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ASMA TAVANLARDAN SES GEÇİŞİ  

 

ÖZET 

 

Bu projede, asma tavan sistemlerinden ses geçisi incelendi. Bu amaçla, odalarda değişik 
asma tavan malzemeleri ile laboratuvar ölçümleri yapıldı. Tavan arası boşluğunda da bazı 
ölçümler yapıldı. Ayrıca, tavan arasına eklenen yutuculuk da incelendi. Ölçümlerin 
yapıldığı odalar ODEON akustik programında modellendi ve simüle edildi. Daha sonra, 
sonuçlar ODEON programındaki simüle edilmiş değerlerle karşılaştırıldı. Simülasyonlar 
ayrıca uygulamadaki değişik durumlarda oda boyutları, tavan arası yükseklik gibi oda 
parametreleri değiştirilerek yapıldı. Tüm laboratuvar ölçümleri ISO standartlarına uygun 
olarak yapılmıştır. Teori ve bilgisayar simülasyonundan görünen odur ki; tavan arası 
boşluğu azaldıkça, ses geçiş kaybında artış elde edilmektedir. Tavan arasındaki yutuculuk 
karakteristikleri çok önemlidir ve ayrıca, tavan arasında yutuculuk kullanımı ses geçiş 
kaybını arttırmaktadır. Daha fazla ses izolasyonu için diğer ses yolları (yandan geçiş, 
duvardan doğru geçiş, yerden doğru geçiş, ızgara sisteminden geçiş) daha da 
düzeltilmelidir. ODEON programından daha iyi sonuçlar alınması için asma tavan 
malzemesinin yutuculuk özellikleri bilinmelidir aksi takdirde sonuçlar çok memnun edici 
olmayacaktır. 
 
Sonuç olarak, ODEON modeli odadan odaya asma tavan yoluyula ses geçişinde her ne 
kadar çok kesin sonuçlar vermese de asma tavan yoluyla ses geçişi hakkında genel bir fikir 
verebilecek güçlü bir araç olabilir. 
 
Bu proje, Danimarka Teknik Üniversitesi Akustik Departmanı’nda gerçekleştirildi. 
Akustik ölçümlerde, Danimarka orijinli Rockwool A/S akustik laboratuarlarından 
yararlanıldı. 
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SOUND TRANSMISSION THROUGH SUSPENDED CEILINGS 

 

SUMMARY 

 

In this project, sound transmission through suspended ceiling systems has been 
investigated. For that purpose, laboratory measurements are conducted with different 
ceiling tile systems in the rooms. Some measurements are done in the plenum.  Also, the 
effect of additional absorption in the plenum has been investigated. The rooms used in the 
measurements are modelled and simulated in ODEON acoustic programme. Later, some 
measurement results have been compared with the simulated ones from ODEON. The 
simulations are also done with changing the room parameters like room dimensions, 
plenum height to investigate the different conditions in practice. All the laboratory 
measurements are conducted according to ISO standards. From theory and from the 
computer simulation it is seen that, as the depth of the plenum reduces more increase in the 
sound transmission loss is obtained. The absorption characteristics of the plenum are very 
important and the usage of the absorption in the plenum also increases the transmission 
loss. To acquire more sound insulation, other transmission paths (flanking, through the 
wall, through the floor, through the grid system) should be improved. To acquire good 
results from ODEON programme, the absorption properties of the ceiling tiles should be 
known, otherwise the results will not be so satisfactory. 
 
In the end it can be said that, although, the ODEON model does not give precise results in 
room to room sound transmission through suspended ceilings, the results obtained can be 
used as a powerful tool to give a general idea about the sound transmission via suspended 
ceilings.   
 
This poject has been carried out in Denmark Technical University Acoustics Department. 
Danish origin Rockwool A/S acoustics laboratory has been used for  the acoustical 
measurements.       
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1. INTRODUCTION 

 

In the modern buildings, the requirements for the acoustics are numerous. There are 

some factors that contribute in the acoustic applications. For example; maximum 

flexibility, the ability to be able to change the existing construction or layouts 

quickly should be obtained as well as the economics that is important for reducing 

building costs and time consumption. Great demand has been placed on the 

individual building components by these requirements, especially when selecting the 

ceiling/wall system.  

 

Today, modern office areas are designed in such a way that all services like 

electricity, air conditioning, plumbing are concealed above a suspended ceiling. To 

supply the needs of the occupants’, the services can be installed through the space 

above the suspended ceiling, plenum and demountable walls can be built anywhere. 

 

 In this project, sound transmission through suspended ceiling systems has 

been investigated. For that purpose, laboratory measurements are conducted with 

different ceiling tile systems. Also, the effect of additional absorption in the plenum 

has been investigated. The rooms used in the measurements are modelled and 

simulated in ODEON acoustic programme. Later, some measurement results have 

been compared with the simulated ones from ODEON. The simulations are also done 

with changing the room parameters like room dimensions, plenum height to 

investigate the different conditions in practice.       
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2. SOUND TRANSMISSION 

2.1. Sound Transmission Calculation Models  

2.1.1. General Principles 

 

When there is a noise generated in the source room, the sound power that is 

measured in the receiving room is due to the direct and indirect airborne sound 

transmission  and sound radiated by the separating structural elements and the 

flanking structural elements in that room. In direct and indirect airborne sound 

transmission, the elements, systems and each element in the receiving room involved 

form the transmission factors which is a part of total transmission factor (DS- ISO 

15186-1, 2000). 

 

R’= -10 log τ’ dB                                                                                                  (2.1)                          

τ’ = τd + ∑∑∑
===

++
k

ls

s

m

le

e

n

lf

f τττ                                      (2.2) 

In the formula above, d, f, e and s indicate the different contributions to the sound 

transmission that is shown in Figure 2.1. 

 

 

Figure 2.1: Contributions to the total sound transmission from different sound paths 

(DS- ISO 15186-1, 2000)   
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In formula 2.2., n is the number of the flanking elements which is normally four. But 

n can be also smaller or larger than four. Number of elements with direct 

transmission is denoted as m and number of systems with indirect airborne 

transmission is denoted as k. 

 

τ’ : the sound power ratio of total radiated sound power in the receiving room that is 

relative to the incident sound power on the common part of the separating element 

such as a partition wall. 

 

τd : the sound power ratio of radiated sound power by the common part of the 

separating element that is relative to the incident sound power on the common part of 

the separating element. Paths Dd and Fd are shown in Figure  2.2.  

 

τf  : the sound power ratio of radiated sound power by a flanking element f in the 

receiving room that is relative to the incident sound power on the common part of the 

separating element. Paths Ff and Df are shown in Figure 2.2.   

 

τe : the sound power ratio of radiated sound power in the receiving room by an 

element because of the direct airborne transmission of incident sound on this element 

that is relative to the incident sound power on the common part of the separating 

element. 

 

τs :  the sound power ratio of radiated sound power in the receiving room by a system 

s because of the indirect airborne transmission of incident sound on the transmission 

system that is relative to the incident sound power on the common part of the 

separating element. 

 

Sum of structure-borne sound transmission through several parts form the total 

structure borne sound transmission. In Figure 2.2., the paths for a flanking element 

and the separating element can be seen. 
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Figure 2.2: Sound transmission paths ij from room to room (DS- ISO 15186-1, 

2000). 

  

 

2.1.2. Indirect Transmission 

 

2.1.2.1. Laboratory Measurement of Total Indirect Transmission: Lightweight 

elements, suspended ceilings, access floors are a group of flanking structural 

elements. When the flanking transmission Ff is dominant, it is more convenient to 

make the distinctive features of the transmission by laboratory measurements. The 

sound transmission might be primarily structure-borne, primarily air-borne or 

combination of both (DS- ISO 15186-1, 2000).   

 

By making standardized laboratory measurements of indirect transmission, 

different products can be compared. The results can be expressed as flanking 

normalized difference Dn,f . 

 

Dn,f = L1- L2 – 10 log 
0A

A
                                                                                      (2.3) 

 

Where; 

 

A0=10 m
2
 

L1: Average sound pressure level in the source room, in dB 

L2: Average sound pressure level in the receiver room due only to sound transmitted 

by the considered flanking construction, in dB    
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A: Equivalent sound absorption area in the receiving room, in m
2
 

 

So, the above formula can be applied for transmission through suspended ceilings. 

Dn,f is denoted as Dn,c and the method can be found in ISO 140-10. 

 

2.1.2.2. Indirect Airborne Transmission: If the airborne transmission is dominant 

over flanking transmission, the relation below can be used to find out the normalized 

level difference Dn,s. 

 

 

Figure 2.3: Relevant quantities for the prediction of indirect airborne transmission               

(DS- ISO 15186-1, 2000).   

 

Dn,s= Dn,f + 10 log αC
SS

SS

lh

lh

crcs

labcrlabcs

lablab

ijpl
++

,,
log10  dB                                 (2.4) 

 

Where; 

 

Cα= 0 dB (when there is no absorbing layer) 

 

When there is absorbing layer; 

 

 Cα= 0 dB                 f≤0,015 
at

c0                                                        (2.5) 
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Cα= 10 log dB
h

h

SS

SS

pl

lab

labcrlabcr

crcs

,,

 ;   0,015 
at

c0 ≤ f ≤ 
),min(

3,0 0

pllab hh

c
                  (2.6) 

 

 

Cα= 10 log dB
h

h

SS

SS

pl

lab

labcrlabcr

crcs

2

2

,,

 ;    f ≥ 
),min(

3,0 0

pllab hh

c
                                    (2.7) 

 

Scs, Scr: Area of the ceiling in the source room and the receiving room, in m
2
. For the 

ISO laboratory Scs,lab , Scr,lab =20m
2
 

hpl: height of the plenum above the ceiling. In m. For ISO laboratory hlab=0,7m. 

ta: thickness of the absorbing layer in the plenum, in m. 

c0: speed of sound in air. In m/s. 

 

2.1.2.3.Flanking Transmission:  When the structure-borne sound transmission is 

dominant, the following can be used to determine the flanking sound reduction index 

RFF . 

 

RFF= Dn,f + 10 log 
Ff

labs

lA

lS

,0

+10 log
Fs

labFs

T

T

,

,,
+10 log

fs

labfs

T

T

,

,,
dB                                  (2.8) 

 

The structural reverberation term might be omitted if the construction has a high 

internal loss factor (DS- ISO 15186-1, 2000).   

 

2.2. Room to Room Sound Transmission via Suspended Ceiling  

 

Sound pressure level between two rooms is used for calculating the sound 

transmission loss. In fact, total sound transmission from one room to another which 

is defined in most of the national requirements for the room to room sound insulation 

includes all possible transmission paths.  

 

Sound transmission paths can be divided into four groups. 
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ST wall: direct sound transmission through the wall with sound reduction R 

STflanking, wall-ceiling : Flanking sound transmission through ceiling system in the wall 

connection. 

STflanking, floor and walls: Flanking sound transmission through the floor and other walls  

STceiling: Sound transmission through the plenum above the suspended ceiling. 

 

These transmission paths are illustrated in the figure below. 

 

Figure 2.4: Room to room sound transmission paths. 

 

Sum of these four main transmission paths is the total transmitted sound. 

 

The total sound transmission is depended on the following parameters: 

 

• The weighted suspended ceiling normalized difference (Dn, cw) for ceiling 

which is depended on the ceiling tiles, and grid system 

• The geometry of the rooms and the obtained reverberation time values from 

these rooms 

• The properties of the partition wall. The sound transmission loss of the 

partition wall (Rw value). Type of wall connection. 

