pulse response (obtained by pulse input)

In the case of the Z-N method, the procedure obtained one point on the open-
loop frequency response diagram when the ultimate gain was found. (This

point corresponds to a phase angle of -180° and a process gain of /K., at the



crossover frequency We,). In the case of the C-C method, the process

identification took the form of the process reaction curve.

Chapter 1.4.1 Step Testing

A step change in the input to a process produces a response, which is called
the process reaction curve. For many processes in the chemical industry, the

process reaction curve is an S-shaped curve as shown in Fig. 1.1

It is important that no disturbances other than the test step enter the system
during the test, otherwise the transient will be corrupted by these uncontrolied
disturbances and will be unsuitable for use in deriving a process model. For
systems that produce an S-shaped process reaction curve, a general model that
can be fitted to the transient is the following second-order with transport lag

model.

Gp(s) = Y(S)/X(5) = Koe ™™ /(T1s+1)(Tos+1) (1.1)
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Figure 1.1 Typical process reaction curve showing graphical

construction to determine first-order with transport lag model.

Chapter 1.4.2 Frequency Testing

A process having a transfer function G(s) can be represented by a frequency
response diagram (or Bode plot) by taking the magnitude and phase angie of
G(jw). This can be reversed to obtain G(s) from an experimentally determined
frequency response diagram. The procedure requires that a device be

available to produce a sinusoidal signal over a range of frequencies. We

§]



describe such a device as a sine wave generator. In frequency testing of an
industrial process, a sinusoidal variation in pressure is applied to the top of the
control valve so that manipulated variable can be varied sinusoidal over a range
of frequencies. The block diagram that applies during frequency testing is the
same as the one in Figure 1.2 with the step input (M/s) replaced by a sinusoidal
signal. The sine wave generator used to test electronic devices operates at
frequencies that are too high for many slow moving chemical processes. For
frequency testing of chemical processes, special low-frequency generators
must be built that can produce sinusoidal variation in pressure to a control
valve. To preserve the sinusoidal signal in the flow of manipulated variable

through the valve, the valve must be linear.

M/s

+
R=0 ® Ge [— Gv Gp

]~Loop opened

To recorder

Figure 1.2 Block diagram of a control loop for measurement of the

process reaction curve.



Chapter 1.4.3 Pulse Testing

Pulse testing is similar to step testing; the only difference in the experimental
procedure is that a pulse disturbance is used in place of a step disturbance.
The pulse is introduced as a variation in valve top pressure as was done for
step and frequency testing (see fig. 1.2). In applying the pulse, the open-loop
system is allowed to reach steady state, after which the valve top pressure is
displaced from its steady state for a short time and then returned to its original
value. The response is recorded at the output of the measuring element. An
arbitrary pulse and a typical response are shown in Fig. 1.3. Usually the pulse
shape is rectangular in experimental work, but other well-defined shapes are
also used. The input-output data obtained in a pulse test are converted to a
frequency response diagram, which can be used to tune a controller. The
transfer function of the valve, process, and measuring element (referred to as

the process transfer function, for convenience) is given by:

Gp(s)=Y(s)/X(s) (1.2)

where Y(s) = Laplace transform of the function representing the recorded output

response

X(s) = Laplace transform of the function representing the pulse input
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Figure 1.3Typical process response to a pulse input.

Chapter 1.4.4 The System ldentification Procedure

The construction of a model from data involves three basic entities:

1. The data,
2. A set of candidate models,
3. Arule by which candidate models can be assessed using the

data.

1. The data record. The input — output data are sometimes
recorded during specifically designed identification experiment, where one
may determine which signals to measure and when to measure them and
may also choose the input signals. The object with experiment design is
thus to make these choices so that the data become maximally informative

subject to constraints at hand. In other cases the user may not have the
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possibility to affect the experiment, but must use data from the normal

operation of the system.

2. The set of models. A set of candidate models is obtained by
specifying within which collection of models we are going to look for a
suitable one. This is no doubt the most important and, at the same time,
the most difficult choice of the system identification procedure. It is here
that a priori knowledge and engineering intuition and insight have to be
combined with formal properties of models. Sometimes the model set is
obtained after careful modeling. Then a model with some unknown
physical parameters is constructed from basic physical laws and other well-
established relationships. In other cases standard linear models may be
employed, without reference to the physical background. Such a model set
whose, parameters are basically viewed as vehicles for adjusting the fit to
the data and do not reflect physical considerations in the system, is called
a black box. Model sets with adjustable parameters with physical

interpretation may, accordingly, be called gray boxes.

3. Determining the “best” model in the set, guided by the data.
This is the identification method. The assessment of model quality is
typically based on how the models perform when they attempt to reproduce

the measured data.
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Chapter 1.5 HISTORY OF THE ADAPTIVE CONTROL STRATEGIES

Most chemical processing plants were run essentially manually prior to 1940s.
Only the most elementary types of controllers were used. Many operators were
needed to keep watch on the many variables in the plant. Large tanks were
employed to act as buffers or surge capacities between various units in the
plant. These tanks, although sometimes quite expensive, served the function of
filtering out some of the dynamic disturbances by isolating one part of the

process from upsets occurring in another part.

With increasing Labor and equipment costs and with the development of more
severe, higher-capacity, higher-performance equipment and process in the
1940s and early 1950s, it became uneconomical and often impossible to run
plants without automatic control devices. At this stage feedback controllers
were added to the plants with little real consideration of or appreciation for the
dynamics of the process itself. Rule-of-thumb guides and experience design
techniques. Closed-loop proportional integral and derivative control (PID) have

been most popular control strategy in the chemical industry.

In the 1960's chemical engineers began to apply dynamics analysis and control
theory to chemical engineering processes. Most of the were adapted from the
work in the aerospace and electrical engineering fields, In addition to designing
better control systems, processes and plants were developed or modified so
that they were easier to control. The concept of automatic and adaptive control
became more important. They owe much of their current status to the early

developments in the field achieved in the military and allied industries. In 1955,
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it was first suggested that military computer control systems could be applied to
the control of chemical processes. At the time, the obvious applications were in
data acquisition, alarm systems, management calculations and set-point
control. Digital computer process control was first applied in Texaco to a
refinery process in 1958 (Farrar, 1959). After that, increasing numbers of
computers installed on process plants in the United States of America and in
the United Kingdom, they are documented in some reviews (Williams, 1963 and
Russell, 1967). At that time computer technology was not very advanced and
usage of these bulky systems was limited. The total cost of the system was that
of the computer and of the conventional equipment. These controliers were in
fact simple special purpose analogue computers executing the standard three- .

term control algorithm.

In the last decades both the computer technology and the control theory
advanced very fast and made it possible to the usage of advanced computer

control applications to many dynamic systems.

These technological developments provide better facilities for the applications
of the classical control techniques and also put forward the advanced modern

control methods to handle complex processes which are difficult to control.

Early classical feedback control methods have been progressively
supplemented by other advanced predictive and adaptive control strategies
since the landmark papers Kam (1985), Clarke (1986), Morris (1987), Warwick
et. al. (1988), Masten (1988), etc. Recently the successful applications of
adaptive control techniques received widespread acceptance among chemical

industries (Seborg et. al., 1986; Lambert, 1987) and in other areas such as
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mining, metallurgical industries. One of the most interesting area is the control
of bio-medical systems (Lihkens, 1984;ALinkens and Hacisalihzade, 1990). The
human body can be taken as a chemical plant producing numerous chemicals,
and making different reactions at certain temperature and pressure conditions,

heat and mass transfer operations also take part in these reactions.

