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NOMENCLATURES

|

a,b. : Orthogonal unit base vector, i =1,2,3.

Cij ,CE”A,CA/B,Ci (6) : Direction cosine matrix, i, j =1,2,3.

C, : Direction cosine vector.

6. : Attitude angles for i=1,2,3.

0} : Angular velocities for i1 =1,2,3.

€ : Eigenvector.

I—:I, h, . Angular velocity momentum vector.

M, : External moment or torque, 1=1,2,3.
R,R.,T,p : Position vector.

m : Mass.

0,,0,,0, : Rigid-elastic coupling scalars of a single solar array.
0,,0,,0, : Modal frequencies.

q,,0,,0; : Modal coordinates.

I; (=) : Moments of inertia, i, j=1,2,3.

I (= ]) : Products of inertia, i, j=1,2,3.

Q,r,f)_ : Skew-symmetric matrices.

n : Orbital rate.

u - Gravitational parameter.

df - Gravitational force on a small dm .

X,y : State and output vectors of linear controller.
A B,C,D . System, control, output, kontrol output matrices of lin. contr.
u,u,,u ,u, : Control vector for linear controllers.

G, K, g1p : Pole placed matrices.

A : Eigenvalues, i =1,2,...,n

(R : Identity (3 3)-matrix.

P : Desirable pole vector.

=,¥ : Weighting matrices.

J - Optimal cost function.

f(x,t,u) : Control function of sliding mode controller
S, : Sliding manifolds, i =1,2,3.

Ueq : Equivalent control term.

u : Discontinuous control term of sliding mode controller.
sign(.),sgn(.) : Mathematical function, signum.

\Y : Lyapunov function candidate

7(.) : Sliding boundary (dead-band) function
Sy»Sy : Sliding boundary value

b : Sliding boundary function

K, : Inertia constants, 1=1,2,3.

A : Nutational frequency



SUMMARY

Control problem of a spacecraft is an important topic in automatic control
engineering. Many studies about attitude stabilization of satellite applications have
been proposed. In this thesis, a three axis stabilized spacecraft —a communication
satellite Intelsat V— is selected to investigate attitude dynamics, and to design linear
and variable structure controllers. Spacecraft kinematics and dynamics are studied to
recognize how the system operates in circular orbit for attitude motions. The
satellite’s dynamic model is obtained via linearized rigid spacecraft attitude
dynamics, gravity gradient torque, dynamic effects of flexible solar panels, a
sinusoidal effect as external and internal disturbances. The designed passive pole
placed linear controller, which models reaction wheels, stabilizes the satellite well
with longer settling time. Additionally, active pole placed linear controller, which
models thrust system, stabilizes the satellite precisely with short settling time.
However, it operates continuously that is undesirable for the attitude control system
due to the limited amount of propellant of the spacecraft. The combined linear
controller model of flexible spacecraft is obtained with passive and active
controllers, linearized rigid spacecraft attitude dynamics, a sinusoidal effect as a
disturbance which consists of flexible solar panels vibration effects, gravity gradient
torque, sun pressure and other unmodeled external or internal disturbances. On the
other hand, both active and passive sliding mode controllers constitute combined
sliding mode controller which stabilizes the system faster than the linear controllers
according to selected sliding manifold which needs to be designed. The passive
sliding mode controller supplies inner torques with continuous control signal
produced by equivalent control term. Beside, the thrust system is used seldom and
only a few on-off logic operations are done for precise stabilization of the designed
model of the spacecraft. Nonlinear design for thrust system is sufficient model for
on-off logic and it depends on the switching functions and selected sliding boundary
layer. Although, this is a simple design described via a few blocks, it is a
complicated mathematical model to be studied with. Nonlinear controller model
includes passive and active controllers with the dynamic model of the satellite. The
time responses are obtained from Matlab-Simulink block diagrams of the designed
satellite attitude dynamic model, linear and sliding mode controllers which are given
to illustrate the considered procedure.
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OZET

Uzay aracinin kontrol problemi otomatik kontrol miihendisliginin 6nemli bir
bashigidir. Uzay aract uygulamalarinin yonelme stabilizasyonu hakkinda bir¢ok
calisma sunulmustur. Bu tezde ii¢ eksende dengelenmis bir uzay araci olan
haberlesme uydusu Intelsat V’in yonelme dinamiklerini arastirmak, lineer ve kayma
kipli kontrolciiler tasarlamak i¢in secilmistir. Bu amag ile uzay araci kinematikleri ve
dinamikleri sistemin dairesel yoriingedeki yonelme hareketlerini anlamak igin
calisildi. Uydunun dinamik modeli lineerlestirilmis rijit uzay aract ydnelme
dinamikleri, egimin yercekimi torku, giines panellerin dinamik etkileri, siniisoidal
etki olarak i¢ ve dis bozucular ile elde edildi. Tasarlanan pasif kutup atanmis lineer
kontrolcii, ki hareket tekerciklerini modeller, uyduyu uzun oturma siiresi ile iyi denge
konumuna getirmektedir. Ek olarak, aktif kutup atanmis dogrusal kontrolcii, ki itki
sistemini modeller, uyduyu kisa oturma siiresiyle tam olarak denge konumuna
getirmektedir. Ancak, siirekli ¢alismasi uzay aracinin smirl yakit hacminden dolay1
yonelme kontrol sistemi i¢in arzu edilmemektedir. Esnek uzay aracinin birlestirilmis
lineer kontrolcii modeli pasif ve aktif kontrolciiler, dogrusallastirilmis rijit uzay araci
yonelme dinamikleri, bozucu olarak siniisoidal etkiyi olusturan esnek panellerin
salinim etkileri, egimin yer¢ekimi torku, giines basinci ve diger modellenmemis dis
ve i¢ bozucular ile elde edildi. Diger yandan, her iki pasif ve aktif kayma kipli
kontrolctiler birlestirilmis kayma kipli kontrolcii olustururlar ki tasarim gerektiren
kayma manifolduna nazaran sistemi dogrusal kontrolciilerden siiratli dengeler. Pasif
kayma kipli kontrolcli i¢ torklar1 esdeger kontrol teriminin olusturdugu siirekli
kontrol sinyal ile saglamaktadir. Yanisira, itki sistemi nadiren kullanilir ve uzay
aracinin tasarlanmis modelinin kesin denge konumu i¢in sadece birka¢ agma-kapama
mantig1 islemleri yapilmaktadir. Itki sisteminin dogrusal olmayan tasarimi agma-
kapama mantig1 i¢in yeterli bir modeldir ve anahtarlama fonskiyonu ile secilen
kayma smir tabakasina baghdir. Birkag blok ile ifade edilen basit bir tasarim
olmasina ragmen ¢aligilmasi karisik bir matematiksel modeldir. Dogrusal olmayan
kontrol modeli pasif ve aktif kontrolciiler ile uydunun dinamik modelinin igerir.
Tasarlanmis uydunun yonelme dinamigi modelinin, lineer ve kayma kipli
kontrolciilerin Matlab-Simulink blok diagramlarindan elde edilen zaman yanitlar
g6zoniinde tutulan prosediirii 6rneklemek i¢in verilmistir.

xii



1. INTRODUCTION

Control problem of a spacecraft is an important topic in automatic control
engineering. A body orbiting the Earth in geosynchronous orbit has instabilities in
attitude dynamics and disturbances caused by the Earth, the Moon, the Sun and other
bodies in space. These effects force the body to lose initial orbit and attitude. Here
the control system takes important part of spacecraft missions where it keeps the
body in designed orbit and desired attitude. The control system consists of control
elements and control algorithms. The control elements for a spacecraft in a
geosynchronous orbit are thrusters, reaction or momentum wheels. The control

algorithms are logics developed for the mission by control engineer.

Thrusters and reaction wheels are commonly used spacecraft attitude control devices
for geosynchronous orbits. In this thesis, thrusters are controlled via active control
algorithms whereas reaction wheels are controlled via passive control algorithms.
Thrusters or active controllers are used for rapid large attitude angles motions. On
the other hand, reaction wheels or passive controllers are used for small attitude

angles motions for precise determination.

In this thesis two studies of control algorithms for the communication satellite
Intelsat V are given. First, linear control method with pole placement is used to
design both active and passive controllers. Second, sliding mode control method has
designed active and passive controllers for better results. The performances and

disadvantages are discussed in Section 5 and simulated in Appendices.

The linear control procedure in the thesis is designed in two steps according to
modern control theory. First, linearization of the system is given and then linear
model is obtained. Next, controls and outputs for the linear system are given. Second
step includes pole placement method, which stabilizes the system with desirable
poles chosen by designer. In this design, control function is given as a pole placed
matrix, thus, less calculations are required. The designed linear controllers for
passive and active controls are in same logic and it is simple combination of them.
The linear controllers have continuous control signal, but for active controllers that
continuous control command may not be wanted since the operations of thrusters as

on-off logic.



A study about linear attitude stabilization has been proposed by Franklin et al.
(2002). A linear attitude control model of a communication spacecraft and a state-
variable example are given. According to that example, a similar linear model and

control algorithms for yaw, roll and pitch axes are designed in the thesis.

The sliding mode theory has an attention in the aerospace field. The technique
permits the use of a lower order systems model for generating control commands. On
the other hand, the system is robust with respect to the external disturbances and

includes unmodelled dynamics, as well.

The sliding mode control procedure in this thesis is designed in three steps. First,
switching surfaces with desired properties are selected according to the spacecraft
attitude dynamics. Next, control laws that will guarantee the existence of sliding
mode on the switching surface for both active and passive controllers are designed.
For passive controller, sliding mode control law is designed as equivalent control
method to avoid from chattering problem and to generate continuous control
command. On the other hand, for active controller, sliding mode control law is
selected with some restrictions on thrusters for limited fuel usage. Finally, it is
obtained that state trajectories can be forced toward the sliding manifold from any
initial state. The above procedure is applied both to large and small attitude angles
orientations for a spacecraft. For the active control algorithms chattering is an
undesirable problem. Although a dead-band is included into the system depending on
the switching surfaces and thrust magnitude, it may occur along the boundary layer
bounded with the dead-band function. Avoiding chattering problem and keeping
advantages of sliding mode, for large attitude angles orientations, the control law
scheme firstly applies some pulses via thrusters until the state trajectories reach the
sliding boundary layer, then reaction wheels that are used as a primary control
elements, tune the system for fine attitude stabilization where the system is forced to

reach the sliding manifold.

A similar design for variable structure control topic was done by Vadali (1986) with
quaternion representation for optimal sliding mode. Automatic controller for active
nutation damping in momentum biased stabilized spacecraft is introduced by Sira-
Ramirez and Dwyer (1987), where robust feedback stabilization of roll and yaw
angular dynamics are achieved successfully with prescribed qualitative
characteristics for a spinning satellite. A maneuvering of a flexible spinning
spacecraft is treated with variable structure control by Oz (1993) where system is
stabilized perfectly in 100 seconds. Slotine and Li (1991) introduced boundary layer
for sliding mode controllers. Also, some simple spacecraft thrust control algorithms

were given as applied nonlinear control examples.



There are many nonlinear examples of controllers design for spacecrafts, where some
of them are cited as follow. Somov et.al. (2004) has proposed a controller design for
nonlinear model of a spacecraft with weak inner torques produced via reaction
wheels which stabilize the system in 20 minutes. Yoon and Tsiotras (2002) have
developed an algorithm for controlling the spacecraft attitudes in orbit while
simultaneously tracking a desired power profile using a cluster of variable-speed
single gimbaled control moment gyroscope which stabilizes the small spacecraft in
10 minutes. Zhang and Li (2004) proposed a new Lyapunov based controller which

stabilizes the system nearly in one hour.

=)

Figure 1.1 Communication satellite Intelsat V.



Designed nonlinear controllers stabilize the systems well; however, their settling
times are very high. The designed sliding mode controllers studied in this thesis
stabilize the system in 100 seconds maximum with passive control algorithms, and

40 seconds maximum with combined control algorithms.

The variable structure controller design procedures such as equivalent control term
and modeling of second order systems and general form of sliding mode are studied
by Utkin (1993), Utkin (1992), Hung (1993), Slotine and Li (1991).

1.1 Spacecraft Specification

The spacecraft in this thesis is chosen to be a communication satellite Intelsat V as
shown in Figure 1.1. Three-axis stabilization has been employed for many
geosynchronous communication satellites. The bias momentum provides gyroscopic
stiffness to the environmental disturbances and primarily to the solar radiation

pressure torque.

1.2 Preliminary Design of Spacecraft

Figure 1.2 shows an attitude control system configuration that consists of one
reaction/momentum wheel at pitch axis and two reaction wheels on yaw and roll
axes, Earth sensor that measures pitch and roll attitude references and thrusters that
provide wheel momentum desaturation torques. The satellite also includes star
tracker for fine attitude determination, optic gyroscopes that measures attitude angle

rates and attitude errors, and sun sensor for solar array pointing operations.

Table 1.1 Intelsat V technical specifications [1]

Principle moments of inertias, I;, I, I5 ............... 3026, 440, 3164 kg.m’
Main body dimensions, X-y-Z........cccccevvenrrnnnnns. 1.5x1.7x22m
Solar arrays. . ....oveeeeiii i 20 m (tip-to-tip)

Max. torques supplied viaR.W......................... 0.10 Nm

Bias momentum...............ooviiiiiiiii 91.4 Nms

Liquid bi-propellant thrusters.......................... N,O/MMH

ATTAY POWET ...ttt ittt aeaeeeiieenaannss 1.5 kW

In Figure 1.2, the direction 1, yaw, is toward to the Earth; direction 2, pitch, is
normal to the orbit plane and direction 3, roll, is nominally in flight direction. Roll,

yaw and pitch control axes are coincided with the principle axes of the spacecraft.

