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ACTIVE SLAM WITH INFORMATIVE PATH PLANNING FOR
HETEROGENEOUS ROBOT TEAMS

SUMMARY

Recently, heterogeneous teams consisting of unmanned ground vehicles and
unmanned aerial vehicles are being used for different types of missions such as
surveillance, tracking, and exploration, etc. Exploration missions with heterogeneous
robot teams should acquire a common map for understanding the surroundings better.
The unique approach presented in this dissertation with cooperative use of agents
provides a well-detailed observation over the environment where challenging details
and complex structures are involved. Also, the presented method is suitable for real-
time applications and autonomous path planning for exploration.

Lidar Odometry and Mapping with various similarity metrics such as Shannon
Entropy, Kullback-Liebler Divergence, Jeffrey Divergence, K Divergence, Topsoe
Divergence, Jensen-Shannon Divergence and Jensen Divergence are used to construct
a common height map of the environment. Furthermore, the given layering method
that provides more accuracy and a better understanding of the common map. All of the
given similarity metrics are compared, and the advantage of utilizing the layering
method is shown. The best similarity metric for constructing a heterogeneous robot
team common map of the experimental area was obtained by using the Jensen
Divergence similarity metric and layering method.

Moreover, Extended Kalman Filter localization and OctoMap techniques are utilized
to create an adaptive simultaneous localization and mapping infrastructure for
informative path planning. Optimal parameter tuning for the specified simulation
environment provides adjustable memory allocation and exploration performance,
such as; duration, collected information and effort.

The information seeking controller obtained with the use of relative entropy ensures
exploration of the given area to minimize the uncertainty between observed states and
environmental states. Robots move to the volumetric spaces’ center under given rules
and collect measurements by proprioceptive and exteroceptive sensors. With the use
of heterogeneous robot teams, the measurements collected by the Lidar provide an
advantage in perceiving complex details that can not be done by homogeneous robot
teams.

Constructing common map part of the theoretical approaches in this thesis are
experimentally validated. In addition, the complete demonstration of this dissertation
is done with six different cases by simulation studies. The theoretical background of
active simultaneous localization and mapping with informative path planning for
heterogeneous robot teams are validated, and the advantages of this study are
remarked.
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HETEROJEN ROBOT TAKIMLARI iCIN BILGILENDIRICI YOL
PLANLAMALI AKTIF EZKH

OZET

Insansiz Hava Araci’mi (IHA’y1) ve Insansiz Kara Araci’mi (IKA’y1) biinyesinde
bulunduran heterojen yapili robot takimlari, giiniimiizde gozetleme, takip, kesif, vb.
farkl1 gorevlerde kullanilmaktadir. Cevrenin haritalanmasin1 gerektiren kesif
gorevlerinde, heterojen robot takimlarinin ortami daha iyi anlayabilmesi adina, ortak
bir haritaya ihtiya¢ duyulmaktadir. Bu dogrultuda 6zel yaklasimlarla, Lidar Odometre
ve Haritalama (LOH) ile zorlayici yapilarin bulundugu ortamda, araglarin kooperatif
bir sekilde benzerlik metriklerini kullanarak ortak harita ¢ikarmasi saglanmaktadir.
Bunun yani sira, sinirlar1 belirli bir alanin, heterojen robot takimlari ile kesfini
saglamak adma siirekli olarak toplanan bilgiyi arttirict kontrolcli tasarimi
kullanilmaktadir.

Farkli tipte hareket denklemlerine ya da dinamik modellere ve/veya farkli sensor
yapilarina sahip robotlardan olusan robot takimlara heterojen yapili robot takimlari
denmektedir. Diger taraftan robot takimlarinin es zamanli konumlama ve haritalama
problemi ile bu takimdaki robotlarin yol planlamalarinin es zamanli gergceklemesi ise
Aktif es zamanli konumlama ve haritalama (EZKH) problemi olarak
adlandirilmaktadir. Buradaki es zamanl ger¢eklemedeki amag¢ otonom robot araglari
icin planlanan yollarin ayn1 zamanda EZKH’deki belirsizligi de minimize edecek
sekilde gerceklestirilmesidir. Diger bir deyisle otonom robot araglari igin bilgilendirici
yol planlarinin olusturulmasidir. Bu ¢aligmanin temel amaci heterojen yapili robot
gruplart i¢in bilgilendirici yol planlamaya dayali bir Aktif-EZKH sistemi
tasarlamaktir.

Robot takimlarinin farkli dinamik ve sensorlere sahip olmasi diger bir deyisle
heterojen yapida olmalari, bu robot takimlarina avantajlar getirmektedir. Ornegin;
hava robotlar1 hizli hareket edebilir, kara robotlar1 daha agir faydali yiikler tasiyabilir
ve hedef nokta ile dogrudan etkilesime girebilirler. Karma bir aragli bir yapi igerisinde
yer alan THA ile IKA olusan bir robot grubu kesif, arama veya giivenlik amagcli sinirlari
belirlene bir bolge iginde is birligi yaparak ortam igindeki gorevlerini insandan
bagimsiz bir sekilde otonom olarak gergekleyebilir. Burada IHA ve IKA’larin
birbirleri ile yer istasyonu araciligi ile veri paylagiminda oldugu varsayilmaktadir.
Komsuluk alanlari igerisinde haberlesme ile harita paylasimi ya da ara¢ durum vektorii
paylasimi yapabilen robot birimleri kooperatif robotlar olarak gosterilmektedir. Bu
calismada dis ortam sensorii olarak 360° ortam taramasi yapabilen ve saniyede
300.000 adet noktanin mesafesini 6lgebilen 3B LIDAR sistemi kullanilmistir. Yiiksek
¢ozlinirliklii 6l¢lim avantajmin yani sira bu kadar biiyiik miktardaki veriden optimum
miktarda ve hizli bir sekilde anlamli veri {iretip bunlari robot konumlama, planlama ve
koordinasyonunda kullanim da ayr1 bir zorluk ortaya koymaktadir.

Temel olarak, hareketli olan bir aragtan elde edilen nokta bulutunun cografik olarak
yerlestirilmesi gerekmektedir. Bu islem sadece Lidar sensorii kullanilarak da; farkli
sensorlerin verilerinin ortak bir sekilde kullanilmasi aracilifiyla da yapilabilir. Sadece
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Lidar ile toplanmais verilerin islenerek nokta bulutunun cografik olarak yerlestirilmesi
ve gozlem sirasinda sensoriin hareketinin elde edilmesi, bu ¢aligmada LOH ile
saglanmaktadir. Bu sayede; GPS ve IMU olmaksizin EZKH yapilabilmektedir. Buna
ek olarak, sensorlere binen giiriiltiillerden dolay1 olusabilecek kaymalar ve yanlis veri
elde edilmesi engellenebilmektedir. Buna karsilik, GPS, enkoder ve IMU verileri ile
Lidar verileri birlestirilerek Genisletilmis Kalman Filtresi (GKF) konumlamasi da
saglanabilmektedir. Burda sensor verilerinin olasiliksal yaklasimlarla islenmesi ile
robotun konumu elde edilmektedir ve bu konum ile Lidar verilerinin cografik
yerlestirme yapilmasi sonucunda da belirli bir orijine sabitlenmis nokta bulutu ¢iktis1
alinmaktadir. Sonrasinda da bu nokta bulutu ile istenilen yontem ile elde edilen
odometre ve nokta bulutu verisi farkli haritalama yontemleri kullanilarak ayarlanabilir
Ozel gorsel ¢iktilar saglanabilmektedir. Bunlardan biri, sekizli aga¢ yapilar
kullanilarak elde edilen OctoMap olmaktadir. OctoMap yontemi, tez ¢alismasinda
kullanilmasinin temel sebepleri olan, ¢oziiniirliikk ayarlamasi, doluluk olasilig1 iist ve
alt smirlar1 belirlenmesi ve 3B olarak saglanabilmesi agisindan faydali bir arag
olmaktadir. Bu yontem ile, ortamin uyarlanabilir sekilde, ortamin 3B haritasinin
c¢ikarilmasi saglanmaktadir.

Lidar sensorlerinin havadan alinan nokta bulutlari ile karadan alinan nokta bulutlart
farkli geometrik 6zellikler tasimaktadir. Ancak, hava ve kara Lidar goriintiilemesinin
birbirlerini tamamlamasi bakimindan oldukga biiyiik avantajlar1 da mevcuttur. Hava
aract ve kara aracit tarafindan yapilan ve birilerinin goéremedikleri bolgelerin
goriintiilenebilmesi saglanilmaktadir. Bu avantaji kullanabilmek adina farkli agilardan
lokal olarak goriintiilenen ortamin ortak bir haritada birlestirilmesi gerekmektedir.
Harita birlestirme adimini gerceklestirmek adina her iki robotun elde ettigi verilerden
ortak olanini1 belirlemek gerekmektedir. Kus bakisi veya yatay olmasi fark etmeksizin
bir nesnenin yere gore yiiksekligi; hem havadan hem karadan yapilan gozlemlerde
sensorlerin gorilis agis1 sinirlart igerisinde ayni olacaktir. Bu dogrultuda, yiikseklik
verileri lizerinden benzerlik metrikleri kullanilarak haritalarin  birlestirilmesi
saglanabilmektedir. Bu tez calismasinda, IHA ve IKA tarafindan elde edilen nokta
bulutu 1zgara haritasina benzer bir yapida olan yiikselti haritalar1 kullanilmistir.
Izgaralar ile boliinmiis hiicrelerdeki en yliksek noktanin verisinin kullanilmasi ile 2.5D
harita elde edilmesi sayesinde yiikselti haritalar1 olusturulmaktadir. Benzerlik
metrikleri araciligiyla ise bu haritadaki yiikseklik bilgilerinin birbirine oturmasini
saglayacak konum ve yonelim farki belirlenmektedir. Calismanin sonraki
asamalarinda entropi teorisi kullanilmasi sebebiyle entropi temelli benzerlik metrikleri
ile harita birlestirme yapilmistir. Yedi farkli tipteki entropi metrigi ile yapilan
benzerlik karsilastirmasi sonucunda “Jensen Divergence” entropi taniminin en az hata
ile haritalar arasinda donme ve 6teleme farkinin belirlenmesini sagladigi, deneyler ile
dogrulanmistir. Ayrica; haritanin dikey eksende katmanlara ayrilmasi ve bu katmanlar
tizerinden yapilan yiikseklik benzerlikleri hesaplamasi ile optimum konum ve yonelim
( veya donme ve 6teleme) farklarinin belirlenmesinin; katmanlara ayirma metodunun
kullanilmasima gore daha avantajli oldugu da gosterilmistir. Her bir otonom arag
“Harita Birlestirme” siireci sonrasinda bu harita Aktif-EZKH siireci i¢in kullanilarak
hem harita bilgileri daha hassas hale getirilir hem de robotun gitmesi gereken yeni
konumu tespit edilmis olur.

Yol planlamasi, gorevin etkin bir sekilde icrasi i¢in gerekli olan kritik adimlardan
biridir. Enerji tiikketim, elde edilen sonucun gergeklesme siiresi ve kalitesi uygulamanin
ana kriterleridir. Bu nedenle, yol planlama algoritmalar1 etkin sistemler olusturmak
tizere kullanilmaktadir. Yol planlama algoritmalar1 farkli tiirde olabilir ama 6zellikle
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hedef isaretleme ve bilgi maksimizasyonuna dayali yontemler diger yol planlama
yontemlerine gore belirgin iistiin 6zelliklere sahip olanlaridir. Hedef odakli yol
planlama algoritmalarinda, birimlerin belirli bir hedefe ulasabilmesi adina olusturdugu
kontrol eylemleri bulunmaktadir. Bilgi maksimizasyonu yaklagimi; ortam, nesnenin
diger nesneler veya bir hedef hakkinda daha fazla bilgi almak i¢in bir dogrultu boyunca
hareket etmesi olarak tarif edilebilir. Burada bagil entropi teorisi, Dbilgi
maksimizasyonu yaklasimi olarak sunulmustur. ilaveten, bagil entropi, karsilikl bilgi
ile ¢evresel durum entropisiyle arasindaki farktir. Bagil entropi kullanilarak, bilgi
metrik olarak ifade edilebilmektedir. Cevresel durumlar ile gozlemler ile elde edilen
durumlar arasindaki bagil entropi {izerinden yaratilan amag¢ fonksiyonunun optimal
¢Ozlimii sonucunda elde edilen hedef nokta, o bolgedeki bilginin belirlenen kriterlere
gore istenilen seviyeye ¢ekilmesini saglamaktadir. Bu, EZKH ile etkilesimli ¢alisan
yol planlamasi temelli bir optimal kontrol yontemidir. Bu yontem ¢er¢evesinde Bilgi
Teorisinden faydalanilarak belirsizlik terimleri ile entropi terimleri arasinda iliski
kuran bir Karsilikli Bilgi terimi tanimlanir. Kulback-Liebler Mesafesi olarak da
tanimlanan bu Karsilik Bilgi terimi maksimum degerine ulastiginda belirsizleri temsil
eden entropi terimleri de minimize olurlar. Bu sebeple Karsilik Bilgi terimine dayali
bir amag fonksiyonu olusturularak bu fonksiyonu maksimize yapacak robot konum ve
hareket vektorleri optimal kontrol yaklasimi ile elde edilir. Bu elde edilen terimler
heterojen robot takiminda yer alan otonom robotlara uygulanarak onlarin hareketleri
planlanmis olur. Amag¢ fonksiyonunu Lyapunov kararli yapan bu noktalar ise bir
hacimsel bolgenin merkezidir ve bu hacimsel bolgedeki bilgiyi maksimize etmek
tizere belirlenmistir. Bu noktaya ulagmak igin, robotlar belirlenen kurallar
cercevesinde hareket etmektedir. Bu kurallar ise IHA veya IKA’nin hedef noktaya
hareketinin se¢imi ve hedef noktaya ulagim i¢in engellerden kacinmay1 icermektedir.
Bu yontemin; 6zellikle farkli boyutlarda nokta bulutu 6l¢iimii yapabilen hava be kara
aragli robot takimindaki uygulamalar1 literatiirde mevcut degildir. Bu teorik
calismalar1 6n plana alan galismalarin ¢iktilarinin 6zellikle arama-kurtarma, kesif ve
giivenlik gibi  robot takimi uygulamalart i¢in biiyiilk Onem tasiyacagi
degerlendirilmektedir.