Historically, self-tuning control has been concerned with the sub-optimal control
of noisy linear time invariant systems of known order and delay but with
unknown parameters. After three decades of the first work of Kalman (1958)
and over a decade since the original designs of Peterka (1970) and Astrém and
Wittenmark (1973), self-tuning or adaptive control is widely referred to as .
almost any form of automatic regulator tuning and is finding a better place

among the industrial controliers.

Self-tuning controllers can be useful in the area of, automatic tuning of PID
regulators (Gawthrop, 1986; Warwick, 1987), control of time-delay systems with
predictor based designs, control of multivariable systems with interactions and
delays (Morris et. al., 1982), design of standalone controllers for specific high-
performance loops, tuning of dynamic feedforward compensator and tuning of
general feedback controllers continuously or on demand.

Self-tuning and in general adaptive control theory has made an outstanding
mark on the development of control theory and practice since 1959. The
number of publications and conferences on adaptive control strategies and
related subjects such as estimation methods and identification techniques have

been increasing and still keep increasing.



Chapter 1.6 SAMPLED-DATA SYSTEMS

Sampled-data systems are systems in which signals are discontinuous or
discrete. Every T, minutes the sampler closes for a brief instant. The output of
the sampler fy is, therefore, an intermittent series of pulses. Between sampling
times, the sampler output is zero. At the instant of sampling the output of the

sampler is equal to the input function.

A typical input signal is represented by the continuous function f(t). When the
duration is much shorter then the system time constants, the output of the ‘
sampler may be approximated by the train of impulses f*(t). The term f*(t) is

read “f star of t.”

The area of each impulse is equal to the value of the input signal at the time t =
nT of the particular impulse. Thus, the area of the nth impulse which occurs at

time t = nT is f(nT). The equation for the entire train of impulses is

F*(t) = f(0)3(t) + f(T) 8(t — T) + f(2T) 5(t - 2T)+

o

= f(nT) 8(t—nT) (1.3)

0

where §(t) is a unit impulse at t = 0 and §(t — nT) is a unit impulse att = nT

The Laplace transform of the sampled signal is

F*(s) = LIf*(t)] = f(0) + f(T)e ™ + f(2T)e™™ +

14



=Z f(nT)e™™ (1.4)

To illustrate the preceding concept, consider the continuous input
f(t) = ™
The corresponding sampled signal f*(t) is
Pty =6(t)+e™ s (t—-T)+e2 §(t-2T)+...=e™ § (t—nT)
The Laplace transform of the continuous input f(t) is
1
F(s) = L[ f(t)] = 1/(s+a)
The Laplace transform of the sampled signal f*(t) is
F*s) = L[ft)) =1 +e* e + 2T T 4

=1 +e-(s+a)T + e—2(s+a)T +

~n(s+a)T

=3 e

The Laplace transform of a sampled signal is an infinite series.

A very important theorem of sampled-data systems is:
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To obtain dynamic information about a plant from a signal that contains
components out to a frequency wna, the sampling frequency ws, must be set at

a rate greater than twice Wmax .
Ws > 2Wpmax

This basic sampling theorem has profound implications. It says that any
frequency components in the signal (for example, 60-cycle-per-second
electrical noise) can necessitate very fast sampling, even if the basic process is
quite slow. |t is, therefore, always recommended that signals be analog-filtered .
before they are sampled. This eliminates the unimportant high-frequency

components.

Chapter 1.7 THE z TRANSFORM

The simple substitution

Ts

converts the Laplace transform to the z transform. Making this substitution in

Eq.1.4 gives

Z[f*(t)] =F(2) = f(0) +{(T)/z + f(2T)Iz*+...

16



=3 f(nT)z" ‘ (1.5)

Where F(z) designates the z transform of f*(t). Because only values of the
signal at the sampling instants are considered, the z transform of f{t) is the
same as that of f*(1).
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Chapter 2. CHAPTER 2 LITERATURE SURVEY

Chapter 2.1 INTRODUCTION

A brief survey of the developments of adaptive control and its applications is
presented in this chapter. As covering the whole range of adaptive control
schemes is beyond the scope of this thesis, this chapter reviews the class of -

stochastic adaptive control schemes known as “Self-Tuning Control”.

Chapter 2.2 ADAPTIVE PROCESS CONTROL

The basic idea of a self-tuning system is to construct an algorithm that will
automatically change its parameters to meet a particular requirement or
situation. This is done by the addition of an adjustment mechanism which
monitors the system (in a control setting) or the signal (in a signal processing
setting) and adjusts the coefficients of. the corresponding controller or signal

processor to maintain a required performance.

18



The origin of such idea goes back to Kalman (1958) and his studies on a “self-
optimizing” control algorithm. The scheme firstly involved with the on-line
determination of the parameters of a model, which is assumed to describe the
process. The latest estimates of the parameters of the process model are then

employed to calculate a controi signai based on a control law.

The strategy hence conforms to the conventional design practice of process
modeling followed by controlier synthesis. The advantage over classical off-line
design is the ability of the algorithm to automatically adjust (self-tune) the
controller's parameters to account for slowly time varying process
characteristics, at every sample interval if it is desired. At that time idea was .

frozen about 12 years.

In 1970, Peterka (1970), and, later Astrém and Wittenmark (1973) succeeded
Kalman and revived his idea. Peterka’s algorithm can be considered to be the
first recognizable modern self-tuning control scheme. The self-tuning regulator
of Astrém and Wittenmark differs from the original scheme of Kalman'’s in that
controller process, rather than process model parameters, which are directly
estimated on-line.

In order to design as adaptive controller, an on-line process identification
technique is used to estimate the process parameters of a model of the process
and this information is used to obtain an appropriate law. Although an effective
adaptive control algorithm requires a good parameter estimation law and a good
control law, the parameter estimation forms the main part of an adaptive
controller (Shah, 1986).



According to Tsypkin (1966), the term ‘adaptation’ means “the process of
changing parémeters, structure and possibly the controls of a system on the
basis of information obtained during the control period, so as to optimize the
state of system, when operating conditions are either incompletely defined
initially, or changed”. This means that a fixed gain feedback is not considered to
be part of an adaptive system (Astrém, 1983).

According to Goodwin and Sin (1984), an adaptive controller is actually nothing
more than a special nonlinear control algorithm which is motivated by combining

on-line process parameter estimation with on-line control.

The principal reason for suggesting adaptive schemes in practical applications
is to compensate the large variations in plant parameters over time (Lee and
Narendra, 1988). Typically, the parameters of the plant change slowly.
However, when such changes take place over along period, the total variation

in the values may be substantial.

There are three schemes for parameter adaptive control strategy; Gain
Scheduling; Model Reference Control (MRC) and Self Tuning Controllers (STC)
(Astrom, 1983 and Landau, 1982). In this thesis only Self Tuning Controilers will

be examined.
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Chapter 2.3 SELF-TUNING REGULATOR (STR)

An ideal regulator should have an adaptive mechanism able to distinguish
between noise, drifts or deterministic changes and at the time use moderate
control action to prevent overshoot and instability. In order to make it
acceptable by the industry it should suit to a broad class of processes, consists
of simple algorithm and performance requirements and also must be dependent
upon as few as possible parameters, and all these should have simple initiative
base (Hiram and Kershenbaum, 1985).