The increased demand of electrical power for communications and/or direct TV
broadcasting leads to large flexible solar panel arrays for three axis stabilized
spacecraft as shown in Figure 1.3. Consequently, the structural flexibility of the solar

arrays have been one of the primary topics in the design of attitude control systems



for a certain class of the three axis stabilized spacecraft. For most cases, the

structural flexibility of the solar arrays does not strongly interact with attitude control

salar array
+(C
spacecraft 3 1
e ,
reaction wheels " seean%%r
7y
s B -5
reaction J
rarmenturm e
whae
‘ +A A :roll attitude thrusters
-C +B -B : pitch attitude thrusters
solar array +C-C :yaw attitude thrusters

Figure 1.2 Attitude control elements configuration.

systems. Thus, all of structural modes are often gain stabilized by the step rolloff at a
frequency well below first structural frequency [1]. In this thesis, a case is selected
which does not interact strongly with attitude control system but need to be
considered in the control design procedure. For this case, flexibility of solar array is

given in Table 1.2.

Table 1.2 Single solar array flexibility model at 6 a.m. [1].

I(f;xg;lever (f:rilcllzienvc? Coupling scalars, +/Kg -m?
description® o, rad/s Roll, 4, Pitch, o, Yaw, 0,
OP-1 0.885 0 0 35.372
OP-2 6.852 0 0 4.772
OP-3 16.658 0 0 2.347
OP-4 33.326 0 0 0.548
T-1 5.534 0 2.532 0
T-2 17.668 0 0.864 0
T-3 33.805 0 0.381 0
1P-1 1.112 35.865 0 0
IP-2 36.362 2.768 0 0

*: OP is out-of plane, T is torsion and IP is in-plane.

Therefore a rigid body with flexible solar arrays may be modeled. In Section 2.4, the

dynamic model of the solar arrays will be presented, and more realistic model of a



flexible spacecraft will be obtained. Only performances of sliding mode controllers
with flexible solar panels model will be studied. In linear controllers design,
flexibility will be assumed as a sinusoidal effect that consists of internal and external

disturbances, as well.

Figure 1.3 Intelsat V in orbit simulation.



2. SATELLITE ATTITUDE DYNAMICS AND PROBLEM STATEMENT

This section introduces a three-axis stabilized spacecraft motions in circular orbit to
investigate attitude dynamics. The spacecraft attitude dynamics problem will firstly
be introduced via rotational kinematics and then via rigid body dynamics. In
kinematics, the orientation of a body is described as in rotational motion. This
subject is somewhat mathematical in nature because it does not involve any forces
associated with motion. The motion of a rigid body in space consists of the
translational motion of its center of mass and the rotational motion of the body about
its center of mass. Thus, a rigid body in space is a dynamic system with six degrees
of freedom. However, this chapter is concerned with rotational motion of a rigid
vehicle with or without the influence of gravitational and other external forces.
Rotational kinematics include direction cosine matrix of the rigid spacecraft and
gyrostat in circular orbit. In this subtopic rigid body dynamics, inertial matrix,
Euler’s rotational equation of motion, rigid body and gyrostat in circular orbit will be

given. Finally, more realistic option of flexibility of solar membranes will be studied.

2.1 Rotational Kinematics

Problem statement of spacecraft attitude dynamics and control includes rotational
kinematics. Kinematics describe orientation of a rotating body. In this section,
direction cosine matrix is described as rotation matrix between two directions. Also,
the dynamic model called as kinematic differential equation for direction cosine is
given. Finally, angular velocities are represented with dynamic model of direction

cosine.

2.1.1 Direction cosine matrix [1]

Assume a reference frame A with a right-hand set of three orthogonal unit vectors
{d,,d,,d, } and a reference frame B with another right-hand set of three orthogonal
unit vectors {b;,b,,b,} as shown in Figure 2.1. Basis vectors of B are expressed in

terms of basis vectors of A as following:
b =C,a +C,a,+C,a, (2.1.2)

b,=C,da +C,a,+C,.,3a, (2.1.b)



b, =C,d +Cy,d, +C,3, (2.1.0)

where C; =h -8; 18 the cosine of the angle between b and d;, and C;is simply

called the direction cosine. The matrix form of Equations (2.1) is as below:

|

41 Cl 1 C] 2 Cl 3 5‘1 al
h | = C21 sz C23 32 =Cc*" é:z (2.2)
_’3 C31 C32 C33 a a3

where C** =[C;] describes the orientation of B relative to A is called direction

cosine matrix. It can be rewritten as

|
|
|
|

| 41 1 42 1'§3 |

B/A = R 2 R o= |_1Rr = = =

C®*=|b,-& b,-a, b,-& |=|b, |-[d & 4&] (2.3)
5 3‘52 3 a3 3

The direction cosine matrix C®'* is also called the rotation matrix or coordinate

transformation matrix to B from A which is shown as, C®*:B « A.

spacectaft

by

Figure 2.1 Two reference frames A and B, and attitude angles

The transformation matrix to A from B can be written as below,

|
|
|

a-b 4a-b a:-b a,
A/B = F = F = K = - TR
C*=la,-b 4&-b d-b =4, |:1 b, b3} (2.4)
a, *1 a _’2 a 1 53



The relation between C®* and C*® can be shown as follows:
[CB/A]—] =[CB/A]T =cA/B (2.5)
[CA/B]—] =[CA/B]T =cB/A (2.6)

In two sets of reference frames A and B consider an arbitrary vector H which can be
expressed in terms of A and B as follows,

H=Ha +H,d +H,a =Hb +Hb,+Hb,. (2.7)
Thus,

H/=b-H=b-(H3&+H.,d +H.,3) (2.8.2)

H,=b,-H=b,-(Hd+H,d,+H.4,) (2.8.b)

H;=b,-H =b,-(H,a+H,a+H,4,) (2.8.0)

The Equations (2.8) can be rewritten in matrix form as below,

H1! bl é:l bl '52 bl q3 H1 H1
Hz' = _.2 a _.2 a, *2 a, || H, =C¥A H, (2.9)
H3’ 43 q 43 5'2 *3 l’;13 H3 H3

Therefore, the components of a vector H are transformed to B from A using
direction cosine matrix C** defined in Equation (2.3) for the transformation of the

orthogonal basis vectors.

Three elementary rotational revolution about first, second and third axes of the

reference frame A are described by the following rotation matrices, respectively

1 0 0
C,(6)=|0 cosf sinf, (2.10.a)
0 —sinf, cosf,

cosd, 0 —sinb,
C,6,)=| 0 1 0 (2.10.b)
sind, 0 cosé,



cost, sin@, 0
C;(6,)=|—sinf, cosf, 0 (2.10.c)
0 0 1

where C,(6,) implies the direction cosine matrix C of an elementary rotation about

the i™ axis of A with attitude angles 6, i=1,2,3 as shown also in Figure 2.1.

Equation (2.2) can be rewritten as

|
|

a, | |
a,|=C"'|b, |=C"|h, (2.11)
43 ﬁ3 _.3

The direction cosine matrix is a function of time because the two reference frames
are rotating according to each other. Taking the time derivative of (2.11) in A and

denoting it by over dot, results

|
|
|

0 | K | wxb,
0|=C"|b, |+C"|b, |=C"|b, |+C"| &xb,
0 3 63 3 oxb,
1 0 — s , 1
=C"|b,|-C"| o, 0 -a,||b, (2.12)
b, -—0, o 0 ||b,
where @,, 1=1,2,3 are angular velocities of each axes and
C.:ll ClZ C13
C=1C, C, Cj, (2.13)
C31 C32 C33
and defining a skew-symmetric matrix € as
0 -0 o
Q=| w, 0 -o (2.14)
-0, o 0

Therefore,
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I
o o o

(¢ -ca] 2.15)

3

from which it is obtained that
C'-C'Q=C+QC=0 (2.16)

which is called kinematic differential equation for the directional cosine matrix C.

The angular velocities can be manipulated from Equation (2.16) as,

w, =C,C, +C,C,, +C,.C,, (2.17.2)
w, =C,,C,, +C,C,, +C,.C, (2.17.b)
w, =C,C, +C,,C,, +CsC,, (2.17.¢)

2.2 Rigid-Body Dynamics

The motion of a rigid body in space, which has six degrees of freedom, is defined
with translation motion of the center of mass of the body and rotational motion of the
body around the center of mass. This subchapter includes rotational motion of a rigid

body in according to [1].

2.2.1 Inertia matrix

Let p (the position vector of small, infinitesimal, mass element dm ) be expressed as
p=pb +pb, +pb, (2.18)

The inertia matrix I is defined as

L
L= 1, 1y (2.19)
EYR P P

where |;; (i = j) the moments of inertia are defined as

I]l

j (103 + o7 Jdm (2.20.a)

1, = [} +pi Jdm (2.20.b)

11



L =[(p7 + o3 Jdm (2.20.c)

and I (1# ]) the products of inertia are defined as

I, =1, = _jp1p2dm (2.20.d)
ly =1y, ==[ ppydm (2.20.¢)
Iy =15, = —J.pzp3dm (2.20.9)

2.2.2 Euler’s rotational equation of motion [1]

Angular momentum equation of a rigid body about its center of mass is simply
defined as

M=H (2.21)

—

where H is the angular momentum vector of a rigid body about its mass center, M
is the external moment acting on the body about its mass center. Thus following

equation can be written
oAbl _JAHT  en g (2.22)
dt dt
N B
where

H=1a&"" (2.23)

Then, the rotational equation of motion of a rigid body about its center of mass is

written as
M = {d—H} +a%" xH (2.24)
B

For later use assume &= @”" , then Equation (2.24) becomes

M—{dt(l a))}B+a) (1-o) {dt}BaH_l{dt }B+a) () (2.25)

where {dI/dt}_ =0 and {d@/dt}  ={d@/dt} =& . Thus, it results

M=1-&d+ax|-& (2.26)

12



which is called Euler’s rotational equation of motion.

Let M and @& be expresses in terms of body-fixed basis vectors {Bl,bz,ti} as

follows:
M=Mpb +M,b,+M,b, (2.27)
&= wb +wo.b, + wb, (2.28)
Substituting Equation (2.27), (2.28) and (2.19) into (2.26) results

M, I-'|1 0 -o o |H
M, |[=|H, |[+]| &, 0 - | H, (2.29)
M| |H,| |-0, @ 0 ||H,

Then, substituting Equation (2.23) into (2.29) results

M, I P 2 0 -o o ||, I, li|lo
M, |=|1, 1, 1o+ o 0 -ofl, 1, l|o (2.30)
M, ST P P | 2 -0, O 0 Ly 1 1| o
Thus,
lo+Qlo=M (2.31)

where | and Q are defined with Equation (2.19) and (2.14), respectively;
o=[o, o, o] andM=[M, M, M,].

For a principle-axis reference frame with a set of basis vector {51,52,53} , Buler’s

rotational equation of motion of a rigid body becomes

Lo —(,-1)o,0, =M, (2.32.a)
Lo, -1, -1)o,0 =M, (2.32.b)
Lo, -1, - 1,)ow, =M, (2.32.0)
where 1,1,,1, are the principle moments of inertia , M, = M-b and 0} =a&-b.

There are three coupled, nonlinear ordinary differential equations for state variables
®,,®,,0, of a rigid body. These dynamical equations and kinematical differential
equations completely describe the rotation motions of a rigid body with three

rotational degrees of freedom.

13



2.2.3 Rigid body in circular orbit

Spacecraft dynamics and control solutions include gravitational forces and moments.
Now, consider a rigid body in a circular orbit. A local vertical and local horizontal
(LVLH) reference frame with its origin at the center of mass of the spacecraft had a
set of unit vector {&,d,,d,}; & is along orbiting direction, also called as roll
direction; 4, is perpendicular to the orbit plane, also called pitch direction; and &, is
towards the Earth, also called yaw direction as shown in Figure 2.2. The angular

velocity of A with respectto N is as below:

&N =-na, (2.33)

where n is constant orbital rate. The angular velocity of the body-fixed reference

—

frame B with basis vectors {51,b2,53} is given by
+a" = @%* —na, (2.34)

where &®* is the angular velocity of B relative A.

orbital path

52 spacecraft

Figure 2.2 Rigid body in circular orbit.

The orientation of the body-fixed reference frame B with the LVLH reference frame
A is in general described by the direction cosine matrix C =C¥* by Equation (2.2)

or

14
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!

é:1 Cn C12 C13 41 Cn Czl C31 41
4, |=1C,; GCy Cz3 bz =1C, C, C32 ) (2.35)
ﬁ3 C3l C32 C33 _.3 C]3 C23 C33 _.3
where d =C,b +C,b, +C,b, (2.36.a)
d, =C,b +C,h, +C,,b, (2.36.b)
a,=C,b +C,b, +C,b, (2.36.¢)
The gravitational force acting on a small dm element is given by [1]:
- R (R, +p)dm
if = Rem __#(R.+) (2.37)

Rl

where 4 is the gravitational parameter of the Earth, R and j are the position
vectors of dm from Earth’s center and the spacecraft’s mass center, respectively, and

ﬁc is the position vector of spacecraft’s center from earth’s center.

M =[ pxdf =- j pXR (2.38)

by some manipulations as in [1] gravity-gradient torque becomes as

= 3y~ _ . .
M=R—‘chx|~RC=3n2a3x|-a3 (2.39)
where n =,/ y/ R} is orbital rate and &, = - R / R..

The rotational equation of motion of a rigid body with an angular momentum
H=1-"" (&" =®) in circular orbit above is described with Equation (2.23),

which can be rewritten similar to Equation (2.26) as below:
| -&+ox|-d=3n"a, x| -&, (2.40)

where @ and &, have expressed in terms of basis vectors of the body-fixed
reference frame B by Equation (2.28) and (2.36.c), respectively.

The orientation sequence C,(6,) <—C,(6,) «<-C,(6;) to B from A of the body-fixed
reference frame B with respect to the LVLH reference frame, A in terms of attitude

angles 6 (i=1,2,3) becomes as below:

15



|

1 Cl 1 C12 C1 3 a.1 C,Cy C,Ss
bz = CZl sz C23 52 =1 55,6, —CS; 55,8, +C,Cy
; C31 C32 C33 53 G50 +535; (5,5, —S5,Gy

where ¢, =cosé, and s, =sind,.

