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Istanbul Technical University
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CHAMELEON GRAVITY

SUMMARY

At the end of the last millennium, the cosmological observations, such as SN Ia, CMB
radiation, allowed us in order to witness a revolutionary discovery of the accelerated
expansion universe model.

Adding a scalar field into the currently accepted theory of the large scale structure
of the Universe, Einstein’s general theory of relativity, under the title of quintessence
models is given to load more clear meaning in terms of theoretically as an alternative
way for this important discovery. One may follow such a route only on the
observational ground; but, if one would like to relate these scalar fields to the
theories which are candidate of being the theory of everything, one may easily go
into the trouble of violating some other important observations, such as Solar System
observations.

In general terms, in cosmology, known the most basic problem is still cosmological
constant problem and the scalar field models can not be defined as a definite address
for the solution to this problem. On the other hand; in particular, the scalar field models
arising from the mysterious vacuum energy, value of which estimates as almost seventy
two percent of the Universe for present, help us to able to make the explanation about
the accelerated expansion universe model, with the help of the fundamental feature of
the scalar field known as simplicity.

The philosophy of the model is that cosmological scalar fields, such as quintessence,
have not yet been detected in local tests of the equivalence principle because we happen
to live in a dense environment. The cosmological implications of such a scenario are
investigated in detail and many of the important results present in the literature are
re-arranged and are re-derived.

Which is the subject of this thesis, the chameleon gravity is a novel scenario where a
scalar field acquires a mass which depends on the local matter density. According this
scenario, while the field is massive on Earth, where the density is high, it is essentially
free in the Solar System, where the density is low. All existing tests of gravity are
satisfied. For this scenario, the near future experiment results are awaited with the
curiosity and eagerly.

The inconsistencies between the measurements in the laboratory and the expectations
can be ignored by the new and surprising outcomes arising from differently behaviors
of the scalar field in the regions of high density than in the regions of low density.
Because they are able to hide so well from our observations and experiments, this scalar
fields are therefore called as a chameleon field. Their physical properties, such as their
mass, depend on the environment. Eventually, for the scalar fields, the environment
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density is significant in order to able to detect the existence of these fields and so these
fields can also disappear due to environment density.
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BUKALEMUN KÜTLE ÇEKİMİ

ÖZET

Geride bıraktığımız yakın geçmişte, SNIa ve CMB ışıması gibi kosmolojik gözlemler
ivmelenerek genişleyen (şuan ki) evren modelinin devrim niteliğindeki keşfine tanıklık
etmemiz için bize fırsat tanıdı.

Bu önemli keşfe teorik açıdan daha da netlik kazandırmak için alternatif bir yol olarak,
evrenin büyük ölçekteki yapısının teorisi olarak halen kabul gören Einstein’ ın genel
görelilik teorisine, quintessence modelleri başlığı altında eklenen skaler alan modelleri
gösterilebilir. Bu alanların aynı zamanda, alternatif kütle çekimi teorisinden olan
Skaler-Tensor teoriler kaynaklı olduğu da bilinir.

Yalnızca gözlemlere dayalı olarak elde edilen verileri inceleyip, bunlara fiziksel olarak
anlam yükleyebilmek için bu yolu izlemek kolaylık sağlarken, herşeyin teorisi olma
yolunda aday olan teorilerle bu skaler alanlar ilişkilendirilmek istenildiğinde, Güneş
Sistemi gözlemleri gibi diğer bazı önemli gözlemlerde izlenilen bu yolun bozunmaya
uğrayacağını görmek mümkündür.

Genel açıdan bakıldığında, kosmoloji de halen yanıt aranan temel bir sorun olan,
kosmolojik sabit sorununa kesin çözüm için skaler alan modelleri adres olarak
gösterilemez. Çünkü sahip oldukları basitlik özelliği nedeniyle bu modellerin
potensiyel değerleri neredeyse sıfır olacak kadar çok küçük değer olarak kabul
edilir. Evrenin ivmelenme fikrinin ortaya atılmasını sağlayan modelin sahip olduğu
dinamikler (serbestlik dereceleri) açısındansa, potansiyelin sfr olarak kabul grebileceği
gerçek bir vakum durumuna ulaşmanın henüz yetersiz kalacağı savunulur.

Öte yandan; özel olarak, kosmolojik veri ve gözlemlerden yardımla şuan ki değeri
evrenin yaklaşık yüzde yetmiş ikisini oluşturduğu öngörülen gizemli vakum enerjisi
kaynaklı quintessence skaler alan modelleri sahip olduğu temel özelliği olan basitliği
sayesinde ivmelenerek genişleyen evren modeli hakkında bilgi sahibi olmamız için
bize yardımcı olur.