Onerilen yontemde, ortamdan yapilan élgiimler ile arag hareketlerinde olusabilecek
belirsizliklerini etkilerini en aza indiren kara ve hava robotlarindan olusan heterojen
yapili robot takimlarmin kesif amagli yol planlama algoritmalarinin gelistirilmesi ve
performanslarinin test edilmesi hedeflenmistir. Ayn1 zamanda, bu gorevleri icra
edebilmek adina belirli harita birlestirmenin de gerceklestirilmesi gerekmektedir.
Oncelikle; harita birlestirilmesi yonteminin dogrulanmasi adma {iniversite
kampiisiinde belirli bir bolgede kara araci olarak Clearpath Husky A200, hava aract
olarak ise DJI Matrice 600Pro ve bu araglar iizerinde bulunan Lidar sensorii
kullanilmistir. Sonug olarak; teorik ¢aligmalarda verilen benzerlik metriklerinden en
optimum olant deneyler araciligiyla belirlenmistir. Sonrasinda; bilgilendirici yol
planlama yonteminin dogrulanmasi amaciyla Robot Isletim Sistemi (“ROS”) ve
Gazebo temelli, karmagsik ancak giinliik yasantida karsilasilabilinen bir simiilasyon
ortami kurulmustur. Bu simiilasyon ortaminda alt1 farkli durum yaratilarak heterojen
robot takimlar i¢in bilgilendirici yol planlamali Aktif EZKH gosterilmis ve parametre
ayarlamalar1 ile uygulamaya gore degistirilebilir bir yap1 saglanmustir.
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1. INTRODUCTION

Robots are commonly used in various applications, such as; target tracking,
surveillance, exploration, etc. In these applications, complex problems are encountered
to meet demands such as precise measurement, reconnaissance, eliminating
uncertainties as much as possible, and so on. Heterogeneous robot teams (HeRTS) can
be used to solve these problems with an optimal solution. Some of these applications
can also be completed with a single robot or homogeneous robot teams (HORT) of only
ground vehicles or aerial vehicles. On the other hand, HeRTs can be employed to
benefit each of the team member’s different abilities. Unmanned ground vehicles
(UGVs) can carry higher payloads such as larger batteries that can increase the
operating time or more advanced Lidar devices. On the other hand, unmanned aerial
vehicles (UAVSs) can move faster and obtain environmental data from different angles,
but they have limited endurance and capacity of payload. Naturally, extra challenges
occur during heterogeneous team missions. One such challenge is acquiring a static
global map that contains both information captured by UGV and UAV. There are two
maps with different types of views, bird’s-eye view and the ground view collected by
the UAV and UGV, respectively. Both views have unique information, such as; the
top of the objects or underneath the covered areas by a roof or tree. As a result, these
two views offer more information about the environment and remove more
uncertainties about the explored area by the robots. In the interest of acquiring a static
global map, two maps need to be merged by using their common characteristics, such
as the height of the sensed objects or other features in the environment.

Moreover, accomplishing the missions in more efficient ways in the manner of time,
energy and accuracy are hard to achieve with a single robot. Hence, the use of multi-
robot teams to get ahead that criteria are common nowadays. The employment for the
missions may contain simultaneous actions as a robot’s coordination and interaction.
Fundamentally, navigation includes localization on the environment and mapping the
environment. Simultaneous localization and mapping (SLAM) are specified for

localizing the robot in the map and building the map of the robots’ environment. The



robot builds a map by processing the sensor data and graph the environment.
Localization is done by estimation within the evaluation of its position difference over
the map and movement of the robot’s itself. In the SLAM problem, better localization

leads to better maps, also better mapping leads to better localization.

Additionally, for exploration missions, path planning is needed for efficient
executions. Energy consumption, time and quality of the result are the main criteria of
the application. Thus, path planning algorithms are used in order to create efficient
systems. There are different types of path planning algorithms, but especially two main
types distinguish such as goal designation and information maximization. In goal
designated path planning algorithms, agents have a goal for the operation, and agents
will have control actions to attain that goal. The information maximization approach
can be described as; agent moves along a direction to get more information about the
environment or other agents. Relative entropy theory provides a metric with the
difference between mutual information and environmental state. The integration of
SLAM and path planning in order to decrease uncertainty is named as Active SLAM.
In particular, the robot moves towards other positions to get better localization and

mapping with reducing uncertainty about the environment.

1.1 Purpose of Thesis

The main objective of this thesis is to design an active SLAM system with informative
path planning for heterogeneous multi-robot teams. In active SLAM systems for

HeRTs, there are three critical choices to achieve the goal,

e SLAM Method
e Map Merging Method
e Control Method

The selection of the SLAM method may vary in accordance with the system types.
Some of the previous works in literature uses Gaussian distributions to evaluate
posteriors. In order to provide simplicity and cover both systems in the same manner,
EKF localization, LOAM, OctoMap and Height Map are employed. LOAM method
with utilizing layers provides accurate localization over the map without the need for
GPS. Height mapping ensures creating a common map by calculating the position and

orientation difference with similarity metrics. EKF localization and OctoMap supplies



great localization and customizable map with exceptional visual outputs. These

methods serve path planning for cooperative missions in this thesis.

In a cooperative framework, members of the team need to obtain information about
the states of their own and the environment. To overcome this problem information
maximization controlling method is used in the metric base. Relative entropy operates
to measure information, which leads to maximizing information over the robot team.
Robots’ observations over the environment states are maximized by minimizing
entropy with defining an objective function to control the system optimally. The
proposed information maximization framework provides Lyapunov stable system for
HeRTs. Also, control inputs ensure robots collision-free movement in the explored

area.

1.2 Literature Review

In recent years, numerous studies have been conducted on robotic navigation and
various types of applications such as search and rescue (Kumar et al., 2004), target
tracking (Goriji et al., 2007), surveillance (Zhang et al., 2019), agriculture (Tokekar et

al., 2016), and exploration of the environment (Makarenko et al.,s 2006).

Traditionally, in robotic navigation studies, SLAM as in; Thrun et al. (2005) is used to
be aware of the agent’s location and to understand the environment. Durrant-Whyte &
Bailey (2006) presented different types of essential SLAM approaches such as EKF
and Rao-Blacwellized Filter are compared. However, these SLAM algorithms require
landmarks or GPS location to update the position. Also, similar to the approach
presented by Kaess et al. (2012), these algorithms are used mostly in 2D mapping.
Other than the essential SLAM methods, generalized iterative closest point (ICP) is
provided by Segal et al. (2009) to map and localize without any additional sensors.
However, the ICP method is not valid when the data rate of the Lidar sensor is slower
than the motion of the robot. During the application given in this thesis, the aerial
vehicle moves faster than the ground robot, and the rate of movement exceeds the data
rates. In the research presented by Scherer et al. (2012), with the IMU sensor involved
in the algorithm, distortions are eliminated when the aerial robot movements are
relatively faster than the sensor data rates. Bosse & Zlot (2009) explain that a scan
matching method similar to researches given by Yoshida & Tadokoro (2014) and



Bosse et al. (2012), which consists of spinninsg or moving a 2D laser measurement

sensor to map the environment and localize the mobile platform.

Nevertheless, these methods are not suitable for real-time applications because of
substantial post-processing requirements. To adopt this study for path planning in real-
time, localization and mapping is needed. Kneip et al. (2011) achieved real-time visual
odometry with a single camera and IMU with inherent difficulties due to the onboard
camera view angle. Zhang & Singh (2014) have a solution to the real-time usage and
employing heterogeneous agents problem in with the utilization of ICP based
optimization method with a parasllel algorithm that ensures the online update of the
location and map. It suits both aerial and ground vehicles. The same approach in the
application of this study is used to register the points and obtain the odometry data.
With the LOAM method, robots can accomplish the missions without a need for GPS
location data.

Although a single robot or robot teams can be utilized for robotic navigation, such as
researches presented by Nurmaini & Tutuko (2017), Pham & Juang (2013), and
Howard (2006), a HeRT can be implemented in the studies for a more detailed
understanding of the environment. It is possible to employ HeRTs with a different
point of view. An example of the implementation of HeRTSs to the studies is given by
Parker et al. (2004), in which the navigation problem is solved cooperatively. A robot
team made up of identical mobile platforms carrying different types of onboard sensors
can also be an HeRT mission. There is also a collaborative solution given by
Hofmeister et al. (2011), where the parent robot operates child robots and gathering
information from these robots with mapping the relative positions over the map.
Heterogeneity can be defined as the ability to move on the ground, air, and sea. The
study of Hood et al. (2017) presents a method that a UGV and UAYV are used to explore
the indoor environment and localize the robots by use of QR code, monocular camera,
and Lidar. However, it is not aimed to get a merged map like in (Langerwisch et al.,
2013). Common maps must be employed to use the map and odometry information in
the same manner for both robots. In the interest of merging the maps, each robot can
check common landmarks to reference maps by the relative positions to the landmarks
as in (Ktiri & Inaba, 2012). Similarly, checking the occupancy state of the grids can
be used for map merging as in (Husain et al., 2013). Yet, without the use of Lidar

sensor, map merging is not suitable for long mission durations. Moreover, cooperative



monocular based SLAM for multi-UAV systems in a GPS denied environment is used
without any heterogeneity of robots in (Trujillo et al., 2018). As stated by Fu et al.
(2019), Lidars are more accurate than the camera. 3D Lidar sensors are utilized for the
mission of this study to sense the environment with more accuracy and greater speed
compared to the 2D and 1D types. Studies employing 3D Lidar sensors on both
vehicles as in this study were not encountered during the literature survey except the
study given in (Haddeler et al., 2020). However, demonstrations realized with only

ICP type map merging method in that study.

The use of height values to merge maps and localize agents inside the map is handled
in (Kleiner & Dornhege, 2007). Additionally, researches given by Nam et al. (2017),
Forster et al. (2013), and Kaeslin et (2016) height maps are employed with different
similarity metrics for collaboratively localizing the agesnts with only a small number
of similarity metrics to find the position and orientation difference of two maps. This
study becomes distinct from these techniques in the manner of map merging, where
the aerial robot is utilized for assisting the ground vehicle pose estimation.
Additionally, a common map approach with only three similarity metrics for a
cooperative mission in a simulation environment is accomplished as in (Akay et al.,
2018). Yet, the layering method is not employed to get a better map merging

performance.

In this thesis, a unique solution that implements various entropy-based similarity
metrics with the aim of constructing common maps of the environment with HeRTs is
presented. In order to create common maps, Shannon entropy-based similarity metrics
can be used, since it is the only one that holds the chain rule of conditional probability
precisely. Seven distinct similarity metrics are compared, and the most effective one
is chosen for getting a more comprehensive and valid common map. It is critical to
acquire a proper common map for cooperative missions of aerial and ground agents
because, without a valid common map, it is hard to plan trajectories for exploration of
the environment. Moreover, different from all the studies in literature, the layering
method is employed in order to compute the similarities of each local map obtained by
a HeRT. This method also provides the accuracy of the merged common map since
robots’ sight of view prevents the same observations of the environment in features

like a roofed top, forests, etc. This novel approach can also be used in GPS denied and



closed environments. The constructed common map allows creating an active SLAM

system to explore the environment.

In studies provided by Carlone et al. (2010), Lazaro et al. (2013), Sileshi et al. (2013),
Indelman et al. (2015), and Lourenco et al. (2015), the active SLAM with single robot
approaches used in different ways, such as; particle-based SLAM posterior
approximation, Markov Random Field approach, Independent Metropolis-Hastings
Algorithm, dual-layer architecture and thes Pontryagin minimum principle. Also, the
active SLAM problem discussed the in both ways, such as; a single robot and a robot
team in (Julian et al., 2012). The execution of the mission or the necessity of the
application may prompt to use multi-robot/agent teams similar to the studies as in;
(Capitan et al., 2011) and (Indelman, 2015). Multi-robot teams are employed in order
to get the results in less time, more accurate, and attain these performance outputs in
more efficient ways. Similarly, along with the use of heterogeneous teams lead to
efficient mission execution through the distinct abilities of the different kinds of
unmanned vehicles as in (Sanfeliu & Andrade-Cetto, 2006) and (Capitan et al., 2011).
To provide a more efficient outcome of the exploration mission from these studies,

HeRT for active SLAM is also used in this study with a varied approach.

The planning method is one of the main criteria to create an active SLAM system. The
common task of the path planning strategy is controlling the robot to change its
orientation and localization to the desired direction. In literature, planning strategies
under uncertainties can be separated in three ways, such as; look-ahead trajectory
planning, informative path planning and simulation-based approach.

Informative path planning strategies or plans have constraints on time, fuel, energy,
etc. Combinatorial optimization techniques used by Hollinger & Sukhatme (2013) are
based on the increased available budget. The branch and bound approach is proposed
by Binney & Sukhatme, 2012, while a Gaussian distributed model with mutual
information theory is used in (Singh et al., 2009). The studies on informative path
planning strategies were given before, assumes that the environment is known.
However, in exploration missions, the environment cannot be known beforehand. The
framework presented in this dissertation ensures that the only known parameter is the
bounds of the explored area. In addition, the evaluation time increases with the scale

of the problem. This study provides an optimum approach to adjust evaluation time in



accordance with the application type by employing Octree mapping techniques as in
(Fairfield et al., 2007) and (Hornung et al., 2013).

Moreover, in simulation-based approaches, choosing the best strategy from the
generated potential plans is one of the fundamental methods. The evaluation of the
belief of the potential plans to quantify the quality is simulated in these approaches.
Uncertainty metrics used in EKF-based planning analysis is provided by Lazaro et al.
(2013). Similar to this, the EKF applied to the system as an inference engine in
(Martinez-cantin et al., 2008), (Bryson & Sukkarieh, 2008) and (Martinez-Cantin et
al., 2009). As a result, the EKF based localization method is also used for SLAM in
simulation studies of this dissertation. Studies on simulation-based approaches assume
maximum likelihood observations, by reason of future observations are given after the

planning time, and the robots will receive the measurement assumption is defined.

Furthermore, look-ahead trajectory planning strategies evaluate the next given horizon
control actions. Model predictive control strategy with EKF-SLAM is used by Huang
et al. (2005) and Lourenco et al. (2015), the authors used the A-opt, D-opt and E-opt
approaches to get over the optimization problem with the usage of Pontryagin
minimum principle. Also, Sim & Roy (2005) used the A-opt in robot exploration
applications, though all these studies are based on the discretization of the states.
Handling the problem in a continuous manner is another challenging step in the path
planning studies. Planning in the belief space (BS) refers, dealing with the problem in
a continuous domain. Indelman et al. (2014) and Indelman et al. (2015) used BS for
path planning for single and multi-robot teams. Regarding the robot number, the
research provided by Indelman (2015) differs from the rest of the author’s studies
given in this literature review; however, the BS is still in use. Though, planning in BS
strategy cannot provide the desired measurements in the manner of metrics of the
objective. In order to illustrate the goal in the manner of metrics; some of the entropy
approaches are presented in (Carlone et al., 2010), (Julian et al., 2012), (Atanasov et
al., 2015) and (Meyer et al., 2015). In addition to that, Carlone et al. (2014) and
Stachniss (2009) states that entropy-based approaches provide better outcomes than

the frontier-based method given in (Yamauchi, 1998).

Relative entropy -also known as Kullback-Leibler divergence- approaches are widely
applicable and have a great ability to solve complex combinatorial problems. Rao-

Blackwellized particle filters are used for the estimation, but the study is only for single



robots as in (Carlone et al., 2010). On the other hand, Kontitsis et al. (2013) presented
a framework with the multi-robot active SLAM system. Still, this study based on
landmarks and EKF based SLAM method, and landmarks are not always located in

the environment.

In conclusion, different from all the studies in literature, this dissertation provides an
efficient and customizable framework to explore an unknown area with eliminating
uncertainties. Also, the complexities of the multi-robot team missions are resolved by
defined rules, similarity metrics, layering method and volumetric spaces. The
theoretical background of constructing a common map for HeRTSs is verified with
experiments. Besides, the whole theory given in this dissertation is validated by the

simulations in different cases.

1.3 Contributions

Main contributions of this study are listed below;

e Constructing common maps with the use of entropy-based similarity metrics

and utilizing the layering method,

e Designing a controller for robots to maximize information and implementing

cooperative estimation methods on the controller,

e Exploring the environment by employing HeRT with customizable mapping

methods and adjustable information thresholds according to application.

1.4 Thesis Outline

The rest of the thesis is distributed as follows; the SLAM method in order to localize
the robots in the environment and create the map for both systems. In subsection 2.1,
the EKF localization algorithm is given to specify the system in a probabilistic manner.
To ensure the HeRT’s usability on GPS denied environments or without a sensor
except for Lidar, the LOAM is given in subsection 2.2. OctoMap method
implementation, details about the customizable parameters, and the effects of the
parameters on mutual information are explained in subsection 2.3. Further, the height
map technique is described, and the reason for employing the height map is given in

subsection 2.3. After that, constructing common maps with utilizing the layering



method and heights of the objects are provided in section 3. The layering method for
obtaining a more accurate and useful common map is stated in subsection 3.1. In the
next subsection (3.4), the seven distinct similarity metric which are based on entropy
theory is given. Section 4 provides the main contribution of this dissertation as
designing an optimal controller (subsection 4.2) in accordance with the relative
entropy theory (subsection 4.1). The results of demonstrated real-time experimental
and simulation studies for the realization of the theoretical background given in this
dissertation are presented in section 5. In subsection 5.1, the experimental studies of
constructing a common height map are carried. After that, in subsection 5.2, the
demonstration of the simulations and results are provided. Lastly, to discuss the

outcomes and summarize the thesis, the conclusion is given in section 6.






