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ACTIVE SLAM WITH INFORMATIVE PATH PLANNING FOR 

HETEROGENEOUS ROBOT TEAMS 

SUMMARY 

Recently, heterogeneous teams consisting of unmanned ground vehicles and 

unmanned aerial vehicles are being used for different types of missions such as 

surveillance, tracking, and exploration, etc. Exploration missions with heterogeneous 

robot teams should acquire a common map for understanding the surroundings better. 

The unique approach presented in this dissertation with cooperative use of agents 

provides a well-detailed observation over the environment where challenging details 

and complex structures are involved. Also, the presented method is suitable for real-

time applications and autonomous path planning for exploration.  

Lidar Odometry and Mapping with various similarity metrics such as Shannon 

Entropy, Kullback-Liebler Divergence, Jeffrey Divergence, K Divergence, Topsoe 

Divergence, Jensen-Shannon Divergence and Jensen Divergence are used to construct 

a common height map of the environment. Furthermore, the given layering method 

that provides more accuracy and a better understanding of the common map. All of the 

given similarity metrics are compared, and the advantage of utilizing the layering 

method is shown. The best similarity metric for constructing a heterogeneous robot 

team common map of the experimental area was obtained by using the Jensen 

Divergence similarity metric and layering method.  

Moreover, Extended Kalman Filter localization and OctoMap techniques are utilized 

to create an adaptive simultaneous localization and mapping infrastructure for 

informative path planning. Optimal parameter tuning for the specified simulation 

environment provides adjustable memory allocation and exploration performance, 

such as; duration, collected information and effort.  

The information seeking controller obtained with the use of relative entropy ensures 

exploration of the given area to minimize the uncertainty between observed states and 

environmental states. Robots move to the volumetric spaces’ center under given rules 

and collect measurements by proprioceptive and exteroceptive sensors. With the use 

of heterogeneous robot teams, the measurements collected by the Lidar provide an 

advantage in perceiving complex details that can not be done by homogeneous robot 

teams. 

Constructing common map part of the theoretical approaches in this thesis are 

experimentally validated. In addition, the complete demonstration of this dissertation 

is done with six different cases by simulation studies. The theoretical background of 

active simultaneous localization and mapping with informative path planning for 

heterogeneous robot teams are validated, and the advantages of this study are 

remarked. 
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HETEROJEN ROBOT TAKIMLARI İÇİN BİLGİLENDİRİCİ YOL 

PLANLAMALI AKTİF EZKH 

ÖZET 

İnsansız Hava Aracı’nı (İHA’yı) ve İnsansız Kara Aracı’nı (İKA’yı) bünyesinde 

bulunduran heterojen yapılı robot takımları,  günümüzde gözetleme, takip, keşif, vb. 

farklı görevlerde kullanılmaktadır. Çevrenin haritalanmasını gerektiren keşif 

görevlerinde, heterojen robot takımlarının ortamı daha iyi anlayabilmesi adına, ortak 

bir haritaya ihtiyaç duyulmaktadır. Bu doğrultuda özel yaklaşımlarla, Lidar Odometre 

ve Haritalama (LOH) ile zorlayıcı yapıların bulunduğu ortamda, araçların kooperatif 

bir şekilde benzerlik metriklerini kullanarak ortak harita çıkarması sağlanmaktadır. 

Bunun yanı sıra, sınırları belirli bir alanın, heterojen robot takımları ile keşfini 

sağlamak adına sürekli olarak toplanan bilgiyi arttırıcı kontrolcü tasarımı 

kullanılmaktadır.  

Farklı tipte hareket denklemlerine ya da dinamik modellere ve/veya farklı sensör 

yapılarına sahip robotlardan oluşan robot takımlara heterojen yapılı robot takımları 

denmektedir. Diğer taraftan robot takımlarının eş zamanlı konumlama ve haritalama  

problemi ile bu takımdaki robotların yol planlamalarının eş zamanlı gerçeklemesi ise 

Aktif eş zamanlı konumlama ve haritalama (EZKH) problemi olarak 

adlandırılmaktadır. Buradaki eş zamanlı gerçeklemedeki amaç otonom robot araçları 

için planlanan yolların aynı zamanda EZKH’deki belirsizliği de minimize edecek 

şekilde gerçekleştirilmesidir. Diğer bir deyişle otonom robot araçları için bilgilendirici 

yol planlarının oluşturulmasıdır. Bu çalışmanın temel amacı heterojen yapılı robot 

grupları için bilgilendirici yol planlamaya dayalı bir Aktif-EZKH sistemi 

tasarlamaktır. 

Robot takımlarının farklı dinamik ve sensörlere sahip olması diğer bir deyişle 

heterojen yapıda olmaları, bu robot takımlarına avantajlar getirmektedir. Örneğin; 

hava robotları hızlı hareket edebilir, kara robotları daha ağır faydalı yükler taşıyabilir 

ve hedef nokta ile doğrudan etkileşime girebilirler. Karma bir araçlı bir yapı içerisinde 

yer alan İHA ile İKA oluşan bir robot grubu keşif, arama veya güvenlik amaçlı sınırları 

belirlene bir bölge içinde iş birliği yaparak ortam içindeki görevlerini insandan 

bağımsız bir şekilde otonom olarak gerçekleyebilir. Burada İHA ve İKA’ların 

birbirleri ile yer istasyonu aracılığı ile veri paylaşımında olduğu varsayılmaktadır. 

Komşuluk alanları içerisinde haberleşme ile harita paylaşımı ya da araç durum vektörü 

paylaşımı yapabilen robot birimleri kooperatif robotlar olarak gösterilmektedir. Bu 

çalışmada dış ortam sensörü olarak 360° ortam taraması yapabilen ve saniyede 

300.000 adet noktanın mesafesini ölçebilen  3B LIDAR sistemi kullanılmıştır. Yüksek 

çözünürlüklü ölçüm avantajının yanı sıra bu kadar büyük miktardaki veriden optimum 

miktarda ve hızlı bir şekilde anlamlı veri üretip bunları robot konumlama, planlama ve 

koordinasyonunda kullanım da ayrı bir zorluk ortaya koymaktadır.  

Temel olarak, hareketli olan bir araçtan elde edilen nokta bulutunun coğrafik olarak 

yerleştirilmesi gerekmektedir. Bu işlem sadece Lidar sensörü kullanılarak da; farklı 

sensörlerin verilerinin ortak bir şekilde kullanılması aracılığıyla da yapılabilir. Sadece 
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Lidar ile toplanmış verilerin işlenerek nokta bulutunun coğrafik olarak yerleştirilmesi 

ve gözlem sırasında sensörün hareketinin elde edilmesi, bu çalışmada LOH ile 

sağlanmaktadır.  Bu sayede; GPS ve IMU olmaksızın EZKH yapılabilmektedir. Buna 

ek olarak, sensörlere binen gürültülerden dolayı oluşabilecek kaymalar ve yanlış veri 

elde edilmesi engellenebilmektedir. Buna karşılık, GPS, enkoder ve IMU verileri ile 

Lidar verileri birleştirilerek Genişletilmiş Kalman Filtresi (GKF) konumlaması da 

sağlanabilmektedir. Burda sensör verilerinin olasılıksal yaklaşımlarla işlenmesi ile 

robotun konumu elde edilmektedir ve bu konum ile Lidar verilerinin coğrafik 

yerleştirme yapılması sonucunda da belirli bir orijine sabitlenmiş nokta bulutu çıktısı 

alınmaktadır. Sonrasında da bu nokta bulutu ile istenilen yöntem ile  elde edilen 

odometre ve nokta bulutu verisi farklı haritalama yöntemleri kullanılarak ayarlanabilir 

özel görsel çıktılar sağlanabilmektedir. Bunlardan biri, sekizli ağaç yapıları 

kullanılarak elde edilen OctoMap olmaktadır. OctoMap yöntemi, tez çalışmasında 

kullanılmasının temel sebepleri olan, çözünürlük ayarlaması,  doluluk olasılığı üst ve 

alt sınırları belirlenmesi ve 3B olarak sağlanabilmesi açısından faydalı bir araç 

olmaktadır. Bu yöntem ile, ortamın uyarlanabilir şekilde, ortamın 3B haritasının 

çıkarılması sağlanmaktadır.  

Lidar sensörlerinin havadan alınan nokta bulutları ile karadan alınan nokta bulutları 

farklı geometrik özellikler taşımaktadır. Ancak, hava ve kara Lidar görüntülemesinin 

birbirlerini tamamlaması bakımından oldukça büyük avantajları da mevcuttur. Hava 

aracı ve kara aracı tarafından yapılan ve birilerinin göremedikleri bölgelerin 

görüntülenebilmesi sağlanılmaktadır. Bu avantajı kullanabilmek adına farklı açılardan 

lokal olarak görüntülenen ortamın ortak bir haritada birleştirilmesi gerekmektedir. 

Harita birleştirme adımını gerçekleştirmek adına her iki robotun elde ettiği verilerden 

ortak olanını belirlemek gerekmektedir. Kuş bakışı veya yatay olması fark etmeksizin 

bir nesnenin yere göre yüksekliği; hem havadan hem karadan yapılan gözlemlerde 

sensörlerin görüş açısı sınırları içerisinde aynı olacaktır. Bu doğrultuda, yükseklik 

verileri üzerinden benzerlik metrikleri kullanılarak haritaların birleştirilmesi 

sağlanabilmektedir. Bu tez çalışmasında, İHA ve İKA tarafından elde edilen nokta 

bulutu ızgara haritasına benzer bir yapıda olan yükselti haritaları kullanılmıştır. 

Izgaralar ile bölünmüş hücrelerdeki en yüksek noktanın verisinin kullanılması ile 2.5D 

harita elde edilmesi sayesinde yükselti haritaları oluşturulmaktadır. Benzerlik 

metrikleri aracılığıyla ise bu haritadaki yükseklik bilgilerinin birbirine oturmasını 

sağlayacak konum ve yönelim farkı belirlenmektedir. Çalışmanın sonraki 

aşamalarında entropi teorisi kullanılması sebebiyle entropi temelli benzerlik metrikleri 

ile harita birleştirme yapılmıştır. Yedi farklı tipteki entropi metriği ile yapılan 

benzerlik karşılaştırması sonucunda “Jensen Divergence” entropi tanımının en az hata 

ile haritalar arasında dönme ve öteleme farkının belirlenmesini sağladığı, deneyler ile 

doğrulanmıştır. Ayrıca; haritanın dikey eksende katmanlara ayrılması ve bu katmanlar 

üzerinden yapılan yükseklik benzerlikleri hesaplaması ile optimum konum ve yönelim 

( veya dönme ve öteleme) farklarının belirlenmesinin; katmanlara ayırma metodunun 

kullanılmasına göre daha avantajlı olduğu da gösterilmiştir. Her bir otonom araç 

“Harita Birleştirme” süreci sonrasında bu harita Aktif-EZKH süreci için kullanılarak 

hem harita bilgileri daha hassas hale getirilir hem de robotun gitmesi gereken yeni 

konumu tespit edilmiş olur.  

Yol planlaması, görevin etkin bir şekilde icrası için gerekli olan kritik adımlardan 

biridir. Enerji tüketim, elde edilen sonucun gerçekleşme süresi ve kalitesi uygulamanın 

ana kriterleridir. Bu nedenle, yol planlama algoritmaları etkin sistemler oluşturmak 

üzere kullanılmaktadır. Yol planlama algoritmaları farklı türde olabilir ama özellikle 
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hedef işaretleme ve bilgi maksimizasyonuna dayalı yöntemler diğer yol planlama 

yöntemlerine göre belirgin üstün özelliklere sahip olanlarıdır. Hedef odaklı yol 

planlama algoritmalarında, birimlerin belirli bir hedefe ulaşabilmesi adına oluşturduğu 

kontrol eylemleri bulunmaktadır. Bilgi maksimizasyonu yaklaşımı; ortam, nesnenin 

diğer nesneler veya bir hedef hakkında daha fazla bilgi almak için bir doğrultu boyunca 

hareket etmesi olarak tarif edilebilir. Burada bağıl entropi teorisi, bilgi 

maksimizasyonu yaklaşımı olarak sunulmuştur. İlaveten, bağıl entropi, karşılıklı bilgi 

ile çevresel durum entropisiyle arasındaki farktır. Bağıl entropi kullanılarak, bilgi 

metrik olarak ifade edilebilmektedir. Çevresel durumlar ile gözlemler ile elde edilen 

durumlar arasındaki bağıl entropi üzerinden yaratılan amaç fonksiyonunun optimal 

çözümü sonucunda elde edilen hedef nokta, o bölgedeki bilginin belirlenen kriterlere 

göre istenilen seviyeye çekilmesini sağlamaktadır. Bu, EZKH ile etkileşimli çalışan 

yol planlaması temelli bir optimal kontrol yöntemidir. Bu yöntem çerçevesinde Bilgi 

Teorisinden faydalanılarak belirsizlik terimleri ile entropi terimleri arasında ilişki 

kuran bir Karşılıklı Bilgi terimi tanımlanır. Kulback-Liebler Mesafesi olarak da 

tanımlanan bu Karşılık Bilgi terimi maksimum değerine ulaştığında belirsizleri temsil 

eden entropi terimleri de minimize olurlar. Bu sebeple Karşılık Bilgi terimine dayalı 

bir amaç fonksiyonu oluşturularak bu fonksiyonu maksimize yapacak robot konum ve 

hareket vektörleri optimal kontrol yaklaşımı ile elde edilir. Bu elde edilen terimler 

heterojen robot takımında yer alan otonom robotlara uygulanarak onların hareketleri 

planlanmış olur. Amaç fonksiyonunu Lyapunov kararlı yapan bu noktalar ise bir 

hacimsel bölgenin merkezidir ve bu hacimsel bölgedeki bilgiyi maksimize etmek 

üzere belirlenmiştir. Bu noktaya ulaşmak için, robotlar belirlenen kurallar 

çerçevesinde hareket etmektedir. Bu kurallar ise İHA veya İKA’nın hedef noktaya 

hareketinin seçimi ve hedef noktaya ulaşım için engellerden kaçınmayı içermektedir. 

Bu yöntemin; özellikle farklı boyutlarda nokta bulutu ölçümü yapabilen hava be kara 

araçlı robot takımındaki uygulamaları literatürde mevcut değildir. Bu teorik 

çalışmaları ön plana alan çalışmaların çıktılarının özellikle arama-kurtarma, keşif ve 

güvenlik gibi robot takımı uygulamaları için büyük önem taşıyacağı 

değerlendirilmektedir. 

Önerilen yöntemde, ortamdan yapılan ölçümler ile araç hareketlerinde oluşabilecek 

belirsizliklerini etkilerini en aza indiren kara ve hava robotlarından oluşan heterojen 

yapılı robot takımlarının keşif amaçlı yol planlama algoritmalarının geliştirilmesi ve 

performanslarının test edilmesi hedeflenmiştir. Aynı zamanda, bu görevleri icra 

edebilmek adına belirli harita birleştirmenin de gerçekleştirilmesi gerekmektedir. 

Öncelikle; harita birleştirilmesi yönteminin doğrulanması adına üniversite 

kampüsünde belirli bir bölgede kara aracı olarak Clearpath Husky A200, hava aracı 

olarak ise DJI Matrice 600Pro ve bu araçlar üzerinde bulunan Lidar sensörü 

kullanılmıştır. Sonuç olarak; teorik çalışmalarda verilen benzerlik metriklerinden en 

optimum olanı deneyler aracılığıyla belirlenmiştir. Sonrasında; bilgilendirici yol 

planlama yönteminin doğrulanması amacıyla Robot İşletim Sistemi (“ROS”) ve 

Gazebo temelli, karmaşık ancak günlük yaşantıda karşılaşılabilinen bir simülasyon 

ortamı kurulmuştur. Bu simülasyon ortamında altı farklı durum yaratılarak heterojen 

robot takımları için bilgilendirici yol planlamalı Aktif EZKH gösterilmiş ve parametre 

ayarlamaları ile uygulamaya göre değiştirilebilir bir yapı sağlanmıştır. 
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 INTRODUCTION  

Robots are commonly used in various applications, such as; target tracking, 

surveillance, exploration, etc. In these applications, complex problems are encountered 

to meet demands such as precise measurement, reconnaissance, eliminating 

uncertainties as much as possible, and so on. Heterogeneous robot teams (HeRTs) can 

be used to solve these problems with an optimal solution. Some of these applications 

can also be completed with a single robot or homogeneous robot teams (HoRT) of only 

ground vehicles or aerial vehicles. On the other hand, HeRTs can be employed to 

benefit each of the team member’s different abilities. Unmanned ground vehicles 

(UGVs) can carry higher payloads such as larger batteries that can increase the 

operating time or more advanced Lidar devices. On the other hand, unmanned aerial 

vehicles (UAVs) can move faster and obtain environmental data from different angles, 

but they have limited endurance and capacity of payload. Naturally, extra challenges 

occur during heterogeneous team missions. One such challenge is acquiring a static 

global map that contains both information captured by UGV and UAV. There are two 

maps with different types of views, bird’s-eye view and the ground view collected by 

the UAV and UGV, respectively. Both views have unique information, such as; the 

top of the objects or underneath the covered areas by a roof or tree. As a result, these 

two views offer more information about the environment and remove more 

uncertainties about the explored area by the robots. In the interest of acquiring a static 

global map, two maps need to be merged by using their common characteristics, such 

as the height of the sensed objects or other features in the environment. 

Moreover, accomplishing the missions in more efficient ways in the manner of time, 

energy and accuracy are hard to achieve with a single robot. Hence, the use of multi-

robot teams to get ahead that criteria are common nowadays. The employment for the 

missions may contain simultaneous actions as a robot’s coordination and interaction.  

Fundamentally, navigation includes localization on the environment and mapping the 

environment. Simultaneous localization and mapping (SLAM) are specified for 

localizing the robot in the map and building the map of the robots’ environment. The 
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robot builds a map by processing the sensor data and graph the environment. 

Localization is done by estimation within the evaluation of its position difference over 

the map and movement of the robot’s itself. In the SLAM problem, better localization 

leads to better maps, also better mapping leads to better localization. 

Additionally, for exploration missions, path planning is needed for efficient 

executions. Energy consumption, time and quality of the result are the main criteria of 

the application. Thus, path planning algorithms are used in order to create efficient 

systems. There are different types of path planning algorithms, but especially two main 

types distinguish such as goal designation and information maximization. In goal 

designated path planning algorithms, agents have a goal for the operation, and agents 

will have control actions to attain that goal. The information maximization approach 

can be described as; agent moves along a direction to get more information about the 

environment or other agents. Relative entropy theory provides a metric with the 

difference between mutual information and environmental state. The integration of 

SLAM and path planning in order to decrease uncertainty is named as Active SLAM. 

In particular, the robot moves towards other positions to get better localization and 

mapping with reducing uncertainty about the environment. 

 Purpose of Thesis 

The main objective of this thesis is to design an active SLAM system with informative 

path planning for heterogeneous multi-robot teams. In active SLAM systems for 

HeRTs, there are three critical choices to achieve the goal; 

 SLAM Method 

 Map Merging Method 

 Control Method 

The selection of the SLAM method may vary in accordance with the system types. 

Some of the previous works in literature uses Gaussian distributions to evaluate 

posteriors. In order to provide simplicity and cover both systems in the same manner, 

EKF localization, LOAM, OctoMap and Height Map are employed. LOAM method 

with utilizing layers provides accurate localization over the map without the need for 

GPS. Height mapping ensures creating a common map by calculating the position and 

orientation difference with similarity metrics.  EKF localization and OctoMap supplies 
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great localization and customizable map with exceptional visual outputs. These 

methods serve path planning for cooperative missions in this thesis. 