İvmelenerek genişleyen evren modelinin fikrini oluşturabilmek için, potensiyelin
giderek yavaşça azaldığı kabul edilerek, skaler alanın kütlesinin de buna bağlı olarak
etkin kütle şeklindeki eldesine gidilir. Buradaki önemli nokta, bu etkin kütlenin fiziğin
önemli bir diğer kolu olan parçacık fiziğindeki elde edilen parçacık kütlesi ölçümleri ile
karşlaştırıldığında çok çok küçük olması gerekliliğidir (mφ ≡

√
V ′′(φ)≤ 3Ho ≤ 10−42

Gev). Quintessence skaler alanları bu tür özellikteki potensiyele sahip oldukları için
bir anlamda bu tezin temelini oluşturan kaynak skaler alanlar olarak da kabul edilip,
alglanabilinir.

Modelin felsefesini oluşturan quintessence gibi skaler alanlar, yoğun bir ortamda
bulunulduğu için eşdeğerlik ilkesinin yerel testlerinde henüz tespit edilememiş olup;
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kosmolojik etkileri detayla incelenilen ve önemli sonuçları literatürde geniş yer tutan
pekçok senaryo için yeniden düzenlemeye, türetmeye gidebilmek için faydalıdır.

Bu tezin konusu olan ve gelecekteki yapılması planlanan deneylerinin de gözlemsel
sonuçları merak ve heyecanla beklenen bukalemun kütle çekimi yerel madde
yoğunluğuna bağlı olarak skaler alanın kütle kazanmasını anlatan yeni bir senaryodur.
Bu senaryoya göre, skaler alan madde yoğunluğunun oldukça fazla olduğu yeryüzünde
kütlelenirken, yoğunluğun oldukça düşük olduğu Güneş Sistemi’ nde aslında serbest
olup, varolan tüm kütle çekimi testlerinde sağlanır.

Bu senaryo ile ilgili skaler alan kaynağını ortaya çıkarmak için pekçok çalışma
mevcuttur. Bunların bilinen birkaç örneği olarak, teoriksel kuantum skaler alanların
üyesi olan, sicim teorisi kaynaklı dilaton, radion alanları verilebilir. Fakat, yukarıda
da belirtildiği gibi, biz bu tez boyunca bu senaryoyu daha iyi kavrayabilmek için ,
teoriksel kuantum olmayan, vakum enerjisi temelli quintessence skaler alanları ile ilgili
olacağız.

Laboratuvar deneylerinin ölçümleri ile beklentiler arasındaki tutarsızlıklar, skaler
alanların düşük yoğunluklu bölgelerden yüksek yoğunluklu bölgelerdeki farklı
davranışları sebebiden kaynaklanan yeni ve şaşırtıcı sonuçlarla gözardı edilebilir.
Çünkü bu alanlar kendilerini gözlem ve deneylerden ustalıkla gizleyebilirler; bu
yüzdendir ki, bu tür özelliğe sahip alanlar bukalemun alanlar olarak isimlendirilirler.
Böylelikle, bu alanların fiziksel özelliği olan kütlelerinin de bulunduğu ortama bağlılığı
doğrulanır; yani, bu alanların varlığının fark edilmesinde ya da alanların deney ve
gözlemlerde gözden kaybolmasında, alanların bulunduğu ortam yoğunluğunun önemi
büyüktür.

Örneğin, yeryüzü (Dünya) gibi yüksek yoğunluğa sahip bölgelerde, skaler alan
büyük bir kütleye sahip olup, eşdeğerlik ilkesinin bozunmasının gizlenmesi üssel
olarak gerçekleşir. Düşük yoğunluğa sahip yılıdızlar, gök cisimleri arası bölgelerde
ise alanların kütleleri yaklaşık olarak bugünkü Hubble parametresi boyutundadır.
Çok daha düşük yoğunluklu bölgeler olarak bilinen Güneş Sistemi deneylerinin
gerçekleştiği bölgelerin yerel madde yoğunluğu Dünya’ nın sahip olduğu yoğunluktan
çok daha düşüktür. Güneş Sistemi gözlemlerinde skaler alanların hareketlerinin
gözlenmesi ise ince kabuk mekanizması olarak tanımlanan yeni bir mekanizma
tarafından engellenir.

Maddeye herhangi bir skaler alan bağlanmasının etkisinin gözlemlerce fark
edilmesinin önlenmesinin sebebi olarak, bu özel mekanizmanın varlığının geliştir-
ilmesi gösterilir. Öyle ki, yeteri kadar küçük nesneler bu mekanizmadan etkilenmezler,
böylece bu küçük nesnelerin sahip oldukları kütle yoğunları tamamiyle dış ortamlarına
eklenir. Fakat, Dünya ile Güneş gibi büyük nesneler arasında kuvvetle aracılanan
skaler alanlar, kütle çekimi deneylerinin Güneş Sistemi’ nde gerçekleşmesini sağlayan
ince kabuk mekanizmasının varlığı sayesinde gözden kaybolabilirler.