2. SLAM METHOD

In this section, the method for localization of the mobile robots and mapping of the
environment is explained. First, the theoretical background of the EKF Localization
for UGV and UAV with proprioceptive sensors, such as; IMU and environmental
sensor as a GPS carried for both robot is given briefly to determine the location of the
robots in the environment. The second part is allocated for the LOAM method, which
is also a localization method for mobile robots without any environmental sensors.
This method is employed for the real-time experimental validations to prevent the
inaccurate georeferencing of the point clouds due to the sensor noises. After that, to
visualize the environment in 3D with less memory usage, Octree Mapping or OctoMap
method is presented. In the last part of this section, the height mapping of the
environment to understand the surround in the same manner for both robots and

construct common maps with similarity metric, which is given in section 3.

2.1 EKF Localization

EKF is a Gaussian filter used for nonlinear systems such as mobile robots in order to
estimate their states, such as; pose and velocity in continuous operations. Localization
of the mobile robots carrying onboard GPS and IMU is done by employing extended
Kalman Filter in the simulation case studies because of its simplicity and effective

computational performance.

The well-known algorithm of the EKF has two parts; prediction and correction.

Prediction algorithm of the robot state with discrete time intervals, k, is given as;

Xie = f(X-1) (2.1)

Py = Fy Pr_1F + Ry (2.2)

Where X, is the predicted state of the robot, f is the state function and x,_, is the
previous state of the robot. x; is the robot’s state comprises its 3D pose, orientation
and velocities. State vectors of UGV and UAV include 3D position, velocity, and

orientation can be written as;
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Xie =[xk Yk 2k Xk Y 2k @ 0 17 (2.3)
First three elements of the X;, vector refers to the position of the robots. The fourth to
sixth elements stands for the velocity, and the GPS sensor measures these six states.
The last three of the state vector X;, are the orientation in Euler Angles, which are
measured by the IMU sensor. Without the GPS and IMU sensor noises, it is possible
to obtain states of the robots in a deterministic way. However, these sensors have
continuous drifts and additive noise in the real world. Despite the fact that EKF
localization is used for simulation cases in this thesis, it is better to add disturbances
(noises) in the calculation to converge the real ones.

Py, denotes predicted covariance, Fy, is Jacobian of f as a nine by nine matrix. P,_, is
the known covariance at discrete time k — 1. The covariance of Gaussian random

vector (process noise) is denoted as Ry,.

The correction step is given below;

Ki = PoHy (Hi Py H, + Qi) ™? (2.4)
Xk = X + K (my — H(X)) (2.5)
Py = (I = KxHi)Py (2.6)

Here, K}, is the Kalman gain, and H,, is the Jacobian matrix of the observation function
h. m;, denotes measurements at time interval k and it contains states collected by GPS

and IMU sensors, Qy is for observation noise, and I is the nine by nine identity matrix.

Corrected robots’ states and covariance are obtained with equation (2.5) and (2.6) at
time interval k. After that, for the next time steps, states of the robots are calculated

with the continuous loop starting from equation (2.1) to (2.6).

As a result of the EKF localization, it possible to georeference the Lidar point clouds
with the rotation and translation vectors defined by the use of laser measurement

sensor position and orientation difference from the onboard IMU and GPS sensors.

2.2 Lidar Odometry and Mapping

In order to obtain a globally referenced map of the surroundings for Lidar mounted
vehicle practices, all the sensed points must be designated. If there will not be any
designation of the points, laser measurements may attach to the same points or

disruption may occur. As a result, point clouds seem unrecognizable, and the area
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cannot be classified for the aimed results. Aerial and ground robots must georeference
the points to provide a globally referenced local maps. After that, grid maps handled
with georeferenced point cloud to enable better representations of the area by

employing heights of the objects on the cells.

Lidar Odometry method given by Zhang & Singh (2014) is used to reference the points
measured by Lidar sensors. This approach provides receiving georeferenced map and

location of the agents witshout any other sensors, such as; IMU, GPS, and encoder.

In this study, VLP-16 Lidar is employed to sense the objects and the surroundings.
This sensor has 16 optical scanners rotating around its vertical axis at a maximum of
3000rpm. Besides, these scanners are located vertically in order to sense the
environment horizontally +15° from the center point. n,n € Z* refers optical channel
and the map obtained by each channel can be shown by S,,. L is the coordinate system
of Lidar and coordinates of the point in L,,i,i € S, the point cloud is shown by

C(Ln,i). {D} is the referenced coordinate system and C(’%,i), is the point inside that

coordinate system. Also, G is the set of points obtained during a scan by n optical
channel. The surface roughness metric k¥ must be derived to implement Lidar

Odometry in the system of this thesis using the formulation below;

K= m 12 e, (Clniy — Chupl (2.7)
This metric enables us to sort measured points, whether these are edge or surface
(Figure 2.1). If & as its maximum values or above the threshold measured points can
be sorted as edge I',, . Otherwise, where the k value is below the threshold, these
points are surface points, 4,,. That information allows finding position difference by

using Euclidian distances.

@ P @S
| e '

Figure 2.1 : Edge (p and r) and surface (s,v and I) points.
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The distances between different time interval scans S,, and S, IiS;

ck i n—CE S)x(CE L n—CE 1)
@10~ Cnp ) ¥ Cntrp~Cnp
dr = |( +1 CLJ -)—CL +1 | (2.8)
i)~ Cmb
Here, i is the nearest point to the edge point i, i € Ty, [ is the sensed point from the
neighbour optical channel and dr is the distance from edge points to the line which is

created within (j, 1), j,l € S, points.

Moreover, point to surface distance will be;

(C(Ln+1,i)‘C(Ln,j))x(C(Ln, j)_C(Ln,l))
X(Cln)=Clnm)) (2.9)
|l y=Cln) (€l y=Clmy)|

where i is the nearest point of surface point i, i € 4,,, [ is the second nearest point

dAz

which is sensed from the same optical channel and j, [ € S,,. The sensed point m from
the neighbor optical channel m € S,,,; and d, is the distance from surface points to

the surface which is created within (j,[,m), j,[,m € S, points.

Let t, is the duration of 0 — 2 scan of the 3D Lidar and t is the moment at the

investigation of position and localization difference Tt = [px, Dy, Pz 6x, 6y, 0, ]T. The

position and location difference between [¢;, t ] Is;

ti—tgs
Té,i == ETUL (210)

3D Lidar which holds 16 optical channel, measures the environment in &, time steps.

So the rotation and translation terms can be written as;
L _ L L
Cope = RCGpy,_s T 1o (2.11)

where the rotation matrix is indicated as R. In this case features of edge and surface

geometric relationship can be written as functions given below;
fr (Can,nt: Té“.i) =dp, iely (2.12)
fA (C(Ln,j)t’ T(f'l,i) = dy, L€ 4, (213)

Finally, to obtain minimized function for each feature point nonlinear optimization

method is handled;

min(Ty; — (J7J + Adiag(J")))J" d) (2.14)
where f(T%;) = d is the nonlinear distance, J = §f/8TZ%; and 2 is a factor provided

by the Levenberg-Marquardt method. ch,i is found by minimizing the distance to zero
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and the georeferenced point cloud with registering the points C(Ln, j)tat each time step

by the following operation;

Mpoam, = Y=o RC(Ln,j)t_Sz + Té,i (2.15)

Is obtained. After that, OctoMap can be handled within the usage of C(Ln’ p, = M-

2.3 OctoMap

OctoMap is a great visualization tool for 3D environments with computational
efficiency and flexible structure for resolution and explored environment (Hornung et
al., 2013). In simple terms, OctoMap is a mapping technique similar to 2D occupancy
grid mapping. It is dealing with 3D volumetric occupancies instead of occupied 2D

planes as it can be seen in Figure 2.2

OctoMap technique employs the octrees, which are hierarchical data structures in
accordance with the decomposition of space (Mao et al., 1987). The space is
hierarchically divided into eight subvolumes, and the whole volume refers to the first
element of the octree, which is called the root (Wilhelms & Van Gelder, 1992). The
occupancy probability of the detected points that will be transformed as a subvolume
called voxels can be written with the log-odds presentation as which is similar to (Li
& Ruichek, 2014);

L(Vilmy.e) = I(ViImy.e—q) + L(Vi|me) (2.16)
Where;
P(V;|m,
[(V;lm;) = log (%) (2.17)

Here, V; is the voxel investigated whether occupied or free, m, is the collected
measurements, which are point clouds. [(V|m,.;) is the joint probability of voxels’
occupancy state with the log-odds presentation, and specifies the update rule for
mapping. However, it must be considered to insert a limitation to updates in equation
(2.16) to decrease the computational effort for updating the occupancy state of the

voxel.

Limiting the number of updates can be done by giving boundary values of [(V;|m;)

which can be denoted as the lower bound and upper bound of OctoMap, recursively;
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l g, and lyp, . As aresult of that, voxels are stated as permanently occupied when both

of the boundary values are reached. So, the equation (2.16) evolves to;

[(Vilmy,e) = max(min(l(Vi|m1:t_1) + [(Vim,), lUBO) ) lLBO) (2.18)
l,g,and Iy, values are determined by the information threshold on the explored area,

which is going to be explained in section 4.

X
|
N

(e) ()
Figure 2.2 : Different types of mapping results. (a) a simulation scene element
barrier from Gazebo. (b) Point cloud representation. (c) 2D projected grid map.

(d) OctoMap with resolution = 1. (e) OctoMap with resolution = 0.05. (f)
Elevation map.

The probability of the occupied voxels in the map differs between 0 to 1. If the limits

determined in accordance with P(V;|m;) = [0: 1], there will not be any permanently
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occupied cells, but without any loss of information. The limit values near P(V;|m;) =
0.5 such as [ p, =—0.2and Iy = 0.2, cause loss of information about the
environmental map, M,, though it leads less memory usage by decreasing
measurement update numbers for determining permanently occupied cells. Changing
limit values is one of the flexible properties of the OctoMap technique. The second
one is obtaining the map with different resolution values that can provide coarse or
precise path planning control inputs in the robot's local map to avoid the obstacles.
Assigning averages of each inner voxels’ log-odds occupancy value to the root node
will offer less use of memory than the maximum values of each inner voxels. On the
other hand, choosing the maximum values of each inner voxels as the root log-odds
occupancy value assists the precise path planning without any collisions. In
conclusion, the assignment of inner voxels’ occupancy probabilities to the root voxel
and the limit boundary values may vary depending on the application, which will be

given in section 5.

2.4 Height Mapping

Map attained from an aerial robot is like a bird’s-eye view and has difficulties in
capturing vertical surfaces. On the other hand, the ground robot has challenges in
getting the view of the area behind the taller obstacles and the depth dimension of these

obstacles.

In Figure 2.3, the sight of view of HeRT team members can be seen. In this scene, the
shortcomings of each agent’s sensors in the complex environment are exemplified. As
it can be seen from the left and right side of Figure 2.3.a, the aerial robot could not
detect objects and surface details under horizontal wall such as litter bin no.1 and table.
On the other hand, litter bin no.2 is perceived by the aerial robot in contrast to the
ground robot. Also, the ground robot is able to sense litter bin no.1, table, and the inner
surface of the vertical wall. Therefore, maps obtained from vehicles do not look alike.

The height mapping method is employed to resolve this issue.

Height maps can be defined as 2.5D grid map representation of the area. 2.5D grid
map representation, as in Figure 2.4, provides better calculation time and less storage
need compared to using 3D maps. Also, 2.5D grid maps enable comparing grids

received by vehicles through the use of height information. Height maps can be easily
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implemented to the study since local point cloud maps are obtained beforehand. In its
basic form, the map is divided into 2D grids, and the point with the maximum value in

the vertical axis is assigned as the height of each grid.

Litter bin no.2 ‘
> |

-
2% Litter bin no.1
- -

- =i -

Table leg
-

Jersey Barrier

(b)
Figure 2.3 : Lines with different colours show the representative laser beams for one
channel. Distances to objects are illustrated by colours of the beams on the left
side of the figures. Colour is changing with respect to distance. For better
understanding, robots are omitted from point clouds on the right side of the
figures. (a) Aerial robot’s representative sight of view and the point cloud
respectively left and right side. (b) Ground robot’s representative sight of view
and the point cloud respectively left and right side.

(b)

Figure 2.4 : Height map 2.5D X-Y plane projection. (a) Ground robot’s local height
map. (b) Aerial robot’s local height map.
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3D illustration with the isometric view of the height maps are given in Figure 2.5

(b)

Figure 2.5 : Height map 3D illustration. (a) Ground robot’s local height map. (b)
Aerial robot’s local height map.

The height map H can be expressed as in (Yang & Wang, 2011) ;

Ho.: = {00t Mot 05:0)ir ©=1,...,1} (2.19)
Here, O,.; refers to the occupancy probability of each grid g; from beginning to time
t. Oy, is calculated by log-odds presentation similar to equation (2.16), except this
probability value investigates occupancy of 2D planes. p,.; is the height estimation

and o, is the variance of the height.

In this dissertation, height maps employed after obtaining georeferenced point clouds
by EKF localization, LOAM and OctoMap, hence the sensor measurement noises are

omitted in H,., calculation. As a result of that, p,., = z, and o2, = 0 can be written.

Finally, the occupancy probability of the cell with log-odds presentation can be defined

as,
l(gilmy.e) = max(min(l(gl-|m1:t_1) + 1(gilmy), lUBh) , lLBh) (2.20)
With;
P(giIm;) )
l(gilm¢s) =lo _— 2.21
(gll 1.t) g <1 _ P(gllmt) ( )

l,g,and Ly, is the lower and upper bound of the log-odd value to limit the update rate

of the occupancy state of the grid. Thus, if the occupancy probability value is higher
than the threshold for the grid i, the height value of the grid is assigned as the maximum

height value of the georeferenced point cloud on that grid as in equation (2.22).

Z, if P(gilme) > Iy,
= . 2.22
=y if P(gilmy) < Lin (2.22)
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Where z; is the value of the point in the coordinate frame z in each cell, and the [, is

the occupancy probability threshold value.

In conclusion, the localization method and various types of mapping techniques are
given. The EKF localization is a simple and easily implementable method that is used
in simulation studies with GPS and IMU sensors are in the loop. However, when GPS
signal is denied or the sensor is not used onboard LOAM method makes the system
utilizable for the exploration mission. OctoMap method provides an adjustable
framework in accordance with the information seeking controller. Also, it ensures to
the variance of the memory usage property with resolution adjustment. Further, the
height mapping technique offers a map merging infrastructure. With the obtained local
height map of each robot, it can be separated into the layers to understand the
environment for robot movement and to get a precise common map using the similarity

metrics, which is explained in the next section.
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3. CONSTRUCTING COMMON MAP

In cooperated or collaborated applications for HeRTs, there will be different local
maps which are obtained separately. The local maps acquired by the use of EKF or
LOAM may not have the same position and orientation for each robot in a global
coordinate system. Despite the fact that EKF employs GPS and IMU, drifts may occur
in georeferencing the point clouds to the global origin because both sensors have bias
values, and they differ for each robot. For LOAM, there is not any environmental
sensor employed for mapping. As a result, the local maps’ coordinate systems of each

robot have position and orientation differences.