• The flanking transmission through walls and floor 

• Ceiling and partition wall connection. Type and length of the band raster. 

• Properties of the plenum. Height and absorption in the plenum. 
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ISO 717 specifies the rating of the sound insulation in buildings and of building 

elements. According to ISO 717 the single number quantities like weighted sound 

reduction index, RW, weighted suspended ceiling normalized level difference, Dnc, w 

and etc. are found by shifting the reference curve which is defined in ISO 717 to the 

measured values curve that is obtained by ISO 140 standards. The value found  at 

500 Hz is the Rw, Dnc, w, etc.  

 

Also, the spectrum adaptation terms C and Ctr  are defined in ISO 717. C is the 

adaptation term for pink noise to evaluate the sound insulation for: Living activities, 

railway traffic for medium and high speed, highway road traffic at high speeds, jet 

aircraft noise at short distance, factories emitting mainly medium and high frequency 

noise. 

 

C is the adaptation term for traffic noise. It is used to evaluate the insulation for: 

urban traffic noise, railway traffic at low speeds, jet aircraft at large distance, disco 

music, factories emitting low and medium frequency noise. 

 

Dnc , Dnc, w, C and Ctr values for the ceiling tiles are presented in this project. 

 

According to the external acousticians, the Dnc, w of the ceiling should be about 7 dB 

higher as the requirement for the total sound transmission DnTA. To validate this, the 

following assumption should be made; 

 

• DnTA≈DnTw – 2dB (2dB is the typical C value) 

• (STflanking, floor and walls + STflanking, wall-ceiling) ≈ STceiling ≈ ST wall 

 

Almost equal sound transmission from flanking transmission, direct transmission 

through the wall and ceiling plenum. So the total sum of these transmissions should 

be 5dB. 

 

Sound transmission through the ceiling system from room to room can be divided in 

four different parts: 
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• Sound transmission through the grid system. STgrid. 

• Sound transmission through ceiling tiles. STtiles. 

• Sound transmission through the leaks in the ceiling-wall connection. STwall-

leaks. 

• Sound transmission through light fittings and other installations. STinstallations. 

 

 STceiling= STgrid + STtiles + STwall-leaks + STinstallations                                (2.9) 

 

 

2.2.1. Designing of Suspended Ceiling 

 

Usually, when designing the suspended ceiling, the design is optimized for one 

feature where the other features are compromised. As an example, to obtain 

flexibility in offices where the suspended ceilings are mostly used, the partition wall 

commonly extends up to the underside of the suspended ceiling. That is usually the 

case in many European Countries such as Netherlands, France, etc. In Scandinavia, 

partition walls are extended above the suspended ceiling up to a limit.   

 

The two types of partition walls that are used under the suspended ceiling can be 

seen in the Figure 2.5. It should be mentioned that when the sound insulation of these 

two types are compared, the Scandinavian type of partition wall that extend above 

the suspended ceiling provides 1dB – 2dB more sound reduction. 

 

While providing some flexibility, the partition wall that extends up to the underside 

of the suspended ceiling limits acoustical isolation between the rooms (offices). The 

sound propagates through the suspended ceiling, across the plenum space and back 

down through the ceiling of the other room. Possibilities arise for flexural wave 

transmission and lateral propagation through the acoustical material (Hamme, 1961). 
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Figure 2.5: Types of partition walls. 

 

In the previous researches that have been made, it has been found out that, only a few 

dB attenuation is provided in the path through the open plenum space above the 

suspended ceiling. In this situation, most of the attenuation is provided by the 

suspended ceiling. 

 

There are many types of ceiling panels that are used for suspended ceiling systems. 

For example, glass fiber ceiling panels provide little attenuation. And though panels 

with high transmission loss values are used in some ceiling systems, there are leaks 

that limit the attenuation. 

 

The main noise leaks in the ceiling occur between the edges of each ceiling panel, 

the supporting grid system and in the openings for air conditioning or lightning 

system.   

 

There are two ways to increase the noise reduction. These are either by reducing the 

sound transmission through the suspended ceiling by using panels with high 

transmission loss and treating the air-return openings or by blocking the way of the 

sound propagation over the suspended ceiling by putting a barrier (Halliwell and 

Quirt, 1991). 

 

There are some factors that effect the acoustical performance of the suspended 

ceiling constructions. These are: 

 

• Whether there are openings like doors and/or glazing in the partition 

wall. 
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• Perimeter finishing of the ceiling against the wall. 

• The type, number and location of the services like light fittings. 

• Workmanship. 

 

To obtain efficient sound insulation of partitions between the offices, background 

noise should also be taken into account since that the background noise, either from 

traffic noise or from the office tools such as typewriter, fax machine, etc., masks the 

noise  coming through the partitions and the insulation required is less than in the 

presence of a lower background noise.  

 

The spectrum of ceiling attenuation factors are not necessarily controlled by the 

sound transmission loss of the acoustical material because of the acoustical leakage 

through the grid and suspension system and the absorptive component of the plenum 

that is established by back absorption of the ceiling and the termination room 

absorption that is established by the front absorption of the ceiling (Hamme, 1961) 

 

2.2.2. Theory of Sound Transmission through Suspended Ceilings 

 

Because the dimensions of the plenum space over the adjacent rooms that are divided 

by a partition wall are no like the dimensions of “regular rooms”, the existing theory 

for room acoustics can not be applied. And, also the dimensions of the plenum are 

larger than the ducts and so on it is also not suitable to apply the duct acoustics 

theory for finding out the sound transmission behaviour of the plenum. Mariner 

(1950), tried to explain a theory for the transmission of sound in the plenum but that 

fails to represent the experimental data. In Mariner’s theory, both parts of a 

symmetrical suspended ceiling make the same contribution to the total transmission 

loss. Apparently, the experiment results are not in accordance with the Mariner’s 

theory.  

 

In the figure below, in the source room, pe is denoted as the incident wave, pe + ps are 

reflected and backscattered waves. In the receiver room, pt is the transmitted wave. 

pA and pH are the sound fields in the absorber layer and in the plenum. 
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Figure 2.6: Suspended ceiling with ceiling plate, absorber layer and plenum space 

(Mechel, 2002) 

 

Also, the transmission loss R= -10 log τ is defined from the power ratio τ=Пt / Пc of 

the waves pt and pe. These waves can be synthesized by room modes. 

 

It is possible to synthesise and make a field theory of  the sound fields pA and pH with 

elementary waves (modes) that is in accordance with  the wave theory and the 

boundary conditions in the room limits.     

 

The most significant theory that has been studied lately is the theory of Mechel. 

According to Mechel (1995), two different field theories can be conceived for 

suspended ceilings. One of them use the principle of superposition, which minimizes 

the problem of sound transmission to two tasks of reflection by using boundary 

conditions. In the other theory, the fields pA and pH are composed with plenum 

modes. 

 

2.2.2.1.Theory with principle of superposition: For all sound transmitting objects that 

have a plane of symmetry (x=0 in that case) and for the incident waves that have all 

the shapes, the principle of superposition can be applied. The solution is made of two 

parts. In one part (β)=(h), the sound transmitting area of the plane of symmetry 

which is the area of the absorber and of the plenum between the rooms, is assumed to 

be rigid. In the other part of the solution, (β)=(w), the area is theorized to be soft. In 

these solutions, pr is the rigid reflection of pe at the lower ceiling surface (Mechel, 

1995) 
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Transmitted wave pt is: 

 

pt (x,z)= )),(),((
2

1 )()(
zxpzxp

w

s

h

s −−−                                                                  (2.10) 

 

(β)=(h) case is easy to solve because of the all fields having the shape of incident 

room mode with lateral profile  

 

qm(x)=cos (mπx / a)                                                          (2.11) 

 

where m = 0,1,2,… 

 

In (β)=(w) case, pe pr ps
(w) 

are combined with room modes qm(x). On the other hand, 

the pA and pH fields are synthesized with shelf modes that appear in underwater 

acoustics. 

 

Shelf mode: 

 

sn(x)= sin((2n+1) πx/ a)                                                                                         (2.12) 

 

where n= 0,1,2,… 

 

Both room modes and shelf modes are orthogonal over ax ≤≤0 . 

 

Tm, n= ∫ +−

+
−=

a

nm
nm

n
dxxsxq

a
0

22 )12()2(

122
)().(

1

π
                                        (2.13) 

 

Where; 

 

Tm, n  are the mutual coupling coefficients. 

 

It is possible to solve the boundary conditions at the layer interfaces of the multilayer 

system of the suspended ceiling for the mode amplitudes by standard methods of 

modal analysis. 
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The sound transmission coefficient τµ for a single incident room mode µ is: 

 

∑
=
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Where; 

 

nΘ : angle of incidence of the room mode n  

mhi: upper limit of propagating room modes 

Peµ: arbitrary amplitude of the incident mode 

Ptn : amplitude of the mode n in the formulation of the transmitted wave 

 

The total transmission coefficient is computed when the incident wave is a 

superposition of all propagating room modes with equal energy density. This is 

shown in the formula below. 

 

∑ ∑
= =

ΘΘ=
hi hiµ

µ

µ

µ
µµµττ

0 0

cos/cos                                                                                 (2.15) 

 

Because of the increasing number of propagating modes and the corresponding 

number and size of the systems, the numerical solution increases with frequency f 

and room width a and it is time consuming to solve these equations. 

 

Below, there can be seen three figures with the computed and measured values of the 

transmission loss for the suspended ceiling of d=9,5 mm plaster board with and 

without absorber layer and suspended ceiling with a ceiling board of compressed 

mineral fibres, covered with a felt of mineral fibre absorber, respectively (Mechel, 

1995) 
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Where; 

 

fcr d : product of critical frequency of the board and its thickness 

η : loss factor including the losses by mounting 

Ξ : absorber material resistivity 

ρa: absorber material bulk density 

 

  

Figure 2.7: Measured and computed transmission loss for a suspended ceiling d=9,5 

mm plaster board without absorber layer (Mechel, 1995) 

 

 

Figure 2.8: Measured and computed transmission loss for a suspended ceiling d=9,5 

mm plaster board with absorber layer (Mechel, 1995) 
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Also in the figure below, the measured and computed values for the ceiling 

plate consisting of boards of compressed mineral fibres can be seen.   

 

 

Figure 2.9: Measured and computed transmission loss for a suspended ceiling with a 

ceiling board of compressed mineral fibres (Mechel, 1995) 

 

It can be seen from the figures that the measured and computed transmission loss 

values for different ceiling systems are well agreement with each other. And also, 

Mechel claims that no experimental data is used in the computed results. 

 

The disadvantage of the theory is to solve very big systems of equations. On the 

other hand, it is possible to calculate the sound field distribution in the plenum, the 

absorber layer and in the receiving room according to Mechel´s theory. In application 

it is tedious to apply all the equations to obtain the results for the plenum 

characteristics. 

 

2.2.2.2. Theory with plenum modes: If the central plane x=0 becomes permeable to 

sound, the solution for (β)=(h) becomes distorted due to the fact that the change of 

the boundary conditions at x=0. It is possible to compensate this error and satisfy all 

the boundary conditions by additional waves at x=0.  These waves that compensates 

are the plenum modes which are like silencer modes except the radiation and 
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oscillation on the wall of the plenum. Numerical solutions and formulation can be 

applied to the plenum modes.  

