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SYNTHESIS OF PYRIDINE-SUBSTITUTED PHTHALOCYANINES AND 
THEIR DNA-BINDING PROPERTIES 

SUMMARY 

Phthalocyanines, being tetrapyrrole derivatives, constitute an important class of 
compounds both in basic researches and in applied sciences. Adding desired 
functional groups to the periphery of phthalocyanine rings changes its optical, 
electronic and catalytic properties and enables them to be used in different areas. 
Owing to these properties, phthalocyanines have been used in dyestuffs, 
photochromic and electrochromic materials, liquid crystals, catalysts, chemical 
sensors, gas sensors in the form of Langmuir-Blodgett films, and non-linear optical 
materials.  

Adding water-soluble groups to phthalocyanines as functional groups has also 
enabled them to be researched in the therapy of cancer. Today, phthalocyanines are 
being used as second-generation photosensitizers. Compared with the first-generation 
photosensitizers such as hematoporphyrin derivative, metallophthalocyanines have a 
much higher extinction coefficient of the Q‑band near 680 nm, which means that 
they are efficiently excited directly through tissue, whereas the introduction of 
hydrophilic groups into substituted phthalocyanine derivatives has been performed in 
order to achieve solubility in aqueous media. Phthalocyanines having water soluble 
groups have a strong influence on the bioavailability and in vivo distribution. While 
the ionic groups provide binding of phthalocyanines to DNA and proteins (e.g. 
BSA).  

Within the scope of this thesis, suitable substituents were attached to the 
phthalocyanine rings and metallophthalocyanines were synthesized by incorporating 
different metal ions. For this purpose, iodophthalonitrile was synthesized as a first 
step and tetraiodozinc phthalocyanine was synthesized with zinc acetate as the metal 
ion in a suitable solvent. Under typical Sonogashira reaction conditions, the cross-
coupling reaction between an excess of 2-ethynyl pyridine and tetraiodo-
metallophthalocyanines in triethylamine with copper(I)iodide (CuI) and 
bis(triphenylphosphine)palladium(II)chloride [Pd(PPh3)2Cl2] as catalysts at room 
temperature under nitrogen atmosphere produced  2,9(10),16(17),23(24)-tetra-(3-
pyridylethynyl) phthalocyaninato zinc(II). For the synthesis of water-soluble 
phthalocyanine derivatives, pyridine groups were introduced into the reaction to 
synthesize quaternized derivatives. The phthalocyanines were reacted with excess 
amount of dimethyl sulfate. The same method was applied to obtain Co(II) 
phthalocyanine and its quaternary derivative. The new compounds were 
characterized 1H-NMR, FTIR and UV-Vis techniques. The aggregation and binding 
to DNA and BSA properties were investigated.  
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PİRİDİN SÜBSTİTÜE FTALOSİYANİNLERİN SENTEZİ VE DNA 
BAĞLANMA ÖZELLİKLERİNİN İNCELENMESİ 

ÖZET 

Tetrapirol türevi olan ftalosiyaninler hem temel hem de uygulamalı çalışmalarda 
önemli bir bileşik sınıfını oluşturmaktadır. Ftalosiyanin halkasına istenilen 
özellikteki fonksiyonel grupların eklenebilmesi optik, elektronik ve katalitik 
özelliklerini değiştirmekte ve değişik uygulama alanlarında kullanılmasını 
sağlamaktadır. Bu özelliklerinden dolayı ftalosiyaninler boyar madde, fotokromik, 
elektrokromik malzemeler, sıvı kristaller, katalizör, kimyasal sensör, Langmuir-
Blodgett filmlerinde gaz sensörü, fotokopi makinelerinde ve lazer yazıcılarda 
fotoaktif iletken, ve nonlineer optik maddeler gibi farklı alanlarda kullanılmaktadır.  

Ftalosiyaninlere fonksiyonel grup olarak suda çözünebilen grupların eklenmesiyle 
kanser tedavisinde de kullanılabilmesinin önü açılmıştır. Günümüzde ftalosiyaninler 
ikinci nesil fotoalgılayıcılar olarak kullanılmaktadırlar. Hematoporfirin türevi gibi 
birinci nesil fotohassaslaştırıcılarla karşılaştırıldığı zaman, metalli ftalosiyaninlerin 
680 nm civarındaki Q bandının molar soğurma katsayısı çok daha büyüktür, bunun 
anlamı doğrudan dokudan geçebilmeleridir, sübstitüe ftalosiyanin türevlerine hidrofil 
gruplar eklenmesi sulu ortamda çözünürlüğü sağlamak için üzerinde çalışılan bir 
konudur. Suda çözünen gruplar içeren ftalosiyaninler biyo-bulunurluk ve in vivo 
dağılım üzerine kuvvetli bir etkide bulunurlar. İyonik gruplar ise ftalosiyaninlerin 
DNA’ya ve proteinlere (örneğin BSA) bağlanma olanağı kazandırır.  

Tez kapsamında ftalosiyanin halkasına çözünürlük sağlayacak uygun sübstitüe 
gruplar bağlanarak bunların çeşitli metal tuzlarıyla metaloftalosiyaninleri 
hazırlanmıştır. Bu amaçla ilk olarak iodophthalonitrile hazırlanarak Zn(CH3COO)2 la 
uygun çözücü ortamında  tetraiyodoçinko ftalosiyanin sentezlenmiştir. Tipik 
Sonogashira tepkime koşulları altında, aşırı 2-etinilpiridin ve tetraiyodo ftalosiyanin 
arasındaki kenetlenme tepkimesi trietilamin içinde bakır(I) iyodür (CuI) ve 
bis(trifenilfosfin)paladyum(II) klorür ([Pd(PPh3)2Cl2]) katalizörlüğünde oda 
sıcaklığında ve azot atmosferinde 2,9(10),16(17),23(24)-tetrakis(3-
piridiletinil)ftalosiyaninatoçinko(II) elde edilmiştir.  

Suda çözünen ftalosiyanin türevlerinin sentezi için, kuaterner türevlerin 
sentezlenebilmesi amacıyla reaksiyon ortamına piridin grupları ilave edilmiştir. 
Ftalosiyaninler aşırı miktarda dimetil sülfat ile reaksiyona sokulmuştur. Aynı yöntem 
uygulanarak Co(II) ftalosiyanin ve kuaterner türevi elde edeilmiştir. Sentezlenen yeni 
bileşiklerin yapıları 1H-NMR, FTIR ve UV-Vis teknikleri kullanılarak 
aydınlatılmıştır. Ftalosiyaninlerin agregasyon ve DNA, BSA-bağlanma özellikleri 
incelenmiştir.  
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1. INTRODUCTION 

First phthalocyanines (Pcs) were found accidentally in 1907 during the synthesis 

of o-cyanobenzamide as a side product. In Greek, the word phthalocyanine comes 

from naphtha (mineral oil) and cyanine (dark blue). 

Phthalocyanines are the members of tetrapyrrolic compounds and in recent years, 

they are also used in both basic science and in practical works. 

Phthalocyanines have 4 isoindole units having an 18-π electron aromatic system 

in the ring. Adding extra substituents to peripheral positions increases the distance 

between 18-π electron conjugation of phthalocyanines, thus providing easier 

solubility. 

Delocalization of electrons in 18-π electron system of phthalocyanines is one of 

important reasons to use this compound in many areas from medicine to electronics. 

There are stable to heat, light, and non-oxidizing acids and bases and they are soluble 

in organic solvents if peripheral (or non-peripheral) substituents are added. Adding 

functional groups with different features to the Pc rings provide the desired changes 

in physical properties of phthalocyanines. When the solubility of the molecule and 

connected substituents start to rise, it is possible to synthesize the desired 

phthalocyanines through this method. 

Phthalocyanines are able to accept more than 70 metallic and nonmetallic ions to 

ring vacancy. In producing metallophthalocyanines, the metal ion is connected to the 

ring by template effect and this is the reason of acceptable yields of reaction, So, 

metal-based phthalocyanines have been added with more yield than metal-free 

phthalocyanines. Some metal ions are used in MPcs because of their redox activity of 

the compound that has effects on the chemical, physical and thermal properties. The 

common metal ions used in the core are Co, Cu, Ni, and Zn because these complexes 

are able to be purified easily, give high yield in cyclotetramerizations, and ease of 
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synthesis. Redox richness makes phthalocyanines to have more potential in other 

practices. 

In the chemistry of phthalocyanines, aggregation is a phenomenon that is seen 

commonly. However, some substituents on the peripheral positions of 

phthalocyanines, such as fluorinated substituents, are able to decrease the interaction 

between phthalocyanines, reduce the self-oxidation trends, and aggregation. 

The electronic and optical properties for the phthalocyanines are the reasons to 

use these compounds in some technological applications. For example, solar cells, 

electrochromic display devices, molecular electronics, optical disks, photovoltaics, 

Langmuir –Blodgett films, liquid crystals, and gas sensors. 

In recent years, phthalocyanines have been investigated in photodynamic cancer 

therapy (PDT) as photosensetizers. Solubility in water at different pH ranges is an 

essential factor for the tetrapyrrolic rings.  

One of the obvious benefits of using cationic water soluble phthalocyanines in 

spite of porphyrins in PDT is their powerful absorption in the visible spectrum and 

long lifetimes. In materials, biology and catalysis practice, cationic phthalocyanines 

illustrate widespread category of compounds. 



3 
 

2. GENERAL INFORMATION 

2.1 Tetrapyrrole Macrocycles  

Macrocyclic tetrapyrrole derivatives include porphyrins, porphyrazines, 

tetrabenzoporphyrins, and phthalocyanines (Figure 2.1).  

The complexes of natural compounds such as cytochromes and chlorophyll are 

attractive to the contents of macrocyclic complexes like porphyrins and corroles. As 

a result, there are several researches about derivatives of porphyrins and 

phthalocyanines. 

 

Figure 0.1 : a) Porphyrin, b) porphyrazine, c) tetrabenzoporphyrin, d) 
phthalocyanine. 
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2.2 Phthalocyanines 

Phthalocyanines for the first time were found accidentally in 1907 by Braun and 

Tcherniac at South Metropolitian Gas Company (Great Britain) during the synthesis 

of o-cyanobenzamide from acetic acid and phthalimide. It was a side product which 

had a dark color (Figure 2.2) [1]. 