The angular velocity of B relative to A is given as

%" = &b, + @,b, + &,b,
where

o] [1 0 -s,6

o, |=|0 ¢ sc |6

w,| |0 -s cc, | 6

-, é:l
s,C, || &, (2.41)
C,C, #3
(2.42)
(2.43)

Substituting Equation (2.33) and (2.28) into Equation (2.24), &”" can be written as

o] [1 0 -s18 C,S,
w, |=]0 ¢ sC |6, |-n|ss,s, +cc,
w,| |0 -s cc, | 6 C,S,S; —S,C;
The linear form of (2.44) is obtained as
o] [1 0 0][6] [0 0 -n][g
w, |=[0 1 0[/6,|+0 0 0|86 |+
o | [0 0 1]6] |n 0 0|6,
where
(0 0 -n
N=0 0 O
n 0 0
0
N =|-n
| 0

The derivative of angular velocity (2.45) is as below

16
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-n (2.45)
0
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o] [1 0 0]6] [0 0 -n|g
@, |=|0 1 0{6,|+|0 0 0|6, (2.48)
a,| [0 0 1]6,] |n 0 0|6,

Finally, the differential equation of the kinematic (2.44) of an orbiting rigid body can

be found as
91 | C, SS, GCS, || o S,
. n
6,|=—| 0 cc, —-sc,| o |[+—|cC,C, (2.49)
. (od C
0,1 10 s ¢ |ao] 7lss,

The dynamic equation of motion about body-fixed principle axes becomes as shown

Lo -,-1)o,0, = —3n2(I2 -1,)C,,C,, (2.50.a)
I2é)2 _(|3 - Il)a)3a)1 = _3n2(|3 - |1)C33C13 (250b)
|30>3 _(Il - Iz)a)lwz = _3n2(|1 - Iz)CBCB (250C)

and define skew-symmetric direction cosine matrix I"is defined as

0 _C33 Cz3
r={c, 0 -C, (2.51)
_C23 Cl 3 0

The matrix form of Equations (2.50) is as below

loo—Qlw=-3nTIC 2.52
3

where C,=[C, C,, C, ]T. The compact form of dynamic equation of motion
about body-fixed principle axes (2.50) with linear angular velocity (2.45) and linear

angular velocity rate (2.48) becomes

1(6+N6)-Ql (6+NO+N)=-3n"TIC, (2.53.2)

Simplified mode of Equation (2.52) is as

16+(IN-Q1)0-QING-QIN =-3nT'IC, (2.53.b)

17



2.2.4 Gyrostat in circular orbit [1]

This section formulates the equation of motion of an Earth-pointing spacecraft
equipped with reaction wheels. A rigid body, consisting of a main platform and

spinning wheels, is often referred as a gyrostat.

Assume a model of gyrostat equipped with two reaction wheels aligned along roll
and yaw axes and a pitch momentum wheel as shown in Figure 2.3. The pitch
momentum wheel is nominally spinning up along negative axis. As shown in the
Figure 2.2 a LVLH reference frame A with its origin at the center of mass of a
gyrostat has a set of unit vectors {&,,d,,d,} . Let {51,52,53} be a set of a bias vector
of a body-fixed reference frame B, which is assumed to be aligned with principle

axes of the gyrostat.

spacectaft

Figure 2.3 Gyrostat in circular orbit.

Then the total angular momentum of a spacecraft is expressed similar to Equation
(2.29) as below:

H =(Lo,+h)b +(1,0,+h,)b, +(1,0,+h)b, (2.54)

where 1, 1,, 1, are principle moments of inertia of the gyrostat spacecraft; w,,®,,o,

are body-fixed components of the angular velocity of the spacecraft; h,—H,+h,,h,

are the body-fixed components of the angular momentum of the three wheels; H, is

the nominal pitch bias momentum along the negative pitch axis.

The rotational equation of motion is expressed before via Equation (2.28), such that

18



=30 Gond = v
dt |

(2.55)

where M is the gravity-gradient torque acting on the vehicle. For the principle-axis

frame B the equation of motion can be rewritten as
Lo -, -1,)o,0, + Hl +w,h, —w,(-H, +h,)=-3n’(1, - 1,)C,,C,,
L, —(1, - 1)oe +h, +oh —ah, =-3n*(1,-1)C,,C,
Lo, —(1, - L))o, +h, + o, (-H, +h,))—eo,h =-3n*(l, - 1,)C,.C,,
where @ is described by Equation (2.49), and h, =Ja,, .

2.2.5 Representation of Equation of Motion with 0

(2.56.2)
(2.56.)

(2.56.¢)

Equations of motion for a rigid body about body-fixed principle axes with gravity

gradient torque and for a gyrostat in circular orbit were derived in Equations (2.50)
and (2.56), respectively. Substituting Equation (2.23.a) and (2.52) into (2.56),

equation of motion depending on angular velocity, @, is generated as below:

lo+hl-Q{lo+h+H!=-3nTIC
{lo+hf-0f } :

The matrix form of Equation (2.57) is obtained as below

P P 2 h
L, 1, byl [+ h
Ly 1y o h,
0 -0 o L 1y 1o ! 0
—| @ 0 —, |21 |22 |23 W, |+ h2 + —R,
-0, O 0 ST PP P | K2 | Tk 0
0 _C33 Cz3 |11 |12 |13 C13
_ 2
=-3n C33 0 _C13 |21 Izz |23 C23
_C23 C13 0 |31 |32 |33 _C33

Substituting Equation (2.45) and (2.48) into (2.57) results
{1(6+N6)+hy -0l (6+No+N)+h+H} = -3n°TIC,

Equation (2.59) can be simplified as

19

(2.57)

(2.58)
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16+(N+Q1)6-QINO+Q(H + |N)+H+Qﬁ=—3n2rlc3 (2.60)

Matrix form of the Equation (2.60) is as below

I11 |12 |13 91 0 0 -n ‘91 hl
L, L, Iy|l|6[+[0 0 086 /][+h
L, L, I4(l|é| [n 0 0]6 h,
0 —0; @, PR FPR P '91 i -n|l 6 0
o, 0 -, L, lyl||6 |+ 0, |+ —n
| —®, 2 0 |31 |32 |33 ‘93 _n ‘93 0
i | 0 0 C33 C23 _In |12 |13 C13
+/h |+|-H, [{=-3n*| C;;, 0 -C,|ll,, 1, L, C, (2.61)
L h3 0 _Czs ClS 0 L I 31 I 32 I 33 C33

Equation (2.61) is obtained according to the orientation for sequence
C,(6)«C,(6,)«C,(6,) to B from A of the body-fixed reference frame B with

respect to the LVLH reference frame A for a rigid body in circular orbit.

2.3 Matrix of Rigid Body Dynamics

The MATLAB-Simulink model of a spacecraft can be prepared via Equation (2.61)
by setting & at left side and the other components at right side of the equation. The
inertial matrix is assumed to be as | =diag[l,,|,,1,]. Therefore, resulting equation is
obtained as

6=—(N-1"Q1)0+(1"QIN)6+1"QIN -3n"T'IC, -1 'h—Q(h+H) (2.62)

Note that Q(w) is rewritten as a function of €. Therefore, simplified form of the

Equation (2.62) can be obtained by neglecting N and H as below

6=[A]0+[A]0+[A]n+[A]h (2.63)
where
0 0 —n(1-k)+H,/I,
A = 0 0 0 (2.63)
-n(k, +1)+H,/I; 0 0
—4n’k, —nH, /I, 0 0
A = 0 -3n%k, 0 (2.64)
0 0  -n2k3-nH,/I,
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[-1/1, 0 0
A=l 0 -1/1, 0 (2.65)
0 (IR

0 0 n/l
A= 0 0 0 (2.66)
-n/l, 0 0

2.4 Structural Dynamics

This section introduces simple mathematical model for flexible solar panels based on
reference [1]. The system is given into matrix form similar to the spacecraft’s

dynamic model.
2.4.1 Flexible frames

The orientation of the solar arrays with respect to the spacecraft main body depends
on orbital position and orbital time. Solar array orientation at 6 a.m. will be
considered as a nominal configuration for the subsequent analysis and design. Orbit
time of 6 a.m. and 6 p.m. yields out-of-plane bending modes in the yaw axis and in-
plane bending modes in the roll axis. Note that, low-frequency characteristics of the

first in-plane bending mode is caused by array yoke deformation [1].

During on-orbit normal mode operations, both solar arrays are always pointing
towards the sun, whereas the main body is pointing towards the Earth. This results in
very slowly changing modal frequencies and modal shapes. For control design
purposes, however, the spacecraft model will be treated as a time-invariant system
with a known range of modal characteristics. The linearized equation of motion of

the three axis stabilized spacecraft with flexible array is given in [1] as below.

Rigid main body:
Ly, — (1, — 1)o,0, +h +o,h, —a,(-H, +h,) +/25,6, = M, (2.67.a)
Lo, —(1,— 1), +h, +oh —ah, +328,4, =M, (2.67.b)
Ly, —(1, = 1) oo, +h + o, (-H, +h) - oh ++/25,4, = M, (2.67.c)
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Two solar arrays:

G, + 070, +425,6, =0 (2.68.2)
G, +020, ++28,8, =0 (2.68.b)
4, + 020, ++25,8, =0 (2.68.c)

where 0,,0,,0, represents rigid-elastic coupling scalars of a single solar array,

0,,0,,0, are modal frequencies, and (,,0,,0, are modal coordinates.

Note that, this model will be included only in designed block diagrams for spacecraft

dynamics with sliding mode controllers.

Figure 2.4 Flexible spacecraft Intelsat V [1].
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3. LINEAR CONTROL SYSTEM DESIGN

In this section, modern control theory will be used to design linear controllers for
active and passive control algorithms of the spacecraft. Passive control is an attitude
control application which orients a spacecraft to a reference under small external
disturbances or errors. The passive linear control algorithms illustrate the speed
control of internal small torquers so-called reaction or momentum wheels. These
control elements produce required moment via rotating to stabilize the spacecraft. On
the other hand, active linear control algorithms are used for large attitude angles
orientations. The signal is applied to the thrust system, so burning the propellant
through the nozzle produces the required external torques for an orientation. These
torques are large of value than the internal ones, so the active linear control
algorithms response fast than passive linear control algorithms. In this section,
control signals of the thrust system are considered to be continuous. Therefore, it is
assumed that the spacecraft has sufficiently enough propellant for these thrusters. It
can be seen that active linear control algorithms are limited with the spacecraft’s
amount of propellant. Also, passive control elements have a limited operation life
due to mechanical failure as active control elements. As a result, when designing a

spacecraft the life-time of the control elements should be chosen correctly.

3.1 System Linearization

Consider a system defined with Equations (2.50) with angular velocity (2.45). First

step is linearization of attitude angles which are assumed to be as

X =6 (3.1.a)
X =0=X, (3.1.b)
X, =6 (3.1.c)

where §=[6, 6, 6,] describes the attitude angles, and x, is (3x1)-vector.

Therefore state vector and output vector of the linear system are obtained as

. . . T
X:|:01 6 6, 0, 0 63] (3.3)
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y=[6, 6, 6] (3.4)

Hence a linear system can be defined with the following equation

X=AXx+Bu+G (3.7.2)

y=Cx+Du (3.7.b)

where X is (6x1)-state vector, y is (3x1)-output vector of the system, U is (3x1)-
control vector, A is (6x6 )-system matrix, B is (6x3)-control matrix, C is (3x6)-

observer matrix, D is (3x3)-matrix, and G is (6 x1)-disturbance vector.

In light of Equation (2.53.b), the system without a control term of linear matrix form

is defined as

AP oA

[X] R ...... [X] (383)
L ¢ 0y

[y] = [03><3 |3><3][X] (3.8.b)

where A and A, are described by Equations (2.63) and (2.64), respectively, and |, ,
1s (3x 3 )-identity matrix.
Thus, the linear form of the dynamic equation of motion about body-fixed principle

axes is obtained above in Equation (3.8) without a control law. In next three sections

passive, active and combined linear control law will be designed, respectively.
3.2 Linear Controllers Design

The linear controller will be design for reaction or momentum wheels as passive
linear controller and for thrust mechanism as active linear controller. Finally, these

two algorithms will be added to obtain combined linear controller.

3.2.1 Passive linear controller design

Passive linear controller applies continuous small torques to stabilize the attitude
angle errors. In linear controllers design the angular momentum, h, of reaction or
momentum wheels will be neglected because the angular momentum rate h is larger
n-times than the angular momentum, where geostationary orbital rate, n, is
approximately equal to 7.2921x107sec”’. Thus, only effects of the angular

momentum rate will be taken into account in passive linear controller which
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simulates the speed control algorithm of reaction wheels. The control is assumed to

be as

T T

u=[h h h] =[u u u] (3.9)

where U is a (3x1)-control vector.

Consider a system as gyrostat in circular orbit by means of Equation (2.57). The

control should supply required internal moment to the system as below:

X—Ax=Bu
A lw
3.10
X—AX =] ceeeeenns u, ( )
03><3 u3
Then the linear system (3.8) with passive linear control becomes as below
A A, Al
[X]: ...... Do [X]+ ......... u, (3113)
|3><3 : 03><3 03><3 u3 p
ul
[V]=[0s ¢ La][X]+[05s]| U (3.11.b)
u, 0

where A, is defined by Equation (2.65).

Consider a control law as U =g ,w+¢,0 [1], where € is attitude angles vector, @ is
angular velocities vector and ¢, and ¢, are constants. Note that, the relation between
angular velocities and attitude angles according to Equation (2.44) is not linear.
Beside, Equation (2.45) is a linear, so control function is linear according to feedback

of the system (3.11). Therefore, linear control feedback can be chosen as

U, =-g0-¢,0=-¢X (3.12)
where, X is the state vector and ¢ is a constant matrix as

STR ) 0 0 0 —gn
c=|0 0 6, 6» O 0 (3.13)

0 ¢gsn O 0 65 ¢6x»

The matrix form of Equation (3.12) becomes as
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U, St Sa 0 0 0 —gn
u, | =—| 0 0 ¢, ¢, O 0 [X] (3.14)

0 ¢gsn O 0 ¢; o¢xn

where ¢;, 1=1,2 and j=1,2,3, are constants to be selected.