Kısaca skaler alanlar için, değişim aralığı ile bağlanmalar arası ilişki şöyle
özetlenebilinir:
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Küçük bağlanmalarda büyük değişimler gözlenmez; çünkü ince kabuk mekaniz-
masının etkisi küçük nesneler üzerinde yoktur ve maddeyle skaler alanların etkileşim
aralıkları kısadır. Büyük nesneler için büyük değişimler söz konusudur. Çünkü
etkileşim aralıkları uzun olup, maddeye bağlanmaları daha güçlü olduğundan skaler
alanlar için ortama daha hızlı uyum sağlama ve deneylerden çok daha iyi gizlenme
imkanı gelişir.

SEE projesi, STEP, Galileo Galilei ve MICROSCOPE gibi uydu deneylerinden, yakın
gelecekte alınması umulan sonuçlar bukalemun alanlarının var olabileceğinin ispatını
olumlu yönde destekler nitelikte olacaktır. Şayet quintessence ve kütle çekimi arasında
bağdaştırıcı ve deneylerle de pekiştirilen somut sonuçlara ulaşılabilinirse, quintessence
alanlarının bukalemun alanlarının kaynağı olabileceği fikri de gerçeklik kazanmş
olacaktır.

xxv



xxvi



1. INTRODUCTION

The current accelerated expansion of the universe has been confirmed by many

independent observations. The supporting evidence comes from the supernovae Ia data

[1–4], cosmic microwave background radiation [1, 5–7], and the large scale structure

of the universe [1, 8, 9]. Although the cosmological constant is arguably the simplest

explanation and the best fit to all observational data, its theoretical value predicted by

quantum field theory is many orders of magnitude greater than the value to explain

the current acceleration of the universe. This problematic nature of cosmological

constant has motivated an intense research for alternative explanations. A scalar field

component, in the framework of Einstein’s general theory of relativity, with a negative

pressure, for example, can give results consistent with the observations.

The attempts to explain the accelerated expansion of the universe with scalar fields

are named as Quintessence Models. The scalar fields are also used in the so-called

inflation models, which people believe that the first accelerated expansion stage of the

early universe. Obviously, the scalar fields are the first candidates for explaining the

observational data unless the current theories and the observed matter forms are able

to explain them. The main reason for this is, possibly, the simple nature of scalar fields

in comparison to spinor or vector fields.

Another scalar field which is the target of a huge research and many state-of-the-art

accelerators is the Higgs field of Standard Model of Particle Physics. For example, the

most important motivation behind the LHC experiment in CERN is to detect the Higgs

particle actually.

There are also theoretical reasons to consider scalar fields as fundamental constituents

of nature: For example, they arise naturally in the Kaluza-Klein theories, superstring

theories, and M-theory; or they are proposed to cure some conceptual problems of

currently accepted theories. But, as of the beginning of 21st century, fundamental
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scalar fields exist only as hypothetical structures in physics, and we can summarize the

places and their classical or quantum character as follows:

• Hypothetical non-quantum scalar fields:

– Scalar fields in the so-called scalar-tensor theories of gravity,

– Inflations.

• Hypothetical quantum scalar fields:

– Higgs particle, giving mass by interactions with massless particles,

– Dilatons and moduli fields etc., quantum fields appearing in superstring theory

and M-theory.

The scalar fields that we have mentioned above are not observed as of 2012; and

the scalar fields arising naturally in the string theory are generally coupled to matter

with gravitational strength, and therefore lead to unacceptably large violations of the

Equivalence Principle. Thus one expects that there must be a mechanism suppress

the Equivalence-Principle-violating contributions of such scalar fields. Khoury and

Weltman [10] have suggested a coupling which gives the scalar field a mass depending

on the local density of matter. The idea is that the mass of the scalar field is not constant

in space and time, but rather depends on the environment, in particular, on the local

matter density: In regions of high density, such as on Earth, the mass of the field can

be sufficiently large to satisfy constraints on EP violations and fifth force; meanwhile,

on cosmological scales where the matter density is 1030 times smaller, the mass of the

field can be of order H0, the present day value of the Hubble constant, thus allowing the

field to evolve cosmologically today. The philosophy, therefore, is that cosmological

scalar fields, such as quintessence, have not yet been detected in local tests of the EP

because we happen to live in a dense environment. Since their physical characteristics

depend sensitively on their environment, such scalar fields are dubbed as chameleons.