 

In the figure below, sound pressure level for the first room mode µ=1 incident on a 

suspended ceiling of 9.5 mm plasterboard covered with a 8 cm thick mineral fibre 

felt under a plenum of 35 cm height at 500 Hz can be seen. The room sizes are 4 

meters and the plenum back walls are hard. Left behind is the emission room, right 

behind is the receiving room, left front is the plenum above absorption and right front 

is the plenum above receiving room. 

 

 

Figure 2.10: Sound pressure level for the first room mode incident on a suspended 

ceiling (Mechel, 2002) 

 

Mechel claims that from the source room to the plenum the level difference is higher 

than the plenum to the receiver room. The sound field on the source room side has 

the lateral profile of the incident wave where the receiver side is an exponential 

decay of the plenum modes that are created at the central plane. It is seen that the 

behaviour and the roles of the two part of the plenum are different. 
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3. SOUND DIFFUSIVITY AND ABSORPTION 

3.1. Diffuse Sound Field 

 

Diffuse sound field is defined as one in which, at any point in the room, reverberant 

sound waves are incident from all directions with equal intensity and random phase. 

Also, the reverberant sound energy density must be same at all points in the room 

(Kutruff H., 1991) 

 

Kutruff (1991) says that there are two ways to increase the room sound field 

diffuseness. These involve increasing the extent to which the room surfaces are 

diffusely reflecting. And the other method is to introduce scattering or diffusing 

obstacles into the room volume which is referred as volume scatterers. Reflecting 

panels are commonly used as a volume scatterer in the reverberation rooms for 

diffuseness.  Both methods tend to increase the randomization of the sound incidence 

on the surfaces and thus that results a more diffuse field. There are some exceptions 

like, when the density of the volume scatterers becomes high, the sound becomes 

trapped and can not reach the surfaces that results the decrease in diffuseness. 

 

For a room that has the dimensions of 30m x 15m x 5m, Figure 3.1 shows the sound 

decay for various degrees of uniform diffuse surface reflection, as quantified by the 

diffuse-reflection coefficient d. When sound energy strikes a surface, a proportion d 

is diffusely reflected according to Lambert's law, while the remaining proportion (1-

d) is reflected.  Figure 3.1 also shows the sound decay for various amounts of 

isotropically distributed volume scatterers, as quantified by their average volume 

density Q; the range of Q values is below that at which sound is "trapped" between 

the scatterers. Q is equal to the inverse of the mean free distance between scatterer. 

 



 

 

 

19 

 

 

Figure 3.1: Room sound decays predicted by the Eyring formula and by ray tracing 

for the indicated values of the diffuse-reflection coefficient d (left figure) and 

average volume scatter density Q in m (right figure) (Hodgson, 1994) 

 

Clearly, it can be seen from the figures that by increasing d or Q, gives a more linear 

slope. The curves tend toward that predicted by the Eyring equation, and the 

reverberation time tends toward that predicted by the Eyring reverberation-time 

formula, T60=0.163 V/ α S. 

 

The effect of the use of diffusers in the laboratory rooms can be seen in the 

laboratory measurements. This has been explained in the measurement results. 

 

3.2. Sound Absorption and Sound Absorbers     

 

Since three side walls (and later more absorption material is added above the ceiling 

tiles) of the plenum was covered by absorption material (mineral wool), when the 

sound propagates through the plenum to the adjacent room, it is also important to 

understand the absorption in the plenum. 

 

Mineral wool products are example of porous sound absorbers. Three different 

catagories can be made for the porous materials in an acoustical point of view: 

i. A porous layer mounted directly on a hard surface 
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ii. A porous layer at a certain distance from a hard backing 

iii. Porous boards positioned freely in the room 

 

An example of the first situation is the mineral wool product that is put in the plenum 

sidewalls.   

 

The absorption coefficient with the change of frequency can be seen in Figure 3.2 

for different materials with two different thicknesses and four different values for 

flow resistances in the figures below. Flow resistance plays a crucial role in the 

absorption. The values for the flow resistance should not be so large or small to have 

a high value of absorption over a wide frequency range. The reason for this is, when 

the flow resistance is small, the sound wave will have no obstacle on its way and be 

reflected from the hard surface back into the room. When the flow resistance is large, 

the sound wave will be reflected from the surface of the material itself.  

 

 

Figure 3.2: Absorption coefficients calculated from theory for normal incidence of 

sound against 2.5 cm. and 5 cm. thick layers of porous materials flush mounted on a 

hard surface. (Delany&Bazley, 1970) 

 

 So the optimum values for the air flow resistance for porous materials are: 

 

1000 Nsm
3
≤  hΞ ≤ 3000 Nsm

3
                                                                             (2.16) 
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When the flow resistance is in that region, the absorption coefficient will fall in the 

hatched area in Figure 3.3. 

 

 

Figure 3.3: Idealized absorption coefficient or diffuse sound field incidence on a 

porous material mounted directly on a hard surface. (Fasold&Sonntag,1976) 

 

Rindel (1982) states that to be efficiently absorbing, a porous absorber mounted 

directly on a hard surface should have a thickness of about 8 cm. And also, the 

values for the specific flow resistance of the material Ξ should be between 12500and 

37500 Nsm
-4

. 

 

If more absorption is needed for the low frequencies, the thickness of the material 

can be increased but in that case the specific flow resistance should have low values. 
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Figure 3.4: The particle velocity of the standing wave for unfavourable and 

favaourable (left and right respectively) positioning of a porous layer in front of a 

hard surface (Rindel, 1982) 

As seen in figure above it has more advantages in acoustical way to place the porous 

absorbers a distance from the hard backing. The optimal values for the flow 

resistance turn into: 

 

500 Nsm
3
≤  hΞ ≤ 1000 Nsm

3 

These values for flow resistance are almost three times lower than the values for the 

porous layer that is placed on the hard surface. The difference in the absorption 

values are represented in the Figure 3.5 below. 

 

Figure 3.5: Example of measured absorption coefficients for a 25 mm thick panel 

(Rindel, 1982) 
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The hard line in the figure represents the Rockfon Fibral a compressed mineral wool 

with glass vies and a paint that does not cover the surface with a density of 70 kg/m
3
 

directly mounted on hard surface. The dashed line represents the absorption for the 

material which is suspended 30 cm.  

In Figure 3.5., it can be seen that the same max absorption value is obtained at 

rm=1/4 ρ c and rm=4 ρ c. 

 

Depending on the direction of incidence, when the sound hits the absorber from 

many different angles of incidence at the same time, the minimum absorption values 

occur at different frequencies (Rindel,1982). 

 

The absorption characteristics change as the distance from the hard backing to the 

material changes. The distance between the floor and the ceiling tile is different from 

the distance between the back-side of the ceiling tile and plenum top ceiling. So, this 

also proves that the absorption characteristics should be different for the different 

sides of the material.  

 

Of course, it should be stated that the sound absorption of suspended ceiling 

elements are measured according to the ISO 354. It is frequently unviable to install, 

in a reverberation room, a suspended ceiling system with a plenum in its normal 

orientation, hence, the type E mounting, as defined in ISO 354, proposes a system to 

simulate the ceiling, but placed on the floor of the reverberation room instead. This 

consists of a horizontal support into which the test specimen is placed with the test 

surface visible, i.e., in an upside down position. This support is raised a given 

distance off the floor and the sides closed with heavy material. The whole support 

structure delimits a volume of air, simulating a plenum.  

 

3.3. Additional Absorption Layer in Plenum 

 

The ISO 140/9 states that the one sidewall and two end walls of the plenum of the 

measurement laboratory should have absorption. The effect of absorption has been 

investigated by many projects. 
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Lately, increase in the sound transmission loss in the plenum has been investigated 

by the EURIMA project by putting additional absorption in the plenum on 1:10 scale 

models.  Some of the results obtained from their measurements with two different 

plenum heights  are presented below. Situation 1 represents no absorption on the 

plenum, situation 2 represents 50 mm. mineral wool and situation 3 represents 100 

mm. mineral wool. 

 

 

Figure 3.6: Increase in sound transmission loss by using absorption in 780 

mm plenum height (Eurima, 2005). 

 

 

Figure 3.7: Increase in sound transmission loss by using absorption in 420 mm 

plenum height (Eurima 2005). 
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It is seen that by using a thicker absorption material (100 mm in EURIMA 

investigation) the transmission loss increased by 10-14 dB. When the plenum height 

is reduced to 420 mm, it has been shown that more increase in the sound 

transmission loss is obtained when compared to the plenum height of 780 mm.  

 

Since, the ceiling tiles possess little back-absorption, without absorption in the 

sidewalls of the plenum, the sound propagates through plenum and hits the plenum 

sidewalls and then reflected back toward the receiver room and that enhances the 

sound levels developed there by directly transmitted sound. On the other hand, using 

sidewall absorption in the plenum increase the attenuation factors 2.5 to 10 dB 

dependent on the frequency. But of course that also depends on the back absorption 

of the ceiling material since with a more back absorber material the effect of plenum 

sidewall absorption reduces (Hamme, 1961). 
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4. LABORATORY MEASUREMENTS 

4.1. Rooms and Measurement Equipment 

4.1.1. Laboratory Rooms 

 

 In order to measure the room to room sound transmission through suspended 

ceiling ROCKWOOL testing facilities are used. The plans and dimensions of the test 

rooms can be seen in the drawings below.  

 

 

 

 

Figure 4.1: Plan and side view of the test rooms 
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ISO 140/9 specifies the laboratory method of measuring the airborne sound insulation 

of a suspended ceiling with a plenum of defined height mounted above an acoustical 

barrier (partition wall) that separates two rooms of the test facility.  

 

In ISO 140/9 the dimensions of the test facility specified as 4,5 ± 0,5 m of width and 

2,8 ± 0,2 m of height from the ground to the underside of the suspended ceiling. 

Also, the volume of each room should be at least 50 m
3
 and the volume of the rooms 

should differ at least 10%. The plenum depth is specified between 650 and 760 mm 

in the standard. In Rockwool test laboratory it is measured as 580 mm.  

 

Both endwalls and one sidewall of the plenum are lined with suitable sound-

absorbing material in accordance with ISO 140/9 and ISO 354. The absorption 

material was 5 cm thick with density of 80kg/m
3

. The top ceiling is gypsum and the 

other sidewall of the plenum are hard surfaces and have low sound absorption 

coefficients that are used in ODEON simulation.  

 

The floor is concrete and the walls (except the partition wall) are constructed as 

painted brick. The top ceiling is made of gypsum panels. In the plenum there are 

some wooden beams that can effect the sound propagation through the plenum. 

 

The partition wall is extended up till the ceiling tiles. Dividing wall is according to 

the ISO 140/9 standards. Its sound insulation is at least 10 dB more than the ceilings 

that are tested.    

 

To obtain a more diffuse sound field in the rooms, 3 diffusers with dimensions of 

50cm x 110cm are installed in each room. The reason for this is due to the hard 

surfaces of such small rooms. Without diffusers the reverberation times are measured 

much longer because of the sound waves that hit the hard surfaces several times back 

and forward.   

    

Although, the test facility in Rockwool do not fulfill the requirements perfectly the 

dimensions are close to the standard and represents the ‘real world’ conditions better 

than the standard.  
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Figure 4.2: The ceiling of the laboratory before installing the suspended ceiling 

 

 

4.1.2. Measurement Equipment  

 

The equipment used in the measurements are: 

• The sound level meter is B&K 2260 Investigator.  