Therefore, the linear system (3.11) of a dynamic equation of motion about body-
fixed principle axis of a spacecraft is controlled with passive linear control signal
defined in Equation (3.14). Note that, the designed control is a simulation of speed

control of reaction or momentum wheels.

The stability of control can be analyzed by substituting control law (3.12) into the

system (3.7.a) without disturbance vector G as following

X = Ax+Bu = Ax—Bgx =(A-Bg)x (3.15)

The system (3.15) is said asymptotically stable if matrix A— B¢ is Hurwitz-stable or

the eigenvalues of the matrix have negative sign. Thus, the eigenvalues can be found

by using the following relation
sl —A+Bg|=0 (3.16)

For each s; an eigenvalue can be found, and eigenvalue 4 =s5,.

3.2.2 Active linear controller design

Active linear controller algorithms are designed for large attitude angles orientations.
The active linear controllers apply continuous torques via thrusters to stabilize the
spacecraft. Therefore, thrusters should burn the propellant flow rate variably through
nozzle. This method is not preferred because of limited amount of propellant during
infinite burning at low flow rates caused by disturbances and unmodelled dynamics

of attitude motions. However, let design an active linear controller as below.

Assume the control to be as
u=[u, u, u (3.17)

where U is (3x1)-vector.

Control is applied as a force to the system via thrusters. Therefore to obtain external
moment, the distance between center of gravity of the spacecraft and the thruster
position should be known. Assume that for principle axes, the distances are d,,d,,d,

for axes 1,2,3, respectively [2].
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Then the linear system (3.8) with active linear control takes the following form [2]

A A | 'diag(d1,d2,d3) u,
[)'(]: ...... o [X]+ .............................. u, (3.18.a)
|3><3 : 03><3 03><3 u3 a
X 4
[y]=[0,s : lm]k}[%] u, (3.18.b)
1 u3
Linear control feedback can be chosen similar to (3.12) as
U, =—KkX (3.19)

K, kK; 0 0 0 -xn
k=0 0 «x, kK, 0 0 (3.20)
0 xsn 0 0 x; Ky,

The matrix form of Equation (3.19) becomes as

u, K, kK, 0 0 0 -x,n
u| =-10 0 x, x, O 0 |[x] (3.21)
us |, 0 xsn 0 0 kx; Ky

where «;

;> 1=1,2 and j=1,2,3, are constants to be selected.

The active linear controller is designed for system (3.18) as above. Note that, this
active linear controller design is a continuous control during attitude orientations.

The stability of active linear control can be analyzed similar to the previous
controller design by substituting control law (3.19) into system (3.7.a) without

disturbance vector G as

X = Ax+Bu = Ax—Bgx =(A-Bk)x (3.22)

The system (3.22) is said asymptotically stable if matrix A—Bx is Hurwitz-stable or
the eigenvalues of the matrix have negative sign. Thus, the eigenvalues can be found
as below:

sl - A+Bx|=0 (3.23)

for each s, an eigenvalue can be found, and eigenvalue 4, =5;.
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3.2.3 Combined linear controller design

The active and passive linear controllers are used together for global stability for
large attitude angles orientations or small attitude errors. Passive (3.14) and active
(3.21) linear control laws were designed above. In this part, these two controllers will
be combined to work together. Then, combined linear control law is applied to the

linear system as below:

X=Ax+Byu,+Bu,+G (3.24.a)
y=Cx+Du (3.24.b)

Then the matrix form of Equation (3.24) becomes

A A
[)'(]: ............ [X]
|3><3 03><3
19 (3253)
Al | ~diag(d1,d2,d3) ||y,
N Uy | [ eeereremreneninnnnn. u, +G
055 [ s b 0,5 Us |,
U, u,
[V]=[05s ' lis][X]+[0ss] Uy | +[055]] b, (3.25.b)
Us p Us a

where U and u, are control signals defined above with Equations (3.14) and (3.21),

respectively, and G is disturbance vector.

The stability of combined linear controller can be analyzed by substituting control
laws (3.12) and (3.19) into system (3.7.a) without disturbance vector G as

%= Ax+BuU = (A-Bg—Bx)x=(A-B(g+x))X (3.26)

The system (3.26) is said asymptotically stable if matrix A—Bg—Bxk is Hurwitz-
stable or the eigenvalues of the matrix have negative sign. Thus, the eigenvalues can

be found as below:
sl —A+B(s+x)[=0 (3.27)

for each s, an eigenvalue can be found, and eigenvalue 4 =Ss,.
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3.3 Pole Placement

This method brings an easiness to control designers to stabilize the linear system at
desired type and time. The method is placing system poles at desired values.
Therefore, the linear system behaves in order of the chosen poles and characteristics.

Linear controller law can be constructed as:

u=-g'x (3.28)
So, primary system (3.10) without disturbance vector, G, becomes as:

X(t) = Ax(t) - Bg"x(t) = (A—-Bg" ) x(t) (3.29)
The characteristic equation of open-loop system (3.29) is given by

sl-Al=0 = s"+as"-l+..+a,5+a,=0 (3.30)

where a,,...,a, are constant coefficients. Then, let define a (nxn)-matrix A as:

- -a,, -4,
A=l 00 (3.31)
0 1 0

9, - 9,
i (3.32)
0 - 0

Subtracting (3.31) from (3.32), (nxn)-canonical matrix is obtained as

_(al+g) _(a‘n—1+gn—l) _(an+gn)
aN-Agg=| O ’ (333)
0 1 0

For each s; an eigenvalue can be found, and eigenvalue A, =s;. According to the

these eigenvalues desired pole vector is selected as
P=[h - 4] (3:34)

Then characteristic equation is represented in control canonical form as:
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‘SI—A*‘:O = s"+as"-1+..+a s+a =0 (3.35)

comparing equation (3.33) and (3.35) get the following:

£

g, =4 —q
: (3.36)
gn = a: _an

3.3.1 Pole placement for passive linear controller

The linear system (3.8) with passive pole placed linear control method becomes as

A A

[)‘(]: ...... P eeees [X]_[BQTL[X] (3.37.2)
L o 0y

[y]:[03x3 ISXS][X] (3.37.b)

The stability of passive pole placed linear controller can be analyzed by substituting
control law (3.28) for passive linear controller into system (3.7.a) without
disturbance vector G as

X(t)= Ax(t)-[ Bg" ] x(t):(A—[BgT]p)x(t) (3.38)

The system (3.38) is said asymptotically stable if matrix A—[ngp is Hurwitz-
stable or the eigenvalues of the matrix have negative sign. Thus, the eigenvalues can
be found as below:

‘sl ~A+[Bg"] =0 (3.39)

for each s, an eigenvalue can be found, and eigenvalue 4, =5;.

3.3.2 Pole placement for active linear controller

The linear system (3.8) with active pole placed linear control method becomes as

A EOA

[x]: ...... Do [X]—[BgT]a[x] (3.40.2)
I3><3 : O3><3

[V]=[0ss © Ls](X] (3.41.b)
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The stability of active pole placed linear controller can be analyzed by substituting
control law (3.28) for active linear controller into system (3.7.a) without disturbance
vector G as

X(t) = Ax(t)-[ Bg" | x(t)= (A—[BgT ]a)x(t) (3.42)

The system (3.42) is said asymptotically stable if matrix A—[BgT]a is Hurwitz-
stable or the eigenvalues of the matrix have negative sign. Thus, the eigenvalues can

be found as below:

‘sl - A+[Bg" ] |=0 (3.43)

for each s, an eigenvalue can be found, and eigenvalue 4, =5;.

3.3.3 Pole placement of combined linear controller

The linear system (3.8) with combined pole placed linear control method becomes as

A A

[)'(]: ...... Do [X]—([BQT]p+[BgT]a)[X] (3.44.2)
|3><3 03><3

[v]=[0,s & 1a][X] (3.44.b)

The stability of combined pole placed linear controller can be analyzed by
substituting control law (3.28) for both active and passive linear controllers into

system (3.7.a) without disturbance vector G as
X(t) = Ax(t)—([BgT ] +[By" ]a)x(t)
_ (A—([BgT i +[BgT]a))x(t)

The system (3.45) is said asymptotically stable if matrix A—([BgT]p +[BgT]a) is

Hurwitz-stable or the eigenvalues of the matrix have negative sign. Thus, the

(3.45)

eigenvalues can be found as below:
_ T T —
‘sl A+([Bg ] +[Bg ])‘ 0 (3.46)

for each s, an eigenvalue can be found, and eigenvalue 4, =5;.
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4. VARIABLE STRUCTURE CONTROL DESIGN

Sliding modes as a phenomenon may appear in a dynamic system governed by
ordinary differential equations with discontinuous right-hand sides. Control as a
function of the system state switched at high (theoretically infinite) frequency is
called sliding mode, which is governed by a differential equation with order less than
the order of the original system. If the control is a vector valued quantity and each
component undergoes discontinuities in its own switching surface the sliding modes
may appear in intersection of several surfaces, also called as multidimensional
sliding modes. In general, sliding mode controls high-order nonlinear dynamic plants

operating under uncertain conditions, such as spacecrafts defined in [5-9, 13].
x=f(x,tu) 4.1

where Xe R", f eR", ueR"™ and t denotes the time.

The control is selected as discontinuous function of the state as

{ui*(x,t) if's,(x)>0 _
u, = (1=1,...,m) (4.2)
u; (x,t) if's;(x) <0

where uU’(x,t) and u; (X,t) are continuous state function with u."(X,t)# u, (x,t) and

S, (X) are continuous state functions.

Giving a brief introduction about sliding mode, let first design the sliding surface for

the sliding mode controllers.

4.1 Design of Sliding Surfaces

The equation of motion of a rigid spacecraft was described in Chapter 2 with
Equations (2.50) and the evolution of spacecraft orientation in terms of attitude
angles was given via Equation (2.49). Such that, attitude angles vector is sufficient to
describe the motion if the spacecraft’s angular velocities are described via a function
of the spacecraft’s attitudes. A control law subject to the constrained system given by
Equation (2.49), @ = () should be found to minimize the performance index [6, 7]

as
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J =%I[9TEG+wT‘I’w}dt (4.3)

Note that, the trajectory may arrive at different switching surfaces at different times,

but t, is the time of arrival at the sliding manifold. = and ¥ are weighting matrices

described as below:

1 -6, 6
v@=lo 1 -6 4.5)
-0, 6 1

After some assumptions and eliminations similar as in [7], the optimal switching

surfaces are given as below

s, = +k0, (4.6)

where K, :+\/; , 1=1,2,3. For this special case, it can also be shown that the
optimal cost of regulation (the value of integral given in Equation (4.3)) is given as

*

37 =2k 4.7)

The dynamics of the attitude angles may be obtained first via linearization and then
via modifying Equation (2.49) as follows

) 1 0 6 ||l o 0, 0 w njb ,
0,=|0 1 -6 ||w|+n|1|=|-0, 0 0|8, |+ o +n (4.8)
o1 10 6 1 | o 0 w, 0 0} 86 o,

From sliding manifold (4.6), angular velocity becomes @ =-ké for s =0.
Therefore, substituting the angular velocity into dynamic equation of attitudes into
(4.8) results

6, 0 o nj|é6 1) 0 -k& njl 6 —k6,
0,|=|-o, 0 086+ a+n ke, 0 0] 6,|+| k&, +n
0, w, 0 0}86, w, ko, 0 0|6, —ké,

0 | [-k6,0,+n0, -k,
0, |=| k6,6,-k0,+n
0, | —k6,0-ké,
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6, k 0 0] 0 -6, 6,1¢ 0 07167 [ne
0,=—{0 k 0[/6,|+] 6 0 -6/|0 ¢, 06|+ n (4.9)
0, 00 k|le||-6 6 o010 0 ¢1]6, 0
where
0 -6, 6,[¢, 0 o]
0= 6, 0 -6]0 ¢, 0]6, (4.10.a)
-6, 6 010 0 4|86
0 -6, 6,
Q=|6 0 -6 (4.10.b)
_‘92 91 0
l, -1 1 -1][-k
‘, :% -1 1 1|k (4.10.c)
l 11 1| -k

4.2 Sliding Mode Controllers Design

In control system design of the satellite, continuous and discontinuous sliding mode
controllers are used for passive and active control algorithms, respectively. Passive
sliding mode controller applies a continuous control signal to the reaction wheels via
equivalent control method which is idealization of chattering problem that keeps the
state trajectory in the neighborhood of the sliding manifold. On the other hand, the
discontinuous sliding mode control is used for active controller to burn out the
propellant via thrusters in finite time. This control method may include switching at
high gains during on-off logic operations. So, chattering problem may occur. To

avoid this problem, discontinuous control is applied outside of the sliding boundary
(Sy,S) -

4.2.1 Passive sliding mode controller design

Passive sliding mode controller is designed to stabilize the spacecraft for small
attitude errors and as a main control algorithm for geosynchronous communication
satellites. The controller applies continuous small torques via reaction or momentum
wheels for stabilization. Thus, spacecraft is forced to have desired attitudes in finite
time. After giving brief information about passive sliding mode controller let design

the control algorithm as follows.
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Assume that the initial state vector of system (4.1) is in the intersection of all
discontinuous surfaces in the manifold s(x) =0, and sliding mode occurs with the
state trajectories confined to this manifold for t > 0. Also assume that ds/dt=$=0
since motion implies S=0 for t>0. Therefore, in addition to s(X)=0, $(X)=0
may be used to characterize the state trajectories during sliding mode. The time
derivative of the vector on the state trajectories of system (4.1) is equal to zero [4, 5,
7]:

$=G-f(x,u)=0 4.11)

where G=0s/0x is a mxn matrix with gradients of functions S(X) as rows. Let a
solution to the algebraic Equation (4.11) exists. The solution U (X) is called as
equivalent control. The continuous function is substituted for the discontinuous

control U into the system (4.1). Thus, system becomes
X=f(X,Uy) (4.12)
Equation (4.11) of the equivalent control method for system (4.1) is following