 

Figure 0.2 : Synthesis of Pc during the synthesis of o-cyanobenzamide. 

Similarly in 1927, Diesbach and von der Weid at Fribourg University obtained a 

product with blue color when they heated dibromobenzene and copper(II) cyanide in 

pyridine to 200 °C, but they could not suggest any structure for the substance that 

formed. [2] 

Then in Imperial College of London, Linstead and co-workers could present the 

structure of metal-based phthalocyanine and defined the molecular structure of 

phthalocyanine (Figure 2.2) [3-8]. 

The main compound is encircled by 16 hydrogens and another 2 hydrogens in the 

core center with the chemical formula of C32H18N8 or (C8H4N2)4H2. Linstead used 

the Greek name of phthalocyanine for this compound. The crystal structure for this 

bulky organic molecule unsubstituted then Robertson used X-ray diffraction on iron-

phthalocyanine to explain that (Figure 2.3) [9-11]. 

 

Figure 0.3 : Schematic representation of phthalocyanine [9]. 
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The other features of phthalocyanines can be listed as follows: 

• Pcs have chemical and thermal stability, 

Pcs have sufficient stability against strong acids and bases, however, powerful 

oxidizers turn them to phthalic acid and phthalimide so the ring is broken down, 

• Sublimation and crystallization of Pcs are simple so pure products are 

obtained, 

• There is not significant breakdown in the air until 400-500 °C and the largest 

part of metal complexes are not broken down before 900 °C in the vacuum, 

• Pcs are able to form complexes with most metals in the periodic table, 

• The type of metal ions in Pcs has important effects in physicochemical 

features. 

Adding various substituents to the peripheral positions have rendered Pcs have 

more properties. Between 1963 and 1975, many application area also were added and 

it will continue. 

Nowadays, Pcs with blue and green color are used in several areas. For example, 

they are used in printing inks, aluminum, wall paintings, plastics, synthetic fibers and 

textiles, oxidation of hydrocarbons and sulfur-containing compounds, fuel tanks, 

catalysis of hydrogenation, medicine, liquid crystals, semiconductors, lasers, and 

lubricants. Having such specifications make Pcs more interesting. 

2.3 Nomenclature of Phthalocyanines 

Phthalocyanine ring system gets various names in different positions or locations. 

In (Figure 2.4), this system has been illustrated . 
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Figure 0.4 : Numbering system in PCs [12]. 

Phthalocyanines based on the benzene units have 16 different locations. (1-4, 8-9 

,15-18, 22-25). The location of benzo groups that are far from the rings are peripheral 

(p), close locations are non-peripheral (np), and also the bridging nitrogens are that 

connected to iso-imino-indoline units are named “meso”. 

2.4 Structure of Phthalocyanines 

“Tetrabenzotetraazaporphyrin” can be used as the other name for phthalocyanines. 

The concordance between the ligand and metal ion are obvious in dimensions of 

coordination. 

Crystallography of X-ray in the evaluation of molecular geometry in solid state is 

the most reliable method. Robertson displayed non-metal phthalocyanine as a planar 

molecule with D2h symmetry. There are differences between porphyrins and 

phthalocyanines due to the angles that are formed by nitrogen atoms in meso 

location. 16 membered inner macro rings are shorter than porphyrins, so the bridges 

that are made by meso nitrogen atoms are reduced. As a result, a decrease in bond 

angles and bond lengths cause the vacancy of coordination smaller than porphyrins. 

[13] 
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There are two hydrogen atoms at the center of metal-free phthalocyanines; they 

are able to be replaced with almost all the metal ions in the periodic table, and 

synthesis of new sorts of metal phthalocyanines is possible. Nowadays, more than 70 

elements are utilized as the core metal ion (Figure 2.5) [14]. 

 

Figure 0.5 : The elements that can be used as the central element in Pcs. 

Phthalocyanines normally form complexes with coordination number of four and 

square pyramidal structure. If some metals prefer high coordination number, they are 

also able to form square pyramid and octahedral structures. Phthalocyanines are able 

to form high-coordinated sandwich type (double decker, Pc2M and triple decker, 

Pc3M2) complexes in the presence of alkaline earth metals (Figure 2.6) [15-17]. A 

small number of actinide phthalocyanines have been produced due to the difficulty in 

obtaining the metal ions and their radioactivity. These sandwich type of complexes 

are organic semi-conductors with attractive characteristics [18]. 
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Figure 0.6 : Double decker and triple decker structures. 

Additionally, when some axial ligands such as water, pyridine, and chlorine are 

used as central elements, the complexes with high coordination number can be 

formed (Figure 2.7) [19]. 

Among the derivatives of phthalocyanines, sub-phthalocyanines (sub-Pc) have a 

boron atom as central element and three isoindole units connected to this structure. 

The other one is super-phthalocyanines (super-Pcs) with uranyl cation at the center 

and five isoindole units connected to them (Figure 2.8). 

Sub-phthalocyanines have the lowest similarity to phthalocyanines. Super 

phthalocyanines are conjugated macrocycles including 22-π electron structure, 

however, sub-phthalocyanines contain 14- π electronic system. Moreover, in super-

phthalocyanines, the bond-length between uranyl and nitrogen is 2.5-2.6 Å but for 

phthalocyanines, this distance 1.85-2.05 Å. [18,20]. 
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Figure 0.7 : The structure of axially substituted phthalocyanines.  

 

Figure 0.8 : The structure of sub-phthalocyanines and super phthalocyanines. 
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In addition, there are some other sorts of phthalocyanines which contain 

anthracene, naphthalene, and phenanthrene groups with extended π-system (Figure 

2.9).  

Due to additional π- electron system of naphthalic phthalocyanines (NPc) cause 

them to be one of the most attractive molecules with dark-green crystalline 

structures. The other reasons that are relevant to the additional π- electron system 

which make difference in the following [21, 22]: 

• electrical conductivities, 

• catalytic activities, 

• photoconductivity, 

• redox potentials. 

 

Figure 0.9 : Naphthalophthalocyanines, anthracophthalocyanines, and 
phenanthrophthalocyanines.  
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2.5 Physical and Chemical Properties of Phthalocyanines 

The metal-based phthalocyanine compounds have D4h symmetry and the structure 

is square plane (a). 

When various molecules are axially connected to metal ions, the structure is a 

square pyramid with coordination number of five (b). 

And if the coordination number is six ,the structure will be octahedral (c) (Figure 

2.10) [23, 24]. Deflection from planarity is 0.3  Å. 

 

Figure 0.10 : Geometries of phthalocyanine compounds. 

Several crystalline structures for phthalocyanines are available and it is 

completely relevant to the manufacturing form. [25] 

One of the most important crystalline structure is the α-form and the other one is 

β-form. Thermodynamically, the latter is more stable. In β-form, metal atom with the 

two nitrogen atoms in neighbors prepare an octahedral structure. Also in the α-form, 

the phthalocyanines have stacked over and over (Figure 2.11) .  
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Figure 0.11 : Arrangement of α-MPc and β-MPc in crystalline form. 

2.6 Starting Substances in Phthalocyanine Synthesis 

Finding many areas of use in several fields is a noticeable feature of 

phthalocyanines. In general, the starting substances are phthalic acid, phthalic 

anhydride, phthalimide, cyclo-1-en-dicarboxylic anhydride, phthalonitrile, o-

cyanobenzamide, 2,3-naphthalene dicarbonitrile, iminothioamide, dithioamide, 1,3,3-

trichloroisoindoline, and diiminoisoindoline (Figure 2.12). In the synthesis of 

phthalocyanines, starting substances must have ortho substitution and atoms with the 

functional groups must have double bond with each other or there must be an 

arrangment to provide double-bond during the condensation. 

 

phthalic acid  phthalonitrile phthalic 

anhydride 

phthalimide 
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Diiminoisoindoline o-cyano benzamide cyclo-1-en-dicarboxylic 

anhydride 

 

2,3- naphthalene 

dicarbonitrile 

imino thioamide dithioamide 1,3,3-

trichloroisoindoline 

Figure 0.12 : Starting compounds in phthalocyanine synthesis. 

2.7 General Synthesis Method for Phthalocyanines 

2.7.1 Synthesis of non- substituted phthalocyanines 

2.7.1.1 Synthesis of metal-containing phthalocyanines 

Several methods for synthesis of metal containing phthalocyanines have been 

shown in the literature (Figure 2.13). There is no difference in which one to use 

because they have common features: 

• having multi-step reaction, 

• taking place in high temperature, 

Methods for using in synthesis are as follows: 
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i. heating the phthalonitrile and iminoisoindoline structures with DMF, 

pentanol and hexanol solvents, which have high boiling points. 

ii. heating the phthalimide, phthalic anhydride, and urea in high boiling point 

solvents in the presence of molybdate catalyst. 

iii. adding metal ions to the metal-free Pcs. 

iv. Heating Li2Pc in ethanol; here, it is possible to substitute Li with desired 

element. 

 

Figure 0.13 : Schematic form of MPc synthesis. 

2.7.1.2 Synthesis of metal-free phthalocyanines 

Synthesis of metal free phthalocyanines are similar to the synthesis of metal-

containing Pcs, using same substances as starting subtance, but in this method of 

synthesis, it happens without using metal atom and through cyclotrimerization. [26] 
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In some metal-containing phthalocyanines such as Li, Pb, Na, Hg, and Bi that 

have large differences between diameter of phthalocyanine and diameter of metal ion 

in the cavity, it is possible to produce metal-free phthalocyanines (Figure 2.14) [26]. 

 

Figure 0.14 : Synthesis of metal-free Pcs. 

i) Phthalonitrile and metal-free Pcs 

In preparing metal-free Pcs through this method, adding bases such as NH3, DBU, 

or DBN to the basic solvent of N-N-dimethylaminoethanol (DMAE) or n-pentanol, 

with heating of phthalonitrile through cyclotetramerization, metal-free Pcs are 

obtained . 

ii) Extracting the metal ion in phthalocyanine cavity and then acidic treatment of 

phthalocyanines which have Li+, Na+, K+, Mg2+, Be2+, Pb2+, Hg2+ as the metal ion. 

Therefore, metal-free Pcs are produced. 

