<u>İSTANBUL TEKNİK ÜNİVERSİTESİ ★ FEN BİLİMLERİ ENSTİTÜSÜ</u>

MELEN PROJESİ BOĞAZ GEÇİŞİNİN COĞRAFİ BİLGİ SİSTEMLERİ KULLANILARAK JEOLOJİK MODELLEMESİ

YÜKSEK LİSANS TEZİ Jeo. Müh. Özgür ÖZKAN 505031315

Tezin Enstitüye Verildiği Tarih : 5 Mayıs 2007 Tezin Savunulduğu Tarih : 13 Haziran 2007

Tez Danışmanı Diğer Jüri Üyeleri Yard. Doç.Dr. E. Vural YAVUZ Prof.Dr. Nuh BİLGİN Prof.Dr. Remzi KARAGÜZEL

Haziran 2007

ÖNSÖZ

İ.T.Ü. Maden Fakültesi, Jeoloji Mühendisliği Bölümü Uygulamalı Jeoloji Anabilim Dalı tarafından verilen bu yüksek lisans çalışmasında Melen Projesi boğaz geçişi Coğrafi Bilgi Sitemi kullanılarak Jeolojik veriler ışığında 2 boyutlu ve 3 boyutlu olarak modellenmiştir. Bölgede daha önceki yıllarda özellikle Devlet Su İşleri tarafından gerçekleştirilmiş çalışmaların incelenmesinden sonra, jeolojik ve mekanik veriler değerlendirilmiş ve elde edilen bilgilerden yola çıkarak ulaşılan sonuçlar belirtilmiştir.

İnsanoğlu tarih boyunca yürüttüğü tüm çalışmalarda kendi işini kolaylaştırıcı ve hızlandırıcı sistemler geliştirmiştir. Basit aletler yaparak başladığı bu süreçte, insanoğlu gitgide daha karmaşık, kullanımı eğitim ve bilgi gerektiren; yapılan işlerin süresini kısaltan ve işleri kolaylaştıran sistemler ortaya koymuştur ve koymayada devam edecektir. Tarih boyunca yerküre ile ilgili çalışmaları sürekli devam eden insanoğlu son 40-45 yıl içerisinde Coğrafi Bilgi Sistemi kavramını ortaya koymuş, askeri amaçla üretilen ilk örnekleri bilgisayar ve yazılım teknolojilerinin gelişimi ile beraber günlük hayatta kullanılır hale getirmiştir. Coğrafi Bilgi Sistemi veri üretimi, veri depolaması, verilerin grafik ve analitik incelemesi ve sorgulanmasını sağlayan sistemler bütünüdür. Bu çalışma yukarıda belirtilen özellikleri kullanarak Melen Projesi boğaz geçişinin jeolojik modellenmesi esasına dayanmaktadır.

Tez çalışmalarımın her safhasında bilgi ve tecrübesini bana aktaran, çalışmalarımın her aşamasında desteğini ve yardımlarını bana hissettiren Uygulamalı Jeoloji Anabilim Dalı öğretim üyesi değerli hocam Yrd. Doç. Dr. E. Vural Yavuz'a sonsuz teşekkürlerimi sunarım. Tezin hazırlanmasında ve verilerin düzenlenmesinde bana en büyük desteği veren ve benden hiçbir yardımı esirgemeyen Jeoloji Mühendisi Serkan Dağlıoğlu'na çok teşekkür ederim.

May1s 2007

Jeo. Müh. Özgür ÖZKAN

İÇİNDEKİLER

TABLO LİSTESİ ŞEKİL LİSTESİ ÖZET SUMMARY	vi vii ix x
1 GİRİŞ	1
1.1 Genel	1
1.2 Çalışmanın Amacı ve Yöntemi	2
2 İNCELEME ALANININ TANITILMASI	4
2.1 İklim ve Meteoroloji	4
2.2 Ulaşım ve Yerleşim	5
2.3 Topografya ve Morfoloji	5
2.4 Depremsellik	6
3 GENEL JEOLOJI	8
3.1 İstanbul'un Jeolojisi	8
3.1.1 Paleozoik	8
3.1.2 Mesozoyik	11
3.1.3 Senozoyik	13
4.1.3.1 Islambeyli Formasyonu	13
4.1.3.2 Kırklareli Kireçtaşı	13
4.1.3.3 Karaburun Formasyonu	13
3.2. Çalışma Alanının Jeolojisi	14
3.2.1 Yapay Dolgu	15
3.2.2 Koluvyon	15
3.2.4 Kartal Formasyony	13
3.2.4 Kartai Formasyonu	15
4 MÜHENDİSLİK JEOLOJİSİ	17
4.1. Deneyler	23
4.1.1 Ultrasonik Ses Hızı Olçümleri	23
4.1.2 Brezilyan Çekme Deneyi	24
4.1.3 Tek Eksenli Basınç Deneyi	24
4.1.4 Schmidt Çekici Deneyi	25
4.1.5 Cerchar Aşınma Deneyi	27
4.1.6 Nokta Yukieme Deneyi	28
5 COĞRAFİ BİLGİ SİSTEMLERİ	29
5.1 Tanımı	29
5.2 Veri Yapısı	29
5.3 Cografi Bilgi Sistemlerinin Elemanlari	29
5.4 Cografi Bilgi Sistemlerinin Genel Fonksiyonlari	30
5.5 veri Toplama Teknikleri	30

5.6 Veri Depolama Teknikleri	30
5.6.1 Vektörel Veri	31
5.6.2 Raster Veri	31
5.7 Sorgulama	31
5.8 Analizler	32
5.9 Veri Görüntüleme ve Harita Çıktı İşlemleri	32
6 ÇALIŞMA ALANININ JEOLOJİK MODELLEMESİ	33
6.1 ArcGIS Desktop	33
6.1.1 ArcMap	33
6.1.2 ArcScene	34
6.1.3 ArcReader	35
6.1.4 ArcGlobe	36
6.1.5 ArcCatalog	3/
6.1.6 Arc 100 ID0X	38
6.1./ Arcois 3D Analyst	39
6.2 Veri Ekteninesi	40
6.2.2 Çizilebilir veri eklenmesi	40
6.2 Çizilebilir veri üretimi	41
6.3.1 Harita ve Paftalardan veri üretimi	42
6 4 ArcMan üzerindeki Cizilebilir Veri	45
6.5 Ücgensel Ağ Modeli Üretimi	46
6.6 İzohips Eğrileri Üretimi	51
6.7 Topografik Harita Üretimi	54
6.8 Sondaj Verilerinin Değerlendirilmesi	58
6.9 Model Üretimi	61
6.9.1 Jeofizik Veriler Yardımıyla Model Üretimi	61
6.9.2 Sondaj Verileri Yardımıyla Model Üretimi	64
6.10 Veri Tabanını Ekrana Yansıtabilme	65
6.11 Verilerin Grafiksel Gösterimi	68
6.12 Animasyon Üretimi	69
7 SONUÇLAR	72
KAYNAKLAR	74
EKLER	75
EK A	76
ЕК В	84
EK C	93
EK D	123
ÖZCECMİS	120
UZGEÇMIŞ	129

TABLO LÍSTESÍ

<u>Sayfa No</u>

Tablo 4.1: Sondaj Kuyularının Lokasyon ve Derinlik Bilgileri	19
Tablo 4.2: Ultrasonik Ses Hızı Ölçümleri	23
Tablo 4.3: Brezilyan Çekme Deneyi Sonuçları	24
Tablo 4.4: Tek Eksenli Basınç Beneyi Sonuçları	25
Tablo 4.5: Schmidt Çekici Deneyi Sonuçları	26
Tablo 4.6: Schmidt Çekici Deneyi Sonuçları	26
Tablo 4.7: Schmidt Çekici Deneyi Sonuçları	27
Tablo 4.9: Cerchar Aşınma Deneyi Sonuçları	28
Tablo 6.1: Su Kalınlığı Veri Tabanı	58
Tablo C1: BMP 101 Zemin Sondaj Logu	93
Tablo C2: BMP 101 Kaya Sondaj Logu	95
Tablo C3: BMP 102 Zemin Sondaj Logu	97
Tablo C4: BMP 102 Kaya Sondaj Logu	98
Tablo C5: BMP 103 Zemin Sondaj Logu	101
Tablo C6: BMP 103 Kaya Sondaj Logu	103
Tablo C7: BMP 11 Zemin Sondaj Logu	106
Tablo C8: BMP 11 Kaya Sondaj Logu	107
Tablo C9: BMP 12 Zemin Sondaj Logu	108
Tablo C10: BMP 12 Kaya Sondaj Logu	109
Tablo C11: BMP 13 Zemin Sondaj Logu	114
Tablo C12: BMP 13 Kaya Sondaj Logu	115
Tablo C13: BMP 14 Zemin Sondaj Logu	117
Tablo C14: BMP 14 Kaya Sondaj Logu	119
Tablo C15: BMP 15 Zemin Sondaj Logu	121
Tablo C16: BMP 15 Kaya Sondaj Logu	122
Tablo D1: Nokta Yükleme Deneyi Sonuçları	123
Tablo D2: Nokta Yükleme Deneyi Sonuçları	124
Tablo D3: Nokta Yükleme Deneyi Sonuçları	126

ŞEKİL LİSTESİ

<u>Sayfa No</u>

Şekil 1.1: Melen Projesi güzergahı	2
Şekil 2.1: Çalışma alanına genel bakış	6
Şekil 2.2: Çalışma alanının kaya tavanı topografyası	7
Şekil 3.1: İstanbul ve dolayının genelleştirilmiş stratigrafi kesiti	10
Şekil 3.2: İstanbul genelleştirilmiş Senozoyik-Kuvaterner stratigrafi kesiti	14
Şekil 4.1: Araştırılan Tünel güzergahları	17
Şekil 4.2: Sondaj çalışmalarından görüntüler	18
Şekil 4.3: Karot örnekleri	20
Şekil 4.4: Boğaz geçiş güzergahına genel bakış	21
Şekil 4.5: Boğaz geçişi önerilen tünel güzergahı enine kesiti	21
Şekil 4.6: Boğaz geçişi araştırma yapılan ilk tünel güzergahı enine kesiti	22
Şekil 5.1: Coğrafi bilgi sistemleri veri yapısı	29
Şekil 5.2: Coğrafi bilgi sisteminin genel fonksiyonları	30
Şekil 5.3: Veri depolama formatları	31
Şekil 5.4: Verilerin grafiksel gösterimi	32
Şekil 6.1: Arcmap arayüzü	34
Şekil 6.2: ArcScene arayüzü	35
Şekil 6.3: ArcReader arayüzü	36
Şekil 6.4: ArcGlobe arayüzü	37
Şekil 6.5: ArcCatalog arayüzü	38
Şekil 6.6: ArcToolbox kutusu	38
Şekil 6.7: 3D Analyst komutları ve ArcToolbox 3D Analyst Araçları	39
Şekil 6.8: Add Data Tuşu	40
Şekil 6.9: Dosya seçme kutusu	40
Şekil 6.10: Eklenmiş şeklin ArcScene arayüzündeki görüntüsü	41
Şekil 6.11: Add XY Data penceresi	41
Şekil 6.12: Çizilebilir verinin eklenmiş görüntüsü	42
Şekil 6.13: ArcCatalog arayüzü	42
Şekil 6.14: Create New Shapefile penceresi	43
Şekil 6.15: ArcMap arayüzü	43
Şekil 6.16: Editor Araç kutusu	44
Şekil 6.17: Nitelik tablosu açma prosedürü	44
Şekil 6.18: Attribute (nitelik) Tablosu	44
Şekil 6.19: Add Field penceresi	45
Şekil 6.20: Attribute Tablosu	45
Şekil 6.21: Attribute Tablosu	45
Şekil 6.22: ArcMap Layers kutusu	46
Şekil 6.23: ArcScene Scene layers kutusu	46
Şekil 6.24: ArcScene ortamına atılmış veri tabanının ekran görüntüsü	47
Şekil 6.25: 3D Analyst aracı	47
Şekil 6.26: Create TIN From Features penceresi	47
Şekil 6.27: ArcScene'de çizilmiş üçgensel ağ modeli	48
Şekil 6.28: Add Renderer penceresi	48

Şekil	6.29:	Abartılmış Z eksen görüntüsü	49
Şekil	6.30:	Üçgensel ağ modeli	49
Şekil	6.31:	Layer Properties penceresi	49
Şekil	6.32:	Saydam Üçgensel ağ modeli	50
Şekil	6.33:	Layer Properties penceresi	50
Şekil	6.34:	Abartılmış Z eksen görünümü	51
Şekil	6.35:	3D Analyst aracı	51
Şekil	6.36:	Contour penceresi	52
Şekil	6.37:	İzohips eğrileri	52
Şekil	6.38:	Layer Properties penceresi Symbology ve Base Heights bölümü	53
Şekil	6.39:	3 boyutlu izohips eğrisi haritası	53
Şekil	6.40:	ArcMap arayüzünde İzohips eğrileri haritası görünümü	54
Şekil	6.41:	3D Analyst aracı	54
Şekil	6.42:	Interpolation penceresi	55
Şekil	6.43:	2 boyutlu topografya haritası	55
Şekil	6.44:	Layer Properties penceresi symbology bölümü	55
Şekil	6.45:	Layer Properties penceresi Base Heights bölümü	56
Şekil	6.46:	3D Analyst aracı	56
Şekil	6.47:	Slope penceresi	57
Şekil	6.48:	2 boyutlu eğim haritası	57
Şekil	6.49:	ArcScene ortamında çizilebilir veri görünümü	57
Şekil	6.50:	Layer Properties penceresi Base Heights bölümü	58
Şekil	6.51:	Layer Properties penceresi Extrusion bölümü	59
Şekil	6.52:	Apply extrusion by kutusu	59
Şekil	6.53:	3. boyutta ötelenmiş su kalınlığı	59
Şekil	6.54:	Apply extrusion by kutusu	60
Şekil	6.55:	Sondajların 3 boyutlu gösterimi	60
Şekil	6.56:	Sondaj birimleri arakesitleri	60
Şekil	6.57:	Üçgensel ağ modelleri	61
Şekil	6.58:	ArcToolbox	61
Şekil	6.59:	ArcToolbox	62
Şekil	6.60:	TIN Polygon Tag penceresi	62
Şekil	6.61:	Poligon yüzeyi	62
Şekil	6.62:	ArcToolbox – Extrude Between aracı	63
Şekil	6.63:	Extrude Between penceresi	63
Şekil	6.64:	Su kalınlığı modeli	63
Şekil	6.65:	Su kalınlığı saydam modeli	64
Şekil	6.66:	Sondaj verilerinden üretilmiş katı model	64
Şekil	6.67:	Sondaj verilerinden üretilmiş saydam katı model	65
Şekil	6.68:	Layer Properties penceresi Display bölümü	65
Şekil	6.69:	Layer Properties penceresi Fields bölümü	66
Şekil	6.70:	3 boyutlu sondaj kuyulari	66
Şekil	6.71:	Identification tuşu	67
Şekil	6.72:	Identify Results penceresi	67
Şekil	6.73:	Attribute(nitelik) tablosu	68
Şekil	6.74:	Arcmap arayüzü	68
Şekil	6.75:	Layer Properties penceresi Symbology bölümü	69
Şekil	6.76:	Deney verilerinin grafiksel gösterimi	69
Şekil	6.77:	Animasyon kontrol tuşu	70
Şekil	6.78:	Animation Control penceresi	70

Şekil 6.79: Animation aracı	70
Şekil 6.80: Video Sıkıştırma penceresi	70
Şekil 6.81: Animation aracı	71
Şekil 6.82: Create Flyby From Path penceresi	71
Şekil A1: Batimetri yüzeyi üçgensel ağ modeli	76
Şekil A2: Kaya tavanı yüzeyi üçgensel ağ modeli	76
Şekil A3: Üçgensel saydam ağ modelleri	77
Şekil A4: Batimetri yüzeyi izohips eğrileri	77
Şekil A5: Kaya tavanı yüzeyi izohips eğrileri	77
Şekil A6: Batimetri yüzeyi topografya haritası	78
Şekil A7: Kaya tavanı yüzeyi topografya haritası	78
Şekil A8: Batimetri ve kaya tavanı yüzeyleri topografya haritaları	78
Şekil A9: Batimetri yüzeyi eğim haritası	79
Şekil A10: Kaya tavanı yüzeyi eğim haritası	79
Şekil A11: Sondajların üç boyutlu gösterimi	79
Şekil A12: Sondaj litolojileri arakesitleri	80
Şekil A13: Sondaj verilerinden üretilmiş saydam model	80
Şekil A14: Su kalınlığı modeli	80
Şekil A15: Su kalınlığı saydam modeli	81
Şekil A16: Çalışma alanının jeofizik veriler yardımıyla üretilmiş katı modelleri	81
Şekil A17: Çalışma alanının saydam katı modeli	81
Şekil A18: Tünel güzergahı	82
Şekil A19: Deney verilerinin grafiksel gösterimi	82
Şekil A20: Deney verilerinin grafiksel gösterimi	82
Şekil A21: Deney verilerinin grafiksel gösterimi	83
Şekil B1: Coğrafi Bilgi Sistemleri	84
Şekil B2: Coğrafi Bilgi Sistemleri veri yapısı	85
Şekil B3: Veri İlişkilendirmesi	85
Şekil B4: Coğrafi bilgi sisteminin elemanları	86
Şekil B5: Genel fonksiyonlar	86
Şekil B6: Veri kaynakları	87
Şekil B7: Veri Uretim Teknikleri	87
Şekil B8: Veri depolama formatları	88
Şekil B9: Veri türleri arasındaki farklılıklar	89
Şekil B10: Raster ve vektör veri arasındakı farklılıklar	90
Şekil B11: Görüntülenebilir veri örnekleri	91
Şekil B12: Harita çıktı sembolleri	91

MELEN PROJESİ BOĞAZ GEÇİŞİNİN COĞRAFİ BİLGİ SİSTEMLERİ KULLANILARAK JEOLOJİK MODELLEMESİ

ÖZET

Bu çalışma, İstanbul Melen İçme Suyu Sağlama Projesi Boğaz Geçişinin Coğrafi Bilgi Sistemi kullanılarak jeolojik modellenmesini hedeflemiştir. Boğaz geçiş tüneli – 135 m kotundan geçecektir.

İnceleme alanının temelini Devoniyen yaşlı Kartal Formasyonu oluşturmaktadır. Kartal formasyonunun üzerine Denizel Alüvyon çökeli gelmiştir. Bu çökelin üzerinde ise Açık sarımsı kahverengi-gri, yumuşak-az katı, çok zayıf tabakalanmalı Kolüvyon katmanı gelir.

Devlet Su İşleri, Melen Projesi Boğaz Geçişi Güzergahına karar verebilmek için ilk olarak araştırma yapılan ilk tünel güzergahı boyunca ve daha sonra ise önerilen tünel güzergahı boyunca çalışmalar yürütmüştür.

İki ayrı güzergah çalışmasının yapılmasının ana nedeni araştırma yapılan ilk tünel güzergahında karşılaşılan ve jeofizik araştırmalar sonucu derinliği 180 m olarak öngörülen ve yapılan sondaj çalışması sırasında net olarak derinliği belirlenememiş olan çukurluktur. İkinci bir tünel güzergahının araştırılıp değerlendirilmesi sürecinde hedeflenen şey tünel üzerindeki kaya örtüsü kalınlığının arttırılmasıdır. Delme tünellerde özellikle denizaltı geçişide var ise tünel delme yöntemi her ne olursa olsun güzergahta kısmen değişiklik yaparak örtü kalınlığının arttırılması tercih edilen bir yol olmalıdır.

Melen projesi Boğaz Geçişi kısmında Kartal Formasyonu değerlendirilirken deniz geçişlerinde karstlaşma olması riskinden dolayı tabakaların konumunun bilinmesi çok önemlidir. Bunun için tünel açma çalışmaları sırasında ön delgi yapılması faydalı olacaktır.

Hazırlanan modeller ile gerçek değerler kullanılarak Melen Projesi Boğaz geçişinin mühendislik Planlaması ve uygun jeoteknik uygulamalar belirlenebilir.

GEOLOGICAL MODELLING OF MELEN PROJECT BOSPHORUS PASS BY USING GEO-INFORMATION SYSTEMS

ABSTRACT

This study aims to prepare geological modelling by using Geolographical Information Systems of Istanbul Melen Water Supply Project Bosphorus Pass. Bosphorus pass tunnel will be bored at the depth of -135 m.

The base of investigation area is formed of Devonian aged Kartal Formation. Above Kartal Formation Sea Alluvion sediments comes. Above this Sea Alluvion sediments, light yellowish, brownish-grey soft and weakly solid, poorly bedded Kolluvion sediments comes.

DSI made studies in order to decide certain tunnel route by investigating the first tunnel route investigated and after that investigating the recommended tunnel route.

The main reason for investigating two different tunnel routes is the hole whose depth is determined as -180 m by geophisical survey but couldn't be determined by drilling studies. The goal for investigating a second tunnel route is to increase the thickness of rock over the tunnel. At bored tunnel especially if there is a sea passage no matter what kind of tunnel boring method is applied, increasing the thickness rock cover over the tunnel has to be a way that is preferred.

While evaluating the Kartal Formation at Bosphorus pass side of Melen Project the bedding of layers have to be known because of the Karsting problems that may be faced at sea passes. Due to the information above prob drilling during tunnel boring studies will be very useful.

The engineering planning and suitable geotechnical applications can be decided by using prepared models and true values.

1 GİRİŞ

1.1 GENEL

İstanbul Su Temini Projesi, Melen Sistemi proje alanı genel olarak İstanbul il sınırları içinde bulunmakla beraber bölgesel olarak Düzce, Sakarya ve Kocaeli il sınırları içerisinde de yer almaktadır.

Dört aşamada gerçekleştirilecek olan Büyük İstanbul İçme Suyu 2. Merhale- Melen Projesinin bu çalışmaya konu olan kısmı İstanbul Metropol alanının Avrupa yakasının su ihtiyacını karşılamak için planlanmıştır. İl sınırları dışında kalan iki alan, İstanbul su dağıtım şebekesinden faydalandıkları için proje alanına dahil edilmiştir. Bunlar Anadolu yakasında Gebze ve Avrupa yakasında Çerkezköy'dür.

Proje alanı belirgin topografik özellikler ile tanımlanabilir. Bunların içinde en ilginç olanı Asya ve Avrupa kıtaları arasında İstanbulu ve proje alanını ikiye ayıran dar bir su geçişi görünümündeki İstanbul Boğazıdır.

Melen Projesinin amacı İstanbul'un yaklaşık 180 km doğusundaki Büyük Melen Çayı su kaynağını geliştirerek İstanbul'un artan su talebi sorununu çözmektir. Kuzey yönüne akarak Karadeniz'e dökülen Melen Çayı'nın suyu nehir ağzının yaklaşık 7 km akış yukarısına yerleştirilen ve nehir en kesiti boyunca inşa edilecek regülatör ile alınacaktır. Daha sonra, 1,7 km uzunluğundaki terfi hattı ile Melen Pompa istasyonundan Melen Terfi deposuna pompalanan su, oradan yaklaşık 130 km uzunluğunda isale hattı ve 3,8 km uzunluğundaki Şile-Alaçalı tüneli ile Alaçalı Barajına aktarılmaktadır. Su Alaçalı Barajından yaklaşık 8 km'lik Alaçalı/Ömerli-Hamidiye tünelleri ve 9,3 km'lik isale hattı vasıtasıyla Cumhuriyet Arıtma tesisine iletilmektedir. İsale hattının Cumhuriyet Arıtma Tesisine kadar olan kısmı, Şile-Alaçalı ve Alaçalı-Ömerli arasındaki iki tünel ile Alaçalı'da bir dengeleme rezervuarının inşasını kapsamaktadır [1].

Arıtma tesisi mevcut Ömerli rezervuarının kuzey yakasında yer alacak ve günlük 720 bin metreküplük bir kapasitede çalışacaktır. Arıtılan temiz su, Cumhuriyet-Beykoz Tüneli ve Boğaz Geçişi Tünelleri'ni kapsayan temiz su isale hattı aracılığıyla Kağıthane Arıtma tesislerindeki mevcut servis rezervuarına veya bu amaç için yapılabilecek bir rezervuara iletilecektir [1].

Büyük Melen olmaksızın İstanbul'un, 5-10 yıl süreli bir kuraklığı "~ 2 yıllık bir kısıntı ile" karşılaması mümkün değildir. İstanbul'da son 35 yıllık dönemde ilki 1971-77, ikincisi 1984-94 yılları arasında yaşanan 5-10 yıl süreli ve 100 yılın üzerinde tekrarlı 2 büyük kuraklık yaşanmıştır. İstanbul'un kuraklık riski en az deprem riski kadar önem arz etmektedir. Büyük Melen, İstanbul ve Marmara'nın en güvenilir ve en büyük su kaynağıdır. Bu alandaki en büyük proje olan Melen projesi, 600 bin m3 gün kapasiteye sahip olacak ve 5 milyon nüfusun ihtiyacını karşılayacak bir projedir [1].

Şekil 1.1: Melen Projesi güzergahı

1.2 Çalışmanın Amacı ve Yöntemi

İstanbul Teknik Üniversitesi Uygulamalı Jeoloji Anabilimdalında yürütülen bu çalışmanın amacı, Büyük İstanbul İçme Suyu Sağlama 2. Merhale - Melen Projesinin boğaz geçiş kısmının Coğrafi Bilgi Sistemi kullanılarak modellenmesidir.

Yukarıda bahsedilen amaca uygun olarak Coğrafi Bilgi Sisteminin veri üretimi, veri depolaması, verilerin grafik ve analitik incelemesi ve sorgulanmasını sağlayan özellikleri "Arcgis 9" ve "Surfer 8" bilgisayar programları kullanılarak hayata geçirilmiştir.

Veri üretimi için çalışma alanının topografik haritaları dijital ortama aktarılarak sayısallaştırılmıştır. Bölgede araştırılan güzergahlar üzerinde yapılan sondajlardan ve arazi ve labaratuar deneylerinden elde edilen jeolojik ve mekanik parametreler incelenmiş ve Coğrafi Bilgi Sistemlerinin sağladığı depolama ve sorgulama özellikleriyle uyumlu hale getirilmiştir.

Çalışma alanından elde edilen numuneler üzerinde DSİ tarafından yaptırılmış olan Kuyu loglarından, Ultrasonik Ses Hızı ölçümlerinden, Brazilyan Çekme Dayanımı Deney sonuçlarından, Tek Eksenli Basınç Deneyi sonuçlarından, Nokta Yükleme Deneyi sonuçlarından, Cerchar Aşınma Deneyi sonuçlarından ve Schmidt Çekici Deneyi sonuçlarından faydalanılmıştır.

2 İNCELEME ALANININ TANITILMASI

Bu bölümde inceleme alanının coğrafi konumu, ulaşım olanakları, yerleşimi, morfoloji ve topografya ile ilgili bilgiler yer almaktadır. Ayrıca inceleme alanının iklim ve meteorolojisi ile ilgili genel bilgilere de değinilmiştir.