In 1973, Astrom and Wittenmark proposed the ‘self-tuning regulator’ (STR).
The purpose of this regulator is to control systems with unknown but constant
parameters. The regulators can also be applied to the systems with slowly
varying parameters. The STR is also known as the Minimum Variance Self
Tuning Regulator (MVSTR).

The analysis has been restricted to single-input single-output (SISO) systems. It
has been assumed that the disturbances could be characterized as filtered
white noise, with zero mean and finite variance. The criterion considered is the
minimization of the variance of the output. The algorithms analyzed are those
obtained on the basis of a separation of identification and control. To obtain a
simple algorithm, the identification is simply achieved by a least squares
parameter estimator.

The self-tuning regulator is in essence, the same as Peterka’s (1970) algorithm.

The major contributions of their publication were the results of the analysis of
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the closed-loop properties of self-tuning algorithm. These may be summarized
by two theorems. The first one states fhat if the parameters of the sélf-tuning
regulator converge, then certain covariance’s of the output and certain
covariance’'s of the control variable and the output will vanish under weak

assumptions on the system to be controlled.

These assumptions are that the model representing the process is of sufficient
order and that process time-delay is known. This theorem implies that if the
process being controlled is stable, then the self-tuned closed-loop will also be
stable. In the second theorem, it is assumed that the system to be controlled is
a general linear nt" order system. If the parameters estimated converge such .
that the controller polynomials do not have common factors, then the self-tuning

regulator will converge to the ‘optimal’ minimum variance regulator.

The control law obtained is in bet the minimum variance control law that could
be computed if the parameters of the system were known. This theorem implies
that if the model is of sufficient order, then even if the converged estimated
parameters are biased, the control signal will still approach that calculated from
knowledge of the true characteristics of the process. It means that the self-

tuning regulator has the desired asymptotic properties.

The regulator can be thought of as being composed of three parts; a parameter
estimator that estimates the process parameters, a controller and a third part,
a controller designer which relates the controller parameters to the process

estimator.
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Astréom and Wittenmark (1973) has defined the concepts of the self-tuning in
their work. That was the beginning of much research interest into the self-tuning
technique. Since then it has drawn much attention to this method of adaptive
control which is still very much in interest. The good transient and asymptotic
properties and computational simplicity of the self-tuning regulators made the
method attractive for industrial applications (Tham, Montague and Morris,
1987).

Using STR in industrial environments were very encouraging, there were some
points that were not in favor of the STR. Firstly, the demands on final control
elements made by minimum variance control law were too severe. In order to .
maintain optimality of control, minimum variance control signals tend to exhibit
large magnitude changes, resulting in excessive wear and tear of
instrumentation. Secondly, the applicability of the minimum variance control law
was also limited to minimum phase processes. Control of non-minimum
phase (NMP) system could however be affected by scaling the controller

parameters or even by increasing sampling intervals.

Self-Tuning Regulators are able to control uncertain systems and have been
used in a number of experimental facilities and industrial plants. However,
potential practical problems have prevented the full acceptance of these
controllers in industry; this includes difficulties in choice of parameters, method
of start-up, long-term operation, variable and uncertain time-delays, valve

saturation and sudden changes in the system (Hiram and Kershenbaum, 1985).
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Chapter 2.4 SELF-TUNING CONTROLLER (STC)

Clarke and Gawthrop (1975) proposed an extension to the Minimum Variance
Self-Tuning Regulator (MVSTR) of Astrom and Wittenmark(1973). This
extension was that the excessive control effort was penalized by introduction of

a weighting on control signals.

Suitable choice of control weighting is also enabled to control non- minimum
phase (NMP) systems. The resulting aigorithm was called as the Generalized
Self-Tuning Regulator, and was later named ‘Self-Tuning Controller (STC) by .
Larke and Gawthrop (1975).

The STC not only penalises excessive control, but also had included in its cost
function, the set-point (w;). It could therefore accomplish regulation as well as

set-point tracking of both minimum phase and non-minimum phase systems.

The STC schemes fall into the class of adaptive scheme known as non-dual
certainty equivalence stochastic adaptive systems. If the cost function only
takes into account the previous measurements and does not assume that
further information will be available, than the resulting controller is called as

‘non-dual’ controller, otherwise the result would be a ‘dual’ controller.

Self-tuning control algorithms may be divided into two groups ; implicit (direct)
methods were the estimator directly produces controller coefficients and
explicit (indirect) methods where the estimator generates system coefficients

which then can be used to calculate controlier coefficients.
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Chapter 3. INTRODUCTION TO PARAMETERS ESTIMATION

Chapter 3.1 INTRODUCTION

System identification is a prerequisite to adaptive prediction and control; it
concerns the generation (for example through specific experimentation) and
collection of information, revealing the characteristic behavior of the process, .
and development of a mathematical representation of the process. Thus while
parameter estimation concerns the determination of the numerical values of
the parameters of the process model which best describe the dynamics of the
process, identification involves model structure selection, collection of relevant
information, parameter estimation, and model validation. The nature of the

model is very much process and problem dependent.

There are different methods of parameter estimation. The suitability of a method
depends on the quality of information contained in the data, the conceptual
structure and the application concerned. The quality of the estimates are shown
to depend on the nature of the noise, and the richness of the information

contained in the data.
The system identification literature contains hundreds of technical papers on
many different approaches to the subject. Therefore, it is very difficult for the

engineers who are not familiar with the adaptive control theory, to select the
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appropriate approach to use for any given problem. Thus, it is a good idea to
remember the comment by Astrém and Eykhoff (1971); “A typical example is the
discussion whether the accuracy of an identification should be judged on the
basis of derivations in model parameters or in the time response. However, if
the ultimate purpose is to design control systems, then it seems logical that the
accuracy of an identification shouid be judged on the basis of the performance

of the control systems designed from the resuits of identification”

Identification means that a batch of data is collected from the system and
subsequently as a separate procedure this batch of data is used to construct a
model, such a procedure is called as ‘Off-Line Identification’. In general, .
methods which are used for off-line system identification are based on
information obtained from the system previously. This is usually a set of data
observation of system input-output after statistical tests have been applied to
the system in order to make an estimation of the model order and subsequently
the parameter values o f the process.

The purpose of this chapter is to provide an insight into parameter estimation
techniques and emphasis is placed on the mechanism of the particular
algorithm used in this work; Recursive Least Squares (RLS). This technique is

based on the minimization of some squared error function.