Further, the primary purpose of this study is to maximize information about the
environment with HeRT. Each team member can maximize the information on its own
without checking the area is scanned by another member or not. However, this
procedure is not effective for exploration missions, since the information about the

investigated area may also be obtained.

Constructing a common or joint map for team members will overcome these problems.
Similarity metrics can be employed in order to merge local maps of the robots. The

working principle of the common map construction method can be seen in Figure 3.1

Local Maps

Aerial draft map-Layer 1

Aerial draft map-Layer 2

Aerial draft map-Layer 3
ap-Lay

/

Aerial'draft map

No

Aerial draft map-Layer 4
Ground base map-Layer 1
Ground base map-Layer 2
Ground base map-Layer 3
Ground base map-Layer 4

Similarity Finding best
computation similarity

Updated globally positioned and oriented common map

Figure 3.1 : Working principle of common map construction.

The height values in local maps’ layers attained by UAV and UGV are used in the
similarity computation process to find the best similarity value in terms of position and

orientation between aerial draft and ground base maps. If the similarity value is
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maximized (or distance/entropy value is minimized) enough for each layer, the
common map can be constructed and updated by time intervals as in (Akay &
Temeltas, 2020). Further, the layering method and various similarity metrics and their

usage in this study are explained below.

3.1 Layering Method

In this dissertation, the main purpose of obtaining a common map is to benefit all the
agents in the mission. To classify or define a path for the ground robot, it is not
necessary to obtain any information about the obstacles located above its height. In
contrast, aerial robots demand information about features at all altitudes in the
environment since these robots can fly at different altitudes within their limits.
Moreover, heights of the same features in the environment may be measured
differently due to the robots’ sight of view. In order to overcome this problem, the

layering method is employed in this study.

Additionally, the layering method will be a useful tool for information seeking path
planning. In this study, collected information about the environment is investigated in

volumetric spaces. Detailed explanations will be given in section 4.

For the layering method, layers in the z-direction in relation to the vehicle’s features
are formed. Layer 1 has information about the area where z < h,, layer 2 has
information about the area where h, < z < hs, layer 3 has information about the area
where h; < z < h, and layer 4,5,...,n has information about the area where h, <

z < hy + (n —4) hy,y,. Heights of the layers can be seen in Figure 3.2.

——_<ap — - e U . = e

Figure 3.2 : A representative figure of the heights of the layers from the
experimental study used in this dissertation.
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3.1.1 Layered Map of UGV

The first layer is between the base of the environment and the second layer. This layer
has the height information of the obstacles that UGV can climb over. In this study, the
HUSKY A200 vehicle will be used as UGV, which can climb obstacles less than
150mm height from the base. The third layer’s height is aligned with UGV’s maximum
height. The height of HUSKY A200 with the Velodyne VLP16 mounted on a beam
was measured as 475mm from the ground. Layers of the local maps perceived by the

ground robot can be seen in Figure 3.3.

(©

Figure 3.3 : UGV layered local height maps. (a)1 st layer. (b) 2nd layer. (c) 3rd
layer. (d) 4th layer.

3.1.2 Layered Map of UAV

The third layer and the layers above this layer has the height more than aerial vehicles’
height, h; = 450mm. This height value is chosen for the layer, since UAV is
interested in the layers that it can pass through. For this dissertation, h, = 39075mm

is chosen to decrease the complexity of the calculations.

Layers of the local maps which are perceived by the aerial robot can be seen in Figure
3.4. Note that, different colours of the layers are selected to identify them well in both
Figure 3.3 and Figure 3.4. For the first layer, blue refers to the heights of the objects,
and magenta refers to the base of the investigated area. Aqua colour is chosen for the
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second layer, green colour refers to the third layer, and for the fourth layer, yellow is
selected.

© )
Figure 3.4 : UAV layered local height maps. (a) 1st layer. (b) 2nd layer. (c) 3rd
layer. (d) 4th layer.

Similarity metrics are employed for each layer to get common maps for each layer.

3.2 Similarity Metrics

Similarity measures are encountered in various types of disciplines, such as
mathematics, biology, economy, physics, information theory, ecology, etc. For any
applications, different types of similarity measures can be utilized. The distance
between each other defines the similarity of objects. Similarity measures can be mainly
classified as vectorial and probabilistic. Vectorial measures rely on overlapping two
vectors in terms of distance, while probabilistic measures are calculated by empirical
estimations, such as entropy. Kullback-Liebler Divergence (KLD), Jeffrey Divergence
(JD), K Divergence (KD), Topsoe Divergence (TD), Jensen-Shannon Divergence
(JeSD) and Jensen Divergence (JeD) used as the similarity metrics of this dissertation.

These metrics are derived from the Shannon entropy (SE) definition (Cha, 2007).

In this study the entropy definitions mentioned before are used as follows; the
difference of position and orientation, respectively translation and rotation between

local maps are denoted as u = {uq,...,u,} or T,R and u; = (x;,y;,6;). Where u;
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contains distances in 2D x;, y; (translation, T) and angular difference as 6; (rotation
R). The best position and orientation # value can be found by minimizing entropies or

distance values obtained by different entropy approaches stated below.

SE definition is as follows;

np MNg

Hpqa(u) = — Z Z Pz(2p, z4|u) log, p, (2p, 2q|u) (3.1)

ip=1lig=1

And the best position and orientation with regard to SE definition is;

i =arg muin Hyq(u) (3.2)

KLD definition can be given as;

pz( blu)
dpa(Wiip = 2 L (zp]1) In (3.3)
pa(WkLp = pz(2p|u) Z( )
And the best position and orientation concerning KLD definition is;
i = argmindy, (W (3.4)
u
The third one, JD is as follows;
Pz(zp|1)
%mm—Z@@w o (zalw) In 220 (35)
z( dlu)
And the best position and orientation with regard to JD definition is;
u=arg muin dpa(Wp (3.6)
The fourth entropy definition, KD is given as;
sz(zblu)
dpqa(u = z Zplu) In (3.7)
bd( )KD £ pz( bl ) pz(zblu) + pz(zdlu)
And the best position and orientation concerning KD definition is;
u=arg muin dpa(Wk (3.8)
After that the TD definition is as follows;
d
zpz(zb |u)
dpa(@rp = ) py(zpl0) In
im1 pz(Zblu) + pz(zdlu) (3.9)
sz (Zdlu)

+ p,(z4|u) In
Pl I P Zal)

And the best position and orientation with regard to TD definition is;
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i =arg mgn dpa(W) 7 (3.10)

The JeSD formulation, which is similar to JeSD, can be given as;

d
[Zp (2 ) tn—2Pe (201 |
1 Z35b Zp|u) + p,(z4|u
dbd(u)]eSD zz i=1 pZ( bl ) pZ( dl ) (311)
+ p (Z |u) In sz(zdlu)
L P G ln) + P, Czaln) |
And the best position and orientation concerning JeSD definition is;
u=arg mgn dpa(u) JesD (3.12)

Lastly, the JeD formulation is given as follows;

1 d pz(zblu) lan(Zb|U) +pz(Zd|u) lan(Zdlu)
dpa(Wjen = 5 z )+ puCaahy PG 633

And the best position and orientation with regard to JeD definition is;

= argmindyq (W) jep (3.14)
Where, z,, and z; denote the height values of the objects in local maps captured from
UGV and UAV, respectively. p,(z,|u) and p,(z,|u) refers to the joint probability of
the z, and z; height values with the rotation and translation implemented to the
obtained height map. u is applied to the aerial and referenced height map of the

environment A4,,(z) and G,,(z) respectively with;

Gn(z) =RA,,(2)+T (3.15)
Here,
— RZXZ T2><1
u=0""0 1 (3.16)
With,
_ [ cosB;  sind;
Raxz = [—Siné?i cos0; (3.17)
x.
Toa =[] (3.18)

Distance values are obtained by summation of the joint probabilities with given
formulations and the best orientation, i is calculated with minimizing the distance or
entropy functions given above. Affine 3D transformation matrix u is iteratively

applied to equation (3.15) for minimizing the distance and entropy functions.
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As a result, the position and orientation difference between aerial draft map layers and
ground base map layers are found. The common map, M,,_is obtained by summation
of the transformed aerial local map A,, and ground map G,; M,,, = G, + Ay,. This
merged map provides a better understanding of the environment and a background to
calculate uncertainties/entropies between observed states of each robot in a common
ground. Without the common map, each robot may observe the same points in the

environment. Hence the controller will not be optimal enough for exploration.
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4. INFORMATIVE PATH PLANNING

The aim of the exploration missions is to collect information about the designated area.
The amount of information collected by robots must be known to define the success
criteria in autonomous missions. Relative entropy theory is utilized as an information
metric in this dissertation. Information and relative entropy have a strong relation, in
which information is maximized by minimizing the relative entropy between
observations and environmental states. The difference between the collected
information by robots and all the information that can be collected provides control
inputs for robots. Within that control input and collision-free path planner, robots will
obtain measurements at the next position and determine the updated relative entropy
between environmental states and observed states, as shown in Figure 4.1. After that,
the continuous operation will proceed until the observed states converge to the

environmental states.

Environmental

States * Controller
. Optimal Collision-free
—» Relative entropy —
controller path planner
A I
! [
e ___ ]
Observed Measurements =
States

T Disturbances
(Sensor Noise)

Figure 4.1 : Informative path planning block diagram.

Detailed explanations of relative entropy and information seeking optimal control

topics are presented in the following subsections.

4.1 Relative Entropy

Relative entropy, also called Kullback-Leibler Divergence (KLD), is a measure of

probability difference between two random variables. This measure also helps to find
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a correlation between these variables with mutual information definitions. The
uncertainties of the observations are defined by the probabilistic approaches given in
previous sections. The uncertainties of the observations and the desired level of
uncertainty of the environmental states determine the entropy difference between those
variables, as shown in Figure 4.2. Note that, the entropies are calculated through the
probabilities of the variables. As a result, the KLD provides a framework that can be
used with information-theoretic and probabilistic approaches with given.entropy

definitions.

H(Ws) H(Os)

Figure 4.2 : Venn scheme representation of the KLD. The entropy of the
environmental states, H(w,), the entropy of observations, H (o), conditional
entropies between environmental states and observed states, H (w|oy), Vice-versa,
H(os|ws) and the mutual information between environmental states and observed
states, I(wg, 0g).

In other words, uncertainty measures between two random variables can be expressed
with its formulation given below (Kullback & Leibler, 1951) ;

Pws) ) 4.1)

dy, (P(ws)||P(05)) = fP(WS) 10g<P(0 )

Here, P(wy) is the occupancy probability of volumetric space, s (Figure 4.4) in the
whole map of the specified area, M,,. Similar to this, P(os) is the occupancy
probability of s in the observed map of the specified area M,. Moreover, the mutual
information between observations and environment is as following with Shannon’s
Entropy definition (Shannon, 1948);

I(ws,05) = H(ws) — H(ws|os) (4.2)
Where, H(wg) is the entropy of the environmental states, and H(wg|og) is the
conditional entropy of environmental states and observed states. With the
mathematical operations mutual information with the following KLD expressions can

be written as below;

I(ws , 05) = di,(P(Ws, 05)||1P(ws) P (05)) (4.3)
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Here, P (ws, 0y) is the joint probability of w, and o, random variables.

H(ws|os) H(os|ws)
H(wy) H(oy)

Figure 4.3 : Representation of conditional entropy of states. The transparent green
area denotes the uncertain area of the environment. UAV and UGV must move along
with the yellow and red arrows, respectively. With the movement of robots, the
information, I(w, , o;) will increase, and conditional entropy will decrease.

So, maximizing the KLD of P(wg, 05) over P(wg)P(og) results, maximizing the
mutual information (or minimizing uncertainties) between robots’ observations and
environmental observable states, as in Figure 4.3. Note that, maximizing P (ws, o)
over P(wy)P(os) is not the same expression with maximizing KLD of P(wy) over
P (o). If the process of wy and oy is independent, the P(wy,o5) will be equal to
P(wy)P(os). As aresult, KLD between these two processes are maximized, however,
I(ws , o5) will be equal to zero. To sum up, the independent variables do not have any
mutual information. Maximization of the mutual information between the
environmental state and the robots’ observations is one of the aims of this thesis.
Information maximization or seeking controller must be determined to serve the

purpose of this dissertation.

4.2 Information Seeking Optimal Control

The planning strategy will be handled as an information seeking controller, which
maximizes the time-varying local and global states’ negative joint posterior. HeRT
members receive their control inputs in order to provide maximized information on the
environment. These control inputs will ensure the UGV and UAV heading towards to
the volumetric space, s where the number of permanently occupied voxels are under

the threshold of mutual information. Note that, this threshold is not the same with
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OctoMap occupancy probability upper and lower bound. However, these bounds will
determine the exploration effectiveness in accordance with the mission duration and
obtaining a better map. In order to provide these outcomes with an information seeking
controller, an objective function, which maximizes the mutual information, must be
defined.

0(u"(t)) = argmax(d, (P (ws(o: tr), 0s(t + 1)) || P (ws(0:¢5)) P(os(t

4.4
+ 1)) 44

With;
dy, (P (ws(o: tr), 05(t + 1)) 1P (ws(o: tf)) P(os(t + 1)))

P (wq(0:¢5), 05(t + 1) (4.5)
- ﬂp (ws(0: ), 05t + 1)) log (fzs(O:tf;c)P(os(t r 3))

Where, u” (t) is the control input of a robot at time t and P (WS(O: tf)) refers reachable

occupancy probability of s from the beginning to end of the mission in the whole map
of the specified area, M,,. It is determined with regard to permanently occupied voxels
in each volumetric space on the obtained in OctoMap. P (os(t + 1)) is the occupancy
probability of s with the measurement of robots at the time (¢ + 1) where the robot

changes it states;

X(t+1) =fX(),u"(t) (4.6)
Here, the state includes the points of interest (target point), p.(xp,, Y., Zp.)- HERT
member changes its state to move to the volumetric space’s center point, p, in order
to maximize the information about this space. The projection of that center point on
the X-Y plane is the target point of UGV, Peygy For UAV, the target point, p.,, . is
determined as the intersecting point of the X-Y plane’s normal that includes the center
point and the X"~ Y“& plane. The X-Y plane at UAV’s flight altitude is denoted as
XU&- Y4 plane. So, moving to the target point affects P(o4(t + 1)), and converging

P (os(O: tf)) to P (WS(O: tf)) is desired. Also, energy consumption must be taken

into account in order to define the next target point for each robot. For the sake of
simplicity, energy consumption is implemented to the objective function as a weight

value calculated with the formulation given below;
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1

VO — %)%+ (y2 — y1)?
Here, w; is a strictly positive scalar value, i is the number of target points, x, and y,

4.7

w; =

are the target point values in x and y coordinate, respectively, at the time ¢t. x; and y,

are the target point values visited at time t — 1.

To get an optimal control input for a single robot, the gradient of the objective function

with respect to its target point state can be written as follows;

a ff aP(WSlOS)P(OS) dWS dOS + ff aP(Oslws)P( S)l P(Wslos)d dos (48)

Wlth the mathematical operations;
OP(OSIWS) P(ws|os)
P log————dw,d .
o= [ e P o > dw o, @9
Proof of attaining equation (4.9) from equation (4.8) is given in Appendix C.

So, with the w; implemented to the control input, the controller of the robot will be

given as below;

. 00y

ui = wiw (4.10)
Theorem 4.1. Equation (4.10) with the movement weight will converge to zero
between obtained measurements by all HeRT members. The measurement
probabilities differ from each other at each point with respect to OctoMap upper and
lower bounds, and equals to zero outside the robot's observation area. Also, equation
(4.15) is Lyapunov stable subject to its local optimality in order to maximize the

objective function.