2.1 İklim ve Meteoroloji

Boğaziçi Tüneli Projesi inşaat sahasına en yakın meteoroloji istasyonu Boğaziçi'nin Avrupa yakasında bulunan Sarıyer'dedir. Devlet Meteoroloji İşleri (DMİ) tarafından işletilmekte olan bu istasyona ait karakteristik meteorolojik bilgiler aşağıda özet halinde verilmiştir.

Sarıyer istasyonunda ölçülen yıllık sıcaklık ortalaması 13,6 C'dir. Bugüne kadar ölçülmüş en yüksek sıcaklık 39,6 C olarak 11 Ağustos 1970'de, endüşük sıcaklık ise -11,0 C olarak 17 Ocak 1963'te ölçülmüştür. En soğuk ay Ocak ve sıcak ay Ağustos'tur. Bu güne kadar ölçülen en yüksek günlük sıcaklık farkı 23,1 C ile Nisan ayında ölçülmüştür. En yüksek sıcaklığın 25 C'nin üzerinde olduğu günlerin sayısının yıllık ortalaması 65,5 en düşük sıcaklığın 0 C'nin altında olduğu günlerin ortalaması ise 14,8'dir [2].

Toprak üstü düşük sıcaklık ortalaması 9,1 C'dir. Toprak üstü sıcaklık ortalamasının en düşük olduğu ay 2,0 C ile Şubat ayı, en yüksek (düşük değerlerin en yükseği) olduğu ay ise 17,5 C ile Ağustos'tur. Bu güne kadar ölçülen en düşük toprak üstü sıcaklığı -12,8 C ile Ocak ayında ölçülmüştür [2].

Yıllık basınç ortalaması 1010,6 mb'dır. Bu güne kadar ölçülmüş en yüksek basınç 1040,0 mb ve en düşük basınç 978,4 mb'dır [2].

En düşük aylık nisbi nem oranı, Haziran – Eylül ayları arasında % 76 ve en yüksek Ocak ayında % 80'dir. Yıllık nisbi nem ortalaması % 78'dir. Ortalama buhar basıncı en düşük Şubat ayında 7,2 mb ve en yüksek Haziran ve Ağustos aylarında 20,8 mb'dır [2]. Yıllık ortalama açık günler sayısı 63,1, bulutlu günler sayısı 204,2 ve kapalı günler sayısı 97,6'dır. Proje sahasının yağış durumu incelendiğinde, yıllık ortalama yağışlı günler sayısı 129,3 ve kar yağışlı günler sayısı 7,4'tür [2]. Hakim rüzgar yönü ve ortalama hız kuzey – doğu 6,6 m/s'dir. güney – güneydoğu yönündeki rüzgarlar tüm yıl boyunca hakimdir. En hızlı rüzgar yönü güney – güneybatı ve ortalama yıllık rüzgar hızı 3,8 m/s olarak belirlenmiştir [2].

Yağışlar genellikle Sonbahar ve Kış aylarında oluşmaktadır. En düşük yağış ortalaması 31,5 mm ile Haziran ayında, en yüksek yağış ortalaması ise 121,2 mm ile Aralık ayındadır ve yıllık yağış ortalaması 789,0 mm'dir. Günlük en çok yağış 125,5 mm olarak Ekim ayında ölçülmüştür [2].

2.2 Coğrafi Konum, Ulaşım ve Yerleşim

Çalışma alanı İstanbul'un Beykoz ve Tarabya ilçeleri arasında kalan Boğaz geçişini kapsamaktadır. Beykoz ve Tarabya coğrafi konumları itibariyle kara ve deniz yolu ulaşımına elverişli olmasına rağmen sahil yolunun aşırı virajlı ve dar olması artan trafik ihtiyacına cevap vermemektedir (Şekil 2.1).

2.3 Topografya ve Morfoloji

Boğaziçi Tüneli güzergahı Asya ve Avrupa yakasında dik ve dar vadilerle ayrılmış tepelerin altından geçecektir. Deniz güzergahında su derinliği maksimum 70 m olarak ölçülmüştür. Tünel -135 m kotundan geçecektir [2].

Beykoz, Çatalca-Kocaeli bölümünün Kocaeli Yarımadası batısında yer almakta olup; batıdan İstanbul Boğazı, doğu ve kuzeydoğudan Riva Deresi, kuzeyden Karadeniz ve güneyden Ümraniye ve Üsküdar İlçeleri ile çevrelenmiştir. Deniz seviyesinden başlayarak 240 metreye kadar yükselen Beykoz'un engebeli arazisini Riva, Küçüksu ve Göksu dereleri parçalamıştır [3].

Aşağıda verilen 2 ve 3 boyutlu Beykoz-Tarabya arası Boğaz kayatavanı Haritasından da anlaşılacağı üzere çalışma alanının en belirgin topografik özelliği 180 m derinliğe ulaşan çukurluktur (Şekil 2.2). Bu çukurluk projenin şekillenmesi aşamasında kilit rol oynamıştır çünkü projede ilk olarak öngörülen tünel güzergahı bu çukurluğu keserek geçmekteydi ama ilerleyen bölümlerde bahsedilen nedenlerden dolayı tünelin güzergahı değiştirilerek çukurluğu kesmesinin önüne geçilmiştir.

Şekil 2.1: Çalışma alanına genel bakış.

2.4. Depremsellik

Proje sahasına bitişik ve yakın yörelerin eskiden beri geniş tahribata yol açan şiddetli depremlere maruz kaldığı bilinmektedir. Bölgede en aktif fay olan Kuzey Anadolu Fayının Düzce – Adapazarı – Sapanca gölü – İzmit ve Marmara denizi havzasındaki kesiminde 17 Ağustos 1999 tarihinde geniş tahribata ve çok sayıda ölüme yol açan Richter ölçeğine göre 7.4 büyüklüğünde bir deprem olmuştur.

Şekil 2.2: Çalışma alanının kaya tavanı topografyası

Bu deprem sırasında Boğaziçi yöresinde hasar olmadığı öğrenilmiştir. Melen Sisteminin proje yapıları güzergahı Kuzey Anadolu Fay hattının kuzeyinde olup güzergahı arazide aktif bir fay zonunun kestiğine dair bir kanıta rastlanmamıştır [2].

3 GENEL JEOLOJİ

3.1 İstanbul'un Jeolojisi

İstanbul, Türkiye'nin ana tektonik birliklerinden İstanbul zonu üzerinde yer alır. Bu zon batıda Büyükçekmece civarından başlayarak doğuda Kastamonu'ya kadar uzanır. İstanbul zonunun karakteristik özelligi temelinde bulunan ve Türkiye'nin başka birliklerindeki yaşıt istiflerden farklı özellikler sunan Paleozoyik yaşlı çökel bir istife sahip olmasıdır. Bu Paleozoyik istifin üzerinde ise Mesozoyik ve Senozoyik yaşlı kayalar yer almaktadır (Sekil 3.1). Bunlar aşağıda, yaşlıdan gence doğru bir sıra içinde kısaca özetlenmiştir.

3.1.1 Paleozoyik

İstanbul'un büyük bir kesimi jeoloji literatüründe "İstanbul Paleozoyik İstifi" Paleozoyik yaşlı kayalar üzerine oturmaktadır. Bu topluluk Ordovisiyen'den Karbonifer'e kadar uzanan birkaç bin metre kalınlığındaki bir çökel istiften oluşmaktadır. İstanbul Paleozoyik istifinin genelleştirilmiş bir stratigrafi kesiti Şekil 3.1'de verilmiştir.

Paleozoik istifinin görünen tabanında çoğun morumsu-pembe renkli kırıntılı bir istif bulunur [5] (Şekil 3.1). Kurtköy formasyonu adı ile bilinen bu kırıntılı istif baslıca konglomera, arkoz, feldspatik litarenit, çamurtaşı ve subarkozdan oluşmaktadır. Tabanı gözlenemeyen birimin kalınlığı 1000m.'den fazladır. Ordovisiyen yaşlı olan birim alüvyon yelpazesi ve örgülü akarsu ortamı ürünüdür [6]. Kurtköy formasyonu üste doğru beyazımsı ve pembemsi, şeyl arakatkılı kuvarsarenitlerle temsil edilen Aydos formasyonuna geçer. 150-300 m arasında kalınlığa sahip olan Aydos formasyonu gel git akıntılarının egemen olduğu plaj ve çok sığ sahil ortamında oluşmuştur. Aydos formasyonu üste doğru çoğunlukla şeyl, silttaşı ve vaketaşları ile temsil edilen Gözdağ formasyonuna geçer. Bu formasyonun üst kesimlerinde bazı bol fosilli kireçtaşı bant ve mercekleri de bulunur. Birim Yalçınlar (1956), Arıç-Sayar (1962 ve 1979), Haas (1968) ve Önalan (1982)'a göre Landoveriyen yaşındadır

[6]. 250 m kadar kalın olan Gözdağ formasyonu lagüner bir ortam ürünüdür [6]. Bu kırıntılı birimlerden sonra istifte kalın bir karbonat dizisi yer alır. Bu karbonat dizisi, Gözdağ ve Aydınlı formasyonlarıyla geçişli gri, mavimsi gri, bazen pembemsi renkli,

bol fosilli, kuvars kumlu, killi, bazen da yumrulu-bantlı bir kireçtaşı ile temsil edilir.

Venlokiyen-Ludloviyen yaşlı birim, resif çekirdeği ve resif önü ortamlarını temsil etmekte olup kalınlığı 400 m dolayındadır. Dolayoba formasyonu olarak adlandırılmış olan bu birimin üzerinde ise önce ince tabakalı, laminalı bir kireçtaşı ve daha sonra koyu mavi, koyu gri renkli, yer yer çok ince şeyl seviyeli kireçtaşları ve nihayet yumrulu kireçtaşları bulunur. Alt Devoniyen yasli bu üst karbonat kesimin alt düzeyleri sığ self, üst düzeyleri ise bu şelfin dalga tabanı altı ortamlarında çökelmişlerdir [7].

Yumrulu kireçtaşlarının üzerine önce karbonatlı bir kumtaşı-şeyl ardalanması, sonra kireçtaşı bantlı şeyl ve son olarak da bir kireçtaşı istifi gelir. Orta Devoniyen yaslı bu kesim başlıca açık self-derin deniz ortamını temsil etmektedir [6]. Üst Devoniyen'de mavimsi renkli, ince yumrulu ve bazen de budinajlı, ince katmanlı kireçtaşları gelişmiştir (Tuzla formasyonu). Bu kireçtaşları ara seviyeler halinde laminalı şeyller içerirler. İçerisinde yer yer çört yumruları da görülen birim giderek çört, radyolaryalı çört ve silisli şeyl ardalanmasına geçer. Bu kesimler istifin Karbonifer'e geçiş düzeylerini oluşturmaktadır. Açık bir self ortamının derin kısımları ve bu şelfin olasılıkla güneyindeki bir havzaya bakan yamaçlarında oluşan birim üste doğru dereceli olarak Karbonifer istifine geçer [7].

Karbonifer mostraları İstanbul'un daha çok Trakya yakasında, daha az olarak da Anadolu yakasında Üsküdar, Anadolu Kavağı ve Gebze civarında görülür. Karbonifer istifinin alt kesimleri başlıca gri-siyah renkli, ince laminalı ve fosfat nodüllü radyolarit ve radyolaryalı çörtlerden oluşur. Bunlar arasında yer yer sarımsı gri renkli silisli şeyl düzeyleri yeralır. Karbonifer istifinin tabanının görüldüğü Baltalımanı Büyükçayır deresi ve Acıbadem'de birim yumrulu kireçtaşlarının üzerinde dereceli geçişlidir. Yumrulu kireçtaşından radyolaritlere geçişte kireçtaşı içinde önce killi, silisli bant ve bazı çört nodülleri görülür. Giderek erimiş kalker nodülü boşlukları içeren silisli şist tabakaları artar ve nihayet radyolaritlere geçilir [7]. Radyolaritler çoğun gri-siyah renkli, ince katmanlı, laminalıdır. Kalınlığı 50 m'den daha az olan bu birim literatürde Baltalimanı formasyonu olarak bilinir. Vizeen yasli birim derin bir denizde karbonat kompensasyon derinliği altında bir çökelmeyi işaret etmektedir.

Derin denizel radyolarit - radyolaryalı çört istifi üste doğru giderek başlıca kırıntılı kayalardan oluşan kalın bir istife geçer. Trakya formasyonu olarak bilinen bu kesimin alt düzeyleri killi şeyl ve az oranda da kumtaşından oluşur.

Şekil 3.1: İstanbul ve dolayının genelleştirilmiş stratigrafi kesiti [8].

Heybeliada ve Kartal dolaylarında bu düzeylerde yer yer kireçtaşı bant ve merceklerine de rastlanır. Birimde egemen litoloji orta-kalın katmanlı kumtaşı ve şeyl ardalanmasıdır. Ancak bazı alanlarda kumtaşları ve diğer bazı kesimlerde ise şeylin egemen olduğu görülür.

Trakya formasyonunun üst kesimlerine doğru kırıntılılar içerisinde kireçtaşı ve kumlu kireçtaşı arakatkıları görülmeye baslar. Bunun yanı sıra istif içinde yer yer görülen kaba kırıntılı kesimler de alttan üste doğru kalınlık ve miktar olarak artarlar. Bunlar kumtaşı ve şeyller içinde yanal devamı pek fazla olmayan mercekler seklindedir.

İstifin daha üstüne doğru içerisinde bitki kırıntıları bulunan konglomera arakatkıları da görülür. İstifin en üst düzeylerinde ise kalınlığı yer yer 100 m.yi aşan kireçtaşları yer alır. Cebeciköy kireçtaşı olarak bilinen bu karbonatlar intrasparudit ve biyosparudit nitelikli olup bazı kesimlerde killi ve dolomitiktir. Bu kireçtaşları Orta-Üst Vizeen yaşlıdır.

İstanbul Paleozoyik istifi, metamorfik bir temel üzerinde Kambriyen sonu Ordovisiyen'de akarsu çökelleri ile başlamakta, Siluriyen'de kenar deniz fasiyeslerine, Devoniyen'de ise platform karbonatlarına geçmektedir. İstanbul civarında bu transgresif istif giderek derinleşen bir ortamda Orta ve Üst Devoniyen derin denizel çörtlü kireçtaşları ve Karbonifer türbiditik kırıntılılarının çökelmesi ile gelişimini sürdürmüş, Karbonifer başında karbonat kompensasyon derinliği altına kadar çöken bölge bunu takiben nedeni çok iyi bilinmeyen ancak önemli bir tektonik etkiye maruz kalmış ve giderek sığlaşmıştır.

İstanbul Paleozoyik istifi içerisine sokulmuş çeşitli plütonik kayalar vardır. Bunlardan başlıcaları Polonezköy yakınlarındaki Çavusbaşı granodiyoriti, Gebze kuzeyindeki Sancaktepe graniti ve Pendik doğusundaki Tavşantepe kuvarsdiyoritidir [7].

Paleozoyik ve daha yaşlı birimleri kesen bu magmatitlerin radyometrik yas tayinleri bunların Geç Permiyen başında sokulmuş Hersiniyen plütonları olduğunu göstermektedir.

3.1.2 Mesozoyik

İstanbul ve dolaylarında iki farklı Mesozoyik istifi bulunur. Bunlar Triyas ve Üst Kretase yaşlı kayalardır (Sekil 3.1). Triyas genellikle Kocaeli yarımadasında Gebze ve Hereke dolayları ile İstanbul boğazının kuzeybatı kesimlerinde yüzeylenir. Üst Kretase yaşlı kayalar ise boğazın kuzey kesimlerinde ve Kocaeli yarımadasının bazı kesimlerinde yaygındır[7]. Gebze ve daha doğusunda izlenen Triyas yaşlı kayalar İstanbul Paleozoyik istifini açısal uyumsuzlukla örter (Sekil 3.1). Kocaeli Triyas istifi yer yer 1000 metre kalınlığa kadar ulasan ve yer yer lav mercekleri içeren karasal-kırıntılılar (Ballıkaya formasyonu, Baykal, 1943) ile başlayıp üste doğru karbonat çimentolu lagüner ya da çok sığ denizel kumtaşı, kireçtaşı ve dolomitlere geçer. Üst Skitiyen yaşlı bu kırıntılı ve karbonat ardalanmasının üstünde Üst Skitiyen-Alt Aniziyen yaşlı dolomitler ve ince marn arakatkılı yumrulu kireçtaşları vardır. 350-600 m. arasında kalınlığı olan bu birimin de üstünde yer alan 35 m. kadar kalın ammonitli kırmızı kireçtaşları anmonitlerden edinilen yaş bulgularına göre Karniyen yasındadır. Ammonitli kırmızı kireçtaşları üzerinde 10- 140 m. kalınlığında Halobiali, gri-yeşil şeyller vardır. Mikritik kireçtaşı ve kalkarenit arakatkıları da içeren bu şeyller üste doğru sarı renkli, yaklaşık 90 m. kalınlığında ve bitki kalıntıları içeren bir kumtaşına geçer.

İstanbul ve dolaylarındaki Paleozoyik ve Triyas yaslı kayaları uyumsuzlukla örten iki farklı tür Üst Kretase istifi vardır. Bunlardan ilki, boğazın kuzey-kuzeybatı kesimlerinde mostra verir ve genel olarak volkanik arakatkılı denizel bir istif niteliğindedir. Yaygın mostraları Karadeniz kıyısında Kilyos ve Şile-Ağva dolaylarında yer alan birim, tabanda çakıltaşı-kumtaşı ile başlayarak silttaşı, marn, kiltaşı ve kireçtaşlarına geçmekte ve andezit, dasit, riyolitik lav ve bunların piroklastik eşdeğerleriyle ardalanmaktadır. İstanbul boğazının kuzey kesimlerinde, Mahmutşevketpaşa-Riva ve Sarıyer dolaylarında Paleozoyik istif Üst Kretase yaşlı kayaların üzerine itilmiştir. İstanbul Paleozoyik istifi içerisine sık sık sokulmuş olan andezitik daykların da bu volkanitlerle ilişkili olduğu tahmin edilmektedir. Bu daykların önemli bir kısmı Paleozoyik istif içerisindeki süreksizlik düzlemlerini izlemektedir.

Kocaeli yarımadası Üst Kretase istifi Triyas yaşlı kayalar üzerinde uyumsuzlukla yer alır. Birim tabanda Kampaniyen-Maastrichtiyen yaşlı kalın bir çakıltaşı ve bunlarla yanal geçişli resifal kireçtaşlarıyla baslar ve tedricen marn-şeyl arakatkılı resifal kireçtaşlarına ve nihayet ince katmanlı, beyazımsı-gri mikritik kireçtaşı, marnkiltaşı ardalanmasına geçer. Bol fosilli olan birim altta sığ ancak üste doğru derinleşen bir ortamda çökelmiştir.

3.1.3 Senozoyik

İstanbul ve çevresindeki Senozoyik kayaları, altta yer alan Üst Kretase ve daha yaşlı birimleri diskordan olarak örter. Senozoyik üstten alta doğru başlıca su litostratigrafi birimlerinden oluşur (Şekil 3.2).

- Belgrad Formasyonu
- Bakırköy Formasyonu
- Güngören Formasyonu
- Çukurçeşme Formasyonu
- Gürpınar Formasyonu
- Karaburun Formasyonu
- Kırklareli Kireçtaşı
- İslambeyli Formasyonu

3.1.3.1 İslambeyli Formasyonu

İslambeyli formasyonu ve Kırklareli kireçtaşı Orta-Üst Eosen (-Alt Oligosen?) yaşlı olup birbirleriyle geçişli çökel birimlerdir. İslambeyli formasyonu resif arkası, lagün ortamında oluşmuş kireçtaşı, marn ve silttaşı gibi kırıntılı çökel kayalarından oluşur [7].

3.1.3.2 Kırklareli Kireçtaşı

Soğucak kireçtaşı adı ile de bilinen Kırklareli formasyonu ise açık gri-bej renkli, killi kumlu, bol mercan ve alg fosilli, farklı dokularda, sert, genellikle masif bazen kalın katmanlı, resif ve resif önü ortamında oluşmuş karbonat egemen bir birimdir [7].

3.1.3.3 Karaburun Formasyonu

Karaburun formasyonu, İstanbul'un kuzeybatısında tabanda plaj çökelleri ile başlayan, giderek delta çökellerine geçen bir istiftir. Birim altta çakıltaşı, kumtaşı ve çamurtaşı gibi kırıntılı kayaları kapsar. Üst kesimlerinde ise koyu gri kiltaşı, çamurtaşı, olistostromal çakıltaşı arakatkıları ve marnlardan oluşur. İstifin üst kesimlerini oluşturan kiltaşı-çamurtaşları kömürleşmiş bitki kalıntıları ve ince kömür bantları içerir. Karaburun formasyonunun yaşı Oligosen'dir [7].

Şekil 3.2: İstanbul ve dolayının genelleştirilmiş Senozoyik-Kuvaterner stratigrafi kesiti [9].

3.2 Çalışma Alanının Jeolojisi

Proje sahasında Paleozoik yaşlı İstinye formasyonu ve bunun üzerine gelen Kartal formasyonu hakimdir. Her iki formasyonu da ayrışmamış andezit ve diyabaz daykları kesmektedir.

İstinye formasyonunu yer yer karstik olan kireçtaşları ve çamurtaşları oluşturur. Kartal formasyonu ardalanmalı kireçtaşı, kumtaşı ve çamurtaşı tabakalarından oluşmuştur. Andezit ve diyabaz daykları bu formasyonu gelişi güzel kesmektedir [10]. Aysa tarafında Ortaçeşme tüneli, aç-kapa konduvi ve Boğaziçi tünelinin portal kısmı İstinye formasyonunda açılacaktır. Boğaziçi ve Ayazağa tünelleri ve Boğaz'ın altından geçen tünel kesimi dayklarla kesilmiş Kartal formasyonunda kazılacaktır [10]. Boğaziçi Tüneli – Asya ve Avrupa Kara Bölümleri – Başlıca kolüvyon, ve yer yer dolgu, döküntü ve alivyondan oluşan yüzeysel çökenlerin ve Kartal Formasyonu'nun ayrışmış yüzey zonlarının örttüğü Kartal Formasyonu'nun aratabakalı, oldukça ayrışmış ila ayrışmamış kumtaşları ile kireçtaşları ve çamurtaşlarını (yer yer silttaşları) ayırtlanmamış enrüsif andezit ve diyabaz daykları keser. Asya tarafı giriş portalinde İstinye Formasyonu'nun karstik kireçtaşları bulunur [10].

Boğaziçi Tüneli- Deniz Geçişi- içerisinde entrüsif ayırtlanmamış diyabaz daykları saptanmış Kartal Formasyonu'nun aratabakalı oldukça ayrışmış ila ayrışmamış çamurtaşları ile kireçtarlarının üzerinde genellikle daneli denizel alüvyon bulunmaktadır [10].

3.2.1 Yapay Dolgu

Yol, baraj ve benzeri yapılarla ilgili olarak yapılmış dolgular.

3.2.2 Kolüvyon

Açık sarımsı kahverengi-gri, yumuşak-az katı, çok zayıf tabakalanma. Tabakalanma, temel kayanın yüzey şeklini yaklaşık olarak yansıtmaktadır. Kumlu Kil olup yer yer çakıl içerir. En üst örtü yoğun bir şekilde bitki kökü içerir. Killi örtü, kayma kütleleri (güncel çökel) [10].

3.2.3 Alüvyon

Açık gri-kahverengi gevşek-az yoğun-katı, köşeli –yarı yuvarlak nokta killi Kum ile yer yer çakıl ve çok az da olsa blok içerir [10].

3.2.4 Kartal Formasyonu

Yeşilims, gri – koyu gri, çok ince – orta taneli, içtentabakalanına içeren ince – orta kalın tabakalı, ileri derecede ayrışmış – az ayrışmış, düşey konumlu dolerit sokulumlarında ayrışma derinliği 20 m'yi aşmaktadır. Yer yer yapraklanma ve serpantinleşme görülmektedir. Dolerit, mikrodiyorit ve mikrogranit damar kayaçları da gözlenmektedir. Kayraktaşı, Kalkşist, Rekristalize Kireçtaşı -İnce Kristalli Kireçtaşı, Fosilli Kayraktaşı - Grafitik Şist, Yeşilkayaç - Diyabazik Kayaçları

(teknotik katmanlar) birimin ana bileşenleridir. Zayıftan dayanımlıya kadar değişmektedir. Daha önceleri kullanılan "Kartal Formasyonu" adı kullanılmıştır. Ancak, ayrıntılı olarak hazırlanmış bir bölgesel jeolojik model çalışmasına göre değiştirilebilir nitelik taşımaktadır [10].

4. MÜHENDİSLİK JEOLOJİSİ

Bu bölümde inceleme alanında yapılmış olan sondaj çalışmalarından elde edilen kuyu loglarının ve bu sondajlardan elde edilen numuneler üzerinde Devlet Su İşleri tarafından yaptırılan deneylerden elde edilen mekanik parametlerin sunumu ve değerlendirilmesi yapılmıştır. Devlet Su İşleri Melen Projesi Boğaz Geçişi kısmında BMP 11, BMP 12, BMP 13, BMP14, BMP15, BMP 101, BMP 102 ve BMP 103 olarak adlandırılmış toplam sekiz adet sondaj yaptırmıştır. BMP 11, BMP 12, BMP 13, BMP 14 ve BMP 15 olarak adlandırılmış sondajlar araştırma yapılan ilk tünel güzergahı boyunca delinmiştir (Şekil 4.1). BMP 101, BMP 102 ve BMP 103 olarak adlandırılmış sondajlar ise önerilen tünel güzergahı boyunca delinmiştir (Şekil 4.1).

Şekil 4.1: Araştırılan Tünel güzergahları.

Bu tezin hazırlanması kapsamında Devlet Su İşlerinden yukarıda isimleri sıralanan sekiz adet sondajın detaylı kuyu logları elde edilmiş fakat yapılan deneylere ait

sonuçlar sadece önerilen tünel güzergahı boyunca delinen BMP 101, BMP 102 ve BMP 103 sondajlarından elde edilmiş sonuçlardır (Şekil 4.1).

Şekil 4.2: Sondaj çalışmalarından görüntüler

Anlaşılacağı üzere çalışma alanı içerisinde delinen sondajlara ait tüm mekanik ve fiziksel parametreler elde edilememiştir. Elde edilen mekanik ve fiziksel parametreler önerilen tünel güzergahına aittir. Eldeki kısıtlı veriler değerlendirilerek bu çalışma kapsamında oluşturulabilecek tüm modeller oluşturulmuş ve yapılabilecek tüm değerlendirmeler yapılmıştır.

Devlet Su İşleri, Melen Projesi Boğaz Geçişi Güzergahına karar verebilmek için ilk olarak araştırma yapılan ilk tünel güzergahı boyunca ve daha sonra ise önerilen tünel güzergahı boyunca çalışmalar yürütmüştür (Şekil 4.1).

İki ayrı güzergah çalışmasının yapılmasının ana nedeni araştırma yapılan ilk tünel güzergahında karşılaşılan ve jeofizik araştırmalar sonucu derinliği 180 m olarak öngörülen ve yapılan sondaj çalışması sırasında net olarak derinliği belirlenememiş olan çukurluktur (Şekil 4.6).