In a cooperative framework, members of the team need to obtain information about 

the states of their own and the environment. To overcome this problem information 

maximization controlling method is used in the metric base. Relative entropy operates 

to measure information, which leads to maximizing information over the robot team. 

Robots’ observations over the environment states are maximized by minimizing 

entropy with defining an objective function to control the system optimally. The 

proposed information maximization framework provides Lyapunov stable system for 

HeRTs. Also, control inputs ensure robots collision-free movement in the explored 

area. 

 Literature Review 

In recent years, numerous studies have been conducted on robotic navigation and 

various types of applications such as search and rescue (Kumar et al., 2004), target 

tracking (Gorji et al., 2007), surveillance (Zhang et al., 2019), agriculture (Tokekar et 

al., 2016),  and exploration of the environment (Makarenko et al.,s 2006). 

Traditionally, in robotic navigation studies, SLAM as in; Thrun et al. (2005) is used to 

be aware of the agent’s location and to understand the environment. Durrant-Whyte & 

Bailey (2006) presented different types of essential SLAM approaches such as EKF 

and Rao-Blacwellized Filter are compared. However, these SLAM algorithms require 

landmarks or GPS location to update the position. Also, similar to the approach 

presented by Kaess et al. (2012), these algorithms are used mostly in 2D mapping. 

Other than the essential SLAM methods, generalized iterative closest point (ICP) is 

provided by Segal et al. (2009) to map and localize without any additional sensors. 

However, the ICP method is not valid when the data rate of the Lidar sensor is slower 

than the motion of the robot. During the application given in this thesis, the aerial 

vehicle moves faster than the ground robot, and the rate of movement exceeds the data 

rates.  In the research presented by Scherer et al. (2012), with the IMU sensor involved 

in the algorithm, distortions are eliminated when the aerial robot movements are 

relatively faster than the sensor data rates. Bosse & Zlot (2009) explain that a scan 

matching method similar to researches given by Yoshida & Tadokoro (2014) and 
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Bosse et al. (2012), which consists of spinninsg or moving a 2D laser measurement 

sensor to map the environment and localize the mobile platform. 

Nevertheless, these methods are not suitable for real-time applications because of 

substantial post-processing requirements. To adopt this study for path planning in real-

time, localization and mapping is needed. Kneip et al. (2011) achieved real-time visual 

odometry with a single camera and IMU with inherent difficulties due to the onboard 

camera view angle. Zhang & Singh (2014) have a solution to the real-time usage and 

employing heterogeneous agents problem in  with the utilization of ICP based 

optimization method with a parasllel algorithm that ensures the online update of the 

location and map. It suits both aerial and ground vehicles. The same approach in the 

application of this study is used to register the points and obtain the odometry data. 

With the LOAM method, robots can accomplish the missions without a need for GPS 

location data.  

Although a single robot or robot teams can be utilized for robotic navigation, such as 

researches presented by Nurmaini & Tutuko (2017), Pham & Juang (2013), and 

Howard (2006), a HeRT can be implemented in the studies for a more detailed 

understanding of the environment. It is possible to employ HeRTs with a different 

point of view. An example of the implementation of HeRTs to the studies is given by 

Parker et al. (2004), in which the navigation problem is solved cooperatively. A robot 

team made up of identical mobile platforms carrying different types of onboard sensors 

can also be an HeRT mission. There is also a collaborative solution given by 

Hofmeister et al. (2011), where the parent robot operates child robots and gathering 

information from these robots with mapping the relative positions over the map. 

Heterogeneity can be defined as the ability to move on the ground, air, and sea. The 

study of  Hood et al. (2017) presents a method that a UGV and UAV are used to explore 

the indoor environment and localize the robots by use of QR code, monocular camera, 

and Lidar. However, it is not aimed to get a merged map like in (Langerwisch et al., 

2013). Common maps must be employed to use the map and odometry information in 

the same manner for both robots. In the interest of merging the maps, each robot can 

check common landmarks to reference maps by the relative positions to the landmarks 

as in (Ktiri & Inaba, 2012). Similarly, checking the occupancy state of the grids can 

be used for map merging as in (Husain et al., 2013). Yet, without the use of Lidar 

sensor, map merging is not suitable for long mission durations. Moreover, cooperative 
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monocular based SLAM for multi-UAV systems in a GPS denied environment is used 

without any heterogeneity of robots in (Trujillo et al., 2018). As stated by Fu et al. 

(2019), Lidars are more accurate than the camera. 3D Lidar sensors are utilized for the 

mission of this study to sense the environment with more accuracy and greater speed 

compared to the 2D and 1D types. Studies employing 3D Lidar sensors on both 

vehicles as in this study were not encountered during the literature survey except the 

study given in (Haddeler et al., 2020). However, demonstrations realized with only 

ICP type map merging method in that study. 

The use of height values to merge maps and localize agents inside the map is handled 

in (Kleiner & Dornhege, 2007). Additionally, researches given by Nam et al. (2017), 

Forster et al. (2013), and Kaeslin et (2016) height maps are employed with different 

similarity metrics for collaboratively localizing the agesnts with only a small number 

of similarity metrics to find the position and orientation difference of two maps. This 

study becomes distinct from these techniques in the manner of map merging, where 

the aerial robot is utilized for assisting the ground vehicle pose estimation. 

Additionally, a common map approach with only three similarity metrics for a 

cooperative mission in a simulation environment is accomplished as in (Akay et al., 

2018). Yet, the layering method is not employed to get a better map merging 

performance. 

In this thesis, a unique solution that implements various entropy-based similarity 

metrics with the aim of constructing common maps of the environment with HeRTs is 

presented. In order to create common maps, Shannon entropy-based similarity metrics 

can be used, since it is the only one that holds the chain rule of conditional probability 

precisely. Seven distinct similarity metrics are compared, and the most effective one 

is chosen for getting a more comprehensive and valid common map. It is critical to 

acquire a proper common map for cooperative missions of aerial and ground agents 

because, without a valid common map, it is hard to plan trajectories for exploration of 

the environment. Moreover, different from all the studies in literature, the layering 

method is employed in order to compute the similarities of each local map obtained by 

a HeRT. This method also provides the accuracy of the merged common map since 

robots’ sight of view prevents the same observations of the environment in features 

like a roofed top, forests, etc. This novel approach can also be used in GPS denied and 
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closed environments. The constructed common map allows creating an active SLAM 

system to explore the environment. 

In studies provided by Carlone et al. (2010), Ĺazaro et al. (2013), Sileshi et al. (2013), 

Indelman et al. (2015), and Lourenco et al. (2015),  the active SLAM with single robot 

approaches used in different ways, such as; particle-based SLAM posterior 

approximation, Markov Random Field approach, Independent Metropolis-Hastings 

Algorithm, dual-layer architecture and thes Pontryagin minimum principle.  Also, the 

active SLAM problem discussed the in both ways, such as; a single robot and a robot 

team in (Julian et al., 2012). The execution of the mission or the necessity of the 

application may prompt to use multi-robot/agent teams similar to the studies as in; 

(Capitán et al., 2011) and (Indelman, 2015). Multi-robot teams are employed in order 

to get the results in less time, more accurate, and attain these performance outputs in 

more efficient ways. Similarly, along with the use of heterogeneous teams lead to 

efficient mission execution through the distinct abilities of the different kinds of 

unmanned vehicles as in (Sanfeliu & Andrade-Cetto, 2006) and (Capitán et al., 2011). 

To provide a more efficient outcome of the exploration mission from these studies, 

HeRT for active SLAM is also used in this study with a varied approach. 

The planning method is one of the main criteria to create an active SLAM system. The 

common task of the path planning strategy is controlling the robot to change its 

orientation and localization to the desired direction. In literature, planning strategies 

under uncertainties can be separated in three ways, such as; look-ahead trajectory 

planning, informative path planning and simulation-based approach. 

Informative path planning strategies or plans have constraints on time, fuel, energy, 

etc. Combinatorial optimization techniques used by Hollinger & Sukhatme (2013) are 

based on the increased available budget. The branch and bound approach is proposed 

by Binney & Sukhatme, 2012, while a Gaussian distributed model with mutual 

information theory is used in (Singh et al., 2009). The studies on informative path 

planning strategies were given before, assumes that the environment is known. 

However, in exploration missions, the environment cannot be known beforehand. The 

framework presented in this dissertation ensures that the only known parameter is the 

bounds of the explored area. In addition, the evaluation time increases with the scale 

of the problem. This study provides an optimum approach to adjust evaluation time in 
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accordance with the application type by employing Octree mapping techniques as in 

(Fairfield et al., 2007) and (Hornung et al., 2013).  

Moreover, in simulation-based approaches, choosing the best strategy from the 

generated potential plans is one of the fundamental methods. The evaluation of the 

belief of the potential plans to quantify the quality is simulated in these approaches. 

Uncertainty metrics used in EKF-based planning analysis is provided by Ĺazaro et al. 

(2013). Similar to this, the EKF applied to the system as an inference engine in 

(Martinez-cantin et al., 2008), (Bryson & Sukkarieh, 2008) and (Martinez-Cantin et 

al., 2009). As a result, the EKF based localization method is also used for SLAM in 

simulation studies of this dissertation. Studies on simulation-based approaches assume 

maximum likelihood observations, by reason of future observations are given after the 

planning time, and the robots will receive the measurement assumption is defined.  

Furthermore, look-ahead trajectory planning strategies evaluate the next given horizon 

control actions. Model predictive control strategy with EKF-SLAM  is used by Huang 

et al. (2005) and Lourenco et al. (2015), the authors used the A-opt, D-opt and E-opt 

approaches to get over the optimization problem with the usage of Pontryagin 

minimum principle. Also, Sim & Roy (2005) used the A-opt in robot exploration 

applications, though all these studies are based on the discretization of the states. 

Handling the problem in a continuous manner is another challenging step in the path 

planning studies. Planning in the belief space (BS) refers, dealing with the problem in 

a continuous domain. Indelman et al. (2014) and Indelman et al. (2015) used BS for 

path planning for single and multi-robot teams. Regarding the robot number, the 

research provided by Indelman (2015) differs from the rest of the author’s studies 

given in this literature review; however, the BS is still in use. Though, planning in BS 

strategy cannot provide the desired measurements in the manner of metrics of the 

objective. In order to illustrate the goal in the manner of metrics; some of the entropy 

approaches are presented in (Carlone et al., 2010), (Julian et al., 2012), (Atanasov et 

al., 2015) and (Meyer et al., 2015). In addition to that, Carlone et al. (2014) and 

Stachniss (2009) states that entropy-based approaches provide better outcomes than 

the frontier-based method given in (Yamauchi, 1998).  

Relative entropy -also known as Kullback-Leibler divergence- approaches are widely 

applicable and have a great ability to solve complex combinatorial problems. Rao-

Blackwellized particle filters are used for the estimation, but the study is only for single 
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robots as in (Carlone et al., 2010). On the other hand, Kontitsis et al. (2013) presented 

a framework with the multi-robot active SLAM system. Still, this study based on 

landmarks and EKF based SLAM method, and landmarks are not always located in 

the environment. 

In conclusion, different from all the studies in literature, this dissertation provides an 

efficient and customizable framework to explore an unknown area with eliminating 

uncertainties. Also, the complexities of the multi-robot team missions are resolved by 

defined rules, similarity metrics, layering method and volumetric spaces. The 

theoretical background of constructing a common map for HeRTs is verified with 

experiments. Besides, the whole theory given in this dissertation is validated by the 

simulations in different cases. 

 Contributions 

Main contributions of this study are listed below; 

 Constructing common maps with the use of entropy-based similarity metrics 

and utilizing the layering method, 

 Designing a controller for robots to maximize information and implementing 

cooperative estimation methods on the controller, 

 Exploring the environment by employing HeRT with customizable mapping 

methods and adjustable information thresholds according to application. 

 Thesis Outline 

The rest of the thesis is distributed as follows;  the  SLAM method in order to localize 

the robots in the environment and create the map for both systems. In subsection 2.1, 

the EKF localization algorithm is given to specify the system in a probabilistic manner. 

To ensure the HeRT’s usability on GPS denied environments or without a sensor 

except for Lidar, the LOAM is given in subsection 2.2. OctoMap method 

implementation, details about the customizable parameters, and the effects of the 

parameters on mutual information are explained in subsection 2.3. Further, the height 

map technique is described, and the reason for employing the height map is given in 

subsection 2.3.  After that,  constructing common maps with utilizing the layering 
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method and heights of the objects are provided in section 3. The layering method for 

obtaining a more accurate and useful common map is stated in subsection 3.1. In the 

next subsection (3.4), the seven distinct similarity metric which are based on entropy 

theory is given. Section 4 provides the main contribution of this dissertation as 

designing an optimal controller (subsection 4.2) in accordance with the relative 

entropy theory (subsection 4.1). The results of demonstrated real-time experimental 

and simulation studies for the realization of the theoretical background given in this 

dissertation are presented in section 5. In subsection 5.1, the experimental studies of 

constructing a common height map are carried. After that, in subsection 5.2, the 

demonstration of the simulations and results are provided. Lastly, to discuss the 

outcomes and summarize the thesis, the conclusion is given in section 6.
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 SLAM METHOD 

In this section, the method for localization of the mobile robots and mapping of the 

environment is explained. First, the theoretical background of the EKF Localization 

for UGV and UAV with proprioceptive sensors, such as; IMU and environmental 

sensor as a GPS carried for both robot is given briefly to determine the location of the 

robots in the environment. The second part is allocated for the LOAM method, which 

is also a localization method for mobile robots without any environmental sensors. 

This method is employed for the real-time experimental validations to prevent the 

inaccurate georeferencing of the point clouds due to the sensor noises. After that, to 

visualize the environment in 3D with less memory usage, Octree Mapping or OctoMap 

method is presented. In the last part of this section, the height mapping of the 

environment to understand the surround in the same manner for both robots and 

construct common maps with similarity metric, which is given in section 3. 

 EKF Localization 

EKF is a Gaussian filter used for nonlinear systems such as mobile robots in order to 

estimate their states, such as; pose and velocity in continuous operations. Localization 

of the mobile robots carrying onboard GPS and IMU is done by employing extended 

Kalman Filter in the simulation case studies because of its simplicity and effective 

computational performance.  

The well-known algorithm of the EKF has two parts; prediction and correction. 

Prediction algorithm of the robot state with discrete time intervals, 𝑘, is given as; 

𝑋𝑘
̅̅ ̅ = 𝑓(𝑋𝑘−1) (2.1) 

𝑃𝑘
̅̅ ̅ = 𝐹𝑘 𝑃𝑘−1𝐹𝑘

𝑇 + 𝑅𝑘 (2.2) 

Where 𝑋𝑘
̅̅ ̅ is the predicted state of the robot, 𝑓 is the state function and 𝑥𝑘−1 is the 

previous state of the robot. 𝑥𝑘 is the robot’s state comprises its 3D pose, orientation 

and velocities. State vectors of UGV and UAV include 3D position, velocity, and 

orientation can be written as; 
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𝑋𝑘 = [𝑥𝑘 𝑦𝑘 𝑧𝑘 �̇�𝑘 �̇�𝑘 �̇�𝑘 𝜑 𝜃 𝜓  ]𝑇 (2.3) 

First three elements of the 𝑋𝑘 vector refers to the position of the robots. The fourth to 

sixth elements stands for the velocity, and the GPS sensor measures these six states. 

The last three of the state vector 𝑋𝑘, are the orientation in Euler Angles, which are 

measured by the IMU sensor. Without the GPS and IMU sensor noises, it is possible 

to obtain states of the robots in a deterministic way. However, these sensors have 

continuous drifts and additive noise in the real world. Despite the fact that EKF 

localization is used for simulation cases in this thesis, it is better to add disturbances 

(noises) in the calculation to converge the real ones.  

𝑃𝑘
̅̅ ̅ denotes predicted covariance, 𝐹𝑘 is Jacobian of 𝑓 as a nine by nine matrix. 𝑃𝑘−1 is 

the known covariance at discrete time 𝑘 − 1. The covariance of Gaussian random 

vector (process noise) is denoted as 𝑅𝑘. 

The correction step is given below; 

𝐾𝑘 = 𝑃𝑘
̅̅ ̅𝐻𝑘

𝑇(𝐻𝑘𝑃𝑘
̅̅ ̅ 𝐻𝑘

𝑇 + 𝑄𝑘)
−1 (2.4) 

𝑥𝑘 = 𝑥𝑘̅̅ ̅ + 𝐾𝑘(𝑚𝑘 − 𝐻(𝑥𝑘̅̅ ̅)) (2.5) 

𝑃𝑘 = (𝐼 − 𝐾𝑘𝐻𝑘)𝑃𝑘
̅̅ ̅ (2.6) 

Here, 𝐾𝑘 is the Kalman gain, and 𝐻𝑘 is the Jacobian matrix of the observation function 

ℎ. 𝑚𝑘 denotes measurements at time interval 𝑘 and it contains states collected by GPS 

and IMU sensors, 𝑄𝑘 is for observation noise, and 𝐼 is the nine by nine identity matrix.  

Corrected robots’ states and covariance are obtained with equation (2.5) and (2.6) at 

time interval 𝑘. After that, for the next time steps, states of the robots are calculated 

with the continuous loop starting from equation (2.1) to (2.6). 

As a result of the EKF localization, it possible to georeference the Lidar point clouds 

with the rotation and translation vectors defined by the use of laser measurement 

sensor position and orientation difference from the onboard IMU and GPS sensors.  

 Lidar Odometry and Mapping  

In order to obtain a globally referenced map of the surroundings for Lidar mounted 

vehicle practices, all the sensed points must be designated. If there will not be any 

designation of the points, laser measurements may attach to the same points or 

disruption may occur. As a result, point clouds seem unrecognizable, and the area 
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cannot be classified for the aimed results. Aerial and ground robots must georeference 

the points to provide a globally referenced local maps. After that, grid maps handled 

with georeferenced point cloud to enable better representations of the area by 

employing heights of the objects on the cells.  

Lidar Odometry method given by Zhang & Singh (2014) is used to reference the points 

measured by Lidar sensors. This approach provides receiving georeferenced map and 

location of the agents witshout any other sensors, such as; IMU, GPS, and encoder.   

In this study, VLP-16 Lidar is employed to sense the objects and the surroundings. 

This sensor has 16 optical scanners rotating around its vertical axis at a maximum of 

3000rpm. Besides, these scanners are located vertically in order to sense the 

environment horizontally ±15° from the center point. 𝑛, 𝑛 ∊  ℤ+ refers optical channel 

and the map obtained by each channel can be shown by 𝑆𝑛. 𝐿 is the coordinate system 

of Lidar and coordinates of the point in  𝐿𝑛, 𝑖, 𝑖 ∊  𝑆𝑛  the point cloud is shown by 

𝐶(𝑛,𝑖)
𝐿 . {𝐷} is the referenced coordinate system and 𝐶(𝑛,𝑖)

𝐷 , is the point inside that 

coordinate system. Also, 𝐺 is the set of points obtained during a scan by 𝑛 optical 

channel. The surface roughness metric 𝜅 must be derived to implement Lidar 

Odometry in the system of this thesis using the formulation below; 

𝜅 =
1

|𝐺|× ‖𝐶(𝑛,𝑖)
𝐿 ‖

 ‖∑ (𝐶(𝑛,𝑖)
𝐿 − 𝐶(𝑛,𝑗)

𝐿
𝑗∊𝐺,j≠i ‖   (2.7) 

This metric enables us to sort measured points, whether these are edge or surface 

(Figure 2.1). If 𝜅  as its maximum values or above the threshold measured points can 

be sorted as edge Гn . Otherwise, where the  𝜅 value is below the threshold, these 

points are surface points, 𝛥𝑛. That information allows finding position difference by 

using Euclidian distances.  