Proof of Theorem 4.1. This proof is acquired with the jointly use of theorems given
by Julian et al. (2012), Palomar & Verdu (2007) and the approach given in this
dissertation with target point gradient and positive scalar weight value: In order to
check the stability of the system with the control inputs, Lyapunov function candidate,
Vi, = —0y is presented. Within the use of equation (4.10), the closed-loop system

dynamics can be written as;

dei aVk
—t = o, e (4.11)

If 9P (os|ws)/0dp,, is continuous, dVy /dp., will be continuous on the space p,, € P.

As a result, equation (4.11) is locally Lipschitz with a continuously differentiable
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candidate function. The Lie derivative of the Lyapunov candidate function, which is
definitely negative or equal to zero.

> v, d > v\
z k WPei _ _Zwi k (4.12)
i—1 apci dt apci

i=1

So, the partially derivative of the conditional entropy of o, over wy in respect of p,

can be written as follows with the assumption of the area around the target point is not

visited before;

dP(os|ws)
————=0
apCi
Therefore, the system is bounded under all solutions. Regarding the invariant

(4.13)

equilibrium points p;, which are providing local optimality of V;

=0 (4.14)
apci pci=p£’i

means 90y /dp., = 0, with i = {1,...,5}, and S is the total number of volumetric

space.

As aresult, targets of the robots will converge to p;, considering LaSalle’s Invariance

principle, all the requirements are fulfilled. Moreover, all target points are Lyapunov
stable subject to its locally optimal case with respect to the objective function’s

maximization.

90,

=0 (4.15)

9P, Pe;=Pe;

and pg, is the equilibrium points to provide local optimality. Moreover, these points
are chosen from a set of possible volumetric spaces in the environment, p;, €
P, {1,..,S}. ooo
Rule 1 These target points will be sent to the robots with the conditions given below
with the pZ and h, which refers to the coordinate point value in the z-axis and the
height value of the layer given in Section 3, respectively. In other words, ifa + a/2 <

h, in Figure 4.4, p.,. ~ will be assigned to UGV as Peugo, -

Pe, <hz, Dy,
Pe; = (4.16)

pe, > has Peyg,
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*Pe; 7
51 2 3 4 5 ﬁ'

a

Figure 4.4 : Representative illustration of volumetric spaces. In this illustration;
[ = 1/w;. Green transparent boxes (s; to s;¢) are the ones that mutual information
value is over the threshold, I(W51:S16 ,051:516) > I;. The red box is the volumetric

space whom mutual information value is under the threshold, 1 (ws24 ,0524) < I
Dimensions of the volumetric space, s is a X a X b and p.,, , is the next target point
to visit.

Rule 2 UGV create their trajectories to reach the target point with the obstacle

avoidance constraints given in Appendix A. However, if p., . is unreachable because
L

of the obstacles, the target point will transform into a circle with a diameter d;, and the

value of the diameter will be 0 < d; < Diyierance € R. In addition, if Peygy, T

Diorerance/2 18 also unreachable by UGV, and this target point will be assigned to
UAV.

Rule 3 UGV and UAV has a certain knowledge of its localization in the environment,

bounds of the environment and the joint measurement probabilities, P(os|ws).

The flow of the information seeking optimal control process is given in Figure 4.5. At
time t — 1, the probability of conditional states between the environment and each
robot is approximated. The occupancy probabilities of the volumetric spaces are
calculated with the use of UGV’s and UAV’s measurements at time t. After that, the

ugv

control inputs, u¢*” and u,”", calculated in order to move robots to the target points
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depending on decreasing uncertainties about the environment. Finally, at the target

point p. , , observations and the probability of conditional states P (wg|os) will be

updated.

UAV UGV

Conditional States: Observations Observations :Conditional States] 1

| | t—1
Pl | [rod |

| |

| |

| |

-

Joint Observations
over Network

P(o5)

I A
| 1 I
| Optimal Control |
I |

argmax(dg;)

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
l
|
|
|
|
|
|
|
|

Figure 4.5 : Flow diagram of informative path planning in this dissertation. This
flow diagram includes phases, such as; before t — 1, from t — 1 to t and from t to
t + 1. Also, it shows the process flow from the conditional states to the observations
and actions of UGV and UAV with the ground station.

In summary, informative path planning for HeRT with relative entropy theory and an
optimal controller in association with KLD is explained. As a result, a Lyapunov stable
optimal controller is achieved through optimization of objective function defined by
KLD and weight as stated by the Theorem 4.1. In order to verify the given theoretic

approaches, the case studies are handled in the next section.

36



5. CASE STUDIES

The theoretical background of this study given in previous sections has also
experimented for the purpose of verifying the solution method in the simulation

environment and the real world.

Experimental studies are only done for determining the similarity metric for
constructing common maps for the HeRT. Unfortunately, because of security issues
about flying UAVs without pilot in-the-loop is forbidden around public areas in
Turkey. As a result, active SLAM with informative path planning strategy for HeRT

is only validated in the simulation environment.

5.1 Experimental Studies

Experiments are handled in order to determine the suitable similarity metric for
constructing common maps for HeRT. The experimental setup, experiment area, and
results are given below.
5.1.1 Hardware Setup
The aim of the experimental studies is the observation of the theoretical algorithms in

the real world. These studies are realized with the equipment listed in Table 5.1.

Table 5.1 : Experimental study equipment.

Intended Use
Unmanned Aerial Vehicle

System Equipment
MATRICE 600PRO

HUSKY A200 Unmanned Ground Vehicle
D-RTK GPS Obtaining Location mformatuiTAvcth sub-centimeter accuracy on

IMU-1 Internal inertial measurement unit on UAV

IMU-2 (Xsens) External inertial measurement unit on UGV
Modem Receive information on UGV

GPS Obtaining Location information with on UGV
Rugged Computer Processing data on UGV
LIDAR VLP-16 Laser sensor on UGV

LIDAR VLP-16Lite
Mounting Parts-1
Mounting Parts-2

Manifold
Main Computer

Laser sensor on UAV
To assembly sensors on UGV and UAV
To assembly sensors on
The onboard computer in order to process data on UAV
Receiving and processing data coming from UAV and UGV
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These equipment are the main components of the experiments and the detailed
information in Appendix D. An integrated experimental setup is provided with these

components specific for this dissertation.

5.1.1.1 Integrated experimental setup

The experimental setup includes three main systems, such as; UGV system, UAV
System and Ground Station.

UGV and UAYV systems are used for obtaining data respectively from the ground and
the air. The ground station was used for collecting data transferred from UGV and
UAYV systems. Also, it was used to processing these data and transmitting control
inputs to systems. In Figure 5.1, experimental setup contents are shown. It can be seen
that UGV, UAV and Ground Station are used. Detailed information about these

systems is given below.

Figure 5.1 : Experimental setup principle of operation.

Data rates of the hardware used in the experiments of this study are given in Table 5.2.

Table 5.2 : Data rates of the hardware.

Hardware Data Rate (Hz)
Velodyne VLP 16 and VLP 10
16L.ite
DJI IMU 400
D-RTK GPS 10
UGV GPS 10
Xsense IMU 100
UGV Encoder 3
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UGV system
UGV experimental setup includes HUSKY A200, rugged computer, VLP-16, VLP-16
interface box, GPS sensor, external Xsens IMU sensor, and mounting parts can be seen

in Figure 5.2

Velodyne
VLP 16

Rugged
Computer

Flgure 52:UGV experlmental setup -outside.

Ground Station

The ground station is employed to control UGV and UAV and receive data from
vehicles remotely. It has a high-performance processor unit and a graphic card suitable
for missions of this dissertation. A wireless link handles the data transmission process.
The ground station has Intel Core i17-6820HQ CPU 2.70GHz processor, and 32 GB
installed memory (RAM).

UAYV System
UAYV system contents MATRICE 600PRO, D-RTK GPS, VLP16-Lite Lidar, VLP16

Interface Box, manifold and mounting parts.

5.1.2 Software Setup

The data flow of the hardware and the software in the experimental setup is given in
Figure 5.3. Robot Operating System (ROS) -Indigo release is used as the base of the
system software. EKF localization!, Navsat Converter, LOAM Velodyne and
OctoMap packages are utilized with customized settings for the specific experiments
in this dissertation. Customized settings are determined with regard to hardware
specifications, such as; measurement errors, process errors and physical attributes.

Also, map resolution, occupancy state determinant bounds and surface roughness

L EKF localization is only utilized for error calculation in experimental studies.
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parameters are included in order to obtain valid results considering the theoretical
background of the thesis given in previous sections.

In addition, the software is developed in Python language for height mapping, layering,
similarity calculations and map merging algorithms. Nodes, message types,
broadcasting transforms, publishing and subscribing topics with the defined queue size
are also written based on Python language.

In conclusion, the desired outputs are obtained on the software side with the hardware

drivers, customized ROS packages and developed software.

N R L )

Octree Mapping
OctoMapping by using

Ground Station \ o
Another computer used for remotely control the mobile robots |
L

Hardware Software

e UGv Ubuntu 14.04 OS Ready to Use Software
Main Computer - Main operating systemthat | | Hardware Dri fEs 1
Rugged computer that receives and transmits collected communpicates \?vitx hardware : Hardware_ D”V?rs :
datas and control commands | Vehicle Driver |
- = | | Robotic based HUSKY ||
GPS ROS-Indigo | | A200 communicate driver| |
GPS-Crescent aul » Robotic middleware software | |
Robotic Base peaCIesceatimonUie system | IMU Driver |
HUSKY A200 I —— A______ : Xsens MTI-X package | |
unmanned ground IMU : EKF (Extented Kalman Filter) | driver :
pelicle Xsens MTI-10 sensor | Localization ! Laser Measruement ||
| Realtime orientation and | Driver |
User Console : position Ros Package | | Velodyne VLP-16 sensor :

Laser Scanner A o .

Velodyne VLP-16 Sony PS-3 remote ! Navsat Converter : diiver !
g controller ! Global world coordinate GPS Dri !
sensor | | river |

| converter | ROS Nmea_driver |
| | package |
: Telemelry ! LOAM_Velodyne ] - |
Linksys-WRT54GL wireless modem | . . | Vehicle Remotely |
A 1] Mapping package by using ! Control Driver |
v | IMU and Lidar data | 7522 concole driver |
i | | Sony PS-3 console driver i
| |
|
|
|
|
|
|

DJ;FEI-e?:T; id WAy localization and georeferenced
'gubridge point cloud
Manifold L Customized Packages

Onboard computer that receives and transmits
collected datas and control commands Developed Software

3 Height Mapping and Layering

I 3 » Algorithm that converts point cloud to the height map and
aser scanner % DJI D-RTK GPS split the map vertically with layers.

Velodyne VLP-16 Lite sensor

User Console - v
Robotic Base DJI RC Map Merging Similarity Metrics

MATRICE 600 Pro unmanned H Merging Maps with | Algorithm that calculates similarity
aerial vehicle _ MU calculated rotation and between maps and find rotation and
DJI IMU transformation matrix transformation matrix between those maps

I
|

Desired Output
Globally oriented common map

Figure 5.3 : Experimental setup physical and functional block diagram.
5.1.3 Experiment Area

Experiments were carried out on Istanbul Technical University Ayazaga Campus. The
field within the campus, chosen for the experiments, has different types of structures,

slopes, and objects which can provide the main idea to handle common maps. Trees
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and roofs are essential for this study, which causes difficulties in sensing, as stated in

Figure 2.3. Images of the experiment area can be seen in Figure 5.2 and Figure 5.4.

S - N o i e

Figure 5.4 : Experiment area photo was taken by UAV.

5.1.4 Scenario

Experiments were performed within the created scenario that includes hardware setup,

software structure and sorted processes. Hardware setup and software structure were

given in previous subsections. The data collection method with UAV and UGV, and
calibration of VLP-16 and VVLP-16Lite were the same as in (Aybakan et al., 2019).

However, post-processing of the data differs from the given study.

In order to mention scenario, the sorted processes can be given as below;

1-

2-

Prepare, and power on UGV and UAV.

Define the paths of UGV and UAV in order to cover the experiment area as in
(Aybakan et al., 2019).

Fly UAV autonomously with the given trajectories.

Collect the data from UAV, such as; point cloud, m; _, RTK GPS signals and

IMU, and send it to the ground station via the wireless link.
Power off the UAV system.
Operate UGV manually with the given trajectories.

Collect the data from UGV, point cloud, m,, , and send it to the ground station

via the wireless link.

Power off the UGV system.
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9- Process the data with the following algorithm;

Algorithm 1 Constructing common map of the experiment area

L 3
Input: C(n'i)t—luav’ C(nvi)t—lugu
Output: M, , Ay, G, @, V;

end

for

end

begin Collect points C(Lni)t and C(Lm-)t from the optical channel S, _and S
" luav " lugv

uav Nugv
t=1:6,:tr do
Calculate surface roughness, x; for each time step, 8, = 0.1sec for UAV and UGV
if K, <wy =0.1;
Ciny=Tn
then; Compute to line distance dr and obtain fr (C(Ln,j)t, ch,,-)
else;
Clniy=dn
then; Compute the distance to the line d, and obtain f, (C(Ln,j)t, Tj,,-)
end
Calculate f(T2;) =d
Calculate the position difference T2 = [t,, ty, t;, 6y, 6,6, ]Tat the time, ¢
Calculate translation, T%; and rotation, R for UAV and UGV based on
nonlinear optimization given in equation (2.14)
if min(T%; — (J7J + Adiag(J™)))]"d) converges
| then; Break
end
Obtain georeferenced point cloud for UGV and UAV, and measurements for each
time step; Myoam,» Me,, and m;  respectively
Calculate 5, and [, 5, with regard to LOAM error, 4.5% by Equation 9
forj=1:4andlyp, = 3.1, 1,5 = —2.2do
fori=1:12%do
Calculate [(V;|my..); with Iy, and I 5,
Obtain local OctoMap of UGV and UAV for each layer, Vug,,]. and V4, i
respectively
end
fori=1:30%and 5, = —2, lyp, = 3do
Calculate I(g;|m,.) ; for each layer j with
th = Zij
else;
2 = 0
end
Obtain local height map of UGV and UAV for each layer, Hy., ., and Hgy, .,
gvj uav;
respectively
end
#Initial value of u, with 15° rotation and [x y]” = [1m, 1m]T, translation difference
096 0.26 1
u=1-026 096 1]
0 0 1
fori=i+1do
Calculate distances or entropies of the heights for each layer with the
equations in Section 3.2
fi; = argmin H or #l; = argmind
if #; converges
| then; Break
end
end
end

Calculate G,,(z) and A,,(z) with .
My, = Gy + Ay
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Note that, only four layers are employed for this study, and the 4" layer has the
information between 925mm to 40.000mm.

5.1.5 Results

Construction of common height maps with seven different entropy-based similarity
metrics and utilization of the layering method in this study is realized with
experiments. Both ground and aerial robots collected useful data in order to examine
the environment with the presented method in this thesis. Aerial and ground maps are
merged, and each point cloud is moved to the desired global coordinate system’s origin
(globally-oriented), designated in this study as the UAV’s local coordinate system’s
origin. As a result of the study, mapping of the environment with complex features is

realized. The details of how metrics are computed are stated below;

The number of spatial samples is 90.000 because of the 300x300 grid construction.
The number of histogram bins used in the joint histogram computation is 100 — due to

the 40cm layers of 40m total examine height.

Results are investigated in two different parameters; root mean square error (RMSE)
of heights in merged maps and computation time; also, visual outputs are given.
5.1.5.1 Height VValue RMSE

Since UAV has the RTK GPS onboard, aerial height map obtained by EKF localization
can be the reference to calculate RMSE of heights in the merged map. Therefore, the

root RMSE formulation can be;

o j <(sum(R(Am<z>) +T - Mm(z))2> -

n

Where A,,,(z) and M,,,(z) are respectively, the aerial and referenced height map of the
environment. R is the rotation matrix, T is the translation matrix. Sum refers to the
height values summation. n is the number of grids on the map, which is
300x300=90.000.