26



Chapter 3.2 THE LEAST SQUARES PARAMETER ESTIMATION

The history of least squares started with Karl Gauss (Bodewig, 1956) and it is
one of the most popular and useful techniques for the system identification. It is
based on the principle that the most probable values of the unknown gquantities
will be those for which the sum of squares of the differences between the
actually observed and computed values (ie. error), multiplied by numbers that

measure the degree of precision is minimized. Consider the following model;
AZ )= B(z")ur+ C(z")E, + d (3.1)
where 'y’ and ‘U’ are the sequences of output and input signals respectively; ‘€’
is a disturbance signal and assumed to be a random sequence with zero mean
and variance o” and is uncorrelated with ‘v’ and ‘U’; ‘t' is the time index and 'k’ is
the time delay or dead time that is an integer multipie of the sampling time.
A speacial case of the model equation (3.1) is:
AZ"Y= Bz uc+ & (3.2)
withd=0,C=1ande=¢

Polynomials A(z") and B(z™") are defined as:

AZ")=1+az" + a2+ .. +auz™ (3.3a)
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B(z")=bo + b1z’ + byz? + ... + bpgz™ : (3.3b)
Expansion of equation (3.1) at time t =1 will yield:
Yt + @1Ye1 +...F @naYina = Dilya +...F DngUticns + € (3.4)
where ai (i=1,2,3,...,nA) and bj (j = 1,2,3,...,nB) are unknown parameters, ‘nA’
and ‘nB’ are degrees of the polynomials ‘A’ and ‘B’ respectively. The total
number of parameters which must be estimated is
deg(A) + deg(B) + 1
or;
nA + nB+1
Equation (3.4) could be written in the following form:
Ye= X0 + e (3..5)
The regressor or data vector ‘X’ is defined as:
g_(T: = (Y11, = Ye2, - »-Yina ; Uk, Utket, ..o ,UtkenB) (2.6)
and the parameter vector is ‘0’ is defined as:

8" =[ai, a,...,ambo, by, ...,Dng] (3.7)
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For N equations that means N observations the following equations results:

y=x 0+ (3.8)
where

Y = (Y1,Y2,...,¥N) (3.9)

X = (X1,X2,...,XN) (3.10)

g€ = (g8 .... &N ) (3.11)

The objective is to determine the elements of ‘@’ by minimization of some error

squared function with respect to ‘8. Such a function is given by:

N
=D TWeh=e'We (3.12)

1

where g, is the residual and it is defined as:

= yt-x1 0 o1 (3.13)

It is noted that; t =1,2,3,...,N and ‘A' denotes the estimated value.
‘W' is a weighting matrix of appropriate dimensions and three major forms may

be encountered.
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f W=

Least Squares (LS)

2. If W is a general positive definitive matrix

Weighted Least Squares (WLS)

3. If the characteristics of the noise effecting the system is known, then
by choosing ‘W™ equal to the noise covariance matrix, the minimization results
in the ‘Generalized Least Squares (GLS)’ parameter estimation.

Proceeding with the minimization , rewrite equation (3.12) as;

Jo= (Y- X8)"W (y-x8) (3.14)
Expansion of the equation yields:

Jo=y Wy-y' Wx0-8X"Wy+8"x' Wx8 (3.15)

Differentiation of this equation with respect to ‘0’ leads to the well known resuit

in system identification;

0Js/o0 = -2x" Wy +2x" W x 8 (3.16)

For W = | the Least Square estimator of ‘9‘ is obtained as;
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O1s = (X%)'X'y : 3.17)

The procedures described here are ‘Off-line’ (Batch) methods. When the
model is updated periodically with reference to its past values, this is called
‘Recursive Square Parameter Estimation (RLS)’ or ‘Recursive

Identification’.

Chapter 3.3 RECURSIVE LEAST SQUARES METHOD

For on-line parameter estimation it is better to make computations in recursive
form, ie. the algorithm is formulated as the results obtained at the previous time
step may be used to compute the estimates at current time, ‘t’. Re-evaluating
the parameters in the model makes the recursive estimation techniques very
desirable.

Chapter 3.3.1 Recursive Least Squares (RLS) Parameter Estimation:

RLS algorithm is one the most popular and well known estimation methods to

be used an on-line identification. Having less computational requirements and
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‘being straight forward to be understood makes this method very popular. in a

general way it can be expressed as following equations:

:= Our + Kty (3.18)
(New Estimate) = (Old Estimate) + (Correction Factor)*(Prediction Error)
Where the gain (correction factor) ‘K¢ is calculated as;

Ki = Peax(1 + X% Pyax)” (3.19)

Py = (1 - Kot )Pyt (3.20)
P : Covariance of the parameter-estimation error.

And the equation error ‘¢’ is defined by;

& = (Yt - %O11) (3.21)

For a particular ‘K, if & is small, very little change is made in the estimates.

However, for a large ‘e, the estimates change significantly.

Since new estimates of '©’ is required at each sample interval, to avoid

computing load and put much stress on new data, a forgetting is used.

Ki = Peaxe(p + Xt Prixe)” (3.22)
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where p is the forgetting factor.

12p>0

A simple guide to the choice of a value for forgetting factor is the concept of *
Asymptotic Sample Length” (ASL) or the way we can call it * Memory Time

Constant”, which can be defined as,

ASL =1/(1-p)

Typical values of ‘p’ are in the range of .95 to .999, corresponding to ‘ASL’

values of 20 and 100 sample steps respectively.

The implementation of the Recursive Least Square Algorithm is as

follows:

Sample and update the data vector ‘x

Calculate the prediction error ‘s’ from equation (3.21)
Calculate the gain K;

Calculate ‘new’ estimates from equation (3.19)
Update P,

Wait for sample then go to step 1.
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Chapter 3.4 SINGULAR VALUE DECOMPOSITION (SVD)

Singular value decomposition is an optimal orthogonal decomposition which
finds wide applications in rank determination and inversion of matrices, as well
as in the modeling prediction, filtering and information compression of data
sequences. From a numerical point of view, SVD is extremely robust, and the
singular values in SVD can computed with greater computational accuracy than

eigenvalues.
SVD is popularly used for the solution of least squares problems; it offers an
unambiguous way of handling rank deficient or nearly rank deficient least

squares problems.

Given any mxn real matrix A, there exist two real orthogonal matrixes U and V

and a diagonal matrix S where;

A=USV’ (3.23)
and

A is mxn , Uis mxn , V is nxn , S is mxn
The orthogonal property is as follow:

uu'=uU'U =1 , W' =V'v=|

For nonsingular A,
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S=U'AV =diag. {s1, Sz, ... ,Sp} p = min(m,n)
For A of rank r

$1282..28>0 and Spq = Spa = ...

"
L
"

o

The solution according to this property can be get as in the following:
ATAG = Aly (3.24)
Writing A in SVD and putting it in equation (3.24)
VSUTUSV™9 = VsUy (3.25)
And putting S on the left side
VTg =S"'UTy (3.26)
The final form which is a solution for @ can get.

8 =vs'uly (3.27)

35



Chapter 4. SELF-TUNING CONTROL (STC)

Chapter 4.1 INTRODUCTION

Astrém and Wittenmark (1973) developed an important class of controller called
‘Self-Tuning Regulator’ for the control of systems with constant, but unknown
parameters. The regulator is based on a recursive least squares estimation of .
the parameters in the control law itself. The self-tuning regulator, as its name
implies, aitempts to minimize the fluctuations of the system’s output when the
loop is randomly distributed. However, it makes no attempt to ensure that the
set-point are followed optimally nor does it try to penalize excessive control
action (Astrém et. Al., 1977).