$=Gf +GBu,, =0 (4.13)

where B is a nxm matrix. Assuming GB matrix as nonsingular for any X, the

equivalent control term becomes as

ueq(x):(—G(x)B(x))flG(x)f(x) (4.14)
Substituting Equation (4.14) into (4.1), the sliding mode equation is formulated as

X = f(x)—B(x)(G(x)B(x))flG(x)f(x) (4.15)
The real control does not satisfy Equation (4.13), and it may be found as

u=u,+(GB)"'s (4.16)
Therefore, the motion equation becomes

x=f +Bu, +(GB)'$ (4.17)

For the physical meaning of equivalent control consider a n-equations system with

m -controls defined as

a,X+a,Xx+ax=u+d(t) (4.18)
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where d(t) is bounded disturbance and assume a;'u —u. Note that, in Equation

(2.61), h(angular momentum rate) and h (angular momentum) are obtained from
gyros. From Equations (2.50) for rigid body a,, a, and a, parameters are found as

a, = (4.19.a)
a, =Ql (4.19.b)
a =3n’IT, [C,— #(3xl1 vector)] (4.19.c)

Let s represent the sliding manifold as

s=[s, s, - s,] =x+x=0 (4.20)

and assume that the discontinuous control is

u =—Msign(s) 4.21)
where M is a constant parameter to be selected.
Taking the derivative of Equation (4.20) results

§=X+cCX (4.22)
Substituting system (4.19) into sliding motion (4.22) results

$§=-a,a;'Xx—a,a; Xx+u+a;'d(t)=0 (4.23.a)

According to the reaching law, sliding motion is as $=-7,sgn(s)—,h(s), where
any of h(s) elements are sh(s)>0 and 7, =diag(n,), 7r,=diag(n,). Also,
reaching law is Lyapunov stable and it is proved below in Equation (4.34). Thus,

using Equation (4.13) and reaching law, the sliding motion is obtained as

$ =GB (7,5 —7,sgn(s)) (4.23.b)

Therefore, equivalent control is the solution to equation $=0 in terms of U under
condition S=0. Substituting X =-Cx into Equation (4.23.a), equivalent control is

obtained as
U, = (-a,c+a))a;'x—a;'d(t) (4.24)

As seen from Equation (4.24) equivalent control depends on a,,a, and disturbance
d(t). Extracting equivalent control by a low-pass filter may be used for

improvement of feedback system.
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Existence of sliding motion depends on the deviations from sliding surface s and its
time derivative should have opposite sign in the neighborhood of switching surface
s=0 as[6,7,13]

lims<0 and lims>0 (4.25)

s—>+0 s—>—0

The domain of sliding mode via substituting X=-cx and X=c’X into Equation

(4.18) and setting it to zero, sliding motion is obtained analytically as below:
$=(-C’a, +a,c—a,)X— Msign(s)+d(t) (4.26)

The domain of sliding mode for bounded disturbance |d (t)| <d, is given as
-1
X =(|]-c"a +ca, -a) (M-d,) (4.27)

Therefore, sliding mode exists with relation given in Equation (4.27).

Extending Equation (4.18), setting X=6 and substituting Equation (4.16) the

dynamic equation of motion about fixed principle of axes becomes

lo—Qlo+3n°IT0=—u,, +(GB)'$+d(t) (4.28)

Substituting Equation (2.23b) into (4.28) the equivalent control is obtained as below

Uy ==l +Qlo-3n°ITC, + (17,5 17, 5gn(5)) (4.29.2)

d <772|S|.

Assume that d(t) is a disturbance and includes unmodelled dynamics. Then,

where 7,,n, are positive coefficients such that d, <7, and

unmodeled dynamics
substituting Equation (4.8) and (4.10) into (4.29.a) the equivalent control term
becomes
Uy = —1&+Qlo—3nTIC, +(GB)™'s
=—1(-k6)+Qlo—3n"TIC, +(-7,5 -7, sgn(s))
= —1(-k*0+k@)+Qlw-3n"TIC, + (1,5 7, sgn(s))
=—1(-K*0+kQ¢,0)+Ql@=3n°TIC, +(-1,5 — 7, sgn(s))
= | (ka)+§~2£i (—k)" (—k)6‘)+QIa)—3n21“IC3 +(=17,8 — 17, 5gn(s))
=—lko+1Q/ Kk @+Qlw-3n"TIC, +(-7,5 — 1, sgn(s))

=1(-k+Q/ k™" +17'Ql)0—30°TIC, + (17,5 — 17, sgn(s)) (4.29.b)
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where K is a constant matrix to be selected during sliding manifold design. Finally,
¢, can be determined by Equation (4.10.c).

To analyze the stability, consider a positive definite Lyapunov function candidate,

V >0, for closed loop system as below:

v =%sTs (4.30)

The time derivative of a positive definite Lyapunov function candidate along system
trajectories via substituting Equation (4.8) for sliding motion, $, is as below:

V=s"$=5"(0+ko)) (4.31)
If the system trajectories are far from sliding manifold, Equation (2.49) is used
instead of (4.9). Substituting & and @ from Equation (4.28) and (4.9), respectively,

into (4.31) and including unmodelled dynamics and disturbances torques, time

derivative of positive definite Lyapunov candidate becomes as:
V=s" (1" u+d(®)-1"Qlo+k6)

=s" (1" u+d®)-1"'Qlo-k0+kd)

=5 (1"(Uy +(GB) 's+d (1) + 1 ' Qlo+ko+k0)

=5" (17 (U, +(GB) '$+d (1) - 1 "'Qlo+ ko +kQ/,0)

=57 (1" (U +(GB) '$ +d (1) ~1 'Qw+ka+ ke, (k) (—k)H)

=5" (17 (U, +(GB) '$+d (1) — I 'Qlw+kao+Ql (-k) ' o)

=" ((I“I (-k-Qr, (k) 17l )a)+3n2FIC3)
+(—17,5—1,3gn(s))+d, +du)+(—l QI+ k+Q£i(—k)")w)

=s"((-k=Qf,(-k) " +17'Q1) 0+ 3n°TIC,
+(—17,5—1,3gn(s))+d, +du)+(—l QI+ k+Q£i(—k)")w)

=s' ((-n,5—n,sgn(s))+d,)

= _7725Ts - 7718T sgn(s)

= _7725T5_771 |s| (4.32)
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From Equation (4.30) it can be seen that 77, and 7, are positive constants and s's is

always positive. Therefore, time derivative of positive definite Lyapunov candidate

becomes negative defined as shown below

V=-n,s's—nls|<0 (4.33)

Hence, the passive sliding mode controller forces the system trajectories toward the
sliding manifold asymptotically. In another words, it can be said that system is
asymptotically stable in the domain with bounded disturbance specified via Equation
(4.27) because of the existence conditions of equivalent control. The reaching law
stability can be prove with any of h(s) elements which are s;h.(s;) >0 via a positive

definite Lyapunov function candidate V =1/2s's as

V =s"$ =" (7, 5gn(s) - n,(s)) =—ns” sgn(s)—75"h(s)
\ u (4.34)
- _Z(Ulisi sgn(s;) + Uzisih(si)) = —Z(U,i |Si | + 772iSih(Si)) <0

1 i=1

where 77, and 7,; are positive scalars. Thus, it can be seen that reaching condition

holds and system is asymptotically stable.

4.2.2 Active sliding mode controller design

Active sliding mode controller is designed for large attitude angles orientations and
faster stabilization of any attitude errors for desaturation of passive sliding mode
algorithms for communication satellites. The controller applies discontinuous
external torques via thrusters for stabilization. So, spacecraft is forced to have a
desired attitude position in finite time of limited thrust. After giving brief information

about active sliding mode controller let design the control algorithm as follows.

Control algorithm can be proposed as below
u=—-Ny(s)sign(s) (4.35)

where N is a positive defined scalar to be select and y(S) is a function defined as

S—S,, $>s,
y(s)=< 0 , -5, <S<S, (4.36)
S+5S,, S <—S,

Sliding mode boundary layer is graphically shown in Figure 4.1.
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S+5y

Figure 4.1 Sliding mode boundary layer function y(s).

The function in Equation (4.36) and shown in Figure 4.1 is so-called dead-band
function. Therefore, control function (4.35) forces system to sliding manifold and
keeps it on sliding manifold boundary —s; <s <'s; as described in [13].

Consider a positive definite Lyapunov function candidate for closed loop system
specified in Equation (4.30). The time derivative is obtained similar to (4.32) for

active sliding mode controller (4.35) as below:

V=s" (1" u+d®)-1"Qlo+ko)

sT(1I'(u+dt)-1"Qlo- k6+k9)

s"(1"'u+d®)+17'Qlo+ko+kkQe,0)

s'(1'u+d®)-1"'Qlo+ko+Ql (k)" o)

(!
(
(1" U +d®) -1 "'Ql @+ ko+kOr, (k) ‘(—k)e)
(
(

sT((171 (k- Qe (k)™ + | 19|)w+3n2rlc)
+(=Ny(s)sign(s))+d, +d,) +(-1"'Ql +k+Q£i(—k)’1)a))
=s' ((—k —Q/,(=k)" +17'Q1 )@+ 3nTIC,

+(=Ny(s)sign(s)) +d, +d,) +(-1"Ql +k +Q£i(—k)’1)a))

=s' (Ny(s)sgn(s)) (4.37)
for s>s, >0 the time derivative of positive definite Lyapunov function candidate
becomes
V =5 (=Ny(s)sgn(s))=s" (-N(s—s,)sgn(s)) =—-Ns"s+s,|s| (4.38.a)
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and for s<s,<0 the time derivative of positive definite Lyapunov function

candidate becomes

V =s" (=Ny(s)sgn(s)) =s" (-N(s+5,)sgn(s)) =—Ns's—s|s| (4.38.b)

Design of sliding manifold boundary in respect to asymptotical stability is given in
Equations (4.38). Therefore, setting V <0, asymptotic stability is forced with

relation as below:

S,[s|<Ns's and —Ns's<s,|s| (4.39)
Thus, sliding manifold boundary is obtained as

S, <éNsTs, for s > s,

7(S) = 0, for —s, <s<s, (4.40)

—é Ns's<s,, fors<-s,

where S is a scalar to be select in according to inequality (4.40).

Under sliding manifold boundary conditions (4.40), derivative of positive definite

Lyapunov function candidate in Equation (4.38) becomes as

V =-Ns"s+s,[s|<0 (for s>5,>0, N >s,) (4.41.a)
V =-Ns's—s,|s|<0 (for s<s,<0, N>s,) (4.41.b)
V=0 (for —s, <s<5,) (4.41.c)

where (4.41.c) is off period of the active sliding mode controller and do not produce
any external control torques. Thus, the system is asymptotically stable and the
discontinuous controller forces the system for operational period to reach sliding

boundary layer.

4.2.3 Combined sliding mode controller design

In spacecraft attitude orientations, such as communication satellites in
geosynchronous orbits, the active and the passive sliding mode controllers are used
together for global stability. Combined sliding mode controller consists of active and
passive sliding mode controllers which are combined to work together. Now,

combined sliding mode control law can be presented as follows:
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u= upassive + ua(:tive = (ueq + (GB)71 S) + (_N 7(5) sgn(s))

(4.42)
=U,, +(GB)™'$—Ny(s)sgn(s)

Therefore for stability analysis, consider a positive definite Lyapunov function
candidate for closed loop system specified as in Equation (4.30). The time derivative
is obtained similar to (4.32) and (3.37) for controller (4.42) as below:

V=s" (1" u+d®)-1"Qlo+ko)

=s" (I u+d®)-1"Qlo-k*6+k0)

s'(17'U+d®)+17'Qlo+ko+kkQe,0)

(
s (17 U+ d () -1 "o+ ko+ ke, (k) (k) 0)
(

s" (17 (u,g +(GB)'$ — Ny(s)sgn(s) +d (1))
~I"Qlo+ko+Ql,(-k) ' o)

=5 (I‘l(l (—k=Qt,(=k)" +17'Q1 )+ 3n’TIC, + (—17,8 — 17, sgn(s))
—Ny(s)sgn(s) +d(®) — I 'Qlo+ko+Ql (k)" o)

=5 (I‘ll (—k—Q0,(=k)" +17'Q1 )+ 3n"TIC, + (17,5 — 7, sgn(s))

—Ny(s)sgn(s) +d +d, +(-17'Ql +k +Q€i(—k)‘l)a))

=" (11,5 —1,sgn(s)) — Ny(s)sgn(s))

=-1,5's—7,8" sgn(s)— Ny(s)s" sgn(s) (4.43)

For positive scalars 7, and 7,, and sliding manifold boundary (4.41) conditions,
Equation (4.43) becomes as

V =-7,8"s—n;s" sgn(s) — Ny(s)s' sgn(s) =V +V

active

(4.44)

For passive and active sliding mode controllers, from Equation (4.33) and (4.41),
respectively, the time derivative of each positive defined Lyapunov function
candidate is negative in sign. Therefore,

V=V _ . +V. e <0 (4.45)

passive

The combined sliding mode controller forces the system trajectories asymptotically
to reach the sliding manifold with continuous controller and the sliding boundary

with discontinuous controller.
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5. ATTITUDE CONTROL DESIGN EXAMPLES

In this chapter, firstly, the spacecraft sensors and control elements for attitude
determination will be introduced. Then, spacecraft dynamics presented in Chapter 2
will be applied on selected satellite in Chapter 1. Next, satellite attitude dynamics
instability without controllers will be presented and necessity of attitude controllers
design will be introduced. A linear model of the spacecraft will be obtained
according to the given rules in Chapter 3. The active, passive and combined pole
placed linear controllers will be applied for small and large attitude angles
orientations, respectively. Moreover, non linear controller law will be introduced,
separately, for active, passive and combined sliding mode controllers. Finally, small
and large attitude angles orientations will be performed by the designed sliding mode

controllers.