In Figure 5.5, results are inserted into a chart for the purpose of understanding the
relation between RMSE values and computation times of different similarity metrics
with the layering method and without the layering method. As can be seen from the

chart, more complicated similarity metrics provide less error at the cost of increased
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computation time. Moreover, the layering method provides, on average %46 less error,
with an average 0.1sec performance improvement on the computation time. Jensen
Divergence is determined as the best similarity metric in this study with 0.92m RMSE
value. Without the layering method, RMSE values increase for each similarity metric
because of the experiment area’s characteristics explained in previous sections. The
more features (heights) are included for the calculation of the similarity metric, the

more accuracy is obtained.

3,5 1,2
3 1 ’g
= 25 ©
E 08 £
Y [
o 2 5
= 06 &
o S
15 =1
IS
0,4
1 3
0’5 . - l 0’2
0 ~. _‘__-__-_l 0
SE | KLD JD KD D | JeSD | JeD
mmmm RMSE with Layering Method 2,2 1,7 15 1,6 1,2 11 0,92

= RMSE without Layering
Method

Computation Time with
Layering Method

Computation Time without
Layering Method

3,30 | 3,10 | 2,70 | 2,90 | 2,30 | 2,20 | 2,10

0,02 | 014 | 03 0,24 | 044 | 0,78 | 0,81

0,023 | 0,16 | 0,35 | 0,27 | 053 | 0,93 | 0,99

Similarity Metrics

Figure 5.5 : Chart of similarity metric versus computation time and RMSE.

Also, it is expected that the computation time will increase to determine the best
similarity with the layering method because four height maps are included in the
calculation instead of one map. However, the number of iterations stated in Table 5.3
substantially rise in order to find the best position and orientation, . This result shows
that, @ is found with fewer iterations for each layer than the complete height map
without layers. When calculating the i, the results converged to the same values after

the iterations stated in Table 5.3.

Table 5.3 : Number of iterations to calculate the best position and orientation with
and without the layering method for different similarity metrics.

Similarity Metric SE KLD JD KD TD JeSD JeD
Iterations Without Layering Method | 10 51 12 84 127 200 212
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TD and JeSD metrics had similar RMSE and adjacent values (Figure 5.6) as their
metric formulations are also similar. JD has better RMSE value than KD even though
the JD is the symmetric version of the KLD, and KLD has the formulation as half of
KD. It occurs because Jeffreys divergence similarity calculation relies on the elevation

values of both vehicles more than KLD and KD metrics.

I i
17 L F+#[

RMSE

] | 1
0 [ JR 1 R |

| L | |
Shannon Entropy KL Divergence Jeffreys Divergence K Divergence Topsoe Divergence JS Divergence Jensen Divergence

Figure 5.6 : Box plot of the similarity metrics according to RMSE values.

As a result, less than 1m RMSE value provides a high level of confidence for the
obtained common map, where the maximum height value is 40m. Minimum error
values close to zero are obtained in grids that are important for the ground robot’s
movement to climb over. It achieves better results for lower height values in the first
two layers. A maximum RMSE value of less than 2.5m and outliers between 2m and
3m are negligible since those grids can be set as insignificant to the operation of agents.
Even though the calculation time is higher than the others, JeD is determined as the
best similarity metric for this specific dissertation.

5.1.5.2 Visual Outputs

Visual outputs of the experimental studies are given as; height maps of the layers for
each robot, merged OctoMap, merged height map and the merged point cloud map of

the environment.

The obtained height maps’ 2D views of the layer-1, layer-2 and layer-4 for UGV and
UAV can be seen in Figure 5.7. Similar to Figure 3.3, different colours are assigned
for each layer to understand the similarities with ease. For the first layer; blue refers to

the heights of the objects and magenta refers to the base of the investigated area. Aqua
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colour is chosen for the second layer, and green colour refers to the third layer. Finally,
for the fourth layer, yellow is selected.

Figure 5.7 : Obtained height maps of the layers. (a) UGV layer-1. (b) UAV layer-1.
(c) UGV layer-2. (d) UAV layer-2. (e) UGV layer-4. (f) UAV layer-4.

As can be seen from Figure 5.7, height maps of the layer-1 and layer-2 differ from
each other. The height maps of the layer-4 seem similar by visual inspection; however,
the best similarity is found between the height maps of layer-3, which is given in
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Figure 5.8. This result is compatible with the visual outputs, and it is reasonable

because the third layer is the most common layer scanned by UGV and UAV.

(b)
Figure 5.8 : Obtained height maps of the layers. (a) UGV layer-3. (b) UAV layer-3.

Figure 5.8 shows that; most of the heights on layer-3, which are observed by UGV and
UAYV, are similar. Note that; in Figure 5.7 and Figure 5.8, realized images are aligned,
despite that these are not referenced to a coordinate system. Images are arranged in

order to quote them from the same angle of view. Actual layer images of UGV and
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UAYV have position and orientation differences before calculating the similarities of
heights and applying the transformations.

The common elevation map obtained by the experiments can be seen in Figure 5.9

Figure 5.9 : Obtained common height map of the environment. (a) to (e) various
views of the height map.
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The common OctoMap obtained by the experiments can be seen in Figure 5.10

(b) (©)

(d) (€)

Figure 5.10 : Obtained OctoMap of the environment. (a) to (e) various views of the
OctoMap with resolution=0.2m.
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The achieved common point cloud map obtained by the best similarity metric (JeD)
transform can be seen in Figure 5.11.

Figure 5.11 : Common point cloud map obtained with Jensen Divergence similarity
metric output transform in the form of different camera line of sight. A part of these
point cloud maps (red enclosed areas) can be compared with the given bird-eye view
real image in Figure 5.4.
Also, the trajectory input and odometry output of the experiments are given in Figure
5.12. As it can be seen from the images and odometry outputs of ROS are similar.
However, the ground robot could not realize the full path identical to the input
trajectory due to the obstacles and traversability of the area.

@) (b)

Figure 5.12 : Trajectory input and odometry output of the experiments.(a) taken
from (Aybakan et al., 2019).

50



5.2 Simulation Studies

Simulation studies are used for validating the given theoretical background in this
dissertation. In the following subsections, the usage of the simulation tools, scenario

and results are explained and given in detail.

Simulation Computer — OS: Ubuntu 16.04

Gazebo ROS Kinetic
oo e ’__ Customized Packages

N Navsat Converter

i i HUSKY Azioo uGv | Global world coordinate converter

Motors and Velodyne i
» IMU GPS

Wheels WIS EKF Localization

[ L » Realtime orientation and position

L Ros Package
Quadrotor UAV i

l i i Octree Mapping

I, OctoMapping by using localization

Motors and Velodyne and georeferenced point cloud
" Propellers VLP-16 MU GPS
|
1 Developed Software
A
Information Seeking Optimal Controller Height Mapping and Layering
Maximizing mutual information between the environmental states and Algorithm that converts point cloud to the height
the observed joint states with optimal controller map and split the map vertically with layers.

T !

Map Mergin Similarity Metrics
. Map Merging A . Algorithm that calculates similarity between
Calculated rotation and transformation In the beginning with and ! . - .
maps and find rotation and transformation matrix

provide affine 3D transformation matrix for the next measurements
between those maps

\ 4

Desired Output
Explored environment with informative path planning

Figure 5.13 : Simulation setup functional block diagram.
5.2.1 Simulation Setup

The simulation setup includes tools that are utilized in this dissertation. The Robot
Operating System (ROS) is employed to prevent time-wasting of reinventing the
improvements that have already been achieved. It is an efficient and practical tool
when developing robotic applications. ROS provides the flexibility of using specific
algorithms with turnkey customizable infrastructure. Moreover, in order to design an
environment and simulate the mission, Gazebo simulator is utilized, as well. This two

software is available as open-source and can be used in Linux based operating systems,
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such as; Ubuntu, Debian, etc. Finally, the algorithms of this dissertation are written on
Python programming language, which is ROS compatible and easy to adapt with
several useful tools. The functional block diagram of the simulations is given in Figure
5.13. The following subsections provide a comprehensive explanation of the usage of

this software.

5.2.1.1 Robot Operating System

In this dissertation, ROS Kinetic is utilized for defining robots, collecting data, and
processing them with Python algorithms and ready-to-use adjustable packages. UGV’s
wheels, body frame for move collision-free movement, sensor links and kinematic
vehicle model are defined in ROS. Similar to that, UAV’s specifications are
implemented to ROS. However, the UAV model is not identical to the one used in
experiments. Still, it has the same frame transformations and does the tasks of the
mission identically. In Appendix A, obstacle avoidance (collision-free movement)
method and kinematic vehicle models are given. EKF localization, OctoMap and
Navsat Converter packages are used with custom parameters. The parameters, their

values and the reasons for selected values are explained in Table 5.4.
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Table 5.4 : ROS packages, parameters, their values and the reasons for selected values.

Package Parameter Value Reason
UAV ucv
frequency 40Hz 40Hz Better to select 4 times faster than GPS data rate in order to
correct measurements
map_frame map map -
frame odom_frame odom odom Odom to base_link tf’s are given.
base_link_frame base_link base_link -
world_frame odom odom -
gps _gps . 9ps GPS, IMU and Husky A200 odometry data are collected in
imu imu/data imu/data . ; :
sensor husky_velocity controller / order to estimate the location of robots. UAV is modeled as
odometry false % do)r/n constant-velocity, and wind disturbances are omitted.
odomN_config  [000000000000000] [110000000000000] UGV encoder data are taken ;ngaccordance with the equation
twistN_config [100000111001000] [100000111001000] Accelaration values are taken in order to create speed limits.
sensor config imuN_config [000000000111000] [000000000111000] Angular velocities are taken |2n3accordance with the equation
EKF poseN_config [111111 000 000000] [111111000000000] GPS sensors position values are taken in accordance with the
Localization _ _ o equation 2.3
sensor_differential imu, gps, false false No integration is needed. GPS data is converted through
encoder Navsat Converter.
use_control true true Control commands are taken into account.
process_noise_covariance 0.015 X Igxg 0.015 X Igxg Best results are obtained with these values.
dynamic_process_noise_covariance false false Process noise is not scaled dynamically through velocities.
control_config [111001] [100001] UAV uses three aX|s_I|near veI(_)cmes and yaw, UGV is only
uses linear velocity at heading angle and yaw value.
drift 0.01 X Igy 0.01 X Igy
9PS  gaussian
- 0.01x I 0.01x I
noise ox6 ox6 Best results are obtained with these values. Since sensors are
sensor noise acc. 0.05X Isys 0.05 X Isys virtual and not chosen related to the real sensors. Still, these
_ drift values can be used in real-world studies.
imu  acc.gaus
sian 0.05 X I3,z 0.05 X I35
noise
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Table 5.4 (continued) :

ROS packages, parameters, their values and the reasons for selected values.

Package Parameter Value Reason
UAV uGcv
rate drift 0.05 X I3, 0.05 XI5y
rate
gaussian 0.05 X I3,3 0.05 X I3,3
noise
he;‘g]l?g 0.05% Iy 0.05% Iy
heading
gaussian 0.05 % Iy 0.05 %X Iy
noise
frame id map_frame world world The map is built on world frame
- base_frame base_link base_link Volumes occupied in accordance with base frame
resolution 0.05-0.1-1 0.05-0.1-1 These resolutions are chosen related to the memory allocation
sensor_model/max_range 25m 10m UAV collects points on il35deg arc, UGV collects points
OctoMap . ona 10m circle Lo .
If the occupation probability reaches hit, it will be assigned
sensor_model/[hitjmiss] 07/04 asan occupied voxel, and vice versa, miss va_lues will be
assigned as a free voxel. 0.7 and 0.4 is an optimum value
obtained by trials.
sensor_model/[min|max] 0.1/0.96 —0.25/0.7 — 0.4/0.6 These values are chosen related to the information loss.
frequency 40Hz 40Hz Same with EKF localization.
delay 0.05sec 0.05sec Wait before calculating the;e(f]sjrcoordmates; it is related to
Navsat magnetic_declination_radians 0.1rad 0.1rad Itis calculated accordlngotgr;“itrl]ralizz s latitude and longitude
C t . . )
onverter IMU reads pi/2 when facing north. So, no need for offset for
yaw_offset 0.26rad Orad UGV. However, in real-time applications, UAV systems face

IMU problems because of the full power of motors during
elevation. So, an offset value is defined for UAV.
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5.2.1.2 Gazebo Simulator

Gazebo Simulator 5.0 is used for modeling the environment similar to the real world
by visually modeling of the simulation scene with already modeled objects and robots.
The configuration of robots, sensors and physical attributes can be customized in order

to emulate the real systems.

Simulation scene is designed to comprise the complexity of the environment with
features, such as; trees, buildings, roofed top areas and traversable ground. The created

simulation area can be seen in Figure 5.14.

Figure 5.14 : Gazebo simulation scene for this dissertation. UGV and UAV are
marked as red and yellow in (a), respectively. (a), top view. (b), (c), (d) and (e) views
of the scene from different angles.
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5.2.2 Scenario

Simulations are handled on Gazebo Simulator 5.0, ROS Kinetic and within the given

scenario and conditions as following steps;

1. In the Gazebo scene, UGV and UAV locate side by side with (x4 y4) =

(0.3m, 1m) position difference as an initial condition.

2. Define the exploration area by giving the bounds of the area as GPS coordinates?.

Also, calculate the total volume of the explored space with, V, = 200m x 200 X 8.
3. Send command: Elevate the UAV system to z = 8m altitude.

4. Start Algorithm 2. Note that, this command is transmitted to obtain position and

orientation difference of the local maps at the beginning of the simulation.

Algorithm 2 Calculating position and orientation difference
Input: X, (1:6)575 Xy, (1:6)5P%, Xy o (7:9)™MY, Xy (72 D™V, Cly,
Output: i, H;
begin Set initial target points on X-Y plane ( py,,, = (0,50), py,,, = (0.3,4,8) for height map
comparison.
Georeference point cloud with EKF localization using Xkugv(l: 6)6PS Xy 0 (1:6)6F5,
Xiewgo (T D™, Xy (T D™V, CE iy,
Obtain Mty andmg
Calculate [y, and I 5, with regard to desired output information
for j=1:4do

fori=1:G and do
Calculate [(g;|m,..); for each layer j with
if P(gilmy);>0.3;

th = Zij

else;

2 = 0

L
o Cnideygy

L
v’ C(n'i)fugu

end
Obtain local the height map of UGV and UAV for each layer, Hotyg, and
J

Hortuav,-' respectively

end
#Initial value of u;, with 10° rotation and [x y]” = [1m, 1m]T, translation difference

—-0.17 098 1
0 0o 1
fori=i+1do
Calculate distances or entropies of the heights for each layer with the JeD.
@; = argmin d;ep
if #; converges
then; Break

098 0.17 1
u; =

end
Obtain @

end
end

end

2 GPS coordinates to global frame transform is given in Appendix C.
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5. Start exploration of the environment with the Algorithm 3;

Algorithm 3 Active SLAM with Informative Path Planning for HeRT

INput: P(Ws), Iens Xicygy (1:6)75 Xy 0, (1:6)5PS, Xy (72 D™V, Xy (72 D™V, Clry,
C(Ln.i)cugv' Bounds of the area, i, Explored Space volume (1)
Output: M, , Ap, G, Vi, Hj, I(ws , 0)
begin Elevate UAV for 8m, set initial target points on X-Y plane (plw, P1,,,) for height map comparison
Georeference point cloud with EKF localization using Xy, (1: 6)P5 X0 (1:6)°F5,
Xkugv(7: 9™, Xkuav(7: 9™, C(Ln»i)tum, ' C(Ln.i)rugv
Obtain Me, o, andmy,
Calculate Iy, and [, 5, with regard to desired output information
S=Ve/Vs
for s =1:Sand do
fori=1:V do
Calculate [(V;|my..) with lyg and 15
Obtain local the OctoMap of UGV and UAV for each volumetric space, 4, and
Viav g, respectively
Obtain common OctoMap within the use of @
end
for  t=0:t;do
Calculate P(05(t)), P(ws(0:tf), 05(1))
Calculate dy;, (P (ws(0: t), 05 ()] P (ws(0: ¢ ))P(05(1)))
if di, (P(Ws, 09)||P(Ws)P(05)) < Iyn;
0(u™(t)) = argmax(d, (P (WS(O: tf),os(t)) [| P (ws(0:tf)) P(os(t)))
r _ aot
U = Wy apct
Obtain p,
if pZ < hy;
Pc,=Peygy,
else;
pct:pcuavt
end
for k = 0: 4 do #reachability check
i ey, = Xhygy(1:2)e && Xy, (1:2) = Xy, (1:2) g 2
Dtolerance;
pcuyvt—1 = pCuale
end
end
Move to target point within creating collision-free path
else;
Break
end
end
end
Height map of the environment within the use of OctoMap center points
end
5.2.3 Results

Results are obtained with different cases in order to realize the advantages of this

dissertation. The information about the cases is given in Table 5.5 rest of the

parameters are as in Table 5.4.