İkinci bir tünel güzergahının araştırılıp değerlendirilmesi sürecinde hedeflenen şey tünel üzerindeki kaya örtüsü kalınlığının arttırılmasıdır (Şekil 4.5). Delme tünellerde özellikle denizaltı geçişide var ise tünel delme yöntemi her ne olursa olsun güzergahta kısmen değişiklik yaparak örtü kalınlığının arttırılması tercih edilen bir yol olmalıdır çünkü her ne türden tünel delme ve kazı yöntemi seçilirse seçilsin eğer örtü kalınlığı arttırılmaz ise operasyon sırasında küçük ölçekli stabilite problemleriyle (Malzemenin sökülme şeklinde düşmesi ve kama kaymaları gibi) karşılaşma oranı daha fazla olabilir ve bu problemlerle karşılaşıldığı zaman müdahale edip önlem alma süresi daha kısa olur.

Böyle bir durum, yani tünelin kemerleşmesine bağlı problemler; örtü kalınlığının az olması halinde yüzeyde deformasyonlara neden olur [11].

DELİNEN KUYULAR								
Sondaj No	Koordinatlar	Deniz tabanı altındaki derinlik (m)	Deniz tabanı kotu (m)	Deniz seviyesinden kuyu derinliği (m)	Platformun denizden yüksekliği (m)			
BMP 101	334,10 E 4 556 815,80 N	77,50	-65,50	143,00	2,20			
BMP 102 234,82 E 4 556 814,30 N		80,50	-68,20	148,70	2,20			
BMP 103	494,31 E 4 556 857,38 N	94,75	-56,00	150,75	2,20			
BMP 11	422,037 E 4 556 863 N	47,70	-12,70	60,40	2,20			
BMP 12	421,931 E 4 556 769 N	128,00	-16,80	144,80	2,20			
BMP 13	421,637 E 4 556 715 N	45,00	-42,00	87,00	2,20			
BMP 14	421,332 E 4 556 562 N	91,00	-65,00	156,00	2,20			
BMP 15	421,166 E 4 556 500 N	20,50	-65,00	85,50	2,20			

Tablo 4.1: Sondaj kuyularının lokasyon ve derinlik bilgileri

Devlet Su İşleri mühendislerinin izleyebileceği bir başka yol ise araştırma yapılan ilk tünel güzergahında karşılaşılan çukurlukta zemin iyileştirmesine gitmektir ama bu iyileştirmenin getireceği maliyet tünel güzergahının kısmen değiştirilmesinden daha fazladır [11].

Şekil 4.3: Karot örnekleri

Çalışma alanında yapılan sondajlardan elde edilen numuneler sandıklara yerleştirilerek fotoğrafları çekilmiştir. Şekil 4.3'te BMP 101 olarak adlandırılmış sondaj kuyusundan elde edilen zemin numunesi ve kaya numunesi fotoğrafları görülmektedir.

Şekil 4.5: Boğaz geçişi önerilen tünel güzergahı enine kesiti

Önerilen tünel güzergahı enine kesitinde güneybatı yani Tarabya bölümü kaya tavanı yüzeyi dik bir yar ile inişe geçmekte, -30 m kotunda denizel alüvyon çökeli gözlemlenmeye başlamakta ve bu çökel Tarabya kıyılarının 300 m açığına kadar 8-10 m kalınlıkla devam etmektedir. Bu noktadan sonra Tarabya açıklarında -100 m kotuna ulaşan çukurluğa paralel olarak denizel alüvyon çökeli kalınlığı 30-40 m seviyelerine ulaşmakta daha sonra Beykoz yani doğu-kuzeydoğu yönüne doğru artan bir eğimle yükselen kaya tavanı yüzeyi üzerinde aşağı yukarı aynı kalınlığını muhafaza ederek devam etmektedir. Beykoz kıyılarının 200 m açığından itibaren

hızla incelen Denizel Alüvyon çökeli kıyı şeridine birkaç metre kalınlık ile ulaşmaktadır (Şekil 4.5).

Şekil 4.6: Boğaz geçişi araştırma yapılan ilk tünel güzergahı enine kesiti

Araştırma yapılan ilk tünel güzergahı enine kesitinde ise yine güneybatı yani Tarabya bölümü kaya tavanı yüzeyi dik bir yar ile inişe geçmekte, -35 m kotunda denizel alüvyon çökeli gözlemlenmeye başlamakta ve bu çökel Tarabya kıyılarının 300 m açığına kadar 8-10 m kalınlıkla devam etmektedir. Bu noktadan sonra jeofizik verilerle -180 m'ye ulaştığı öngörülmüş fakat yapılan araştırma sondajında sonlandırılamamış çukurluğa bağlı olarak denizel alüvyon çökeli > 120 m kalınlığa ulaşmıştır. Daha sonra basamaklı bir yapı göstererek doğu-kuzeydoğu yani Beykoz yönüne doğru yükselen kaya tavanı topografyası üzerinde 15 ila 40 m arasında değişen kalınlıklarda devam ederek Beykoz kıyılarının 200 m açığına kadar gelen Denizel Alüvyon çökeli bu noktadan sonra Beykoz kıyı şeridine hızla incelen bir kalınlıkla 8-10 m kalınlıkla ulaşmıştır (Şekil 4.6).

4.1 Deney Sonuçları

Çalışma alanındaki BMP 101, BMP 102 ve BMP 103 olarak adlandırılmış olan sondajlardan elde edilen numuneler üzerinde DSİ tarafından yaptırılmış olan

deneyler; Ultrasonik Ses Hızı ölçümleri, Brazilyan Çekme Dayanımı, Tek Eksenli Basınç Deneyi, Nokta Yükleme Deneyi sonuçlarından, Cerchar Aşınma Deneyi ve Schmidt Çekici Deneyidir.

Sondaj no	Sondaj no Derinlik (m) Boy (cn		tp (ms)	ts (ms)	Vp (m/s)	Vs (m/s)
	54,2-54,35	12,72	27,6	34	4609	3741
BMD 101	76-76,30	13,7	28,1	33,8	4875	4053
DIMP 101	43,1-43,4	16,43	31,5	36,7	5216	4477
	65,7-65,95	17,76	34,4	39,2	5163	4531
	21,8-22	16,8	32,1	40,4	5234	4158
	31,1-31,35	18,1	33,2	42,6	5452	4249
BMD 102	42,35-42,5	19,22	34,9	42,1	5507	4565
DIMF 102	55,1-55,4	15,5	32,8	40,8	4726	3799
	68,07-68,4	18,7	35,3	41,2	5297	4539
	76,35-76,5	13,5	26,5	34,1	5094	3959
	32,6-32,85	12	25,2	37,4	4762	3209
	43,8-44	14,4	28,6	38,6	5035	3731
BMP 103	52,27-52,5	11	23,5	31	4681	3548
	63,7-63,95	14,3	30,3	39,4	4719	3629
	82,7-82,95	19,18	32,4	41,2	5920	4655

4.1.1 Ultrasonik Ses Hızı Ölçümleri

Tablo 4.2: Ultrasonik ses hızı ölçümleri

Ultrasonik Ses Hızı ölçümleri silindirik numunelere bir eksen boyunca P ve S dalgarı verilmesi ve bu dalgarın eksen boyunu geçtikleri zaman değerine bölünmesi ile bulunur. Ultrasonik Ses Hızı ölçüm değerleri BMP 101 sondajında derinliğe paralel olarak artmıştır buda derinlikle beraber kayanın ayrışmasının azaldığının ve direncinin arttığının göstergesidir. BMP 102 sondajında ise 55.1 m'de ve 76.35 m'de düzenli artan değerlerde azalma görülmüştür. BMP 103 sondajında ise 52.27 m'de ölçüm değerinde düşüş görülmüştür. Bu düşüşlerden hareketle diğer derinliklere oranlara nispeten daha ayrışmış zonlardan şüphelenilebilir.

4.1.2 Brezilyan Çekme Deneyi

Brezilyan Çekme deneyi silindirik bir numunenin çap boyunca artan bir basınçla yüklenerek belli bir gerilimde numunenin kırılması(yenilmesi) esasına dayanır. Brezilyan Çekme Deneyi sonuçları tablo 4.3'te verilmiştir. Bu deney BMP 101, BMP 102 ve BMP 103 kuyularında yapılmıştır.

Sondaj No	Derinlik (m)	Çap (cm)	Boy (cm)	Kırılma yükü -P- (kg)	Çekme direnci -σ _ç - (Mpa)	
	42,50-42,80	9	12,18	2672,864	1,55	
BMP101	54,35-54,50	9	9,68	2950,816	2,16	
	77,02-77,15	9	8,08	2876,48	2,52	
	25,00-25,25	8,6	6,95	6079,392	6,48	
	38,90-39,00	9	7,54	5966,272	5,6	
	52,00-52,22	8,2	7	1897,184	2,11	
BMP102	58,40-58,57	9	6,23	2773,056	3,15	
	69,65-69,85	9	6,58	3028,384	3,26	
	72,77-72,97	8,7	6,33	2808,608	3,25	
	79,60-79,85	9	8,08	4844,768	4,24	
	35,25-35,50	8,7	8,1	3131,808	2,83	
	43,25-43,50	8,9	8,31	3632,768	3,13	
BMD102	50,00-50,30	9	6,1	4915,872	5,7	
DMP103	59,00-59,25	9	7,6	4712,256	4,39	
	69,35-69,75	9	6,97	3170,592	3,22	
	94,25-94,45	9	6,68	5348,96	5,67	

Tablo 4.3: Brezilyan çekme deneyi sonuçları

4.1.3 Tek Eksenli Basınç Deneyi

Kayalardan alınan silindirik numunelerin tek eksenli yükleme ile basma dayanımlarının tayinini sağlayan bir bir deneydir. Kayalardan alınan silindirik numuneler üzerinde yapılan Tek Eksenli Basınç Deneyi sonuçlarından yola çıkarak Elastisite Modülü ve Poisson Oranı tayin edilebilir.

Bu deneyler proje kapsamında Devlet Su İşleri tarafından yaptırılmıştır. Tek Eksenli Basınç Deneyleri BMP 101, BMP102 ve BMP103 olarak adlandırılmış olan kuyulardan elde edilen numuneler üzerinde yapılmıştır.

Sondaj No.	Derinlik (m)	Basınç Direnci -ʊ- (Mpa)	Elastisite Modülü -E- (Gpa)	Litoloji
	41,55-41,80	14,5	5,57	Kireçtaşı
	43,60-43,87	43,4	14,4	Kireçtaşı
	45,55-45,87	23,9	10,9	Kireçtaşı
	56,58-56,75	10,1	5,05	Kireçtaşı
BMP 101	62,95-63,18	23,2	10,5	Kireçtaşı
	64,77-65,00	17,7	5,9	Çamurtaşı
	68,38-68,53	14,3	3,58	Çamurtaşı
	72,30-72,45	15,4	4,42	Çamurtaşı
	76,65-76,85	15,4	7	Çamurtaşı
	22,50-22,72	41,9	20	Kireçtaşı
	24,15-24,38	28,3	16,6	Kireçtaşı
	28,25-28,45	41,9	20	Kireçtaşı
	32,60-32,95	41,4	20,7	Kireçtaşı
	35,48-35,73	55,1	23,7	Kireçtaşı
	53,10-53,30	64,6	21,2	Kireçtaşı
BMD 102	56,25-56,63	9,4	0,7	Çamurtaşı
DMF 102	59,75-60,05	60,9	25,4	Çamurtaşı
	63,35-63,75	58,5	24,4	Çamurtaşı
	64,80-65,20	47,3	20,3	Çamurtaşı
	68,95-69,10	25,5	15,9	Çamurtaşı
	72,06-72,26	30,4	17,3	Çamurtaşı
	74,78-75,00	16,2	10,3	Çamurtaşı
	76,50-76,70	12,5	12	Çamurtaşı
	32,00-32,27	38,2	12,6	Kireçtaşı
	37,30-37,50	37,2	18,6	Kireçtaşı
	43,00-43,25	45,5	25,3	Kireçtaşı
	46,50-46,85	34,6	17,4	Kireçtaşı
BMP 103	50,54-50,75	18,7	12,4	Kireçtaşı
	65,17-65,37	20,3	11,2	Kireçtaşı
	68,25-68,55	37,7	17,9	Kireçtaşı
	89,60-89,95	4,7	3,9	Kireçtaşı
	93,25-93,75	56,2	23,6	Kireçtaşı

Tablo 4.4: Tek eksenli basınç deneyi sonuçları

4.1.4 Schmidt Çekici Deneyi

Schmidt Çekici kayaçların ve betonların kalitesini test etmek için kullanılan bir test aletidir. Kurulu bir yay vasıtası ile metalik bir parçanın test edilecek yüzeye vurması ve bunun zıplama mesafesinin ölçülmesi esasına dayanır. Darbe enerjisinin büyüklüğüne göre değişik tip modelleri vardır. Bunlardan en çok kullanılanları L ve N tipi çekiçlerdir. Aşağıdaki tablolarda sonuçları verilen Schmidt deneyi sonuçları L-9 tipi çekiçle gerçekleştirilmiştir.

Sondaj No.		BMP101							
Derinlik (m)	43,4	45,9	48,87	63,35	65,95	67,75	69,55	72,07	77,15
Çekiç Pozisyonu	2	2	2	2	2	2	2	2	2
1	45	38	30	34	32	28	30	24	24
2	40	24	34	38	30	26	28	33	29
3	44	36	38	33	23	32	26	30	33
4	42	39	35	30	22	30	28	28	38
5	42	35	38	34	20	29	26	29	36
6	40	30	36	38	20	24	24	33	38
7	38	30	30	37	24	21	22	30	34
8	40	38	32	34	24	24	23	31	38
9	43	38	33	32	24	30	25	30	38
10	40	35	30	30	24	32	28	26	33
Ortalama	41,4	34,3	33,6	34	24,3	27,6	26	29,4	34,1
N/mm ²	37	26	25	26	13	17	15	19	26

Tablo 4.5: Schmidt çekici deneyi sonuçları

Tablo 4.6: Schmidt çekici deneyi sonuçları

Sonjdaj No.	BMP102									
Derinlik(m)	23,5	23,5 28,1 29,55 32,35 35,1 37,55 42,5 52,5 55,75								
Çekiç pozisyonu	2	2	2	2	2	2	2	2	2	
1	40	38	41	42	44	40	40	36	43	
2	43	41	40	40	42	38	38	32	44	
3	41	44	43	42	40	37	34	37	46	
4	39	45	39	44	42	34	33	35	42	
5	38	47	34	40	39	36	34	30	49	
6	35	48	35	42	38	43	30	34	43	
7	40	40	39	40	34	40	35	33	44	
8	41	41	40	41	36	38	38	33	45	
9	43	41	41	40	39	44	39	35	40	
10	40	38	40	42	39	39	36	32	45	
Ortalama	40	42,3	39,2	41,3	39,3	38,9	35,7	33,7	44,1	
N/mm ²	34,5	38	33	37	38	33	28	26	40,5	

Schmidt Çekici deneyi Devlet Su İşleri tarafından STFA Zemin grubuna yaptırılmıştır.
Sondaj No.	BMP103							
Derinlik (m)	32,45	38,55	47,2	52	64,3	69,9	89,25	94
Çekiç pozisyonu	2	2	2	2	2	2	2	2
1	37	40	42	38	43	44	44	41
2	40	41	40	41	38	45	38	38
3	43	47	41	40	44	39	37	35
4	43	44	44	36	45	38	41	39
5	44	41	42	34	41	35	37	36
6	40	42	42	35	42	34	36	41
7	39	41	40	39	40	38	30	42
8	44	40	40	41	48	39	31	39
9	39	40	44	42	40	35	32	35
10	37	40	41	38	41	34	30	37
Ortalama	40,6	41,6	41,6	38	42,2	38,1	35,6	38,3
N/mm ²	36	37	37	32	38	32	28	32

Tablo 4.7: Schmidt çekici deneyi sonuçları

4.1.5 Cerchar Aşınma Deneyi

Cerchar aşınma deneyinde; numuneler, uçları 90 derece konik, çekme dayanımı 2000 N/mm2 olan keskilerle ve 70 N'luk kesme kuvvetiyle 10 mm çizilir. Keski ucunda meydana gelen aşınma yüzeyinin çapı, aşınma indeksi olarak belirlenir. Yüzeyin 1/10 mm'si birim aşınma olarak kabul edilir. Değerler birimsiz olarak kullanılır. Aşınma değerleri düşük olduğundan ölçüm mikroskop altında yapılır. Elde edilen değerlenden yola çıkarak bulunan aşınma indeksi ortamın sertliği ve aşındırıcılığı hakkında bilgi verir.

Cerchar aşınma deneyi Fransa kömür işletmeleri tarafından geliştirilmiştir. Keski ucunda meydana gelen aşınma miktarı ile aşınma indeksleri arasında doğrusal bir ilişkinin olduğu saptanmıştır. Bu nedenle bu indeks, kazılabilirlik tayininde ölçüt olarak kullanılmaktadır. Keski aşınmasını temel alan bu ölçüt, kazı makinaları ile galeri sürmede güvenilir bir kıstas olarak kabul edilmektedir.

Keski aşınması, kazılabilirlik tayininde önemli kıstaslardan biridir. Keski aşınmasının bir göstergesi olarak kabul edilen aşınma indeksleri, kazılabilirlik tayininde sıkça kullanılmakla beraber, tek başlarına ölçüt olarak yeterli gelmemektedir. İndeksler laboratuvarda çatlak içermeyen örnekler üzerinde yapılan

deney sonuçlarından elde edilmektedir. Yerinde kazı esnasında tüketilen keski sayısı arasında ilişki kurularak ekonomik sınır yaklaşık olarak saptanmaktadır.

SONDAJ	DERINLIK	NUMUNENİN	TABAKA KONUMUNA	CER(OKUM	CHAR Alari	AŞINMA	ORTALAMA
NO	(m)	ÖZELLİKLERİ	DENEY YÖNÜ	UZUN EKSEN	KISA EKSEN	YÜZEYİ	INDEKSI
		Gri, kalsit dogulu	Dik	1,25	1,00	Yaklaşık Dairesel	
BMP101	67,65- 67,75	çatlaklar, tabakalanma	Dik	1,00	0,75	Yaklaşık Dairesel	1,04
		belirgin değil	Paralel	1,25	1,00	Yaklaşık Elipsoit	
	74.00	Koyu gri, kalsit	Dik	2,00	2,00	Dairesel	
BMP101	74,30- 74,40	dolgulu çatlaklar,	Dik	2,25	2,00	Dairesel	2,17
	,	tabakalar belirgin	Paralel	2,50	2,25	Düzensiz	
		Gri, kalsit dolgulu	Masif	5,00	4,50	Yaklaşık Dairesel	
	64 40-	64 40- çatlaklar, iri kalsit	Masif	3,00	3,00	Dairesel	
BMP102	64,50	kristalleri,	Masif	2,50	2,00	Elipsoit	2,33
		belirgin değil	Masif	1,25	1,00	Düzensiz	
			Masif	0,50	0,50	Dairesel	
		Koyu gri, kalsit	Masif	2,50	2,50	Dairesel	
BMP102	72,97- 73,20	dolgulu çatlaklar, tabakalar belirgin	Masif	2,25	2,00	Yaklaşık Dairesel	2,21
		değil	Masif	2,00	2,00	Dairesel	
		Gri, düzensiz foliasyonlu, koyu	Masif	2,50	2,00	Elipsoit	
BMP103	65,70- 66.00	gri renkte düzensiz bantlar,	Masif	2,25	2,00	Yaklaşık Elipsoit	1,96
	,	kaisit dolgulu ve dolgusuz çatlaklar	Masif	2,00	1,00	Elipsoit	
		Gri, çok sayıda	Masif	3,00	3,00	Dairesel	
DMD102	88,75-	kalsit dolgulu	Masif	2,00	2,00	Dairesel	0.00
BMP 103	89,25	çallaklar, belirgin olmayan	Masif	2,00	2,00	Dairesel	2,22
		tabakalanma	Masif	2,00	1,75	Düzensiz	

 Tablo 4.9: Cerchar aşınma deneyi sonuçları

4.1.6 Nokta Yükleme Deneyi

Nokta yükleme deneyi günümüzde mühendislik jeolojisi ile ilgili çalışmalarda yaygın olarak kullanılmaktadır. Sıkıştırılan kayaç örneğinin yenilme yükü ve boyutları, kullanılarak nokta yükleme dayanım indeksinin hesaplanması amaçlanmaktadır. Elde edilen nokta yükleme dayanım indeksi, kayaçların tek eksenli sıkışma ve çekme dayanımlarının dolaylı olarak belirlenmesinde kullanılabilir. Nokta yüklemi deneyi sonuçları çalışmanın Ekler bölümünde verilmiştir.

5 COĞRAFİ BİLGİ SİSTEMLERİ

5.1 Tanımı

Coğrafi Bilgi Sistemleri dünya üzerindeki bölgeleri tarif eden, verileri saklayan ve kullanan bilgisayar sistemidir.

5.2 Veri Yapısı

Coğrafi bilgi sistemleri temel olarak iki tür veri üzerinden iş görür. Bu veriler mekansal ve tanımlayıcı verilerdir.

Mekansal veriler, özelliklerin yerini, şeklini ve diğer mekansal veriler ile ilişkilerini belirler. Tanımlayıcı bilgiler ise özelliklere ait bilgilerin veri tabanında tutulmasıdır [12]. Özellik tipleri temel olarak Nokta, Çizgi ve Çokgen olmak üzere üç gruba ayrılır.

Şekil 5.1: Coğrafi bilgi sistemleri veri yapısı

5.3 Coğrafi Bilgi Sisteminin Elemanları

Coğrafi bilgi sisteminin işler konumda olabilmesi için yazılım, donanım, veri tabanı, yöntemler ve yetişmiş insanlara ihtiyaç vardır. Bu sistemin başarısı onu kullanan

insanların yetişmişlik düzeyine ve kullanılan yazılım ve donanımın kalitesine bağlıdır.

5.4 Coğrafi Bilgi Sisteminin Genel Fonksiyonları

Coğrafi Bilgi Sistemilerinde amaç Coğrafi bilginin; üretimini, yönetimini, analiz ve network üzerindeki dagıtık veri tabanlarından coğrafi verileri tüm insanların paylaşabileceği profesyonel bilgi sistemi teknolojisini sunmaktır [12].

Şekil 5.2: Coğrafi bilgi sisteminin genel fonksiyonları

5.5 Veri Toplama Teknikleri

Coğrafi Bilgi Sisteminde veri toplanmasında farklı yöntemler uygulanır. Bunlardan ilki hazırda bulunan dijital verilerin ortama aktarılmasıdır. İkinci olarak basılmış harita ve paftalardan yararlanarak veri üretimi gerçekleştirilebilir. Uydu görüntüleri ve hava fotoğrafları bir başka veri kaynağıdır. GPS ve benzeri araçlar kullanılarak belirlenmiş yersel ölçmelerden elde edilen bilgilerde veri kaynağı olarak değerlendirilebilir.

5.6 Veri Depolama Formatları

Coğrafi Bilgi Sisteminde veriler Vektörel veri ve Raster veridi olarak depolanır.

Şekil 5.3: Veri depolama formatları

5.6.1 Vektörel Veri

Vektörel veri konuma ait bilgileri x,y koordinat değerleriyle depolar. Nokta, çizgi ve alan olarak tanımlanmış üç tür depolama formatı vardır.

5.6.2 Raster Veri

Raster veri formatında konuma ait veriler ise; hücrelere bağlı olarak temsil edilir. Aynı boyuttaki hücrelerin bir araya gelmesi ile oluşurlar. En küçük birim pixel olarak tanımlanır [12].

5.7 Sorgulama

Coğrafi Bilgi Sistemi görselleştirilebilen ve sadece tablosal halindeki verilerin birbirleriyle ilişkilendirilerek sorgulanmasını sağlar. Örneğin bilgisayar ortamında çizilmiş grafik bir veri ile Coğrafi Bilgi Sisteminin veri deposunda yer alan sözel veriler ilişkilendirilerek sorgulanabilir.

5.8 Analizler

Cografi Bilgi Sistemi'nde depolanan veriler üzerinde konuma dayalı kararlar verebilme coğrafi verinin sorgulanması, görüntülenmesi ve analizler ile mümkün olmaktadır. Konumsal analiz işlemlerinde, mevcut girdilerden yararlanılarak, yeni bilgi kümeleri üretilir [12].

5.9 Veri Görüntüleme ve Harita Çıktı İşlemleri

Sistemde depolanan vektör veriler, veritabanı bilgilerine göre sınıflandırılarak farklı özelliklerde görüntülenebilirler. Sistemde yer alan semboloji kütüphanesi ile, vektör verilere çizgi tipleri, tarama, renk ve grafik semboller atayarak ilgili yönetmeliklere göre harita görüntüleme işlemleri hızlı bir şekilde gerçekleştirilir [12].

ArcGIS'de Vektor ve Raster veri görüntüleme özelliklerinin yanısıra veri tabanı bilgilerinin Etiketlenmesi, Raporlanması ve Grafikler ile gösterimleri de mümkündür.

Şekil 5.4: Verilerin grafiksel gösterimi

6 ÇALIŞMA ALANININ JEOLOJİK MODELLENMESI

6.1 ArcGIS Desktop

Masaüstü bilgisayarlar üzerinde çalışabilen yazılımlar bütünüdür. CBS kullanıcıları için meknasal verilerin yöetimi ve bilginin etkin kullanımında bir koordinatördür. Haritalama, coğrafi analizler, veri editleme, veri yönetimi ve görüntüleme işlemlerini gerçekleştirebileceğiniz entegre bir coğrafi bilgi sistemi yazılımıdır. ArcGIS Desktop içerisinde her biri üstün özelliklere sahip yedi adet ürün vardır.

6.1.1 ArcMap

ArcMap, mevcut grafik ve sözel veriler için görüntüleme, editleme, grafikleme, raporlama, sorgulama, analiz ve yüksek kalitede kartoğrafik üretim fonksiyonları sunan merkezi bir yazılımdır.

ArcMap iki tip harita görüntüleme seçeneği sunar

- Coğrafi veri görüntüleme coğrafi tabakaların sembolojilendirilmesi, analiz edilmesi ve GIS veri sınıflarına dönüştürülmesi için gerekli arayüzdür. İçerik menüsü GIS veri tabakalarına ait çizim özelliklerinin organizasyonunu ve kontrolünü sağlar. Veri Görüntüleme penceresi ise belirli bir alana ait GIS verinizi gösteren penceredir.
- Sayfa çıktı görünümü(Layout View) coğrafi veri içeren harita sayfalarını ölçek çubuğu, lejand, kuzey oku ve referans harita penceresi ile birlikte görüntüleyen bir penceredir. Bu görünüm haritaları baskı ve yayına hazırlamak için kullanılır.

Şekil 6.1: Arcmap arayüzü

6.1.2 ArcScene

3D analiz ile birlikte gelen diğer arayüz ise ArcScene arayüzüdür. ArcScene GIS verilerinizi 3 boyutlu olarak görütülemenizi sağlar.

ArcScene sayesinde birçok katman 3D ortamına taşınabilir ve taşınan her bir katman üzerinde ayrı ayrı işlemler gerçekleştirilebilir.