5.1 Spacecraft Sensors and Control Elements

5.1.1 Sensors

For attitude determination of the chosen geosynchronous communication satellite,
Intelsat V, the measurement elements are assumed to be Earth sensors, optic gyros
and star trackers. Earth sensors measure the roll and pitch attitude errors of the
satellite. Earth sensors are used for precise attitudes to the center of the Earth. Optic
gyros measure the attitude angle rates and attitude errors. Star trackers measure
attitude errors according to selected stars initialized during design procedure. Star
trackers give precise attitudes for roll, yaw, and pitch axes and they are primary
measurement devices for attitude determinations. On the other hand, Sun sensors are
used for solar panel pointing, where the satellite supplies the required power for
communication payload equipments and other devices. The solar panels are forced to
follow the calculated Sun trajectory via sun sensors. Some sensors specifications and

pictures are given in Appendix A4.1.

5.1.2 Control elements

Reaction wheels or momentum wheels are main inner torque supplier control
elements for satellites. The supplied torque is continuous, but very small of value.
These control elements are used for precise attitude orientations. On the other hand,

thrusters are external torque suppliers which operate with nonlinear dynamics in real
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procedures as described in [13]. For the satellite, bipropellant thrusters are chosen for
large angle attitude orientations. Control elements specifications and figures are

given in Appendix A4.2.

5.2 Rigid Spacecraft in Circular Orbit

Rigid spacecraft in circular orbit was described in Chapter 2 via Equations (2.50) and
matrix form dependent on attitude angles 6 is given in Equation (2.53.b). The Inertia

matrix is obtained from Table 1.1 for chosen satellite as below:

I, 0 0] [3026 0O 0
=0 I, Of=| 0 440 0 |kgm’ (5.1)
0 0 I, 0 0 3164

and inertia constants are calculated as

k, = L=b 09002 (5.2.2)
1
I1 — |3
k, = | =-0.3136 (5.2.b)
2
|1 — Iz
k, = =0.8173 (5.2.¢)

The orbital rate is calculated for one real day of the spacecraft to orbit the Earth with

same angular velocity as

27 27

(23h+56m+4.09054s)  (23x3600+56x60+4.09054s) (5.3)
=7.2921x107 sec™

Therefore, required parameters are obtained for rigid body in circular orbit. A
Matlab-Simulink model is given in Appendix 1.1 with Figure Al.l. The time
responses of the spacecraft are given in Appendix 2.1. Figure A2.1 shows the small
attitude errors motion as 6, =—-5deg, 6, =7deg, 6, =—10deg and angular velocity
of this motion is given in Figure A2.2. Figure A2.3 shows the large attitude errors
motion as 6, =-45deg, 6, =-70deg, 0, =-50deg and Figure A2.4 represents the
angular velocity of that motion. Note that, these motions are not stable. At least one
or more eigenvalues of the system have a positive sign as shown in the first column
of Figure 5.1. These four figures show how the attitude angles and angular velocities

get larger values in 4000 seconds of time period. If the chosen satellite is not
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controlled, main goal will not been able to reach which is earth-satellite-earth
communication or to broadcast the television and radio signals to designated area on
Earth. As a result, a control algorithm is a must for such a body designed for this

mission.

5.3 Gyrostat in Circular Orbit

The nutational frequency of the chosen spacecraft is A =0.02rad/s [1] where
A=H, / I,,1,;, . Therefore, necessary momentum for momentum wheels is

calculated as

H, = A1, 15, =0.024/3026x3164 = 61.8846Nms (5.4)

Thus, all rigid spacecraft parameters were obtained.

5.4 Pole Placed Linear Controllers Design

Firstly, linear model of the spacecraft have to be obtained via Equations (3.1) and
(3.4) according to modern control theory as in Equation (3.8). The required system
matrix, A, is obtained via Equation (2.63) and (2.64), and parameters were calculated
in Equations (5.1), (5.2), (5.3) and (5.4). Then, a linear model as X = AX is obtained.
The control term may be designed with pole placement method where Equation
(3.14) and (3.21) become equal to [gT ]p and [gT ]a matrices specified in Equation
(3.28), for passive and active linear control algorithm, respectively. The system
matrix, A, control matrices [gTL and [gT]p, and controllability matrices B for

passive and active linear controllers are given in Appendix A3.2.

Pole placed control term (3.14) and (3.21) for passive and active linear controllers

with orbital rate 7.2921x107 sec”" are obtained, respectively, as below:

u, Sy, 6 0 0 0 0
u, =—[gT]p[x]=— 0 0 6, ¢ 0 0 [[X] (5.5.2)
_us_p 0 0 0 0 ¢G5 ¢y
U, | K, K, 0 0 0
u | ==[g"] [X]==| 0 0 x, x, 0 0 |[X] (5.5.b)
LU 0 0 0 x5 K,

where ¢,; and x;;, j=1,2,3, are feedback gains of attitude angles rates for yaw,
pitch, and roll axes measured by optic gyro. ¢,; and «,;, j=1,2,3, are feedback

gains of attitude errors for yaw, pitch and roll axes measured by star tracker, Earth
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sensor and optic gyro. Then, control design matrices ¢ and x are selected as

follows:
1 60 0 0 0 O
s=/0 0 1 30 0 O (5.6.2)
0 0 0 0 1 60
05 20 0 0 0 O
k=0 0 4 10 0 O (5.6.b)
O 0 O 0 05 20

These matrices are Hurwitz stable because eigenvalues of the matrices Bpg; and
B,g. have negative sign. Note that, selected matrices also stabilize system as
described below because the systems A—B_ g;, A-B,g] and A—B g; —B,g; are
Hurwitz stable since eigenvalues have negative sign calculated via source code given

in Appendix A3.3.1. The output of the program is shown in Table 5.1.

The time responses of attitude errors, angular velocities and control functions of the
system with passive linear controller for small attitude angles orientation as
0, =-5deg, 0, =Tdeg, 0, =—10deg are obtained in Figure A2.5, A2.6 and A2.7,

respectively.

Table 5.1 Eigenvalues of the system and designed linear controllers.

Eigenvalues of Eigenvalues active Eigenvalues passive | Eigenvalues combined
linear satellite model linear controller linear controller linear controller
lamdaA = lamda_a = lamda p = lamda ¢ =

0.0026 -0.0037 + 0.0127i -0.0251 +0.0149i -0.0284 + 0.0146i
-0.0013 + 0.0023i -0.0037 - 0.0127i -0.0251 - 0.0149i -0.0284 - 0.0146i
-0.0013 - 0.0023i -0.0027 + 0.0119i -0.0234 + 0.0148i -0.0266 + 0.0148i
-0.0000 -0.0027 - 0.0119i -0.0234 - 0.0148i -0.0266 - 0.0148i
0.0001 -0.0114 +0.0279i -0.0783 -0.1091

-0.0001 -0.0114 - 0.0279i -0.0580 -0.0500

The system is stabilized in long period of time (more than 2000 seconds), which
shows that passive linear controller takes so much time to stabilize the system
precisely. On the other hand, if combined linear control method is applied the
spacecraft is stabilized in 300 seconds. The Figure A2.8, A2.9 and A2.10 show the
combined linear controller performances of attitude angles, angular velocities, and
applied control functions to the system. The mixture of active and passive linear
controllers is combined linear controller which is summation of each control
algorithms. In combined linear controller case, both passive, main control algorithm,

and active, desaturation of main control algorithm, linear controllers force the inner
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and external torquers to stabilize the satellite. In Figure A2.10 combined applied
torque is given with separated small plots of passive and active linear controllers.
Thus, it can be seen that the performances of combined linear algorithms are ten
times better than the performances of passive control algorithms for small attitude

angles orientations of the linear spacecraft model.
For large attitude errors as 6, =—-45deg, 6, =-70deg, 6, =-50deg, the system is

stabilized after 2000 seconds relatively, which means that very small disturbances
cause the system to be stabilized precisely near 4000 seconds. The performances of
large attitude angles orientations of the passive linear controller are given in Figure
A2.11, A2.12 and A2.13 as attitude angles, angular velocities and control functions,
respectively. Thus, the thrust system is introduced for fastest attitude orientations.
The performances of large attitude angles orientations of the combiner linear
controller are given in Figure A2.14, A2.15 and A2.16 as attitude angles, angular
velocities and control functions, respectively. Figure A2.16 shows the applied inner
and external torques separately into combined control functions torque plot. The
combined linear controller stabilizes successfully the system with required torques in
250 seconds.

However, active linear control algorithms, which is a part of combined linear
controller, generates continuous control signal where propellant is used continuously
even for very small attitude errors. During design procedure of satellites, amount of
the propellant is optimized for conjectural attitude orientations and orbital
maneuvers. As a result, active linear control algorithms may not be useful for such
thrust system without any additions. The limits of the reaction wheels caused to use
small control gain matrices for passive linear algorithms, so the control functions
stabilized the system more slowly. However, matrices with high gains are required

for passive linear controllers for faster orientations.

5.5 Sliding Mode Controllers Design

Sliding mode control system design is performed firstly by determining proper
switching functions where the system trajectories will be caused to follow the sliding
manifold, s=0. Then equivalent control term will be used to model passive sliding
mode control algorithms. Active sliding mode controller will be used to force
satellite’s attitudes to reach determined boundary layer of the sliding manifold.
Control system performances will be investigated for small and large attitude angles

orientations.

Sliding manifold design is performed via optimization of cost function (4.3).

Physical sliding surface consists of input signals from Earth sensor for yaw and pitch
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attitude angles, from star tracker for yaw, roll and pitch attitude angles, and from
optic gyro for attitude angle rates and attitude errors. Selected sliding functions (4.6)
stabilize the dynamic equation of attitude angles presented via Equation (4.9) in
Figure A2.39 for small attitude angle errors as 6, = -5deg, 6, = 7deg, 6, =—-10deg ;
and in Figure A2.40 for large attitude angle errors 6, =-45deg, 6, =-70deg,
0, =-50deg. The parameters k;, i=1,2,3, are selected to minimize the cost
function (4.3) for Kk :+\/; obtained as k =0.3. Therefore, Equation (4.9) is
optimized dynamic equation for sliding mode controllers. Associated design
variables |, 1=1,2,3, are obtained via Equation (4.10.c) with source code given in
Appendix A3.5.2 as

[ 1, L]=[-0.15 0.15 0.45] (5.7)

Passive sliding mode controller may be modeled with general representation of
equivalent control term selected in Equation (4.14). Therefore, three equations with
three controls are considered for each pitch, roll and yaw axes of dynamic system
(2.50) for physical meaning of equivalent control. Final form of equivalent control
for the spacecraft is given in Equation (4.29). The positive parameters 7, and 7, are

selected according to the following criteria (5.8):

d,<n, = d,=0.0005sin(wt) (5.8.2)

unmodeled dynamics < 77 2 |S| = max dunmodeled dynamics < 0005 (58b)
Equations (5.8) become for small angles orientations as 6, <5deg, i=1,2,3, as

n, >d, =0.0005sin(wt) =0.0005 = 7, >0.0005 (5.9.2)

=1x10° = 1,]k6,|=7,]0.3x0.0873|>1x107  (5.9.b)

772 |S| > dunmodeled dynamics

where 7, =0.01>5x10" and 7, =0.1>2.62x10~ model the nominal moment and

maximum torque, respectively, produced by a reaction wheel.

Thus passive sliding mode control term (4.16) becomes as

U=u, + (GB)'s = Uy, + (77,8 +1,81gn(8)) = U, + (0.1 + 0.01sign(s)) (5.10)

Control function (5.8) describes the passive sliding mode control algorithm which
simulates speed control of reaction wheels for designed non linear controller. The
performance of passive sliding mode controller for small attitude errors as
6 =-5deg, 6,=7deg, 6, =—10deg are shown in Figures A2.17, A2.18, A2.19,
A2.20 and A2.21 for attitude angle errors, angular velocities, switching functions,

control functions and disturbances, respectively. The chosen spacecraft is stabilized
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in 50 seconds precisely by passive sliding mode controller with 0.03 Nm maximum
of inner torque. This is really excellent performance for spacecraft stabilization by
variable structure control method according to the all possible modeled dynamics and

bounded disturbances.

The performance of large attitude errors of the passive sliding mode controller as
0, =—45deg, 0, =-70deg, 6, =—-50deg are shown in Figures A2.28, A2.29, A2.30
and A2.31 for attitude angle errors, angular velocities, switching functions, control
functions and disturbances, respectively. For that case, the satellite is stabilized in
100 seconds by passive sliding mode controller with 0.15 Nm maximum of inner
torque. The orientation is performed perfectly; however, required high torque may be
produced from the second and/or third stand by inner torquers, where 0.075 Nm is
shared by each reaction wheels. Then, the orientation is physically possible, which
shows the power of the sliding mode control according to modeled dynamics and

bounded disturbances with inner torquers for less time of period.

+
[ +A -A : roll attitude thrusters
+4 - +B -B : pitch attitude thrusters
-B~ +C -C : yaw attitude thrusters
L]
c.q.

o,
7]

to Earth

-

Figure 5.1 Configuration of the attitude thrusters for design example.

Next, the active sliding mode control algorithm is described with a sliding boundary
layer where system trajectory is forced to arrive from any arbitrary point via thrusters

mounted on the spacecraft as shown in Figure 5.1.

The sliding boundary is selected for stability of the sliding mode controller by
Equation (4.39). Therefore, sliding manifold boundary layer (4.40) could be
calculated via source code given in Appendix A3.5.1. It is selected to be
approximately at t4deg of attitude angles for precise stabilization via passive
sliding mode controller after system is forced to reach the sliding boundary. Thus,

sliding boundary is calculated by the program code as

max (s,)=[0.0209 0.0209 0.0209] (5.11)
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This means that maximum value of s, is 0.0209 rad/s. In design case, boundary layer
is selected at s, =0.02 rad/s. Therefore, the thrust system will perform on logic with
1 Nm thrust moment for initial conditions of angular velocity, @ =0, and attitude
errors, 8 >3.8197deg. The applied torque will be equal to, thrust vector value times
perpendicular distance of the thrust vector to the center of gravity, which is assumed
to be unit length of 1 m for assumed configuration of mounted thrusters. The thrust
system operates with on-off logic and constant thrust value. On-off algorithms are

designed with variable structure control via setting a dead-band function as (4.36).