To keep simplicity and compatibility, height map bounds, distance tolerance and

volume of the investigation spaces are all the same for six cases. The threshold value
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of mutual information between environmental states and observed states, I;;, for each

space is defined by P (w) which takes its values from P(w,) > p,0r P(w,) < p,.

Table 5.5 : Parameters were used in cases of the study.

Case No. 1 2 3 4 5 6
Robots UAV uGcv HeRT HeRT HeRT HeRT
g, -2 -2 -2 -2 -2 -2
lys, 3 3 3 3 3 3
Dtoterance (m) - - 2 2 2 2
lig, -2.2 -2.2 -2.2 -11 -0.8 -2.2
lys, 3.1 31 3.1 0.8 0.6 31
OctoMap Resolution (m) 0.05 0.05 1 0.1 0.05 0.05
axaxb ="V, (m) 5x5x2  5x5x2 5x5x2 5x5x2 5x5x2 5x5x2
Iy, (bits) 0.3 0.3 0.24 0.24 0.33 0.33
1 0.9 0.9 0.8 0.8 0.93 0.93
D2 0.1 0.1 0.2 0.2 0.07 0.07

In simulation studies, only JeD is used for calculating the position and orientation
difference, since it is defined as the best similarity metric in experimental studies. For
cases 3-6, the affine 3D transformation matrix is calculated as 15° rotation and
(x4, y4) = (0.31m, 0.98m) position difference, and it is used for map merging during
the whole process. Very close values between the results and given simulation inputs

are achieved.

The rest of the results are explained by visual and by exploration performances as

follows.

Figure 5.15 : Advantages of employing HeRT. Yellow areas show observations of
UAYV in case 1. Red areas show observations of UGV in case 2.
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5.2.3.1 Visual Outputs

The quality of the obtained maps and the advantages of the used method can be

explained by using visual outputs.

Employing HeRT instead of only UGV or UAV provides a lot of details that can be
seen in Figure 5.15. It is possible to observe under the roofed top areas such as gazebos
and houses (inside the windows). Also, information about the upper side of the trees

and roofs is perceived.

Moreover, the total height map of the environment can be seen in Figure 5.16.

(b)

(d)

Figure 5.16 : Obtained height map of the environment by HeRT. (a) to (f), with
different view angles.
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Obtained OctoMaps of the case studies are given in Figure 5.17. So, in case 6, the best
visually compatible result is achieved with higher information threshold and wide
boundary values. Also, lower resolution values of the voxels in Octomap supply a
more detailed map. However, these values lead to the necessity of more memory

because of the obtained details.

(d)

(€) (f)

Figure 5.17 : Obtained OctoMaps of the environment from (a) to (f), with regard to
cases 1 to 6, respectively.
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Additionally, some of the details cannot be observed, and distortions are realized with
the use of lower information threshold in case 4 and strict OctoMap permanent
occupancy lower and upper bounds in cases 4 and 5 compared to case 6, as shown in
Figure 5.18.

(©)

Figure 5.18 : Lack of information (red circles) and distortions of visual outputs
(yellow circles). (a) case 4. (b) case 5. (c) case 6.
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5.2.3.2 Performance Outputs

The exploration performances of cases are summed up in Table 5.6. Note that, speeds
of the UGV and UAYV are limited to 0.5m/s and 1m/s, respectively. Also, UAV will

turn around itself at the Pevav, for maximum two times in order to attain maximum

information on the volumetric space until the information value is above the threshold.

Table 5.6 : Exploration performances of cases.

. Memory Collected total VSLUT/ | Total Movement
Case  Duration . .
No. (mins) usage information VSE (m)

(MB) (bits) (%) UGV  UAV
1 59 156 1140 %38 - 2832
2 105 115 845 %54 3005 -
3 69 0.224 1250 %26 1570 1032
4 81 32 1377 %22 1440 1825
5 117 228 1774 %20 1755 1930
6 87 237 2107 %17 1875 2035

For the purpose of investigating the total movement and volumetric spaces left under
the threshold (VSLUT) according to the total number of volumetric spaces of the

environment (VSE), the extracted performance metrics are given in Figure 5.19 as a

chart.
4000 60%
3500 1\
7\ 50%
A—\
3000 4 \
— 40%
% 2500 S
5 w
e n
€ 2000 — 30%
s — 5
= - Z
£ 1500 ]
= = —1 20% ~
1000 1 1 1] ]
1 1 1 1 10%
500 1 1 1 ]
0 1 I T 1 0%
Case 1l Case 2 Case 3 Case 4 Case 5 Case 6
Simulation Cases
Total Movement of UGV = Total Movement of the Team
Total Movement of UAV ~ essss\/SLUT/VSE (%)

Figure 5.19 : Total movement of the team and volumetric spaces left under the
threshold according to the total number of volumetric spaces, case by case.
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As can be seen from Figure 5.19, employing only UAV provides less effort in terms
of total movement with better area coverage. On the other hand, in the cases that HeRT
is utilized (case 4 to 6), the UAV movement is higher than the UGV’s. The reason why
this happened is UAV observes areas with its measurements faster than the UGV and
UAV receives more information maximization control input. So, UAV is moving to
more points than the UGV in order to cover the area and exceed the threshold on the
volumetric spaces of the environment. Case 3 is an exception because the UAV system
can measure distances in a wider area. There is not any necessity of moving to the
target points, since it is observed from farther points with the less resolution of
OctoMap. Further, the uncovered volumetric spaces decrease while the total
movement of the team increases. This performance evolution is compatible with the

expected results considering covering more areas.
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= 1500 / ?
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[ c
= S
S &
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< 1000 a
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3
3 40
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500
7 20
15 11 0,224 32
0 0

Case 1l Case 2 Case 3 Case4 Caseb Case 6

mmm Duration (mins) =e=Memory usage (MB) === Collected total information (bits)

Figure 5.20 : Evolution of collected total information, duration of the mission and
the memory usage of the obtained map, case by case.

Figure 5.20 shows that the resolution of OctoMap directly affects the memory usage
since the shared map is an OctoMap file with “.ot” extension. In addition, collected
information is also increasing the memory allocation, but its effect is much smaller

than the resolution. Moreover, to explain the results in terms of duration, case 1 and
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case 2 can be compared. The duration of case 1 is less than case 2, since UAV can
move faster than the UGV and do not need any collision-free path planning. Also, the
duration of case 5 is higher than all of the cases. It is because the lower and upper
bound values of OctoMap are so strict as consequence robots spent more time bringing
the collected information value over its threshold. This is one of the optimized features
of the framework presented in this dissertation. With the greater bounds of permanent
occupancy probability, the total amount of collected information can be higher with
less duration than case 5, as in case 6. Another outcome of the more limited bounds is
encountering more VSLUT over the environment. Although the information threshold
Is the same in case 5 and case 6, the collected total information about the environment

is less due to the limited bounds.

In case 4 and case 3, the duration is better than the duration of case 5 and case 6, and
the collected total information is acceptable; however, more VSLUT over the
environment is achieved. Nevertheless, the collected total information in case 3 is not
practicable because of the OctoMap resolution. With this value of resolution, the
traversability check, obstacle avoidance, etc. are extremely difficult. As proof of this,
the UGV movement is higher than in case 4 because of trying to reach the target point
several times, even though the bounds are greater in case 3. Besides, VSLUT is greater
than in cases 4, 5 and 6. In case 6, the best result is obtained in terms of collected
information with the optimal duration of the mission and lower VSLUT. Only the
memory usage may appear high in case 6 for readers, but it provides more information
and a utilizable map for traversability check and obstacle avoidance. Further, the only
reason for higher movement in case 6 is, robots’ attempt to reach more points as it can

be seen from achieving the least VSLUT.

Moreover, employing the HeRT provides higher collected total information with less
duration of the mission compared to case 2. The duration is the least in case 1 by
sacrificing volumetric spaces achieved over the threshold with respect to cases 3 to 6.
UAV usage, as in case 1, leads to obtain less amount of information because of UAV’s

sight of view.

The entropy of the whole map during simulation is decreasing vice versa the mutual
information between map and observations is increasing. The evolution of the mutual
information between the environmental states and observations during the exploration

mission are given case by case in Figure 5.21. This figure shows that the information
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value is logarithmically increasing since all the thresholds on the volumetric spaces
are exceeded. The evolution of the information is not perfectly continuous due to the
times spend for robots movement to specific target points and waiting to collect
adequate information on that point. On the contrary, at some target points, the robot
may not be able to observe areas behind the objects. As a result of that, with passing
around the object, sudden observations provide a rapid increase of the obtained

information from the area behind the object.
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Figure 5.21 : The entropy evolution during the exploration mission, case by case.
Outputs of the results can be listed as follows;

1. I, and Iy, values affect the duration of the exploration mission and collected

information,

2. OctoMap resolution mostly acts as the memory usage reducing parameter of the
framework. However, it increases the total movement of the robots, which is the

energy consumption of the systems.

3. I, values determine the collected total information over the environment. Also, the

threshold has an impact on the total movement of the robots,

4. Employing HeRT instead of one robot provides better exploration performance in

accordance with collected total information and duration of the mission.
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In conclusion, the theoretic approaches with the given framework are validated
through the real-time experiments and demonstrations in the simulation environment.
HeRT successfully explored the given environment with the use of the adjustable
framework given in this dissertation. The next section serves to summarize the

dissertation and discuss the achievements of the presented framework.
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6. CONCLUSION

Understanding the environment in the same manner for UGV and UAYV robots in
HeRT missions can be difficult because of robots’ various specifications such as
moveable paths, the sight of view and onboard sensors. Common height maps with
various entropy-based similarity metrics are compared by this dissertation to
understand the environment with complex texture for both ground and aerial vehicles,
even in lack of GPS sensors, thanks to the LOAM method. This thesis provides a
method for exploring the environment in cases where GPS signals are jammed or
blocked. As a result of this feature, the method can also be used indoors, caves, GPS
jammed risky territories, etc.

Calculating rotation and translation between two height maps obtained by robots with
different sights of view brings better awareness of the environment rather than using
only point clouds or 2D grid maps. Also, if it is needed to go through a roofed area or
under a tree by the aerial robot, this method will provide practical information with
fewer errors. On the other hand, employing only the height map approach may not be
enough to plan trajectories in the environment or to achieve a better awareness for all
applications. The height values of the grids can be obtained differently from each
HeRT members because of their sight of view. Unlike the rest of the studies in
literature, the layering method is utilized in the experiments of this dissertation, and
this method significantly affected this study by constructing a %44 better map for the
best similarity metric (JeD) in terms of RMSE with average %15 faster computation
time. Due to the complex texture of the experimental area given in this dissertation, it
is understood that the layering method is needed for obtaining a more accurate

common map.

To sum up the constructing common map framework, with the experiments, features
located beneath the trees or the roofed top areas and above them are observed without
any need for GPS signal. Additionally, a more effective common map that enables
planning trajectories for both vehicles is obtained with the determined similarity metric

and the layering method.
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Path planning for HeRT is another challenging topic in robotic navigation in terms of
providing optimal control commands to the robots. With this study, a novel approach

to informative path planning is presented and validated with the simulations.

Defining information thresholds for path planning ensures adjustable outputs such as;
exploration time, memory allocation and visual details. These outputs, which are likely
to change from application to application, are one of the prominent contributions of
this study. Information based path planning control inputs may force the robots to
move the designated points in any case without checking the reachability. Volumetric
space allocation by robots offers a simple and easily implementable framework with
specified rules in contrast to consensus-based algorithms. Also, conflicts on the
decision making of UGV and UAV are omitted with these rules. In addition,
volumetric spaces provide scalable computation complexity by changing the
dimensions of the volume. In this study, within tuning the parameters average 53%
better information obtained about the environment with the cost of 5.7% longer
duration for exploration (case 6) compared to employing only one robot (case 1 and
case 2). On the other hand, 33% shorter duration and 28% less action for robots with
a 46% decrease of collected information on exploration mission are achieved with the
comparison between employing only UAV (case 2) and HeRT (case 6).

In conclusion, exploring a defined area with complex features by employing
informative path planning method for HeRT is validated with the simulations.
Utilizing HeRT, layering method, various mapping technique and similarity metrics
for common map constructing, relative entropy theory, and obtaining a Lyapunov
stable optimal controller with specific rules provides adaptive and effective Active

SLAM framework for the exploration of the environment.

6.1 Practical Applications of This Study

This study can be used for autonomously exploring the risky territories, forests, caves,
etc. with tuning the parameters in order to carry out the mission requirements. The
risky territories such as; desolated areas, dysfunctional nuclear power plants and
wreckages are dangerous for humans to inspect; hence sacrificeable robots can be

employed.
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This infrastructure is used to lower the risk with only possible tangible loss. For
example, after the earthquake, an area where the bounds are known lined with
wreckage. It is very risky to search the area with humans, since building parts may still
fall and harm people. However, HeRT can be employed in order to check the health of

the construction with visual inspection without any human interaction.

Further, this study provides a great tool for investigating hostile territories such as
caves, forests, or a plant where GPS signals may jammed or blocked. To exemplify, in
order to move the troops to a specific location, the path and around the trajectory must
be known beforehand. This framework provides exploration of the area to control the
traversability of the path without any need of a human in-the-loop system.

6.2 Future Work

More than two robots, such as; three UGV and four UAV or swarms, can be employed
to explore the area with less time. This improvement causes scalability problems and
brings necessity of consensus-based algorithms. Within the implementation of these
algorithms and overcoming the scalability problem, this framework will be a great

utility for more effective exploration missions.

In addition, to unmount the ground station from the working principle of this
framework, decentralized or distributed infrastructure can be applied. Nevertheless,
communication constraints and optimal communication-based algorithms must be
defined as in (Imer et al., 2006). As a result, the system will not be affected by

communication blockage.
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APPENDIX A: Vehicle - Sensor Models and Obstacle Avoidance

In this section, the kinematic motion models of the vehicles, stochastic sensor models
and obstacle avoidance methods are given.

Motion Models of Vehicles

Determining kinematic motion models is a little bit tangled process. For the wheeled
vehicles, there are different types of wheel types classified as their behaviors. Tricycle
drive, two-wheel differential drive, four-wheel differential drive, Ackermann drive
and synchro drive are some of the most known types of vehicle motions that are allied
to wheels. For the non-wheeled vehicles like submarines, quadcopters and fixed-wing
aerial vehicles are also considered to extract kinematic motion models.