• Noise Generator B&K 1405 model. 

• Loudspeakers’ brand is Etronic (the power or impedance is unknown)  

• 1/2" B&K microphone. 

 

The equipment used were calibrated before the measurements according to the 

supplier’s spefications. 
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4.2.Ceiling System and Details 

 

The ceiling tiles used in the measurements can be seen in the table 4.1. The weight 

mentioned is the density of the mineral wool. In product 3, 6 mm. additional gypsum 

panel is used at the back of the ceiling tile.   

 

Table 4.1: Materials used in the measurement 

 

PRODUCT 
MODULE SIZE 

(mm) 

WEIGHT OF THE 

MINERAL WOOL 

(kg/m
3
) 

THICKNESS 

(mm) 

Product 1 

(Alumunium foil at 
the back side) 

600 x 1200 90 50 

Product 2 

(Alumunium foil at 
the back side) 

600 x 1200 150 30 

Product 3 

(6 mm gypsum 

panel at the back 

side) 

600 x 1200 150 20 

 

The absorption values for the product 1, product 3 and for the additional absorption 

material (80kg/m
3
 weight) that has been used over the ceiling tiles are given in the 

table below. These values are used in the ODEON simulation. 

 

Table 4.2: Absorption values used in the ODEON simulation 

 

Product/Frequency 63 125 250 500 1000 2000 4000 

Product 1 
(Alumunium foil at 

the back side) 
0.45 0.45 0.75 0.85 0.95 0.9 0.8 

Product 3 
(6 mm gypsum 

panel at the back 
side) 

0.45 0.22 0.35 0.5 0.7 0.5 0.5 

Additional 
absorption 

material (80 kg/m
3) 

0.11 0.15 0.72 0.9 0.89 0.92 0.91 
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Details and application method of the ceiling tiles are shown in the figure below. 

 

 

Figure 4.3: Installation of ceiling tiles and grid system. 

 

4.3. Measurements 

4.3.1. Reverberation Time Measurements 

 

4.3.1.1. Reverberation Time Measurements in Rooms: In ISO 354, reverberation 

time which is denoted by T is defined as the time that is required for the sound 

pressure level to drop 60 dB after the sound source has stopped. 

 

Sound absorbing characteristics of the surfaces are needed to make the connection of 

the reverberation time of an office, workshop, theatre, etc. with the noise reduction 

that would be effected by an absorbing treatment. The reverberation time 

measurements are necessary to determine the sound absorption of the discrete objects 

and equivalent absorption area of the rooms in this project. 
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The equivalent absorption area A, in square meters is calculated as using the 

formula: 

 

A= 
1

3,55

cT

V
                                                             (4.1) 

 

Where; 

 

V: Volume of the room in cubic meters 

c: Velocity of sound in air, in meters per second 

T1: Reverberation time of the room in seconds 

 

The equivalent absorption area of the each room is obtained from decay curves 

measured with at least three microphone positions and two speaker positions. The 

microphone is at least 1 m from room surfaces or diffusers and 1 m from the sound 

source. Special care was taken for the background noise not to interfere the results. 

 

4.3.1.2. Reverberation Time Measurements in Plenum: In order to get a general idea 

of the reverberation time and to be able to use and compare the measured data with 

the ODEON, reverberation time measurements are conducted in the plenum that has 

a height of 580 mm. The measurements are done with loudspeakers (with subwoofer) 

and two different microphone positions in the plenum. The measurements are 

conducted with product 1 which has an aluminum foil back side. So, the surface can 

be regarded as a reflective surface. 

 

4.3.2. Sound Pressure Level Measurements and Suspended Ceiling Normalized 

Difference  

 

Laboratory method of measuring the airborne sound insulation of a suspended ceiling 

with a ceiling space (plenum) of defined height installed above a partition wall 

(acoustical barrier) that separates the two rooms is specified in ISO 140/9. 
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This method is used so that it can simulate typical offices, horizontally adjacent 

rooms or rooms which have a common partition wall, suspended ceiling and plenum 

space. 

 

In the measurements conducted in the ROCKWOOL laboratories, the dividing wall 

was extending to the underside of the ceiling system.  

 

The quantity that is measured is called suspended ceiling normalized difference 

which is denoted by Dn,c. Although there are other paths that the sound propagates 

while measuring the airborne sound insulation of suspended ceiling with a plenum, 

these paths are negligible. Actually, Dn,s is defined as normalized level difference for 

indirect airborne transmission in EN 12354-1 (2000). That includes the sound 

transmission only through specified path like suspended ceilings (Dn,c) or ventilation 

duct, corridors, etc. 

 

0A

A
 log 10 - DcDn, =                                                                                               (4.2) 

Where; 

D: the sound pressure level difference (dB) 

A: the equivalent absorption area in the receiving room 

A0: Reference absorption area. (For the laboratory A0=10 m
2
) 

 

Sound pressure level difference which is denoted by D is obtained by measuring the 

sound pressure levels produced in two rooms by a sound source in one of the rooms.  

 

 D= L1 – L2                                                                                                              (4.3) 

 

Where; 

L1: Average sound pressure level in source room 

L2: Average sound pressure level in receiving room  

 

The sound pressure level measurements are carried out for each room in both 

directions with 2 different speaker and 6 randomly distributed microphone positions. 

Sound pressure level readings are taken at averaging time of at least 5 seconds for 
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each microphone position. Then, the arithmetic average of the obtained two sound 

pressure level difference values are taken to get the Dn,c values. For each direction of 

the test, the suspended ceiling normalized difference is measured.  

 

Also, the sound pressure level measurements are conducted by putting a loudspeaker 

system that generates noise and a microphone system in the plenum The 

measurements are done with moving the microphone from the source step by step 

(like 1meter, 2meter……5,7 meter away from the source). 

 

4.3.3 Sound Intensity Measurements 

 

The single way sound reduction values R of the ceiling tiles that is used in the 

measurements are obtained by using a sound intensity probe and scanning it 

throughout the ceiling tiles. All these measurements are conducted according to the 

ISO 15186-1.  

 

One of the most important parts in the test is the installation of the suspended ceiling 

and joining the ceiling to the top of the partition wall. This has done in accordance 

with the actual field conditions. The suspended ceiling has been mounted with the 

recommended practice of the manufacturer. 

   

One-third octave band filters is used throughout the measurements. Special care has 

been taken for the sound in the source room to be steady and have an uninterrupted 

spectrum in the frequencies that are measured. 

 

4.4. Measurement Results 

4.4.1. Rw Values of the Ceiling Tiles 

 

The Rw, C and Ctr values for single way sound reduction for the ceiling tiles are 

presented at Table 4.3. 
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Table 4.3: Rw, C and Ctr values for the ceiling tiles that are used in the measurements 

 

As can be seen from the values the product 3 has the highest sound reduction values 

among the others because of the high density of the mineral wool (150kg/m
3
) that is 

used and the 6mm gypsum at the back.  

 

4.4.2. Suspended Ceiling Normalized Difference and Dnc, w Values   

 

Dnc, w values are obtained from the Dnc values. That has been explained in the 

previous sections. Below in the table are given the average values of Dnc, w for 

different situations since the measurements are conducted in both ways in the rooms. 

The first three of the Dnc, w values are obtained from the three different products that 

have been used in the measurements.  

 

Extra measurements are conducted with product 2 by using band raster in the 

partition wall and suspended ceiling joint.  

 

For the product 3, the band raster was also installed at the joint of the partition wall 

and ceiling tiles. The extra measurements are done with putting 80kg/m
3
 density 50 

mm thick extra absorption over the ceiling tiles in the plenum. First, the extra 

absorption has been put on the source room (the receiver room had no extra 

absorption), later the measurements are conducted with extra absorption on both 

rooms.    

 

Below, the compared results of Dnc, w values of the different ceiling tiles and grids 

can be seen in the figure below. The individual test results for each of the ceiling tiles 

are given in the appendex. 

 

PRODUCT RW (C, Ctr) 

Product 1 

(Alumunium foil at the back side) 
23 (-2.1, -3.9) 

Product 2 

(Alumunium foil at the back side) 
25 (-2.3, -2.9) 

Product 3 

(6 mm gypsum panel at the back side) 
28 (-0.4, -3.3) 
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Table 4.4: Dnc, w values for different test products and conditions 

 

Dncw Values

17 : 35 (-2,-6)  Test 1

22 : 39 (-2,-7)  Test 2

25 : 37 (-1,-5)  Test 3

26 : 43 (-1,-7)  Test 4
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Figure 4.4: Compared Dnc, w values for test 1, test 2, test 3 and test 4 

TEST SERIES PRODUCT / Condition Dnc, w (C, Ctr) 

Test 1 
Product 1 

(Alumunium foil at the back 
side) 

35 (-2.1, -5.7) 

Test 2 
Product 2 

(Alumunium foil at the back 
side) 

39 (-2.3, -6.6) 

Test 3 

Product 2 / band raster in the 

partition wall and ceiling tile 

joint 

37 (-1, -5) 

Test 4 

Product 3 / band raster in the 

partition wall and ceiling tile 

joint 

43 (-1.4, -6.7) 

Test 5 

Product 3 / band raster in the 

partition wall and ceiling tile 

joint and  extra absorption over 

the ceiling tiles only on the 

source room) 

 

47 (-1.9, -7.1) 

Test 6 

Product 3 /  band raster in the 

partition wall and ceiling tile 

joint and extra absorption over 

the ceiling tiles on  both rooms) 

51 (-2, -7.8) 



 

 

 

36 

The coincidence effect (coincidence dip) in the high frequencies is not at all 

uncommon in the acoustical performance of the acoustical ceiling materials. It is 

seen that for the test 1 there is a dip in the 500 Hz.  The reason for this might be that 

the mineral wool inside the ceiling tile is thicker than the other products so, that 

could effect the performance at that frequency . As expected, as the product 3 with 

gypsum panel back shows a better performance, especially in the high frequencies 

although it has lower thickness than the two other materials. But the density of the 

material is higher than the 1
st
 product and the 6mm gypsum layer provides good 

sound attenuation. What is interesting in these results is that, although it was 

expected to give higher Dnc, w  values by using band raster, it can be seen by 

comparing test 2 and test 3 that actually it is not the case. Surprisingly, the tests 

conducted with the same ceiling tile without band raster and with band raster (test 2 

and test 3 respectively), shows that the Dnc,w value for the test 2 is higher than test 3. 

The difference is especially in the high frequencies. Maybe that might be due to 

some mechanical vibrations at the junction of the ceiling and partition wall. 

 

And it should be also remembered that workmanship in installing the ceiling tiles 

effect the sound transmission. The small holes between the ceiling tiles and grid 

system while mounting the system might also effect the overall transmission loss. 