Linstead method: Adding a primary alcohol (n-pentanol or pentan-1-ol) to the 

Li-, Mg-, and Na-alkoxide solvent and the phthalocyanine recursor is 

cyclotetramerized to have metal-containing Pcs. After treatment with acids , metal-

free Pcs also are obtained. 

iii) Using reducing agents to obtain meta-free phthalocyanines from phthalonitrile 

To obtain metal-free phthalocyanines from phthalonitrile through 

cyclotetramerization, 2 electrons and 2 protons are needed. 
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With 1,2,3,6-tetrahydropyridine or hydroquinone which are appropriate organic 

reducing agents, metal –free Pcs are obtained in a melt. The melting point is higher 

than 180 C°. 

iv) Obtaining metal-free Pcs from Diiminoisoindoline 

• Adding NH3 to the phthalonitrile causes production of cyclotetramerization of 

1,3- diiminoisoindoline, 

• Heating 1,3- diiminoisoindoline in dimethyloaminoethanol (DMAE) solvent 

At the end, metal-free PCs are obtained. 

2.7.2 Synthesis of substituted phthalocyanines 

2.7.2.1 Axially substituted phthalocyanines 

Ligands are able to connected to axial position of metal ions in metal-contained 

phthalocyanines. Axial substitution increases resolution and decrease the attraction 

between face to face molecules. So, these compounds are important due to optical 

and optoelectronic features. 

Axial ligands with covalent bonds prefer metal ions with 3+ and 4+ oxidation 

states. Also in several cases suitable ligands creating coordination bonds with metal 

ions. The amount of these ligands increase solubility of pyridine and quinoline in 

MPcs. [27] 

• Axially substituted SiPc, GePc and SnPc : 

α-Cl2SiPc can be obtained in the presence of silicon tetrachloride and 

diiminoisoindoline through cyclotetramerization. [28] Hydrolysis of α-Cl2SiPc with 

aqueous sodium hydroxide yields α-(OH)2SiPc . 

If α-Cl2SiPc reacts with alcohols, alkyl halides and chlorosilanes, the products 

will be interesting. They are normally soluble in several organic solvents (Figure 

2.15) [29,30]. 

• The conditions for reaction are given in Figure 2.15. 
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i) Heating silicon tetrachloride in a high-boiling solvent, 

ii) using a base as a catalyst then reacting with an alcohol and toluene in 80 °C, 

iii) hydrolysis in acidic and basic conditions, 

iv) heating solid pyridine with silyl chloride or alkyl halide. 

The indicative techniques are applicable for naphthalo phthalocyanines. Synthesis 

of GePc and SnPc are also similiar to this method. 

 

Figure 0.15 : Synthesis of axially substituted SiPc. 

2.7.2.2 Synthesis of benzo-substituted phthalocyanines 

Without having substituents on benzene groups, a large number of MPc and H2Pc 

are insoluble in organic solvents, except for MgPc, Li2Pc and axially substituted 

phthalocyanines. 

If some substituents replace with the peripheral (p=2,3,9,10,16,17,23,24) and non-

peripheral positions (np= 1, 4, 8, 11, 15, 18, 22, 25) on Pc ring, the solubility of 

phthalocyanine will increase significantly. (Figure 2.16). 
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Figure 0.16 : Nomenclature of Pcs atoms for substitution. 

2.7.2.3 Synthesis of tetra substituted phthalocyanines 

Tetra substitution of phthalocyanines make them highly soluble in almost all 

organic solvents because of having four substitution in their structure. So they are 

used in biology, chemistry, physics, and electrochemistry. Moreover, tetra-

substitution of Pcs are divided into peripheral and non-peripheral groups. 

• For substitution on peripheral positions, the method mostly used is as 

follows: 

Using phthalimide to synthesize 4-nitrophthalonitrile at the end of three steps then 

treating with basic catalyst of this compound with nucleophilic displacement 

reaction. (Figure 2.17). [31] 

4-nitrophthalonitrile in the presence of polar solvents such as DMF and DMSO react 

with several nucleophiles. The acidic proton in nucleophiles are extracted by Na2CO3 

or K2CO3. Nucleophile attact to the ring and remove nitro group in the form of 

sodium nitrite. [32, 33] 
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Figure 0.17 : Synthesis of 4-nitrophthalonitrile. 

In the synthesis of tetrasubstituted phthalocyanines, monosubstituted 

phthalonitriles are used as the starting substances and at the end of 

cyclotetramerization, the symmetries are D2h, C4h, C2v, Cs, and the statistical 

distribution of the isomers are 4:2:1:1 (Figure 2.18). 

In the separation of these isomers chromatographic methods are used but the 

solubility and aggregation of isomers are similar to each other so it is difficult to 

separate them. 

Non-peripheral tetrasubstituted phthalocyanines are newer than peripheral 

derivatives and 3-nitrophthalonitrile is the compound used mostly. (Figure 2.19) [34-

36]. 

2.7.2.4 Synthesis of octasubstituted phthalocyanine  

For obtaining phthalocyanines in peripheral position which contain 8 substituents, 

there are 2 different methods. 

The method described here is more acceptable because the yield of reaction is 

higher. The starting substance is 4,5-dichlorophthalic acid. Obtaining 4,5-

dichlorophthalonitrile is possible after 4 steps. (Figure 2.20). For the synthesis of 

derivatives of disubstituted phthalonitrile, 4,5-dichlorophthalonitrile must react with 

the nucleophiles like 4-nitrophthalonitrile in same conditions. [37] 
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Figure 0.18 : Structural isomers of tetra substituted phthalocyanines. 

• In the second method, Br connects to o-xylene and produces 4,5-dibromo-o-

xylene as the product and connecting Br through N-bromosuccinimide (NBS), one 

obtains 1,2-bromomethyl-4,5-dibromobenzene at the end. For substitution, primer 

alkyl groups must react with nucleophiles, then Br groups in benzene ring are 

converted to nitrile groups by Rosenmund-von Braun method. [38] 
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Figure 0.19 : Synthesis of 3-phthalonitrile. 

 

Non-peripheral octasubstituted phthalocyanines (H2Pc-onp-Cn) display liquid 

crystal features. Cook and co-workers presented 2 new methods . 

• 3,6-dialkylphthalonitrile is needed in this method and it is possible to obtain 

this precursor from appropriate 2,5-dialkylfuran or thiophene. (Figure 2.21). 

Adding a Diels-Alder ring to phthalonitrile and five-membered hetero ring, is the 

reason of synthesis of the dinitrile derivatives. The thiophene process is more 

effective in producing simple MPc-onp-Cn .  
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Figure 0.20 : Synthesis of 4,5-dichlorophthalonitrile. 

 

Figure 0.21 : Synthesis of non-peripheral octa substituted phthalocyanine(H2Pc-onp-
Cn). 
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However, furan process is flexible and functionally allows to obtain 

phthalonitriles which contain carboxylic acid and alcohols. This process is also used 

in the synthesis of unsymmetrical phthalocyanines. Furan method is used in the 

preparation of liquid crystals having MPc-onp-COCn system. 

2.8 Characterization of Phthalocyanine 

Characterization of phthalocyanines resembles those of organic compounds; FT-

IR and UV-Vis methods are used. In visible region, the position of Q-band is 

affected by substitution and the presence of metal atom, so this technique has an 

essential role in characterization of phthalocyanines. 

For derivatives of soluble phthalocyanines, NMR is a convenient technique, but 

since phthalocyanine compounds exhibit powerful aggregation in solvents, expansion 

of peaks can be seen and obtaining a good spectrum is often difficult.  

Recent developments show that mass spectrometry has an important role in 

characterization of phthalocyanines and with this technique, characterization is often 

easier. 

In characterization of phthalocyanines with high molecular mass, fast atom 

bombardment (FAB) and matrix-assisted laser desorption/ionization (MALDI) are 

new methods that went widespread. 

2.8.1 FT-IR spectrometry of phthalocyanines  

A basic difference between metal-containing phthalocyanines and metal-free 

phthalocyanines can be seen in 3298 cm-1 which is N-H stretching band. For both 

metal-free and metal-containing Pcs, C-H stretching band appears between 3000-

3050 cm-1. C-C stretching bonds are observed between 1450-1600 cm-1 and C-H 

bending bonds are seen between 750-800 cm-1. 

2.8.2 H-NMR spectra of phthalocyanines 

In non-substituted phthalocyanines, the protons in peripheral and non-peripheral 

positions display signals with same intensity. 
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Tetrasubstituted phthalocyanines show various isomers but octa-substituted 

phthalocyanines have only one isomer in their structure. Therefore, signals of 

tetrasubstituted Pcs are broad as compared to octa-substituted Pcs. 

Ligands in axial positions and substitutions on the ring is the reason for complex 

1H-NMR spectra in metal containing phthalocyanines. According to the structure and 

position of substitutions, signals of magnetic field are able to shift downfield and 

topfield areas. In general, the signals of electron donor groups are shifted downfield 

but electron-withdrawing substitutients prefer to shift to upfield. In addition, electron 

donor non-peripheral substituted phthalocyanines prefer to slide to down areas if 

compare to derivatives of peripheral substituted Pcs with the same groups. [39] H-

NMR spectra of metal-free phthalocyanines show N-H protons in negative field that 

is a reason diamagnetic anisotropy. [40] 

2.8.3 UV-Vis spectra of phthalocyanines 

The chemical and electrical properties of phthalocyanines come from 18- π 

electron system. In general, UV spectra of phthalocyanines have a sharp Q-band at 

650-720 nm. Another characteristic band is distinguished at 300-400 nm as B 

(SORET) band. [41]  The sharp Q-band is the result of π- π* transition from basic 

state (HOMO) to excited state (LUMO). B (SORET) band also is the reason of 

transition between a2u or b2u and eg orbitals. (Figure 2.22) 

The other bands in the spectrum are related to metal-ligand (MLCT) and ligand-

metal (LCMT) charge transfer or interaction between π-system of dimeric 

complexes. [42].  

The symmetry of molecule is effective in the form of Q-band. In metal-containing 

phthalocyanines with D4h symmetry, only one band appears, while in metal-free 

phthalocyanines with D2h symmetry, Q-band is split into two peaks. (Figure 2.23) 

[43]. 
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Figure 0.22 : Energy diagram of MPc. 

 

Figure 0.23 : UV-Vis spectrum of metal free and metal containing PCs. The x axis is 
wavelength in nanometers and the y axis is absorbance.  