This thesis is the summary of chameleon gravity written by a beginner level theoretical

physicist. The plan of the thesis is as follow: in chapter 2 and 3, Einstein’s general

theory of relativity and the current state of the cosmology in the framework of general
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relativity are summarized. In chapter 4, the scalar-tensor theories are explained and,

finally, in chapter 5 the rudiments of the chameleon gravity is presented.
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2. EINSTEIN’S GENERAL THEORY OF RELATIVITY

2.1 Prelude

Einstein’s General Theory of Relativity (GR) is the currently accepted relativistic

theory of gravitation. The key idea of the theory is gravity is the result of the

curvature of spacetime. This makes gravity different from the other fundamental

interactions since the other forces are represented by some fundamental fields living on

spacetime but gravity stems from the spacetime itself which means, in the context of

general relativity, the dynamical field giving rise to gravitation is the metric tensor

describing the curvature of spacetime, instead of an additional field propagating

through spacetime. In this sense, gravity is really a special interaction and the principle

leading to this specialness is the Principle of Equivalence.

The principle of equivalence is formalized in different forms: Weak EP, EEP, and

SEP. The WEP states that “if an uncharged test body is placed at an initial event

in spacetime and given an initial velocity there, then its subsequent trajectory will

be independent of its internal structure and composition”. The EEP states that “in

small enough regions of spacetime, the laws of physics reduce to those of special

relativity; it is impossible to detect the existence of a gravitational field by means of

local experiments”. It is the EEP that implies/suggests that there should at least one

second rank tensor field which reduces in the local freely falling frame, to a metric

conformal with the Minkowski one and therefore we should attribute the action of

gravity to the curvature of spacetime described by the metric. On the other hand,

the WEP implies that spacetime is endowed with a family of preferred trajectories

which are the world lines of freely falling test bodies; but the existence of metric is not

suggested by the WEP; but this universality is the origin of the claim that gravity is

not actually a force, but a feature of spacetime. Therefore the first step to understand

gravity is to understand the curvature of spacetime, how this curvature is described
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mathematically, and how it is relevant to gravity. However, it is important to emphasize

the fact that we can not prove that gravity should be thought of as the curvature of

spacetime; but, instead we can propose the idea, derive its consequences, and see if the

result is a reasonable fit to our experience of the world.

The appropriate mathematical structure used to describe curvature is that of a

differentiable manifold, and a manifold is essentially a set that looks locally like Rn,

i.e., flat space but globally different. We intuitively expect that the notion of curvature

depends exclusively on the metric, but it is not immediately clear how curvature is

related to any given metric. However, a more careful treatment shows that the curvature

depends on a quantity called connection, and connections may or may not depend on

the metric. The connection provides a way to relate vectors in the tangent spaces of

nearby points on a manifold. There is a unique connection derived from the metric and

used in Einstein’s General Theory of Relativity, called the Christoffel symbol given by

the equation (2.1)

Γ
ρ

µν =
1
2

gρλ (gνλ ,µ +gλ µ,ν −gµν ,λ ) (2.1)

This object is not a tensor, although it seems so; and the fundamental use of a

connection is to take a covariant derivative, a kind of derivative which transforms like

a tensor (2.2):

∇σ T µ1µ2..µk
ν1ν2..νl = ∂σ T µ1µ2..µk

ν1ν2..νl +Γ
µ1

σλ
T λ µ2..µk

ν1ν2..νl +Γ
µ2

σλ
T µ1λ ..µk

ν1ν2..νl + ..

− (Γλ
σν1

T µ1µ2..µk
λν2..νl

+Γ
λ

σν2
T µ1µ2..µk

ν1λ ..νl
+ ..) (2.2)

The mathematical structure used to describe the curvature of a manifold is the Riemann

tensor which is a (1,3) tensor obtained from the connection by (2.3)

Rρ

µλν
= Γ

ρ

νµ,λ −Γ
ρ

λ µ,ν +Γ
ρ

λσ
Γ

σ
νµ −Γ

ρ

νσ Γ
σ

λ µ
(2.3)

2.2 Gravity as Geometry

In order to examine the physics of gravitation we should be able to answer the

following questions: “How does the gravitation influence the matter?” and “how

does the matter determine the gravitational field?”. The hard part is to find the

equation which governs the response of spacetime curvature to the presence of
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matter and/or energy. In the previous section we have considered the necessary

quantities to define the curvature of spacetime. But it is not enough to conclude

all from these considerations that the gravity is the result of geometry. We have

to quantify this proposal in the light of experiments. We expect that some, or all,

components of the Riemann tensor or some other tensors derived from it, must be

related to the energy-momentum of the particles which is collectively described by the

energy-momentum tensor, T µν .