 

 Edge (p and r) and surface (s,v and l) points. 
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The distances between different time interval scans 𝑆𝑛 and 𝑆𝑛+1  is; 

𝑑Г =
|(𝐶(𝑛+1,𝑖)

𝐿 −𝐶(𝑛,𝑗)
𝐿 )×(𝐶(𝑛+1,𝑖)

𝐿 −𝐶(𝑛,𝑙)
𝐿  )|

𝐶(𝑛,𝑗)
𝐿 −𝐶(𝑛,𝑙)

𝐿    (2.8) 

Here, 𝑖 is the nearest point to the edge point 𝑖, 𝑖 ∊  Г𝑘, 𝑙 is the sensed point from the 

neighbour optical channel and 𝑑Г is the distance from edge points to the line which is 

created within (𝑗, 𝑙), 𝑗, 𝑙 ∊  𝑆𝑘 points.  

Moreover, point to surface distance will be; 

𝑑𝛥 =

|
(𝐶(𝑛+1,𝑖)

𝐿 −𝐶(𝑛,𝑗)
𝐿 )×(𝐶(𝑛,𝑗)

𝐿 −𝐶(𝑛,𝑙)
𝐿 )

×(𝐶(𝑛,𝑗)
𝐿 −𝐶(𝑛,𝑚)

𝐿  )
|

|(𝐶(𝑛,𝑗)
𝐿 −𝐶(𝑛,𝑙)

𝐿 )×(𝐶(𝑛,𝑗)
𝐿 −𝐶(𝑛,𝑚)

𝐿  )|
  

(2.9) 

where 𝑖 is the nearest point of surface point 𝑖, 𝑖 ∊  𝛥𝑛, 𝑙 is the second nearest point 

which is sensed from the same optical channel and  𝑗, 𝑙 ∊ 𝑆𝑛. The sensed point 𝑚 from 

the neighbor optical channel  𝑚 ∊  𝑆𝑛+1 and 𝑑𝛥 is the distance from surface points to 

the surface which is created within (𝑗, 𝑙, 𝑚), 𝑗, 𝑙, 𝑚 ∊  𝑆𝑛 points.  

Let 𝑡𝜎 is the duration of 0 → 2𝜋 scan of the 3D Lidar and 𝑡 is the moment at the 

investigation of position and localization difference 𝑇𝜎
𝐿 = [𝑝𝑥, 𝑝𝑦, 𝑝𝑧 , 𝜃𝑥, 𝜃𝑦, 𝜃𝑧 ]

𝑇
. The 

position and location difference between [𝑡𝑖 , 𝑡𝜎] is; 

𝑇𝜎,𝑖
𝐿 =

𝑡𝑖−𝑡𝜎

𝑡−𝑡𝜎
𝑇𝜎

𝐿  (2.10) 

3D Lidar which holds 16 optical channel, measures the environment in 𝛿𝑧 time steps. 

So the rotation and translation terms can be written as;  

𝐶(𝑛,𝑗)
𝐿

𝑡
= 𝑅𝐶(𝑛,𝑗)

𝐿

𝑡−𝛿𝑧
+ 𝑇𝜎,𝑖

𝐿   (2.11) 

where the rotation matrix is indicated as  𝑅. In this case features of edge and surface 

geometric relationship can be written as functions given below; 

𝑓Г (𝐶(𝑛,𝑗)
𝐿

𝑡
, 𝑇𝜎,𝑖

𝐿 ) = 𝑑Г, 𝑖 ∊  Г𝑛 (2.12) 

𝑓𝛥 (𝐶(𝑛,𝑗)
𝐿

𝑡
, 𝑇𝜎,𝑖

𝐿 ) = 𝑑𝛥, 𝑖 ∊  𝛥𝑛 (2.13) 

Finally, to obtain minimized function for each feature point nonlinear optimization 

method is handled; 

min (𝑇𝜎,𝑖
𝐿 − (𝐽𝑇𝐽 + 𝜆𝑑𝑖𝑎𝑔(𝐽𝑇𝐽))𝐽𝑇𝑑)  (2.14) 

where 𝑓(𝑇𝜎,𝑖
𝐿 ) = 𝑑 is the nonlinear distance,  𝐽 = 𝛿𝑓/𝛿𝑇𝜎,𝑖

𝐿   and 𝜆 is a factor provided 

by the Levenberg-Marquardt method. 𝑇𝜎,𝑖
𝐿  is found by minimizing the distance to zero 
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and the georeferenced point cloud with registering the points 𝐶(𝑛,𝑗)
𝐿

𝑡
at each time step 

by the following operation; 

𝑀𝐿𝑂𝐴𝑀𝑡
= ∑ 𝑅𝐶(𝑛,𝑗)

𝐿

𝑡−𝛿𝑧
+ 𝑇𝜎,𝑖

𝐿𝑡
𝑡=0   (2.15) 

is obtained. After that, OctoMap can be handled within the usage of 𝐶(𝑛,𝑗)
𝐿

𝑡
= 𝑚𝑡. 

 OctoMap 

OctoMap is a great visualization tool for 3D environments with computational 

efficiency and flexible structure for resolution and explored environment (Hornung et 

al., 2013). In simple terms, OctoMap is a mapping technique similar to 2D occupancy 

grid mapping. It is dealing with 3D volumetric occupancies instead of occupied 2D 

planes as it can be seen in Figure 2.2  

OctoMap technique employs the octrees, which are hierarchical data structures in 

accordance with the decomposition of space (Mao et al., 1987). The space is 

hierarchically divided into eight subvolumes, and the whole volume refers to the first 

element of the octree, which is called the root (Wilhelms & Van Gelder, 1992). The 

occupancy probability of the detected points that will be transformed as a subvolume 

called voxels can be written with the log-odds presentation as which is similar to (Li 

& Ruichek, 2014); 

𝑙(𝑉𝑖|𝑚1:𝑡) = 𝑙(𝑉𝑖|𝑚1:𝑡−1) + 𝑙(𝑉𝑖|𝑚𝑡) (2.16) 

Where; 

𝑙(𝑉𝑖|𝑚𝑡) = log   (
𝑃(𝑉𝑖|𝑚𝑡)

1 − 𝑃(𝑉𝑖|𝑚𝑡)
 ) (2.17) 

Here, 𝑉𝑖 is the voxel investigated whether occupied or free, 𝑚𝑡 is the collected 

measurements, which are point clouds. 𝑙(𝑉|𝑚1:𝑡) is the joint probability of voxels’ 

occupancy state with the log-odds presentation, and specifies the update rule for 

mapping. However, it must be considered to insert a limitation to updates in equation 

(2.16) to decrease the computational effort for updating the occupancy state of the 

voxel.  

Limiting the number of updates can be done by giving boundary values of 𝑙(𝑉𝑖|𝑚𝑡) 

which can be denoted as the lower bound and upper bound of OctoMap, recursively; 
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𝑙𝐿𝐵𝑜
and 𝑙𝑈𝐵𝑜

. As a result of that, voxels are stated as permanently occupied when both 

of the boundary values are reached. So, the equation (2.16) evolves to; 

𝑙(𝑉𝑖|𝑚1:𝑡) = max (min(𝑙(𝑉𝑖|𝑚1:𝑡−1) + 𝑙(𝑉𝑖|𝑚𝑡), 𝑙𝑈𝐵𝑜
) , 𝑙𝐿𝐵𝑜

) (2.18) 

𝑙𝐿𝐵𝑜
and 𝑙𝑈𝐵𝑜

 values are determined by the information threshold on the explored area, 

which is going to be explained in section 4. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 Different types of mapping results. (a) a simulation scene element 

barrier from Gazebo. (b) Point cloud representation. (c) 2D projected grid map. 

(d) OctoMap with resolution = 1. (e) OctoMap with resolution = 0.05. (f) 

Elevation map. 

The probability of the occupied voxels in the map differs between 0 to 1. If the limits 

determined in accordance with 𝑃(𝑉𝑖|𝑚𝑡) = [0: 1], there will not be any permanently 
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occupied cells, but without any loss of information. The limit values near 𝑃(𝑉𝑖|𝑚𝑡) =

0.5 such as 𝑙𝐿𝐵𝑜
= −0.2 and 𝑙𝑈𝐵𝑜

= 0.2, cause loss of information about the 

environmental map, 𝑀𝑒, though it leads less memory usage by decreasing 

measurement update numbers for determining permanently occupied cells. Changing 

limit values is one of the flexible properties of the OctoMap technique.  The second 

one is obtaining the map with different resolution values that can provide coarse or 

precise path planning control inputs in the robot's local map to avoid the obstacles. 

Assigning averages of each inner voxels’ log-odds occupancy value to the root node 

will offer less use of memory than the maximum values of each inner voxels. On the 

other hand, choosing the maximum values of each inner voxels as the root log-odds 

occupancy value assists the precise path planning without any collisions. In 

conclusion, the assignment of inner voxels’ occupancy probabilities to the root voxel 

and the limit boundary values may vary depending on the application, which will be 

given in section 5. 

 Height Mapping 

Map attained from an aerial robot is like a bird’s-eye view and has difficulties in 

capturing vertical surfaces. On the other hand, the ground robot has challenges in 

getting the view of the area behind the taller obstacles and the depth dimension of these 

obstacles.  

In Figure 2.3, the sight of view of HeRT team members can be seen. In this scene, the 

shortcomings of each agent’s sensors in the complex environment are exemplified. As 

it can be seen from the left and right side of Figure 2.3.a, the aerial robot could not 

detect objects and surface details under horizontal wall such as litter bin no.1 and table. 

On the other hand, litter bin no.2 is perceived by the aerial robot in contrast to the 

ground robot. Also, the ground robot is able to sense litter bin no.1, table, and the inner 

surface of the vertical wall. Therefore, maps obtained from vehicles do not look alike. 

The height mapping method is employed to resolve this issue. 

Height maps can be defined as 2.5D grid map representation of the area. 2.5D grid 

map representation, as in Figure 2.4, provides better calculation time and less storage 

need compared to using 3D maps. Also, 2.5D grid maps enable comparing grids 

received by vehicles through the use of height information. Height maps can be easily 
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implemented to the study since local point cloud maps are obtained beforehand. In its 

basic form, the map is divided into 2D grids, and the point with the maximum value in 

the vertical axis is assigned as the height of each grid. 

 
(a) 

 
(b) 

 Lines with different colours show the representative laser beams for one 

channel. Distances to objects are illustrated by colours of the beams on the left 

side of the figures. Colour is changing with respect to distance. For better 

understanding, robots are omitted from point clouds on the right side of the 

figures. (a) Aerial robot’s representative sight of view and the point cloud 

respectively left and right side. (b) Ground robot’s representative sight of view 

and the point cloud respectively left and right side. 

 
                                   (a) 

 
                                   (b) 

 Height map 2.5D X-Y plane projection. (a) Ground robot’s local height 

map. (b) Aerial robot’s local height map. 
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3D illustration with the isometric view of the height maps are given in Figure 2.5 

 
    (a) 

 
(b) 

 Height map 3D illustration. (a) Ground robot’s local height map. (b) 

Aerial robot’s local height map. 

The height map 𝑯 can be expressed as in (Yang & Wang, 2011) ; 

𝑯0:𝑡 = {(O0:𝑡, µ0:𝑡, 𝜎0:𝑡
2 )𝑖,   𝑖 = 1,… , 𝑛} (2.19) 

Here, O0:𝑡 refers to the occupancy probability of each grid 𝑔𝑖 from beginning to time 

𝑡. O0:𝑡 is calculated by log-odds presentation similar to equation (2.16), except this 

probability value investigates occupancy of 2D planes. µ0:𝑡 is the height estimation 

and 𝜎0:𝑡
2  is the variance of the height.  

In this dissertation, height maps employed after obtaining georeferenced point clouds 

by EKF localization, LOAM and OctoMap, hence the sensor measurement noises are 

omitted in 𝑯0:𝑡 calculation. As a result of that, µ0:𝑡 = 𝑧𝑡 and 𝜎0:𝑡
2 = 0 can be written. 

Finally, the occupancy probability of the cell with log-odds presentation can be defined 

as;  

𝑙(𝑔𝑖|𝑚1:𝑡) = max (min(𝑙(𝑔𝑖|𝑚1:𝑡−1) + 𝑙(𝑔𝑖|𝑚𝑡), 𝑙𝑈𝐵ℎ
) , 𝑙𝐿𝐵ℎ

) (2.20) 

With; 

𝑙(𝑔𝑖|𝑚1:𝑡) = log   (
𝑃(𝑔𝑖|𝑚𝑡)

1 − 𝑃(𝑔𝑖|𝑚𝑡)
 ) (2.21) 

𝑙𝐿𝐵ℎ
and 𝑙𝑈𝐵ℎ

 is the lower and upper bound of the log-odd value to limit the update rate 

of the occupancy state of the grid. Thus, if the occupancy probability value is higher 

than the threshold for the grid 𝑖, the height value of the grid is assigned as the maximum 

height value of the georeferenced point cloud on that grid as in equation (2.22). 

𝑧𝑡 = {
𝑧𝑖 , 𝑖𝑓 𝑃(𝑔𝑖|𝑚𝑡) > 𝑙𝑡ℎ
0,           𝑖𝑓 𝑃(𝑔𝑖|𝑚𝑡) ≤ 𝑙𝑡ℎ  

 (2.22) 
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Where 𝑧𝑖 is the value of the point in the coordinate frame 𝑧 in each cell, and the 𝑙𝑡ℎ is 

the occupancy probability threshold value. 

In conclusion, the localization method and various types of mapping techniques are 

given. The EKF localization is a simple and easily implementable method that is used 

in simulation studies with GPS and IMU sensors are in the loop. However, when GPS 

signal is denied or the sensor is not used onboard LOAM method makes the system 

utilizable for the exploration mission. OctoMap method provides an adjustable 

framework in accordance with the information seeking controller. Also, it ensures to 

the variance of the memory usage property with resolution adjustment. Further, the 

height mapping technique offers a map merging infrastructure. With the obtained local 

height map of each robot, it can be separated into the layers to understand the 

environment for robot movement and to get a precise common map using the similarity 

metrics, which is explained in the next section. 
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 CONSTRUCTING COMMON MAP 

In cooperated or collaborated applications for HeRTs, there will be different local 

maps which are obtained separately. The local maps acquired by the use of  EKF or 

LOAM may not have the same position and orientation for each robot in a global 

coordinate system. Despite the fact that EKF employs GPS and IMU, drifts may occur 

in georeferencing the point clouds to the global origin because both sensors have bias 

values, and they differ for each robot. For LOAM, there is not any environmental 

sensor employed for mapping. As a result, the local maps’ coordinate systems of each 

robot have position and orientation differences.  

Further, the primary purpose of this study is to maximize information about the 

environment with HeRT. Each team member can maximize the information on its own 

without checking the area is scanned by another member or not. However, this 

procedure is not effective for exploration missions, since the information about the 

investigated area may also be obtained.  

Constructing a common or joint map for team members will overcome these problems.  

Similarity metrics can be employed in order to merge local maps of the robots. The 

working principle of the common map construction method can be seen in Figure 3.1 

 

Figure 3.1 : Working principle of common map construction. 

The height values in local maps’ layers attained by UAV and UGV are used in the 

similarity computation process to find the best similarity value in terms of position and 

orientation between aerial draft and ground base maps. If the similarity value is 
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maximized (or distance/entropy value is minimized) enough for each layer, the 

common map can be constructed and updated by time intervals as in (Akay & 

Temeltaş, 2020). Further, the layering method and various similarity metrics and their 

usage in this study are explained below. 

 Layering Method 

In this dissertation, the main purpose of obtaining a common map is to benefit all the 

agents in the mission. To classify or define a path for the ground robot, it is not 

necessary to obtain any information about the obstacles located above its height. In 

contrast, aerial robots demand information about features at all altitudes in the 

environment since these robots can fly at different altitudes within their limits. 

Moreover, heights of the same features in the environment may be measured 

differently due to the robots’ sight of view. In order to overcome this problem, the 

layering method is employed in this study. 

Additionally, the layering method will be a useful tool for information seeking path 

planning. In this study, collected information about the environment is investigated in 

volumetric spaces. Detailed explanations will be given in section 4.  

For the layering method, layers in the z-direction in relation to the vehicle’s features 

are formed. Layer 1 has information about the area where 𝑧 < ℎ1, layer 2 has 

information about the area where ℎ2 < 𝑧 < ℎ3, layer 3 has information about the area 

where ℎ3 < 𝑧 < ℎ4  and layer 4,5, . . . , 𝑛 has information about the area where ℎ4 <

𝑧 < ℎ4 + (𝑛 − 4)  ℎ𝑢𝑎𝑣. Heights of the layers can be seen in Figure 3.2. 

 

Figure 3.2 : A representative figure of the heights of the layers from the 

experimental study used in this dissertation. 
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3.1.1 Layered Map of UGV  

The first layer is between the base of the environment and the second layer. This layer 

has the height information of the obstacles that UGV can climb over. In this study, the 

HUSKY A200 vehicle will be used as UGV, which can climb obstacles less than 

150mm height from the base. The third layer’s height is aligned with UGV’s maximum 

height. The height of HUSKY A200 with the  Velodyne VLP16 mounted on a beam 

was measured as 475mm from the ground. Layers of the local maps perceived by the 

ground robot can be seen in Figure 3.3.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3.3 : UGV layered local height maps. (a)1 st layer. (b) 2nd layer. (c) 3rd 

layer. (d) 4th layer. 

3.1.2 Layered Map of UAV 

The third layer and the layers above this layer has the height more than aerial vehicles’ 

height, ℎ3 = 450𝑚𝑚. This height value is chosen for the layer, since UAV is 

interested in the layers that it can pass through. For this dissertation, ℎ4 = 39075𝑚𝑚 

is chosen to decrease the complexity of the calculations.  

Layers of the local maps which are perceived by the aerial robot can be seen in Figure 

3.4. Note that, different colours of the layers are selected to identify them well in both 

Figure 3.3 and Figure 3.4. For the first layer, blue refers to the heights of the objects, 

and magenta refers to the base of the investigated area. Aqua colour is chosen for the 
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second layer, green colour refers to the third layer, and for the fourth layer, yellow is 

selected.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3.4 : UAV layered local height maps. (a) 1st layer. (b) 2nd layer. (c) 3rd 

layer. (d) 4th layer. 

Similarity metrics are employed for each layer to get common maps for each layer.  

 Similarity Metrics 

Similarity measures are encountered in various types of disciplines, such as 

mathematics, biology, economy, physics, information theory, ecology, etc. For any 

applications, different types of similarity measures can be utilized. The distance 

between each other defines the similarity of objects. Similarity measures can be mainly 

classified as vectorial and probabilistic. Vectorial measures rely on overlapping two 

vectors in terms of distance, while probabilistic measures are calculated by empirical 

estimations, such as entropy. Kullback-Liebler Divergence (KLD), Jeffrey Divergence 

(JD), K Divergence (KD), Topsoe Divergence (TD), Jensen-Shannon Divergence 

(JeSD) and Jensen Divergence (JeD) used as the similarity metrics of this dissertation. 

These metrics are derived from the Shannon entropy (SE) definition (Cha, 2007).  

In this study the entropy definitions mentioned before are used as follows; the 

difference of position and orientation, respectively translation and rotation between 

local maps are denoted as 𝑢 = {𝑢1, … , 𝑢𝑛} or 𝑇, 𝑅 and 𝑢𝑖 = (𝑥𝑖 , 𝑦𝑖, 𝜃𝑖). Where 𝑢𝑖 
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contains distances in 2D 𝑥𝑖, 𝑦𝑖 (translation, 𝑇) and angular difference as 𝜃𝑖 (rotation 

𝑅). The best position and orientation �̃� value can be found by minimizing entropies or 

distance values obtained by different entropy approaches stated below. 