 

Dncw Values

26 : 43 (-1,-7)  Test 4

30 : 47 (-2,-7)  Test 5

31 : 51 (-2,-8)  Test 6

10

20

30

40

50

60

70

R
w

R
a
 (
R

w
+
C

)

R
tr
 (
R

w
+
C

tr
)

5
0

6
3

8
0

1
0
0

1
2
5

1
6
0

2
0
0

2
5
0

3
1
5

4
0
0

5
0
0

6
3
0

8
0
0

1
0
0
0

1
2
5
0

1
6
0
0

2
0
0
0

2
5
0
0

3
1
5
0

4
0
0
0

5
0
0
0

Frequency (Hz)

d
B

Figure 4.5: Compared Dnc, w values for test 4, test 5 and test 6 
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By putting extra absorption over the ceiling tiles on one side increases Dnc, w by 4dB 

where if extra absorption is put on both sides the Dnc, w increases by 8dB. It is seen 

that, the ceiling with high back absorption, the vertical reflections in the plenum has 

been decreased resulting lower sound transmission values. The lateral reflections in 

the plenum had already been taken care of by the absorption in the sidewalls of the 

plenum. Above 1000 Hz, the Dnc, w values are improved the same for both situations 

of the absorption usage in the plenum probably due to acoustical leakage. So it might 

be said that, the improvement in the absorption characteristics above a point is 

useless. The leakage through the grid or suspension system should be improved to 

have more sound reduction through the ceiling.  

 

4.4.3. Reverberation Time Results in the Rooms 

 

For three different ceiling tile products the reverberation time measurements are 

conducted. The results obtained from each test can be seen in the appendix. The 

reverberation times obtained for four different situations of the room can be seen in 

the figures below: With no diffuser, with one, two and three diffusers respectively. 

The results obtained are very well in accordance with the theory.  By increasing the 

number of diffusers, a more diffuse sound field in the laboratory cubic rooms has 

been achieved, the peaks over the frequency range between 500-1000 Hz has 

disappeared. So, all the measurements in the project are conducted with three 

diffusers in each room. 
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Figure 4.6: Change of reverberation times by using diffusers in room 6 
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Figure 4.7: Change of reverberation times by using diffusers in room 5 

 

4.4.4. Reverberation Time Results in the Plenum 

 

The reverberation time results obtained from the measurement can be seen in the 

figure below.  
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Figure 4.8: Reverberation time in plenum 

  

Above 500 Hz, the reverberation times are quite low probably due to the sound 

absorption in the sidewalls of the plenum. And also, the dimensions of the plenum 

are different from regular rooms. That also effects the reverberation time. 
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The reverberation time measurements are conducted only on one ceiling tile system 

due to the practical difficulties of installing the microphone and the loudspeaker 

system. The results are used to compare the values that are obtained from ODEON 

programme. 

 

4.4.5. Sound Pressure Level Measurement Results in Plenum 

 

Below can be seen the results of the sound pressure level measurements when the 

microphone is placed 1 m., 2 m., 3 m., 4 m., 5 m., 5.7 m. away from the source. The 

back of the ceiling tiles were aluminum in these measurements.  
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Figure 4.9: Sound pressure level in plenum 

 

 As the receiver gets far away from the source, the attenuation of the sound increases. 

Actually, what is interesting in the results is that, in mid and high frequency range 

(above 500) the difference between the closest and furthest position of the receiver to 

the source has a sound pressure level difference of almost 20 dB. The more 

attenuation in the high frequencies can be explained by the absorption material usage 

in the 3 sides of the plenum side walls. And, because the plenum has different room 
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dimensions than a regular room, that might also be the reason of this deviation in the 

mid and high frequencies. 

 

It should be kept in mind that, because of the applicability reasons and the facility 

conditions, not many measurements in the plenum are taken. 
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5. COMPUTER SIMULATION 

 

The main purpose of this project is to understand how close can the computer based 

simulation results get to the measurement results in the rooms.  Further, once the 

measurement and the simulated results are close enough it might be possible to 

investigate further the sound transmission through suspended ceiling with different 

room size, different plenum height and with different materials.  

 

Simulations were done with the ODEON version 8.01 which is developed in 

Denmark Technical University Acoustical Department. It might be good to view 

some of the acoustical parameters that are dealt with ODEON before making the 

comparison with the measurements. 

 

In ODEON version 8 two new methods Reflection Based Scattering method and 

Oblique Lambert method has been implemented to increase the accuracy of the 

calculation results and make easier to select more realistic values for scattering 

properties for the surfaces. 

 

The Oblique Lambert method allows including frequency dependent scattering in 

late reflections of point response calculation and scattering method automatically 

takes into account scattering occurring due to geometrical properties such as surface 

size, path lengths and angle of incidence. 

 

It should be known that, ODEON like other computer programs works by describing 

the room geometry and assigning the materials and properties like absorption and the 

scattering for the surfaces. The scattering coefficient based on diffraction is based on: 

• Scattering coefficient provided for the surface - specifying the roughness of 

the surface  
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• Incident path length  

• Reflected path length  

• Dimensions of the surface  

• Distance from reflection point to edge of the surface  

• Angle of incidence 

The rougher the surface, the more the scattering coefficients will be. Assigned values 

for smooth surfaces are between values of 0.02-0,1 where for the rough surfaces 

these values can take the value up to 0,7. 

 

List of recommended scattering coefficients for ODEON are given in the table 

below. 

 

Table 5.1: Recommended scattering coefficients.(Rindel et al., 2006) 

 

Material 
Scattering coefficient at middle 

frequency 

Audience area 0.6 - 0.7 

Rough building structures, 0.3 – 0.5 deep 0.4 – 0.5 

Bookshelf, with some books 0.3 

Brickwork with open joints 0.1 – 0.2 

Brickwok, filled joints but not plastered 0.05 – 0.1 

Smooth surfaces, general 0.02 – 0.05 

Smooth painted concrete 0.005 – 0.02 

 

5.1. Simulation Method 

 

The laboratory rooms with dimensions of 4680mm x 4160mm x 2250mm and 

4160mm x 4160mm x 2250mm with a plenum height of 580 mm and a dividing wall 

between are modelled in ODEON. The wooden beams which could effect the sound 

transmission in the plenum are also modelled in the ODEON. 
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Figure 5.1: ODEON model illustration 

 

With ODEON, it is possible to make the simulation of the transmission loss from one 

room to the other which is divided by a partition wall. The necessary data for this is 

the transmission loss in octave bands of the surface that separates the rooms. 

 

The making of the model is explained step by step in the following order: 

 

1. Room model with the dimensions has been prepared.  

2. Source and receiver has been defined in the source room. Also, another 

receiver in the receiving room has been positioned. 

3. For each room the surface (the ceiling in that case) through which the 

sound transmission has been simulated is given a transparency
1
 τ=0,1 

4. Engineering calculation method is used. The number of the rays has been 

set to one million to get sufficient number of rays to be transmitted to the 

plenum and receiver room. 

5. The overall gain of the sound source in the source room has been set to 85 

dB which is a good estimate for the measurement results. 

                                                 
1
 The reason why the transparency has been given is that the sound rays that are incident on the 

surface are transmitted from the source room to the plenum and to the receiver room. 
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6. The point response calculation has been done in the source room using 

the source and receiver in the source room. 

7. The same source has been copied in the same position in the source room 

to define a second source. But, this time the overall gain of the source has 

been set to 20 dB higher because of the two way transmission (source 

room to plenum, plenum to receiver room). 

8. One way sound reduction values of the ceiling tiles obtained from the 

sound intensity measurements are entered as negative values in each 

octave band
2
 from 63 Hz to 8000 Hz. 

9. The ceiling tiles whose absorption coefficients are known has been 

assigned to the ceiling surfaces. 

10. The point response has been calculated using the second source and 

receiver in the receiving room. 

 

It should be mentioned that the first models were done according to the steps above. 

But since the method described above requires that the absorption properties on both 

sides of the transmitting surface should be identical, the results obtained from the 

simulation were not very well accordance with the measured ones. It is known that, 

the ceiling tiles have different absorption properties since the two sides of the 

materials are different. For example, in one condition, the back side of the ceiling tile 

is aluminium which is reflective and totally different absorption values when 

compared to the front side. Because of this, it was decided to put the absorption 

values of the front side that faces the room, to the floor of the room and the 

absorption values of the back side that faces to the plenum, to the top ceiling. So, the 

absorption of the material was distributed to the floor and top ceiling. Of course, not 

all the materials’ absorption coefficients were known. One of the reasons of the 

placing extra absorption material is the known values of the absorption of that 

material. Consequently, with the known values of the absorption material it was easy 

to distribute the absorption to the floor and to the top ceiling. 

 

                                                 
2
 Since the sound reduction values are measured between 100Hz and 4000 Hz, the sound reduction 

values for 63 Hz and 8000 Hz has been guessed. The value for 63 Hz has been set to equal or less than 

the value for 100 Hz that has been measured and the value for 8000 Hz has been set to equal or more 

than the measured value for 4000 Hz. 
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Furthermore, since the sound reduction is in two ways (room to plenum, plenum to 

room), the sound reduction values should have been multiplied by two before 

entering the values. But that was not the case. According to practice and some 

measurements from external acousticians, it was founded that the Rw ≤ 1.7 Dnc, w. 

The sound reduction values are multiplied by 1.5 in these simulations. 

 

Since the measurements were conducted with the diffusers in the rooms, to simulate 

that condition the scattering values are given high values to obtain diffuse sound 

field. 

 

Also, the measurements in the plenum have been simulated. As stated before because 

of the practical problems, there were not so many measurements that could set a 

reference point for the simulation  But it was nice to have some measurement results 

to compare with the simulated results.  

 

5.2. Simulation Results and Comparison with the Measurements 

 

5.2.1. Comparison of Sound Pressure Level and Reverberation Time in Plenum 

 

To understand the sound transmission through suspended ceiling, the behaviour of 

the plenum should be known. As stated before sound pressure level and reverberation 

time measurements in the plenum are conducted in the laboratory. Firstly, the 

plenum model was prepared and calculated as close as possible to the measured 

results. After the plenum calculations somehow get close to the measured values it is 

easy to construct the rooms on that basis of simulation of the plenum. 
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Figure 5.2: Reverberation time comparison in Plenum 
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Figure 5.3: Sound Pressure level comparison in Plenum 
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The reverberation time simulation in the plenum was conducted though the back 

absorption of the product 1 was unknown. Since, it was aluminium foil was covered 

on that surface of the ceiling tiles, the absorption values were given low values. The 

results are in good agreement above 500 Hz. Below 500Hz. the reverberation time 

for measured values are around 1 second which is quite higher than the results 

obtained from the simulation. 

 

The sound pressure levels in the plenum are simulated. The results do not show so 

much deviation as the distance from the source gets far like in the measurements. 

That might be because there were not so many measurement results to compare or 

the difficulty in simulating the plenum like putting the backside absorption of the 

ceiling tiles to the top ceiling. The ODEON was not very successful at simulating the 

sound pressure levels in the plenum at that matter. 

  

5.2.2. Comparison of Sound Pressure Level, Reverberation Time and 

Suspended Ceiling Normalized Difference 

  

Here, the measured and simulated (calculated) values of test 6 will be presented. The 

simulation was conducted for two ways of sound propagation (from room 5 to room 

6 and from room 6 to room 5). The results presented here is the case for sound 

transmission from room 5 to room 6.  

 

Because the measurement values for the Dnc values are between 100Hz and 3150 Hz, 

the 63 Hz and 4000 Hz in the ODEON calculation has been extrapolated .  