Eventually Einstein derived the equation (2.4):

Rµν −
1
2

gµνR = G M
µν ≡ κT M

µν (2.4)

This equation is known as the Einstein’s equation (A.7). The tensor Rµν is the Ricci

tensor and it is obtained from the Riemann tensor through the following contraction ():

Rρ

µλν
→

ρ→λ

Rλ

µλν
≡ Rµν = Γ

λ

νµ,λ −Γ
λ

λ µ,ν +Γ
λ

λσ
Γ

σ
νµ −Γ

λ
νσ Γ

σ

λ µ
(2.5)

The left-hand side of the Einstein’s equation is the measure of curvature of spacetime

and the right-hand side is the measure of the energy and momentum of the matter in

the spacetime. Although this equation seems simple in this form (thanks to the power

of tensor notation), it contains 10 coupled differential equations for the 10 components

of the metric in 4-dimensional spacetime. Actually the aim is to find the components

of the metric in the presence of a specified type of matter.

The second physical ingredient of the Einstein’s General Theory of Relativity is about

the response of matter to spacetime curvature. We expect that the free particles follow

the shortest path in spacetime, and in the context of GR since we consider gravity as

the manifestation of curvature and not as an interaction their parametrized paths xµ(λ )

obey the geodesic equation(2.6):

d2xρ(λ )

dλ 2 +Γ
ρ

µν

dxµ(λ )

dλ

dxν(λ )

dλ
= 0 (2.6)

2.3 Assumptions of General Relativity

The first experimental verification of General Relativity was the Eddington’s

measurement of light deflection in 1919, four years after the appearance of the theory.
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But until 1960s, General Relativity was not the object of systematic experimental

tests. In 1960, Pound and Rebka [11, 12] measured the gravitational redshift of light

proposed by Einstein in 1907. This experiment is considered as one of the three

classical tests of GR together with the perihelion shift of Mercury and light deflection

measured by Eddington. On the other hand, it was later realized that some of the

gravitational experiments [12–14] do not test the validity of specific field equations

but test the validity of principles; for instance, the gravitational redshift experiments

test the validity of the principle of equivalence. Then, in the light of this fact, a number

of alternative theories of gravitation had been proposed, many of which were therefore

indistinguishable as far as some of the tests were concerned. Therefore, because of

the fact that experiments tests principles and not specific theories/field equations, it is

important to highlight the specific assumptions of GR to see its difference from other

alternative gravitation theories.

First of all, GR is a metric theory: There exists a metric, gµν , and ∇µT µν = 0 where

∇µ is the covariant derivative defined with the Christoffel connection of this metric

and T µν is the energy-momentum tensor of the matter fields. Actually the geodesic

motion can be derived from this second condition of the metric postulate. Theories

satisfying these postulates are called as metric theories. However, even if the metric

postulates are adopted, GR is not the only theory that satisfies them and there are extra

restrictions that should be imposed in order to be led uniquely to this theory.

The assumptions made to reach GR are

• Γ
ρ

µν = Γ
ρ

νµ , that is the connection is symmetric (or spacetime is torsionless),

• ∇λ gµν = 0, that is, the connection is a metric one,

• No fields other than the metric mediate the gravitational interaction,

• The field equations should be second order partial differential equations,

• The field equations should be covariant (or the action should be diffeomorphism

invariant).
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2.4 Einstein’s Equation from an Action

GR is a classical theory and therefore no reference to an action is really physically

required; one could just stay with the field equations. However the Lagrangian

formulation of a theory has some advantages. Other than its elegance it has two

important reasons to develop a Lagrangian formulation for GR: One is that at the

quantum level the action is indeed acquires a physical meaning and one expects that

a more fundamental theory of gravity will give an affective low energy gravitational

action at a suitable limit; the second one is that it is much easier to compare alternative

gravity theories through their actions rather than by their field equations. For these

reasons we will follow the Lagrangian formulation.

Since one of the assumptions of GR is “no fields other than the metric mediate the

gravitational interaction”, we expect that the general structure of the action should

include a Lagrangian for gravity which depends only on the metric and a Lagrangian

for the matter which depends on the matter fields. Furthermore, for the matter

Lagrangian we have one basic requirement: Its variation with respect to the metric

must give the energy-momentum tensor, since it is this quantity on the right-hand side

of the Einstein’s equation. Therefore, we define the equation (2.7) as

T M
µν ≡− 2√

−g
δSM

δgµν
(2.7)

where

SM =
∫

d4x
√
−gLM(gµν ,ψ) (2.8)

is the matter action, ψ collectively denoting the matter fields.

The gravitational action is

SEH =
1

2κ

∫
d4x
√
−gR (2.9)

where the subscript EH stands for Einstein-Hilbert and this action has the name

Einstein-Hilbert action. The factor, R in this equation is the Ricci scalar and the

constant factor in front of the integral is

κ =
8πG
c4 (2.10)
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and it is chosen with some anticipation that the field equations at some appropriate

limit will give us the equations of Newtonian gravity.