SE definition is as follows; 

𝐻𝑏𝑑(𝑢) = − ∑ ∑ 𝑝𝑧(𝑧𝑏, 𝑧𝑑|𝑢) log2 𝑝𝑧(𝑧𝑏, 𝑧𝑑|𝑢)

𝑛𝑑

𝑖𝑑=1

𝑛𝑏

𝑖𝑏=1

 (3.1) 

And the best position and orientation with regard to SE definition is; 

�̃� = 𝑎𝑟𝑔min
𝑢

𝐻𝑏𝑑(𝑢)  (3.2) 

KLD definition can be given as; 

𝑑𝑏𝑑(𝑢)𝐾𝐿𝐷 = ∑𝑝𝑧(𝑧𝑏|𝑢) 𝑙𝑛
𝑝𝑧(𝑧𝑏|𝑢)

𝑝𝑧(𝑧𝑑|𝑢)

𝑑

𝑖=1

 (3.3) 

And the best position and orientation concerning KLD definition is; 

�̃� = 𝑎𝑟𝑔 min
𝑢

𝑑𝑏𝑑(𝑢)𝐾𝐿 (3.4) 

The third one, JD is as follows; 

𝑑𝑏𝑑(𝑢)𝐽𝐷 = ∑(𝑝𝑧(𝑧𝑏|𝑢) − 𝑝𝑧(𝑧𝑑|𝑢)) 𝑙𝑛
𝑝𝑧(𝑧𝑏|𝑢)

𝑝𝑧(𝑧𝑑|𝑢)

𝑑

𝑖=1

 (3.5) 

And the best position and orientation with regard to JD definition is; 

�̃� = 𝑎𝑟𝑔 min
𝑢

𝑑𝑏𝑑(𝑢)𝐽𝐷 (3.6) 

The fourth entropy definition, KD is given as; 

𝑑𝑏𝑑(𝑢)𝐾𝐷 = ∑𝑝𝑧(𝑧𝑏|𝑢) 𝑙𝑛
2𝑝𝑧(𝑧𝑏|𝑢)

𝑝𝑧(𝑧𝑏|𝑢) + 𝑝𝑧(𝑧𝑑|𝑢)

𝑑

𝑖=1

 (3.7) 

And the best position and orientation concerning KD definition is; 

�̃� = 𝑎𝑟𝑔min
𝑢

𝑑𝑏𝑑(𝑢)𝐾 (3.8) 

After that the TD definition is as follows; 

𝑑𝑏𝑑(𝑢)𝑇𝐷 = ∑𝑝𝑧(𝑧𝑏|𝑢) 𝑙𝑛
2𝑝𝑧(𝑧𝑏|𝑢)

𝑝𝑧(𝑧𝑏|𝑢) + 𝑝𝑧(𝑧𝑑|𝑢)

𝑑

𝑖=1

                                 

+ 𝑝𝑧(𝑧𝑑|𝑢) 𝑙𝑛
2𝑝𝑧(𝑧𝑑|𝑢)

𝑝𝑧(𝑧𝑏|𝑢) + 𝑝𝑧(𝑧𝑑|𝑢)
 

(3.9) 

And the best position and orientation with regard to TD definition is; 
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�̃� = 𝑎𝑟𝑔 min
𝑢

𝑑𝑏𝑑(𝑢)𝑇 (3.10) 

The JeSD formulation, which is similar to JeSD, can be given as; 

𝑑𝑏𝑑(𝑢)𝐽𝑒𝑆𝐷 =
1

2

[
 
 
 
 
∑𝑝𝑧(𝑧𝑏|𝑢) 𝑙𝑛

2𝑝𝑧(𝑧𝑏|𝑢)

𝑝𝑧(𝑧𝑏|𝑢) + 𝑝𝑧(𝑧𝑑|𝑢)

𝑑

𝑖=1

+ 𝑝𝑧(𝑧𝑑|𝑢) 𝑙𝑛
2𝑝𝑧(𝑧𝑑|𝑢)

𝑝𝑧(𝑧𝑏|𝑢) + 𝑝𝑧(𝑧𝑑|𝑢) ]
 
 
 
 

 (3.11) 

And the best position and orientation concerning JeSD definition is; 

�̃� = 𝑎𝑟𝑔min
𝑢

𝑑𝑏𝑑(𝑢)𝐽𝑒𝑆𝐷 (3.12) 

Lastly, the JeD formulation is given as follows; 

𝑑𝑏𝑑(𝑢)𝐽𝑒𝐷 =
1

2
[∑

𝑝𝑧(𝑧𝑏|𝑢) 𝑙𝑛 𝑝𝑧(𝑧𝑏|𝑢) + 𝑝𝑧(𝑧𝑑|𝑢) 𝑙𝑛 𝑝𝑧(𝑧𝑑|𝑢)

− (𝑝𝑧(𝑧𝑏|𝑢) + 𝑝𝑧(𝑧𝑑|𝑢)) 𝑙𝑛
𝑝𝑧(𝑧𝑏|𝑢) + 𝑝𝑧(𝑧𝑑|𝑢)

2

𝑑

𝑖=1

] (3.13) 

And the best position and orientation with regard to JeD definition is; 

�̃� = 𝑎𝑟𝑔 min
𝑢

𝑑𝑏𝑑(𝑢)𝐽𝑒𝐷 (3.14) 

Where, 𝑧𝑏 and 𝑧𝑑 denote the height values of the objects in local maps captured from 

UGV and UAV, respectively. 𝑝𝑧(𝑧𝑏|𝑢) and  𝑝𝑧(𝑧𝑑|𝑢) refers to the joint probability of 

the 𝑧𝑏 and 𝑧𝑑 height values with the rotation and translation implemented to the 

obtained height map. 𝑢 is applied to the  aerial and referenced height map of the 

environment 𝐴𝑚(𝑧) and 𝐺𝑚(𝑧) respectively with; 

𝐺𝑚(𝑧) = 𝑅𝐴𝑚(𝑧) + 𝑇 (3.15) 

Here,  

𝑢 = [
𝑅2×2 𝑇2×1

0 0 1
] (3.16) 

With,  

𝑅2×2 = [
𝑐𝑜𝑠𝜃𝑖 𝑠𝑖𝑛𝜃𝑖

−𝑠𝑖𝑛𝜃𝑖 𝑐𝑜𝑠𝜃𝑖
] (3.17) 

𝑇2×1 = [
𝑥𝑖

𝑦𝑖
] (3.18) 

Distance values are obtained by summation of the joint probabilities with given 

formulations and the best orientation, �̃� is calculated with minimizing the distance or 

entropy functions given above. Affine 3D transformation matrix 𝑢 is iteratively 

applied to equation (3.15) for minimizing the distance and entropy functions.  
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As a result, the position and orientation difference between aerial draft map layers and 

ground base map layers are found. The common map, 𝑀𝑤𝑐
 is obtained by summation 

of the transformed aerial local map 𝐴𝑚 and ground map 𝐺𝑚; 𝑀𝑤𝑐
= 𝐺𝑚 + 𝐴𝑚.  This 

merged map provides a better understanding of the environment and a background to 

calculate uncertainties/entropies between observed states of each robot in a common 

ground. Without the common map, each robot may observe the same points in the 

environment. Hence the controller will not be optimal enough for exploration. 
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 INFORMATIVE PATH PLANNING 

The aim of the exploration missions is to collect information about the designated area. 

The amount of information collected by robots must be known to define the success 

criteria in autonomous missions. Relative entropy theory is utilized as an information 

metric in this dissertation. Information and relative entropy have a strong relation, in 

which information is maximized by minimizing the relative entropy between 

observations and environmental states. The difference between the collected 

information by robots and all the information that can be collected provides control 

inputs for robots. Within that control input and collision-free path planner, robots will 

obtain measurements at the next position and determine the updated relative entropy 

between environmental states and observed states, as shown in Figure 4.1. After that, 

the continuous operation will proceed until the observed states converge to the 

environmental states. 

Controller

Relative entropy

Measurements

Optimal 

controller

Collision-free 

path planner 

Environmental 

States

Observed 

States

Disturbances 

(Sensor Noise)  

Figure 4.1 : Informative path planning block diagram. 

Detailed explanations of relative entropy and information seeking optimal control 

topics are presented in the following subsections. 

 Relative Entropy 

Relative entropy, also called Kullback-Leibler Divergence (KLD), is a measure of 

probability difference between two random variables. This measure also helps to find 
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a correlation between these variables with mutual information definitions. The 

uncertainties of the observations are defined by the probabilistic approaches given in 

previous sections. The uncertainties of the observations and the desired level of 

uncertainty of the environmental states determine the entropy difference between those 

variables, as shown in Figure 4.2. Note that, the entropies are calculated through the 

probabilities of the variables. As a result, the KLD provides a framework that can be 

used with information-theoretic and probabilistic approaches with given.entropy 

definitions. 

 

Figure 4.2 : Venn scheme representation of the KLD. The entropy of the 

environmental states, 𝐻(𝑤𝑠), the entropy of observations, 𝐻(𝑜𝑠), conditional 

entropies between environmental states and observed states, 𝐻(𝑤𝑠|𝑜𝑠), vice-versa, 

𝐻(𝑜𝑠|𝑤𝑠) and the mutual information between environmental states and observed 

states, 𝐼(𝑤𝑠 , 𝑜𝑠).  

In other words, uncertainty measures between two random variables can be expressed 

with its formulation given below (Kullback & Leibler, 1951) ; 

𝑑𝐾𝐿(𝑃(𝑤𝑠)||𝑃(𝑜𝑠)) = ∫𝑃(𝑤𝑠) log (
𝑃(𝑤𝑠)

𝑃(𝑜𝑠)
) (4.1) 

Here, 𝑃(𝑤𝑠) is the occupancy probability of volumetric space, 𝑠 (Figure 4.4) in the 

whole map of the specified area, 𝑀𝑤. Similar to this, 𝑃(𝑜𝑠) is the occupancy 

probability of 𝑠 in the observed map of the specified area 𝑀𝑜. Moreover, the mutual 

information between observations and environment is as following with Shannon’s 

Entropy definition (Shannon, 1948); 

𝐼(𝑤𝑠 , 𝑜𝑠) =  𝐻(𝑤𝑠) − 𝐻(𝑤𝑠|𝑜𝑠)  (4.2) 

Where, 𝐻(𝑤𝑠) is the entropy of the environmental states, and 𝐻(𝑤𝑠|𝑜𝑠) is the 

conditional entropy of environmental states and observed states. With the 

mathematical operations mutual information with the following KLD expressions can 

be written as below; 

𝐼(𝑤𝑠 , 𝑜𝑠) = 𝑑𝐾𝐿(𝑃(𝑤𝑠, 𝑜𝑠)||𝑃(𝑤𝑠)𝑃(𝑜𝑠)) (4.3) 
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Here, 𝑃(𝑤𝑠, 𝑜𝑠) is the joint probability of 𝑤𝑠 and 𝑜𝑠 random variables.  

 

Figure 4.3 : Representation of conditional entropy of states. The transparent green 

area denotes the uncertain area of the environment. UAV and UGV must move along 

with the yellow and red arrows, respectively. With the movement of robots, the 

information, 𝐼(𝑤𝑠 , 𝑜𝑠) will increase, and conditional entropy will decrease. 

So, maximizing the KLD of 𝑃(𝑤𝑠, 𝑜𝑠) over 𝑃(𝑤𝑠)𝑃(𝑜𝑠) results, maximizing the 

mutual information (or minimizing uncertainties) between robots’ observations and 

environmental observable states, as in Figure 4.3. Note that, maximizing 𝑃(𝑤𝑠, 𝑜𝑠) 

over 𝑃(𝑤𝑠)𝑃(𝑜𝑠) is not the same expression with maximizing KLD of 𝑃(𝑤𝑠) over 

𝑃(𝑜𝑠). If the process of 𝑤𝑠 and 𝑜𝑠 is independent, the 𝑃(𝑤𝑠, 𝑜𝑠) will be equal to 

𝑃(𝑤𝑠)𝑃(𝑜𝑠). As a result, KLD between these two processes are maximized, however, 

𝐼(𝑤𝑠 , 𝑜𝑠) will be equal to zero. To sum up, the independent variables do not have any 

mutual information. Maximization of the mutual information between the 

environmental state and the robots’ observations is one of the aims of this thesis. 

Information maximization or seeking controller must be determined to serve the 

purpose of this dissertation. 

 Information Seeking Optimal Control 

The planning strategy will be handled as an information seeking controller, which 

maximizes the time-varying local and global states’ negative joint posterior. HeRT 

members receive their control inputs in order to provide maximized information on the 

environment. These control inputs will ensure the UGV and UAV heading towards to 

the volumetric space, 𝑠 where the number of permanently occupied voxels are under 

the threshold of mutual information. Note that, this threshold is not the same with 
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OctoMap occupancy probability upper and lower bound. However, these bounds will 

determine the exploration effectiveness in accordance with the mission duration and 

obtaining a better map. In order to provide these outcomes with an information seeking 

controller, an objective function, which maximizes the mutual information, must be 

defined.  

𝑂(𝑢𝑟(𝑡)) = argmax(𝑑𝐾𝐿(𝑃 (𝑤𝑠(0: 𝑡𝑓), 𝑜𝑠(𝑡 + 1)) || 𝑃 (𝑤𝑠(0: 𝑡𝑓)) 𝑃(𝑜𝑠(𝑡

+ 1)))  
(4.4) 

With; 

𝑑𝐾𝐿(𝑃 (𝑤𝑠(0: 𝑡𝑓), 𝑜𝑠(𝑡 + 1)) ||𝑃 (𝑤𝑠(0: 𝑡𝑓))𝑃(𝑜𝑠(𝑡 + 1))) 

= ∬𝑃 (𝑤𝑠(0: 𝑡𝑓), 𝑜𝑠(𝑡 + 1)) log
𝑃 (𝑤𝑠(0: 𝑡𝑓), 𝑜𝑠(𝑡 + 1))

𝑃 (𝑤𝑠(0: 𝑡𝑓))𝑃(𝑜𝑠(𝑡 + 1))
 

(4.5) 

Where, 𝑢𝑟(𝑡) is the control input of a robot at time 𝑡 and 𝑃 (𝑤𝑠(0: 𝑡𝑓)) refers reachable 

occupancy probability of 𝑠 from the beginning to end of the mission in the whole map 

of the specified area, 𝑀𝑤. It is determined with regard to permanently occupied voxels 

in each volumetric space on the obtained in OctoMap. 𝑃(𝑜𝑠(𝑡 + 1)) is the occupancy 

probability of 𝑠 with the measurement of robots at the time (𝑡 + 1) where the robot 

changes it states; 

𝑋(𝑡 + 1) = 𝑓(𝑋(𝑡), 𝑢𝑟(t))  (4.6) 

Here, the state includes the points of interest (target point), 𝑝𝑐(𝑥𝑝𝑐 
, 𝑦𝑝𝑐 

, 𝑧𝑝𝑐
). HeRT 

member changes its state to move to the volumetric space’s center point, 𝑝𝑐 in order 

to maximize the information about this space. The projection of that center point on 

the X-Y plane is the target point of UGV, 𝑝𝑐𝑢𝑔𝑣
. For UAV, the target point, 𝑝𝑐𝑢𝑎𝑣

 is 

determined as the intersecting point of the X-Y plane’s normal that includes the center 

point and the Xuav- Yuav plane. The X-Y plane at UAV’s flight altitude is denoted as 

Xuav- Yuav plane. So, moving to the target point affects 𝑃(𝑜𝑠(𝑡 + 1)), and converging 

𝑃 (𝑜𝑠(0: 𝑡𝑓))  to 𝑃 (𝑤𝑠(0: 𝑡𝑓)) is desired. Also, energy consumption must be taken 

into account in order to define the next target point for each robot.  For the sake of 

simplicity, energy consumption is implemented to the objective function as a weight 

value calculated with the formulation given below; 
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𝜔𝑖 =
1

√(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2
  (4.7) 

Here, 𝜔𝑖 is a strictly positive scalar value, 𝑖 is the number of target points, 𝑥2 and 𝑦2 

are the target point values in 𝑥 and 𝑦 coordinate, respectively, at the time 𝑡. 𝑥1 and 𝑦1 

are the target point values visited at time 𝑡 − 1.  

To get an optimal control input for a single robot, the gradient of the objective function 

with respect to its target point state can be written as follows; 

𝜕𝑂𝑘

𝜕𝑝𝑐𝑖

= ∬
𝜕𝑃(𝑤𝑠|𝑜𝑠)

𝜕𝑝𝑐𝑖

𝑃(𝑜𝑠) 𝑑𝑤𝑠 𝑑𝑜𝑠 + ∬
𝜕𝑃(𝑜𝑠|𝑤𝑠)

𝜕𝑝𝑐𝑖

𝑃(𝑤𝑠) log
𝑃(𝑤𝑠|𝑜𝑠)

𝑃 (𝑤𝑠)
𝑑𝑤𝑠 𝑑𝑜𝑠    (4.8) 

With the mathematical operations; 

𝜕𝑂𝑘

𝜕𝑝𝑐𝑖

= ∬
𝜕𝑃(𝑜𝑠|𝑤𝑠)

𝜕𝑝𝑐𝑖

𝑃(𝑤𝑠) log
𝑃(𝑤𝑠|𝑜𝑠)

𝑃 (𝑤𝑠)
𝑑𝑤𝑠 𝑑𝑜𝑠 (4.9) 

Proof of attaining equation (4.9) from equation (4.8) is given in Appendix C.  

So, with the 𝜔𝑖 implemented to the control input, the controller of the robot will be 

given as below; 

𝑢𝑡
𝑟 = 𝜔𝑖

𝜕𝑂𝑘

𝜕𝑝𝑐𝑖

 (4.10) 

Theorem 4.1. Equation (4.10) with the movement weight will converge to zero 

between obtained measurements by all HeRT members. The measurement 

probabilities differ from each other at each point with respect to OctoMap upper and 

lower bounds, and equals to zero outside the robot's observation area. Also, equation 

(4.15) is Lyapunov stable subject to its local optimality in order to maximize the 

objective function. 

Proof of Theorem 4.1. This proof is acquired with the jointly use of theorems given 

by Julian et al. (2012), Palomar & Verdú (2007) and the approach given in this 

dissertation with target point gradient and positive scalar weight value: In order to 

check the stability of the system with the control inputs, Lyapunov function candidate, 

𝑉𝑘 = −𝑂𝑘 is presented. Within the use of equation (4.10), the closed-loop system 

dynamics can be written as; 

𝑑𝑝𝑐𝑖

𝑑𝑡
= −𝜔𝑖

𝜕𝑉𝑘

𝜕𝑝𝑐𝑖

 (4.11) 

If 𝜕𝑃(𝑜𝑠|𝑤𝑠)/𝜕𝑝𝑐𝑖
 is continuous, 𝜕𝑉𝑘/𝜕𝑝𝑐𝑖

 will be continuous on the space 𝑝𝑐𝑖
∈ ℙ. 

As a result, equation (4.11) is locally Lipschitz with a continuously differentiable 
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candidate function. The Lie derivative of the Lyapunov candidate function, which is 

definitely negative or equal to zero. 