In 1975, Clarke and Gawthrop proposed an extension to the Minimum Variance
Self-Tuning Regulator of Astrém and Wittenmark. The resulting algorithm was
called the * Self Tuning Controller (STC) ’ which minimizes a cost of function
that incorporates weighting of inputs, outputs, and set points, whilst retaining
the main concepts of the basic algorithm. There are numerous work on STR
and STC.
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Chapter 4.2 SINGLE-INPUT SINGLE-OUTPUT (SISO) STC

The system considered is a single-input single-output process that is randomly

distributed and which can be described by the following discrete equation:

The terms in equation (4.1) can be represented as polynomials in the back-shift

operator (z') in the form (z'y=y +1) and equation (4.1) becomes as;

AZ")yi= 2*B(Z " )u+ C(z e + d (4.1)

or simply as;
Ay:= z*Bu,+ CE, + d (4.2)

where:
A=A =1+a, 2" +az%+ ... + apz™ (4.3a)
B = B(z')=b0 + byz™! + byz?+ ... + bpsz™ (4.3b)
C=C(Z")=1+cz"+ 2%+ ... +bpez™ (4.3c)

It is assumed that the random sequence (noise) filter ‘C’ is strictly stable, ie.

The roots of ‘C’' must lie with in the unit circle. Figure (4.1) shows the block

diagram of the system given by the equation (4.2)
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The aim is to design a controller that minimizes a quadratic cost function of the

form;
‘| = E{(Pysk- Rwe)? + (Quy)? |} (4.4)
‘E{... |} is the expectation operator.

‘wt’ set-point.
‘P.R,Q" are the weiting filters.

In Clarke and Gawthrop (1975), incorporation of the weighting polynomiais ‘P’
and ‘R’ in ‘I’ was for the ‘sake of completeness’. The main emphasis was on the .
control. input weighting polynomial ‘Q’. If ‘Q’ is set to zero, equation (4.4)

becomes as;
I = E{(Pywc- Rwy)? |} (4.5)
And with P=1,R=1 yields;
= E{(yse- Wo)° |} (4.6)
Which | = E{(error)? lt} and | = Variance (error)
Minimization of the equation (4.6) with respect to u, leads to a ‘Minimum
Variance (MV) ‘ control law.
A non zero (Q’) includes the important cases:
Recall equation (4.6) and replacing Q’ by A’;

| = E{(P Yis— R we) 2+ (N'u) 2} (4.7)
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Minimization of ‘I, with respect to ‘uy' yields a control, which penalizes both
outpui deviations from set-point and excessive control effort. However, if the set
point w; has a non-zero mean, ie. ©=0, then unless 1'=0, the system output will
not be able to track the set-point exactly. In other words, offset will result.

Recall equation (4.4) and replacing Q’ by A' and ‘uy’ by ‘U - U4

2= E{ ( (P You— Rwef*+ (N(1-2")u)*) |} (4.8)
Minimizing ‘I;' again penalizes output deviations from set-point, but now, instead
of penalizing absolute control output, changes in control are penalized. The

resulting control guarantees that the mean value of the system output, 'y’ equals .

the mean value of the set-point ‘w'.

This is however achieved at the expense of possible degradation of dynamic
performance as a result of the inclusion of an integrating term (1-z™") "into the
closed loop. The control law resulting from the general cost function ‘I’ will now

be derived .

The ‘yw’ term in equation (4.4) represents a future value, as it is unknown, 81/

Ut is not achievable. However ‘y,.,/ can be replaced by its prediction ‘y*u«’ with,
Yiek = Ykt + Erek (4.9)

The relationship between 'y* and process parameters can be obtained by
rewriting equation () as;

Yk = BIAU + ZC/AE + dIA (4.10)
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Use of the ‘separation identity’.

Z“CIA = ZE + FIA (4.11)

allows the stochastic term in Equation (4.10) to be regarded as a combination of
future sequences and sequences which have occurred up to and including

present time 't ie.

Z*CIAL, = Z°EE, +FIAE, (4.12)

where

‘Z“E€’ is the future sequence.

‘FIAE; is the past and present sequence.

‘E and F’ are polynomials in the back-shift operator z”*

deg(E’) = k-1 and the leading coefficient of ‘E’ is unity, ie. ey = 1
Substitution of equation (4.6) into (4.4)

Yerk - Bk = BIAU, + FIAE + dIAEE Y (4.13)
Euk = Bk (4.14)
Y*wit = BIAU + (FIAC)(Ay: - z*Bup-d) + d/A (4.15)
y*wir = Ebuy + Fy, + E(1)d)/C (4.16)

where ;
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E'(1) =§ ei . (4.16a)

i=1
Defining; G = EB and &' = E(1)d, equation (4.16) can rewritten as;
Y = (Gut + Fyt + 8')/C (4.17)

Using equations (4.4) and (4.17) in the cost function given by the equation (4.3)
yields.

Iy =E{((Py* it +€1s) - RW)>H(Q'u)?) |} (4.18)
‘I’ can be minimized with respect to ‘u,’ to obtain the ‘Generalized Minimum
Variance (GMV)' control law. Using the assumption that ‘e..,’ is an uncorrelated
sequence with zero mean, ie.;

E{e} = E {ey} = E{eu} = E{few} =0 (4.19)
and

E{(Pe)’} = 6* + E{Pe}* = ¢° (4.20)
where ‘c? is the variance of (Pe). ‘I’ thus simplifies to;

I, = E{((Py* it - Rw) + (Q'u)?) |y +0° (4.21

the objective is to minimize ‘l,’ with respect to ‘u, ie.;
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obloww=0 ; oE{.}You=0
The new cost function will be ;

J = E{((Py* it - Rwp)? + (Qu)?) |} +67 (4.22)
From the equation (4.17),

Py*uw = (Gut + Fyt + 8")P/C (4.23)
Substituting equation (4.23) into equation (4.22) yields;

J = E{(((PE/C)y: + (PG/C)u, + (P&'/C) - Rwt)> + (Q'w)?) |} (4.24)
Minimization of the cost function with respect to ‘u;’ yields;

odloug = 2(Py*ui - RWi)Pogo/Co + 2(Q'uy)q’o = 0 (4.25)
After simplification, it can written as;

OJIous = Py*uir - RwWy +( Co G'o/Po@o)Q'u; = O (4.25a)

Since ¢, = 1, po = 1 and defining Q = g’ Q'/go, equation (4.25a) can be written
as;

Py*un -Rwe + Quy = 0 (4.26)
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The result ‘s a control law that provides instantaneous optimal control action, ie.
it does not take into account the effect that the preseht control action will have
on future outputs at load timers greater than the process time delay . In figure
4.2 the block diagram that represents the control law given by equation (4.26)
and in figure 4.3 the block diagram of a feed-back system with self-tuning

controller can be seen. Figure 4.4 is a simplified form of figure 4.3

1/Q —

%
Py t+k/t

Figure 4.1 The block diagram that represents the control law given by equation
(4.25)

1Y
X . R —->®——> 1Q ; + PROCESS .,

PY‘t+kR l
-+
{

W PF/C

PREDICTOR

Figure 4.2 Block diagram of a feed-back systems with self-tuning controller.

43



t
e
W, —»@-—> 1Q PROCESS —

PV*N-LII

PREDICTOR
(ESTIMATOR)

Figure 4.3 is simplified form of figure 4.2.