Finally, the scenario of combined controller may be explained as follow. At any
initial attitude and angular velocity errors with initial value of switching function
s> 0.02, thrusters operate on logic until system reaches the sliding boundary layer.
When system reaches the sliding boundary s=+s;, passive sliding mode control
algorithms force the system trajectories to reach sliding manifold s=0 with very
small inner torques in short time of period. The performances of small attitude angles
orientations of the combined sliding mode controller as 6, =-5deg, 6, =7deg,
0, =—10deg are shown in Figure A2.22, A2.23, A2.24, A2.25, A2.26 and A2.27 for
attitude angle errors, angular velocities, switching functions, combined control
functions, control functions of active and passive controllers and disturbances,
respectively. It can be seen that the system is stabilized into 30 seconds precisely
with 0.025 Nm maximum of applied inner torque and only a few thrust via thrusters
as shown in upper part of Figure A2.26 Note that, the system trajectories are forced
to reach the sliding boundary in 5 seconds by combined sliding mode controller.
After stabilization on sliding boundary layer, system trajectories are forced to

achieve the sliding manifold s =0 in 25 seconds of time period.

Orientation of large attitude errors as 6, =—-45deg, 6, =-70deg, 6, =—-50deg with
combined sliding mode controller are shown in Figures A2.33, A2.34, A2.35, A2.36,
A2.37 and A2.38 for attitude angles errors, angular velocities, switching functions,
combined control functions, control functions of active and passive sliding mode
controllers and disturbances, respectively. The spacecraft is precisely stabilized in 30
seconds by combined sliding mode controller. While a thruster operates, it keeps
system trajectory and forces them in less than a second on the sliding boundary.
During on logic of active sliding mode controller, equivalent control term tries to
affect the system possibly with high control commands larger than that reaction
wheels may produce. So, gains of equivalent control term should be selected
carefully. Performances of the thrusters are given in related plots with pulses less
than 10 seconds. Hence limited propellant is used and precise orientation is done in

very short time by using combined sliding mode controller.
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6. CONCLUSION

Control problem of a spacecraft is an important topic in automatic control
engineering. Many studies about attitude stabilization of satellite applications have
been proposed. In this thesis, a three axis stabilized spacecraft —a communication
satellite Intelsat V— is selected to investigate attitude dynamics, and to design linear
and variable structure controllers. Spacecraft kinematics and dynamics are studied to
recognize how the system operates in circular orbit for attitude motions. The
satellite’s dynamic model is obtained via linearized rigid spacecraft attitude
dynamics, gravity gradient torque, dynamic effects of flexible solar panels, a
sinusoidal effect as external and internal disturbances. The designed passive pole
placed linear controller, which models reaction wheels, stabilizes the satellite well
with longer settling time. Additionally, active pole placed linear controller, which
models thrust system, stabilizes the satellite precisely with short settling time.
However, it operates continuously that is undesirable for the attitude control system
due to the limited amount of propellant of the spacecraft. The combined linear
controller model of flexible spacecraft is obtained with passive and active
controllers, linearized rigid spacecraft attitude dynamics, a sinusoidal effect as a
disturbance which consists of flexible solar panels vibration effects, gravity gradient
torque, sun pressure and other unmodeled external or internal disturbances. On the
other hand, both active and passive sliding mode controllers constitute combined
sliding mode controller which stabilizes the system faster than the linear controllers
according to selected sliding manifold which needs to be designed. The passive
sliding mode controller supplies inner torques with continuous control signal
produced by equivalent control term. Beside, the thrust system is used seldom and
only a few on-off logic operations are done for precise stabilization of the designed
model of the spacecraft. Nonlinear design for thrust system is sufficient model for
on-off logic and it depends on the switching functions and selected sliding boundary
layer. Although, this is a simple design described via a few blocks, it is a
complicated mathematical model to be studied with. Nonlinear controller model
includes passive and active controllers with the dynamic model of the satellite. The
time responses are obtained from Matlab-Simulink block diagrams of the designed
satellite attitude dynamic model, linear and sliding mode controllers which are given

to illustrate the considered procedure.
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Note that, the communication satellite Intelsat V is not operational anymore.
However, it is similar to the communication satellites used in nowadays. In this
thesis, the design of variable structure controllers are given as suggested main control
algorithms for a there axis stabilized spacecraft. Linear controllers are designed to
show effectiveness of the sliding mode controllers with performances shown in
Appendices.

In conclusion, variable structure controllers stabilize the spacecraft precisely in short
time for considered spacecraft model with selected reaction wheels, thrusters and
measurement elements such as earth sensors, star trackers, optic gyros and sun
sensors. Moreover, variable structure controllers include unmodelled dynamics and
disturbances as described under sliding mode controllers design. Hence, sliding
mode controllers model the satellite sufficiently enough that makes them useful than

linear control algorithms in attitude stabilization control of geosynchronous satellites.
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APPENDICES

Appendix 1. Controllers' Matlab-Simulink Block Diagrams

A1.1 Block diagram of the dynamics system
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Figure A1.1 Block diagram of the dynamic system [file name: dynamic_system.mdl].

A1.2 Block diagram of the linear controllers
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Figure A1.2 Block diagram of the combined linear controller [f.n.: lineer_control.mdl].
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A1.3 Block diagram of the sliding mode controllers
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Figure A1.3 Block diagram of the sliding mode controller [file name: sliding_mode.mdl].
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Figure A1.4 Block diagram of the sliding manifold dynamics [f.n.: sliding_manifold.mdl].
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Appendix 2. Time Responses of the System and Designed Controllers

A2.1 Spacecraft Dynamics

A2.1.1 Small attitude angles simulations for rigid spacecraft

rad
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Time offget; 0

Figure A2.1. Time responses of small attitude errors 6,,6,,6, of dynamic system.
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Figure A2.2 Time responses of angular velocities @,,®,,®, for small attitude errors of

dynamic system.
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A2.1.2 Large attitude angles simulations for rigid spacecraft
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Figure A2.3. Time responses of large attitude errors 6,,6,,6, of dynamic system.
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Figure A2.4 Time responses of angular velocities @,,®,,®, for large attitude errors of

dynamic system.
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A2.2 Linear Controllers with Pole Placement

A2.2.1 Small attitude angles simulations with passive linear controller for rigid

spacecraft
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Figure A2.5 Time responses of attitude errors 6,,6,,6, for small attitude angles orientation

of passive linear controller.
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Figure A2.6 Time responses of angular velocities o,,®,,, for small attitude angles

orientation of passive linear controller.
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Figure A2.7 Time responses of control functions u,,u,,u, for small attitude angles

orientation of passive linear controller.

A2.2.2 Small attitude angle simulations with combined linear controller for rigid

spacecraft
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Figure A2.8 Time responses of attitude errors 6,,6,,6;, for small attitude angles orientation

of combined linear controller.

60



-3
»10 radis
£ ! ! ! ! ! ! !

_|:|5 I | | 1 | | |
1] 50 100 150 200 250 300 350 5 400

Time offzet. 0

Figure A2.9 Time responses of angular velocities o,,,,®, for small attitude angles

orientation of combined linear controller.
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Figure A2.10 Time responses of control functions u,,u,,u, for small attitude angles
orientation. Note that, two small inside-plots have same time scale and

torque scale as u(t). u, and u, plots represent the passive and active

p

control functions, respectively, of combined linear controller.
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A2.2.1 Large attitude angles simulations with passive linear controller for rigid

spacecraft
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Figure A2.11 Time responses of attitude errors 6,,6,,0, for large attitude angles orientation

of passive linear controller.
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Figure A2.12 Time responses of angular velocities o,,®,,®, for large attitude angles

orientation of passive linear controller.
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Figure A2.13 Time responses of control functions u,,u,,u; for large attitude angles

orientation of passive linear controller.

A2.2.2 Large attitude angles simulations with combined linear controller for rigid

spacecraft
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Figure A2.14 Time responses of attitude errors 6,,6,,0, for large attitude angles orientation

of combined linear controller.
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Figure A2.15 Time responses of angular velocities o,,w,,®, for large attitude angles

orientation of combined linear controller.
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Figure A2.16 Time responses of combined control functions u,,u,,u, for large attitude
angles orientation. Note that, two small inside-plots have same time scale
and torque scale as U(t). u, and u, plots represent the passive and active

linear control functions, respectively, of combined linear controller.
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A2.3 Sliding Mode Controllers

A2.3.1 Small attitude angles simulations with passive sliding mode controller for

flexible spacecraft
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Figure A2.17 Time responses of attitude errors 6,,6,,6, for small attitude angles orientation

of passive sliding mode controller.
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Figure A2.18 Time responses of angular velocities @,,®,,», for small attitude angles

orientation of passive sliding mode controller.
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Figure A2.19 Time responses of sliding manifolds s,s,,s, for small attitude angles

orientation of passive sliding mode controller.
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Figure A2.20 Time responses of control functions Uu,,u,,u, for small attitude angles

orientation of passive sliding mode controller.
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Figure A2.21 Three in one plot: gravity gradient G, (t), flexible membrane effects M, (t)
and external disturbance effects such as sun pressure d(t) for small attitude

angles orientation for passive sliding mode controller.

A2.3.2 Small attitude angles simulations with combined sliding mode controller for

flexible spacecraft
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Figure A2.22 Time responses of attitude errors 6,,6,,6, for small attitude angles orientation

of combined sliding mode controller.
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Figure A2.23 Time responses of angular velocities @,,®,,®, for small attitude angles

orientation of combined sliding mode controller.
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Figure A2.24 Time responses of sliding manifolds s,s,,s, for small attitude angles

orientation of combined sliding mode controller.
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Figure A2.25 Time responses of combined control functions u,,u,,u, for small attitude

angles orientation of combined sliding mode controller.
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Figure A2.26 Time responses of active U,,U,,,U;, and passive U;,U,p,U;, control

functions of combined sliding mode controller.
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Figure A2.27 Three in one plot: gravity gradient G (t), flexible membrane effects M, (t)

and external disturbance effects such as sun pressure d(t) for small attitude

angles orientation for combined sliding mode controller.

A2.3.3 Large attitude angles simulations with passive sliding mode controller for

flexible spacecraft
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Figure A2.28 Time responses of attitude errors 6,,0,,0, for large attitude angles orientation

of passive sliding mode controller.
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Figure A2.29 Time responses of angular velocities o,,w,,®, for large attitude angles

orientation of passive sliding mode controller.
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Figure A2.30 Time responses of sliding manifolds s,s,,s, for large attitude angles

orientation of passive sliding mode controller.
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Figure A2.31 Time responses of control functions u,,u,,u, for large attitude angles

orientation of passive sliding mode controller.
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Figure A2.32Three in one plot: gravity-gradient G (t), flexible membrane effects M, (t)
and external disturbance effects such as sun pressure d(t) for large attitude

angles orientation for passive sliding mode controller.
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A2.3.4 Large attitude angle simulations with combined sliding mode controller for

flexible spacecraft
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Figure A2.33 Time responses of attitude errors 6,,6,,0, for large attitude angles orientation

of combined sliding mode controller.
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Figure A2.34 Time responses of angular velocities o,,®,,®, for large attitude angles

orientation of combined sliding mode controller.
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Figure A2.35 Time responses of sliding manifolds s,s,,s, for large attitude angles

orientation of combined sliding mode controller.
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Figure A2.36 Time responses of combined control functions u,,u,,u, for large attitude

angles orientation of combined sliding mode controller.
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Figure A2.37 Time responses of active U,,U,,,U;, and passive U,,U,p,U,, control

functions of combined sliding mode controller.
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Figure A2.38 Three in one plot: gravity-gradient G, (t), flexible membrane effects M, (t)
and external disturbance effects such as sun pressure d(t) for large attitude

angles orientation for combined sliding mode controller.

A2.3.5 Dynamic equation of sliding mode for small attitude angles
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Figure A2.39 Time responses of dynamic Equation (4.9) for small attitude angles orientation.
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Figure A2.40 Time responses of dynamic Equation (4.9) for large attitude angles orientation.
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Appendix 3. Source Codes for Matlab-Simulink Block Diagrams
A3.1 Dynamic System Initialization

The source code below is required for ‘dynamics.mdl’ Matlab-Simulink block

diagram file in Appendix 1.1.

dynamic_system_ini.m

cl ear;
clc;

% spacecraft initialization

111 = 3026; % kg. n2

122 = 440; % kg. n2

133 = 3164; % kg. n2

121 = 0;

112 = 0;

113 = 0;

131 = 0;

123 = 0;

132 = 0;

| =[111 112 113; 121 122 123; 131 132 133];

ki1 = (122-133)/111;

k2 = (111-133)/122;

k3 = (111-122)/133;

n = (2*pi)/(23*3600 + 56*60 + 4.09054); % Real Day
HO = 0; % N.m.s
w.a = eye(3);

wb=[00-n; 000; nO O0];

wc =[0; -n; 0];
Y%Flexibility

S_x2= 1.11272; % rad/s

s_y2= 5.534"2; % rad/s

s_z2= 0.885"2; % rad/s

d_x = 35. 865; % Vkg.m2

d_y = 2.532; % Vkg-m2

d_z = 35.372; % Vkg.m2

sq = sqgrt(2);

Sig2=[1/s_x2 0 0; 0 1/s_y2 0; 0 0 1/s_z2];

Del = [1/(sq*d_x) 0 0; 0 1/(sg*d_y) O; 0 0 1/(sqg*d_z)];

% Initial attitude errors...

dl = -5*(pi/180); % deg => rad
d2 = 7*(pi/180); % deg => rad
d3 = -10*(pi/180); % deg => rad

A3.2 Linear Controllers and System Initialization

The source code below is required for ‘linear.mdl’ Matlab-Simulink block diagram

file in Appendix 1.2.

linear_control _ini.m

clear;
clc;