Then, finally, the variation of the action S = SEH + SM with respect to the (inverse)

metric gµν gives the Einstein’ s Equation (A.7).
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3. COSMOLOGY

3.1 The Basics of Cosmology

The GR is the most convenient theory to study the evolution of the Universe at

large/cosmological scales; that is, the Einstein equation, (2.4), is the equation that

we use to study the evolution of the Universe. But we have two more ingredients

to explicitly study the large scale structure of the Universe: The metric tensor that

describes the Universe contributing to the left-hand side of the Einstein equation and

the matter content of the universe that contributes to the right-hand side. To determine

the metric of the universe at cosmological scales we make a very important assumption

which simplifies many of the complexities which we encounter at smaller scales (for

example, at the scale of our solar system): The main assumption of cosmology is that

the Universe is homogeneous and isotropic on large scales (at scales > 100Mpc). With

this assumption the metric takes the form (3.1):

ds2 =−dt2 +a2(t)[
dr2

1− kr2 + r2dθ
2 + r2sin2

θdφ
2] (3.1)

known as the Friedmann-Robertson-Walker (FRW) metric. The constant k is related

to the spatial curvature of the spacetime and can take values 1,0,−1 depending on

whether the Universe is spatially closed, flat or open, respectively. The time dependent

function a(t) is called the scale factor; it depends only on time because of the

assumptions of homogeneity and isotropy. To describe the energy-matter components

of the Universe, we make another assumption about the matter content of the universe

by taking the energy-momentum tensor in the form of perfect fluid as (3.2):

T µν = (ρ + p)uµuν + pgµν (3.2)

where uµ = (1,0,0,0) denotes the 4-velocity of the observer comoving with the fluid

and ρ and p are the proper energy density and pressure of the fluid. Actually the

assumption of the homogeneity and isotropy of the Universe require the components
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of the energy-momentum tensor everywhere to take the form T 00 = ρ(t), T 0i = 0, and

T i j ∼ a−2(t)p(t), (i, j denote the spatial coordinate components.).

Furthermore, in description of the matter content of the Universe we also assume that

matter/energy content satisfies an equation of state of the form p = ωρ , where ω is

called as the equation of state parameter. This type of parametrization is also useful in

classifying the matter type, beyond its simple form; for example, the cold matter/dust is

characterized by ω = 0, the hot matter/radiation by ω = 1/3, and the vacuum energy

by ω = −1. The space components of the conservation law of energy-momentum,

5µT µi = 0, give us a useful relation (3.3):

ρ̇ +3
ȧ
a
(p+ρ) = 0 (3.3)

this equation combined with the equation of state gives the equation (3.4):

ρ ∝ a−3−3ω (3.4)

Substituting the FRW metric and energy-momentum tensor into the Einstein equation,

we get the Friedmann equations (3.5) and (3.6):

(
ȧ
a
)2 =

8πG
3

ρ− k
a2 (3.5)

ä
a
=−4πG

3
(ρ +3p) (3.6)

Note that the Friedmann equations, together with the equation (3.4), are equations for

the scale factor a(t). The equation (3.5) is an equation for ȧ, telling us about the

velocity of the expansion or contraction of the Universe.

3.2 Acceleration

The equation (3.6) involves ä, telling us about the acceleration of the expansion or the

contraction.

Notice that k does not appear in this equation, i.e., the acceleration does not depend on

the characteristics of the spatial curvature.

Why is the acceleration of the Universe is interesting? The equation (3.6) implies

by simple intuition that gravity is always an attractive force if caused by ordinary
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matter/energy; because ρ +3p > 0 for ordinary matter/energy and this in turn implies

that ä6 0, that is, the expansion will always be slowed by gravity. But what we observe

today is not consistent with this expectation [3]. If the expansion of the Universe

is accelerating today, instead of the naive expectation of the deceleration, it implies

that, in the framework of the GR, there must be an exotic matter/energy with equation

of state parameter ω < −1/3 and the contribution of this new type of matter/energy

must be greater than the ordinary matter/energy. To be more precise, the accelerated

expansion is a phase in which (3.7)

ä > 0 (3.7)

It does not seem possible for any kind of baryonic matter to satisfy the equation (3.7),

which directly implies that a period of accelerated expansion in the Universe evolution

can only be achieved within the framework of GR if some new form of matter field

with special characteristics is introduced.

Actually, we believe that there was another accelerated phase of the Universe, called

inflation [12, 15, 16], which is necessary especially to cure some of the conceptual

shortcomings of the Standard Big Bang Model of the Universe. These problems are

the so-called horizon problem, flatness problem, and the monopole problem. All these

problems are solved in a natural way by a rapid expansion of the universe in a short

period of time, approximately 10−35s after the Big Bang. There are some indirect

observations supporting such a scenario.