Detaylar yükseklik bilgisi kendi geometrisinden okunarak, öznitelik tablosundan okunarak veya 3D olarak tanımlanmış yüzeyden okunarak üç boyutlu hale getirilirler.

ArcScene üzerinde oluşturulan yüzeyler belli bir röper poligon belirlenerek birbirleri aralarında ötelenebilirler.

3D görüntüdeki her katman üzerinde ayrı ayrı ayarlar yapılabilir.

ArcScene ile:

- Verilerinizi 3D görüntüleyebilir
- Detaylar üzerinde 3D olarak araştırma ve yönlendirme yapabilir
- 3D semboloji kullanabilir
- 3D animasyonlar yapabilir
- Geoprocessing araçları kullanabilir
- Geçici analiz grafikleri oluşturabilirsiniz.

Şekil 6.2: ArcScene arayüzü

6.1.3 ArcReader

Bedava olarak dağıtılan, kullanımı kolay, haritalarınızı görüntüleyebileceğiniz bir harita programıdır.

ArcReader uygulamasının ana hedefi organizasyonunuzun değişik departmanlarında mevcut olan haritalara daha kolay ulaşımı ve görüntülemenizi sağlamaktır.

ArcReader uygulaması ile en son sürüm ArcGIS Desktop ile üretilen yüksek kalite haritalar gösterilebilmektedir.

ArcReader kullanıcıları interaktif olarak bu haritaları kullanabilir ve çıktı alabilirler.

Görüntüleme Özellikleri

- Detay Kaydırma/Büyütme-Küçültme/Tanımlama
- Konumsal bookmark oluşturma
- Harita üzerindeki herhangi bir detayı arama/bulma
- Hyperlink oluşturma
- Dinamik harita ipucu göstergeci kullanabilme
- Büyüteç penceresi kullanma
- Uzunluk ölçme

Şekil 6.3: ArcReader arayüzü

6.1.4 ArcGlobe

ArcGlobe 3D Analiz modülü ile birlikte gelen iki arayüzden biridir. Bu arayüz konumsal olarak referanslandırılmış verilerinizin 3D küre yüzeyi üzerinde gerçek jeodezik konumunda görüntülenmesini sağlar.

Küre üzerinde değişikler yapabilir, farklı katmanlar ekleyebilir ayrıntı derecesini arttırarak sürekli zoomlama sağlayabilirsiniz.

ArcGlobe arayüzü sayesinde detaylarınız üzerinde 3 boyutlu olarak araştırma ve yönlendirme yapabilirsiniz.

Dünya yüzeyini bir bütün olarak görüntülerken verilerinizi analiz etme imkanına da kavuşursunuz [13].

ArcGlobe ile;

- 3D verilerinizi küre yüzeyi üzerinde görüntüleyebilir
- Detaylar üzerinde 3D olarak araştırma ve yönlendirme yapabilir
- 3D semboloji kullanabilir
- 3D animasyonlar yapabilir
- Geoprocessing araçları kullanabilirsiniz.

Şekil 6.4: ArcGlobe arayüzü

6.1.5 ArcCatalog

ArcCatalog, grafik ve sözel verileri tanımlama, gözden geçirme, yönetme, ve organize etme işlemleri için kullanılır.

ArcGIS Desktop yazılımlarının içerisinde bütünleşik olarak gelen ArcCatalog uygulaması, GIS verileri ile ilgili şu fonksiyonları yerine getirir.

ArcCatalog'u kullanarak ArcGis server'ı yönetebilir ve veri tabanı şeması oluşturarak bu verileri değerlendirebilirsiniz.

ArcCatalog yardımıyla coğrafi verilerinize göz atabilir, veri araması yapabilir ve bu verileri görüntüleyip yönetebilirsiniz.

ArcCatalog Lokal ağlar veya Web üzerindeki GIS verilerine göz atmanızı veya araştırma yapmanızı sağlar.

ArcCatalog ile:

- Coğrafi verilerinize göz atabilir ve arama yapabilirsiniz.
- Metadata oluşturabilir bunları görüntüleyebilir ve yönetebilirsiniz.
- Veritabanı şeması oluşturabilir, import veya export edebilirsiniz.
- Lokal ağlar veya Web üzerindeki GIS verilerine göz atabilir veya araştırabilirsiniz.
- ArcGis Server'ı yönetebilirsiniz.

Stylesheet: FGDC ESRI			
×	Contents Preview Metadata		
Catalog	Name	Type	
Cit Cit	11	Folder	
Documents and Setting	🚞 ana tez	Folder	
All Users	arc hydro	Folder	
🗄 🧰 Default User	i arcgis	Folder	
🖻 🦲 non	🚞 cem_koksal	Folder	
😟 🧰 Application Dat	i elek	Folder	
🖲 🧰 Belgelerim	Gulbeyaz	Folder	
E Contacts	ESITLER	Folder	
🕀 🔄 Desktop	LOGLAR	Folder	
Local Settings	Maurice_JarreThe_Message_OST	Folder	
H NetHood	inokta 📃	Folder	
Princhood Princhood	packer	Folder	
SendTo	rorgsu80	Folder	
E Start Menu	🔜 serkan abi 2	Folder	
🛨 🦳 Sk Kullanianlar	🛄 sunu	Folder	
🖲 🧰 Templates	SURFER	Folder	
😟 🧰 WINDOWS	tez	Folder	
🖲 🧰 flexim	🔜 tez kaynaklar	Folder	
😟 🧰 MSOCache	tez resimler	Folder	
🕀 🧰 Program Files	🛄 çizim	Folder	
Python21	🛄 çıktı	Folder	
Python24	20070429_1110.jpg	Raster Dataset	
I WINDOWS	≡ readme92.txt	Text File	
C:Deciments and Settings			
Cilpocuments and Settings			
H- C (Documents and Seconds			
ArcWeb Services			
Coordinate Systems			
🖲 🙋 Database Connections 🛛 🥃			

Şekil 6.5: ArcCatalog arayüzü

6.1.6 ArcToolbox

Geoprocessing fonksiyonlarının kapsamlı bir koleksiyonu olan ArcToolbox, aşağıdaki işlemler için araçlar içerir [14].

- Veri yönetimi
- Veri dönüşümü
- Coverage işlemleri
- Vektör analizler
- Geocoding (Coğrafi kodlama)

Şekil 6.6: ArcToolbox kutusu

6.1.7 ArcGIS 3D Analyst

Kullanıcılara etkin bir yüzey veri görüntüleme ve analiz imkanı tanır. 3D Analyst kullanarak

- İki boyutlu verilerin yüzey üzerine kaplama ve üç boyutlu olarak görüntüleme
- Yüzey alan ve hacimlerini hesaplama, eğim bakı ve kabartma haritalarını oluşturma
- İki boyutlu yada üç boyutlu grafiklerden kontur oluşturma
- Line of sight (Bir hat boyunca görünebilen ve görünemeyen yerler), View-shed (İstenilen bakış açısıyla alansal olarak görünebilen yerler ve görünemeyen yerler), profil çizme, en uygun yol seçimi, spot yükseklik interpolasyonu
- ArcGIS içinde desteklenen tüm veri formatları kullanma (CAD, shapefile, ArcInfo coverage ve image)
- Öznitelik bilgisine yada lokasyona göre üç boyutlu veri sorgulama
- VRML kullanarak Web gösterimi için veri export özelliği.

3D Analiz modülünün ana noktası, ArcGlobe uygulamasıdır. ArcGlobe, üç boyutlu verinin birçok katmanını görüntülemek, yüzey yaratımı ve analizi için arayüz sağlar. 3D Analiz ayrıca kazı-dolgu, görüş çizgisi ve arazi modelleme gibi üç boyutlu modelleme işlemleri için ileri GIS araçları sağlar [15].

Şekil 6.7: 3D Analyst komutları ve ArcToolbox 3D Analyst Araçları

6.2 Veri Eklenmesi

6.2.1 Çizilmiş Verilerin Eklenmesi

Arcgis ortamında çizilmiş harita ve şekiller ArcMap ve ArcScene arayüzlerinde görüntülenebilmektedir. Bunun için araç çubuğu menüsündeki Add Data tuşuna basılır.

Şekil 6.8: Add Data Tuşu

Add Data tuşuna basdıktan sonra aşağıdaki pencere açılır.

Add Data	\mathbf{X}
Look in: 📋 çizim	<u> </u>
💷 Book1.dbf	🗖 tin2_ExtrudeBetween1.shp 🗖 tin_ExtrudeBetween2.shp
💷 deneme.dbf	🎆 tin2_tinrast 🛛 🖾 tin_TinPolygonTag.shp
ill_tin2_ti1	🗹 tin3 🛛 🗰 tingrid
💷 log deniz.dbf	🗖 tin3_ExtrudeBetween.shp 🛛 🎆 tingrid2
💷 log kaya.dbf	🗖 tin3_ExtrudeBetween1.shp 🔢 tingrid3
💷 log zemin.dbf	🖾 tin3_TinPolygonTag.shp 🛛 💷 total bati.dbf
🗹 tin	🗹 tin4 💷 total deniz.dbf
🗹 tin2	🖻 tin_ExtrudeBetween.shp 🛛 🖽 total kaya taban-1.dbf
🗖 tin2_ExtrudeBetweer	n.shp 🙆 tin_ExtrudeBetween1.shp 🏢 total kayab-1.dbf
<u> <</u>	
Name: tin_Extr	udeBetween1.shp Add
Show of type: Scene	supported Datasets and Layers Cancel

Şekil 6.9: Dosya seçme kutusu

Açılan pencereden uygun öğe seçilir ve Add tuşuna basılır ve seçilen öğe ekranda görüntülenir.

Şekil 6.10: Eklenmiş şeklin ArcScene arayüzündeki görüntüsü

6.2.2 Çizilebilir Verilerin Eklenmesi

ArcGis ortamındaki çizilebilir veriler .dbf formatındadır. ArcGis ortamındaki çizilebilir verilerin eklenmesi işlemi ArcMap arayüzünde gerçekleştirilir. Bunun için araç çubuğu menüsünden Tools – Add XY Data seçilir ve ekranda aşağıdaki pencere açılır.

Add XY Data	? 🔀
A table containing $\!$	e
Choose a table from the map or browse for another table:	
log kaya 💌	
Specify the fields for the X and Y coordinates:	
× Field:	-
Y Field:	-
Coordinate System of Input Coordinates Description: Unknown Coordinate System	
	_
Show Details	
☐ Warn me if the resulting layer will have restricted functionali	у
OK Cance	el le

Şekil 6.11: Add XY Data penceresi

Kırmızı işaretli kutucuk tıklanarak uygun veri tabanı seçilir ve Add tuşuna basılır. Bu işlemlerin sonucunda veri tabanı ArcMap arayüzünde görüntülenir.

Şekil 6.12: Çizilebilir verinin eklenmiş görüntüsü

6.3 Çizilebilir Veri Üretimi

ArcGis veri tabanı olarak .dbf formatını kullanmaktadır. Bunun yanı sıra Surfer, Excel ve Cad tabanlı verilerde ArcGis ortamına aktarılabilir ve Harita ve Paftalardan veri tabanı üretimi gerçekleştirilebilir.

6.3.1 Harita Paftalarından Veri Üretimi

Harita ve paftalardan veri tabanı üretimi için öncelikle verilerin atanacağı bir veri tabanı dosyası oluşturulmalıdır. Bu işlem ArcCatalog arayüzünde gerçekleştirilir. Bunu için ArcCatalog arayüzü açılır, dosya ve klasörlerin bulunduğu ekrana sağ tıklanarak sırasıyla önce New sonra Shapefile seçenekleri seçilir.

ple Dat your do Tode Window Lefe Concernent and Stimp Von De Non Statement Concernent and Stimp Von De Non Statement Concernent and Stimp Von De Non Concernent	🔊 ArcCatalog - ArcInfo - C:\Doc	uments and Settings	\non\Desktop		
Image: Section Control of the section of the sect	Ele Edit View Go Tools Window	Help			
Stear-See Constant See Constant	Location: C:\Documents and Setti	EE 1111 88 🙉 🥐	Eolder File Gegdatabase	0 #	
Concepts and Setting Concentrate Concentrate Concentr	Stylesheet: FGDCESRI	Contents Preview I	Layer Group Layer	1	
Contacts Contacts	C:1 arcgis Documents and Setting Al Users Default User one	ana tez arc hydro arcgis arcgis anlatim	Shapefile Coverage Relationship Class Jurn Finature Class Toolbog		
in Generic Control Contro	Application Dat Belgelerim Contacts Desktop Contacts NetHood NetHood	Cem_koksal	ArcInfo Workspace dBASE Table IINFO table Coyerage	Copy Ctrl+C Sector Ctrl+V Celete Renage F2 Cord+V	
Bin Adda for mail and the second	Recent SendTo Set Menu Set Menu	nokta packer rorgsu80 serkan abi 2	XML Document	New >	
	Templates WINDOWS	sunu SURFER tez	Folder Folder Folder	Properties	2

Şekil 6.13: ArcCatalog arayüzü

Bu işlemler tamamlandıktan sonra ekrana Create New Shapefile penceresi gelir. Bu pencereden dosyanın adı ve veri tipi belirlenerek veri tabanının ekleneceği dosya atanmış olur.

Create New Shapef	ile	? 🗙
Name:	topografya	
Feature Type:	Polyline	•
🕞 Spatial Reference —		
Description:		
Unknown Coordinal	te System	~
<		>
Show Details		Edit
Coordinates will	contain M values. Used to store contain Z values. Used to store	e route data. e 3D data.
	ОК	Cancel

Şekil 6.14: Create New Shapefile penceresi

Veri tabanı dosyası oluşturulduktan sonra çizilebilir veri eklenmesi başlığı altındaki talimatlar tekrarlanır. Dijital ortama aktarmak için taranmış harita araç çubuğu menüsündeki Insert – Picture seçenekleri seçilerek ekrana getirilir.

🍣 Untitled - ArcMap - ArcInfo						
<u>File E</u> dit <u>V</u> iev	w <u>I</u> nse	rt <u>S</u> election	<u>T</u> ools	<u>W</u> indo		
🗅 😅 🖬	∉ 🗃	<u>D</u> ata Frame		n 0		
Edito <u>r</u> 🔻		Title		New F		
	\mathbf{A}	Te <u>x</u> t				
🗆 🥩 Layer	s 🐩	<u>N</u> eatline				
	00 ¹ 袖	Legend				
	液	North <u>A</u> rrow				
	****	<u>S</u> cale Bar				
	(<u>).</u> [12]101	Scale T <u>e</u> xt				
		<u>P</u> icture				
		Object				

Şekil 6.15: ArcMap arayüzü

Harita ekranda görüntülendikten sonra araç çubuğu menüsündeki Editor – Start Editing komutları seçilir.Aktif hale gelen Editor Tools kutusundan gerekli araç seçilir ve editlleme işlemine başlanır.

Şekil 6.16: Editor Araç kutusu

Editleme işlemi işlemi herbir ayırt edici değişken için tek tek yapılır. Editleme işlemi tamamlandıktan sonra ArcMap' te açılmış olan veritabanı dosyasının üzerine sağ tıklanır ve Open Attribute seçemeği seçilir.

Distilled - ArcMan - Arcinfo	
Elle Edit Yiew Insert Selection Tools Window Help	
D 🛎 🖬 🎒 👗 🛍 🛍 🗙 🗠 🔶 🔶	
Editor - 🕨 🖉 - Task: Create New Feature	💌 Target: topografya 💽 📈 💮 🖽 🖂
	Trind Tanel Hati Find Tunel Alignment. Find Tunel Alignment. Beykoz Staft Beykoz Staft Staft P2122 Totel Tune Staft P2122 Totel Tune Staft P2122 Totel Tune Staft P2122 Totel Tune Staft P2122 Totel Tune Staft P2122 Totel Tune Staft P2122 Totel Tune Staft P2122 Totel Tune Staft P2122 Totel Tune Staft P2122 Totel Tune Staft P2122 Tune Staft P212 Tune Sta
Display Source Convert Sympology to Representation.	
Drawing - K Save & Laver Ele	$\bullet 10 \bullet \mathbf{B} I \underline{\mathbf{U}} \mathbf{A} \bullet \mathbf{A} \bullet \mathbf{A} \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet$
Open attribute tabl	-7132043877474,81 2810731119156,54 Unknown Units

Şekil 6.17: Nitelik tablosu açma prosedürü

Ekranda açılan pencerede Options - Add Field seçenekleri seçilir.

III Attributes of topografya	🐴 Fin <u>d</u>	& Replace
FID Shape ' Id	Sele	t <u>B</u> y Attributes
<u> o</u> royanc o	🔛 🤙ea	
	🖸 Swib	h Selection
	🗄 Sele	it <u>A</u> ll
	Add	Ejeld
	Ium	All Fields On
	<u>R</u> est	ore Default Column Wic
	Rela	ted Tables
	🐔 Crea	te <u>G</u> raph
	Add	Table to Layout
	C Relo	ad Cac <u>h</u> e
	🖨 Print	
	Repi	wts
	Expo	rt
Present and a Community of the Character of Present (Control Colored)	App	sarance
Records [U out of 1 Selected]	opec	

Şekil 6.18: Attribute (nitelik) Tablosu

Açılan Field penceresinden yeni eklenen veri türünün adı ve sayısal özelliği belirlenir.

Add Field			? 🔀
Name:	kontur		
Туре:	Short Integer		-
Field Proper	ties		
Precision		0	
		OK	Cancel

Şekil 6.19: Add Field penceresi

Attributes of topografya					
	FID	Shape *	ld	kontur	
	0	Polyline	0	0	

Şekil 6.20: Attribute Tablosu

Son olarak Attribute tablosundan oluşturulan yeni veri alanının değerleri atanır.

Attributes of topografya					
	FID	Shape *	ld	kontur	
	1	Polyline	0	-15	
		1	11		

Şekil 6.21: Attribute Tablosu

6.4 ArcMap Uzerindeki Çizilebilir Verinin ArcScene Üzerine Aktarılması

ArcMap üzerine eklenen veya üzerinde oluşturulan veri tabanını ArcScene'e aktarmak için Layers bölümünde yer alan veri tabanı dosyasının üzerine sağ tıklanır ve kopyala seçeneği işaretlenir.

ArcScene arayüzü açılır ve Scene layers bölümünün üstüne sağ tıklanarak yapıştır seçeneği seçilir ve veri tabanı ArcScene ortamına aktarılmış olur.

🔕 Untitled - ArcM	ap - ArcInfo
<u> </u>	rt <u>S</u> election <u>T</u> ools <u>W</u> indow <u>H</u> elp
D 🖻 🖥 🎒	影 階 🛱 🗙 🗠 🍽 🔶
Edito <u>r</u> 🔻 📔 🕨 🗾	Task: Create New Feature
E 🛃 Layers	wents.
•	🗈 Сору
	× Remove
	Open Attribute <u>I</u> able
	Joins and Relates

Şekil 6.22: ArcMap Layers kutusu

🕀 Untitled - ArcScene - ArcInfo
<u>File E</u> dit <u>V</u> iew <u>S</u> election <u>T</u> ools <u>W</u> indow <u>H</u> elp
🗅 🖆 🖬 🎒 🕺 🖻 🛍 🗙 🔶 🖡
<u>3</u> D Analyst 🔻 Layer:
Layer: 🚸 <graphics></graphics>
Add Data
💊 New Group Layer
Paste Layer(s)
😭 Scene Properties

Şekil 6.23: ArcScene Scene layers kutusu

6.5 Üçgensel Ağ Modeli Üretimi

Üçgensel ağ modeli yüzey modellemesi için kullanılır. Üçgensel ağ modelleri XYZ noktalarının köşeler ile birleşmesi ile üçgensel ağlar oluşturarak şekillenir. Oluşturulan yüzeyin tüm üçgenler üzerinden geçtiği varsayılır. Üçgensel ağ modelleri jeolojik bir birimi veya matematiksel fonksiyonlar ile belirlenmiş bir yüzeyi göstermek için kullanılır.

Aşağıdaki şekilde ArcMap ortamında ArcScene ortamına aktarılmış veri tabanının ArcScene'deki görünüşü izlenmektedir.

Şekil 6.24: ArcScene ortamına atılmış veri tabanının ekran görüntüsü

Üçgensel ağ modeli oluşturmak için ArcScene arayüzünde 3D Analyst – Create/Modify TIN – Create TIN From Features seçeneği seçilir.

🚯 Untitled - ArcScene - Ar	cInfo
File Edit View Selection Tool:	s <u>W</u> indow <u>H</u> elp
🗅 🚅 🖬 🎒 👗 🖻 🖡	🖥 🗙 🔶 🖬 🍳 🔌 🚳 🗖
3D Analyst 💌 Layer:	
Create/Modify TIN	⊆reate TIN From Features
Interpolate to Raster	Add Features to TIN
💈 🔄 Surface Analysis	
<u>R</u> eclassify	
Convert	
Options	

Şekil 6.25: 3D Analyst aracı

Ekranda açılan pencereden ağ modeli oluşturmak için kullanılacak veri tabanı seçilir ve gerekli düzenlemeler yapılır.

reate TIN From Features			? 🛛
Inputs Check the layer(s) that will be us its settings. Layers: Itotal bati Events	ed to c	reate the TIN. Click Settings for select Feature type: Height source: Triangulate as: Tag value field:	k a layer's name to specify ed layer 2D points N3 mass points (None)
Output TIN: C:\Documents a	nd Set	tings\non\Desktop	sçizim\batimetr i

Şekil 6.26: Create TIN From Features penceresi

OK tuşuna basıldıktan sonra üçgensel ağ modeli çizilmiş olur.

Şekil 6.27: ArcScene'de çizilmiş üçgensel ağ modeli

Model çizildikten sonra Scene layers bölümündeki model isminin üzerine sağ tıklayarak properties seçeneği seçilir. Açılan Layer Properties penceresinin Symbology bölümünde Add kutusu tıklanır.

Açılan pencerede uygun gösterim tipi belirlenir ve önce Add sonra Dismiss tuşlarına basılır.

Şekil 6.28: Add Renderer penceresi

Yapılan işlemler sonunda üçgensel Ağ modelinin görüntüsündeki değişim aşağıdaki gibi olur.

Şekil 6.29: Abartılmış Z eksen görüntüsü

Aynı yol izlenerek farklı gösterimler elde etmek mümkündür.

Şekil 6.30: Üçgensel ağ modeli

Şekil 6.31: Layer Properties penceresi

Yine Layer Properties kutusunun Display bölümünde Transparent yüzdesi değiştirilerek saydam yüzeyler elde etmek mümkündür.

Şekil 6.32: Saydam Üçgensel ağ modeli

Layer Properties kutusunun Base Heights bölümü çizilmiş öğelerin temel yükseklik ayarlarını değiştirebilme olasılığı sağlar. Bu bölümdeki Offset kutusu düşey öteleme, Zunit Conversion kutusu Z ölçeğini değiştirme, Height bölümüde veri tabanından hangi yükseklik özelliğinin tercih edileceğini belirler.

ayer Properties	2
General Source Display Symbology Fields Base Heights Rendering	
Height	
C Use a constant value or expression to set heights for layer:	
Obtain heights for layer from surface:	
C:\Documents and Settings\non\Desktop\çizim\batimetri jeof	
Raster Resolution	
C Layer features have Z values. Use them for heights.	
Apply conversion factor to place heights in same units as scene: Offset Add an offset using a constant or expression:	
250	
Tamam İptal Uygu	la

Şekil 6.33: Layer Properties penceresi

Aşağıdaki şekil bu ayarlarla oynayarak değiştirilmiş bir görüntüdür.

Şekil 6.34: Abartılmış Z eksen görünümü

6.6 İzohips Eğrileri Üretimi

İzohips eğrileri üretimi için ArcScene arayüzünde 3D Analyst - Surface Analysis -Contour seçeneği seçilir.

Şekil 6.35: 3D Analyst aracı

Ekranda beliren Contour penceresinde gerekli düzenlemeler yapılır.

Contour	? 🛛
Input surface:	C:\Documents and Settings 💌 🗃
Contour definition	
Input height range:	Z min: -180 Zmax: -30
Contour interval:	10
Base contour:	0
Z factor:	1
Output information based on input cor	ntour definition
Minimum contour:	-180
Maximum contour:	-30
Total number of contour values:	16
Output features:	C:\Documents and Settings\no
	OK Cancel

Şekil 6.36: Contour penceresi

OK tuşuna basarak İzohips eğrileri çizdirilir.

Şekil 6.37: İzohips eğrileri

ArcScene Scene layers bölümündeki İzohips haritasının üzerine sağ tıklayarak properties seçeneği seçilir ve açılan Layer Properties penceresinin Symbology bölümünde gerekli düzenlemeler yapılarak İzohips eğrileri renklendirilir. Daha sonra Base Heights bölümüne geçilerek Z ölçeği ve tercih edilecek yükseklik özelliği belirlenir.

iyer Properties				اگ
Joins & Relates	Base Heigh	its Extrusi	on	Rendering
General Source	Selection D	isplay Symbology	Fields	Definition Query
how:	Draw categories usi	na unique values comb	inina up to 3 fie	elds. Import
Features	- Value Fielde	- Colo	· Pamp	
Lategories	Castern		rnamp	
Unique values manu l	Lontour			·
Match to symbols in a	none	_		
Quantities	none	-		
Charts		_		
Multiple Attributes	Symbol Value	Label	(c	ount 🔼
	All other value	es> <all other="" td="" va<=""><td>lues> 0</td><td></td></all>	lues> 0	
	<heading></heading>	Contour	3	4 🔳
		-180	1	• • •
< · · · >		-170	1	
		-160	1	+
		-150	3	_
7 74		-140	3 1	
		-150	-	<u> </u>
() 🗘	Add All Values Add	Values Remove	Remove All	Adva <u>n</u> ced +
		Tamar	n İntal	Llugula

Şekil 6.38: Layer Properties penceresi Symbology ve Base Heights bölümü

Bu işlemler sonrasında oluşturulan İzohips eğrileri aşağıdaki gibidir.

Şekil 6.39: 3 boyutlu izohips eğrisi haritası

ArcScene arayüzü ile oluşturulabilen tüm şekiller ArcMap arayüzündede oluşturulabilir ama ArcMap arayüzü oluşturulan şekillere tek bir açıdan sabit olarak bakar.ArcScene arayüzünde ise oluşturulan şekillere istenilen açıdan bakılabilmektedir.

Şekil 6.40: ArcMap arayüzünde İzohips eğrileri haritası görünümü

6.7 Topografya Haritası Üretimi

Topografik harita üretimi için ArcScene arayüzünde 3D Analyst – Interpolate to Raster - Natural Neighbors seçeneği seçilir.