∑
𝜕𝑉𝑘

𝜕𝑝𝑐𝑖

𝑆

𝑖=1

𝑑𝑝𝑐𝑖

𝑑𝑡
= −∑𝜔𝑖 (

𝜕𝑉𝑘

𝜕𝑝𝑐𝑖

)

2𝑆

𝑖=1

 (4.12) 

So, the partially derivative of the conditional entropy of 𝑜𝑠 over 𝑤𝑠 in respect of 𝑝𝑐𝑖
 

can be written as follows with the assumption of the area around the target point is not 

visited before; 

𝜕𝑃(𝑜𝑠|𝑤𝑠)

𝜕𝑝𝑐𝑖

= 0 (4.13) 

Therefore, the system is bounded under all solutions. Regarding the invariant 

equilibrium points  𝑝𝑐𝑖

′  which are providing local optimality of 𝑉𝑘; 

𝜕𝑉𝑘

𝜕𝑝𝑐𝑖

|
𝑝𝑐𝑖

=𝑝𝑐𝑖
′

= 0 (4.14) 

means 𝜕𝑂𝑘/𝜕𝑝𝑐𝑖
= 0, with 𝑖 = {1, … , 𝑆}, and 𝑆 is the total number of volumetric 

space.  

As a result, targets of the robots will converge to 𝑝𝑐𝑖

′  considering LaSalle’s Invariance 

principle, all the requirements are fulfilled. Moreover, all target points are Lyapunov 

stable subject to its locally optimal case with respect to the objective function’s 

maximization.  

𝜕𝑂𝑘

𝜕𝑝𝑐𝑖

|
𝑝𝑐𝑖

=𝑝𝑐𝑖
′

= 0 (4.15) 

and 𝑝𝑐𝑖

′  is the equilibrium points to provide local optimality. Moreover, these points 

are chosen from a set of possible volumetric spaces in the environment, 𝑝𝑐𝑖

′  ∈

𝑃𝑐 , { 1, … , 𝑆}.           □□□ 

Rule 1 These target points will be sent to the robots with the conditions given below 

with the  𝑝𝑐𝑖

𝑧  and ℎ2 which refers to the coordinate point value in the z-axis and the 

height value of the layer given in Section 3, respectively. In other words, if 𝑎 + 𝑎/2 <

ℎ2 in Figure 4.4, 𝑝𝑐𝑖+1   will be assigned to UGV as 𝑝𝑐𝑢𝑔𝑣𝑖+1
.  

𝑝𝑐𝑖
 = {

𝑝𝑐𝑖

𝑧 < ℎ2  ,        𝑝𝑐𝑢𝑔𝑣𝑖

𝑝𝑐𝑖

𝑧 > ℎ2 ,        𝑝𝑐𝑢𝑎𝑣𝑖

 (4.16) 
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Figure 4.4 : Representative illustration of volumetric spaces. In this illustration;   

𝑙 = 1/𝜔𝑖. Green transparent boxes (𝑠1 to 𝑠16)  are the ones that mutual information 

value is over the threshold, 𝐼(𝑤𝑠1:𝑠16
 , 𝑜𝑠1:𝑠16

) > 𝐼𝑡ℎ. The red box is the volumetric 

space whom mutual information value is under the threshold,  𝐼(𝑤𝑠24  , 𝑜𝑠24
) < 𝐼𝑡ℎ. 

Dimensions of the volumetric space, 𝑠 is  𝑎 × 𝑎 × 𝑏 and 𝑝𝑐𝑖+1 is the next target point 

to visit. 

Rule 2 UGV create their trajectories to reach the target point with the obstacle 

avoidance constraints given in Appendix A. However, if 𝑝𝑐𝑢𝑔𝑣𝑖
 is unreachable because 

of the obstacles, the target point will transform into a circle with a diameter 𝑑𝑖, and the 

value of the diameter will be 0 < 𝑑𝑖 ≤ 𝐷𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒  ∈ 𝑅. In addition, if 𝑝𝑐𝑢𝑔𝑣𝑖
+

𝐷𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒/2  is also unreachable by UGV, and this target point will be assigned to 

UAV.  

Rule 3 UGV and UAV has a certain knowledge of its localization in the environment, 

bounds of the environment and the joint measurement probabilities, 𝑃(𝑜𝑠|𝑤𝑠).  

The flow of the information seeking optimal control process is given in Figure 4.5. At 

time 𝑡 − 1, the probability of conditional states between the environment and each 

robot is approximated. The occupancy probabilities of the volumetric spaces are 

calculated with the use of UGV’s and UAV’s measurements at time 𝑡. After that, the 

control inputs, 𝑢𝑡
𝑢𝑎𝑣 and 𝑢𝑡

𝑢𝑔𝑣
, calculated in order to move robots to the target points 
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depending on decreasing uncertainties about the environment. Finally, at the target 

point 𝑝𝑐𝑖+1
, observations and the probability of conditional states  𝑃(𝑤𝑠|𝑜𝑠) will be 

updated. 

 

Figure 4.5 : Flow diagram of informative path planning in this dissertation. This 

flow diagram includes phases, such as; before 𝑡 − 1, from 𝑡 − 1 to 𝑡 and from 𝑡 to 

𝑡 + 1. Also, it shows the process flow from the conditional states to the observations 

and actions of UGV and UAV with the ground station. 

In summary, informative path planning for HeRT with relative entropy theory and an 

optimal controller in association with KLD is explained. As a result, a Lyapunov stable 

optimal controller is achieved through optimization of objective function defined by 

KLD and weight as stated by the Theorem 4.1. In order to verify the given theoretic 

approaches, the case studies are handled in the next section.  
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 CASE STUDIES 

The theoretical background of this study given in previous sections has also 

experimented for the purpose of verifying the solution method in the simulation 

environment and the real world.  

Experimental studies are only done for determining the similarity metric for 

constructing common maps for the HeRT. Unfortunately, because of security issues 

about flying UAVs without pilot in-the-loop is forbidden around public areas in 

Turkey. As a result, active SLAM with informative path planning strategy for HeRT 

is only validated in the simulation environment.  

 Experimental Studies 

Experiments are handled in order to determine the suitable similarity metric for 

constructing common maps for HeRT. The experimental setup, experiment area, and 

results are given below.  

5.1.1 Hardware Setup 

The aim of the experimental studies is the observation of the theoretical algorithms in 

the real world. These studies are realized with the equipment listed in Table 5.1. 

Table 5.1 : Experimental study equipment. 

System Equipment Intended Use 

MATRICE 600PRO Unmanned Aerial Vehicle 

HUSKY A200 Unmanned Ground Vehicle 

D-RTK GPS 
Obtaining Location information with sub-centimeter accuracy on 

UAV 

IMU-1 Internal inertial measurement unit on UAV 

IMU-2 (Xsens) External inertial measurement unit on UGV 

Modem Receive information on UGV 

GPS Obtaining Location information with on UGV 

Rugged Computer Processing data on UGV 

LIDAR VLP-16 Laser sensor on UGV 

LIDAR VLP-16Lite Laser sensor on UAV 

Mounting Parts-1 To assembly sensors on UGV and UAV 

Mounting Parts-2 To assembly sensors on  

Manifold The onboard computer in order to process data on UAV 

Main Computer Receiving and processing data coming from UAV and UGV 
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These equipment are the main components of the experiments and the detailed 

information in Appendix D. An integrated experimental setup is provided with these 

components specific for this dissertation. 

5.1.1.1 Integrated experimental setup 

The experimental setup includes three main systems, such as; UGV system, UAV 

System and Ground Station. 

UGV and UAV systems are used for obtaining data respectively from the ground and 

the air. The ground station was used for collecting data transferred from UGV and 

UAV systems. Also, it was used to processing these data and transmitting control 

inputs to systems. In Figure 5.1, experimental setup contents are shown. It can be seen 

that UGV, UAV and Ground Station are used. Detailed information about these 

systems is given below. 

 

Figure 5.1 : Experimental setup principle of operation. 

Data rates of the hardware used in the experiments of this study are given in Table 5.2. 

Table 5.2 : Data rates of the hardware. 

Hardware Data Rate (Hz) 

Velodyne VLP 16 and VLP 

16Lite 

10 

DJI IMU 400 

D-RTK GPS 10 

UGV GPS 10 

Xsense IMU 100 

UGV Encoder 3 
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UGV system 

UGV experimental setup includes HUSKY A200, rugged computer, VLP-16, VLP-16 

interface box, GPS sensor, external Xsens IMU sensor, and mounting parts can be seen 

in Figure 5.2 

 

Figure 5.2 : UGV experimental setup-outside. 

Ground Station  

The ground station is employed to control UGV and UAV and receive data from 

vehicles remotely. It has a high-performance processor unit and a graphic card suitable 

for missions of this dissertation. A wireless link handles the data transmission process. 

The ground station has Intel Core i7-6820HQ CPU 2.70GHz processor, and 32 GB 

installed memory (RAM).  

UAV System 

UAV system contents MATRICE 600PRO, D-RTK GPS, VLP16-Lite Lidar, VLP16 

Interface Box, manifold and mounting parts. 

5.1.2 Software Setup 

The data flow of the hardware and the software in the experimental setup is given in 

Figure 5.3. Robot Operating System (ROS) -Indigo release is used as the base of the 

system software. EKF localization1, Navsat Converter, LOAM Velodyne and 

OctoMap packages are utilized with customized settings for the specific experiments 

in this dissertation. Customized settings are determined with regard to hardware 

specifications, such as; measurement errors, process errors and physical attributes. 

Also, map resolution, occupancy state determinant bounds and surface roughness 

                                                 

 
1 EKF localization is only utilized for error calculation in experimental studies.  
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parameters are included in order to obtain valid results considering the theoretical 

background of the thesis given in previous sections. 

In addition, the software is developed in Python language for height mapping, layering, 

similarity calculations and map merging algorithms. Nodes, message types, 

broadcasting transforms, publishing and subscribing topics with the defined queue size 

are also written based on Python language.  

In conclusion, the desired outputs are obtained on the software side with the hardware 

drivers, customized ROS packages and developed software. 

Desired Output

Globally oriented common map 

Ground Station

Another computer used for remotely control the mobile robots

Main Computer

Rugged computer that receives and transmits collected 

datas and control commands

 

Robotic Base

HUSKY A200 

unmanned ground 

vehicle 

Telemetry

Linksys-WRT54GL wireless modem

IMU

Xsens MTI-10 sensor

Software

 Hardware Drivers

Ubuntu 14.04 OS

Main operating system that 

communicates with hardware

ROS-Indigo 

Robotic middleware software 

system

Vehicle Driver

Robotic based HUSKY 

A200 communicate driver

IMU Driver

 Xsens MTI-X package 

driver

Laser Measruement 

Driver

Velodyne VLP-16 sensor  

driver

Vehicle Remotely 

Control Driver

 Sony PS-3 console driver

Octree Mapping

OctoMapping by using 

localization and georeferenced 

point cloud

User Console

 Sony PS-3 remote 

controller

Hardware

Laser Scanner

Velodyne VLP-16 

sensor 

Height Mapping and Layering

Algorithm that converts point cloud to the height map and 

split the map vertically with layers.

Manifold

Onboard computer that receives and transmits 

collected datas and control commands

Robotic Base

MATRICE 600 Pro unmanned 

aerial vehicle 

Telemetry

DJI Lightbridge

IMU

DJI IMU

User Console

DJI RC

Laser Scanner

Velodyne VLP-16 Lite sensor 

UGV

UAV

LOAM_Velodyne

Mapping package by using 

IMU and Lidar data 

Similarity Metrics

Algorithm that calculates similarity 

between maps and find rotation and 

transformation matrix between those maps 

Map Merging

Merging Maps with 

calculated rotation and 

transformation matrix

Ready to Use Software

GPS

 GPS-Crescent  module 

GPS

 DJI D-RTK GPS 

EKF (Extented Kalman Filter) 

Localization

Realtime orientation and 

position Ros Package  

Navsat Converter

Global world coordinate 

converter

GPS Driver

ROS Nmea_driver 

package 

Developed Software

Customized Packages

 

Figure 5.3 : Experimental setup physical and functional block diagram. 

5.1.3 Experiment Area 

Experiments were carried out on Istanbul Technical University Ayazaga Campus. The 

field within the campus, chosen for the experiments, has different types of structures, 

slopes, and objects which can provide the main idea to handle common maps. Trees 
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and roofs are essential for this study, which causes difficulties in sensing, as stated in 

Figure 2.3. Images of the experiment area can be seen in Figure 5.2 and Figure 5.4. 

 

Figure 5.4 : Experiment area photo was taken by UAV. 

5.1.4 Scenario 

Experiments were performed within the created scenario that includes hardware setup, 

software structure and sorted processes. Hardware setup and software structure were 

given in previous subsections. The data collection method with UAV and UGV, and 

calibration of VLP-16 and VLP-16Lite were the same as in (Aybakan et al., 2019). 

However, post-processing of the data differs from the given study.  

In order to mention scenario, the sorted processes can be given as below; 

1- Prepare, and power on UGV and UAV. 

2- Define the paths of UGV and UAV in order to cover the experiment area as in 

(Aybakan et al., 2019). 

3- Fly UAV autonomously with the given trajectories.  

4- Collect the data from UAV, such as; point cloud, 𝑚𝑡𝑢𝑎𝑣
, RTK GPS signals and 

IMU, and send it to the ground station via the wireless link. 

5- Power off the UAV system. 

6- Operate UGV manually with the given trajectories.  

7- Collect the data from UGV, point cloud, 𝑚𝑡𝑢𝑔𝑣
, and send it to the ground station 

via the wireless link. 

8- Power off the UGV system. 
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9- Process the data with the following algorithm; 

Algorithm 1 Constructing common map of the experiment area 

Input: 𝐶(𝑛,𝑖)𝑡−1𝑢𝑎𝑣

𝐿 , 𝐶(𝑛,𝑖)𝑡−1𝑢𝑔𝑣

𝐿   

Output:  𝑀𝑤𝑐
, 𝐴𝑚, 𝐺𝑚, �̃�, 𝑉𝑖 

begin Collect points 𝐶(𝑛,𝑖)𝑡𝑢𝑎𝑣

𝐿  and 𝐶(𝑛,𝑖)𝑡𝑢𝑔𝑣

𝐿  from the optical channel 𝑆𝑛𝑢𝑎𝑣
and 𝑆𝑛𝑢𝑔𝑣

 

for  𝑡 = 1: 𝛿𝑧: 𝑡𝑓 do 

          Calculate surface roughness, 𝜅𝑡 for each time step, 𝛿𝑧 = 0.1𝑠𝑒𝑐 for UAV and UGV 

          if  𝜅𝑡 < 𝜅𝑡ℎ = 0.1;  

               𝐶(𝑛,𝑖)
𝐿 =Гn 

               then; Compute to line distance 𝑑Г and obtain 𝑓Г (𝐶(𝑛,𝑗)
𝐿

𝑡
, 𝑇𝜎,𝑖

𝐿 ) 

               else; 

               𝐶(𝑛,𝑖)
𝐿 =𝛥𝑛 

               then; Compute the distance to the line 𝑑𝛥 and obtain 𝑓𝛥 (𝐶(𝑛,𝑗)
𝐿

𝑡
, 𝑇𝜎,𝑖

𝐿 ) 

          end   

          Calculate 𝑓(𝑇𝜎,𝑖
𝐿 ) = 𝑑   

          Calculate the position difference 𝑇𝜎
𝐿 = [𝑡𝑥, 𝑡𝑦, 𝑡𝑧, 𝜃𝑥 , 𝜃𝑦, 𝜃𝑧 ]

𝑇
at the time, 𝑡           

          Calculate translation, 𝑇𝜎,𝑖
𝐿  and rotation, 𝑅 for UAV and UGV based on 

          nonlinear optimization given in equation (2.14) 

          if  min(𝑇𝜎,𝑖
𝐿 − (𝐽𝑇𝐽 + 𝜆𝑑𝑖𝑎𝑔(𝐽𝑇𝐽))𝐽𝑇𝑑) converges  

               then; Break 

         end 

          Obtain georeferenced point cloud for UGV and UAV, and measurements for each                

          time step; 𝑀𝐿𝑂𝐴𝑀𝑡
, 𝑚𝑡𝑢𝑔𝑣

 and 𝑚𝑡𝑢𝑎𝑣
  respectively 

          Calculate 𝑙𝑈𝐵𝑜
 and 𝑙𝐿𝐵𝑜

 with regard to LOAM error, 4.5% by Equation 9 

         for 𝑗 = 1: 4 and 𝑙𝑈𝐵𝑜
= 3.1, 𝑙𝐿𝐵𝑜

= −2.2 do   

               for 𝑖 = 1: 126 do 

                     Calculate 𝑙(𝑉𝑖|𝑚1:𝑡)𝑗 with 𝑙𝑈𝐵𝑜
 and  𝑙𝐿𝐵𝑜

 

               Obtain local OctoMap of UGV and UAV for each layer,  𝑉𝑢𝑔𝑣𝑗
 and 𝑉𝑢𝑎𝑣𝑗 ,           

               respectively 

               end 

         for 𝑖 = 1: 303 and 𝑙𝐿𝐵ℎ
= −2, 𝑙𝑈𝐵ℎ

= 3 do 

               Calculate 𝑙(𝑔𝑖|𝑚1:𝑡)𝑗 for each layer 𝑗 with  

               if  𝑃(𝑔𝑖|𝑚𝑡)𝑗 > 0.3; 

                     𝑧𝑡𝑗
= 𝑧𝑖𝑗

  

                    else;  

                     𝑧𝑡𝑗
= 0 

              end 

              Obtain local height map of UGV and UAV for each layer,  𝑯0:𝑡𝑢𝑔𝑣𝑗
 and   𝑯0:𝑡𝑢𝑎𝑣𝑗

,          

              respectively 

         end  

       #Initial value of 𝑢, with 15° rotation and [𝑥 𝑦]𝑇 = [1m, 1m]T, translation difference 

        𝑢 = [
0.96 0.26 1

−0.26 0.96 1
0 0 1

]   

        for 𝑖 = 𝑖 + 1 do 

              Calculate distances or entropies of the heights for each layer with the       

              equations in Section 3.2 

              �̃�𝑗 = 𝑎𝑟𝑔𝑚𝑖𝑛 𝐻 or �̃�𝑗 = 𝑎𝑟𝑔𝑚𝑖𝑛 𝑑 

              if  �̃�𝑗  converges 

                       then; Break 

                    end            

         end 

                         end 

                       Calculate 𝐺𝑚(𝑧) and 𝐴𝑚(𝑧) with �̃�. 

 𝑀𝑤𝑐
= 𝐺𝑚 + 𝐴𝑚        

end   

end      
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Note that, only four layers are employed for this study, and the 4th layer has the 

information between 925mm to 40.000mm. 

5.1.5 Results 

Construction of common height maps with seven different entropy-based similarity 

metrics and utilization of the layering method in this study is realized with 

experiments. Both ground and aerial robots collected useful data in order to examine 

the environment with the presented method in this thesis. Aerial and ground maps are 

merged, and each point cloud is moved to the desired global coordinate system’s origin 

(globally-oriented), designated in this study as the UAV’s local coordinate system’s 

origin. As a result of the study, mapping of the environment with complex features is 

realized. The details of how metrics are computed are stated below; 

The number of spatial samples is 90.000 because of the 300×300 grid construction. 

The number of histogram bins used in the joint histogram computation is 100 – due to 

the 40cm layers of 40m total examine height.  

Results are investigated in two different parameters; root mean square error (RMSE) 

of heights in merged maps and computation time; also, visual outputs are given. 

5.1.5.1 Height Value RMSE 

Since UAV has the RTK GPS onboard, aerial height map obtained by EKF localization 

can be the reference to calculate RMSE of heights in the merged map. Therefore, the 

root RMSE formulation can be; 

𝑟𝑚𝑠𝑒 = √(
(𝑠𝑢𝑚(𝑅(𝐴𝑚(𝑧)) + 𝑇 − 𝑀𝑚(𝑧))2

𝑛
) (5.1) 

Where 𝐴𝑚(𝑧) and 𝑀𝑚(𝑧) are respectively, the aerial and referenced height map of the 

environment. 𝑅 is the rotation matrix, T is the translation matrix. Sum refers to the 

height values summation. 𝑛 is the number of grids on the map, which is 

300×300=90.000. 