Further, kinematic motion models can be categorized in terms of their physical
employments; as constant velocity model, holonomic model, non-holonomic model
with two increments, non-holonomic model with one increment one angle sensors,
black-box model and no-motion motion model (Jose Luis Blanco Claraco, 2012).

In this study, a two-wheeled differential drive robot and a quadcopter robot is used as
ground and an aerial vehicle, respectively. For the ground robot, the non-holonomic
with two incremental encoders kinematic model is chosen. The constant velocity
kinematic model is chosen for the aerial robot.

Non-Holonomic with Two Incremental Encoders

This type of kinematic motion model is applicable for two or four-wheeled vehicles.
Encoders from the differentially turned wheels obtain odometry data. Control inputs
assign robots' action, and those sensors collect its feedback.

Non-holonomic motion means constrain on vehicle motions such as; the vehicle
cannot move sideways as a result of robots heading must be adjusted to its velocity
vector. The non-holonomic motions trajectory representation can be seen in Figure
Al

Figure A.1 : Non-holonomic motion with two-wheel encoders trajectory
representation.
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Robot pose at time step k is;
Xie = [ yie Oi]” (A1)

where, x; is the robot’s position in x coordinate, y, is the robot’s position in y
coordinate and 6, is the robot’s heading angle.

The control input at time step k is;
w, = [Au, Au,, T (A.2)

where, Au, means east sided wheels motion difference and 4u,, means west sided
wheels motion difference.

So, within the control vector robot’s states recursive function can be indicated as;

Xie = f (Xi—1,ug) (A3)
And it can be separated as;
X = Xk-19(ux) (A.4)
X}_1 states robots last pose and g (uy) is the control function which can be written as;
g(ue) = [Axy Ay 46,]" (A.5)
Then, by using geometric constrains g (u, ) can be rewritten;
Axy, R sin 46,
gu,) = Ayk] = |R(1 — cos ABk] (A.6)
A0, 40,
So, the complete kinematic model of non-holonomic motion with two encoders is;
R sin 46,
Xyi = Xi_1 |R(1 — cos Aek] (A7)
A6,

Constant Velocity Model

Constant velocity model can be used when the vehicle’s odometry data could not be
received from the user; thus, this type of kinematic model is suitable for quadcopters,
submarines, etc. It is assumed that the robot has no acceleration at each time step; in
other words, the robot’s velocity is constant. In the constant velocity model state vector
of the robot consists of robots pose in coordinate frame and velocity vector. In addition
to this, the control action only includes time intervals namely g(X,_4,u) can be
edited as g(X,_1). Representation of the constant velocity model in coordinate frames
can be seen in Figure A.2.

This model can be implemented for all vehicle types because it has no supposal on the
properties of the vehicle. But, for the sake of getting a well-defined model, precise
actual motion, higher sampling rates and distinct acceleration modeling are needed.
So, robot’s 2D pose which is in random global coordinate frame and velocity vector
can be written as;

T
X, = [xk Vi Ok Uy, Uy, ng] (A.8)

Here, the first three elements of that matrix show robots pose in a random global
coordinate frame which is denoted as R, and the rest of the matrix indicates velocity
Vector vy,.
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Vi

X

Figure A.2 : Constant velocity model representation. The dotted quadcopter
indicates vehicle’s position at time step k. Quadcopter without dotted lines refers to
vehicle’s position at time step k + 1.

Within the assumption that stated before as velocity is only a time interval,
[Rk] _ [Rk—l (Vg1 Atk)] (A.9)
Uk Vk-1

As can be seen from the equation above v, = v,_; hence, the velocity vector is

constant. Robot’s pose can be expanded by using mathematical operations and
geometric constrains in Figure A.2.

Stochastic Sensor Model

Sensors are the necessary equipment to obtain a mobile robot’s position and orientation

and the map of the environment where the robot is moving around. Sensor types are
illustrated in Figure A.3

Sensors
Proprioceptive Sensors  Exteroceptive Sensor:

Contact-Short Range
Sensors.

+ IR
Single-Direction RangeFinder
*  Proximity

2D RangeFinder

* 2D LIDAR

Inertial Sensors

« IMU
Odometry Sensors
+ Encoder

3D RangeFinder
+ 3D LIDAR
* 3D Cameras
Range Only Sensors
* SONAR

Environmental Sensors
7z
/Absolute
Positioning
Devices ’
R GPS /

Figure A.3 : An illustrated form of sensor types and examples of products. Bolded
ones are the sensors that are used in this study.
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In SLAM applications, Bayesian recursive estimators employ uncertainty models of
sensors. The problem remarked in this study consists of UGV, which is equipped with
an IMU, two encoders located on the south and west sided wheels and GPS. Also,
position UAV has its own IMU and RTK-GPS. Both UGV and UAV will be equipped
with Lidar sensors.

IMU sensor is used for obtaining heading angles and inclinations in 2D on UGV’s. For
UAV’s, this type of sensor treated collect pitch-yaw-roll angles of the vehicle.
Encoders are the ones that are essential for the non-holonomic motion model. In other
words, those are very important sensors for two-wheeled mobile robot applications.
Further, proprioceptive sensors are employed to gather robot's state. However, it is
necessary to get environmental information to localize itself and map its environment.
In order to collect that information, Lidar is attained. Lidar sensors send laser beams
about its 360° and collect those beams to realize the range of the reflection surface.
Within that information, robots’ environment can be illustrated.

Model of a sensor with additive noise can be presented as;

Yk = h(xk,m) + ﬁk (AlO)

Where x, is the robot pose measured by sensor, m is the measured data of map and
I, is the Gaussian sensor measurement noise with the normal distributions stated
below;

Y = Ny, Si) (A.11)
U = N(0,Qy,) (A12)
m= N(u2) (A.13)
Then the stochastic model of sensors will be;
Yk = h'()?k,m) + ﬁk (A14)
With the covariances of IMU, encoder and GPS given as follows;
2 2
Top Opo Ogy
RMYU = (g5, 05, Oy (A.15)
2 2 2
O%p  Oypp Oy
O-;gx O-;gy 0-9?1/)
Rodom = (g2 af, o}, (A.16)
2 2 2
Oyx  Oypy Oyy
(0% O-J?y 0'9?1,1) 0 0 0
Oyp Oyy ngw 0 0 0
2 2 2 0 0 0
govs — |%¥x Fuy Oz (A17)
o2, g2 g2
0 0 0 xXx Xy Xz
0 0 0 oy 05y 0y
| 0 0 0 Oy Uz'zy 5]
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Obstacle Avoidance

To define a collision-free path for robot obstacle avoidance must be considered for
autonomous application. In this dissertation, obstacle avoidance is not a discussed
point for the aerial vehicle since it is elevated over the maximum heights of the objects
in the environment, and the altitude of the UAV is not changed during the process.
First, the base footprint of the UGV and a tolerance value for this footprint are defined
as in Figure A.4.

Figure A.4 : UGV obstacle avoidance features. Base footprint(green rectangle),
toleranced base footprint with +0.25m longitudinal and +0.17m lateral enlargement
(light blue rectangle), trajectory arc (red line), global trajectory (green line),
obstacles (red boundaries, aqua section and magenta central line) and DWA velocity
decreasing area (blue section).

The global path is defined as the shortest trajectory to reach the goal point. Robot
heading towards the line, which connects the point of its center and the goal point, and
starts moving linear in case there are not any obstacles on the path. The local path is
defined with the dynamic window approach (DWA) by consideration of the frame that
includes tolerances on the footprint. The DWA planner (Fox et al., 1997), provides an
optimized and collision-free trajectory for the robot. An objective function, including
translational and rotational velocities, is maximized to move the robot with avoiding
the obstacles. The objective function of the DWA is as follows;

Opwa(%,0) = f(0.heading(x,0) + ¢.dist(x,0) + v.vel(%,6)) (A.18)

Here, x and 0 is translational and rotational velocity, respectively. Besides, heading
depends on the movement of the robot, whether directly to the goal point or changing
its heading angle. dist is a measure of the distance between the closest object and the
robot, and if the distance is small, the robot’s aim will become to move around it.
Lastly, vel refers to the velocity towards the heading of the robot in order to move the
target fast. Function f, ensures the movement with a clearance of objects through
smoothening these weighted definitions.

Furthermore, the translational and rotational velocities that possibly maximize the
objective function are chosen from the intersection of search spaces; trajectory arcs,
acceptable velocities and dynamic window. Trajectory arcs are the possible ones that
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robots can follow during the time intervals. These cannot intersect with the obstacle.
Acceptable velocities refer to the bounds of velocities that do not result in a collision
and will allow the robot to stop before the object. The set of acceptable velocities can
be given as follows;

X < \/Z.dist(fc,é).jc' ,0 < \/Z.dist(ic, 6).6 } (A.19)

Sy, = {x 0

The dynamic window refers to the velocities that robot be able to reach in time steps;
hence it is limited with regard to the vehicle’s accelerations. The definition of the
dynamic window velocity set is given below.

Sy, ={x,0]x € [k —X.t, %1 +3.t],0 € [0 —0.6,0,,+6.t ]} (A20)

Here, the t is the duration between time intervals and x,_,, 6,_, are the velocities
before the control command given. The trajectory arcs outside this set of velocities are
omitted since those cannot be reached.

As a result, the intersection between possible velocities that provide trajectory arcs,
acceptable velocities and dynamic window ensures a local collision-free path planner.
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APPENDIX B: GPS Coordinate to Global Frame Transformation

The 2D transformation between GPS coordinates to points in the global frame is done
with the equations given below;

x = cos(¢p). 5. [(longitudeZ — longitudel)

() (=) ©

T

and,

1
y= |atitude? — latitude) «

(o2) + ()

T
ﬁ] (B.2)

With,

m latitudel + latitude2 w (B.3)
2 2 180

¢ =

Here a is the euqatorial radius of the earth and its value is 6378136.6m. Also, the polar
radius of the earth is c=6356751.9m.
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APPENDIX C: Proof of Obtaining Equation (4.9) from Equation (4.8)

Proof of obtaining equation (4.9) from equation (4.8) is given below.

First, the relation between joint probability and the conditional probability of wg and
o, random variables as specified in below must be taken into account;

P(Ws: Os) = P(Wslos) P(Os) = P(Oslws) P(Ws) (Cl)
And,

Pl = | Ploglws =w) POws = w) dw, (€2)

N

Secondly, with the chain rule of partial derivative, there is;

aP(Wslos) _ aP(OSIWs) P(Ws) aP(Os =0) P(Oslws)P(Ws)

= - C.3
9P, e PO 0py P ©9
So, replacing C.3 in equation (4.8)’s first integral operation provides;
oP
.ff (WS|OS) P (o) dwg dog
5 = o|lwg, = w) P(wg = w) dw, dog
Pe; (C.4)
0
apci
=0
ff dP(os, = 0) P(og = o|wg = w)P(wg = w) dw. d
o, P(o; = 0) e €0
B f 0P(os =0) [ P(os =o0|lwg =w)P(ws =w) dw. d
~) T op,, P(o; = 0) e €0
0P(os =
= f—(gs o) dog
pCi (C5)
0
= alt?CJ‘P(OS = 0) dos
0
apci

=0

As a result of that, equation (4.8) becomes equation (4.9).

85



APPENDIX D: Experimental Setup

Matrice 600Pro

DJI MATRICE 600PRO is a product that has a very stable and long flight range
capability, and it can carry equipment that has a lot of advanced features. This product
is used in order to provide less hardware development necessity, and it is used in a lot
of different research studies. As a result, it can be aimed to develop theoretical studies
of this dissertation. Main properties of the UAV is stated below (Table D.1);

Table D.1 : MATRICE 600PRO main features (Matrice 600 Pro Specs, FAQ,

Tutorials and Downloads - DJI, n.d.).

Feature Remark
Max. Take-off weight 15.5kg
Propeller Number 6
Min. Flight Duration 16min
Max. Diameter 1668m
Weight 9.5kg
Battery Number 6
Max. Altitude 500m
Max. Meter Above Sea Level 2500m
Operating Frequency 2.4GHZ, 5.8GHz
Remote Controller Available
Internal IMU Available
Onboard SDK Available

A picture of DJI MATRICE 600PRO can be seen in Figure D.1.

RTK GPS
Antenna

Velodyne
VLP-16L

DJI MATRICE 600 Pro

UAV Platform

Manifold

Figure D.1 : DJI MATRICE 600PRO.

HUSKY A200

HUSKY A200 is programmable, ROS compatible, able to carry a lot of different
equipment, and a very popular vehicle in mobile robot studies. It has a 24V battery
power supply, 4x4 power train, and wheels that can be used in very rough terrains.

Brief features are listed in Table D.2.
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Table D.2 : HUSKY A200 features (Husky UGV - Outdoor Field Research Robot by
Clearpath, n.d.).

Feature Remark
Max. Payload Capacity 75kg
Dimensions 990x670x390mm
Max. Duration 8h
Max. Operation Diameter 1668m
Weight 50kg
Power Output 5V / 12V / 24V, Max 5A
Control Modes Voltage, speed, torque, wheel speed

D-RTK GPS

D-RTK GPS is provided by DJI company, which has subcentimeter accuracy of
localization information. This Kinematic GPS has a ground station and onboard
antennas. The features of the GPS module is given in Table D.3.

Table D.3 : D-RTK GPS features.

Feature Remark

Location Accuracy <lcm
Speed Accuracy 0.03m/s (RMS)
Max. Operation Time 8hours
Frequency Global GPS L1&L 2, GLONASS F1&F2
Weight 139.5¢
Power Consumption 5.2W
Communication Interface CAN, UART, USB

VLP-16 & VLP16L.ite

VLP-16 and VLP16L.ite are the most critical equipment that is used in this study as 3D
laser measurement sensors. These equipment are located on UGV and UAV with
newly designed mounting parts. Specifications of Velodyne Lidars are given in Table
D.A4.

Table D.4 : Velodyne VLP-16 specifications.

System Specification Value
Channel Number 16
Measurement Distance 100m
Accuracy +3cm
Sensor Vertical FOV +15°(30°)
Horizontal FOV 360°
Angular Resolution 0.1°-0.4°
Rotation Rate 5-20Hz
Beam Size 903nm
Laser Beam Divergence 9.5mm x12.7mm
Wavelength 0.18°
. VLP16 830g
Weight VLP16Lite 590g

VLP16 and VLP16Lite sensors have the same outside dimensions; however, their
weight differs from each other. Lite one is used as mounted on UAV and the other one
is located with a certain height from the upper mounting plate on the UGV. It is desired
to extend Lidar’s the sight of view by omitting the dead band of the sensor
measurements. Without this improvement, Lidar measuers the distances to the points
on the UGV.
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Mounting Parts

Mounting parts are designed and manufactured with taking in consideration of general
design criteria in order to mount VLP-16, VLP16Lite and their interface boxes on
UAYV and UGV by preventing vibration and shock effects.

Manifold

The manifold is a particularly designed high performance embedded computer that is
compatible with the onboard software development kit released by DJI company. In
order to create an autonomous UAV system, the manifold has a well-designed
infrastructure whose technical specifications are given in Table D.5.

Table D.5 : Manifold technical specifications.

Feature

Remark

Main Processor

Graphic Processor
Storage

Voice
USB
Network
1/10
Weight
Power Consumption
Communication Interface

Quad-Core 4 Plus-1 ARM
Vision Signal Processor
Low Power Consumption Voice Processor
Multi-time and power space
Advanced power distribution management
NVIDIA Kepler GeForce
2GB DDR3L RAM
16GB eMMC 4.51 store
Microphone and Headphone Input
USB 3.0, USB 2.0, Micro-B USB
10/100/1000 Based Ethernet
UART, Micro SD, Mini HDMI, Mini PCle
139.5¢
5.2wW
CAN, UART, USB
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