The acceleration that we are mostly interested in this thesis is not the inflation happened

early in the history of the Universe but the current accelerated phase of the Universe

which is indeed unexpected in the framework of GR and flat, matter-dominated

Universe model. First observational data which indicate an accelerating universe

were published in 1998 by “High-z Supernova Team” [1, 3] an international group of

astronomers and in 1999 by “Supernova Cosmology Project” (SCP) [1,2] at Lawrence

Berkeley National Laboratory. Using type Ia supernovae as the standard candles, they

basically plotted observed brightness of different SNe Ia against their redshifts. What

they observed basically was that the distant supernovae were fainter than expected!
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3.3 The Current Status of the Universe

The supernovae data is not enough alone to conclude that the Universe is expanding

in an accelerated manner. The current values of critical cosmological parameters

are obtained through complicated, mostly indirect, and intermingling observations.

Therefore, to state conclusively about the current acceleration of the Universe, we

need some other parameters provided by some other observations.

In order to mention properly about these observations and the parameters obtained

through them, it is better to make some definitions. One of the most important of all

these parameters is the Hubble parameter (3.8) defined through the relation

H(t) =
ȧ
a

(3.8)

The value of it at any instant is called the Hubble Constant; it is being called as

a constant because its value at any instant is the same everywhere in the Universe.

Another important parameter is the critical density of the Universe (3.9):

ρC =
3H2

8πG
(3.9)

which is important in characterizing the spatial curvature of the Universe. The

parameter which measures the contribution of each matter/energy component of the

Universe to the total density of the Universe is the density parameter defined as the

equation (3.10):

Ω =
ρ

ρC
(3.10)

which is considered for each matter/energy species. The density parameter for the

curvature is also defined as (3.11)

Ωk =−
k

a2H2 (3.11)

The first Friedmann equation, (3.5), implies that

Ω+Ωk = 1 (3.12)

The experiments in order to infer whether a period of accelerated expansion has

occurred are the followings: The most recent dataset is that of the Wilkinson
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Microwave Anisotropy Probe (WMAP) observations [35] combined with data from

supernovae and galaxy surveys in many cases. The WMAP data indicates that

Ωk =−0.015± ... (3.13)

that is, Ω is very close to unity and the Universe appears to be spatially flat: The

most important observation supporting the supernovae data is the spatial flatness of the

Universe, obtained from the observations of Cosmic Microwave Background Radiation

(CMBR).

However, observational data hold more surprises. Even though Ω is measured to be

very close to unity, the contribution of matter to it, ΩM, is only order of 24%. Therefore

there seems to be some unknown form of energy density of the universe, called dark

energy. What is more, observations indicate that, if one tries to model dark energy

as a perfect fluid with an equation of state of the form p = ωρ then ωDE = −1,06....

Since it is the dominant energy condition today, this implies that the universe should

be undergoing an accelerated expansion currently as well. This is also what was

found earlier using supernovae surveys [4, 12]. This was the first evidence for cosmic

acceleration, and have arguably provided the most effective restrictions on the dark

energy equation of state parameter.

The observations do not seem to stop here: As mentioned in the previous paragraph,

ΩM accounts for approximately 24% of the energy density of the Universe. However,

one also has to ask how much of this amount is actually ordinary baryonic matter.

Observations indicate that the contribution of baryons, ΩB, is approximately 4%,

leaving 20% of the total energy content of the universe and some 83% of the matter

content to be accounted for by some unknown unobserved form of matter, called dark

matter. Differently from dark energy, dark matter has the gravitational characteristics

of ordinary matter (hence the name). However, it is not directly observed since it

appears to interact very weakly if at all. Currently the dark matter is mostly treated

as being cold and not baryonic, since these characteristics appear to be in good

accordance with the data.
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The current phenomenological model of the universe explaining all the data mentioned

above is called as the ΛCDM (Λ Cold Dark Matter) model, which is sometimes also

called the Concordance model. Λ in this model is the cosmological constant included

to explain the current accelerated expansion of the universe. The parameters of this

model are as follows:

Table 3.1: Cosmological Parameters [33, 34].

Parameter WMAP7 alone WMAP7 + BAO + H0
Hubble parameter: h 0.704±0.025 0.702±0.014
Cold dark matter density: ΩCDM = ρCDM

ρC

Value: ΩCDMh2 0.112±0.006 0.113±0.004
Baryon density: ΩB = ρB

ρC

Value: ΩBh2 0.0225±0.0006 0.0226±0.0005
Cosmological constant: ΩΛ

Value: ΩΛ 0.73±0.03 0.725±0.016
Radiation density: ΩR
Value: ΩRh2 0.134±0.006 0.135±0.004
Dark energy
equation of state parameter:ω ]−0.98±0.05

] Extended model parameter [34].

Table 3.2: Astrophysical Constants [34].