The location and intensity of Q-band in phthalocyanine compounds are important 

in terms of specific applications. 

The factors that effect the spectral features of phthalocyanines: 
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• metal central atom,  

• aggregation,  

• π-conjugation, 

• symmetry of molecule, 

• solvent, 

• groups that are connected to Pc ring (axial, peripheral, non-peripheral). 

At high concentrations or situations that use polar solvents, a band appears on the 

left side of the Q-band because aggregation is increased, so a decrease of intensity of 

Q band is lowered. [44]. 

Moreover, geometry of ring is able to change the intensity of Q-band.  

In 4-coordinated system, aggregation appears frequently, while in 6-coordinated 

systems, aggregation is not seen due to steric barrier. 

Adding axial and peripheral groups to phthalocyanine compounds causes greater 

distance between molecules and facilitating solvation. As a result, aggregation will 

decrease. 

Also attaching these groups to the ring will change the location of the Q-band. 

Electron donor groups in non-peripheral positions are the reason of bathochromic 

shift in Q-band. [45]. If the groups in peripheral position (naphthalo-

phthalocyanines) do not join to π-conjugation, an intensity shift in Q-band can not be 

seen. Increasing π-conjugation in phthalocyanines cause to bathochromic shift in Q-

band. 
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2.9 The Main Applications of Phthalocyanines 

2.9.1 Dyes and pigments 

In 1907, phthalocyanines were prepared by A. Braun and T.Cherniac with blue 

color, then in 1927, copper Pcs, naphthalophthalocyanine, and octamethyl copper 

phthalocyanine compound were synthesized by accident in Switzerland, but the real 

discovery of Pcs belongs to the investigations in Scottish Dyes company. In 1933, 

copper phthalocyanine was started to produce industrially for the first time with 

Monastral Blue name. They had produced α-type particles by precipitation from 

sulfuric acid, then brightness of phthalocyanines pigments had been increased. 

(Figure 2.24). The next step was utilization of halogenated phthalocyanines, because 

this sort of Pcs were stability supply, so it did not allow Pcs to convert to bigger and 

opaque particles (β-type). After a short time, several derivatives of copper 

phthalocyanines obtained with sulfo- groups which had high solubility [46]. For 

example, copper phthalocyanine with Direct Blue 86 sulfonic acid group is a sodium 

salt, while with Direct Blue 199 is an ammonium salt. Solvent paints are named for 

amine salts of copper phthalocyanines with sulfonic acid groups due to high 

solubility of these Pcs in several solvents. Examples include Solvent Blue 38 and 

Solvent Blue 48. Phthalogen Dye IBN is a derivative of cobalt phthalocyanine with 

amine groups. 

Unique color of phthalocyanines allow them to be used in many other areas. For 

example, inkjets, pen inks, paper industry, and coloring of metals and plastic 

surfaces. 

2.9.2 Sensors 

Phthalocyanines are able to modify their optical, redox, and electrical properties 

with environmental conditions so used widely as sensors [47]. This alternation 

deserves investigation with other methods [48-52]. Phthalocyanines are resistant to 

chemicals and heat, compatible with microelectronic devices, and providing 

Langmuir-Blodgett films with thin films are the other properties of phthalocyanines 

that allow them to be used as sensors [53-55]. The metal atom and ligands in axial 
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position can affect on chemical properties of phthalocyanine. It is possible to 

synthesis various symmetrical and unsymmetrical phthalocyanines. 

 

Figure 0.24 : Pigments of copper phthalocyanine. 

Among several phthalocyanines, double-decker phthalocyanines have unique 

physical and chemical properties so they are the most appropriate compounds for 

sensors. 

2.9.3 Electrochromic imaging 

When an electrical field is applied, the color of material is changed. This 

procedure has double-way and known as electrochromic imaging.  

Electrochromic materials are used in other areas. 

• Controlling the amount of heat and light which pass through the windows, 

• Changing the color of mirrors based on weather conditions in automobile 

industry. 

Phthalocyanines exhibit electrochromic properties, so they are used in the 

structure of imaging panels and smart materials. The most used electrochromic Pcs 

are bis(phthalocyanine) compounds of alkaine earth metals. 

LnPc2 with green color are able to convert to LnHPc2 with blue color. 
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[Pc2-LnPc1-] is a reducing agent of bis phthalocyanine with different spectral, 

electrochromic, electrochemical, and magnetic properties. The sandwich structure 

and attraction between π-electron system of both phthalocyanines are reason of those 

properties. Elecrochromic transformation in LnPc2 are shown below [56]: 

 (Eq.1) 

Blue Green Orange  

2.9.4 Photodynamic therapy (PDT)  

For many years human has known about the effect of light in therapy with 

chemicals or alone. For example, solarium is a sample of native architecture of 

ancient Greek. In India, vtiligo (dermal cancer) is remediable with the compounds 

containing furocoumarin in sunlight [57]. Researches about phototherapy by Niels 

Ryberg Finsen show the efficiency of light in modern medicine. First, 

photodynamic effect was found by Raab in 1900. In 1913, Meyer Betz used an 

extravagant way to observe photodynamic therapy in human body. He injected 

200 mg of hematoporphyrin to himself, then in sunlight he observed some damage 

on his hands and his face. In 1942 , Auler and Banzer investigated an animal by 

UV light. In the following years, Diamond and co-workers found a way to 

damage sensitive tumors by visible light so in 1976 , first clinical application was 

started. From 1993 on, in several countries such as, USA, Canada, Japan, and 

some European countries, photophyrin is used to treatment various cancers. 

Photodynamic therapy (PDT), a treatment method without operation and 

minimum injury is an evolution in medicine. In pricipal, there is photosensitizer that 

is activated by a light with certain wavelength .  

A photosensor must achieve the following: 

• Synthesis must be convenient and toxic effects can not be seen in the 

presence of light . 
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• It must be selective to diseased cells and ability in cleaning immediately in 

comparison to normal cells. 

• It must have high photodynamic effect and photostability. 

In photodynamic therapy, the visible region of spectrum (Red) is used, because 

red light has the ability of penetrate into the tissue more than others. This light 

activates the drug to chemical, damage cancer cells with minimum harm to normal 

cells, and provide toxic form of oxygen. 

PDT has more advantages than other treatment methods such as chemotherapy or 

operation, because this method does not have side effects. The only disadvantage of 

this method is that the photosensitizer is able to settle in normal cells, too, so the 

patient must stay in a dark place after treatment for a certain time. 

There are 2 oxidative mechanisms for destruction of the cancer tissue , Type 1 and 

Type 2 [58].  

Type 1: Photosensitizer attracts to biomolecule (or oxygen) and hydrogen atom (or 

electrons) are transferred for obtaining radicals. 

Type 2: Transfering energy from excited triplet state to triplet state of dioxygen. So 

at the end, singlet state of oxygen are obtained (see Figure 2.25). 

 

Figure 0.25 : Jablonski diagram for Type 1 and Type 2. 

In general, porphyrin materials are used. 

The advantages of these compounds are summarized as follows: 
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• Aromatic stability,  

• high yield of quantum of singlet oxygen,  

• having absorption in red region. 

Hematoporphyrin (HpD), photophyrin (pure sort of HpD), photosan, and photohem 

are used in PDT in a widespread manner. 

These sort of compounds have some disadvantages: 

• Low selectivity, 

• having low absorption in red region, so treating of cancer cells located in the 

deep is difficult. 

• having complex state in photosensitizers. 

Nowadays, many photosensitizers are obtained from phthalocyanines, derivatives 

of porphyrins, and texaphyrins (see Figure 2.26).  

 

(1)      (2) 
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 (3)   (4)     (5) 

Figure 0.26 : Commonly used photosensitizers, protoporphyrin (left) (1) and 
monoaspartylchlorin (right) (2). Porphyrin (left) (3), lutetium texaphyrin (lu-tex; 

middle) (4), and zinc phthalocyanine (right) (5). 

The compounds of this group belongs to second generation of photosensitizers. 

Aggregation tendency of phthalocyanines in solvent decrease their photosensitizing 

ability. To solve this problem, connecting certain ligands to the axial position of 

silicon, germanium and tin phthalocyanines or adding a bulky substituient to the 

peripheral positions (see Figure 2.27).  

 

Figure 0.27 : Photosensitizing phthalocyanines with substitution on peripheral or 
axial positions. 

In addition, diamagnetic elements such as zinc and aluminum are highly preferred 

to use in PDT (see Figure 2.28). 

All compounds that are used as photosensitizer must be soluble in water and oil 

because of this factor, it helps compounds flow conveniently in patient’s body. 

Because of this goal, in recent years, many unsymmetrical phthalocyanines have 

been synthesized. 
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Figure 0.28 : Photosensitizing zinc phthalocyanines. 

2.10 Water-soluble Phthalocyanines 

Phthalocyanines can be rendered water-soluble by attaching anionic, cationic, 

zwitter-ionic or non-ionic side groups to the benzene rings.  

2.10.1 Cationic phthalocyanines 

They usually have quaternary pyridinium or ammonium groups on the side chains. 

Cationic side groups like quaternary ammonium, pyridinium, and quinolinium 

usually provide high solubility in water [59].  

12.10.2 Anionic phthalocyanines  

Carboxylate and sulfonate are used as anionic side groups and they especially 

provide high solubility in high pH values by incorporating alkaline metal cations. 

Anionic phthalocyanines containing phosphorus and sulfonate are known in the 

literature [61]. 
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Figure 0.29 : Quaternarized metallophthalocyanines [60]. 

 

Figure 0.30 : Tetrasulfonated phthalocyanine [61].   

2.10.3 Zwitterionic Phthalocyanines 

Zwitterionic side groups contain acidic and basic side groups and form inner salts. 

Phthalocyanines with these side groups behave as anionic dyestuffs in neutral and 

basic media [59]. In many studies, the pyridine nitrogens in the phthalocyanine side 

groups were quaternized with propanesultone. Zwitterionic zinc, germanium, and 

silicon phthalocyanines were synthesized [62,63].  
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Figure 0.31 : Zwitterionic phthalocyanines [62]. 

2.10.4 Non-ionic phthalocyanines 

Long polymeric chains (such as PEG 600) or sugar derivatives (glucose, 

galactose, solketal, etc.) can render the phthalocyanine compound soluble in water.  