 

Also, it should be mentioned that, the absorption values for the products used in the 

measurements are taken from the manufacturer’s catalogue. Some of the absorption 

values for the ceiling tiles were measured  for different plenum height other than 580 

mm. So, one of the reasons why there were some deviations between the measured 

and the simulated results may be due to this. Additional measurements for the ceiling 

tile absorption could not be conducted due to the unavailable testing facility.  
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5.2.2.1. Simulation of Test 1 : 

 

Table 5.2: Simulated and Measured values for Test 1 

 

Frequency   

(Hz) 
63 125 250 500 1000 2000 4000 

L1 

(Measured 

Room 5) 

71.4 86.7 82.6 77.4 78 75.2 79.3 

L2 

(Measured 

Room 6) 

55.9 62.7 51.7 50.37 27.26 21.35 11.77 

T 

(Measured 

room 6) 

0.71 0.71 0.44 0.47 0.37 0.65 0.44 

L1 

(Simulated) 
83.6 83.7 81.1 79.1 77.7 79.1 80 

L2 

(Simulated) 
68.4 65.9 50.6 50.5 34 29.1 29.1 

T 

(Simulated 

room 6) 

0.48 0.58 0.45 0.43 0.37 0.39 0.38 

Dnc 

(Measured) 
17.4 24.4 28.7 25.2 47.9 53.5 61.3 

Dnc 

(Calculated) 
13.4 28.4 28.3 26.7 40.7 49.5 48.0 

Deviation 4 -4 0.4 -1.5 7.2 4 13.3 
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Reverberation Time Room 5
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Figure 5.4: Reverberation times in room 5 for the ODEON simulation and 

measurements for test 1 
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Figure 5.5: Reverberation times in room 6 for the ODEON simulation and 

measurements for test 1 
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Figure 5.6: Dnc values for the ODEON simulation and measurements for test 1. 

 

 

 

The reverberation times that ODEON estimates for test 1 is in quite good agreement 

with the measured values especially in room 5. In room 6 there is a peak at 2000 Hz. 

This peak might have occurred because of a measurement fault. So, it can be said 

that the ODEON simulatiıon is quite reliable in the reverberation time estimates. 

 

The simulated Dnc values are in good agreement with the measurement except the 

high frequencies. Of course that should have many reasons that for example due to 

the lack information of the absorption values for the both sides of the ceiling tiles. In 

the test 1 the back absorption of the ceiling tiles were not known so, the values were 

assumed. That might have effected the results.  
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5.2.2.2. Simulation of Test 6 

 

 

Table 5.3: Simulated and Measured values for Test 6 

 

Frequency   

(Hz) 

63 125 250 500 1000 2000 4000 

L1 

(Measured 

room 5) 

65.2 73.2 78.8 82.2 80.2 77.1 78.4 

L2 

(Measured 

room 6) 

43 43.7 39.8 29.3 16.8 11.7 9.8 

T 

(Measured 

room 5) 

0.97 0.86 0.73 0.74 0.55 0.74 0.63 

L1 

(Simulated) 

77.3 80.2 80.2 79 77.7 78.8 78.4 

L2 

(Simulated) 

48.9 56.8 40.1 31 16.8 1.1 -16.8 

T 

(Simulated 

room 5) 

0.76 0.72 0.73 0.56 0.44 0.56 0.5 

Dnc 

(Measured) 

28.1 28.8 40.3 52.8 62.4 67.1 68.8 

Dnc 

(Calculated) 

23 23.7 40.6 47.4 59.2 77 94 

Deviation 5.1 5.1 -0.3 5.4 3.2 -10.1 -26.8 
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Figure 5.7: Reverberation times in room 5 for the ODEON simulation and 

measurements for test 6 
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Figure 5.8: Reverberation times in room 6 for the ODEON simulation and 

measurements for test 6 
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ODEON Simulation vs. Measurement
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Figure 5.9: Dnc values for the ODEON simulation and measurements for test 6 

 

Although, there are some small differences, the reverberation times are in quite well 

accordance in both rooms with the ODEON simulation as can be seen in the Figure 

5.7 and Figure 5.8. 

 

It is seen that till 2000 Hz the Dnc values are in almost good accordance with the 

measurements. Although, the back absorption properties are known because of the 

additional absorption material that has been put over the ceiling tiles, above 2000 Hz, 

the results deviate too much, especially at 4000 Hz the deviation is up to 27 dB 

which is way off the measured value. It is probably that, it is up to one point that the 

sound insulation is made by the ceiling tiles, after that there are other transmission 

paths that should be taken into account like flanking transmission or transmission 

through the wall or leakage through the grid system. So, ODEON does not take into 

account these transmissions at high frequencies. This could be why the values 

deviate much at high frequencies. 

 

5.2.3. Simulation with Different Size Rooms and Variable Plenum Heights 

 

In this study, also, two different sized rooms with 250 mm. and 1000 mm. plenum 

height have been simulated in ODEON. The same materials have been used in this 
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simulation as the test 6. The illustration of the rooms can be seen in the Figures 5.10 

and 5.11. The big room simulated has dimensions of 15m. x 6m. x  2.5 m. and the 

size of the small room is 5m. x 3m. x 2.5m. The simulation of sound transmission 

has been conducted from small room to big room. Usually, in real conditions these 

values of the room sizes are used in offices that share a common plenum.   

 

Figure 5.10: Illustration of simulation with plenum height of 250 mm.  

 

 

Figure 5.11: Illustration of simulation with plenum height of 1000mm. 

 

The simulation has been made exactly the same as explained before. The absorption 

of the ceiling tiles has been shared between the floor and the top ceiling. The walls 

are hard surfaces.The three sides of the plenum has been simulated with absorption 

material. 
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The reverberation times of the rooms are different as can be seen in the table 

5.4.   

 

Table 5.4: Reverberation times for the rooms 

Condition/Frequency 63 125 250 500 1000 2000 4000 

Small room  

5m. x 3m. x 2.5m. 
0.35 0.43 0.75 0.75 0.72 0.76 0.7 

Big room 

15m. x 6m. x  2.5 m 
0.96 1.2 1.24 1 1.02 1 0.95 

  

 

Table 5.5: Dnc, w  values for 250mm and 1000mm plenum heights 

Condition Dnc,w (C, Ctr) 

250 mm Plenum Height 43 (-3.7, -9.9) 

1000 mm Plenum Height 38 (-2.3, -8,2) 

 

Dnc for different plenum heights

0

10

20

30

40

50

60

70

80

90

100

63 125 250 500 1000 2000 4000

Frequency (Hz)

d
B 250 mm Plenum height

1000 mm plenum height

 

Figure 5.12: Dnc values for 250mm and 1000mm plenum heights 

 

So, although, there are some known flaws at high frequencies from the laboratory 

measurement simulations, the ODEON simulation here is used for investigating the 

‘real world’ conditions with different plenum heights. As the plenum height is 
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reduced the Dnc,w value obtained increased by 5 dB. Of course, the values at 4000 

Hz. and 2000 Hz. seem quite unrealistic when compared with the laboratory 

measurement, but still the curves are in well agreement with the laboratory 

measurements except the high frequencies because of the fact that ODEON is not 

taking into account the other transmission paths in the simulation at that frequencies 

(like from the wall or from the floor). 
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6. CONCLUSIONS 

 

  

In this study, several series of laboratory tests of room to room sound transmission 

via suspended ceiling are conducted in order to investigate the performance of 

different suspended ceiling systems. The results obtained from the measurements are 

compared with the results obtained from ODEON acoustics computer programme. 

Also, the effect of the depth of the plenum and different room sizes are investigated 

by simulating the rooms and plenum in ODEON.  

  

On basis of the results it can be said that: 

 

From theory and from the computer simulation it is seen that, as the depth of the 

plenum reduces more increase in the sound transmission loss is obtained. The usage 

of the absorption in the plenum also increases the transmission loss up to a point. In 

this study up to 8 dB increase in the sound transmission loss has been investigated. 

There is a limit in the insulation of the sound transmission through the ceiling. After 

this limit, the acoustical performance of the ceiling tiles make no difference at all. 

So, other transmission paths (flanking, through the wall, through the floor, through 

the grid system) should be improved.  

 

The ODEON model shows good agreement with the measurements except the high 

frequencies due to the fact that ODEON does not take into account the other 

transmission paths like flanking, etc. Also, not so much information were known 

about the absorption of the ceiling tiles. Once, more information about the absorption 

properties the ceiling system is known, even closer results with the measurements 

can be obtained.  
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Because the plenum has different dimensions than a regular room, the acoustical 

properties of the plenum are investigated. Some measurement results in the plenum 

are not in good agreement with the ODEON results maybe because of the number of 

the measurements or the measurement technique. More measurements should be 

taken in the plenum with absorption and without absorption to make the comparison 

both in the measurements and ODEON model. 

  

In the end it can be said that, although, the ODEON model does not give precise 

results in room to room sound transmission through suspended ceilings, the results 

obtained can be used as a powerful tool to give a general idea about the sound 

transmission via suspended ceilings.   
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APPENDIX : GRAPHS AND TABLES OBTAINED FROM THE 

TESTS 

 

The reverberation time and sound pressure level measurements are represented in the 

appendix. 
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Table A.1: Reverberation time measurements for test 1 

Room 6   Room 5  

Hz Avg (Hz)   Hz Avg 

(second) 

100 0.71  100 0.7 

125 0.71  125 0.56 

160 0.58  160 0.48 

200 0.4  200 0.45 

250 0.44  250 0.39 

315 0.39  315 0.46 

400 0.4  400 0.4 

500 0.47  500 0.38 

630 0.41  630 0.37 

800 0.39  800 0.36 

1000 0.37  1000 0.37 

1250 0.44  1250 0.36 

1600 0.42  1600 0.4 

2000 0.65  2000 0.4 

2500 0.62  2500 0.42 

3150 0.44  3150 0.4 

 

 

Table A.2: Reverberation time measurements for test 2 and test 3 

         Room 6         Room 5 

Hz Avg 

(second) 

  Hz Avg 

(second) 

100 0.84  100 0.79 

125 0.99  125 0.83 

160 0.82  160 0.79 

200 0.57  200 0.73 

250 0.52  250 0.53 

315 0.45  315 0.55 

400 0.42  400 0.43 

500 0.38  500 0.43 

630 0.42  630 0.44 

800 0.37  800 0.38 

1000 0.41  1000 0.34 

1250 0.39  1250 0.34 

1600 0.44  1600 0.38 

2000 0.55  2000 0.4 

2500 0.61  2500 0.45 

3150 0.42  3150 0.39 
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Table A.3: Reverberation time measurements for test 4, test 5 and test 6 

Room 6  Room 5 

Hz Avg 

(second) 

 Hz Avg 

(second) 

100 0.9  100 0.97 

125 0.92  125 0.86 

160 0.99  160 1.01 

200 0.85  200 0.8 

250 0.79  250 0.73 

315 0.85  315 0.75 

400 0.73  400 0.7 

500 0.7  500 0.74 

630 0.65  630 0.64 

800 0.64  800 0.63 

1000 0.62  1000 0.55 

1250 0.68  1250 0.58 

1600 0.72  1600 0.66 

2000 0.77  2000 0.74 

2500 0.73  2500 0.7 

3150 0.63  3150 0.63 

 

Table A.4: SPL measurements for product 1 Room 5 to Room 6 

Room 5 (Source Room) 

Frequency 

[Hz] 

LLSmin 

[dB ] 

LLSmin 

[dB ] 

LLSmin 

[dB ] 

LLSmin 

[dB ] 

     