Chapter 4.3 SPECIAL CASES OF THE STC CONTROL LAW

Self-Tuning Control Law can be set up to get different control strategies, by
considering the equation (4.26) a few cases will be discussed in this section. By
setting ‘Q’’P’ and 'R’ weighting functions to specific values as mentioned below,

resuits in different type of control actions:

If it is assumed that P = 1, R = 0 and Q = 0 then the control law becomes the

‘Minimum Variance Self Tuning Regulator'( MVSTR) form.



if it is assumed that P = 1, R = 1 and Q = 0 then the control law becomes the
‘Generalized Minimum Variance Self Tuning Controlier( MVSTC) form.
If it is assumed that P = 0, R = 0 and Q = 0 then the control law results in the

‘Generalized Minimum Variance Self Tuning Controller( GMVSTC) form.

Chapter 4.4 PID CONTROLLERS

In this study first process parameters are obtained by Cohen-Coon method
based on tangent line through point of inflection then the controliers parameters
are tuned by Zeigler-Nichols methods. A general description of the new trends

in PID control theory is given below.

Although the history of adaptive control has been around for four decades; it
was only during the last fifteen years that the theory could actually be realized
in practice. In recent years, the availability of powerful digital computers and
the very idea of potentials of adaptive control has motivated considerable
amount of work being done on this subject. These works have refined or
extended the original theory and brought about new ideas, such as self-tuning
control, to the extent that there is now a solid theory backed by a large body of

literature on this area of research.

As a result, many new control aigorithms have emerged which are superior to
traditional PID controllers. However, it seems that the process control industry

is a bit cautious if not suspicious about this huge development.
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The possible reasons for this attitude include:

1. PID controllers are regarded as "jack of all trades" in the process control

industry.

. 2. Developments in classical control and especially tuning PID controllers were
largely due to close co-operation between universities and engineers in
industry whereas, in general, adaptive control was born in academic world
and brought up there. It was considered more an academic topic than a

practical solution to difficult actual processes up to a few ago.

3. Adaptive control is based on advanced control theory, which is not

appreciated by many plant operators.

4. For sometime, there was a misunderstanding that self tuning controllers
would substitute the existing PID controllers, this, of course, can not be
justified. Andreiev (Andreiev 1981) makes a conservative guess that in a
typical plant, about fifty percent of all process control loops are being run in
manual (open loop) rather auto (closed loop) mode. In practice this figure
would be much lower; therefore more than fifty percent of all process control

loops can be adequately controlled by PID controllers.

Many years of experience have proved that PID controllers are versatile enough
to control a wide variety of processes, however even if a nearly optimal set of
parameters are selected, the process operating points will certainly change due
to many variables acting on the system. In order to return to optimum
performance, the controller parameters should be readjusted. That is the
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selection of the appropriate gain, integral and derivative time constants so-
called tuning for better performance. This procedure is still very much a manual

operation performed by a skilled operator.

In view of the causes mentioned above and since the tuning procedure is
mathematically defined, there has been a strong tendency towards automating
the tuning process, thus a new chapter in adaptive control has been opened;
that is PID adaptive controllers. Names such as PID self tuners, PID auto
tuners and intelligent PID controllers are all attributed to a class of adaptive

controllers which are essentially PID controllers but tuned automatically.

Chapter 4.4.1 State of Art

There have been different approaches to the problem of deriving a PID like
adaptive controller. However, all of these can be classified under two broad
classifications; namely Model Based (Parameter Estimation) Or Expert systems

(Pattern recognition).

The model-based approach is a special case of self-tuning control where the
structure of the controller is pre-fixed to that of the PID algorithm. The
parameters of the model of the system are continually updated to match the
input output behavior of the actual process. The PID controller is then tuned
based on the estimated system parameters.
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The so called pattern recognition approach is basically automating the manual
process of tuning a PID controller. The theme of most of these "packaged"
designs is an intelligent PID controller that can reason logically within some
defined context. The process recovery curve ( reaction curve ) is observed
after a disturbance or a set point upset or whenever tuning is required; the
appropriate PID adjustments are then made to produce the desired damping

and overshoot.

Chapter 4.4.2 Model based PID self tuners

One of the early model based implementations was a model reference PID self-
tuner by Hawk et al (Hawk, 1982). The system model was recursively updated
by an Instrumental variable algorithm. The PID parameters were then selected

through interactive communication of operator and controlier,

Nishikawa et al (Nishikawa, 1984) proposed an alternative algorithm for auto
tuning PID controllers. When running is required an intentional disturbance is
applied to estimate the process parameters. The authors acknowledge that use
of perturbation signal is not desirable. However, they argue that the signal is a
small pulse, which does not disturb the normal operation of the plant
significantly. After estimating the system parameters, the PID parameters are
chosen so as to minimize the weighted ISE ( Integral Of Square Error). This

method -like previous method- is essentially a man-machine interactive tuning

48



procedure. The authors have tested this algorithm in real processes and have

reported that sufficiently good settings of PID parameters is obtained.

Other alternative designs have been pole-placement PID self tuners (Warwick,
1988), (Banyasz., 1982), and (Ortega, 1984). All these approaches share the
following: they are based on discrete time self-tuning control, and the
parameters of the system are identical by massive least squares estimation.
The difference between them is how the PID parameters are updated. Warwick
and Ortega adopt a pole placement design control law but fit a PID algorithm to
control structure. Banyasz et al derive an explicit formula ensuring prescribed

overshoot of the process to update PID parameters.

Chapter 4.4.3 Pattern Recognition PID self tuners

Taylor's "Micro-Scan 1300 (Andreiev, 1977) controller was one of the early PID
adaptive controllers. The distinct feature of this model was that it was one of the
first PID auto-tuners supplied as a "packaged product". Before that, self-tuning
control was in use in large computer installations based on direct digital control
in which the self-tuning algorithm was in the form of software resided an a main
frame or minicomputer. Basically, this is an adaptive gain controller where the
gain is varied according to a preprogrammed gain schedule. When there is no
upset to the plant, it performs exactly like an ordinary PID controlier tuned for
fastest response with low gain. As the error exceeds a preset value, the gain
increases dynamically with the error.
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Leeds & Northtop’s "Electromax V” single loop controiler (Andreiev, 1981) was
introduced in 1981. It was the first generation of PID adaptive controllers on
pattern recognition. During the tuning, the plant is upset by a signal -as large
as the plant can handle- to determine the reaction curve of the process. The
controller watches the recovery curve and corrective resetting of the original

PID parameters are initiated.

Oﬁe of the interesting auto tuning techniques is reported by Astrém (Astrém,
1984). The method is essentially based on the Ziegler and Nichols closed loop
formula suggested in a classical paper (Ziegler, 1942). In this method, a relay is
implemented in parallel with the PID controller. The system actually operates .
as a relay controller in the tuning mode and as an ordinary PID controller in
normal operation. The aim of the relay in the loop is to find critical gain and
period which is needed in order to apply the Zeigler and Nichols tuning rules.
When the system is under relay control, it drives the system into a limit cycle
with frequency equal to that at which the plant phase is -180 degrees. The gain
at this frequency is estimated from the limit cycle amplitude. This information is
used to calculate the PID parameters. The relay auto-tuner concept has been

implemented in products from Satt Control and Fisher.