🚯 Untitled - ArcScene - Ar	rcInfo
<u>File E</u> dit <u>Y</u> iew <u>S</u> election <u>T</u> ool	s <u>W</u> indow <u>H</u> elp
🗋 🗅 🗃 🔚 🚭 🕹 🖻 🛛	ä 🗙 🔶 🛅 🍓 🔌 🚳 🗖
<u>3</u> D Analyst ▼ Layer: tin5	■
Create/Modify TIN	ः 💽 🐌 🗣 🔕 😕 ।
🗧 Interpolate to Raster 🕨	Inverse Distance Weighted
🛓 Surface Analysis 🕨 🕨	<u>S</u> pline
Reclassify	Kriging
<u>⊂</u> onvert ►	<u>N</u> atural Neighbors
Options	

Şekil 6.41: 3D Analyst aracı

Açılan pencerede gerekli olan veri tabanı atanır ve veri tabanından istenen ayırt edici nitelik atanır.

Natural Neig	hbor Interpo	lation		? 🛛
Creates a raste input point data	r surface throug set.	h use of na	atural neight	oor interpolation on an
Input points:	total kayab-1 E	vents		
Height source:	N3		•	
Cell size:	14,96	Rows:	237	Columns: 249
Output raster:	uments and Se	ttings\non	\Desktop\ç	izim\jeostatistik 🗃
			OK	Cancel

Şekil 6.42: Interpolation penceresi

Bu işlemler sonucunda yüksekliği temel alan 2 boyutlu topografya haritası çizilmiştir.

Şekil 6.43: 2 boyutlu topografya haritası

Layer Properties penceresinin Symbology bölümünde gerekli renk ayarlaması yapılır ve Use Hillshade effect kutucuğu tıklanarak derinlik hissi uyandırılır.

Layer Properties	· · · · · · · · · · · · · · · · · · ·
General Source Extent	Display Symbology Fields Joins & Relates Base Heights Rendering
Show:	Draw raster stretching values along a color ramp Import
Stretched	·
	Color Value Label
	-30,000000 High: -30 000000
	-180,000000 Low: -180,000000
	Color Bamp:
	Urspiely Background Value: as organ NoData as
	Shareh
STATE AND	Type: Standard Deviations Histograms
	n: 2
	· · · · · · · · · · · · · · · · · · ·
	Tamam iptal Uygula

Şekil 6.44: Layer Properties penceresi symbology bölümü

Derinlik hissi uyandırmanın bir başka yolu ise yine Layer Properties penceresinin Base Heights bölümünde yer alan tercih edilen yükseklik özelliğinin belirlenmesi ve Z Unit Conversion değerinin değiştirilmesidir.

eneral Source Extent Display Symbology Fields Joins & Relates Base H Height C Use a constant value or expression to set heights for layer: 0	Heights Rendering	
Obtain heights for layer from surface:	v	
C:\Documents and Settings\non\Desktop\cizim\jeostatistik Raster Resolution C Layer features have Z values. Use them for heights.	▼ [™]	
Z Unit Conversion Apply conversion factor to place heights in same units as scene: Custom Offset	2,000	ī
Add an offset using a constant or expression:		

Şekil 6.45: Layer Properties penceresi Base Heights bölümü

Şekil 6.48: 3 boyutlu topografya haritası

Bir başka harita oluşturma yöntemi ise eğim haritası oluşturmaktır. Bunun için ArcScene arayüzünde 3D Analyst – Surface Analysis – Slope seçeneği seçilir.

🕦 Untitled - ArcScene - Ar	rcInfo
<u>File Edit View Selection T</u> ool	s <u>W</u> indow <u>H</u> elp
🗅 📽 🖬 🎒 🕺 🖿 I	2 × 🔶 🛅 🎕 🔊 🕯
<u>3</u> D Analyst ▼ Layer: tin5	
Create/Modify TIN	s 💽 🔁 🗣 🚳
Interpolate to Raster	×
🗧 <u>S</u> urface Analysis 🕨 🕨	<u>⊂</u> ontour
<u>R</u> eclassify	<u>S</u> lope
<u>C</u> onvert	Aspect
	Hillsbade

Şekil 6.46: 3D Analyst aracı

Ekranda beliren Slope penceresinden istenilen ayarlar yapılarak OK tuşuna basılır.

Slope	? 🛛
Input surface:	tin5 💽 🖻
Output measurement:	O Degree
Z factor:	1
Output cell size:	14,136
Output raster:	<temporary></temporary>
	OK Cancel

Şekil 6.47: Slope penceresi

Şekil 6.48: 2 boyutlu eğim haritası

Derinlik hissi uyandırmak için yapılan işlemlerin aynısı bu harita içinde geçerlidir.

6.8 Sondaj Verilerinin Değerlendirilmesi

Sondaj verilerinin değerlendirilmesi kavramı sondajların üç boyutlu gösterimini ve litolojiler arasınsı arakesitlerin çizilmesini ve daha sonraki bölümlerde anlatılacak olan katı model oluşturulmasını içine alır.

Öncelikle ArcMap ortamındaki veri tabanı ArcScene ortamına aktarılır.

🚯 Untitled - ArcScene - ArcInfo			
<u>File Edit View Selection Tools Wind</u>	dow <u>H</u> elp		
🗅 🖻 🖬 🎒 👗 🖻 🛱 🗙	🔸 🖬 🍳 🔊 📬 🕅	?] 🔶 ~ 🍳 🔶 🍓 🍕 🧐	2, XX 22 🖑 🥥 🌾
3D Analyst 👻 Layer:	_ 源 ふ	Graphics 👻 🗼 🔹 📈 📝	<u>A + 🕭 + 🏄</u>
Layer: 📀 log deniz Events	💽 🕒 🦫 🙆 🔛	Animation 🔻 📷 🖭 🛛) Text
Scene layers ✓ log deniz Events	•	•	

Şekil 6.49: ArcScene ortamında çizilebilir veri görünümü

ArcScene ortamına aktarılan veri tabanı kullanıcı tarafından kontrol edilir.

X	Y	Z	Κυγυ	GIRIS	CIKIS	FORMASYON
2697,02	2563,54	0	BMP11	0	-12,7	Su kalınlığı
2525,49	2428,29	0	BMP12	0	-16,8	Su kalınlığı
2066,95	2345,82	0	BMP13	0	-42	Su kalınlığı
1582,03	2108,3	0	BMP14	0	-65	Su kalınlığı
1321,42	2012,64	0	BMP15	0	-65	Su kalınlığı
1522,65	2527,25	0	BMP101	0	-65,5	Su kalınlığı
1403,89	2457,98	0	BMP102	0	-68,2	Su kalınlığı
1915,21	2580,03	0	BMP103	0	-56	Su kalınlığı

Tablo 6.1: Su kalınlığı veri tabanı

Veri tabanları kontrol edildikten sonra Layer Properties penceresinin BaseHeights bölümünde aşağıdaki şekilde yapılan değişiklikler yapılır.

Height				1			_
Use a const	ant value o	r expression to s	et heights for la	ver:			
[GIRIS]							
C							
Ubtain heigi	nts for layer	from surface:					
						<u> </u>	
Raster Re	esolution						
C Layer featur	es have Z v	values. Use the	m for heights.				
- Z Unit Conversi	n						
Apply conversion	n factor to j	place heights in	same units as s	cene: cust	iom 💌	1,000	ĵ
Offset							
Add an offset u	ing a consl	tant or expressio	n:				
0							
,							
,							
,							

Şekil 6.50: Layer Properties penceresi Base Heights bölümü

Yine Layer Properties penceresinin Extrusion bölümünde aşağıdaki şekilde görülen değişiklikler yapılır.

Layer Properties	? 🗙
General Source Selection Display Symbol Joins & Relates Base Heights E Extrude features in layer Eventsion turns points into vertical lines Into the second	ogy Fields Definition Query xtrusion Rendering
walls, and polygons into blocks. Extrusion value or expression:	
Expression Builder	
X Abs() Y Abs() Y Abs() Class Exp() ClKIS Fie() Init() Log() Sin() V	<u>·</u>
Expression [[Cikis] - [GiRIS] 7 8 9 / 4 5 6 * 1 2 3 - () 0 . +	
Save Load OK Cancel	mam İptal Uygula

Şekil 6.51: Layer Properties penceresi Extrusion bölümü

Şekil 6.52: Apply extrusion by kutusu

Şekil yukarıdaki talimatların yerine getirilmesi sonucu elde edilen görüntüyü göstermektedir.

Şekil 6.53: 3. boyutta ötelenmiş su kalınlığı

En üst birimin altındaki birimler için yukarıdaki işlemlerden farklı olarak sadece şekildeki değişiklik yapılır ve diğer birimler içinde aynı işlemler tekrarlanır.

Apply extrusion by:	
adding it to each feature's base height	-

Şekil 6.54: Apply extrusion by kutusu

Tekrarlanan işlemler sonucunda aşağıdaki şekil elde edilir.

Şekil 6.55: Sondajların 3 boyutlu gösterimi

Yukarıdaki şekle ek olarak Üçgensel ağ modeli oluşturma bölümünde izlenen talimatlar burada da izlenirse sondaj birimleri arakesitleri elde edilir.

Şekil 6.56: Sondaj birimleri arakesitleri

Layer Properties penceresinin Rendering bölümünde Use Smooth Shading if possible seçeneği seçilirse arakesitler daha yumuşak bir yüzey görüntüsüne sahip olur.

6.9 Model Üretimi

Katı model üretimi çok çeşitli veriler yardımıyla üretilebilmektedir. Bu bölümde jeofizik veriler ve sondaj verileri yardımıyla katı model üretimi anlatılmıştır.

6.9.1 Jeofizik Veriler Yardımıyla Katı Model Üretimi

Tüm katmanlar için üçgen ağ modeli üretiminde anlatılan talimatlar izlenir ve her yüzeyin üçgensel ağ modeli oluşturulur.

Daha sonra ArcScene arayüzünde ArcToolbox aktif hale getirilir.

Şekil 6.58: ArcToolbox

Katı model üretimindeki kritik nokta oluşturulan üçgensel ağ modellerinin Z ekseni boyunca ötelenmesini sağlayacak bir sınır poligonu oluşturulmasıdır. Bunun için ArcToolbox – 3D Analysis Tools – Conversion – TIN Polygon Tag seçeneği seçilir.

Şekil 6.59: ArcToolbox

Bu seçim sonrası ekranda beliren TIN Polygon Tag penceresinde birbiri altında sıralanan üçgensel ağ modellerinden herhangi biri seçilir ve OK tuşuna basılır.

Input TIN			-
C:\Documents and Settings\non\D)esktop\çizim\kaya b	asi jeof	-
Output Feature Class	_		
C:\Documents and Settings\non\D) esktop\çizin <mark></mark> \kayat	oasijeof_TinPolygon	Tag.shp
Tag Value Field (optional)	\subseteq		
Tag_Value			

Şekil 6.60: TIN Polygon Tag penceresi
Bu uygulamanın ardından aşağıdaki poligon oluşturulur.

Şekil 6.61: Poligon yüzeyi

Poligonun oluşturulmasının ardından ArcToolbox – 3D Analysis Tools – Extrude between seçeneği seçilir.

Şekil 6.62: ArcToolbox – Extrude Between aracı

Bu seçimin ardından ekranda beliren Extrude Between penceresinde üçgensel ağ modelleri sırasıyla üstteki ve onun altındaki şeklinde atanır. Ayrıca Input Feature Class seçeneğinde oluşturulan poligon atanır.

Extrude	Between	
lu.		
	IDocuments and Settings\non\Desktop\cizim\su sevivesi jeof	
In	put TIN	
G	:\Documents and Settings\non\Desktop\cizim\batimetri jeof	2
In	put Feature Class	
C	:\Documents and Settings\non\Desktop\cizim\kayabasijeof_TinPolygonTag.shp 📃 📃	2
0.	utput Feature Class	
C	:\Documents and Settings\non\Desktop\çizim\suseviyesijeof_ExtrudeBetwee1.shp	2
	OK Cancel Environments Sh	iow Help >:

Şekil 6.63: Extrude Between penceresi

Komutların uygulanmasının ardından ilk iki üçgensel ağ modelinden katı model elde edilir. Bu işlemlerin diğer üçgensel ağ modelleri arasında yukardan aşağıya doğru tekrarlanması sonucu tüm katı model oluşturulmuş olur.

Şekil 6.64: Su kalınlığı modeli

Şekil 6.65: Su kalınlığı saydam modeli

6.9.2 Sondaj Verileri Yardımıyla Katı Model Üretimi

Sondaj verileri yardımıyla oluşturulan katı model içinde aynı yol izlenir. Burada ötelenen yüzeyler jeofizik verilerden üretilen üçgensel ağ modelleri yerine sondaj verilerinden üretilen arakesitlerdir. Aslında bu arakesitlerde birer üçgensel ağ modelidir.

Şekil 6.66: Sondaj verilerinden üretilmiş katı model

Şekil 6.67: Sondaj verilerinden üretilmiş saydam katı model

6.10 Veri Tabanını Ekrana Yansıtabilme

ArcScene'de veri tabanını ekrana yansıtabilmek için çizilmiş öğenin Scene layers bölümüde yer alan sembolü üzerine sağ tıklayarak Properties seçeneği seçilir. Açılan Layer Properties pencerindeki Display bölümündeki Show Map Tips kutusu işaretlenir.

Joins & Relates	Base Heig	jhts j	Extrusi	on			Rendering
General Source	Selection	Display	Symbology		Fields		Definition Query
Show ManTins (uses n	rimaru displau field)						
Scale sumbols when a	reference scale is se	ł					
Transparent:	0 %						
Hyperlinks							
🔲 Support Hyperlinks usi	ng field:						
none		-					
C Document	URL C Macro					1	Create
						-	
Feature Exclusion							
The following features are	excluded from drawin	ig:					
The following features are Feature ID KUYU	excluded from drawin	ıg:	(Re	store	Drawing
The following features are Feature ID KUYU	excluded from drawin	ig:	(Re	store Resti	Drawing ore All
The tollowing features are a	excluded from drawin	ıg:	(Re	store Resti	Drawing pre All
I he tollowing features are a	excluded from drawin	ıg:	[Re	store Resti	Drawing ore All
I he tollowing features are a	excluded from drawin	ıg:	[Re	store Resti	Drawing ore All
The following features are of Feature ID KUYU	excluded from drawin	ıg:	[Re	store Resti	Drawing ore All
I he tollowing features are in Feature ID KUYU	excluded from drawin	ıg:			Re	store	Drawing ore All
I he tollowing features are in Feature ID KUYU	excluded from drawin	ıg:			Re	Rest	Drawing ore All
The tollowing features are in Feature ID KUYU	excluded from drawin	ıg:	[Re	Store	Drawing ore All
I he tollowing features are in Feature ID KUYU	xxcluded from drawin	ıg:	[Re	store	Drawing ore All

Şekil 6.68: Layer Properties penceresi Display bölümü

Yine Layer Properties penceresinde Fields bölümüne gelinir. Bu bölümdeki Primary Display Field kutusunda öncelikli gösterilmesi istenen veri tabanı niteliği atanır.

Joins & Relate	es	Base Heigh	ts	Extru	sion	B	endering
General So	urce Select	ion Di	isplay	Symbology	Field	ds De	finition Que
Primary Display Fi	eld:	KUYU				·	
Choose which field	s will be visible. Clic	k in the alias	column to	edit the alias	for any field		
Name	Alias	Туре	Length	Precision	Scale	Number Fo	ormat
🗹 OID	OID	Object ID	4	0	0		
⊻ ×	×	Long	8	8	0	Numeric	
¥Y ⊒−	Y	Long	8	8	0	Numeric	
	2	Long	8	8	U	Numeric	
	CIDIC	lext	8	0	0	M	
	CIKIS	Long	0	0	0	Numeric	
	FORMASYON	Tevt	13	0	0	Numeric	
Shape	Shape	Point		Ŭ.			
Select All	Clear All						

Şekil 6.69: Layer Properties penceresi Fields bölümü

Bu işlemler sonrasında mouse oku ekran üzerinde gezinirken işaretlenmiş öğenin üzerine gelince öncelikli gösterilmesi istenen niteliği gösterir.

Şekil 6.70: 3 boyutlu sondaj kuyuları

Veri tabanını ekrana yansıtabilmenin bir başka yoluda araç çubuğu menüsündeki identification özelliğini kullanmaktır.

Şekil 6.71: Identification tuşu

Identification özelliği seçildikten sonra mouse oku istenen öğenin üzerine tıklanınca aşağıdaki Identify Results penceresi açılır. Bu pencerede veri tabanındaki tüm nitelikler listelenmiştir

Şekil 6.72: Identify Results penceresi

Veri tabanını ekranda görüntülemenin son yolu ise Scene layers bölümünde veri tabanını görmek istediğimiz öğenin üzerine sağ tıklayarak Open Attribute Table seçeneğini seçmektir. Bu seçeneğin seçilmesi sonucu öğenin tüm veri tabanı görüntülenir.

=	Attril	outes	of l	og 2	zemin E	vents			
	OID	x	Υ	z	KUYU	GIRIS	CIKIS	FORMASYON	Shape *
Þ	0	269	256	0	BMP11	-13	-22	Denizel Aluvyo	Point
	1	252	242	0	BMP12	-17	-29	Denizel Aluvyo	Point
	2	206	234	0	BMP13	-42	-54	Denizel Aluvyo	Point
	3	158	210	0	BMP14	-65	-104	Denizel Aluvyo	Point
	4	132	201	0	BMP15	-65	-70	Denizel Aluvyo	Point
	5	152	252	0	BMP101	-66	-98	Denizel Aluvyo	Point
	6	140	245	0	BMP102	-68	-89	Denizel Aluvyo	Point
	7	191	258	0	BMP103	-56	-86	Denizel Aluvyo	Point
Re	cord:	•			1 🕨	Show	All	elected Record	s (0 out of 8 Se

Şekil 6.73: Attribute(nitelik) tablosu

6.11 Verilerin Grafiksel Gösterimi

Verilerin grafiksel gösterimi için grsafik olarak gösterilecek verinin veri tabanında atanmış olması gerekir.

ArcMap arayüzü açılır. Çizilebilir veri ArcMap'e atanır. Atanan veri üzerine Layer bölümünde sağ tıklayarak Layer Properties penceresinin Symbology bölümü açılır ve şekildeki uygulamalar aynen izlenir. Tamam tuşuna basılır ve grafik oluşturulur.

Şekil 6.74: Arcmap arayüzü

Layer Properties	2 🛛									
General Source Select	ion Display Symbology Fields Definition Query Labels Joins & Relates									
Show:	Draw quantities using symbol size to show relative values. Import									
Categories	Fields Classification									
Quantities	Value: CERCHAR Natural Breaks (Jenks)									
- Graduated colors Graduated symbols	Normalization: none Classes: 3 Classify									
Proportional symbols Charts	Symbol Size from: 4 to: 18									
Multiple Attributes	Symbol Range Label									
	• 0 0									
	• 1 1									
	2 2									
Advance <u>d</u> -										
	Tamam iptal Uygula									

Şekil 6.75: Layer Properties penceresi Symbology bölümü

🔇 Untitled - ArcMap - ArcInfo		×								
<u>Eile Edit View Insert Selection Iools Window H</u> elp										
🗅 📽 🖬 🚭 🐰 🖻 🛍 🛪	∽ ~ (★] 🔄 🛃	Ĵ I								
Editor - 🕨 🖍 Task: 🖸	ate New Feature									
<u>3</u> D Analyst 👻 Layer	🔄 🧖 🔅 🕶 去 岳 🛛 🔐 🧶 🔍 🤤 🖉									
► Stayers ► Cerchar Events CERCHAR • 0 • 1		1								
• ²	BMP13									
	EMP14									
	BMP15									
Display Source Selection	D 2 1 (
Drawing 🗸 🖒 🖓 🖓 🗖 🕇	A • 🖾 🙆 Arial 🔹 10 💌 B I 🖳 A • 💩 • 🦽 •	•								
	1266,137 2431,693 Unknown Units	_ //								

Şekil 6.76: Deney verilerinin grafiksel gösterimi

6.12 Animasyon Üretimi

Animasyon üretimi için ArcScene arayüzünde Open Animation Controls tuşuna basılır.

Şekil 6.77: Animasyon kontrol tuşu

Açılan Animation Controls penceresinde istenen özellikler ayarlanır.

Şekil 6.78: Animation Control penceresi

Bu işlemlerden sonra ArcScene ortamındaki şekil istenen yönde ve açılarda döndürülür. Her döndürme işlemi arasında capture tuşuna basılarak programın bu işlemi hafızasına alması sağlanır.

Şekil 6.93: Capture tuşu

İstenen açılar döndürme işlemiyle gösterildikten sonra ArcScene arayüzü araç çubuğundaki Animation – Export to Video seçeneği seçilir.

Şekil 6.79: Animation aracı

Sıkıştırma penceresin	de arzulanan ayarlar yapılır v	e Tamam tuşuna basılı	r.
	Video Sıkıştırma	$\overline{\mathbf{X}}$	
	Sıkıştırıcı:	Tamam	
	Cinepak Codec by Radius 📃 💌	iptal	
	Sıkıştırma Kalitesi: 75 ∢ →	Yapılandır	
		Hakkında	

Açılan pencerede dosyaya isim verilir ve OK tuşuna basılır. Ekana gelen Video

40

🔽 Her

kare

Şekil 6.80: Video Sıkıştırma penceresi

Hareketli video elde etmek içinse çizilmiş şekil üzerinde çizgi şeklinde bir patika çizilir. Animation Controls – Create Flyby from Path seçilir.

Anin	nation 🔻 👩 🖭									
	⊆lear Animation									
	Create <u>K</u> eyframe									
#	Create <u>G</u> roup Animation									
2	Create <u>F</u> lyby from Path									
~	Move Layer along Path									
	Load Animation File									
H	Save Animation File									
Ħ	Export to <u>V</u> ideo									
ᅷ	Animation Manager									

Şekil 6.81: Animation aracı

Açılan pencere gerekiyorsa ayarlamalar yapılır ve Import tuşuna basarak hareketli video üretilir.

reate Flyby from Path	? 🛽
Lay	ver:
Path source	
 Selected line graphics 	
C Selected line feature	
Apply in reverse order	
Vertical offset	0,0
	Low High
Simplification factor	
Path destination	ed havent along a sth (fly, by)
C Move observer along p	asth with surroot torget
C Hove observer along p	
 Move target along patr 	n with current observer
Orientat	ion Settings
Track name:	Track from path
Overwrite last importe	ed track
	Import Cancel

Şekil 6.82: Create Flyby From Path penceresi

7 SONUÇLAR

İnceleme alanı içerisinde yer alan jeolojik birimler sırası ile; Yapay Dolgu, Denizel Alüvyon, Kolüvyon ve Kartal Formasyonudur.

ArcGis bilgisayar programının içeriği kavranmış ve yetenekleri ortaya konmuştur. Programın öğrenilmesi ve kavranması sırasında yaşanan en büyük sorun programın yeni sürümü olan ArcGis 9.2 dışında kalan eski sürümlerinin katı model oluşturmada yetersiz kalmasıdır. Bu tez içinde sergilenen katı modeller ArcGis 9.2 ve üstü sürümlerde çizilebilir. Ayrıca bu çalışmada izlenen yol, karşılaşılan sorunlar ve bu sorunlara üretilen çözümler gelecek dönemde ArcGis teknolojisini kullanacaklar için verimli bir kaynak olacaktır.

Jeolojik ve jeofizik verilerden yararlanılarak, bölgenin 3B katı modeli hazırlanmıştır. Çalışma alanının kontur, eğim, üçgensel ağ modeli ve topografya haritaları çizilmiştir. Çalışma alanındaki deney verileri grafikselleştirilerek ArcGis üzerinde gösterilmiştir.

Hazırlanan modeller ile gerçek değerler kullanılarak Melen Projesi Boğaz geçişinin mühendislik Planlaması ve uygun jeoteknik uygulamalar belirlenebilir.

Oluşturulan modellerde görülmüştür ki; Melen Projesi Boğaz Geçişi tüneli -135 m kotunda Kartal Formasyonu içinde açılacaktır. Bilindiği üzere Kartal Formasyonu Kırıntılı Kireçtaşı ve Laminalı Çamurtaşı ardalanmasından oluşan bir istiflenmedir. Kırıntılı Kireçtaşları bazen sınırlı alanlarda onlarca metre kalınlığa ulaşarak baskın fasiyes konumunda olmaktadır. Baskın fasiyes konumundaki Kırıntılı Kireçtaşları deniz suyu altında karstlaşarak dolgulu veya dolgusuz erime boşlukları oluşturabilirler. Bahsettiğim bu olay öngörülmesi ve araştırılması gereken bir Jeolojik sonuçtur. Çalışma alanında yapılabilecek bazı ek araştırma sondajlarını yapmamak önlenemeyen su kaçaklarına ve para kaybına neden olabilir. Bu öngörüye en iyi örnekler Atatürk ve Keban barajları inşaat çalışmaları sırasında karşılaşılan benzer sorunlardır [11]. Melen projesi Boğaz Geçişi kısmında Kartal Formasyonu değerlendirilirken deniz geçişlerinde karstlaşma olması riskinden dolayı tabakaların konumunun bilinmesi çok önemlidir. Bunun için tünel açma çalışmaları sırasında ön delgi yapılması faydalı olacaktır.

Bu sayede güzergah önündeki karstlaşma, tabakalanma gibi özellikler takip edilecek, karstik boşluklar önceden bilinebilecek ve yüksek basınçlı su kaçakları öngörülebilip gerekli önlemler alınabilecektir.

KAYNAKLAR

[1] **Devlet Su İşleri**, 2006. İçme Suyu Temini Faaliyetleri, http://www.dsi.gov.tr

[2] **Devlet Su İşleri**, 2005. Büyük İstanbul İçme Suyu 2. Merhale Sözleşme Paketi, Melen Müh. ve Müşavirlik O.G., Yayınlanmamış.

[3] **Beykoz Belediyesi,** 2006 Beykoz Hakkında Genel Bilgiler, http://www.beykoz.bel.tr/

[4] **Sarıyer Belediyesi,** 2006 Tarabya Hakkında Genel Bilgiler, http://www.sariyer.bel.tr/

[5] **Sayar, C.,** 1979, İstanbul - Pendik kuzeyinde Kayalıdere Grovaklarının Biyostratigrafisi ve Brachiopod'lari. İTÜ Maden Fakültesi, İstanbul.

[6] **Önalan, M.,** 1982. Pendik Bölgesi ile Adaların Jeolojisi ve Sedimanter Özellikleri, *Doçentlik Tezi*, İ.Ü. Müh. Fak., İstanbul.

[7] **Tüysüz, O.,** 2003. İstanbul İçin Deprem Senaryolarının Hazırlanmasında Coğrafi Bilgi Sistemlerinin Kullanımı, *İTÜ Rektörlüğü Bilimsel Araştırma Projeleri Birimi*, İTÜ Avrasya Yerbilimleri Enstitüsü, İstanbul.

[8] **Bakırköy Belediye Başkanlığı,** 2000. Veliefendi Hipodromu ve Dolayının Jeolojik ve Jeoteknik Etüd Raporu, *İTÜ Geliştirme Vakfı*, İTÜ Maden Fakültesi, İstanbul.

[9] **Bakırköy Belediye Başkanlığı,** 2000. Bakırköy Ataköy Kesimi Yerleşim Alanlarının Jeolojik Yapı ve Depremsellik Etüdü, *İTÜ Geliştirme Vakfı*, İTÜ Maden Fakültesi, İstanbul.