63 68.36 67.28 72.39 75.49 

80 80.79 79.07 78.69 73.06 

100 77.93 80.59 78.99 71.94 

125 84.73 86.35 88.97 87.33 

160 85.21 82.6 82.69 85.32 

200 79.96 78.22 84.42 78.07 

250 81.75 83.14 83.1 81.69 

315 77.75 80.7 78.3 75.66 

400 78.47 77.9 78.72 76.37 

500 78.01 77.11 78.9 75.77 

630 75.78 76.61 78.15 74.99 

800 74.7 75.65 79.32 75.53 

1000 77.89 77.61 80.95 77.16 

1250 78.08 79.82 80.25 75.95 

1600 75.94 78.21 75.78 74.16 

2000 74.91 75.51 79.4 73.6 

2500 77.89 78.38 80.25 76.03 

3150 81.62 80.67 81.14 79.34 

4000 80 79.38 80.95 78.74 
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Room 6 (Receiver Room) 

Frequency 

[Hz] 

LLSmin 

[dB ] 

LLSmin 

[dB ] 

LLSmin 

[dB ] 

LLSmin 

[dB ] 

     

63 55.14 59.32 54.05 55.52 

80 65.75 66.47 64.64 68.33 

100 56.99 62.43 55.75 67.1 

125 62.69 66.08 59.36 62.32 

160 62.51 61.17 64.79 63.52 

200 58.22 57.26 57.06 58.31 

250 52.74 51.32 53.72 52.58 

315 48.41 45.98 47.54 46.32 

400 47.51 45.43 46.32 46.35 

500 48.59 50.8 50.49 49.76 

630 41.94 42.14 44.88 41.79 

800 33.3 34.93 34.2 33.86 

1000 28.15 26.69 26.51 27.05 

1250 23.78 24 24.4 23.66 

1600 23.84 25.46 23.6 23.98 

2000 21.67 22.13 21.17 21.69 

2500 18.35 19.06 17.04 17.42 

3150 17.54 17.19 16.4 16.44 

4000 12.48 11.19 11.74 11.32 

 

Table A.5: SPL measurements for product 1 Room 6 to Room 5 

Room 6 (Source Room) 

Frequency 

[Hz] 

LLSmin 

[dB ] 

LLSmin 

[dB ] 

LLSmin 

[dB ] 

LLSmin 

[dB ] 

     

63 65.87 69.97 77.12 76.93 

80 77.79 76.44 73.63 80.48 

100 78.48 74.22 75.57 71.26 

125 77.24 82.83 86.92 82.35 

160 79.45 85.37 85.02 88.17 

200 83.74 84.35 84.31 84.82 

250 84.34 77.32 79.3 79.46 

315 79.04 82.39 79.91 79.49 

400 75.69 76.68 74.87 77.32 

500 77.67 76.46 76.21 77.21 

630 74.14 76.67 73.31 75.83 

800 74.68 75.27 74.53 71.04 

1000 76.76 75.14 77.71 77.15 

1250 77.06 75.55 77.15 75.47 

1600 75.88 75.27 75.29 74.72 

2000 73.94 74.84 74.83 73.05 

2500 76.37 78.19 79.55 78.14 

3150 76.84 78.47 81.88 79.07 

4000 76.73 79.91 78.82 75.32 



 

 

 

63 

Room 5 (Receiver Room) 

Frequency 

[Hz] 

LLSmin 

[dB ] 

LLSmin 

[dB ] 

LLSmin 

[dB ] 

LLSmin 

[dB ] 

     

63 51.35 56.68 53.02 57 

80 58.13 58.45 64.55 54.89 

100 62.71 59.78 58.43 54.64 

125 62.83 69.15 62.83 64.03 

160 67.39 63.61 64.17 61.55 

200 58.76 57.43 57.27 57.76 

250 51.99 52.02 54.43 50.71 

315 50.41 48.83 47.46 46.5 

400 46.61 46.54 45.17 44.75 

500 50.03 49.14 49.96 49.79 

630 44.14 42.11 42.86 42.35 

800 34.3 36.1 33.22 33.58 

1000 29.49 28.35 27.88 27.23 

1250 24.85 23.2 25.09 24.72 

1600 24.81 23.69 23.2 23.31 

2000 21.71 21.75 20.94 22.25 

2500 19.2 19.81 19.65 20.33 

3150 18.95 17.91 19.41 20.24 

4000 13.78 14.24 14.47 15.41 

 

Table A.6: SPL measurements for product 2 Room 5 to room 6 

Room 5 (Source Room) 

Frequency 

[Hz] 

LLSmin 

[dB ] 

LLSmin 

[dB ] 

LLSmin 

[dB ] 

LLSmin 

[dB ] 

LLSmin 

[dB ] 

LLSmin 

[dB ] 

       

63 52.89 49.78 57.27 55.19 50.62 51.26 

80 67.7 61.12 61.79 71.64 67.86 67.84 

100 72.2 69.04 64.09 71.71 70.54 75.63 

125 79.38 77.84 78.48 64.89 75.75 72.93 

160 68.5 72.06 68.49 66.77 70.05 66.9 

200 73.34 73.76 70.83 68.38 69.34 70.82 

250 75.42 71.51 75.64 73.43 72.06 73.55 

315 72.83 72.88 73.91 71.3 70.67 71.3 

400 73.22 72.16 67.86 69.73 70.27 71.59 

500 73.15 72.69 72.1 70.3 73.86 74.87 

630 71.01 69.64 67.89 67.03 70.22 70.81 

800 75.39 70.79 69.94 70.22 73.13 71.72 

1000 77.7 75.21 74.88 70.74 72.37 75.17 

1250 77.01 74.69 71.23 70.18 71.62 75.17 

1600 71.71 71.75 69.97 71.75 71.83 73.01 

2000 74.66 71.24 69.71 70.42 70.52 72.25 

2500 75.45 75.47 71.33 73.65 71.96 75.35 

3150 76.69 80.83 71.15 73.82 74.92 79.75 

4000 76.65 76 69.25 74.82 74.62 75.98 
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Room 6 (Receiver Room) 

Frequency 

[Hz] 

LLSmin 

[dB ] 

LLSmin 

[dB ] 

LLSmin 

[dB ] 

LLSmin 

[dB ] 

LLSmin 

[dB ] 

LLSmin 

[dB ] 

       

63 36.02 31.24 36.29 34.7 33.48 39.66 

80 54.26 50.62 50.36 48.27 44.05 49.29 

100 54.26 48.06 54.77 50.71 52.12 54.78 

125 52.9 49.14 57.51 49.56 51.98 55.37 

160 49.55 49.45 51.71 50.78 48.66 47.71 

200 48.52 48.36 45.86 51.31 51.03 47.9 

250 46.82 45.63 44.25 45.79 47.33 46.97 

315 43.16 43.61 40.85 40.93 38.95 39.88 

400 34.31 33.21 35.44 34.59 35.29 35.91 

500 33.21 33.07 34.02 33.25 32.67 33.49 

630 27.2 26.25 26.07 27.73 25.77 26.09 

800 22.93 25.99 27.23 26.61 25.72 26.41 

1000 24.84 25.91 25.82 25.24 26.25 25.3 

1250 21.82 23.39 22.69 23.11 23.55 22.71 

1600 24.84 23.15 25.2 25.39 23.19 23.1 

2000 29.52 28.73 30.42 30.18 28.6 28.79 

2500 29.89 29.54 27.63 29.03 28.22 28.96 

3150 20.34 20.92 20.66 20.32 20.06 19.69 

4000 13.23 13.19 13.99 13.24 13.6 13.2 

 

Table A.7: SPL measurements for product 2 Room 6 to room 5 

Room 6 (Source Room) 

Frequency 

[Hz] 

LLSmin 

[dB ] 

LLSmin 

[dB ] 

LLSmin 

[dB ] 

LLSmin 

[dB ] 

LLSmin 

[dB ] 

      

63 51.49 54.43 51.99 47.67 42.94 

80 61.72 58.02 66.6 59.18 58.7 

100 65.78 76.02 76.33 72.3 76.37 

125 68.61 77.97 75.23 72.74 73.53 

160 68.16 69.65 70.69 65.85 69.12 

200 73.4 72.68 69.94 74.27 68.89 

250 72.66 76.56 74.43 74.12 73.38 

315 70.84 72.09 74.34 69.73 74.43 

400 70.98 70.34 69.61 68.85 68.7 

500 71.99 73.7 69.6 70.25 75.59 

630 70.22 69.91 69.23 66.8 68.04 

800 72.15 71.48 70.7 69.56 67.82 

1000 73.03 75.15 72.8 73.69 75.32 

1250 72.98 76.56 71.82 72.47 70.47 

1600 72.24 73.68 69.9 69.23 70.6 

2000 69.56 72.74 69.31 69.01 69.72 

2500 71.38 75.33 73.5 72.95 73.4 

3150 72.57 79.36 74.73 73.44 73.16 

4000 74.3 74.72 70.54 74.75 71.32 
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Room 5 (Receiver Room) 

Frequency 

[Hz] 

LLSmin 

[dB ] 

LLSmin 

[dB ] 

LLSmin 

[dB ] 

LLSmin 

[dB ] 

LLSmin 

[dB ] 

      

63 44.54 39.04 27.65 34.53 44.81 

80 38.64 51.28 46.71 43.99 44.67 

100 47.82 53.59 49.96 52.9 47.28 

125 55.54 55.36 57.37 56.63 56.16 

160 48.27 50.73 49.74 49.63 49.9 

200 44.06 45.87 45.37 46.95 47.04 

250 45.08 46.61 48.97 44.95 48.04 

315 39.87 40.57 39.27 41.24 41.5 

400 35.48 34.5 35.41 33.95 35.82 

500 34.64 33.54 34.08 30.3 31.63 

630 27.61 27.39 26.45 27.19 27.3 

800 26.59 28.85 26.39 26.98 25.86 

1000 25.98 23.99 23.31 25.14 23.76 

1250 22.46 22.63 22.05 23.06 21.96 

1600 23.62 23.6 21.07 22.77 23.76 

2000 27.97 27.07 27.92 27.42 28.23 

2500 29.03 28.07 27.68 28.36 28.08 

3150 21.86 20.68 21.84 21.05 20.58 

4000 15.69 15.12 15.16 16.83 16.06 

 

Table A.8: SPL measurements for product 3 Room 5 to room 6 

Room 5 (Source Room) 

Frequency 

[Hz] 

LLSmin 

[dB ] 

LLSmin 

[dB ] 

LLSmin 

[dB ] 

LLSmin 

[dB ] 

LLSmin 

[dB ] 

LLSmin 

[dB ] 

       

63 63.11 60.6 69.34 60.11 66.81 63.42 

80 79.86 66.9 80.65 79.65 71.28 81.67 

100 80.87 79.75 84.7 78.54 75.33 78.9 

125 71.1 79.82 73.23 72.88 72.94 73 

160 73.04 72.69 75.2 70.03 70.23 72.02 

200 77.75 70.02 78.77 74.23 78.49 77.65 

250 80.75 75.79 81.73 80.48 79.99 77.52 

315 82.68 78.96 83.12 78.42 81.6 83.08 

400 74.64 81.37 77.52 75.03 75.86 75.99 

500 82.16 76.31 82.3 79.45 83.26 84.46 

630 78.4 81.24 77.42 74.41 77.22 78.6 

800 78.39 77.35 77.63 79.66 78.84 80.67 

1000 82.37 79.45 80.81 77.12 81.91 81.52 

1250 78.04 82.05 79.18 77.48 78.45 78.74 

1600 77.02 77.62 78.42 79.29 77.84 77.67 

2000 77.54 78.81 78.74 77.92 77.4 77.3 

2500 79.53 77.99 80.98 78.65 79.24 79.93 

3150 80.52 81.39 81.67 79.76 77.55 79.84 

4000 78.75 80.68 79.87 80.19 77.89 78.48 
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Room 6 (Receiver Room) 