Chapter 4.4.4 PID PARAMETERS UPDATE

The PID parameters are updated at each sample intervals based the
information obtained from the identification part. Either Haalman or Pemberton
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tuning rules will be used for this purpose. It is possible to update the PID
parameters using the open loop Zeigler and Nichols for those systems that can
be modelled by a time delay, a time constant and a gain; i.e:

y(s) 7 u(s) = Koe™a/(ts+1) (4.27)

Z-N rules for a PID controlier for the above model are as follows:

Ke = 1.21/(Kgtq), T = 21y, Tq = .5ty (4.28)
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Chapter 5. EXPERIMENTAL  IMPLEMENTATION of SELF-TUNING
CONTROLLER and PID CONTROLLER

Chapter 5.1 INTRODUCTION

Application of Self-Tuning Controller to first order processes with time delay and
selecting appropriate tuning parameters for the STC control law together with a
PID controlier will be explained and discussed here. As there were several
algorithms for self- tuning controllers, a ‘Minimum Variance Control
(MVC)algorithm and a ‘Generalized Minimum Variance Control (GMVCY
algorithm applied to a SISO process will be considered. For PID controlier the
parameters obtained from Cohen-Coon method that are tuned by Zeigler-
Nichols method will also be discussed.

Self-Tuning regulators can be obtained by starting with a known system and a
design method. The control algorithm can be obtained by introducing a
recursive parameter estimator. The parameter estimator acts on the process
inputs and outputs, and produces estimates of certain process parameters.
Then true parameter values are replaced by their estimated values when
determining the control law using the design method. As there are several ways
to do parameter estimation and calculation of the regulator parameters, this

leads to different types of regulators.

The regulator described in this work is based on recursive scheme of estimating
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the parameters of a prediction model, and it is in implicit controller form. Figure
5.1 (from Dr. Hikmet ISKENDER) shows the type of the regulator used in this

work.

INPUT

A1)

PROCESS
B(0)

ouUTPUT

q (|[KW/sec)

PARAMETER
ESTIMATOR

A (1) B (0)

CONTROLLER

Figure 5.1 Block Diagram of the STR used in this System.

Chapter 5.2 DETERMINATION OF THE FIRST ORDER SYSTEM

PARAMETERS

The plant which has been chosen for the experimental studies is an

experimental rig in the control laboratory. The system consisted of a tank,

53



pump, valves piping, a computer and a heating system. Figure 5.2 shows the
arrangemehts pump and valves of the real plant. To maintain simplicity the
figure does not include the control instruments. The tank was 0.5 m®, the heater
was 4 KW.

Sensor I
, Water-Tank
Heating Prdcess
Sensor
COMPUTER
Flow <+—
Meter m

[\ ——>Pump

Figure 5.2 The System Used for the Experiment

The process parameters such as process gain ‘K, and time-constant ‘v’ are
obtained by two ways. First way is by Cohen-Coon method from which the

parameters are used for PID parameters tuning. The second way is through
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numerical method (SVD) which are used for adaptive controller. The object of
the control system is to control the output temperature of the liquid. The
process transfer function with time delay is as follows.

Gy(s) = (Kpe™)/(ts +1) (5.1)

As the controller output signals must be converted from digital to analog form, a

zero order hold ‘ZOH’ device used to obtain signal reconstruction:
Ho(s) = (1 - /s (5.2)
where ‘At’ is the ‘'sample time'. Forming new transfer function gives;
Gp(s)Ho(s) = (Kpe™) (1 - & *)/(1s +1)s (5.3)
Where, t3 =kAt

To convert this expression to its z-transform equivalent, partial Suction

expansion technique is used, result can be written as;

Y(2)/X(Z) = GpHo(2) = Ke(1-)2™'/(1-y2") (5.4)
where, y=e"-
In difference equation form, potion (5.4) becomes;

Yn= Y¥Yna + Kp(1 - 'Y)xn-k-1 (55)
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By recalling ARMA model from equation (3.1), we can get the system
parameters from equation (5.5) for the first order heating system, ie.

ar=-e®: bp=Ki(1-€*) andk=tJAt

As the control algorithm based on a least squares estimation and a generalized
minimum variance controller wili be simulated, the following prediction model is

used for the estimation;
y(t) = - a1y(t-1) + bou(t-k-1) (5.6)

The objective function of the Generalized Minimum Variance Controller contains
y(t+k) values that is k step ahead into the feature at time ‘t’, the minimization is
not realizable . This problem is overcome by replacing the unknown y(t+k) with
its prediction y*(t+k/t) obtained from only the current and past data. In order to
obtain k-step ahead prediction y*(t+k/t) values ‘Diophantine Equation
(Seperation Identity)’ used.

Chapter 5.3 EXPERIMENTAL WORK FOR THE FIRST ORDER SYSTEM

The object of these experiments were to investigate the Control System as
shown in Figure 5.1. The time constant ‘T’ and the process gain ‘Kp’ were

found experimentally by using a simple step-up techniques in set-point. After
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the step- up the system parameter’s were obtained by Cohen and Coon rule.

Using the data for the process reaction curve as ca be seen from figure 5.3
mathematical model of the system, the process gain ‘Kp’ and the time constant
v were found as 1.53(kw) and 19(sec) respectively. They're used in PID
control. For the adaptive control Kp and 1 are found from the simulation by
SVD. They're 1.63 and 1.2 respectively.

PROCESS REACTION CURVE

~ © O
-—
-~

Time (second)

™
-—

153
172
191
210

Figure 5.3 Process Reaction Curve Obtained from the input-output

data for this System.
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Chapter 5.3.1 Initial Conditions for the First Order System Simulation

Studies:

The conditions for the simulation studies were as follows:

Initial value of the covariance matrix |

Initial value of the parameter ‘a,’ 0.0

initial value of the parameter ‘by’ 0.0
Identification method SVvD
Forgetting factor value 0.98

System Gain (K;) 1.63(sec/KW)
Time Constant of the System (7) 1.2 (sec)
System parameter ‘a,’ 0.433
System parameter ‘by’ 0.923

Type of simulation Closed-Loop
Sampling Period (At) 1(sec)

Chapter 5.3.2 Parameter Variations and Fine Tuning of an STC

The important decisions to be made before implementation of the ‘Generalized
Minimum Variance (GMV)’ control law are as follows;
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¢ the model order,

o the model type,

e choice of the sample time,

¢ determination of the process delay,

e choice of the Q filter
The weighting functions P,R and Q are used to obtain different types of
controller schemes such as MVSTR, MVSTC and GMVSTC. Recalling the
equation (4.25), and definition ‘Q’ which is equal to ‘geQ/g,’;

Py" it -Rwy + Quy = 0 (5.7)
This equation can be rewritten as;

Rw; - Py* i = Quy (5.8)
In the case of R=1 and P=1, equation (5.8) becomes;

Wi - Y = Quy (5.9)

Now, as it can be seen from the equation (5.9) all the controller action is
depended on the definition of the weighting function ‘Q’. Recalling the equation
(4.16) and substituting into equation (5.9) yields;

w; - Fy: - Guy = Qu (5.10)

By using equation (5.10) and substituting different ‘Q’ implementations into this
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equation gives the following results: then,

1) If Q = A, rewriting the equation (5.10) yields;

wt - Fy: - Guy = A (6.11)
then,

w(G+A)=w - Fy (5.12)

ut = (wt - Fyt)(G + 1) (5.13)

For A=0 the controller tries to cancel the plant resulting in an unstable system if
the open-loop system is NMP ‘Non-Minimum Phase’. However, if open-loop
system is stable (ie. roots of the polynomial A are inside the unit circle) then by
tuning an appropriate ‘A,’ value can cause the closed-loop poies to move
arbitrarily close to those of the open-loop system. Note that, the large values of

A’ weight the control at the expense of the set-point tracking (ie. offset problem).