[10] **Devlet Su İşleri**, 2005. Melen Projesi Deniz Geçişi Jeoteknik Veri Raporu, Yayınlanmamış.

[11] **Biberoğlu, S.,** 2007. Sinan Biberoğlu ile Sohbet.

[12] Akropol Bigisayar Mühendislik ltd. şti., 2004. ArcGis Eğitim Notları, Yayınlanmamış.

[13] **Bratt, S., Booth, B.** 2004. Using ArcGIS 3D analyst, *Esri Redlands*, California.

[14] **Perencik, A.,** 2004. Building a Geodatabase. *Esri Redlands*, California.

[15] Heather, K., 2004. Data in Three Dimensions. *Esri Redlands*, California.

EKLER

EK A:OLUŞTURULANMODELLER

Şekil A1: Batimetri yüzeyi

Şekil A2: Kaya tavanı yüzeyi üçgensel ağ modeli

Şekil A3: Yukarıdan aşağıya su seviyesi, batimetri, kaya tavanı ve kaya kesit tabanı üçgensel saydam ağ modelleri

Şekil A4: Batimetri yüzeyi izohips eğrileri

Şekil A6: Batimetri yüzeyi topografya haritası

Şekil A7: Kaya tavanı yüzeyi topografya haritası

Şekil A8: Batimetri ve kaya tavanı yüzeyleri topografya haritaları

Şekil A10: Kaya tavanı yüzeyi eğim haritası

Şekil A11: Sondajların üç boyutlu gösterimi

Şekil A12: Sondaj litolojileri arakesitleri

Şekil A13: Sondaj verilerinden üretilmiş saydam model

Şekil A15: Su kalınlığı saydam modeli

Şekil A16: Çalışma alanının jeofizik veriler yardımıyla üretilmiş katı modelleri

Şekil A17: Çalışma alanının saydam katı modeli

Şekil A18: Tünel güzergahı

Şekil A19: Deney verilerinin grafiksel gösterimi (Tek Eksenli Basınç dayanımı ve Brezilyan Testi)

Şekil A20: Deney verilerinin grafiksel gösterimi (P-S dalgaları)

Şekil A21: Deney verilerinin grafiksel gösterimi (Schmidt Çekici ve Cerchar Aşınma Deneyi)

EK B: COĞRAFİ BİLGİ SİSTEMLERİ

Tanımı

Karmaşık planlama ve yönetim sorunlarının çözülebilmesi için tasarlanan; mekandaki konumu belirlenmiş verilerin kapsanması, yönetimi, işlenmesi, analiz edilmesi, modellenmesi ve görüntülenebilmesi islemlerini kapsayan donanım, yazılım ve yöntemler sistemidir".

Şekil B1: Coğrafi Bilgi Sistemleri

Daha basit bir ifade ile, "dünya üzerindeki bölgeleri tarif eden, verileri saklayan ve kullanan bilgisayar sistemi" olarak da tanımlanabilir.

Coğrafi Bilgi sistemleri, mekansal verilere bağlı sözel bilgileri entegre bir sekilde depolayan bir yapıya sahiptir.

"COGRAFI BILGI SISTEMLERI, problemlerin çözümünde etkin bir koordinatördür."

Veri Yapısı

Coğrafi veri yapısı temel olarak Mekansal ve Tanımlayıcı Bilgiler olmak üzere iki gruba ayrılır. Mekansal veriler, özelliklerin yerini, şeklini ve diğer mekansal veriler ile ilişkilerini belirler. Tanımlayıcı bilgiler ise özelliklere ait bilgilerin veri tabanında tutulmasıdır.

Özellik tipleri temel olarak Nokta, Çizgi ve Çokgen olmak üzere üç gruba ayrilir. Bunlardan noktasal olanlar lokasyon belirler (tepe noktaları, elektrik direklerı, kuyu gibi). Şekli ve sınırları çok küçük olan birimlerin tanımlanmasında kullanılırlar. Çizgisel özellikler birbirini takip eden ve alan olarak gösterilemeyen birimler için kullanılır.(Örnek: yol ve nehir,elektrik hatti gibi). Çokgen özelliklere ise aynı özelliğe sahip alanların gösteriminde ihtiyaç duyulur. (Örnek yerlesim sinirlari, göller gibi). Bu özellikler gösterildikleri semboller ile harita üzerinde birbirlerinden farklı anlamlar ifade ederler. Bu ayrımlar veri tabanı bilgileri yardımıyla yapılır. Veri tabanına girilmiş olan bilgiler vasıtasıyla aynı özellik grubuna giren mekansal veriler birbirlerinden renk ve sembol olarak ayırt edilir. Böylece harita üzerinde farklı bilgiler sunulmuş olur.

Şekil B2: Coğrafi Bilgi Sistemleri veri yapısı

Bu modelin temelinde, her biri, nehirler, yollar, jeolojik olusumlar, büyük toprak grupları, orman türü, yerlesmeler gibi cografi bilgiler ve özelliklerden olusan verilerin birbirinden bağımsız olarak tanımlanmış tabaka veya kapsamlar olarak soyutlanması bulunmaktadır.

Şekil B3: Veri İlişkilendirmesi

Coğrafi Bilgi Sisteminin Elemanları

Cografi bilgi sisteminin kurulabilmesi için gerekli olan elemanlar: yazılım, donanım, veri tabaii, yöntemler ve insanlardır.

Şekil B4: Coğrafi bilgi sisteminin elemanları

Ancak, sistemin başarısı bu teknolojileri kullanacak personel ve yöneticilerin eğitimine bağlıdır ve en önemli faktör bu konuda yetişmiş "insan"dır.

Coğrafi Bilgi Sisteminin Genel Fonksiyonları

Coğrafi Bilgi Sistemilerinde amaç Coğrafi bilginin; üretimini, yönetimini, analiz ve network üzerindeki dagıtık veri tabanlarından coğrafi verileri tüm insanların paylasabileceği profesyonel bilgi sistemi teknolojisini sunmaktır.

Şekil B5: Genel fonksiyonlar

Veri Toplama Teknikleri

Coğrafi Bilgi Sisteminde x,y koordinatlarına bağlı (sayisal format) verilerin sisteme aktarılmasında farkli yöntemler uygulanır. Mevcut farklı ölçeklerdeki haritalar, uydu görüntüleri, hava fotograflari ve yersel ölçmeler ile elde edilen koordinat bilgileri ile açı mesafe değerleri veri kaynakları olarak tanımlanabilir. [9]

Şekil B6: Veri kaynakları

ArcGIS teknolojisinde, sayısallaştırıcı tabletler, ekran üzerinden, ascii text dosyalarından ve farklı ortamlarda üretilmiş ve manyetik ortamda bulunan verilerin gerekli dönüşümleri yapılarak veri üretimi gerçekleştirilir.

ArcGIS Teknolojisinde Veri Üretim Teknikleri

Şekil B7 : Veri Üretim Teknikleri

Veri Depolama Formatları

Coğrafi Bilgi Sisteminde yeryüzüne ait bilgiler, vektör ve raster formatlarda birbirlerinden soyutlanmış farklı tabakalar şeklinde depolanırlar. Coğrafi Bilgi Sisteminde bu iki format, coğrafi analizlerde ve sorgulamalarda etkin bir biçimde kullanılır. Bu sorgulama ve analizlerde, Vektör ve Raster formatların birbirlerine göre üstün ve zayıf yönleri vardır.

Şekil B8: Veri depolama formatları

Vektörel Veri

Vektörel veri formatında konuma ait veriler; nokta, çizgi ve alan özellikleri x,y koordinat değerleriyle depolanırlar. Nokta özelliği tekbir x,y koordinat çifti ile temsil edilen verilerdir (Elektrik Direkleri, Yangın Muslukları, Kuyular gibi). Çizgi özelliği, bir baslangıç ve bir bitiş noktasi olan x,y koordinatlar dizisi ile temsil edilirler (Dereler, Yollar, Elektrik Hatlari gibi). Alan özelliği ise, baslangıç ve bitiş noktası aynı olan x,y koordinatlar dizisi ile temsil edilirler (Parseller, Binalar, Arazi Kullanımı gibi).

Raster Veri

Raster ver formatında konuma ait veriler ise; hücrelere bağlı olarak temsil edilir. Aynı boyuttaki hücrelerin bir araya gelmesi ile oluşurlar. En küçük birim pixel olarak tanımlanır. Raster verilerde verinin hassasiyeti pixel boyutuna göre değişen çözünürlük (resolution) özelligi ile tanımlanır. Raster veride her pixel bir değere sahiptir. Bu değer bazen coğrafi bir özellige ait kod degeri olarak tanımlanabilir ve Grid formatında bu kod değeri Value Attribute Table (Vat) yapısında depolanır. Ya da o pixel 0-255 renk aralığında bir değeri taşır.

Aralarındaki Farklılıklar

Raster verilerin veri depolama hacmi vektör verilere göre oldukça büyüktür. Bazı konumsal analizler (Bindirme analizleri, Alan hesaplamaları ve yakınlık analizleri gibi) raster veri formatında daha kolaydır.

Verilerin hassasiyeti raster verilerde pixel size ile orantılı olduğundan hassas çalışmalarda veri kayıplarına neden olabilir. Vektörel veri formatında grafik objeleri tanımlayan öznitelik bilgilerine ulaşma, güncelleme ve günleme mümkün ve daha kolaydır.

Sorgulama

Coğrafi Bilgi Sistemi grafik ve grafik olamayan verilerin birbirleri ile bütünleşik olarak sorgulanmasına olanak tanır. Buna göre grafik veriden sözel verilere, sözel verilerden de grafik (konumsal veriye)verilere hızlı bir erişim sağlanmış olur.

Select Feature & Select By Attribute

Coğrafi Bilgi Sisteminde depolanmış bir yol objesinin tanımlanması ile, o yolun uzunluk, adı, tipi, vb bilgilere hızlı bir erişim sağlanmış olur. Bir parsel tanımlandığında o parselin alan, çevre, ada ve parsel numarası gibi veritabanına girilmiş bilgilere erişim sağlanmıs olur. Veri tabanından mantıksal ifadeler kullanılarak grafik verilere ulaşılmış olur. Mahalle adı tanımlanarak o mahalledeki tüm parseller ekranda görüntülenebilir.

Şekil B9: Veri türleri arasındaki farklılıklar.

Şekil B10: Raster ve vektör veri arasındakı farklılıklar

Select by Location

Birbirlerinden soyutlanmış farklı tabakalarda ve aynı coğrafi düzlemde depolanmış verilerin (Yol,Mahalle Sinirlari, Parseller, Okullar, İlçe Sinirlari gibi) birbirleri ile ilişkilendirilmesidir. Örneğin bir mahalle içine giren parsellerin, okulların seçilmesi, D750 karayolunun geçtigi ilçelerin seçilmesi, bir sanayi alanına belli bir mesafede olan yerlesim yerlerinin belirlenmesi gibi mekansal sorgulamalar yapılabilmektedir.

Analizler

Cografi Bilgi Sistemi'nde depolanan veriler üzerinde konuma dayalı kararlar verebilme coğrafi verinin sorgulanması, görüntülenmesi ve analizler ile mümkün olmaktadır. Konumsal analiz işlemlerinde, mevcut girdilerden yararlanılarak, yeni bilgi kümeleri üretilir.

Tampon Bölgeleme (Buffer),

Bindirme Analizleri (Overlay),

Yakinlik Analizleri (Proximity),

Yogunluk analizleri (Density Analysis)

Adres Haritalama (Adress Geocoding),

Dinamik Bölümler (Dynamic Secmentation)

Kisayol ve Altyapi Yönetim Analizleri (Network Analysis),

Yüzey Analizleri (3D, Aspect, Slope, Elevation, Visibility, Line of Site, Cut&Fill),

Veri Görüntüleme ve Harita Çıktı İşlemleri

Sistemde depolanan vektör veriler, veritabanı bilgilerine göre sınıflandırılarak farklı özelliklerde görüntülenebilirler. Sistemde yer alan semboloji kütüphanesi ile, vektör verilere çizgi tipleri, tarama, renk ve grafik semboller atayarak ilgili yönetmeliklere göre harita görüntüleme işlemleri hızlı bir şekilde gerçekleştirilir. ArcGIS sisteminde vektör verilerin görüntülenmesinde, Single Symbol, Unique Values, Graduated Colors, Graduated Symbols, Dot Density, Pie Chart, Bar/Cloumn, Stacked gibi özellikler kullanılır.

Şekil B11: Görüntülenebilir veri örnekleri

Bu fonkisyonlar ile yönetmeliklere dayalı tematik haritalama, standart topografik kadastral ve özel amaçlı harita üretimleri ArcGIS teknolojisi ile esnek ve hızlı bir yapıya kavuşmuştur.

Veri Görüntüleme ve Harita Çikti islemlerinde (Layout) kullanılan semboloji kütüphaneleri

Şekil B12: Harita çıktı sembolleri

ArcGIS'de Vektor ve Raster veri görüntüleme özelliklerinin yanısıra veri tabanı bilgilerinin Etiketlenmesi, Raporlanması ve Grafikler ile gösterimleri de mümkündür.

EK C: KUYU LOGLARI

Tablo C1: BMP 101 Zemin Sondaj Logu

BMP 101 ZEMİN SONDAJ LOGU 1/2

	DERİNLİK	LITOLOJI	YERINDE DENEYLER
	-65,50	Gevşek, açık gri-yeşilimsi,az ince kumlu, ince-iri çakıl boyutlu(50mm'ye kadar) yassı bivalve kabuk parçaları.(DENIZEL ALÜVYON)	
\mathbf{b}	69 50		
	-68,50	Covcek, polk gri vecilimei gri oz cokultu ince iri kum ve ince iri cokul bovuttu	
1 : : :]		(50mm've kadar) vassi biyalve kabuk parcaları.(DENİZEL ALÜVYON)	
· · · · · ·	-69,50	(
		Yumuşak, gri-yeşilimsi gri kumlu kil ve yer yer iri çakıl boyutlu(50mm'ye kadar)	
		yassı bivalve kabuk parçaları.(DENIZEL ALÜVYON)	
	-74,00		
22.22		Gevşek, açık gri-yeşilimsi gri-açık kahverenkli, ince iri kum ve	
2.2.2.	-75.00	in çaklı boyutunda(40mm ye kadar) yassı bivalve kabuk parçalan.(DENIZEL ALOV FON)	
		Gevşek, gri-yeşilimsi, az killi çok kumlu çakıl ve çok miktarda iri çakıl boyutunda	
0001		(40mm'ye kadar) yassı bivalve kabuk parçaları.(DENİZEL ALÜVYON)	
0001			
0001	-76,50		
		Gevşek, açık gri-yeşilimsi gri-açık kahverenkli, ince iri kum ve iri çakıl boyutunda (40mm'ye kadar) yassı kabuk parcaları (DENİZELALÜVYON)	
····			
212	-78 50		
	10,00	Orta sıkı, gri-açık kahverenkli, ince orta kum ve az miktarda ince çakıl boyutunda yassı	
1. A. A.		bivalve kabuk parçaları.(DENİZEL ALÜVYON)	
<u></u>			
$\dot{\cdot}$			
÷÷÷••			
2.5.5			
2.7.2.			
E			
2.2.2			
\cdot \cdot \cdot	-88.50		

BMP 101 ZEMİN SONDAJ LOGU 2/2

	DERİNLİK	LİTOLOJİ	YERINDE DENEYLER
	-88,50		
CC CC C			
стттт		YUKARIDAKI GIBI	
(T (T))			
<u> CETTE</u>			
	07.00		
111111111111111111111111111111111111	-91,90		

Tablo C2: BMP 101 Kaya Sondaj Logu

BMP 101 KAYA SONDAJ LOGU 1/2

	DERİNLİK	LİTOLOJİ	MEK/	ANİK	LOG					S	ÜREKSİZI	₋iĸ			
	-97,90	Koyu gri-gri, ince taneli az	TCR%	SCR%	RQD%	YAPI	TÜR	FORM	ARALIK	EĞİM	DÜZLEMSELLİK	PÜRÜZLÜLÜK	DOLGU VE KA	LINLIĞI	DAYANIN
┯		ayrışmış kireçtaşı, sagiam, çok sık-sık aralıklı, kalın laminalı kalkerli çamurtaşı,	68 83	50 60	0 0		J1	Ν	C-MW	70	U	S	F	С	S
ᆓ		sağlam. (KARTAL FORMASYONU)	100	100	30		J2	N	С	30	U	R	F	к	s
┯		(100	100	85				0.101					~	
	-103,00		100	50	15		V	D	C-MVV	90	U	5	F-5	C	5
Ň		Koyu yeşilimsi-gri,ince-orta taneli, az-orta ayrışmış diyabaz, orta sağlam-sağlan çok sık çatlaklar yüzünden	92	32	0		V	N	С	25	U	S	F-5	С	S
Ň		bozulmuş. (AYRIŞMAMIŞ DİYABAZ)	100	50	19										
×.×.	-106.25		100	50	32										
	100,20	Koyu gri-gri, ince taneli az ayrışmış kireçtaşı, sağlam,	95	86	41		J1	Ν	MW	50	Ρ	R	F	С	S
井		laminalı kalkerli çamurtaşı, sağlam. (KARTAL FORMASYONU)	100	90	50		J2	Ν	MW	90	Ρ	R	F	С	S
끂			100	70	20										
			100	100	56										
			85	85	20										
			100	80	25										
	-115.05		100	85	12										
\sim	,	Koyu yeşilimsi-gri, ince-orta taneli, az-orta avrısmıs					J1	Ν	VC	30	Р	R	F	С	S
Ň	-116.90	diyabaz, orta sağlam-sağlam (AYRIŞMAMIŞ DİYABAZ)	100	30	0		J2	Ν	VC	75	Р	R	F	с	s
		Açık-koyu gri, ince taneli, az ayrışmış kireçtaşı, sağlan (KARTAL FORMASYONU)	100	67	26		J1	N	MW	65	U-P	R	F	C-K	S
┯							J2	Ν	MW	90	U	R	F	С	S
표			100 95	100 55	70 25		V	D	С	25	Ρ	R	F-10	С	S
井			95	80	32										
臣			100	83	30										
			100	80	15										
-	-124 05		100	13	0										

BMP 101 KAYA SONDAJ LOGU 2/2

	DERINLIK	LITOLOJI	MEK/	ANİK	LOG					S	UREKSIZI	_IK			
	-124,05	Koyu yeşilimsi gri-koyu gri,	TCR%	SCR%	RQD%	YAPI	TÜR	FORM	ARALIK	EĞİN	DÜZLEMSELLİK	PÜRÜZLÜLÜK	DOLGU VE F	(ALINLIĞI	DAYANIN
		çamurtaşı, zayıf-orta sağ-	70	0	0										
		lam, çok sık aralıklı çatlak-		_			J1	Ν	VC-C	45	Р	R	F	С	W
		(KARTAL FORMASYONU)	100	70	0										
			100	38	84										
	-126,75	Acık ari az avrısmıs													
卭		kireçtaşı, sağlam.	100	100	66		J1	Ν	C-MW	60	Р	R	F	С	S
$-\tau$		(KARTAL FORMASYONU)					10	D	1.0.4/	00		0	-	~	
			100	100	75		JZ	D	IVIVV	90	U	5	г	U	3
			00	70	22		۷	Ν	С	60	Р	S	F	С	S
	-129,25		90	70	33										
		Koyu gri-açık gri, az ayrış-	100	80	20		11	N	C MW	15	D	ç	F	ĸ	ç
		ince-kalın laminalı,					01	IN	0-10100	40		5		K	5
		kalkerli çamurtaşı, orta	100	100	75		J2	Ν	С	60	U	R	F	K-15	S
		(KARTAL FORMASYONU)		15	45										
			90	45	15										
			100	100	65										
			100	100	00										
			95	75	33										
				10	00										
			100	67	7										
			100	100	35										
			80	60	0										
			00	45	0										
-			90	40	0										
			75	50	0										
			100	95	50										
			100	67	7										
			100	100	35										
	-143 00		80	60	0										

Tablo C3: BMP 102 Zemin Sondaj Logu

BMP 102 ZEMİN SONDAJ LOGU 1/1

	DERİNLİK	LITOLOJI	YERINDE DENEYLER
	-68,20	Gevsek, acık gri-gri, ince orta kum ve cok miktarda orta iri cakıl boyutunda	
		(60mm'ye kadar) yassı bivalve kabuk parçaları.(DENİZEL ALÜVYON)	
1 1 1			
airin			
	-72,20		
		Cok vumusak, gri-kovu vesilimsi gri, killi kum ve orta-iri cakıl boyutunda	
===:		(80mm'ye kadar) yassı bivalve kabuk parçaları.(DENİZEL ALÜVYON)	
===:			
	-76,20		
0001		Gevşek, yeşilimsi kahverengi, çok kumlu çakıl ve çok miktarda orta-iri çakıl boyutunda	
		(60mm'ye kadar) yassı bivalve kabuk parçaları.(DENIZEL ALUVYON)	
000(
000(
0001			
0001			
000(
0001	-81 20		
	01,20	Gevsek ari-vesilimsi kahverengi orta-iri kum ile ver ver vari vuvarlak az miktarda ince-	
111		orta çamurtaşı çakılları ve az miktarda ince çakıl boyutunda yassı bivalve kabuk	
aom		parçaları.(DENİZEL ALÜVYON)	
111			
unn			
111			
un m			
тт т			
anın			
ттт			
mm			
mm	-88.70		

Tablo C4: BMP 102 Kaya Sondaj Logu

BMP 102 KAYA SONDAJ LOGU 1/3

	DERİNLİK	LİTOLOJİ	MEKA	ANİK	LOG					S	ÜREKSİZI	_iĸ			
Ŧ	-88,70	Koyu gri-açık gri,sık-orta	TCR%	SCR%	RQD%	YAPI	TÜR	FORM	ARALIK	EĞİ№	DÜZLEMSELLİK	PÜRÜZLÜLÜK	DOLGU VE I	KALINLIĞI	DAYANIN
┯┷		geniş aralıkı, az ayrışmış, ince taneli kireçtaşı, sağlam sık aralıklı, ince laminalı, kalkerli çamurtaşı, sağlam. (KARTAL FORMASYONU)	100	53	48		J1	Ν	C-MW	20	Ρ	R	F	С	S
Ŧ							J2	Ν	С	80	P-S	R	F	к	s
╈┲			100	68	64		J3	Ν	C-MW	60	Р	R-S	F	С	MS-S
							В	Ν	C-MW	60	Р	S	F	С	MS
			98	70	70										
ᆍ			100	73	66										
ᆓ															
			100	50	40										
┿┲┥			100	70	70										
			100	65	59										
┯┷			100	00	00										
ᆓ			97	81	64										
			00	65	45										
			90	05	40										
┿┸┥			96	84	84										
			100	96	93										
ᆂ			100		50										
	-103,45		100	66	56										
<u>-</u>		Koyu yeşilimsi gri-açık gri, orta taneli, az ayrışmış kirectası, orta sağlam-	100	43	40		J1	Ν	MW	30	U	R	F	С	S
<u>-</u>		sağlam ve nadir pirit kristalleri.					J2	Ν	C-MW	70	Р	S	F	К	MS
		(KARTAL FORMASYONU)	100	36	31		J3	Ν	W-MV	/ 85	U	R	F	С	MS
							J4	Ν	C-MW	45	Р	R	F	С	MS
\mathbf{T}			100	25	23										
$\overline{\mathbf{T}}$															
ŢŢ			100	18	0										
ŢŢ			100	22	17										
ŦŦ			100	18	9										
ŦŦ				10	Ŭ										
ŦŦ			100	16	16										
TT	-111.95														
BMP 102 KAYA SONDAJ LOGU 2/3

	DERİNLİK	LİTOLOJİ	MEK/	ANİK	LOG					S	ÜREKSİZL	_iĸ			
	-111,95		TCR%	SCR%	RQD%	YAPI	TÜR	FORM	ARALIK	EĞİN	DÜZLEMSELLİK	PÜRÜZLÜLÜK	DOLGU VE KAL	INLIĞI	DAYANIM
			100	6	0										
					-										
┝┻┲┥															
			100	18	14										
		YUKARIDAKİ	100	28	28					YU	KARIDAKİ	GİBİ			
		GIBI													
			90	0	0										
				•											
Ŧ			90	0	0										
			00	0	0										
T			90	0	0										
	-118,95		90	0	0										
		Açık-koyu gri, sık-orta geniş					11	N	C	20	п	R	F	С	s
		aralıkli, ince taneli kireçtaşı, sağlam ve kovu gri, ince	90	34	0		01		Ŭ	20	0	IX.		0	Ŭ
Ţ		laminalı, az ayrışmış,	100	32	0		J2	Ν	MW	50	Р	к	F	С	s
		kalkerlı çamurtaşı ara taba- kalı, orta sağlam,													
		(KARTAL FORMASYONU)													
			100	74	34										
	-122,20														
		Koyu gri, ince-kalın laminalı,	90	50	37										
		az ayrışmış kalkerli camurtası, orta sağlam-					J1	Ν	MW	70	Р	R	F	С	S
		sağlam, sık-orta geniş					10		147	0.5	-	-	-	~	
		aralıklı, az ayrışmış taze ince taneli nodüler kirectası.					JŻ	D	VV	85	Р	ĸ	F	C	S
		orta sağlam-sağlam.	100	46	14		J3	Ν	C-MW	30	U	R	F	с	S
		(KARTAL FORMASYONU)													
							۷	Ν	C-MW	55	Р	R	F	С	W
			95	60	53										
			85	53	53										
			85	40	17										
			100	76	70										
			90	30	17										
			100	52	52										
			100	98	98										
			100	52	52										
			100	52	02										
	-135,70		100	95	95										

BMP 102 KAYA SONDAJ LOGU 3/3

	DERİNLİK	LITOLOJI	MEK	ANİK	LOG					S	ÜREKSİZ	LİK		
	-135,70		TCR%	SCR%	RQD%	YAPI	TÜR	FORM	ARALIK	EĞİM	DÜZLEMSELLİ	< PÜRÜZLÜLÜK	DOLGU VE KALINLIĞ	DAYANIN
			100	66	66									
			100	38	38									
			100	75	70									
		YUKARIDAKİ GİBİ	76	15	0					YU	KARIDAK	i gibi		
			96	6	0									
			97	67	60									
			100	85	60									
			100	50	46									
			100	73	43									
			90	10	8									
_			80	0	0									
	-148,70		90	66	66									

Tablo C5: BMP 103 Zemin Sondaj Logu

BMP 103 ZEMİN SONDAJ LOGU 1/2

	DERINLIK	LITOLOJI	YERINDE DENEYLER
	-56,00	Gevşek gri-koyu gri, orta-iri kum ve orta-iri çakıl boyutunda (40mm'ye kadar) yassı	
		bivalve kabuk parçaları.	
		(DENIZEL ALUVYON)	
	-66.00		
mmmm	00,00	Acık grimsi-acık kahverengi, ince-orta kum ve az miktarda ince-orta cakıl bovutunda	
		yassı bivalve kabuk parçaları.	
		(DENIZEL ALÜVYON)	
unnig			
	-83.00		
- you constituted in the	00.00		