In Figure 5.5, results are inserted into a chart for the purpose of understanding the 

relation between RMSE values and computation times of different similarity metrics 

with the layering method and without the layering method. As can be seen from the 

chart, more complicated similarity metrics provide less error at the cost of increased 
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computation time. Moreover, the layering method provides, on average %46 less error, 

with an average 0.1sec performance improvement on the computation time. Jensen 

Divergence is determined as the best similarity metric in this study with 0.92m RMSE 

value. Without the layering method, RMSE values increase for each similarity metric 

because of the experiment area’s characteristics explained in previous sections. The 

more features (heights) are included for the calculation of the similarity metric, the 

more accuracy is obtained.  

 

Figure 5.5 : Chart of similarity metric versus computation time and RMSE.  

Also, it is expected that the computation time will increase to determine the best 

similarity with the layering method because four height maps are included in the 

calculation instead of one map.  However, the number of iterations stated in Table 5.3  

substantially rise in order to find the best position and orientation, �̃�. This result shows 

that, �̃� is found with fewer iterations for each layer than the complete height map 

without layers. When calculating the �̃�, the results converged to the same values after 

the iterations stated in Table 5.3. 

Table 5.3 : Number of iterations to calculate the best position and orientation with 

and without the layering method for different similarity metrics. 

Similarity Metric SE KLD JD KD TD JeSD JeD 

Number of 

Iterations 

With Layering Method 8 46 88 75 105 172 162 

Without Layering Method 10 51 12 84 127 200 212 

S.E KLD JD KD TD JeSD JeD

RMSE with Layering Method 2,2 1,7 1,5 1,6 1,2 1,1 0,92

RMSE without Layering

Method
3,30 3,10 2,70 2,90 2,30 2,20 2,10

Computation Time  with

Layering Method
0,02 0,14 0,3 0,24 0,44 0,78 0,81

Computation Time without

Layering Method
0,023 0,16 0,35 0,27 0,53 0,93 0,99
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TD and JeSD metrics had similar RMSE and adjacent values (Figure 5.6) as their 

metric formulations are also similar. JD has better RMSE value than KD even though 

the JD is the symmetric version of the KLD, and KLD has the formulation as half of 

KD. It occurs because Jeffreys divergence similarity calculation relies on the elevation 

values of both vehicles more than KLD and KD metrics. 

 

Figure 5.6 : Box plot of the similarity metrics according to RMSE values.  

As a result, less than 1m RMSE value provides a high level of confidence for the 

obtained common map, where the maximum height value is 40𝑚. Minimum error 

values close to zero are obtained in grids that are important for the ground robot’s 

movement to climb over. It achieves better results for lower height values in the first 

two layers. A maximum RMSE value of less than 2.5m and outliers between 2m and 

3m are negligible since those grids can be set as insignificant to the operation of agents. 

Even though the calculation time is higher than the others, JeD is determined as the 

best similarity metric for this specific dissertation.  

5.1.5.2 Visual Outputs 

Visual outputs of the experimental studies are given as; height maps of the layers for 

each robot, merged OctoMap, merged height map and the merged point cloud map of 

the environment. 

The obtained height maps’ 2D views of the layer-1, layer-2 and layer-4 for UGV and 

UAV can be seen in Figure 5.7. Similar to Figure 3.3, different colours are assigned 

for each layer to understand the similarities with ease. For the first layer; blue refers to 

the heights of the objects and magenta refers to the base of the investigated area. Aqua 
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colour is chosen for the second layer, and green colour refers to the third layer. Finally, 

for the fourth layer, yellow is selected. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e)  

 
(f) 

Figure 5.7 : Obtained height maps of the layers. (a) UGV layer-1. (b) UAV layer-1. 

(c) UGV layer-2. (d) UAV layer-2. (e) UGV layer-4. (f) UAV layer-4. 

As can be seen from Figure 5.7, height maps of the layer-1 and layer-2 differ from 

each other. The height maps of the layer-4 seem similar by visual inspection; however, 

the best similarity is found between the height maps of layer-3, which is given in 
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Figure 5.8. This result is compatible with the visual outputs, and it is reasonable 

because the third layer is the most common layer scanned by UGV and UAV. 

 
(a) 

 
(b) 

Figure 5.8 : Obtained height maps of the layers. (a) UGV layer-3. (b) UAV layer-3.  

Figure 5.8 shows that; most of the heights on layer-3, which are observed by UGV and 

UAV, are similar. Note that; in Figure 5.7 and Figure 5.8, realized images are aligned, 

despite that these are not referenced to a coordinate system. Images are arranged in 

order to quote them from the same angle of view. Actual layer images of UGV and 
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UAV have position and orientation differences before calculating the similarities of 

heights and applying the transformations. 

The common elevation map obtained by the experiments can be seen in Figure 5.9 

 
(a) 

 
(b) 

 
(c) 

 
(d)  

 
(e) 

Figure 5.9 : Obtained common height map of the environment. (a) to (e) various 

views of the height map. 
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The common OctoMap obtained by the experiments can be seen in Figure 5.10 

 
(a) 

 
(b) 

 
(c) 

 
(d)  

 
(e) 

Figure 5.10 : Obtained OctoMap of the environment. (a) to (e) various views of the 

OctoMap with resolution=0.2m. 



50 

The achieved common point cloud map obtained by the best similarity metric (JeD)  

transform can be seen in Figure 5.11. 

 

Figure 5.11 : Common point cloud map obtained with Jensen Divergence similarity 

metric output transform in the form of different camera line of sight. A part of these 

point cloud maps (red enclosed areas) can be compared with the given bird-eye view 

real image in Figure 5.4. 

Also, the trajectory input and odometry output of the experiments are given in Figure 

5.12. As it can be seen from the images and odometry outputs of ROS are similar. 

However, the ground robot could not realize the full path identical to the input 

trajectory due to the obstacles and traversability of the area. 

 
(a) 

 
(b) 

Figure 5.12 : Trajectory input and odometry output of the experiments.(a) taken 

from (Aybakan et al., 2019). 
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 Simulation Studies 

Simulation studies are used for validating the given theoretical background in this 

dissertation. In the following subsections, the usage of the simulation tools, scenario 

and results are explained and given in detail. 

Simulation Computer – OS: Ubuntu 16.04 

Desired Output

Explored environment with informative path planning   

Gazebo

Quadrotor UAV

IMU GPS
Velodyne 

VLP-16 

Motors and 

Propellers

Environment

IMU
Velodyne 

VLP-16 

HUSKY A200 UGV

GPS
Motors and 

Wheels

ROS Kinetic

Octree Mapping

OctoMapping by using localization 

and georeferenced point cloud

Customized Packages

EKF Localization

Realtime orientation and position 

Ros Package  

Navsat Converter

Global world coordinate converter

Height Mapping and Layering

Algorithm that converts point cloud to the height 

map and split the map vertically with layers.

Similarity Metrics

Algorithm that calculates similarity between 

maps and find rotation and transformation matrix 

between those maps 

Map Merging

Calculated rotation and transformation In the beginning with  and 

provide affine 3D transformation matrix for the next measurements 

Developed Software

Information Seeking Optimal Controller

Maximizing mutual information between the environmental states and 

the observed joint states with optimal controller

 

Figure 5.13 : Simulation setup functional block diagram. 

5.2.1 Simulation Setup 

The simulation setup includes tools that are utilized in this dissertation. The Robot 

Operating System (ROS) is employed to prevent time-wasting of reinventing the 

improvements that have already been achieved. It is an efficient and practical tool 

when developing robotic applications. ROS provides the flexibility of using specific 

algorithms with turnkey customizable infrastructure. Moreover, in order to design an 

environment and simulate the mission, Gazebo simulator is utilized, as well. This two 

software is available as open-source and can be used in Linux based operating systems, 
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such as; Ubuntu, Debian, etc. Finally, the algorithms of this dissertation are written on 

Python programming language, which is ROS compatible and easy to adapt with 

several useful tools. The functional block diagram of the simulations is given in Figure 

5.13. The following subsections provide a comprehensive explanation of the usage of 

this software. 

5.2.1.1 Robot Operating System 

In this dissertation, ROS Kinetic is utilized for defining robots, collecting data, and 

processing them with Python algorithms and ready-to-use adjustable packages. UGV’s 

wheels, body frame for move collision-free movement, sensor links and kinematic 

vehicle model are defined in ROS. Similar to that, UAV’s specifications are 

implemented to ROS. However, the UAV model is not identical to the one used in 

experiments. Still, it has the same frame transformations and does the tasks of the 

mission identically. In Appendix A, obstacle avoidance (collision-free movement) 

method and kinematic vehicle models are given. EKF localization, OctoMap and 

Navsat Converter packages are used with custom parameters. The parameters, their 

values and the reasons for selected values are explained in Table 5.4. 
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Table 5.4 : ROS packages, parameters, their values and the reasons for selected values. 

 

Package Parameter Value Reason 

UAV UGV  

EKF 

Localization 

frequency 40Hz 40Hz 
Better to select 4 times faster than GPS data rate in order to 

correct measurements 

frame 

map_frame map map - 

odom_frame odom odom Odom to base_link tf’s are given. 

base_link_frame base_link base_link - 

world_frame odom odom - 

sensor 

gps gps gps 
GPS, IMU and Husky A200 odometry data are collected in 

order to estimate the location of robots. UAV is modeled as 

constant-velocity, and wind disturbances are omitted. 

imu imu/data imu/data 

odometry false 
husky_velocity controller / 

odom 

sensor config 

odomN_config [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [1 1 0 0 0 0 0 0 0 0 0 0 0 0 0] 
UGV encoder data are taken in accordance with the equation 

2.3 

twistN_config [1 0 0 0 0 0 1 1 1 0 0 1 0 0 0] [1 0 0 0 0 0 1 1 1 0 0 1 0 0 0] Accelaration values are taken in order to create speed limits. 

imuN_config [0 0 0 0 0 0 0 0 0 1 1 1 0 0 0] [0 0 0 0 0 0 0 0 0 1 1 1 0 0 0] 
Angular velocities are taken  in accordance with the  equation 

2.3 

poseN_config [1 1 1 1 1 1  0 0 0  0 0 0 0 0 0] [1 1 1 1 1 1 0 0 0 0 0 0 0 0 0] 
GPS sensors position values are taken in accordance with the 

equation 2.3 

sensor_differential 
imu, gps, 

encoder 
false false 

No integration is needed. GPS data is converted through 

Navsat Converter. 

use_control true true Control commands are taken into account. 

process_noise_covariance 0.015 ×  𝐼9𝑥9 0.015 ×  𝐼9𝑥9 Best results are obtained with these values. 

dynamic_process_noise_covariance false false Process noise is not scaled dynamically through velocities. 

control_config [1 1 1 0 0 1] [1 0 0 0 0 1] 
UAV uses three axis linear velocities and yaw, UGV is only 

uses linear velocity at heading angle and yaw  value. 

sensor noise 

gps 

drift 0.01 ×  𝐼6𝑥6 0.01 ×  𝐼6𝑥6 

Best results are obtained with these values. Since sensors are 

virtual and not chosen related to the real sensors. Still, these 

values can be used in real-world studies. 

gaussian 

noise 
0.01 ×  𝐼6𝑥6 0.01 ×  𝐼6𝑥6 

imu 

acc. 

drift 
0.05 ×  𝐼3𝑥3 0.05 ×  𝐼3𝑥3 

acc.gaus

sian 

noise 
0.05 ×  𝐼3𝑥3 0.05 ×  𝐼3𝑥3 



54 

Table 5.4 (continued) : ROS packages, parameters, their values and the reasons for selected values. 

Package Parameter Value Reason 

UAV UGV  

   

rate drift 0.05 ×  𝐼3𝑥3 0.05 ×  𝐼3𝑥3 

 

rate 

gaussian 

noise 
0.05 ×  𝐼3𝑥3 0.05 ×  𝐼3𝑥3 

heading 

drift 
0.05 ×  𝐼1𝑥1 0.05 ×  𝐼1𝑥1 

heading 

gaussian 

noise 
0.05 ×  𝐼1𝑥1 0.05 ×  𝐼1𝑥1 

OctoMap 

frame_id 
map_frame world world The map is built on world frame 

base_frame base_link base_link Volumes occupied in accordance with base frame 

resolution 0.05-0.1-1 0.05-0.1-1 These resolutions are chosen related to the memory allocation 

sensor_model/max_range 25m 10m 
UAV collects points on ±135𝑑𝑒𝑔 arc, UGV collects points 

on a 10m circle 

sensor_model/[hit|miss] 0.7 / 0.4 

If the occupation probability reaches hit, it will be assigned 

as an occupied voxel, and vice versa, miss values will be 

assigned as a free voxel. 0.7 and 0.4 is an optimum value 

obtained by trials. 

sensor_model/[min|max] 0.1 / 0.96 – 0.25/0.7 – 0.4/0.6 These values are chosen related to the information loss. 

Navsat 

Converter 

frequency 40Hz 40Hz Same with EKF localization. 

delay 0.05sec 0.05sec 
Wait before calculating the GPS coordinates; it is related to 

sensor. 

magnetic_declination_radians 0.1rad 0.1rad 
It is calculated according to Turkey’s latitude and longitude 

coordinates. 

yaw_offset 0.26rad 0rad 

IMU reads pi/2 when facing north. So, no need for offset for 

UGV. However, in real-time applications, UAV systems face 

IMU problems because of the full power of motors during 

elevation. So, an offset value is defined for UAV. 
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5.2.1.2 Gazebo Simulator 

Gazebo Simulator 5.0 is used for modeling the environment similar to the real world 

by visually modeling of the simulation scene with already modeled objects and robots. 

The configuration of robots, sensors and physical attributes can be customized in order 

to emulate the real systems.  

Simulation scene is designed to comprise the complexity of the environment with 

features, such as; trees, buildings, roofed top areas and traversable ground. The created 

simulation area can be seen in Figure 5.14. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 5.14 :  Gazebo simulation scene for this dissertation. UGV and UAV are 

marked as red and yellow in (a), respectively. (a), top view. (b), (c), (d) and (e) views 

of the scene from different angles. 
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5.2.2 Scenario 

Simulations are handled on Gazebo Simulator 5.0, ROS Kinetic and within the given 

scenario and conditions as following steps; 

1. In the Gazebo scene, UGV and UAV locate side by side with (𝑥𝑑, 𝑦𝑑) =

(0.3𝑚, 1𝑚) position difference as an initial condition. 

2. Define the exploration area by giving the bounds of the area as GPS coordinates2. 

Also, calculate the total volume of the explored space with, 𝑉𝑒 = 200𝑚 × 200 × 8. 

3. Send command: Elevate the UAV system to 𝑧 = 8𝑚 altitude. 

4. Start Algorithm 2. Note that, this command is transmitted to obtain position and 

orientation difference of the local maps at the beginning of the simulation.  

Algorithm 2 Calculating position and orientation difference 
Input: 𝑋𝑘𝑢𝑔𝑣

(1: 6)𝐺𝑃𝑆,𝑋𝑘𝑢𝑎𝑣
(1: 6)𝐺𝑃𝑆, 𝑋𝑘𝑢𝑔𝑣

(7: 9)𝐼𝑀𝑈, 𝑋𝑘𝑢𝑎𝑣
(7: 9)𝐼𝑀𝑈, 𝐶(𝑛,𝑖)𝑡𝑢𝑎𝑣

𝐿  , 𝐶(𝑛,𝑖)𝑡𝑢𝑔𝑣

𝐿 ,  

Output: �̃�, 𝑯𝒋 

begin Set initial target points on X-Y plane ( 𝑝1𝑢𝑔𝑣
= (0, 5, 0), 𝑝1𝑢𝑎𝑣

= (0.3 ,4 ,8 ) for height map 

comparison. 

 Georeference point cloud with EKF localization using 𝑋𝑘𝑢𝑔𝑣
(1: 6)𝐺𝑃𝑆,𝑋𝑘𝑢𝑎𝑣

(1: 6)𝐺𝑃𝑆, 

𝑋𝑘𝑢𝑔𝑣
(7: 9)𝐼𝑀𝑈, 𝑋𝑘𝑢𝑎𝑣

(7: 9)𝐼𝑀𝑈, 𝐶(𝑛,𝑖)𝑡𝑢𝑎𝑣

𝐿  , 𝐶(𝑛,𝑖)𝑡𝑢𝑔𝑣

𝐿  

 Obtain  𝑚𝑡𝑢𝑔𝑣
 and 𝑚𝑡𝑢𝑎𝑣

   

 Calculate 𝑙𝑈𝐵𝑜
 and 𝑙𝐿𝐵𝑜

 with regard to desired output information 

 for  𝑗 = 1: 4 do   

  for 𝑖 = 1: 𝐺 and do 

   Calculate 𝑙(𝑔𝑖|𝑚1:𝑡)𝑗 for each layer 𝑗 with 

   if  𝑃(𝑔𝑖|𝑚𝑡)𝑗 > 0.3; 

     𝑧𝑡𝑗
= 𝑧𝑖𝑗

      

    else;      

    𝑧𝑡𝑗
= 0      

   end  

   Obtain local the height map of UGV and UAV for each layer,  𝑯0:𝑡𝑢𝑔𝑣𝑗
 and 

  𝑯0:𝑡𝑢𝑎𝑣𝑗
, respectively 

  end  

  #Initial value of 𝑢𝑖, with 10° rotation and [𝑥 𝑦]𝑇 = [1m, 1m]T, translation difference 

   

𝑢𝑖 = [
0.98 0.17 1

−0.17 0.98 1
0 0 1

] 

  for 𝑖 = 𝑖 + 1 do 

   Calculate distances or entropies of the heights for each layer with the JeD.  