2.10.5 Conjucated phthalocyanines  

Adding saccharides to non-natural organic compounds has been regarded as an 

important research area and especially, their conjugation to porphyrins has been 

widely studied for PDT [65, 66]. Glucose is the oldest example added to a 

phthalocyanine [67]. Maillard et al. linked four glucose molecules onto a zinc(II) 

phthalocyanine core (Φ∆ ZnPc = 0.55 in DMF [68]) to prevent aggregation and to 

increase the solubility in water. Only the synthesis and characterization of 1 (Fig 

2.34) were reported [67]. 
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Figure 0.32 : Octaglycosilated zinc phthalocyanines [64].  

 

Figure 0.33 : Functionalized zinc phthalocyanines coupled with four glucose 
moieties. 
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2.10.6 Oligodeoxyribonucleotide and Nucleobases 

There are large numbers of nucleobase porphyrins (they are of interest for antiviral 

and anticancer activities) [69,70], yet phthalocyanine nucleobase dyads reported in 

the literature are rare. Koval et al., in 2001, have reported for the first time about the 

synthesis of oligonucleotide-phthalocyanines for specific DNA modifications in vitro 

and in vivo. This is interesting for the development of sequence specific gene 

targeting reagents [71]. Later, Hammer et al. prepared asymmetrical water-soluble 

Pcs 19-20 conjugated with an oligonucleotide carrying an isothiocyanate function 

(Fig. 2.35). The dyes synthesized show favorable photophysical properties and 

excellent water solubility and these make them excellent fluorescent tags for genetic 

assays [72]. 

 

Figure 0.34 : Conjugated zinc phthalocyanines with an oligonucleotide.  
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2.10.7 Octacationic phthalocyanines  

One important issue related to water-soluble phthalocyanine is that they show 

aggregation, which may have a strong influence on the bioavailability, in vivo 

distribution, and the singlet oxygen production efficiency. Lipophilic phthalocyanine 

derivatives have reportedly a higher tumor affinity, but associated with cutaneous 

phototoxicity, [73] probably due to overall lower excretion, and water-soluble 

phthalocyanines are considered the best targets for a new generation of 

photosensitizers [74]. Among water-soluble compounds, the initial focus was paid on 

the synthesis of anionic derivatives, such as sulfo-, carboxy- etc. and phosphono- 

derivatives, [75] mainly evaluated to treat tumors and cationic phthalocyanine 

derivatives for the treatment of both tumors and infectious diseases [76]. Only 

tetracationic constitutional isomers or poorly defined dicationic phthalocyanines [76, 

77] were obtained and described so far. Since it is known that cationic compounds 

may specifically target mitochondria, [78] there is evidence that cationic 

photosensitizers are effective to gram-negative bacteria [79] and photoinactivation of 

yeast, [80] the authors prepared an octacationic phthalocyanine derivative for 

evaluation as a photosensitizer aimed at the inactivation of antibiotic-resistant 

microorganisms. 

The synthesis of compound 3 is reported  (see Figure 2.36).  

The 4-[1,3-bis-(dimethylamino)2-propoxy]1,2-dicyanobenzene 1 can be easily 

prepared from 4-nitrophthalonitrile and 1,3-bis-(dimethylamino)-2-propanol. 

Cyclization of compound 1 was best performed by using neat 1,8 diazabicyclo-

[5.4.0]-undec-7-ene (DBU), in the presence of anhydrous zinc acetate at 150–180 °C 

to produce 18% yield of compound 2 by following a procedure already described. 

Compound 3 was obtained by reaction of 2 with an excess of methyl iodide in N-

methyl-2-pyrrolidinone as solvent at rt (yield=82%). A shorter reaction time was 

achieved by using this solvent compared to other solvents such as N,N-

dimethylformammide, methanol, chloroform, or by using neat methyl iodide at 

different temperatures.  
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Figure 0.35 : i. 1,3-Bis-(dimethylamino)2-propanol, K2CO3, DMSO, rt (74%); ii. 
DBU, Zn(OAc)2, N2, 150–180 °C (18%); iii. MeI, N-methyl-2-
pyrrolidinone, rt (82%). 
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3. PURPOSE OF THE STUDY 

Phthalocyanines, having a wide use as dyestuffs, are also used as electrochromic 

materials, liquid crystals, optical recording media, photosensitizers in photodynamic 

therapy, gas sensors in the form of Langmuir-Blodgett films, in photocopiers, and 

photoactive conductors in laser printers, and non-linear optical materials.  

Attaching several functional materials to phthalocyanines and using different 

metal salts in the synthesis allows one to prepare a large number of compounds for 

application purposes. Water-soluble groups are added as functional groups to 

phthalocyanines to allow us to use them in PDT. Today, phthalocyanines are used as 

second-generation photosensitizers. In order for phthalocyanines to be used as 

photosensitizers, substitutients that would allow them to do so are added into 

peripheral or non-peripheral positions of the macrocycle. Sulfonic acid, carboxylic 

acid, phosphonic acid, and quaternized ammonium groups could be substituted to 

obtain water solubility.  

In the thesis, ethynylpyridine-substituted Zn(II) and Co(II) phthalocyanines were 

synthesized and quaternized water-soluble derivatives were prepared. Firstly, by 

using the method described in the literature, 4-aminophthalonitrile was synthesized 

and it was converted to 4-iodophthalonitrile. By using zinc acetate, reacting with 4-

iodophthalonitrile in 2-dimethylaminoethanol yielded 2,9(10),16(17),23(24)-

tetrakis(3-pyridylethynyl)phthalocyaninatozinc(II) was obtained. Under typical 

Sonogashira reaction conditions, the cross-coupling reaction between 2-

ethynylpyridine and tetraiodo-metallophthalocyanines in triethylamine with 

copper(I) iodide and bis(triphenylphosphine) palladium(II) chloride as catalysts at 

room temperature under nitrogen atmosphere produced 2,9(10),16(17),23(24)-tetra-

(3-pyridylethynyl) phthalocyaninato zinc (II). For the synthesis of water-soluble 

phthalocyanine derivatives, pyridine groups were introduced into the reaction to 

synthesize quaternized derivatives. The pthalocyanines were reacted with excess 

amount of dimethyl sulfate. The same method was also applied for the preparation of 
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Co(II) phthalocyanine and its quaternary derivative. The structures of new 

compounds were elucidated with 1H-NMR, FTIR and UV-Vis techniques. The 

aggregative behavior of the complexes was examined at different concentrations in 

DMF. Water-soluble Zn(II) and Co(II) phthalocyanines were investigated with 

respect to their DNA and BSA binding properties.  
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4. DEVICES AND MATERIALS USED IN THIS STUDY  

4.1 Devices 

• Ultraviolet–visible (UV-Vis) spectrophotometer: Scinco LabProPlus UV/Vis 

spectrophotometer. 

• Infrared spectrometry : Perkin-Elmer spectrum One FT-IR with UATR  

• 1H-NMR spectroscopy : Varian Unity Inova 500 MHz 

4.2 Chemicals 

Dimethyl formamide (DMF), dimethyl sulfoxide (DMSO), ethanol, methanol, 

acetone, hexane, chloroform (CHCl3), zinc acetate, cobalt(II) chloride, sulfuric acid 

(H2SO4), hydrochloric acid (HCl), 4-nitrophthalonitrile, Fe powder, 4-

aminophthalonitrile, sodium nitrite (NaNO2), potassium iodide (KI), sodium 

thiosulfate (Na2S2O3), sodium sulfate (Na2SO4), dichloromethane (CH2Cl2), 

dimethylaminoethanol, 2-ethynylpyridine (%98), 

bis(triphenylphosphine)palladium(II) chloride (15.2% Pd), copper(I) iodide, 

triethylamine, dimethylsulfate.  
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5. EXPERIMENTAL PART  

5.1 Synthesis of 4-nitrophthalimide [81] 

200 mL of sulfuric acid and 50 mL of fuming nitric acid were cooled on an ice 

bath and 40 g (0.272 mol) phthalimide was added in portions within 1-1.5 hours so as 

not to exceed the internal temperature beyond 10-15 °C. The mixture was stirred 

over ice bath for half an hour and the internal temperature was raised to 35 °C, and 

yellow particles were observed to dissolve. The mixture was stirred for an additional 

1 hour, then cooled to 0 °C again and poured onto 1 kg of ice water mixture. Yellow 

4-nitrophthalonitrile precipitated, it was filtered and washed with water until the 

filtrate was neutral to blue litmus paper. It was crystallized from 850-900 mL of ethyl 

alcohol. Bright yellow crystals were filtered, washed with cold ethyl alcohol, and 

dried in a vacuum oven at 80-90 °C. Molecular formula: C8H4N2O4, yield: 36.5 g 

(70%). Mp: 195 °C.  

 

Figure 0.1 : Synthesis of 4-nitrophthalimide.  

5.2 Synthesis of 4-nitrophthalamide [82] 

30 g (0.156 mol) 4-nitrophthalimide was stirred in 168 mL 32% ammonia solution 

for 24 hours. Then it was filtered, washed with cold water, and tetrahydrofuran 

(THF). The color of phthalimide was yellow and it turned to white as reaction 

proceeds. Molecular formula: C8H7N3O4. Yield: 24 g (73%). Mp: 197 °C.  
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Figure 0.2 : Synthesis of 4-nitrophthalamide.  

5.3 Synthesis of 4-Nitrophthalonitrile [83] 

In a three necked flask, 70 mL of dry dimethylformamide (DMF) was cooled to 0 

°C under a stream of nitrogen and 7.3 mL of thionyl chloride was added so that the 

internal temperature did not go beyond 5 °C. After addition, nitrogen flow was 

ceased and a calcium chloride tube was added to the top of flask. Meanwhile, the 

color of the medium was observed to be yellow. Then, 10 g (0.048 mol) of 4-

nitrophthalamide was slowly added so that the internal temperature did not go 

beyond 5 °C. The mixture was stirred over ice bath for 1 hour. The mixture was 

stirred at room temperature for 2 hours and then poured over 500 g of ice-water. The 

precipitate was filtered and washed successively with water, 250 mL 5% sodium 

hydrogencarbonate solution, and water again and dried in a vacuum oven at 110-120 

°C. Molecular formula: C8H3N3O2. Yield: 7.4 g (90%). Mp: 141 °C.  