% spacecraft initialization

111 = 3026;
122 = 440
133 = 3164;
121 = 0;
112 = 0;
113 = 0;
131 = 0;
123 = 0;
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132 = 0;

| =[I111 112 113; 121 122 123; 131 132 133];

k1 = (122-133)/111;

k2 = (111-133)/122;

k3 = (111-122)/133;

di = 2.5;

d2 = 2;

d3 = 2.5;

HO = 0;

n  =(2*pi)/(23*3600 + 56*60 + 4.09054); % Real Day

% Linear Model and Pole Placement

A =[010000; -4*n*2*k1-(n*H 0)/111 0 0 O -n*(1-k1)+(H 0/111) 0;
000100, 00 -3*n"2*k2 0 0 O;
000001, 0-n*(k3+1)+(H 0/133) 0 0 -n"2*k3-(n*H_0)/133 0];

Ba =[000; di/111 00; 00 0; 0 d2/122 0; 0 0 0; 0O 0O d3/133];

Bo =[000; 1/11100; 00 0; 0 1/122 0; 0 0 0; 0 0 1/133];

C =[100000, 001000, 0000 10];

gTa =[1600000;, 0013000, 0000 1 60];

gTp =[.1200000; 00.11000; 000 0 .1 20];

% DFfisturbance and attitude errors
Dt =[101010]";
d [-45*pi/180; 0; -70*pi/180; 0; -50*pi/180; O0];

A3.3 Some Linear Controllers Functions

A3.3.1 Stability check of pole placed linear systems

The source code below computes the eigenvalues of the linearized system, and

active, passive and combined linear controllers, respectively.

linear_stability.m

% stability check for pole placed system
| andaA = eig(A)

| anda_a = ei g( A- Bp*gTp)
| anda_p = ei g( A-Ba*gTa)
| anda_c = ei g( A- Ba*gTa- Bp*gTp)

A3.4 Sliding Mode Controllers and System Initialization

The source code below is required for ‘sliding mode.mdl” Matlab-Simulink block

diagram file in Appendix 1.3.

sliding_mode_ini.m

cl ear;
clc;

% spacecraft initialization

111 = 3026;

122 = 440

133 = 3164;

121 = 0;

112 = 0;

113 = 0;

131 = 0;

123 = 0;

132 = 0;

| =[111 112 113; 121 122 123; 131 132 133];

kil = (122-133)/111

k2 = (111-133)/122

k3 = (111-122)/133

n =(2*pi )/ (23*3600 + 56*60 + 4.09054); % Real Day
HO = 0.02*sqgrt(111*133); % N.m.s - Lamda = 0.02 nutation frequency, rad/s
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% Flexibility
S_x2= 1.112"2;
S_y2= 5.534"2;
s_z2= 0.885"2;

d_x = 35.865;

d_y = 2.532;

d_z = 35.372;

sq = sqgrt(2);

Sig2=[1/s_x2 0 0; 0 1/s_y2 0; 0 0 1/s_z2];

Del = [1/(sg*d_x) 0 O0; O 1/(sqg*d_y) 0; 0 O 1/(sqg*d_z)];

% Main system

Sa=[00 -n*(1-k1)+(HO/111); 0 0 O; -n*(k3+1)+(H 0/133) 0 0];

S b = [-4*n*2*k1-(n*H 0)/111 0 0; O -3*nA2*k2 0; 0 O -n"2*k3-(n*H 0)/133];
w_a = eye(3);

wb=[00-n; 000; noO O0];

wc =1[0; -n; 0];

ggl =[000; 00 -1; 0 1 0];

gg2 =[001; 000; -10 0];

gg3 =[0-10; 100; 00 0O];

dwdt _a = eye(3)

dwdt b = [0 0 -n; 00O0; nO 0];

% Reaction wheel system

Ra=1[-1/11100; 0 -1/122 0; 0 O -1/133];
Rb =[00n/111; 0 n/122 0; -n/133 0 0];

% Kontrol => sari1 1, pembe 2, mavi 3;
K1=[.0100; 0.010;, 00 .01]; % RW
KO=[.1200; 0.10; 00 .1]; % RW
KT=[100;, 010; 00 1]; % THRS

% sliding manifold design...

k =0.3;
L =[k 0O0; 0k O; 00 K]; % theta component
L1 =[100; 010 1]; % w component

% Initial attitude errors -> *** large angle
dl = -45*(pi/180); % deg => rad
d2 = -70*(pi/180); % deg => rad
d3 = -50*(pi/180); % deg => rad

The source code below is required for ‘sliding manifold.mdl” Matlab-Simulink

block diagram file in Appendix 1.3.

Sliding_manifold_ini.m

% DYNAMICS®™ VALUES

k = 0.3;

n =(2*pi)/(23*3600 + 56*60 + 4.09054); % Real Day
eff 1 =[000;, 000; 00 nj;

eff 2 =[000;, 000; 00 1];

eff 3=[010; -100; 00 0];
% Initial attitude errors -> * small angle

theta el = -5*pi/180; % deg => rad
theta_e2 = 7*pi/180; % deg => rad
theta_e3 =-10*pi/ 180; % deg => rad

A3.5 Some Sliding Mode Controllers Functions

A3.5.1 Selection of sliding boundary layer

Note that, ‘sliding mode ini.m’ file has to be executed before the source code below

run.

80



sliding_boundary.m

% selecting max sO

w_i ni = abs([0; 0; 0]);

theta_ini = abs([d1l; d2; d3]);

Nl = K T(1,1);

N2 = K T(2,2);

N3 = K T(3,3);

N = [N1; N2; N3]; % always positive number
s_initial = w.ini + k*theta_ini

s_Omax = N. *(s_initial)

A3.5.2 Calculating parameter ¢

The source code below calculates vector ¢ in Section 4.1

sliding_man_I1_.m

% selecting |
I =0.5*[-11-1; -111; 111]*[k; k; K]
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Appendix 4. Sensors and Control Elements

A4.1 Sensors

A4.1.1 Earth sensor [IRES-NE, InfraRed Earth Sensor]

Operating Modes

* Earth Acquisition mode (Wide Scan)
* Earth Pointing mode (Marrow Scan)
* Chord Mode isingle beam crossing)

Performances

* 14-16.25 pm wavelength operating band

* Earth acquisition mode between 15,300 and 53,000 km

alfitude

* Operational capability up to 140,000 km altitude

* Operational range at GEO
*Pointing moede linear range: =557 pitch; +2.57 roll
*Acquisition mode linear range: =117 pitch; £2.57 roll
*Chord mode linear range: =237 pitch; =147 roll
*Acquisiion mede sign range: £227 pitch; =137 rell

* 10 Hz cutput dota rate

* Accuracy
*<0.05 deg random error (3 o)
*<0.02 deg hios error

Data Interfaces
= Digital Serial Interface 32 bit or MIL-S5TD 1553E or
MALCS-Bus available
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Mechanical Interfaces
* 150,821 65.7x178 mm size
* <23 kg mass

Electrical Interfaces

* 24 to 50V unregulated Power Bus

* <4 5W power consumption depending on data
interface

Environmental Conditions
* .30 °C to +55 "C operational femperature
* 40 °C to +60 °C storage temperature
* Ambient and spoce vocuum pressure
* Vibration levels
*Sine: 20 g peak
*Fondem: 18 g rms
*Shock: 2000g from 3 to 10 kHz
* = 15 years lifetime in GEC



A4.1.2 Earth sensor [STD -15], (www.sodern.fr)

l:!u- S R e A S D E A -

Scanning Infrared Horizon
Sensor for GEO Orbits

* Altitude range: 15 000 - 140 000 km

* Operating depointing range:
- Nominal:
Pitch range : + 12 deg (Roll = 0) - Roll range : £ 2.9 deg (Pitch = 0)
- Extendled:
Pitch range : £ 15.6 deg (Roll = 0) - Roll range : £ 14.5 deg (Pitch =0)

» Output data rate: 1.25 Hz

* Accuracy budget: 3o
- bias: 0.035 deg
- typical noise; 0.015 deg.
ENVIRONMENTAL CHARACTERISTICS
* Operating temperature : -25 deg C, +55 deg.C
* Storage temperature : -40 deg.C, +60 deg.C
* Vibration :20-2000Hz :
-2 axis: 16.9 g.rms - X, Y axis: 13.2 g.rms
MECHANICAL INTERFACES
+ Operating temperature : -25 deg C, +35 deg.C
* Height: 168 mm - width: 206.5 mm - length: 206.5mm
* Mass 34 kg
ELECTRICAL INTERFACES

* Typical consumption : 7.5 W
* Power supply : 20 to 55 Volts
» Qutput data: 1553 protocole

RELIABILITY
<1095 Fits

LIFE-SPAN
15 years in GEO orbit.,

Scanning Format
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A4.1.3 APS-based sun sensor [STD -15], (www.sodern.fr)

PERFORMANCE

Altitude range - up to 50 AU ;
Field Of View : 120°X120° or more
Output data rate : up to 400Hz

Accuracy budget :
Bias error = 0.02° at 2 ¢ (with

calibration)
Random error (3c) = 0.01° @ 400 Hz.

ENVIRONMENTAL CHARACTERISTICS

Operating T° : -50°C to +80°C
Vibration : Typical ARIANE 5 environment

MECHANICAL INTERFACE

Mass : < 0.30 kg
Width X Length X Height : 130 X 120 X 45 mm

ELECTRICAL INTERFACE

Typical consumption - 1W

Power supply : from 6V to 12V

(option - 20V to 100V)

Output data : RS422 8 or 16 bits senal link
Temperature detection

RELIABILITY : 255 Fits

LIFE SPAN : > 15 years (GEO)
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A4.1.4 Digital sun sensor [DSS2]
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SPECIFICATIONS

FOV:  £64°x+60°

Accuracy:  0.05°(0°- £32°)

0.1°(£32°- +£64°)

Resolution: 28"

Optic head mass: 350g

Optic head size: 86x50x30

Operating temperature: -20°C ~ +50°C
Output:  16bits digital

Power dissipation: 0.5W

Lifetime: 15 years (in geostationary orbit)



A4.2 Control Elements

A4.2.1 Reaction wheels [BBM/RW] (http://www.deldix.de)

Ball Bearing Momentum and Reaction Wheels (Standard
Products)

TELDIX is the sole commercial manufacturer of ball bearing
momentum and reaction wheels in Germany and leading
manufacturer in Europe.

TELDIX Ball Bearing Momentum and Reaction Wheels are the
ultimate choice for advanced satellite stabilization.

Reference Projects

European Satellite Programs:

Abrixas, Artemis, Astra-2B, -1K,

Beppo-SAX,

Demeter, DFS,

ECS, ESSAIM, Eurasiasat 1, Europe*Star, EUROSTAR 2000+,
EUROSTAR 3000

Eutelsat I, Eutelsat W,

GE-1E/Sirius-2,

FBM,

Hispasat 1A, 1B, 1C, Hot Bird,

Inspector, ISO, ltalsat,

MARECS, MAROTS, Mars Express, Microscope,

OTS,

Parasol, Picard, Proba, Proteus/Jason,

ROSAT,

SAR-Lupe, Skynet 4, Spacebus, Stentor, Symphonie A/B,
TDF-1, TDF-2, Telecom-1, Telecom Il, TELE-X,
TUBSAT-B, Turksat 1, TV-SAT, TV-SAT-2

International Satellite Programs:

Agila 2, Amos, Apple, Aqua (PM-1), Arabsat Il, Arabsat Ill, AsiaStar, Aura
(Chemistry),

Beidou 1A, 1B, BSat 2a, 2b,

Chandra (CX0O), Chinasat 8, 22,

DFH3, DFH4,

Echostar VI, ETS-V,

FBM,

GE 5, GOES,

Inmarsat Il, Insat-1D, Insat-2, Insat-3, Intelsat V, Intelsat VII, IRAS, iSKY
(KaStar)

KaistSat, KitSat 3,

METSAT, MOS-1, MS-T5, MT Sat,

Nahuel, NATO IV, Nilestar, N-Star, NSS-6 (K-TV)

OmegaSat, Orbcomm, Orion 1, Orion 2,

PanAmSat 6, 7, 8, Pioneer, Planet-A,

SBIRS Low, Sinosat, Sirius 1-3, Sky-1, Sky-2, ST-1, Step 4, Superbird,
Telstar 5, Telstar 6-12, Tempo, Thaicom,

Worldstar

Currently 556 wheels installed in 226 launched satellites
representing 2074 years of accumulated in orbit operation.

(as of July 2004)
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Momentum and Reaction
Wheel

RSI 12 4-12 Nms

with integrated

Wheel Drive Electronics

Momentum and Reaction
Wheel RSI 45 14-45 Nms
with integrated

Wheel Drive Electronics

Momentum and Reaction
Wheel

RSI 68 14-68 Nms

with integrated

Wheel Drive Electronics

High Torque Momentum &
Reaction Wheel HT-RSI
14-68 Nms with integrated
Wheel Drive Electronics

>
g

Momentum and Reaction
Wheel RDR 68 14-68 Nms
with external

Wheel Drive Electronics



A4.2.2 Thrusters (http://www.space.eads.net)
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22 N Bipropellant Thruster Model S22 - 02

Characteristics
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10 N Bipropellant Thruster Model S10

Characteristics

click to enlarge

Propellant: MON / MhH
Thrust vac: 22 N
Power: 31 kW

42 hp
Isp vac: 290 sec
Charnber press: 9 bar
Owerall length: 212 mm
Mozzle dia: &5 mm
Mass: 650 g

4 N Bipropellant Thruster Model 54

Characteristics

Propellant:
Thrust vac:
Power:

I=p vac:
Chamber press:
Owverall length:
Nozzle dia:
Mass:

MO/ WMMH
4 M

6 kW

g hp

284.9 sec
4 bar

115 mm

30 mm

290 g

Propellant: MO A MMH
Thrust vac: 10N
Power: 14 ki

19 hp
Isp vac: 286 sec
Chamber press: 7 bar
Owerall length: 138 mm
Mozzle dia: 37 mm
Mass: 350g
Heritage

Integration of 400 N apogee engine
and heat shield to thrust frame.
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