   �̃�𝑗 = 𝑎𝑟𝑔𝑚𝑖𝑛 𝑑𝐽𝑒𝐷 

   if  �̃�𝑗  converges 

    then; Break 

   end  

   Obtain �̃� 

  end        

 end         

end          

                                                 

 
2 GPS coordinates to global frame transform is given in Appendix C. 
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5. Start exploration of the environment with the Algorithm 3; 

Algorithm 3 Active SLAM with Informative Path Planning for HeRT 
Input: 𝑃(𝑤𝑠), 𝐼𝑡ℎ,  𝑋𝑘𝑢𝑔𝑣

(1: 6)𝐺𝑃𝑆,𝑋𝑘𝑢𝑎𝑣
(1: 6)𝐺𝑃𝑆, 𝑋𝑘𝑢𝑔𝑣

(7: 9)𝐼𝑀𝑈, 𝑋𝑘𝑢𝑎𝑣
(7: 9)𝐼𝑀𝑈, 𝐶(𝑛,𝑖)𝑡𝑢𝑎𝑣

𝐿  , 

𝐶(𝑛,𝑖)𝑡𝑢𝑔𝑣

𝐿 , Bounds of the area, �̃�, Explored Space volume (𝑉𝑒) 

Output: 𝑀𝑤𝑐
, 𝐴𝑚, 𝐺𝑚, 𝑉𝑖, 𝑯𝒋, 𝐼(𝑤𝑠 , 𝑜𝑠) 

begin Elevate UAV for 8𝑚, set initial target points on X-Y plane ( 𝑝1𝑢𝑔𝑣
, 𝑝1𝑢𝑎𝑣

) for height map comparison 

 Georeference point cloud with EKF localization using 𝑋𝑘𝑢𝑔𝑣
(1: 6)𝐺𝑃𝑆,𝑋𝑘𝑢𝑎𝑣

(1: 6)𝐺𝑃𝑆, 

𝑋𝑘𝑢𝑔𝑣
(7: 9)𝐼𝑀𝑈, 𝑋𝑘𝑢𝑎𝑣

(7: 9)𝐼𝑀𝑈, 𝐶(𝑛,𝑖)𝑡𝑢𝑎𝑣

𝐿  , 𝐶(𝑛,𝑖)𝑡𝑢𝑔𝑣

𝐿  

 Obtain  𝑚𝑡𝑢𝑔𝑣
 and 𝑚𝑡𝑢𝑎𝑣

   

 Calculate 𝑙𝑈𝐵𝑜
 and 𝑙𝐿𝐵𝑜

 with regard to desired output information 

𝑆 = 𝑉𝑒/𝑉𝑠  

 for  𝑠 = 1: 𝑆 and do   

  for 𝑖 = 1: 𝑽  do 

   Calculate 𝑙(𝑉𝑖|𝑚1:𝑡) with 𝑙𝑈𝐵𝑜
 and  𝑙𝐿𝐵𝑜

 

Obtain local the OctoMap of UGV and UAV for each volumetric space, 𝑉𝑢𝑔𝑣𝑠
 and 

𝑉𝑢𝑎𝑣𝑠, respectively 

   Obtain common OctoMap within the use of �̃� 

  end        

  for 𝑡 = 0: 𝑡𝑓 do 

   Calculate 𝑃(𝑜𝑠(𝑡)), 𝑃(𝑤𝑠(0: 𝑡𝑓), 𝑜𝑠(𝑡)) 

   Calculate 𝑑𝐾𝐿(𝑃(𝑤𝑠(0: 𝑡𝑓), 𝑜𝑠(𝑡))||𝑃(𝑤𝑠(0: 𝑡𝑓))𝑃(𝑜𝑠(𝑡))) 

   if  𝑑𝐾𝐿(𝑃(𝑤𝑠 , 𝑜𝑠)||𝑃(𝑤𝑠)𝑃(𝑜𝑠)) < 𝐼𝑡ℎ; 

    𝑂(𝑢𝑟(𝑡)) = argmax(𝑑𝐾𝐿(𝑃 (𝑤𝑠(0: 𝑡𝑓), 𝑜𝑠(𝑡)) || 𝑃 (𝑤𝑠(0: 𝑡𝑓)) 𝑃(𝑜𝑠(𝑡)))  

    
𝑢𝑡

𝑟 = 𝜔𝑠

𝜕𝑂𝑡

𝜕𝑝𝑐𝑡

 

    Obtain 𝑝𝑐𝑖
 

    if  𝑝𝑐𝑖

𝑧 ≤ ℎ2; 

     𝑝𝑐𝑡
=𝑝𝑐𝑢𝑔𝑣𝑡

 

     else; 
     𝑝𝑐𝑡

=𝑝𝑐𝑢𝑎𝑣𝑡
 

    end 
    for 𝑘 = 0: 4 do #reachability check 

     if 𝑝𝑐𝑢𝑔𝑣𝑡−1
!=𝑋𝑘𝑢𝑔𝑣

(1: 2)𝑡 &&  𝑋𝑘𝑢𝑔𝑣
(1: 2)𝑡 − 𝑋𝑘𝑢𝑔𝑣

(1: 2)𝑡−1 ≥

      𝐷𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒; 

      𝑝𝑐𝑢𝑔𝑣𝑡−1
= 𝑝𝑐𝑢𝑎𝑣𝑡+1

 

     end 
    end      

    Move to target point within creating collision-free path 

    else;      

    Break      

   end       

  end        

 end         

 Height map of the environment within the use of  OctoMap center points 

end          

5.2.3 Results 

Results are obtained with different cases in order to realize the advantages of this 

dissertation. The information about the cases is given in Table 5.5 rest of the 

parameters are as in Table 5.4.  

To keep simplicity and compatibility, height map bounds, distance tolerance and 

volume of the investigation spaces are all the same for six cases. The threshold value 
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of mutual information between environmental states and observed states, 𝐼𝑡ℎ for each 

space is defined by 𝑃(𝑤𝑠) which takes its values from 𝑃(𝑤𝑠) > 𝑝1or 𝑃(𝑤𝑠) < 𝑝2. 

Table 5.5 : Parameters were used in cases of the study. 

Case No. 1 2 3 4 5 6 

Robots UAV UGV HeRT HeRT HeRT HeRT 

𝑙𝐿𝐵ℎ
 -2 -2 -2 -2 -2 -2 

𝑙𝑈𝐵ℎ
 3 3 3 3 3 3 

𝐷𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 (m) - - 2 2 2 2 

𝑙𝐿𝐵𝑜
 -2.2 -2.2 -2.2 -1.1 -0.8 -2.2 

𝑙𝑈𝐵𝑜
 3.1 3.1 3.1 0.8 0.6 3.1 

OctoMap Resolution (m) 0.05 0.05 1 0.1 0.05 0.05 

𝑎 × 𝑎 × 𝑏 = 𝑉𝑠 (m) 5×5×2 5×5×2 5×5×2 5×5×2 5×5×2 5×5×2 

𝐼𝑡ℎ (bits) 0.3 0.3 0.24 0.24 0.33 0.33 

𝑝1  0.9 0.9 0.8 0.8 0.93 0.93 

𝑝2 0.1 0.1 0.2 0.2 0.07 0.07 

In simulation studies, only JeD is used for calculating the position and orientation 

difference, since it is defined as the best similarity metric in experimental studies. For 

cases 3-6, the affine 3D transformation matrix is calculated as 15° rotation and 

(𝑥𝑑, 𝑦𝑑) = (0.31𝑚, 0.98𝑚) position difference, and it is used for map merging during 

the whole process. Very close values between the results and given simulation inputs 

are achieved. 

The rest of the results are explained by visual and by exploration performances as 

follows. 

 

Figure 5.15 : Advantages of employing HeRT. Yellow areas show observations of 

UAV in case 1. Red areas show observations of UGV in case 2.  
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5.2.3.1 Visual Outputs 

The quality of the obtained maps and the advantages of the used method can be 

explained by using visual outputs. 

Employing HeRT instead of only UGV or UAV provides a lot of details that can be 

seen in Figure 5.15. It is possible to observe under the roofed top areas such as gazebos 

and houses (inside the windows). Also, information about the upper side of the trees 

and roofs is perceived. 

Moreover, the total height map of the environment can be seen in Figure 5.16. 

 
 (a)  

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 5.16 : Obtained height map of the environment by HeRT. (a) to (f), with 

different view angles. 
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Obtained OctoMaps of the case studies are given in Figure 5.17. So, in case 6, the best 

visually compatible result is achieved with higher information threshold and wide 

boundary values. Also, lower resolution values of the voxels in Octomap supply a 

more detailed map. However, these values lead to the necessity of more memory 

because of the obtained details.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 5.17 : Obtained OctoMaps of the environment from (a) to (f), with regard to 

cases 1 to 6, respectively. 
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Additionally, some of the details cannot be observed, and distortions are realized with 

the use of lower information threshold in case 4 and strict OctoMap permanent 

occupancy lower and upper bounds in cases 4 and 5 compared to case 6, as shown in 

Figure 5.18. 

 
(a) 

 
(b) 

 
(c) 

Figure 5.18 : Lack of information (red circles) and distortions of visual outputs 

(yellow circles). (a) case 4. (b) case 5. (c) case 6. 
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5.2.3.2 Performance Outputs 

The exploration performances of cases are summed up in Table 5.6. Note that, speeds 

of the UGV and UAV are limited to 0.5m/s and 1m/s, respectively. Also, UAV will 

turn around itself at the 𝑝𝑐𝑢𝑎𝑣𝑡
 for maximum two times in order to attain maximum 

information on the volumetric space until the information value is above the threshold. 

Table 5.6 : Exploration performances of cases. 

Case 

No. 

Duration 

(mins) 

Memory 

usage 

(MB) 

Collected total 

information 

(bits) 

VSLUT/

VSE 

(%) 

Total Movement 

(m) 

UGV UAV 

1 59 156 1140 %38 - 2832 

2 105 115 845  %54 3005 - 

3 69 0.224 1250 %26 1570 1032 

4 81 32 1377 %22 1440 1825 

5 117 228 1774 %20 1755 1930 

6 87 237 2107 %17 1875 2035 

For the purpose of investigating the total movement and volumetric spaces left under 

the threshold (VSLUT) according to the total number of volumetric spaces of the 

environment (VSE), the extracted performance metrics are given in Figure 5.19 as a 

chart. 

 

Figure 5.19 : Total movement of the team and volumetric spaces left under the 

threshold according to the total number of volumetric spaces, case by case.  
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As can be seen from Figure 5.19, employing only UAV provides less effort in terms 

of total movement with better area coverage. On the other hand, in the cases that HeRT 

is utilized (case 4 to 6), the UAV movement is higher than the UGV’s. The reason why 

this happened is UAV observes areas with its measurements faster than the UGV and 

UAV receives more information maximization control input. So, UAV is moving to 

more points than the UGV in order to cover the area and exceed the threshold on the 

volumetric spaces of the environment. Case 3 is an exception because the UAV system 

can measure distances in a wider area. There is not any necessity of moving to the 

target points, since it is observed from farther points with the less resolution of 

OctoMap. Further, the uncovered volumetric spaces decrease while the total 

movement of the team increases. This performance evolution is compatible with the 

expected results considering covering more areas. 

 

Figure 5.20 : Evolution of collected total information, duration of the mission and 

the memory usage of the obtained map, case by case.  

Figure 5.20 shows that the resolution of OctoMap directly affects the memory usage 

since the shared map is an OctoMap file with “.ot” extension. In addition, collected 

information is also increasing the memory allocation, but its effect is much smaller 

than the resolution. Moreover, to explain the results in terms of duration, case 1 and 
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case 2 can be compared. The duration of case 1 is less than case 2, since UAV can 

move faster than the UGV and do not need any collision-free path planning. Also, the 

duration of case 5 is higher than all of the cases. It is because the lower and upper 

bound values of OctoMap are so strict as consequence robots spent more time bringing 

the collected information value over its threshold. This is one of the optimized features 

of the framework presented in this dissertation. With the greater bounds of permanent 

occupancy probability, the total amount of collected information can be higher with 

less duration than case 5, as in case 6. Another outcome of the more limited bounds is 

encountering more VSLUT over the environment. Although the information threshold 

is the same in case 5 and case 6, the collected total information about the environment 

is less due to the limited bounds.  

In case 4 and case 3, the duration is better than the duration of case 5 and case 6, and 

the collected total information is acceptable; however, more VSLUT over the 

environment is achieved. Nevertheless, the collected total information in case 3 is not 

practicable because of the OctoMap resolution. With this value of resolution, the 

traversability check, obstacle avoidance, etc. are extremely difficult. As proof of this, 

the UGV movement is higher than in case 4 because of trying to reach the target point 

several times, even though the bounds are greater in case 3. Besides, VSLUT is greater 

than in cases 4, 5 and 6. In case 6, the best result is obtained in terms of collected 

information with the optimal duration of the mission and lower VSLUT. Only the 

memory usage may appear high in case 6 for readers, but it provides more information 

and a utilizable map for traversability check and obstacle avoidance. Further, the only 

reason for higher movement in case 6 is, robots’ attempt to reach more points as it can 

be seen from achieving the least VSLUT. 

Moreover, employing the HeRT provides higher collected total information with less 

duration of the mission compared to case 2. The duration is the least in case 1 by 

sacrificing volumetric spaces achieved over the threshold with respect to cases 3 to 6. 

UAV usage, as in case 1, leads to obtain less amount of information because of UAV’s 

sight of view. 

The entropy of the whole map during simulation is decreasing vice versa the mutual 

information between map and observations is increasing. The evolution of the mutual 

information between the environmental states and observations during the exploration 

mission are given case by case in Figure 5.21. This figure shows that the information 
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value is logarithmically increasing since all the thresholds on the volumetric spaces 

are exceeded. The evolution of the information is not perfectly continuous due to the 

times spend for robots movement to specific target points and waiting to collect 

adequate information on that point. On the contrary, at some target points, the robot 

may not be able to observe areas behind the objects. As a result of that, with passing 

around the object, sudden observations provide a rapid increase of the obtained 

information from the area behind the object. 

 

Figure 5.21 : The entropy evolution during the exploration mission, case by case. 
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In conclusion, the theoretic approaches with the given framework are validated 

through the real-time experiments and demonstrations in the simulation environment. 

HeRT successfully explored the given environment with the use of the adjustable 

framework given in this dissertation. The next section serves to summarize the 

dissertation and discuss the achievements of the presented framework.
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 CONCLUSION 

Understanding the environment in the same manner for UGV and UAV robots in 

HeRT missions can be difficult because of robots’ various specifications such as 

moveable paths, the sight of view and onboard sensors. Common height maps with 

various entropy-based similarity metrics are compared by this dissertation to 

understand the environment with complex texture for both ground and aerial vehicles, 

even in lack of GPS sensors, thanks to the LOAM method. This thesis provides a 

method for exploring the environment in cases where GPS signals are jammed or 

blocked. As a result of this feature, the method can also be used indoors, caves, GPS 

jammed risky territories, etc. 

Calculating rotation and translation between two height maps obtained by robots with 

different sights of view brings better awareness of the environment rather than using 

only point clouds or 2D grid maps. Also, if it is needed to go through a roofed area or 

under a tree by the aerial robot, this method will provide practical information with 

fewer errors. On the other hand, employing only the height map approach may not be 

enough to plan trajectories in the environment or to achieve a better awareness for all 

applications. The height values of the grids can be obtained differently from each 

HeRT members because of their sight of view. Unlike the rest of the studies in 

literature, the layering method is utilized in the experiments of this dissertation, and 

this method significantly affected this study by constructing a %44 better map for the 

best similarity metric (JeD) in terms of RMSE with average %15 faster computation 

time. Due to the complex texture of the experimental area given in this dissertation, it 

is understood that the layering method is needed for obtaining a more accurate 

common map.  

To sum up the constructing common map framework, with the experiments, features 

located beneath the trees or the roofed top areas and above them are observed without 

any need for GPS signal. Additionally, a more effective common map that enables 

planning trajectories for both vehicles is obtained with the determined similarity metric 

and the layering method.  
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Path planning for HeRT is another challenging topic in robotic navigation in terms of 

providing optimal control commands to the robots. With this study, a novel approach 

to informative path planning is presented and validated with the simulations.  

Defining information thresholds for path planning ensures adjustable outputs such as; 

exploration time, memory allocation and visual details. These outputs, which are likely 

to change from application to application, are one of the prominent contributions of 

this study. Information based path planning control inputs may force the robots to 

move the designated points in any case without checking the reachability. Volumetric 

space allocation by robots offers a simple and easily implementable framework with 

specified rules in contrast to consensus-based algorithms. Also, conflicts on the 

decision making of UGV and UAV are omitted with these rules. In addition, 

volumetric spaces provide scalable computation complexity by changing the 

dimensions of the volume. In this study, within tuning the parameters average 53% 

better information obtained about the environment with the cost of 5.7% longer 

duration for exploration (case 6) compared to employing only one robot (case 1 and 

case 2). On the other hand, 33% shorter duration and 28% less action for robots with 

a 46% decrease of collected information on exploration mission are achieved with the 

comparison between employing only UAV (case 2) and HeRT (case 6). 

In conclusion, exploring a defined area with complex features by employing 

informative path planning method for HeRT is validated with the simulations. 

Utilizing HeRT, layering method, various mapping technique and similarity metrics 

for common map constructing, relative entropy theory, and obtaining a Lyapunov 

stable optimal controller with specific rules provides adaptive and effective Active 

SLAM framework for the exploration of the environment. 

 Practical Applications of  This Study 

This study can be used for autonomously exploring the risky territories, forests, caves, 

etc. with tuning the parameters in order to carry out the mission requirements. The 

risky territories such as; desolated areas, dysfunctional nuclear power plants and 

wreckages are dangerous for humans to inspect; hence sacrificeable robots can be 

employed.  
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This infrastructure is used to lower the risk with only possible tangible loss. For 

example, after the earthquake, an area where the bounds are known lined with 

wreckage. It is very risky to search the area with humans, since building parts may still 

fall and harm people. However, HeRT can be employed in order to check the health of 

the construction with visual inspection without any human interaction.  

Further, this study provides a great tool for investigating hostile territories such as 

caves, forests, or a plant where GPS signals may jammed or blocked. To exemplify, in 

order to move the troops to a specific location, the path and around the trajectory must 

be known beforehand. This framework provides exploration of the area to control the 

traversability of the path without any need of a human in-the-loop system.  

 Future Work 

More than two robots, such as; three UGV and four UAV or swarms, can be employed 

to explore the area with less time. This improvement causes scalability problems and 

brings necessity of consensus-based algorithms. Within the implementation of these 

algorithms and overcoming the scalability problem, this framework will be a great 

utility for more effective exploration missions.  

In addition, to unmount the ground station from the working principle of this 

framework, decentralized or distributed infrastructure can be applied. Nevertheless, 

communication constraints and optimal communication-based algorithms must be 

defined as in (Imer et al., 2006). As a result, the system will not be affected by 

communication blockage.
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APPENDIX A: Vehicle - Sensor Models and Obstacle Avoidance  

In this section, the kinematic motion models of the vehicles, stochastic sensor models 

and obstacle avoidance methods are given.  

Motion Models of Vehicles 

Determining kinematic motion models is a little bit tangled process. For the wheeled 

vehicles, there are different types of wheel types classified as their behaviors. Tricycle 

drive, two-wheel differential drive, four-wheel differential drive, Ackermann drive 

and synchro drive are some of the most known types of vehicle motions that are allied 

to wheels. For the non-wheeled vehicles like submarines, quadcopters and fixed-wing 

aerial vehicles are also considered to extract kinematic motion models.  

Further, kinematic motion models can be categorized in terms of their physical 

employments; as constant velocity model, holonomic model, non-holonomic model 

with two increments, non-holonomic model with one increment one angle sensors, 

black-box model and no-motion motion model (Jose Luis Blanco Claraco, 2012).  

In this study, a two-wheeled differential drive robot and a quadcopter robot is used as 

ground and an aerial vehicle, respectively. For the ground robot, the non-holonomic 

with two incremental encoders kinematic model is chosen. The constant velocity 

kinematic model is chosen for the aerial robot. 

Non-Holonomic with Two Incremental Encoders 

This type of kinematic motion model is applicable for two or four-wheeled vehicles. 

Encoders from the differentially turned wheels obtain odometry data. Control inputs 

assign robots' action, and those sensors collect its feedback.  

Non-holonomic motion means constrain on vehicle motions such as; the vehicle 

cannot move sideways as a result of robots heading must be adjusted to its velocity 

vector. The non-holonomic motions trajectory representation can be seen in Figure 

A.1. 

 

 

Figure A.1 : Non-holonomic motion with two-wheel encoders trajectory 

representation. 
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Robot pose at time step 𝑘 is; 

𝑋𝑘 = [𝑥𝑘 𝑦𝑘 𝜃𝑘]𝑇 (A.1) 

where,  𝑥𝑘 is the robot’s position in 𝑥 coordinate, 𝑦𝑘 is the robot’s position in 𝑦 

coordinate and 𝜃𝑘 is the robot’s heading angle.  

The control input at time step 𝑘 is; 

𝑢𝑘 = [𝛥𝑢𝑒  𝛥𝑢𝑤 ]𝑇 (A.2) 

where, 𝛥𝑢𝑒 means east sided wheels motion difference and 𝛥𝑢𝑤 means west sided 

wheels motion difference. 