 

Figure 0.3 : Synthesis of 4-nitrophthalonitrile.  

5.4 Synthesis of Aminophthalonitrile [84] 

45 mL of methanol and 9.6 mL of concentrated HCl were stirred in a round-

bottomed flask. 2.02 g (145 mmol) of 4-nitrophthalonitrile was added into this 

medium. The mixture was heated to reflux. 4-Nitrophthalonitrile dissolved in this 

step. Iron powder (2.21 g, 39.2 mmol) was added in portions within an hour. The 

color of solution changed to yellow-brown. After the addition of iron has been 

completed, the reaction medium was continued to stir at reflux temperature for 

another hour. The reaction medium was cooled to room temperature. It was 
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precipitated with 60 mL of water. The precipitate was filtered and washed with 

copious amount of water. Molecular formula: H2NC6H3-1,2-(CN)2. Yield: 1.4 g 

(81.59%).  

 

(1) 

Figure 0.4 :Synthesis of aminophthalonitrile (1). 

5.5 Synthesis of iodophthalonitrile [85] 

1.6 g (0.011 mol) 4-aminophthalonitrile was dissolved in 22.4 mL of 2.5 M 

H2SO4. The mixture was cooled to 0 °C. To the solution was slowly added 0.9 g 

(0.013 mol) of NaNO2 dissolved in 3.5 mL of water. After the mixture was stirred for 

30 minutes, 2.08 g (0.013 mol) of KI dissolved in 12.8 mL of water was added. The 

mixture was further stirred for 45 minutes at room temperature. After this period, the 

brown solid was filtered and washed with water. It was dissolved in a minimal 

amount of chloroform. The solution was washed first with saturated Na2S2O3 and 

then with water. It was dried over Na2SO4. After the solution was filtered, it was 

dried in vacuum and purified with column chromatography over silica gel by eluting 

with dichloromethane. Molecular formula: IC6H3-1,2-(CN)2 (254.03 g/mol).  Yield: 

2.37 g (85%).  

1.  

Figure 0.5 : Synthesis of iodophthalonitrile (left: 1, right: 2). 

5.6 2,9(10),16(17),23(24)-tetraiodophthalocyaninatozinc(II) (3) [86] 

4-Iodophthalonitrile (3) (100 mg, 0.394 mmol) was heated at reflux in 2-

dimethylaminoethanol (1.5 mL) under nitrogen for 24 h in the presence of 30 mg 

(0.16 mmol) of Zn(CH3COO)2. After cooling to room temperature, the reaction 

mixture was treated with 1:1 (v/v) water/methanol mixture to precipitate the product 

which was filtered off. The resulting dark green solid was washed several times with 
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methanol and acetone. The desired compound was obtained after drying in vacuo at 

75 C.  Molecular formula: C32H12I4N8Zn (1081,4892 g/mol).  Yield: 0.0345 g 

(32.5%). 
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Figure 0.6 : Tetraiodo zinc phthalocyanine (3). 

5.7 2,9(10),16(17),23(24)-tetra-(2-pyridylethynyl) phthalocyaninato zinc (II) (4) 

Tetraiodozinc phthalocyanine (100 mg, 0.093 mmol) was reacted with 2-

ethynylpyridine (0.038 g, 0.372 mmol) in the presence of 

bis(triphenylphosphine)palladium(II) chloride [Pd(PPh3)2Cl2] (5 mg, 0.007 mmol) 

and copper(I) iodide (5 mg, 0.026 mmol) in 2 mL of triethylamine. The reaction 

mixture was stirred at room temperature for 12 h under nitrogen atmosphere. The 

reaction mixture was treated with 1:1 (v/v) water/methanol mixture to precipitate the 

product which was filtered off. The resulting dark green solid was washed several 

times with methanol and acetone. The desired compound was obtained after drying 

in vacuo at 75 C. Molecular formula: C60H28N12Zn (981.38 g/mol). Yield: 0.053 g 

(58.35%).  
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Figure 0.7 : Phthalocyanine with a N-donor base (pyridine) (4). 

5.8 Quaternized Zinc phthalocyanine (5) 

Compound 4 (100 mg, 0.14 mmol) was heated to 120 °C in DMF (5 mL) and 

excess dimethyl sulfate (0.1 mL) was added drop wise. The reaction mixture was 

stirred at 120 °C for 12 h. At the end of this period, the mixture was cooled to room 

temperature and the product was precipitated with acetone and collected by filtration. 

The green solid product was washed successively with hot ethanol, ethyl acetate, 

THF, chloroform, hexane, and diethyl ether. Molecular formula: C64H40N12O8S2Zn 

(1233.42 g/mol). Yield: 0.020 g (15.89%).  
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Figure 0.8 : Quaternized  Zn-phthalocyanine (5).  

5.9 2,9(10),16(17),23(24)-tetraiodophthalocyaninatocobalt (II) (6) 

4-Iodophthalonitrile (3) (100 mg, 1.6 mmol) was heated at reflux in 2-

dimethylaminoethanol (1.5 mL) under nitrogen for 24 h in the presence of 30 mg of 

CoCl2 (0.23 mmol). After cooling to room temperature, the reaction mixture was 

treated with 1:1 (v/v) water/methanol mixture to precipitate the product which was 

filtered off. The resulting dark blue solid was washed several times with methanol 

and acetone. The desired compound was obtained after drying in vacuo at 75 °C. 

Molecular formula: C32H12CoI4N8 (1074.53 g/mol). Yield: 0.059 g (55.78%).  
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Figure 0.9 : Cobalt phthalocyanine compound (6). 

5.10 2,9(10),16(17),23(24)-tetrakis(2-pyridylethynyl)phthalocyaninatocobalt (II) 

(7) 

Tetraiodocobalt(II) phthalocyanine (100 mg, 0.093 mmol) was reacted with 2-

ethynylpyridine (0.038 g, 0.372 mmol) in the presence of 

bis(triphenylphosphine)palladium(II) chloride [Pd(PPh3)2Cl2] (5 mg, 3.5 mmol) and 

copper(I) iodide (5 mg, 0.026 mmol) in 2 mL of triethylamine. The reaction mixture 

was stirred at room temperature for 12 h under nitrogen atmosphere, then it was 

treated with 1:1 (v/v) water/methanol mixture to precipitate the product which was 

filtered off. The resulting dark green solid was washed several times with methanol 

and acetone. The desired compound was obtained after drying in vacuo at 75 C. 

Molecular formula: C60H28CoN12 (974.93 g/mol). Yield: 0.022 g (24.26%).  
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Figure 0.10 : Pyridine-based phthalocyanine with cobalt as metal salt (7). 
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5.11 Quaternized cobalt phthalocyanine (8) 

Compound 7 (100 mg, 0.14 mmol) was heated to 120 °C in DMF (5 mL) and 

excess dimethyl sulfate (0.1 mL) was added drop wise. The reaction mixture was 

stirred at 120 C for 12 h. At the end of 12 h, the mixture was cooled to room 

temperature and the product was precipitated with acetone and collected by filtration. 

The green solid product was washed successively with hot ethanol, ethyl acetate, 

THF, chloroform, hexane, and diethyl ether. Molecular formula: C64H40CoN12O8S2 

(1226.97 g/mol). Yield: 0.026 g (20.56%).  
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Figure 0.11 : Quaternized cobalt phthalocyanine (8). 
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6. RESULTS AND DISCUSSION 

6.1 Synthesis and Structural Characterization 

The starting material of phthalocyanine, namely 4-nitrophthalonitrile, was 

synthesized as detailed in the literature. In the first phase of our work, we started to 

study the synthesis of the iodophthalonitrile required for the phthalocyanines. This 

compound was synthesized in two steps from 4-nitrophthalonitrile. In the first step, 

the nitro moiety is reduced to amine. In the second step, the amine was converted 

into the water-soluble diazonium salt, and reacted with KI to synthesize 4-

iodophthalonitrile (2). 
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Figure 0.1 : Synthesis of 4-iodophthalonitrile (i: MeOH/HCl, Fe powder; ii: H2SO4, 
NaNO2, KI) 

Substituted-phthalocyanines could be synthesized by two different methods. First, 

the cyclotetramerization is carried out after the dinitrile derivative of the desired 

substituent is synthesized. The second method is cyclotetramerization followed by 

the reaction of the desired groups with the ring. In our previous study, we know that 

phthalocyanines bound by ethynyl bridge have problems regarding purification. 

Therefore, we aimed to synthesize the desired phthalocyanines by the second 

method. Firstly, tetraiodocobalt- and zinc-phthalocyanines were synthesized 

according to the literature [87]. The synthesized phthalocyanine derivatives were 

purified by washing and by precipitation.  
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Figure 0.2 : Synthesis of pyridinethynyl substituted metallo-phthalocyanines. 

In this part of the work, the bonding of the 2-ethynyl pyridine group to the 

pthalocyanine ring was performed. Under typical Sonogashira reaction conditions, 

the cross-coupling reaction between an excess of 2-ethynylpyridine and 

tetraiodometallophthalocyanines in triethylamine with copper(I) iodide (CuI) and 

bis(triphenylphosphine) palladium(II) chloride [Pd(PPh3)2Cl2] as catalysts at room 

temperature under nitrogen atmosphere produced 4 and 7. Then the compounds 4 and 

7 were separated from the starting materials by washing and precipitation methods, 

pyridylethynyl- substituted phthalocyanine derivative was synthesized.  
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Figure 0.3 : Synthesis of the quaternized metallo-phthalocyanine. 

For the synthesis of water-soluble phthalocyanine derivatives, pyridine groups 

were introduced into the reaction to synthesize quaternized derivatives. The 

pthalocyanines were reacted with excess amount of dimethyl sulfate in DMF at 120 

°C. The reaction product was purified by washing with ethanol, ethyl acetate, THF, 
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chloroform, hexane and diethyl ether, respectively. Thus, water soluble pyridine 

substituted phthalocyanine derivatives were synthesized. 