Figure 5.4, Figure 5.5, Figure 5.6 and Figure 5.7 show the controller

behavior for ‘A=0" and the stability of the estimated parameters respectively.
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Figure 5.4 Process Output vs Time for weight function ‘A=0’
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Figure 5.5 Control Output vs Time for weight function ‘A=0’
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Figure 5.8 Process Output vs Time for weight function ‘A=0.25’

Figure 5.8, Figure 5.9, and Figure 5.10 show the controller behaviors in the
case of ‘A =0.25', ‘A =0.5’, and 'A =0.75’ respectively. As it can be seen from
the graphs in order to have zero offset for each value of the set point a different

value of A is needed.
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Figure 5.10 Process Output vs Time for weight function ‘A=0.75’
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2) If Q=AA=A(1-z""), rewriting the equation (5.10) yields;

we-Fy-Gu=a (1-27) (5.14)
then,

Wi-Fyi-Gu=2A (Up-U.q) (56.15)
and

We-Fyr-Au=(G+A)u; (5.16)

ug = (We-FyerAue, )(G+A) (5.17)

Figure 5.11, Figure5.12, Figure 5.13 and Figure 5.14 show the controller

behaviors in the case of ‘Q=AA’ and the robustness of the estimated parameters
respectively.
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In this study a variable Ais use_d which is changed according to the set point
values. Figure 5.15, Figure5.16, Figure 5.17 and Figure 5.18 show the
controller behaviors in the case of varying A and the robustness of the
estimated parameters respectively.
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Figure 5.15 Process Output vs Time for variable weight function ‘A’
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Figure 5.19, Figure5.20, Figure 5.21 and Figure 5.22 show the controller
behaviors in the case of variable ‘A’ and the robustness of the estimated
parameters in regulatory step changes. At first a %25 step-down change is
inserted in the system then a %20 step-up is applied.
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Figure 5.23 and Figure5.24, show the behaviors of PID controller for
changes in set point. Figure 5.25 and Figure 5.26 show the behaviors of PID

controller for changes in load of the process.
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Figure 5.23 Process Output vs Time for PID controlier
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Figure 5.27 shows the effect of setting the integral error to 0 after the set
point is reached.
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Figure 5.27 Process Output vs Time for PID controller (int=0)
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Chapter 5.4 Experimental Results and Discussions

The set point and the load are changed up to %70 to test the performance of
the controller. At different operating ranges PID controller shows sharp

variations for small changes in error still tracks the set point properly.

Figure 25 shows the variation of process output with time for PID controller.
This process was well controlied, despite the wide changes in the operating
range; Figure 26 shows the variation of process inputs, that is heating water, -

with time.

Same changes are also applied in the GMV Self-Tuning controller, this time the
controller provided better performance and control action than the classical PID
controller. The key point here is to remove the effect of the disturbances
without excessive controller changes in the control output. This aim is quite
important in sensitive processes. It is clear that having good estimation of the
process parameters can remove big disturbances by smooth changes in control

output.

Figure 19 shows the variation of process output with time for GMV Self-Tuning
Controller. It can be seen that the process output was kept at its set point under
GMV control despite the changes in the operating range. Figure 20 shows the

variation of process input.

From the results it is clear that both GMV Seif-Tuning Controller and PID
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controller can provide satisfactory control for this heating process.

However, the GMV had an advantage in this case since, it shows a smooth

control action, it is much better for the final control element of the process.
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Chapter 6. CONCLUSION

Chapter 6.1 GENERAL DISCUSSION AND CONCLUSIONS

It is generally acknowledged that the problem of designing a good control
system is basically that of matching the dynamic characteristics of a process by
those of the controller. In other words, if the dynamic behavior of process is
known, then the characteristics of a controller, necessary to give a desired

performance, can be designed.

In this paper servo and regulatory control of a heating process around the
certain set points using the GMV Self-Tuning Controller and a classical PID
Controller is carried out. The process which is found out to be first order is
determined by Cohen and Coon method. This method calls for only a single

step testing under open-loop system without any trial and error procedure.

The parameters of the first order process formed a good basis for the starting
values in tuning PID Controller. Then Zeigler and Nichols method is used for
fine-tuning of the controller’'s parameters. This tuning procedure is one of the
main disadvantage of PID Controllers because of its duration of the

experimentation level.

The STC, in the form as we know it today, fall into the class known as stochastic
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adaptive systems. The design procedure which is almost identical to the
approach outlined by Kalman realized entirely in the discrete timé domain. A
design procedure for unknown process is based on the assumption that it can
be described by a stochastic model. The coefficients of this model based on the
past input and output data. The estimator calculates the coefficients of this
model. The controller parameters are obtained on these coefficients. After
minimizing the prespecified cost function, the controller determines the process

input signal.

The success of the self-tuning controllers in industrial environment were very
encouraging;, the demands on final control element made by the minimum ‘
variance control law were too exacting. In order to maintain optimality of control
performance and also to have smooth changes in control signal, the self-tuning
controller not only penalize control effort, but also changes in control are
penalized.

The two important parts of adaptive systems are parameter estimation and
“Control Law” strategy. If the second one is perfect then it means there is a

chance of perfect control.

The model of a process to be controlled can be obtained by two ways. One is
by physical laws, the other is by experiments. In practice many of the industrial
processes to be controlled are too complex to be described by the application of
fundamental principles. Either the task requires too much time and effort or the
fundamentals of the process are not understood. By means of experimental
tests, one can identify the dynamic nature of such processes and from the

results obtain a process model which is at least satisfactory for use in designing
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control systems. The experimental determination of the dynamic behavior of a

process is called process identification.

The RLS estimator is a well-known on-line identification method. It is a simple
algorithm that can be applied and has the advantage of low computational
requirements. It's disadvantage which is poor tracking capability of changes in
process dynamics, can be overcame by introducing weighting forgetting factor

or some resetting techniques to the estimator.

Tuning STC with a little knowledge needs using different type of weighting
functions. By using experimental techniques we can get much knowledge about

the system thus we can employ trouble-free STC with low maintenance.

In this system a variable weighting function is used depending on the set points
which gave a better controller performance. In this thesis experimental studies
with some hints about the self-tuning are displayed and the important methods

for the self-tuning control algorithms are explained.

SUGGESTIONS FOR FUTURE WORK

A self-tuning controller must be economical in order to be used in all around the
world and it should be simple enough for non-expert persons. Beside this the
self-tuning controller should have a good control performance and robustness.
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The unexpected disturbances should be compensated by including necessary
control weighting term in the cost function. This weighting term has to be
proper enough to overcome the ‘bang’ effect and also it should smoothen the
control output variation to prevent the final control element of the process from
tear and wear.
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