So, within the control vector robot’s states recursive function can be indicated as; 

𝑋𝑘 = 𝑓(𝑋𝑘−1, 𝑢𝑘) (A.3) 

And it can be separated as; 

𝑋𝑘 = 𝑋𝑘−1𝑔(𝑢𝑘) (A.4) 

𝑋𝑘−1 states robots last pose and 𝑔(𝑢𝑘) is the control function which can be written as; 

𝑔(𝑢𝑘)  = [𝛥𝑥𝑘  𝛥𝑦𝑘 𝛥𝜃𝑘]𝑇 (A.5) 

Then, by using geometric constrains 𝑔(𝑢𝑘) can be rewritten; 

𝑔(𝑢𝑘) = [

𝛥𝑥𝑘

𝛥𝑦𝑘

𝛥𝜃𝑘

] = [

𝑅 sin 𝛥𝜃𝑘

𝑅(1 − cos 𝛥𝜃𝑘

𝛥𝜃𝑘

] (A.6) 

So, the complete kinematic model of non-holonomic motion with two encoders is;  

𝑋𝑘 = 𝑋𝑘−1 [

𝑅 sin 𝛥𝜃𝑘

𝑅(1 − cos𝛥𝜃𝑘

𝛥𝜃𝑘

] (A.7) 

Constant Velocity Model 

Constant velocity model can be used when the vehicle’s odometry data could not be 

received from the user; thus, this type of kinematic model is suitable for quadcopters, 

submarines, etc. It is assumed that the robot has no acceleration at each time step; in 

other words, the robot’s velocity is constant. In the constant velocity model state vector 

of the robot consists of robots pose in coordinate frame and velocity vector. In addition 

to this, the control action only includes time intervals namely 𝑔(𝑋𝑘−1, 𝑢𝑘) can be 

edited as 𝑔(𝑋𝑘−1). Representation of the constant velocity model in coordinate frames 

can be seen in Figure A.2. 

This model can be implemented for all vehicle types because it has no supposal on the 

properties of the vehicle. But, for the sake of getting a well-defined model, precise 

actual motion, higher sampling rates and distinct acceleration modeling are needed. 

So, robot’s 2D pose which is in random global coordinate frame and velocity vector 

can be written as; 

𝑋𝑘 = [𝑥𝑘 𝑦𝑘 𝜃𝑘  𝑣𝑥𝑘
 𝑣𝑦𝑘

 𝑣𝜃𝑘
]
𝑇
 (A.8) 

Here, the first three elements of that matrix show robots pose in a random global 

coordinate frame which is denoted as 𝑅𝑘 and the rest of the matrix indicates velocity 

vector 𝑣𝑘.  
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Figure A.2 : Constant velocity model representation. The dotted quadcopter 

indicates vehicle’s position at time step 𝑘. Quadcopter without dotted lines refers to 

vehicle’s position at time step  𝑘 + 1. 

Within the assumption that stated before as velocity is only a time interval; 

[
𝑅𝑘

𝑣𝑘
] = [

𝑅𝑘−1 . (𝑣𝑘−1 𝛥𝑡𝑘)
𝑣𝑘−1

] (A.9) 

As can be seen from the equation above 𝑣𝑘 = 𝑣𝑘−1 hence, the velocity vector is 

constant. Robot’s pose can be expanded by using mathematical operations and 

geometric constrains in Figure A.2. 

Stochastic Sensor Model 

Sensors are the necessary equipment to obtain a mobile robot’s position and orientation 

and the map of the environment where the robot is moving around. Sensor types are 

illustrated in Figure A.3 

 

Figure A.3 : An illustrated form of sensor types and examples of products. Bolded 

ones are the sensors that are used in this study. 
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In SLAM applications, Bayesian recursive estimators employ uncertainty models of 

sensors. The problem remarked in this study consists of UGV, which is equipped with 

an IMU, two encoders located on the south and west sided wheels and GPS. Also, 

position UAV has its own IMU and RTK-GPS. Both UGV and UAV will be equipped 

with Lidar sensors.  

IMU sensor is used for obtaining heading angles and inclinations in 2D on UGV’s. For 

UAV’s, this type of sensor treated collect pitch-yaw-roll angles of the vehicle. 

Encoders are the ones that are essential for the non-holonomic motion model. In other 

words, those are very important sensors for two-wheeled mobile robot applications. 

Further, proprioceptive sensors are employed to gather robot's state. However, it is 

necessary to get environmental information to localize itself and map its environment. 

In order to collect that information, Lidar is attained. Lidar sensors send laser beams 

about its 360° and collect those beams to realize the range of the reflection surface. 

Within that information, robots’ environment can be illustrated.  

Model of a sensor with additive noise can be presented as; 

𝑌𝑘 = ℎ(𝑥𝑘, 𝑚) + 𝜗𝑘 (A.10) 

Where 𝑥𝑘 is the robot pose measured by sensor, 𝑚 is the measured data of map and 

𝜗𝑘 is the Gaussian sensor measurement noise with the normal distributions stated 

below; 

𝑌𝑘 ≈ 𝑁(�̅�𝑘, 𝑆𝑘) (A.11) 

𝜗𝑘 ≈ 𝑁(0, 𝑄𝜗𝑘
) (A.12) 

𝑚 ≈ 𝑁(𝜇, 𝛴) (A.13) 

Then the stochastic model of sensors will be;  

�̅�𝑘 = ℎ′(�̅�𝑘, 𝑚) + 𝜗𝑘  (A.14) 

With the covariances of IMU, encoder and GPS given as follows; 

𝑅𝐼𝑀𝑈 = [

𝜎𝜑𝜑
2 𝜎𝜑𝜃

2 𝜎𝜑𝜓
2

𝜎𝜃𝜑
2 𝜎𝜃𝜑

2 𝜎𝜃𝜓
2

𝜎𝜓𝜑
2 𝜎𝜓𝜑

2 𝜎𝜓𝜓
2

] (A.15) 

𝑅𝑜𝑑𝑜𝑚 = [

𝜎𝑥𝑥
2 𝜎𝑥𝑦

2 𝜎𝑥𝜓
2

𝜎𝑦𝑥
2 𝜎𝑦𝑦

2 𝜎𝑦𝜓
2

𝜎𝜓𝑥
2 𝜎𝜓𝑦

2 𝜎𝜓𝜓
2

] (A.16) 

𝑅𝑔𝑝𝑠 =

[
 
 
 
 
 
 
 
𝜎𝑥𝑥

2 𝜎𝑥𝑦
2 𝜎𝑥𝜓

2

𝜎𝑦𝜑
2 𝜎𝑦𝑦

2 𝜎𝑦𝜓
2

𝜎𝜓𝑥
2 𝜎𝜓𝑦

2 𝜎𝑧𝑧
2

0     0     0
0     0     0
0     0     0

0     0     0
0     0     0
0     0     0

𝜎�̇��̇�
2 𝜎�̇��̇�

2 𝜎�̇��̇�
2

𝜎�̇��̇�
2 𝜎�̇��̇�

2 𝜎�̇��̇�
2

𝜎�̇��̇�
2 𝜎�̇��̇�

2 𝜎�̇��̇�
2

]
 
 
 
 
 
 
 

 (A.17) 
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Obstacle Avoidance 

To define a collision-free path for robot obstacle avoidance must be considered for 

autonomous application. In this dissertation, obstacle avoidance is not a discussed 

point for the aerial vehicle since it is elevated over the maximum heights of the objects 

in the environment, and the altitude of the UAV is not changed during the process. 

First, the base footprint of the UGV and a tolerance value for this footprint are defined 

as in Figure A.4. 

 

Figure A.4 : UGV obstacle avoidance features. Base footprint(green rectangle), 

toleranced base footprint with +0.25m longitudinal and +0.17m lateral enlargement 

(light blue rectangle), trajectory arc (red line), global trajectory (green line), 

obstacles (red boundaries, aqua section and magenta central line) and DWA velocity 

decreasing area (blue section). 

The global path is defined as the shortest trajectory to reach the goal point. Robot 

heading towards the line, which connects the point of its center and the goal point, and 

starts moving linear in case there are not any obstacles on the path. The local path is 

defined with the dynamic window approach (DWA) by consideration of the frame that 

includes tolerances on the footprint. The DWA planner (Fox et al., 1997), provides an 

optimized and collision-free trajectory for the robot. An objective function, including 

translational and rotational velocities, is maximized to move the robot with avoiding 

the obstacles. The objective function of the DWA is as follows; 

𝑂𝐷𝑊𝐴(�̇�, �̇�) = 𝑓(𝜎. ℎ𝑒𝑎𝑑𝑖𝑛𝑔(�̇�, �̇�) + 𝜑. 𝑑𝑖𝑠𝑡(�̇�, �̇�) + 𝜐. 𝑣𝑒𝑙(�̇�, �̇�)) (A.18) 

Here, �̇� and �̇� is translational and rotational velocity, respectively. Besides, ℎ𝑒𝑎𝑑𝑖𝑛𝑔 

depends on the movement of the robot, whether directly to the goal point or changing 

its heading angle. 𝑑𝑖𝑠𝑡 is a measure of the distance between the closest object and the 

robot, and if the distance is small, the robot’s aim will become to move around it. 

Lastly, 𝑣𝑒𝑙 refers to the velocity towards the heading of the robot in order to move the 

target fast. Function 𝑓, ensures the movement with a clearance of objects through 

smoothening these weighted definitions.  

Furthermore, the translational and rotational velocities that possibly maximize the 

objective function are chosen from the intersection of search spaces; trajectory arcs, 

acceptable velocities and dynamic window. Trajectory arcs are the possible ones that 
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robots can follow during the time intervals. These cannot intersect with the obstacle. 

Acceptable velocities refer to the bounds of velocities that do not result in a collision 

and will allow the robot to stop before the object. The set of acceptable velocities can 

be given as follows; 

𝑆𝑉𝑎
= {�̇�, �̇� |�̇� ≤ √2. 𝑑𝑖𝑠𝑡(�̇�, �̇�). �̈� , �̇� ≤ √2. 𝑑𝑖𝑠𝑡(�̇�, �̇�). �̈�  } (A.19) 

The dynamic window refers to the velocities that robot be able to reach in time steps; 

hence it is limited with regard to the vehicle’s accelerations. The definition of the 

dynamic window velocity set is given below. 

𝑆𝑉𝑑
= {�̇�, �̇�|�̇� ∈ [�̇�𝑡−1 − �̈�. 𝑡, �̇�𝑡−1 + �̈�. 𝑡 ], �̇� ∈ [�̇�𝑡−1 − �̈�. 𝑡, �̇�𝑡−1 + �̈�. 𝑡 ] } (A.20) 

Here, the 𝑡 is the duration between time intervals and �̇�𝑡−1, �̇�𝑡−1 are the velocities 

before the control command given. The trajectory arcs outside this set of velocities are 

omitted since those cannot be reached. 

As a result, the intersection between possible velocities that provide trajectory arcs, 

acceptable velocities and dynamic window ensures a local collision-free path planner. 
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APPENDIX B: GPS Coordinate to Global Frame Transformation 

The 2D transformation between GPS coordinates to points in the global frame is done 

with the equations given below; 

𝑥 = 𝑐𝑜𝑠(𝜙) .
√

1

(
𝑠𝑖𝑛(𝜙)

𝑎 )
2

+ (
𝑐𝑜𝑠(𝜙)

𝑐 )
2 . [(𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒2 − 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒1)

∗
𝜋

180
] 

(B.1) 

and, 

𝑦 =
√

1

(
𝑠𝑖𝑛(𝜙)

𝑎 )
2

+ (
𝑐𝑜𝑠(𝜙)

𝑐 )
2 [(𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒2 − 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒1) ∗

𝜋

180
] 

(B.2) 

With, 

𝜙 =
𝜋

2
−

𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒1 + 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒2

2
.

𝜋

180
 

(B.3) 

Here 𝑎 is the euqatorial radius of the earth and its value is 6378136.6m. Also, the polar 

radius of the earth is c=6356751.9m. 
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APPENDIX C: Proof of Obtaining Equation (4.9) from Equation (4.8) 

Proof of obtaining equation (4.9) from equation (4.8) is given below. 

First, the relation between joint probability and the conditional probability of 𝑤𝑠 and 

𝑜𝑠 random variables as specified in below must be taken into account; 

𝑃(𝑤𝑠, 𝑜𝑠) = 𝑃(𝑤𝑠|𝑜𝑠) 𝑃(𝑜𝑠) =  𝑃(𝑜𝑠|𝑤𝑠) 𝑃(𝑤𝑠) (C.1) 

And, 

𝑃(𝑜𝑠) = ∫ 𝑃(𝑜𝑠|𝑤𝑠 = 𝑤)
𝑤𝑠

 𝑃(𝑤𝑠 = 𝑤)𝑑𝑤𝑠 (C.2) 

Secondly, with the chain rule of partial derivative, there is; 

𝜕𝑃(𝑤𝑠|𝑜𝑠)

𝜕𝑝𝑐𝑖

=
𝜕𝑃(𝑜𝑠|𝑤𝑠)

𝜕𝑝𝑐𝑖

𝑃(𝑤𝑠)

𝑃(𝑜𝑠) 
−

𝜕𝑃(𝑜𝑠 = 𝑜)

𝜕𝑝𝑐𝑖

𝑃(𝑜𝑠|𝑤𝑠)𝑃(𝑤𝑠)

𝑃(𝑜𝑠)2
  (C.3) 

So, replacing C.3 in equation (4.8)’s first integral operation provides; 

∬
𝜕𝑃(𝑤𝑠|𝑜𝑠)

𝜕𝑝𝑐𝑖

𝑃(𝑜𝑠) 𝑑𝑤𝑠 𝑑𝑜𝑠

=
𝜕

𝜕𝑝𝑐𝑖

∬𝜕𝑃(𝑜𝑠 = 𝑜|𝑤𝑠 = 𝑤) 𝑃(𝑤𝑠 = 𝑤)𝑑𝑤𝑠 𝑑𝑜𝑠 

                           =
𝜕

𝜕𝑝𝑐𝑖

1 

                           = 0 

(C.4) 

And, 

∬
𝜕𝑃(𝑜𝑠 = 𝑜) 

𝜕𝑝𝑐𝑖

𝑃(𝑜𝑠 = 𝑜|𝑤𝑠 = 𝑤)𝑃(𝑤𝑠 = 𝑤)

𝑃(𝑜𝑠 = 𝑜)
𝑑𝑤𝑠 𝑑𝑜𝑠

= ∫
𝜕𝑃(𝑜𝑠 = 𝑜) 

𝜕𝑝𝑐𝑖

∫
𝑃(𝑜𝑠 = 𝑜|𝑤𝑠 = 𝑤)𝑃(𝑤𝑠 = 𝑤)

𝑃(𝑜𝑠 = 𝑜)
𝑑𝑤𝑠 𝑑𝑜𝑠

= ∫
𝜕𝑃(𝑜𝑠 = 𝑜) 

𝜕𝑝𝑐𝑖

 𝑑𝑜𝑠 

                               =
𝜕

𝜕𝑝𝑐𝑖

∫𝑃(𝑜𝑠 = 𝑜)  𝑑𝑜𝑠 

                               =
𝜕

𝜕𝑝𝑐𝑖

1 

                               = 0 

(C.5) 

As a result of that, equation (4.8) becomes equation (4.9). 
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APPENDIX D: Experimental Setup 

Matrice 600Pro 

DJI MATRICE 600PRO is a product that has a very stable and long flight range 

capability, and it can carry equipment that has a lot of advanced features. This product 

is used in order to provide less hardware development necessity, and it is used in a lot 

of different research studies. As a result, it can be aimed to develop theoretical studies 

of this dissertation. Main properties of the UAV is stated below (Table D.1); 

 MATRICE 600PRO main features (Matrice 600 Pro Specs, FAQ, 

Tutorials and Downloads - DJI, n.d.). 

Feature Remark 

Max. Take-off weight 15.5kg 

Propeller Number 6  

Min. Flight Duration 16min 

Max. Diameter 1668m 

Weight 9.5kg 

Battery Number 6 

Max. Altitude 500m 

Max. Meter Above Sea Level 2500m 

Operating Frequency 2.4GHZ, 5.8GHz 

Remote Controller Available 

Internal IMU Available 

Onboard SDK Available 

A picture of DJI MATRICE 600PRO can be seen in Figure D.1. 

 

 DJI MATRICE 600PRO. 

HUSKY A200 

HUSKY A200 is programmable, ROS compatible, able to carry a lot of different 

equipment, and a very popular vehicle in mobile robot studies. It has a 24V battery 

power supply, 4x4 power train, and wheels that can be used in very rough terrains. 

Brief features are listed in Table D.2. 
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 HUSKY A200 features (Husky UGV - Outdoor Field Research Robot by 

Clearpath, n.d.).  

Feature Remark 

Max. Payload Capacity 75kg 

Dimensions 990x670x390mm 

Max. Duration 8h 

Max. Operation Diameter 1668m 

Weight 50kg 

Power Output 5V / 12V / 24V, Max 5A 

Control Modes Voltage, speed, torque, wheel speed 

D-RTK GPS 

D-RTK GPS is provided by DJI company, which has subcentimeter accuracy of 

localization information. This Kinematic GPS has a ground station and onboard 

antennas. The features of the GPS module is given in Table D.3. 

 D-RTK GPS features. 

Feature Remark 

Location Accuracy <1cm 

Speed Accuracy 0.03m/s (RMS) 

Max. Operation Time 8hours 

Frequency Global GPS L1&L2, GLONASS F1&F2 

Weight 139.5g 

Power Consumption 5.2W 

Communication Interface CAN, UART, USB 

VLP-16 & VLP16Lite 

VLP-16 and VLP16Lite are the most critical equipment that is used in this study as 3D 

laser measurement sensors. These equipment are located on UGV and UAV with 

newly designed mounting parts. Specifications of Velodyne Lidars are given in Table 

D.4. 

 Velodyne VLP-16 specifications. 

System Specification Value 

Sensor 

Channel Number 16 

Measurement Distance 100m 

Accuracy ±3cm 

Vertical FOV  ±15°(30°) 

Horizontal FOV  360° 

Angular Resolution  0.1°-0.4° 

Rotation Rate 5-20Hz 

Laser 

Beam Size 903nm 

Beam Divergence 9.5mm x12.7mm 

Wavelength 0.18° 

Weight 
VLP16 830g 

VLP16Lite 590g 

VLP16 and VLP16Lite sensors have the same outside dimensions; however, their 

weight differs from each other. Lite one is used as mounted on UAV and the other one 

is located with a certain height from the upper mounting plate on the UGV. It is desired 

to extend Lidar’s the sight of view by omitting the dead band of the sensor 

measurements. Without this improvement, Lidar measuers the distances to the points 

on the UGV. 
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Mounting Parts 

Mounting parts are designed and manufactured with taking in consideration of general 

design criteria in order to mount VLP-16, VLP16Lite and their interface boxes on 

UAV and UGV by preventing vibration and shock effects.  

Manifold 

The manifold is a particularly designed high performance embedded computer that is 

compatible with the onboard software development kit released by DJI company. In 

order to create an autonomous UAV system, the manifold has a well-designed 

infrastructure whose technical specifications are given in Table D.5. 

 Manifold technical specifications. 

Feature Remark 

Main Processor 

Quad-Core 4 Plus-1 ARM 

Vision Signal Processor 

Low Power Consumption Voice Processor 

Multi-time and power space 

Advanced power distribution management 

Graphic Processor NVIDIA Kepler GeForce 

Storage 
2GB DDR3L RAM 

16GB eMMC 4.51 store 

Voice Microphone and Headphone Input 

USB USB 3.0, USB 2.0, Micro-B USB 

Network 10/100/1000 Based Ethernet 

I/O UART, Micro SD, Mini HDMI, Mini PCIe 

Weight 139.5g 

Power Consumption 5.2W 

Communication Interface CAN, UART, USB 
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