Spectral data (MALDI-TOF, 1H NMR, UV-Vis, and FT-IR) for all new products 

are consistent with the proposed structures. The peak of 12 protons in the NMR 

spectrum of compound 3 was observed at 7.57-7.77 ppm. In the NMR spectrum of 

compound 4, peaks belonging to pyridine groups were observed in the range of 7.46-

7.61 ppm, protons on the ring were observed in the range of 8.34-9.11 ppm. The 

NMR spectrum of both compounds supports the formation of the compound.  
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Figure 0.4 : 1H NMR spectrum of the quaternized zinc phthalocyanine. 

In the definition of phthalocyanines, UV-Vis spectra have a distinguishing 

property. Transition between π- π*  display 2 separate bands , a Q-band in the region 

of 600-700 nm and a B-band in the 300-350 nm region. The zinc phthalocyanines (3-

5) were observed around Q band 677-681 and B band 334-359 nm. In the case of the 

cobalt phthalocyanine derivatives (6-8), Q bands were observed around 664 while B 

bands were observed around 333 nm. These results show that the Pc ring has been 

formed.  
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Table 0.1 : Q and B bands of the metallophthalocyanine in DMF. 

 B Band Q Band 
I_ZnPc (3) 351 677 

Py_ZnPc (4) 359 681 
Q_ZnPc (5) 334 679 
I_CoPc (6) 333 664 

Py_CoPc (7) 333 665 
Q_CoPc (8) 333 664 

Aggregation is relevant to concentration, substituent, solvent, temperature, and the 

metal ion. The aggregative behavior of the complexes was examined at different 

concentrations in DMF. The intensity of absorption of the Q band also increased with 

an increase in concentration. It was observed that a new band did not occur due to the 

aggregated species. The Beer–Lambert law was obeyed for all these compounds for 

the concentrations ranging from 2.00 × 10−6 to 14.00 × 10−6 M. The phthalocyanine 

derivatives 3–8 did not show a detectable aggregation in DMF. 

The FT-IR spectra of the phthalocyanines 4, 7 are very similar. In the FT-IR 

spectra of compounds 4 and 7, stretching vibrations of C≡C groups observed at 2209 

cm-1 and 2207 cm-1, respectively. The aromatic groups appeared at 3057–3060 cm-1 

and the aromatic C–H bending vibrations observed 1597–1468 cm-1 at expected 

frequencies. The FT-IR spectra of the quaternizated phthalocyanines are very similar 

to their Pcs. No major change was found in the FT-IR spectrum of 5 and 8 after 

quaternization. However, stretching vibrations were observed around 1385-1395 and 

738-743 cm-1 for S=O and S-O bonds, respectively.  
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Figure 0.5 : Aggregation behavior of the MPc (4, 7) in DMF at different 
concentrations. (14 ×10-6 (A), 12 ×10-6 (B), 10 ×10-6 (C), 8×10-6 (D), 6 ×10-6 (E) and 

4 ×10-6 (F) M).  

6.2 Determination of Binding of ZnPc and CoPc to DNA using UV/Vis Titrations 

All titrations of Pcs with CT-DNA were performed at room temperature in buffer 

solution. The concentrations of CT-DNA per nucleotide phosphate ([DNA]) was 

calculated from the absorbance at 260 nm using εDNA = 13200 M-1 cm-1 [88]. DNA 

was stored at 4 ºC overnight and used within 2 days. The stock solutions of 20 µM 

quaternized Pcs (Q_ZnPc and Q_CoPc) and 50 µM DNA were prepared in buffer 

solution. First the absorption spectrum of a 3 mL buffer solution of Q_ZnPc (5) and 
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Q_CoPc (8) was recorded and then 6 x 30 μL for Q_ZnPc (4 x 30 μL for Q_CoPc) 

injections of DNA were added manually. Absorption spectra were collected from 

500 nm to 800 nm. The titrations were carried out until Pcs’ Q bands remain at a 

fixed wavelength upon the successive additions of CT-DNA. To determinate the 

binding constants KbZnPc and KbCoPc, Eq. 2 [89] (Table 6.2); 

[DNA]/(Ɛa-Ɛf) =[DNA]/ ]/(Ɛb-Ɛf) + 1/[Kb((Ɛb-Ɛf)]   (Eq. 2) 

was employed where the apparent absorption coefficient Ɛa, Ɛf and Ɛb correspond 

to Aobsd/[Pc], the extinction coefficient of the free Pc and the extinction coefficient of 

the Pc when fully bound to DNA, respectively. In plots of [DNA]/(Ɛa-Ɛf) versus 

[DNA], Kb is given by the ratio of slope to intercept [90]. The experiments were 

repeated at three times (see Figures 6.6-6.8).  

6.3 Determination of binding of ZnPc and CoPc to BSA using UV/Vis titrations  

All titrations of Pcs with BSA were performed at room temperature in distilled 

water. 25 µM BSA, 20 µM quaternized Pcs (Q_ZnPc and Q_CoPc) stock solutions 

were prepared in distilled water. First the absorption spectrum of a 3 mL aqueous 

solution of Q_ZnPc and Q_CoPc was recorded. Then 5 x 30 μL injections of BSA 

were added manually and successively. Absorption spectra were collected from 500 

nm to 800 nm. The titrations were carried out until the Q bands of Pcs remain at a 

fixed wavelength upon the successive additions of BSA [91] (see Figures 6.9 and 

6.10). 

6.4 Determination of the change in thermal denaturation profile of DNA 

Melting temperatures were determined for CT-DNA (50 µM, 2.5 mL) and 

quaternized Pcs (Q_ZnPc and Q_CoPc) (25 µM, 0.3 mL) in buffer by heating from 

20 to 90 °C at a rate of 0.6 °C/min, and recording the UV absorbance at 260 nm 

every 10 s ( Figure 6.11). The absorbance measurements were repeated five times, 

and standard deviations were calculated. 
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6.5 Determination of thermodynamic parameters 

The equilibrium constants of DNA:Pc complexes were determined by analyzing 

the absorbance of Pc-DNA solutions at varying temperatures (293.15 K, 303.15 K, 

313.15 K, 323.15 K, 333.15 K). For the reversible binding reaction of a ligand that is 

binding to a DNA molecule with a single site to form a ligand-DNA complex, we 

can write the binding reaction as shown in Eq. 3 [92]. 

L + DNA ↔ LDNA                K= [LDNA]eq / ([L]eqX[DNA]eq)  (Eq. 3) 

where, [L] is the concentration of the ligand or DNA-binding domain (in present 

work, L represents Q_ZnPc and Q_CoPc), [DNA]eq and [LDNA]eq are the 

concentrations of DNA and bound complex at equilibrium, respectively. The stability 

of the bound complex is determined by the differences in the noncovalent 

interactions between the Pc and the DNA as temperatures varied using nonlinear 

least-squares algorithm [93]. At these temperatures, DNA does not undergo any 

structural degradation. The absorption spectra were analyzed by assuming 

phthalocyanine:DNA molar ratios as 1:1 and 2:1. The results show that the best 

fitting corresponds to the 1:1 model complex at studied temperatures.  

The energetics of DNA–phthalocyanine equilibrium can be conveniently 

characterized by three thermodynamic parameters, standard Gibbs free energy, ΔGo, 

the standard molar enthalpy, ΔHo and the standard molar entropy, ΔSo. ΔGo can be 

calculated from the equilibrium constant, K, using the familiar relationship, ΔGo = 

−RT lnK, in which R and T refer to the gas constant and the absolute temperature, 

respectively [93] (Table 6.3).  

The van’t Hoff equation gives a linear plot of lnK versus 1/T (see Figure 6.12), if 

the heat capacity change for the reaction is essentially zero: 

d lnK/d(1/T ) = − ΔHo / R     (Eq. 4) 

The ΔHo can be calculated from the slope of the straight line, −ΔHo/R and the 

standard entropy by the following Eq. (4): 
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ΔSo = (ΔHo – ΔGo) / T     (Eq. 5) 

6.6 Aggregation Properties of Phthalocyanines 

Aggregation behavior of phthalocyanines is described as the coplanar association 

of rings progressing from monomers to dimers and to higher order complexes. It 

depends on the concentration, nature of solvent, substituents, metal ions, and 

temperature [94].  

In UV-Vis spectra of compounds Q_ZnPc (5) and Q_CoPc (8) in DMF, while the 

absorptions at around 636 and 600 nm corresponded to h-aggregates of Q_ZnPc and 

Q_CoPc, the more strong absorptions at 679 and 664 nm were assigned to Q-bands 

of monomeric Q_ZnPc and Q_CoPc respectively. These results indicated that strong 

interactions between π-clouds in Pcs gave rise to aggregates of quaternized Q_ZnPc 

and Q_CoPc. Especially, heterocyclic cationic structures similar to imidazolium or 

pyridinium rings, delocalization of positive charge ease the aggregation [95]. In 

buffer solutions, absorptions were enhanced quite a lot at shorter wavelengths and 

disappeared completely around Q band region which were observed in DMF (see 

Figures 6.6 and 6.7). In this work, non-ionic surfactant Triton-X was used to 

eliminate aggregation but the aggregates were prevailing over monomers. This 

attitude could be explained in such a way that Pc planes resemble to the “pages of a 

book” in which all the pages stick to each other with a strong π-π interaction working 

as “glue”. In other words, in case of freshly synthesized Q_CoPc and Q_ZnPc 

compounds, the enhanced planarity of pc molecules provided with addition of rigid 

C≡C bonds in peripheral positions brought them into close proximity to aggregate on 

top of another and 18 π electrons stick them together as a glue.  

6.7 The Evaluation of Binding of ZnPc and CoPc with CT-DNA by UV-Vis 

Titrations 

Metal ion coordination to nucleic acids is not only required for charge 

neutralization, it is also essential for the biological function of nucleic acids. The 

structural impact of different metal ion coordinations on DNA helices is questionary 

[96a]. The interactions may be either through direct metal ion coordination or 

mediated through water molecules of the metal ion's hydration shell. It is known that 
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the interaction of purines and/or pyrimidines with chelating compounds destabilizes 

the nature of DNA [96b].  

 The more increase in interaction, the more decrease in maximum absorbances of 

Q_ZnPc (5) and Q_CoPc (8), the more stable the Pc-DNA complex. Last lines in ( 

Figure 6.6 and 6.7) recorded on top of each other, after the last addition of DNA to 

the solutions of Q_ZnPc and Q_CoPc, the Q band absorbances of  Q_ZnPc and 

Q_CoPc remained constant which meant that stable pcs-DNA complexes were 

formed.  