BMP 103 ZEMİN SONDAJ LOGU 2/2

DERİNLİK	LITOLOJI	YERINDE DENEYLER
-83,00 -83,00 -83,00 -83,00 -83,00 -83,00	Gri-koyu gri, köşeli yarı yuvarlak çakıl ve blok (kireçtaşı ve çamurtaşı kökenli). (DENİZEL ALÜVYON)	

Tablo C6: BMP 103 Kaya Sondaj Logu

BMP 103 KAYA SONDAJ LOGU 1/3

_	DERİNLİK	LİTOLOJİ	MEK/	ANİK	LOG					S	ÜREKSİZL	_ik			
	-86,00	Koyu yeşilimsi gri, ince-orta	TCR%	SCR%	RQD%	YAPI	TÜR	FORM	ARALIK	EĞİN	DÜZLEMSELLİK	PÜRÜZLÜLÜK	DOLGU VE KA	LINLIĞI	DAYANIN
~~~		diyabaz, orta sağlam-	90	50	0		J1	Ν	VC	70	Р	S	F	С	S
<u> </u>		sağlam. (AYRIŞMAMIŞ DİYABAZ)											_		
ŤŤ	-87,90	Kovu gri-acık gri, ince	100	70	0		J2	N	VC	40	Р	R	F	С	S
		taneli, sık ile geniş aralıklı,	100	90	60		J1	Ν	MW	75	Р	S	F	С	S
<b></b>		sağlam.					J2	N	C-MW	30	Р	S	F	с	s
		(RARIAL FORMASTONO)	100	90	25		10	-		0.5	5		-		
┵┱┵							J3	D	C-IVIVV	85	Р	ĸ	F	C	5
Ţ							V1	Ν	MW	30	Р	R	2-5	С	s
Ţ			100	95	50		V2	D	w	80	U	R	2-10	С	s
Ť															
			100	90	35										
			100	100	45										
<b></b>			95	87	8										
<u>+</u>															
			100	97	50										
┷┱┷															
Ţ			100	100	45										
ц,			100	100	50										
<b></b>															
			100	100	35										
<b>-T</b> -			85	85	40										
<u></u>															
<u>+</u>			100	100	47										
<u></u>															
┷┱┷															
Ţ			100	100	47										
Ŧ	-106,00	A set and set in a familiar	100	100	40										
		ayrışmış-taze kireçtaşı,	100	100	53		J1	Ν	MW	60	U	S	20mm	К	MW
		saglam, ınce lamınalı, çok sık-sık aralıklı çamurtaşı,					J2	N	C-MW	55	U	к	F	к	MS
		orta sağlam. (KARTAL FORMASYONU)					2	NI	14/	25	P	P	<b>_</b>	ĸ	Me
		,		465			13	ſN	vv	33	۲ ۲	г	Г	r.	IVIO
╧┰╧			100	100	93		J4	D	W	85	U	R	F	к	MS
							V1	Ν	C-MW	50	Р	S	7mm	к	s
Ţ															
			100	100	50										
			100	95	55										
┯┻┱	-112,50														

### BMP 103 KAYA SONDAJ LOGU 2/3

	DERİNLİK	LİTOLOJİ	MEK/	ANİK	LOG					S	ÜREKSİZL	.ik			
+	-112,50	Koyu gri-gri, ince taneli, az	TCR%	SCR%	RQD%	YAPI	TÜR	FORM	ARALIK	EĞİ№	DÜZLEMSELLİK	PÜRÜZLÜLÜK	DOLGU VE KA	LINLIĞI	DAYANIN
		sağlam ve ince laminalı, çok sık-sık aralıklı	100	85	48		J1	D	VC-C	85	Ρ	К	5mm	K	MW
		çamurtaşı, zayıf. (KARTAL FORMASYONU)	100	100	75		J2	N	C-MW	65	Ρ	К	5mm	К	MW
			100	100	50										
			100	100	60										
			100	87	27										
			100	85	60										
			85	85	29										
			95	90	60										
			100	100	73										
	-126.50		100	100	40										
		Koyu gri-açık gri, az ayrış- mış, ince taneli kireçtaşı, orta sağlam ve ine laminalı, çok sık-sık aralıklı, siyah	100	90	13		J1 J2	N D	vc w	60 85	P U-P	к к	10mm 10mm	K K	vw vw
		çamuraşı matriksi, çok zayıf. (KARTAL FORMASYONU)	100	90	0		J3	Ν	С	20	Ρ	К	F	K	VW
			96	72	15										
			93	60	0										
			90	70	0										
	-135,00		97	85	0										

### BMP 103 KAYA SONDAJ LOGU 3/3

	DERİNLİK	LİTOLOJİ	MEK/	ANİK	LOG					S	ÜREKSİZL	_İK			
	-135,00	Koyu gri-siyah, ince laminalı	TCR%	SCR%	RQD%	YAPI	TÜR	FORM	ARALIK	EĞİM	DÜZLEMSELLİK	PÜRÜZLÜLÜK	DOLGU VE KA	LINLIĞI	DAYANIN
		orta ayrışmış, karbonlu çamurtaşı, çok zayıf. Açık gri, sık aralıklı, ince taneli,	100	90	0		J1	D	MW	85	Р	K	5mm	K	VW
		kireçtaşı, orta sağlam. (KARTAL FORMASYONU)					J2	Ν	MW	60	Ρ	К	5mm	K	VW
			93	93	0										
	-138,45														
포		Açık gri-koyu gri, ince taneli az ayrışmış kireçtaşı, orta	95	85	13		J1	Ν	MW	60	U	K	10mm	К	VW
臣		sağıam ve köyü gri-siyan, ince laminalı, çok sık-sık aralıklı, çamurtaşı, zayıf. (KARTAL FORMASYONU)					J2	D	C-MW	85	U	К	5mm	К	W
표			95	85	0										
井			95	85	0										
井			87	73	8										
I	-144,50														
<u>_</u>		Açık gri-koyu gri, az ayrış- mış, ince taneli kireçtaşı,	100	95	50		J1	Ν	MW	70	Р	К	<2	K	W
ᆓ		sağlam. (KARTAL FORMASYONU)					J2	Ν	C-MW	45	Ρ	K	<10	К	W
开			97	80	10										
+++															
五			95	80	12										
井			100	90	50										
+++	-150 75														

# Tablo C7: BMP 11 Zemin Sondaj Logu

### BMP 11 ZEMİN SONDAJ LOGU 1/1

DERINLİK	LİTOLOJİ	YERİNDE DENEYLER
-12,70 -12,70 	Açık gri-gri, ince iri kum ve çok çakıl boyutunda yassı bivalve kabuk parçaları. (DENİZEL ALÜVYON)	
-19,00	Yarı katı-katı, sarımsı kahverengi, ince-iri kumlu kil ve çok yarı köşeli, orta-iri çamurtaşı çakılları. (TAMAMEN AYRIŞMIŞ ÇAMURTAŞI: KARTAL FORMASYONU)	
-22.00	Çok sıkı, sarımsı kahverengi, köşeli, orta-iri çamurtaşı çakılları. (TAMAMEN AYRIŞMIŞ ÇAMURTAŞI: KARTAL FORMASYONU)	

# Tablo C8: BMP 11 Kaya Sondaj Logu

### BMP 11 KAYA SONDAJ LOGU 1/1

	DERİNLİK	LİTOLOJİ	MEK/	ANİK	LOG					S	ÜREKSIZI	<u>_IK</u>			
᠇᠇	-22,00	Açık gri-koyu gri, ince taneli,	TCR%	SCR%	RQD%	YAPI	TÜR	FORM	ARALIK	EĞİM	DÜZLEMSELLİK	PÜRÜZLÜLÜK	DOLGU VE I	ALINLIĞ	DAYANIN
		kalın laminalı, çok ince tabakalı, orta derecede-az	99	71	67		11	р	VC-C	55	P	P	F	C	MS-S
┯┹┯		ayrışmış kireçtaşı, orta	00		07		51	D	vo-o	55		IX.		0	1010-0
		sağlam ve çok sık aralıklı, ince laminalı, kalkerli	100	77	74		J2	Ν	vc-c	20	Р	R	F	С	MS-S
ᄑ		çamurtaşı, orta sağlam.													
		(KARTAL FORMASYONU)					J3	D	С	70	Р	R	F	С	MS-S
┯┯			100	68	48				~	05			-	0	M0.0
┷┳┷			07	27	15		в	N	C	65	U-P	R	F	C	M2-2
ᄑ			01	21	10										
-			100	27	15										
ᄑ															
			83	17	12										
			99	25	0										
			00	25	0										
			99	20	0										
┯┹┯															
Ť			100	50	0										
┵┰┸															
ŢŢ			100	37	13										
┯┸┰			100	07	10										
규															
╧┰┶			100	67	21										
ᄑ															
┯┹┯			100	37	23										
ŢŢ															
┷┯┷			100	21	12										
┯															
			100	53	38										
┯┹┯	-38,26														
$\overline{\vee}$	, , , , , , , , , , , , , , , , , , , ,	Açık grimsi-yeşil, ince	77	30	22		J1	N	С	55	Р	R	F	С	w
$\sim \sim$		diyabaz, sağlam.											-	-	
. Y 1							J2	Ν	С	80	Р	R	F	С	W
Ň			83	28	10		Б	М	V0.0	C.F.	ЦБ	Б	-	~	MOO
YUY.							D	IN	VC-C	05	0-F	ĸ	Г	C	1013-3
vv															
$\rightarrow$	-41,50	Acık ari kovu ari ince													
┷┳┻		taneli, kalın laminalı, çok	71	15	0		J1	D	VC-C	55	U	R	F	С	MS-S
芇		ince tabakalı, orta ayrışmış, kirectası, orta sağlam-													
┯┷┱		sağlam ve çok sık aralıklı,	0	0	0		J2	Ν	С	20	U	R	F	С	MS-S
$-\overline{\Gamma}$		ince iaminali, kalkerli, çamurtaşı, orta sağlam.					J3	D	с	70	U	R	F	С	MS-S
╧┯╧		(KARTAL FORMASYONU)	100	25	13							-		-	
┸┯┸															
			78	16	0										
┯┹┯															
╈			67	12	0										
╧┰╩			100	45											
ᅻᅻ			100	45	28										
┯┻┯	-47,70														

# Tablo C9: BMP 12 Zemin Sondaj Logu

## BMP 12 ZEMİN SONDAJ LOGU 1/1

DERINLIK	LİTOLOJİ	YERINDE DENEYLER
-16,80 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Gevşek, açık gri, az kumlu ve az killi, orta-iri çakıl çakıl boyutunda yassı bivalve kabuk parçaları. (DENİZEL ALÜVYON)	
	Kahverengi-sarımsı kahverengi, orta sıkı, killi, köşeli, orta-iri çamurtaşı çakılları. (DENİZEL ALÜVYON)	

# Tablo C10: BMP 12 Kaya Sondaj Logu

## BMP 12 KAYA SONDAJ LOGU 1/5

	DERİNLİK	LİTOLOJİ	MEKA	ANİK	LOG					S	ÜREKSİZI	_iĸ			
	-28,80	Açık gri, ince taneli, kalın	TCR%	SCR%	RQD%	YAPI	TÜR	FORM	ARALIK	EĞİN	DÜZLEMSELLİK	PÜRÜZLÜLÜK	DOLGU VE	Kalinliği	DAYANIN
		kireçtaşı ve kalkerli çamurtaşı, orta sağlam-	98	47	23		J1	Ν	С	45	Р	R	F	С	MS
		saglam. (KARTAL FORMASYOMU)					J2	D	С	60	Р	R	F	К	MS
			97	65	43		в	Ν	VC-C	50	Р	R	F	С	MS
			97	66	43										
	-33 50														
<b>+</b> ++	-30,50	Açık gri, ince taneli, az	100	75	67		J1	N	C-MW	45	Р	R	F	С	MS
Ŧ		ayrışmış, kireçtaşı ve sağlam, çok sık aralıklı,			0.										
		kalın laminalı, çamurtaşı, sağlam.					J2	D	C-MW	70	P	R	F	С	MS
		(KÄRTAL FORMASYONU)	100	75	67		В	Ν	С	35	Р	Р	F	С	MS
<b></b>					•.										
			95	51	44										
Ţ															
			100	67	55										
<b>1</b>			83	71	69										
-1			100	75	66										
			100	10	00										
			97	86	81										
<u></u>			100	82	77										
T			88	75	60										
<b>1</b>			100	75	6E										
			100	10	00										
			89	62	57										
			95	69	69										
<b></b>	-51.80														

#### BMP 12 KAYA SONDAJ LOGU 2/5

	DERİNLİK	LİTOLOJİ	MEK/	ANİK	LOG					S	ÜREKSİZL	_ik			
	-51,80	Açık gri, ince taneli, az	TCR%	SCR%	RQD%	YAPI	TÜR	FORM	ARALIK	EĞİM	DÜZLEMSELLİK	PÜRÜZLÜLÜK	DOLGU VE K	ALINLIĞI	DAYANIN
		ayrışmış-ayrışmamış, kireçtaşı, sağlam-çok sağlam ve çok sık-sık	100	71	50		J1	D	C-MW	30	U	R	F	С	MS-S
节		orta sağlam-sağlam ve nadir saçılmış pirit kristalleri.	100		70		В	Ν	С	50	Р	R	F	С	MS-S
辛		(KARTAL FORMASYONU)	100	75	73										
苙			100	60	48										
			89	63	45										
			100	80	80										
芏			95	78	78										
			98	81	67										
至			98	78	75										
			100	81	75										
五			89	79	79										
			92	76	72										
喜			99	73	59										
莘			93	53	39										
Ħ			95	70	68										
			95	72	67										
			93	73	68										
			96	75	75										
			92	79	79										
+T	-76,80														

### BMP 12 KAYA SONDAJ LOGU 3/5

	DERİNLİK	LİTOLOJİ	MEK/	ANİK	LOG					S	ÜREKSİZL	<u>ik</u>		
	-76,80		TCR%	SCR%	RQD%	YAPI	TÜR	FORM	ARALI	EĞİN	DÜZLEMSELLİK	PÜRÜZLÜLÜK	DOLGU VE KALINLIĞ	DAYANIN
			98	47	23									
Ţ														
Ť			07	65	10							DAVI OF		
			97	60	40						YUKAR	DAKI GIBI		
-			97	66	43									
<b></b>			100	75	67									
<u></u>			100	10	01									
<u></u>														
			100	75	67									
ŢŢ			100	75	07									
Ť														
ᆓ			95	51	44									
苹														
			100	67	55									
			83	71	69									
			00	/ 1	00									
<b></b>														
<b></b>			100	75	00									
<u>+</u>			100	75	00									
			97	86	81									
ŦŦ														
<b>T</b>			100	82	77									
<b>T</b>			100	02										
<u>_</u>														
			88	75	60									
┯┻┱														
<u></u>			100	75	65									
<b></b>														
<b></b>			89	62	57									
Ţ			95	60	60									
Ť			33	03	09									
┯┷														
			100	71	50									
	-101,80													

### BMP 12 KAYA SONDAJ LOGU 4/5

	DERİNLİK	LİTOLOJİ	MEK/	ANİK	LOG					S	ÜREKSİZL	_İK		
	-101,80		TCR%	SCR%	RQD%	YAPI	TÜR	FORM	ARALIK	EĞİN	DÜZLEMSELLİK	PÜRÜZLÜLÜK	DOLGU VE KALINLIĞI	DAYANIN
		YUKARIDAKİ GİBİ												
			100	53	48									
			100	68	64									
ŢŢ			100	00	04						YUł	KARIDAKİ (	\$iBi	
			98	70	70									
			100	73	66									
			100	50	40									
Ţ														
			100	70	70									
<u> </u>														
			100	65	59									
T T														
			97	81	64									
<u> </u>			90	65	15									
			50	00	-10									
			96	8/	84									
			50	04	04									
			100	96	93									
-4-4-4			100	66	56									
T T														
			100	43	40									
			100	36	31									
			100	25	22									
			100	20	23									
			100	18	0									
			100	22	17									
┸┲┸			100	18	9									
ŢŢ														
			400	40	40									
-T			100	16	16									
<u>+</u>														
┷┳┻			100	60	48									
ŢŢ														
┱┺┱	-126,80													

### BMP 12 KAYA SONDAJ LOGU 5/5

	DERİNLİK	LİTOLOJİ	MEK/	ANİK	LOG					S	UREKSIZL	_IK		
	-126,80		TCR%	SCR%	RQD%	YAPI	TÜR	FORM	ARALIK	EĞİN	DÜZLEMSELLİK	PÜRÜZLÜLÜK	DOLGU VE KALINLIĞI	DAYANIN
五		TURARIDARI GIBI	90	80	77									
<u> </u>														
五			95	11	72						YUk	(ARIDAKİ G	iBi	
井			92	75	66									
<b>—</b>			95	77	75									
王														
			94	76	74									
五														
王			94	80	80									
<b>T</b>			100	00	70									
芏			100	80	76									
<b>T</b>			100	90	90									
<u> </u>														
			93	75	70									
<b>T</b>														
芏														
			96	75	72									
			100	75	61									
			96	72	50									
	-144,80													

# Tablo C11: BMP 13 Zemin Sondaj Logu

## BMP 13 ZEMİN SONDAJ LOGU 1/1

DERİNLİK	LİTOLOJİ	YERINDE DENEYLER
DENINEIA           0 0 0         -42,00           0 0 0         -42,00           0 0 0         -42,00           0 0 0         -0           0 0 0         -0           0 0 0         -0           0 0 0         -0           0 0 0         -0           0 0 0         -0           0 0 0         -0           0 0 0         -0           0 0 0         -0           0 0 0         -0           0 0 0         -0           0 0 0         -0           0 0 0         -0           0 0 0         -0           0 0 0         -0           0 0 0         -0           0 0 0         -0           0 0 0         -0           0 0 0         -0           0 0 0         -0           0 0 0         -0           0 0 0         -0           0 0 0         -0           0 0 0         -0           0 0 0         -0           0 0 0         -0           0 0 0         -0	Gevşek gri-açık kahverenkli, az kumlu, ince-iri çakıl boyutunda yassı bivalve kabuk parçaları. (DENİZEL ALÜVYON)	
•••• -51,00		
· · · · · · · · · · · · · · · · · · ·	Gri-koyu gri, ince-iri kum ve az köşeli-yarı köşeli, orta-iri çamurtaşı çakıllı ve bloklu 140mm'ye kadar, orta çakıl boyutunda yassı bivalve kabuk parçaları. (DENİZEL ALÜVYON)	

# Tablo C12: BMP 13 Kaya Sondaj Logu

## BMP 13 KAYA SONDAJ LOGU 1/2

	DERİNLİK	LITOLOJI	MEKA	ANİK	LOG					S	ÜREKSİZI	LİΚ			
+++	-54,05	Açık gri-koyu gri, ince taneli, az ayrışmış, kireçtaşı,	TCR%	SCR%	RQD%	YAPI	TÜR	FORM	ARALIK	EĞİN	DÜZLEMSELLİK	PÜRÜZLÜLÜK	DOLGU VE K	ALINLIĞI	DAYANIN
廿		sağlam-çok sağlam ve sık- çok sık aralıklı, ince kalkerli camurtası laminalı, sağlam.	86	23	7		J1	Ν	C-MW	45	Ρ	R	F	С	S
<u> </u>		(KARTAL FORMASYONU)	78	33	21		J2	Ν	C-MW	30	S	R	F	С	S
$\frac{4}{7}$							J3	D	MW	70	U	R	F	С	S
五			100	42	27		В	Ν	C-MW	55	U	R	F	С	S
			80	35	21										
王			90	63	60										
			90	60	45										
H			90	64	60										
喜			100	88	81										
臣			96	91	87										
臣			100	92	87										
			94	75	70										
莘			100	96	93										
臣			95	86	79										
			93	84	84										
			85	70	70										
臣			96	71	53										
<b>+T</b> +	-77.05														

### BMP 13 KAYA SONDAJ LOGU 2/2

	DERİNLİK	LITOLOJI	MEK/	١NİK	LOG					S	ÜREKSİZ	LİK		
	-77,05	(YUKARIDAKİ GİBİ)	TCR%	SCR%	RQD%	YAPI	TÜR	FORM	ARALIK	EĞİM	DÜZLEMSELLİ	(PÜRÜZLÜLÜK	DOLGU VE KALINLIĞ	I DAYANIN
1		,	93	84	84									
<b>1</b>														
1			95	74	70									
1			00	74	10						(TUNA		1	
			98	91	81									
			80	63	55									
			03	00	55									
			99	72	49									
			100	68	37									
			86	68	64									
	-87,00													

# Tablo C13: BMP 14 Zemin Sondaj Logu

### BMP 14 ZEMİN SONDAJ LOGU 1/2

	DERİNLİK	LITOLOJI	YERINDE DENEYLER
0000	-65,00	Açık gri-yeşilimsi gri, az ince kumlu, iri çakıl boyutlu(50mm'ye kadar) yassı bivalve kabuk parçaları. (DENİZEL ALÜVYON)	
0000	-74.00		
	-83.00	Yeşilimsi gri, gevşek, ince-orta kumlu kil ve az köşeli, ince-orta çakıl boyutlu (20mm'ye kadar) yassı bivalve kabuk parçaları. (DENİZEL ALÜVYON)	
	-89,50	Gri-açık kahverengi, gevşek, ince-iri kum ve az köşeli, orta-iri çamurtaşı çakıllı ve çok miktarda yassı bivalve kabuk parçaları. (DENİZEL ALÜVYON)	

### BMP 14 ZEMİN SONDAJ LOGU 2/2

	DERİNLİK	LITOLOJI	YERINDE DENEYLER
	-89.50		
	00,00		
		YUKARIDAKI GIBI	
<u></u>			
·· ·· ·· ··			
$\cdots$			
···· ···			
$\cdots$			
$i \in X \times X$			
$\cdots$			
$\cdots$			
1 1 X X			
	101 F		
	-104,3		

# Tablo C14: BMP 14 Kaya Sondaj Logu

### BMP 14 KAYA SONDAJ LOGU 1/2

	DERİNLİK	LITOLOJI	MEK	ANİK	LOG			_		S	ÜREKSİZI	<u>ik</u>			
	-104,50	Gri-koyu gri, az ayrışmış, kalkerli camurtası, sağlam	TCR%	SCR%	RQD%	YAPI	TÜR	FORM	ARALIK	EĞİM	DÜZLEMSELLİK	PÜRÜZLÜLÜK	DOLGU VE	KALINLIĞ	DAYANIN
		-orta sağlam ve geniş aralıklı, ince-çok ince	100	53	48		J1	Ν	C-MW	30	Ρ	R	F	С	MS-S
		kireçtaşı tabakaları, saglam ve nadir pirit kristalleri.					J2	D	VC-C	50	P-U	R	F	С	MS-S
			100	68	64		J3	D	VC	80	U	R	F	С	MS-S
							в	N	С	40	Р	R	F	С	MS-S
			98	70	70										
			100	73	66										
$\sqrt{}$	-111,10	Yeşilimsi gri, ince-orta taneli	100	50	40		J1	N	VC-C	45	Р	S	F	С	S
$\sim$		orta-az ayrışmış diyabaz, orta sağlam-sağlam. (AVRISMAMIS DİVABAZ)					.12	р	VC	80	P	R	F	C	s
v.v.			100	70	70		13	D	VC-C	70	P	R	F	C	s
v, v,														0	
Ϋ́Υ,			100	65	59		J4	N	VC	55	Р	ĸ	F	С	MS-S
~~`,															
ĽĽ			97	81	64										
ČČ			90	65	45										
$\langle \rangle \rangle$			96	84	84										
$\sim \sim$			100	96	03										
v,v,			100	50	50										
v,v			100	66	56										
~~`															
ĽĽ			100	43	40										
Ň	-121,50	A set and set from the set													
┿┹┿		Açık gri-gri, ince taneli, orta tabakalı, az ayrışmış, kirectası, orta sağlam-	100	25	23		J1	N	С	45	U	R	F	С	MS-S
		sağlam ve nadir saçılmış pirit kristalleri.					J2	Ν	С	30	U	R	F	С	MS-S
┯		(KARTAL FORMASYONU)	100	18	0		J3	D	С	55	Ρ	R	F	С	MS-S
┯							J4	Ν	MW	25	S	R	F	С	MS-S
			100	22	17										
╈╋			100	18	9										
╈┱┿															
			100	16	16										
┯┷			100	10	10										
┯┻┯	-129.50														

#### BMP 14 KAYA SONDAJ LOGU 2/2

	DERİNLİK	LİTOLOJİ	MEK	ANİK	LOG					S	ÜREKSİZI	₋iĸ			
	-129,50		TCR%	SCR%	RQD%	YAPI	TÜR	FORM	ARALIK	EĞİN	DÜZLEMSELLİK	PÜRÜZLÜLÜK	DOLGU VE KA	LINLIĞI	DAYANIN
			100	77	64										
		YUKARIDAKI GIBI													
											YU	KARIDAKİ (	Gibi		
			100	67	63										
	-132 50														
	102,00	Yeşilimsi gri, ince-iri taneli,	100	31	0		J1	D	VC	80	U	R	F	С	MS-S
$(\mathbf{X})$		orta-az ayrışmış, diyabaz,	100	51	0										
$\sim$		kristalleri.					J2	Ν	VC	50	Р	R	F	Κ	MS-S
$\times$		(KARTAL FORMASYONU)					10		1/0				-	~	
. v `v]			100	28	7		J3	IN	vc	30	Р	ĸ	F	C	1010-0
$\cup$															
Ň			06	10	0										
			30	15	0										
v`v															
$ \nabla \gamma $			90	21	15										
l v i															
$\times$ $\times$			74	25	7										
$\sim$			74	30	'										
Y.)															
Ň			100	~											
ΙX.X.			100	31	24										
l ∨ ` ∨															
$ \nabla \rangle$			60	12	0										
ľv í			60	15	9										
$\sim$	-142 80														
	112,00	Açık gri-gri, ince taneli, az					11	N	C	30	P	R	F	C	MS-S
		ayrışmış-ayrışmamış, kiroctası, sağlam vo çok sık	80	23	14				Ŭ	00		i c		Ŭ	1110 0
		sık aralıklı, ince çamurtaşı					J2	Ν	MW	55	U	R	F	С	MS-S
		laminalı ve nadir pirit kristalleri		~ .	- 4						-	_	-	~	
┝┯┻┯		(KARTAL FORMASYONU)	93	64	54		V1	N	C-MW	20	Р	R	F	C	MS-S
							в	Ν	C-MW	45	Р	-	3-7	С	-
			70	18	47								• •	•	
			10	40	/										
╺┯┺┯			75	37	33										
			10	0.											
$\square$			60	38	33										
┝┷┯┻															
					00										
			11	62	62										
┝┷┳╇			67	49	48										
┯┻┯															
			83	66	56										
┯┹┯															
╺┷┳┻															
			96	80	80										
	-156.00														

# Tablo C15: BMP 15 Zemin Sondaj Logu

# BMP 15 ZEMİN SONDAJ LOGU 1/1

_	DERİNLİK	LİTOLOJİ	YERINDE DENEYLER