Frequency 

[Hz] 

LLSmin 

[dB ] 

LLSmin 

[dB ] 

LLSmin 

[dB ] 

LLSmin 

[dB ] 

LLSmin 

[dB ] 

LLSmin 

[dB ] 

       

63 49.14 42.25 41.71 37.67 47.21 39.24 

80 47.17 47.4 58.81 50.21 49.28 55.35 

100 53.18 53.2 53.53 54.95 52.02 51.88 

125 51.09 48.77 42.38 48.74 52.01 49.73 

160 40.7 40.12 43.53 43.15 43.91 41.37 

200 44.96 47.84 47.42 48.23 45.77 45.09 

250 40.89 44.59 44.9 47.12 46.39 44.6 

315 41.62 42.56 41.81 42.87 43.31 45.95 

400 34.53 35.72 34 34.86 35.35 35.1 

500 32.92 33.59 32.63 36.85 36.89 33.04 

630 24.87 25.35 26.16 24.83 25.79 24.96 

800 21.23 19.58 21.85 20.75 22.78 20.65 

1000 18.05 17.27 19.52 19.33 18.74 19.54 

1250 15.61 15.14 14.91 14.86 15.94 15.38 

1600 11.54 12.1 12.47 11.53 12.59 11.4 

2000 10.3 12.06 12.41 10.25 11.32 10.1 

2500 13.04 13.74 13.4 12.25 13.6 12.44 

3150 11.81 12.03 11.44 10.98 12.53 11.71 

4000 9.76 9.25 10.12 9.56 12.62 9.61 

 

Table A.9: SPL measurements for product 3 Room 6 to room 5 

Room 6 (Source Room) 

Frequency 

[Hz] 

LLSmin 

[dB ] 

LLSmin 

[dB ] 

LLSmin 

[dB ] 

LLSmin 

[dB ] 

LLSmin 

[dB ] 

LLSmin 

[dB ] 

       

63 69.02 57.77 63.69 68.48 67.41 64.87 

80 75.73 76.68 77.03 79.44 81.6 79.2 

100 78.47 77.96 77.91 81.3 85.54 83.42 

125 77.77 77.97 82.39 75.21 81.07 74.44 

160 69.35 63.26 66.4 64.99 65.82 65.99 

200 77.92 70.7 74.54 71.94 74.41 76.38 

250 81.65 79.97 77.05 79.09 79.61 81.76 

315 81.23 80.5 81.55 81.54 79.51 78.18 

400 76.87 78.03 74.75 77.43 73.86 78.29 

500 76.6 77.73 78.53 79.17 77.54 77.48 

630 78.15 79.56 76.3 77.64 77.3 75.66 

800 77.94 79.37 78.06 78.02 77.6 75.3 

1000 79.83 82.51 78.52 80.39 80.39 80.25 

1250 78.87 80.64 79.91 78.82 78.4 78.07 

1600 80.52 78.56 78.78 79.38 79.38 78.05 

2000 80.17 78.18 78.18 78.28 77.21 77.41 

2500 80.28 82.26 79.97 80.36 78.52 79.28 

3150 83.01 80.68 79.85 82.5 80.38 80.26 

4000 78.26 76.8 77.67 77.93 78.62 77.08 
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Room 5 (Receiver Room) 

Frequency 

[Hz] 

LLSmin 

[dB ] 

LLSmin 

[dB ] 

LLSmin 

[dB ] 

LLSmin 

[dB ] 

LLSmin 

[dB ] 

LLSmin 

[dB ] 

       

63 46.96 47.27 48.11 43.62 42.2 36.5 

80 50.12 51.08 51.76 55.89 55.9 57.12 

100 53.43 56.14 55.37 51.74 57.7 59.1 

125 56.5 50.59 55.47 49.74 53.24 56.5 

160 39.11 40.23 39.81 44.85 42.34 42.14 

200 42.22 42.41 41.63 39.93 42.96 42.22 

250 43.35 45.64 43.21 44.46 47.06 43.37 

315 41.61 41.93 44.72 41.85 43.29 45.14 

400 36.33 37.94 36.17 35.11 37.11 35.81 

500 29.72 29.8 31.24 34.78 31.14 29.58 

630 24.41 25.82 26.2 25.37 26.51 23.43 

800 20.64 20.79 22.41 23.62 23.41 20.47 

1000 20.97 20.36 19.57 18.93 21.01 19.69 

1250 16.69 15.4 13.41 16.39 14.57 15.01 

1600 12 12.53 10.17 13.64 11.61 12.32 

2000 11 10.84 9.86 11.48 10.25 10.84 

2500 11.81 13.11 11.97 13.05 11.56 12.31 

3150 12.09 12.83 11.18 12.23 11.41 12.34 

4000 10.66 11.82 10.39 11.22 10.41 10.97 
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The following is the text editor for the ODEON model simulation for the 

measurements 

### 

Const d 1 

Const l 2 

Const m 3 

Const n 4.6 

Const o 5.6 

Const p 6.6 

Const q 7.6 

 

Pt 1 0 2.170 0 

Pt 2 0 -2.170 0 

Pt 3 4.230 -2.170 0 

Pt 4 4.230 2.170 0 

Pt 5 8.910 2.170 0 

Pt 6 8.910 -2.170 0 

:ceiling points 

Pt 11 0 2.170 2.250 

Pt 12 0 -2.170 2.250 

Pt 13 4.230 -2.170 2.250 

Pt 14 4.230 2.170 2.250 

Pt 15 8.910 2.170 2.250 

Pt 16 8.910 -2.170 2.250 

:ceiling above suspended ceiling 

Pt 21 0 2.170 2.80 

Pt 22 0 -2.170 2.80 

Pt 23 4.230 -2.170 2.80 

Pt 24 4.230 2.170 2.80 

Pt 25 8.910 2.170 2.80 

Pt 26 8.910 -2.170 2.80 

:wood in the ceiling 20 cm x 20 cm x 4m 

Pt 27 d -2 2.8 

Pt 28 d+0.2 -2 2.8 

Pt 29 d+0.2 2 2.8 

Pt 30 d 2 2.8 

Pt 31 d 2 2.6 

Pt 32 d+0.2 2 2.6 

Pt 33 d+0.2 -2 2.6 

Pt 34 d -2 2.6 

 

Pt 35 l -2 2.8 

Pt 36 l+0.2 -2 2.8 

Pt 37 l+0.2 2 2.8 

Pt 38 l 2 2.8 

Pt 39 l 2 2.6 

Pt 40 l+0.2 2 2.6 

Pt 41 l+0.2 -2 2.6 

Pt 42 l -2 2.6 

 

Pt 43 m -2 2.8 

Pt 44 m+0.2 -2 2.8 

Pt 45 m+0.2 2 2.8 

Pt 46 m 2 2.8 

Pt 47 m 2 2.6 

Pt 48 m+0.2 2 2.6 

Pt 49 m+0.2 -2 2.6 

Pt 50 m -2 2.6 

Pt 51 n -2 2.8 

Pt 52 n+0.2 -2 2.8 

Pt 53 n+0.2 2 2.8 

Pt 54 n 2 2.8 

Pt 55 n 2 2.6 

Pt 56 n+0.2 2 2.6 

Pt 57 n+0.2 -2 2.6 
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Pt 58 n -2 2.6 

 

Pt 59 o -2 2.8 

Pt 60 o+0.2 -2 2.8 

Pt 61 o+0.2 2 2.8 

Pt 62 o 2 2.8 

Pt 63 o 2 2.6 

Pt 64 o+0.2 2 2.6 

Pt 65 o+0.2 -2 2.6 

Pt 66 o -2 2.6 

 

Pt 67 p -2 2.8 

Pt 68 p+0.2 -2 2.8 

Pt 69 p+0.2 2 2.8 

Pt 70 p 2 2.8 

Pt 71 p 2 2.6 

Pt 72 p+0.2 2 2.6 

Pt 73 p+0.2 -2 2.6 

Pt 74 p -2 2.6 

 

Pt 75 q -2 2.8 

Pt 76 q+0.2 -2 2.8 

Pt 77 q+0.2 2 2.8 

Pt 78 q 2 2.8 

Pt 79 q 2 2.6 

Pt 80 q+0.2 2 2.6 

Pt 81 q+0.2 -2 2.6 

Pt 82 q -2 2.6 

 

Surf 1 floor 

1 2 3 4 

Surf 2 floor 

3 4 5 6 

Surf 3 endwall 

1 2 12 11 

Surf 4 partition 

3 4 14 13 

Surf 5 endwall 

5 6 16 15 

Surf 6 sidewall 

1 4 14 11 

Surf 7 sidewall 

2 3 13 12 

Surf 8 sidewall 

4 5 15 14 

Surf 9 sidewall 

3 6 16 13 

Surf 10 endwall plenum room 5 

11 12 22 21 

Surf 11 endwall plenum room 6 

15 16 26 25 

Surf 12 sidewall plenum room 6 

14 15 25 24 

Surf 13 sidewall plenum room 6 

16 13 23 26 

Surf 14 sidewall plenum room 5  

11 14 24 21 

Surf 15 sidewall plenum room 5 

12 13 23 22 

Surf 16 celing rooom 6 

13 14 15 16 

Surf 17 ceiling room 5 

11 12 13 14 

Surf 18 top ceiling  

21 22 26 25 

Surf 19 wood 1 upsurface 

27 28 29 30 
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Surf 20 wood 1 sidesurface right 

31 30 27 34 

Surf 21 wood 1 sidesurface left 

32 29 28 33 

Surf 22 wood 1 bottom 

31 32 33 34 

Surf 23 wood 2 upsurface 

35 36 37 38 

Surf 24 wood 2 sidesurface right 

39 38 35 42 

Surf 25 wood 2 sidesurface left 

40 37 36 41 

Surf 26 wood 2 bottom 

39 40 41 42 

Surf 27 wood 3 upsurface 

43 44 45 46 

Surf 28 wood 3 sidesurface right 

47 46 43 50 

Surf 29 wood 3 sidesurface left 

48 45 44 49 

Surf 30 wood 3 bottom 

47 48 49 50 

Surf 31 wood 4 upsurface 

51 52 53 54 

Surf 32 wood 4 sidesurface right 

55 54 51 58 

Surf 33 wood 4 sidesurface left 

56 53 52 57 

Surf 34 wood 4 bottom 

55 56 57 58 

Surf 35 wood 5 upsurface 

59 60 61 62 

Surf 36 wood 5 sidesurface right 

63 62 59 66 

Surf 37 wood 5 sidesurface left 

64 61 60 65 

Surf 38 wood 5 bottom 

63 64 65 66 

Surf 39 wood 6 upsurface 

67 68 69 70 

Surf 40 wood 6 sidesurface right 

71 70 67 74 

Surf 41 wood 6 sidesurface left 

72 69 68 73 

Surf 42 wood 6 bottom 

71 72 73 74 

Surf 43 wood 7 upsurface 

75 76 77 78 

Surf 44 wood 7 sidesurface right 

79 78 75 82 

Surf 45 wood 7 sidesurface left 

80 77 76 81 

Surf 46 wood 7 bottom 

79 80 81 82 

 

 

### 
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