In Q_ZnPc, zinc could coordinate with both oxygens and nitrogens in DNA bases 

and behaves a metal-finger structure [97,98]. According to (Figure 6.6) , the absence 

of absorption close to 679 nm proved the superiority of  h- aggregates over 

monomers.  

In addition to hydrophobic interactions due to π-stacking of aggregates screened 

as absorption at shorter wavelength in (Figure 6.6) . Zinc(II) might be bound 

especially with N7 in guanidines and oxygens in phosphate skeleton to stabilize 

monomeric forms of Q_ZnPc. Kb value supported that Q_ZnPc could bind to DNA 

strongly and  be as  a possible minor groove binder (Figure 6.8). 

Cobalt is an interesting bioelement which dominates and interferes with many 

biological reactions. It was reported that in crystals, Co(II) ion binds exclusively at 

the N7 position of guanine bases by direct coordination. The coordination geometry 

around Co(II) is octahedral and could induce significant conformational changes on 

A-DNA and B-DNA [96a]. Our Kb value is bigger than the one of Q_ZnPc which is 

consistent with a stronger interaction than Q_ZnPc ( Figure 6.7). Since the bases in 

DNA axially coordinated with cobalt and zinc in Q_CoPc and Q_ZnPc respectively, 

an octahedral complex could be formed and this would be superior over the Q_ZnPc 

which had a possible square planar or planar geometry as a result of interaction with 

nitrogen or oxygen bases in DNA ( Figure 6.8).  
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6.8 The Evaluation of binding of ZnPc and CoPc with BSA by UV-vis titrations 

The more the interaction increases, the more maximum absorbances of Pcs 

decreases and the more stable is the BSA-Pc complex [97].  Last lines in (Figures 

6.9,6.10) mean that after addition of 150 μL of BSA to Q_ZnPc (5) and Q_CoPc 

(8), the Q band absorbance remained constant. They showed the end of titration 

which means maximum interaction between Pcs and BSA occurred. The large 

spectral perturbation might indicate that pc planes in freshly synthesized Pc 

compounds could bind to BSA strongly. According to results, water-soluble 

quaternized Q_ZnPc and Q_CoPc strongly bind to blood plasma proteins such as 

BSA and hence they can easily be transported in the blood [98].   

6.9 The Evaluation of Thermodynamic Parameters 

The data presented in (Table 6.3) deduced that the favorable free energy changes 

of the binding process for Q_ZnPc (5) and Q_CoPc (8) arose from the large positive 

entropy changes. Entropy-driven binding process took place according to 

thermodynamic parameters given in (Table 6.3). When ΔH° > 0 and ΔS° > 0, the 

effective force is hydrophobic [99]. In water, the hydrophobic effect is the driving 

force for the formation of aggregates. A  large positive entropic value due to the 

removal of water from hydrophobic parts, resulting from aggregation [100]. 

Incorporation of zinc had a great effect on energetics of binding process. In 

Q_ZnPc, axial coordination of zinc with oxygens or nitrogens in DNA 

heterogeneous bases, influenced the thermodynamic driving forces; enthalpy and 

entropy. As the temperature increased, more water molecules were released around 

Q_ZnPc-DNA complex resulting an increase in entropy. Hydrophobic interactions 

were mainly responsible for positive entropy [101]. Together with UV-Vis spectra 

and Kb value, Q_ZnPc could be regarded as a minor groove binder. 

Zinc finger domains are structures that mediate sequence recognition for a large 

number of DNA-binding proteins These domains consist of sequences of amino acids 

containing cysteine and histidine residues (which have sulfurs and nitrogen donors 

respectively) tetrahedrally coordinated to a zinc ion. However, it was reported that 

cobalt(III) Schiff-base complexes could selectively inhibit a zinc finger transcription 
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factor [97]. 1H NMR spectroscopy was used to confirmed the structure of a zinc 

finger peptide which is disrupted by axial ligation of the cobalt(III) complex to the 

nitrogen of the imidazole ring of a histidine residue. [102] 

According to thermodynamic parameters given in (Table 6.3), Q_CoPc was also 

entropy-driven binding process. When the formation of octahedral complex-DNA 

fragments was considered, more ordered structure required increase in enthalpy but 

also the exposion of water molecules around DNA increased entropy more. Thus, a 

more negative Gibbs free energy was released during the interaction. The binding 

mode of Q_CoPc could be attributed to minor groove. 

Table 0.2 : Kb and Ksv  values of Q_ZnPc (5) and Q_CoPc (8) with standard 
deviations (± STD). 

 Kb (x105)(L x mol-1) Ksv (x104)(L x mol-1) 
ZnPc 2.6± 0.1 - 
CoPc 11.7± 0.1 - 

 

 

Table 0.3 : Calculated thermodynamic parameters for binding of Q_ZnPc (5) and 
Q_CoPc (8) to ct-DNA (± STD). 

T (K) (LnK ± ΔK)  ΔGo (kJ·mol−1) ΔHo (kJ·mol−1) TΔSo (kJ·mol−1K−1)
ZnPc  

293.15 06.21 ± 0.05 -15.48 ± 0.1 26.01 ± 0.1 41.49 ± 0.30 
303.15 06.65 ± 0.05 -16.89 ± 0.1 26.01 ± 0.1 42.90 ± 0.30 
313.15 07.14 ± 0.05 -18.31 ± 0.1 26.01 ± 0.1 44.32 ± 0.30 
323.15 07.48 ± 0.05 -19.72 ± 0.1 26.01 ± 0.1 45.73 ± 0.30 
333.15 07.73 ± 0.05 -21.14 ± 0.1 26.01 ± 0.1 47.15 ± 0.30 

CoPc  
293.15 12.01 ± 0.05 -28.25 ± 0.1 34.99 ± 0.1 63.22 ± 0.30 
303.15 12.10 ± 0.05 -30.41 ± 0.1 34.99 ± 0.1 65.37 ± 0.30 
313.15 12.36 ± 0.05 -32.56 ± 0.1 34.99 ± 0.1 67.53 ± 0.30 
323.15 12.65 ± 0.05 -34.72 ± 0.1 34.99 ± 0.1 69.68 ± 0.30 
333.15 12.99 ± 0.05 -36.88 ± 0.1 34.99 ± 0.1 71.84 ± 0.30 
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Figure 0.6 : The spectral changes in UV-Vis absorption spectrum of Q_ZnPc (5) in 
buffer solution upon addition of DNA. 
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Figure 0.7 : The spectral changes in UV-Vis absorption spectrum of Q_CoPc (8) in 
buffer solution upon addition of DNA. 
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Figure 0.8 : Wolfe–Shimer equation plot of CT-DNA binding constant (Kb) of 
Q_ZnPc (5) and Q_CoPc (8). 
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Figure 0.9 : The spectral changes in UV-Vis absorption spectrum of Q_ZnPc (5) in 
buffer solution upon addition of BSA. 
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Figure 0.10 : The spectral changes in UV-Vis absorption spectrum of Q_CoPc (8) in 
buffer solution upon addition of BSA. 
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Figure 0.11 : The thermal denaturation profiles of CT-DNA in the presence of 
Q_ZnPc (5) and Q_CoPc (8). 

 [Tm values for ZnPc and CoPc are 77°C and 58°C, respectively] 



67 
 

3.0x10
-3

3.2x10
-3

3.4x10
-3

0

5

10

15

 ZnPc

 CoPc

L
n

K

1/T (K)
 

Figure 0.12 : Van’t Hoff plots: Temperature dependence of equilibrium constant for 
Q_ZnPc (5) and Q_CoPc (8) -DNA interactions.
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Figure A. 1 : IR spectrum of Tetraiodophthalocyaninatozinc(II). 
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Figure A. 2 : IR spectrum of Tetrakis(pyridine)phthalocyaninatozinc(II). 
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Figure A. 3 : IR spectrum of Tetrakis(methylpyridinium)phthalocyaninatozinc(II). 
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Figure A. 4 : IR spectrum of Tetraiodophthalocyaninatocobalt(II). 
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Figure A. 5 : IR spectrum of Tetrakis(pyridine)phthalocyaninatocobalt(II). 
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Figure A. 6 : IR spectrum of Tetrakis(methylpyridinium)phthalocyaninatocobalt(II). 
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Figure A. 7 : UV-Vis spectrum of tetraiodophthalocyaninatozinc(II) in DMF (14 x 10-6 M (A), 12x10-6 M (B), 10x10-6 M (C), 8x10-6 M (D), 

6x10-6 M (E), and 4x10-6 M (F) 
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Figure A. 8 : UV-Vis spectrum of tetrakis(pyridine)phthalocyaninatozinc(II) in DMF (14 x 10-6 M (A), 12x10-6 M (B), 10x10-6 M (C), 8x10-6 M 

(D), 6x10-6 M (E), and 4x10-6 M (F). 
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Figure A. 9 : UV-Vis spectrum of tetrakis(methylpyridinium) phthalocyaninatozinc(II) in DMF (14 x 10-6 M (A), 12x10-6 M (B), 10x10-6 M (C), 
8x10-6 M (D), 6x10-6 M (E), and 4x10-6 M (F). 
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Figure A. 10 : UV-Vis spectrum of tetraiodophthalocyaninatocobalt(II) in DMF (14 x 10-6 M (A), 12x10-6 M (B), 10x10-6 M (C), 8x10-6 M (D), 

6x10-6 M (E), and 4x10-6 M (F) 
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Figure A. 11 : UV-Vis spectrum of tetrakis(pyridine)phthalocyaninatocobalt(II) in DMF (14 x 10-6 M (A), 12x10-6 M (B), 10x10-6 M (C), 8x10-6 

M (D), 6x10-6 M (E), and 4x10-6 M (F). 
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Figure A. 12 : UV-Vis spectrum of tetrakis(methylpyridinium) phthalocyaninatocobalt(II) in DMF (14 x 10-6 M (A), 12x10-6 M (B), 10x10-6 M 

(C), 8x10-6 M (D), 6x10-6 M (E), and 4x10-6 M (F). 
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Figure A. 13 : 1H-NMR spectrum of tetraiodophthalocyainanozinc(II). 
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Figure A. 14 : 1H-NMR spectrum of tetrakis(pyridine)phthalocyaninatozinc(II). 
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