	-65,00	Koyu gri-yeşilimsi kahverengi, ince-iri çok kumlu, yarı köşeli-yarı yuvarlak, ince-orta kireçtaşı ve çamurtaşı çakılları ve yer yarı köşeli-yarı yuvarlak kireçtaşı ve çamurtaşı blokları ve çok miktarda yassı bivalve kabuk parçaları. (DENİZEL ALÜVYON)	
0001	-68,00		
) ) ) ) ) () )	-69,75	Çok sıkı, açık kahverengi-açık gri, çok kumlu, yarı köşeli-yarı yuvarlak, ince-iri çamurtaşı ve kuvars çakılları ve çok miktarda orta çakıl boyutlu yassı bivalve kabuk parçaları. (DENİZEL ALÜVYON)	

# Tablo C16: BMP 15 Kaya Sondaj Logu

## BMP 15 KAYA SONDAJ LOGU 1/1

	DERİNLİK	LİTOLOJİ	MEKA	ANİK	LOG					S	ÜREKSİZL	<u>-İK</u>		
	-69,75	Açık gri-koyu gri, ince taneli,	TCR%	SCR%	RQD%	YAPI	TÜR	FORM	ARALIK	EĞİM	DÜZLEMSELLİK	PÜRÜZLÜLÜK	DOLGU VE KALINLIĞ	I DAYANIN
		ayrışmış-ayrışmamış,	100	63	6		J1	N	VC-C	55	U	R	F -	MS-S
-1		kireçtaşı, saglam ve çok sık -sık aralıklı, kalın laminalı,					10					-	-	
		çok ince tabakalı, az ayrış- mış çamurtaşı, orta sağlam.	100	56	32		J2	Ν	VC-C	75	U	R	F -	MS-S
		(KARTAL FORMASYONU)					в	Ν	С	45	U	R	F -	MS-S
<u>+</u>			100	50	40									
			100	00	10									
			100	56	40									
<b>1</b>														
			100	95	43									
			100	95	40									
<b></b>					~~									
<u>+</u>			100	66	33									
			100	66	50									
<b>1</b>			100	80	53									
ц														
			100	95	85									
			100	05	75									
ŢŢ			100	92	15									
<b></b>														
<u>+</u>			100	56	40									
	-85,50													

# EK D: NOKTA YÜKLEME DENEYİ SONUÇLARI

DMD 404												
					BMP 101	Nullia						
<b>=</b> .	Derin	lik(m)			Kırılma	Nokta yük	Düzeltme					
Ornek no	Üst	Alt	D (mm)	De2 (mm2)	Yükü (kN)	indeksi (Is)	katsayısı (F)	ls(50)	Мра			
1	36,1	36,25	60	3600	9	2,5	1,086	2,715	59,73			
2	36,4	36,57	90	8100	2	0,25	1,303	0,326	7,17			
3	38,3	38,45	87	7569	12	1,59	1,283	2,04	44,88			
4	38,55	38,6	88	7744	18	2,32	1,29	2,993	65,84			
5	33	33,45	88	7744	23,5	3,03	1,29	3,909	85,99			
6	35,75	35,9	86	7396	12,4	1,68	1,276	2,144	47,16			
7	34,3	34,5	87	7569	29,5	3,9	1,283	5,004	110,08			
8	34,5	34,6	88	7744	0,3	0,04	1,29	0,052	1,14			
9	35,8	36	89	7921	16	2,02	1,296	2,618	57,59			
10	35	35,35	88	7744	46	5,94	1,29	7,663	168,58			
11	35,55	35,7	88	7744	8	1,03	1,29	1,329	29,23			
12	40,8	41,04	88	7744	46	5,94	1,29	7,663	168,58			
13	41,05	41,2	89	7921	32	4,04	1,296	5,236	115,19			
14	41,2	41,37	88	7744	25	3,23	1,29	4,167	91,67			
15	42	42,1	89	7921	18	2,27	1,296	2,942	64,72			
16	42,3	42,4	64	4096	12	2,93	1,117	3,273	72			
17	42,85	43	89	7921	19	2,4	1,296	3,11	68,43			
18	44,3	44,4	89	7921	14,5	1,83	1,296	2,372	52,18			
19	46,65	46,75	78	6084	23,5	3,86	1,222	4,717	103,77			
20	46,9	47	89	7921	32,5	4,1	1,296	5,314	116,9			
21	47,3	47,45	89	7921	3,7	0,47	1,296	0,609	13,4			
22	48,25	48,35	88	7744	6	0,77	1,29	0,993	21,85			
23	51,45	51,55	88	7744	2,05	0,26	1,29	0,335	7,38			
24	51,55	51,65	84	7056	0	0	1,263	0	0			
25	52,45	52,55	82	6724	1,5	0,22	1,249	0,275	6,05			
26	52,75	52,9	63	3969	3,65	0,92	1,11	1,021	22,47			
27	52,97	53,15	89	7921	6,5	0,82	1,296	1,063	23,38			
28	53,5	53,75	57	3249	9,5	2,92	1,061	3,098	68,16			
29	54,5	54,7	89	7921	8,5	1,07	1,296	1,387	30,51			
30	55,75	55,95	70	4900	0,85	0,17	1,163	0,198	4,35			
31	56,05	56,2	60	3600	16,5	4,58	1,086	4,974	109,43			
32	56,5	56,65	88	7744	5,3	0,68	1,29	0,877	19,3			
33	56,7	56,85	88	7744	3,3	0,43	1,29	0,555	12,2			
34	56.75	56.9	87	7569	0.1	0.01	1.283	0.013	0.28			

# Tablo D1: Nokta yükleme deneyi sonuçları

BMP 101													
Örnek	Derin Üst	lik(m)	D (mm)	De2 (mm2)	Kırılma Yükü (kN)	Nokta yük indeksi (Is)	Düzeltme katsayısı (F)	ls(50)	Мра				
31	56.05	56.2	60	3600	16.5	4 58	1.086	4 974	109.43				
32	56.5	56 65	88	7744	5.3	-,50 0.68	1 29	0.877	19.3				
33	56.7	56 85	88	7744	3.3	0.43	1,29	0.555	12.2				
34	56 75	56.9	87	7569	0.1	0.01	1 283	0.013	0.28				
35	57.25	57.4	88	7744	0	0	1.29	0	0				
36	57.6	57,68	89	7921	5,2	0.66	1,296	0.855	18,82				
37	57,7	57,85	89	7921	0,4	0.05	1,296	0,065	1,43				
38	58,15	58,25	89	7921	4,1	0,52	1,296	0,674	14,83				
39	60,75	66,93	87	7569	4,95	0,65	1,283	0,834	18,35				
40	62,4	62,6	89	7921	18	2,27	1,296	2,942	64,72				
41	63,1	63,28	50	2500	31	12,4	1	12,4	272,8				
42	62,75	62,95	50	2500	35	14	1	14	308				
43	65,6	65,75	50	2500	16	6,4	1	6,4	140,8				
44	66,25	66,4	50	2500	2	0,8	1	0,8	17,6				
45	67,25	67,45	55	3025	11	3,64	1,044	3,8	83,6				
46	68	68,2	88	7744	4,5	0,58	1,29	0,748	16,46				
47	68,53	68,69	89	7921	24	3,03	1,296	3,927	86,39				
48	68,8	69	88	7744	13	1,68	1,29	2,167	47,68				
49	69,35	69,55	89	7921	23,5	2,97	1,296	3,849	84,68				
50	69,7	69,9	50	2500	26	10,4	1	10,4	228,8				
51	70,45	70,6	50	2500	1,5	0,6	1	0,6	13,2				
52	71,65	71,75	50	2500	13	5,2	1	5,2	114,4				
53	71,95	72,05	88	7744	13	1,68	1,29	2,167	47,68				
54	72,45	72,55	50	2500	5,5	2,2	1	2,2	48,4				
55	74,4	74,5	50	2500	25	10	1	10	220				
56	75,5	75,6	40	1600	13	8,13	0,904	7,35	161,69				
57	76,9	77	89	7921	6	0,76	1,296	0,985	21,67				
58	77,4	77,5	88	7744	5	0,65	1,29	0,839	18,45				

Tablo D1: Nokta yükleme deneyi sonuçları

Tablo D2: Nokta yükleme deneyi sonuçları

	BMP102														
Örnok	Derinlik(m)		D	Do2	Kırılma Vökö	Nokta yük	Düzeltme								
no	Üst	Alt	(mm)	(mm2)	(kN)	(ls)	(F)	ls(50)	Мра						
1	20,5	20,7	88	7744	38	2,5	1,29	3,225	70,95						
2	21,4	21,6	85	7225	13,5	0,25	1,27	0,318	6,99						
3	22	22,15	88	7744	22	1,59	1,29	2,051	45,12						
4	22,35	22,5	85	7225	37	4,91	1,27	6,236	137,19						
5	22,75	22,9	88	7744	29,5	1,87	1,29	2,412	53,07						

Örnek no         Derinlik(m)         D         De2 (mm)         Kırılma (mm2)         Nokta yük (kN)         Düzeltme katsayısı (ls)         Dizeltme katsayısı           6         24,4         24,6         89         7921         32,5         2,84         1,296         3,681           7         24,85         25,6         88         7744         30,5         5,12         1,29         6,605           8         25,5         25,65         85         7225         16,5         3,81         1,27         4,839	Mpa 80,97 145,31 106,45 117,53 112,94 64
Derinlik(m)         D         De2         Kırılma         yük         Düzeltme           Örnek         Üst         Alt         D         De2         Yükü         indeksi         katsayısı           6         24,4         24,6         89         7921         32,5         2,84         1,296         3,681           7         24,85         25,6         88         7744         30,5         5,12         1,29         6,605           8         25,5         25,65         85         7225         16,5         3,81         1,27         4,839	Mpa 80,97 145,31 106,45 117,53 112,94 64
Örnek no         Üst         Alt         (mm)         De2 (mm2)         Yükü (kN)         indeksi (ls)         katsayısı (F)         Is(50)           6         24,4         24,6         89         7921         32,5         2,84         1,296         3,681           7         24,85         25,6         88         7744         30,5         5,12         1,29         6,605           8         25,5         25,65         85         7225         16,5         3,81         1,27         4,839	Mpa 80,97 145,31 106,45 117,53 112,94 64
no         Üst         Alt         (mm)         (mm2)         (kN)         (ls)         (F)         ls(50)           6         24,4         24,6         89         7921         32,5         2,84         1,296         3,681           7         24,85         25,6         88         7744         30,5         5,12         1,29         6,605           8         25,5         25,65         85         7225         16,5         3,81         1,27         4,839	Mpa 80,97 145,31 106,45 117,53 112,94 64
624,424,689792132,52,841,2963,681724,8525,688774430,55,121,296,605825,525,6585722516,53,811,274,839	80,97 145,31 106,45 117,53 112,94 64
7         24,85         25,6         88         7744         30,5         5,12         1,29         6,605           8         25,5         25,65         85         7225         16,5         3,81         1,27         4,839	145,31 106,45 117,53 112,94 64
8 25,5 25,65 85 7225 16,5 3,81 1,27 4,839	106,45 117,53 112,94 64
	117,53 112,94 64
9 25,75 25,9 90 8100 38 4,1 1,303 5,342	112,94 64
10 26 26,2 90 8100 32 3,94 1,303 5,134	64
11 26,8 27,1 86 7396 38 2,28 1,276 2,909	
12 28,4 28,55 88 7744 4,5 4,69 1,29 6,05	133,1
13 29.75 29.9 88.5 7832 40 3.95 1.293 5.107	112.36
14 30.75 31 89 7921 20 5.14 1.296 6.661	146.55
15 31.75 31.95 89 7921 11 0.58 1.296 0.752	16.54
16 33 33.35 89 7921 45 5.11 1.296 6.623	145.7
17 33.4 33.6 89 7921 20 2.52 1.296 3.266	71.85
18 33 75 33 95 89 7921 54 6.82 1.296 8.839	194 45
19 34.5 34.7 89 7921 33 4.17 1.296 5.404	118.9
20 34.9 35.1 89 7921 22 2.78 1.296 3.603	79.26
21 35.75 35.95 88.8 7885 34 4.32 1.295 5.594	123.08
22 36.05 36.25 89 7921 42 5.3 1.296 6.869	151 11
23 37 15 37 35 89 7921 26 5 3 35 1 296 4 342	95.52
24         37.8         38         89.3         7974         38         4.77         1.298         6.191	136.21
25 39 25 39 4 89 7921 38 4 8 1 296 6 221	136.86
26 39.7 39.85 88 7744 18 2.32 1.29 2.993	65.84
27 43 25 43 4 88 7744 22 2 84 1 29 3 664	80.6
28 43 55 43 75 87 7569 33 5 4 43 1 283 5 684	125.04
29 43.3 44.5 87.8 7709 24.5 3.18 1.288 4.096	90 11
30 45.25 45.4 86.3 7448 11 1.48 1.278 1.891	41.61
31 45.85 46.05 67.8 4597 7.5 1.63 1.146 1.868	41.1
32 46.25 46.45 56.5 3192 31 9.71 1.057 10.263	225.8
<u>33</u> 47 15 47 3 70 4900 24 5 5 1 163 5 815	127.93
<u>34</u> 50 8 50 95 85 7225 22 75 3 15 1 27 4 001	88.01
35 51 85 52 89 7921 50 6.31 1.296 8.178	179.91
36 52 2 52 5 78 8 6209 26 4 19 1 227 5 141	113.1
37 53.8 54 87 7569 26 3.44 1.283 4.414	97.1
38 54 55 54 75 78 6084 36 5 6 1 222 7 332	161.3
<u>39 54 9 58 1 87 8 7709 13 16 1 288 2 061</u>	45.34
40 55 55 55 75 87 5 7656 41 5.36 1.286 6.893	151.65
<u>41 56 56 15 88 5 7832 49 6 26 1 293 8 094</u>	178.07
42 59 1 59 25 88 7744 2.8 0.36 1.29 0.464	10.22
43 60 25 60 4 85 7225 20 2 77 1 27 3 518	77.30
<u>44</u> 61 4 61 7 89 7021 85 1 07 1 206 1 387	30.51
45 61 75 62 89 7921 3.85 0.49 1.296 0.635	13.97
46 62 62 25 89 7921 28 3.53 1.296 4.575	100.65
47         62         63         65         89         7921         14         1         77         1         296         2         294	50.47
48 63 05 63 35 89 7921 35 <i>A</i> 42 1 296 5 728	126.02
49 63 95 64 25 89 7921 2.2 0.28 1.296 0.363	7 98
50 65.4 65.9 89 7921 25.5 3.22 1.296 4.173	91.81

# Tablo D2: Nokta yükleme deneyi sonuçları

DMD100															
	Nokta														
	Derin	lik(m)			Kırılma	yük	Düzeltme								
Örnek			D	De2	Yükü	indeksi	katsayısı								
no	Üst	Alt	(mm)	(mm2)	(kN)	(ls)	(F)	ls(50)	Мра						
51	66,85	67,05	88,5	7832	27	3,45	1,293	4,461	98,14						
52	69,15	69,35	88	7744	15,5	2	1,29	2,58	56,76						
53	69,85	70	58,5	3422	4	1,17	1,073	1,255	27,62						
54	71,5	71,7	88,3	7797	0	0	1,291	0	0						
55	71,7	72,06	89	7921	14	1,77	1,296	2,294	50,47						
56	73,2	73,3	88	7744	1,9	0,25	1,29	0,323	7,1						
57	73,4	73,7	88,8	7885	11	1,4	1,293	1,81	39,82						
58	73,7	73,8	88,5	7832	0	0	1,293	0	0						
59	74,4	74,6	87,8	7709	5,2	0,68	1,288	0,876	19,27						
60	75	75,15	90	8100	38	4,69	1,303	6,111	134,44						
61	75,5	75,7	89	7921	13,5	1,7	1,296	2,203	48,47						
62	76,7	76,85	89	7921	9	1,14	1,296	1,477	32,5						
63	77,5	77,6	89	7921	6	0,76	1,296	0,985	21,67						
64	79,3	79,6	88	7744	27	3,49	1,29	4,502	99,05						
65	79,6	79,8	88	7744	7,5	0,97	1,29	1,251	27,53						
66	80	80,25	88,3	7797	12	1,54	1,291	1,988	43,74						
67	80,25	80,5	88	7744	2,05	0,26	1,29	0,335	7,38						

Tablo D2: Nokta yükleme deneyi sonuçları

Tablo D3: Nokta yükleme deneyi sonuçları

BMP 103													
						Nokta							
	Derin	lik(m)	-		Kırılma	yük	Düzeltme						
Ornek			, D	De2	Yükü	indeksi	katsayısı	1 (50)					
no	Ust	Alt	(mm)	(mm2)	(kN)	(Is)	(⊢)	ls(50)	Мра				
1	30,1	30,2	89	7921	2,9	1,51	1,296	1,957	43,05				
2	31,45	31,6	89	7921	12	6,06	1,296	7,854	172,78				
3	31,25	31,45	89	7921	48	4,92	1,296	6,376	140,28				
4	32,85	33	89	7921	39	6,25	1,296	8,1	178,2				
5	33	33,2	89	7921	49,5	4,67	1,296	6,052	133,15				
6	33,4	33,6	89	7921	37	3,64	1,296	4,717	103,78				
7	33,75	34	88,5	7832	28,5	2,71	1,293	3,504	77,09				
8	34,3	34,7	89	7921	21,5	3,53	1,296	4,575	100,65				
9	34,7	35	89	7921	28	2,02	1,296	2,618	57,59				
10	35	35,25	89	7921	16	2,55	1,296	3,305	72,71				
11	35,8	36	88,5	7832	20	3,45	1,293	4,461	98,14				
12	36	36,2	88,5	7832	27	3,45	1,293	4,461	98,14				
13	37	37,3	88,5	7832	27	5,43	1,293	7,021	154,46				
14	37,5	37,8	89	7921	43	2,65	1,296	3,434	75,56				
15	38,2	38,5	89	7921	21	2,55	1,296	3,305	72,71				
16	38,8	39	88,5	7832	20	2,76	1,293	3,569	78,51				
17	39,8	40,2	89	7921	21,9	1,14	1,296	1,477	32,5				
18	40,5	40,7	89	7921	9	3,53	1,296	4,575	100,65				
19	41	41,4	89	7921	28	5,55	1,296	7,193	158,24				
20	41,4	42	89	7921	44	4,8	1,296	6,221	136,86				

BMP 103											
						Nokta					
	Derin	lik(m)	_		Kırılma	yük	Düzeltme				
Ornek		A 11	D	De2	Yükü	indeksi	katsayısı				
no	Ust	Alt	(mm)	(mm2)	(KN)	(IS)	(F)	IS(50)	Мра		
21	42,2	42,5	89	7921	38	3,91	1,296	5,067	111,48		
22	42,8	43	89	7921	31	1,07	1,296	1,387	30,51		
23	43,6	43,8	89	7921	8,5	1,77	1,296	2,294	50,47		
24	44,5	44,7	89	7921	14	6,56	1,296	8,502	187,04		
25	45	45,3	89	7921	52	3,84	1,296	4,977	109,49		
26	45,5	45,9	88,4	7815	30	4,67	1,292	6,034	132,74		
27	46,85	47	89	7921	37	2,4	1,296	3,11	68,43		
28	47,5	48	89	7921	19	3,09	1,296	4,005	88,1		
29	48	48,35	89	7921	24,5	3,41	1,296	4,419	97,23		
30	48,3	48,65	89	7921	27	0,52	1,296	0,674	14,83		
31	48,65	48,85	89	7921	4,1	6,75	1,296	8,748	192,46		
32	49,1	49,5	89	7921	53,5	0,37	1,296	0,48	10,55		
33	49,5	49,7	89	7921	2,95	2,21	1,296	2,864	63,01		
34	50,4	50,54	89	7921	17,5	1,7	1,296	2,203	48,47		
35	50,75	51	89	7921	13,5	1,83	1,296	2,372	52,18		
36	51,1	51,35	89	7921	14,5	1,96	1,296	2,54	55,88		
37	51,35	51,65	89	7921	15,5	1,89	1,296	2,449	53,89		
38	52,5	53	89	7921	15	1,77	1,296	2,294	50,47		
39	53	53,5	89	7921	14	0,63	1,296	0,816	17,96		
40	53,5	54	89	7921	5	2,71	1,296	3,512	77,27		
41	54	54,5	89	7921	21,5	1,7	1,296	2,203	48,47		
42	54,7	55	89	7921	13,5	1,7	1,296	2,203	48,47		
43	55	55,45	89	7921	13,5	1,7	1,296	2,203	48,47		
44	55,5	56	89	7921	13,5	2,58	1,296	3,344	73,56		
45	56,4	56,5	87	7569	19,5	1,2	1,283	1,54	33,87		
46	56,85	57	89	7921	9,5	0,32	1,296	0,415	9,12		
47	57,5	57,7	88,5	7832	2,5	0,77	1,293	0,996	21,9		
48	58	58,2	88,5	7832	6	1,51	1,296	1,957	43,05		
49	58,5	59	89	7921	12	1,14	1,296	1,477	32,5		
50	59,25	59,55	89	7921	9	2,27	1,296	2,942	64,72		
51	60	60,15	89	7921	18	1,26	1,296	1,633	35,93		
52	60,5	60,8	89	7921	10	1,26	1,296	1,633	35,93		
53	61	61,5	89	7921	10	2,65	1,296	3,434	75,56		
54	62	62,3	89	7921	21	1,01	1,296	1,309	28,8		
55	62,7	63	89	7921	8	1,89	1,296	2,449	53,89		
56	63,4	63,7	89	7921	15	2,97	1,296	3,849	84,68		
57	64	64,3	89	7921	23,5	0,63	1,296	0,816	17,96		
58	65,4	65,7	89	7921	5	1,89	1,296	2,449	53,89		
59	66	66,2	89	7921	4	1,89	1,296	2,449	53,89		
60	66,45	66,75	89	7921	5,5	0,63	1,296	0,816	17,96		
61	66,75	66,9	89	7921	3,9	0,5	1,296	0,648	14,26		
62	67	67,3	89	7921	4,8	0,69	1,296	0,894	19,67		
63	68	68,25	89	7921	16	0,5	1,296	0,648	14,26		
64	68,7	69,1	88	7744	0,05	0,61	1,29	0,787	17,31		
65	69,1	69,35	89	7921	2,9	2,02	1,296	2,618	57,59		

 Tablo D3:
 Nokta yükleme deneyi sonuçları

Г

BMP 103											
						Nokta					
_	Derin	lik(m)			Kırılma	yük	Düzeltme				
Örnek		· /	D	De2	Yükü	indeksi	katsayısı				
no	Ust	Alt	(mm)	(mm2)	(kN)	(ls)	(F)	ls(50)	Мра		
66	69,75	69,9	89	7921	2,4	0,01	1,296	0,013	0,29		
67	70,12	70,5	89	7921	0	0,37	1,296	0,48	10,55		
68	70,8	71	89	7921	4	0,3	1,296	0,389	8,55		
69	71,2	71,5	89	7921	0,15	0	1,296	0	0		
70	71,5	71,7	89	7921	18,5	0,5	1,296	0,648	14,26		
71	71,7	72	89	7921	0,05	0,02	1,296	0,026	0,57		
72	72	72,3	89,5	8010	0	2,34	1,3	3,042	66,92		
73	72,3	72,5	89	7921	5	0,01	1,296	0,013	0,29		
74	73	73,3	89	7921	2,9	0	1,296	0	0		
75	73,7	74	89	7921	0	0,63	1,296	0,816	17,96		
76	74	74,3	89	7921	0,05	0,37	1,296	0,48	10,55		
77	75	75,3	89	7921	0	0	1,296	0	0		
78	75,5	75,7	89	7921	0,5	0,01	1,296	0,013	0,29		
79	76,15	76,35	89	7921	2,5	0	1,296	0	0		
80	77	77,3	89	7921	0,85	0,06	1,296	0,078	1,71		
81	77,5	77,7	89	7921	0,05	0,32	1,296	0,415	9,12		
82	78,2	78,5	89	7921	3,8	0,11	1,298	0,143	3,14		
83	78,5	78,8	89	7921	1,75	0,01	1,296	0,013	0,29		
84	79	79,5	89	7921	0.05	0.5	1,29	0,645	14,19		
85	79,8	80,45	89	7921	1,2	0.23	1,29	0,297	6,53		
86	80,1	81.5	89	7921	0.35	0.01	1,283	0.013	0,28		
87	80,8	81,75	89	7921	0	0,17	1,288	0,219	4,82		
88	81,5	82	89	7921	0	0.05	1,278	0,064	1,41		
89	81,75	82,55	89	7921	0.05	0	1,146	0	0		
90	82,3	83,15	89	7921	0,15	0	1,057	0	0		
91	83	83,5	88,5	7832	1	0,01	1,163	0,012	0,26		
92	83.35	84,25	89	7921	1	0,02	1,27	0.025	0,56		
93	84	84,75	89	7921	0,4	0,13	1,296	0,168	3,71		
94	84.25	85.25	89	7921	8	0.12	1.227	0.147	3.24		
95	84.95	85.45	89	7921	7	0.05	1.283	0.064	1.41		
96	85.45	85.75	89	7921	5	1	1.222	1.222	26.88		
97	85.75	86.25	89	7921	0.7	0.87	1.288	1,121	24.65		
98	86.6	86.75	89	7921	0.15	0.62	1.286	0.797	17.54		
99	86.8	87.1	89	7921	0	0.09	1,293	0.116	2.56		
100	87 25	87.65	89	7921	15	0.02	1 29	0.026	0.57		
101	87 75	88	88.4	7815	4	0	1 27	0	0		
102	88.3	88.6	89	7921	0.35	1 89	1 296	2 4 4 9	53 89		
102	89.95	90.25	89	7921	3 75	0.51	1,200	0.661	14 54		
104	90.25	90.5	89	7921	0,75	0.04	1,200	0.052	1 1 1 1 1 1		
105	90,20	90.65	89	7921	47	0.48	1,200	0,002	13.69		
105	90.65	90.85	80	7921	21	0,-0	1 296	0,022	0		
107	90.85	Q1	80	7921	14	0 59	1 296	0 765	16.82		
102	Q1 75	92.25	80	7021	20	260	1 206	3 306	74 7		
100	91,75	92,20	80	7001	20	1 75	1 206	2 262	/4,/		
110	92,00	92,0 02.05	09	7021	15.5	0.5	1,290	2,200	43,3 71.00		
110	33	ສວ,∠ວ	09	1921	10,0	∠,⊃	1,290	J,∠4	/ I,∠ŏ		

Tablo D3: Nokta yükleme deneyi sonuçları

г

## ÖZGEÇMİŞ

4 Nisan 1980'de İstanbul'da doğdum. Özel Dost İlkokulu'nun ardından 1998 yılında Özel Darüşşafaka Lisesini bitirdim. 1999 yılında İstanbul Teknik Üniversitesi Maden Fakültesi Jeoloji Mühendisliği anabilimdalında öğrenim görmeye başladım. Lisans öğrenimimi 2003 yılında tamamladıktan sonra yine İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü Jeoloji Mühendisliği Uygulamalı Jeoloji Anabilimdalında yüksek lisans öğrenimime başladım. Yüksek lisans çalışmam 2007 yılı Haziran ayında sonuçlandı. Şu anda özel bir şirkette iş geliştirme sorumlusu olarak çalışmaktayım.