Quantity Symbol, equation Value
Speed of light c 299792458ms−1

Newtonian
gravitational constant GN 6.6738(8)x10−11m3kg−1s−2

Planck mass
√

h̄c/GN 1.22093(7)x1019GeV/c2

= 2.17651(13)x10−8kg
Planck length

√
h̄GN/c3 1.61620(10)x10−35m

Standard
gravitational acceleration gN 9.80665ms−2 ≈ π2

Critical
density of the Universe ρC = 3H2

0/8πGN 2.77536627x1011h2M�Mpc−3

Currently CMB temperature T0 2.7255(6)K
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4. SCALAR-TENSOR THEORY

4.1 Reasons of Renewed Interest on Scalar-Tensor Theories

The scalar field is the nature’s the simplest field and before the Einstein’s GR, G.

Nordström proposed a scalar theory of gravity in 1912. Today, the reason for still

considering scalar fields in gravity theories is not this simplestness but some more

technical reasons: Considering the gravitational coupling constant as time dependent,

the gravity sector of low energy effective action of string theories, and, currently, the

accelerated expansion of the universe. A gravitational scalar field is an essential feature

of supergravity, superstring, and M-theories.

In 1961, Brans and Dicke suggested a new theory alternative to GR [17]. Their theory

consists of a scalar field and this scalar field together with the metric tensor describe

the gravity. The main motivation behind this new theory is to incorporate the Mach’

s principle which was reformulated by Dicke in a clearer form as – the gravitational

constant should be a function of the mass distribution of the Universe– and they thought

that a time dependent gravitational constant would satisfy the principle. The scalar field

that they introduced would play the role of the inverse gravitational coupling.

Currently, the astonishing discovery of the accelerated expansion of the universe

stimulated a renewed interest on theories including scalar fields. These scalar fields

can be considered as either an exotic form of matter/energy in Einstein’s GR or a

component governing the gravitational effects in the theory in addition to the metric

tensor.

4.1.1 Brans-Dicke theory

Brans-Dicke theory is the prototype for gravitational theories alternative to GR. The

original motivation for Brans-Dicke theory was to formulate a new theory which

includes the Mach’s principle which is not (explicitly) included in GR. The action
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of the theory is given by (4.1):

SBD =
∫

d4x
√
−g{φBDR− ω

φBD
gµν

∇µφBD∇νφBD−V (φBD)}+SM (4.1)

where

SM =
∫

d4x
√
−gLM (4.2)

is the action for all matter fields in the theory and ω is a dimensionless parameter and

φBD ≡ 1
16π

φ . One should note that matter is not directly coupled to the scalar field φ ,

that is, LM is independent of φ . This is pharesed technically as the “minimal coupling

to matter”; but the scalar field is non-minimally coupled to the gravity. The effects of

gravity in Brans-Dicke theory are described by the metric tensor and the scalar field.

The field equations obtained by varying the action with respect to the metric tensor and

the scalar field respectively are the equations (4.3) and (4.4):

G BD
µν =

8π

φ
T M

µν

+
ω

φ 2 (∇µφ∇νφ − 1
2

gµν∇
α

φ∇αφ)+
1
φ
(∇µ∇νφ −gµν2φ)− V (φ)

2φ
gµν (4.3)

2φ =
1

2+3ω
(8πT M +φV (φ)

′
−2V (φ)) (4.4)

Taking the trace of the equation following from the scalar field equation of motion is

RBD =−8π

φ
T M +

ω

φ 2 ∇
α

φ∇αφ +
32φ

φ
+

2V (φ)

φ
(4.5)

The form of the action (4.1) or of the field equation (4.3) suggest that the Brans-Dicke

field, φ , plays the role of the inverse gravitational coupling

Ge f f =
1
φ

(4.6)

The parameter ω is the only free parameter of the theory. From a theoretical point

of view, a value of ω of order unity would be natural, and it does appear in the low

energy limit of string theories. However, values of ω of this order are excluded by

the available tests of gravitational theories in the weak field limit, for a massless and

for a light scalar field φ . A light scalar is one that has a range larger than the size of
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the Solar System or of the laboratory used to test gravity. Solar system experiments

constrain the value of this free parameter as [18]

ω > 40000 (4.7)

4.2 Scalar-Tensor Theories

Scalar-Tensor theory of gravity is the generalization of Brans-Dicke theory. General

action form is given as (4.8):

SST =
∫

d4x
√
−g{ f (φ)R− 1

2
h(φ)gµν

∇µφ∇νφ −U(φ)}+SM (4.8)

where

SM =
∫

d4x
√
−gLM(gµν ,Ψ) (4.9)

corresponds to matter action of the scalar-tensor theories. φ = φ(x, t) is scalar field,

f (φ), h(φ) and U(φ) are the functions to specify the form of the scalar-tensor theory.

For the ST theory, the field equations are (4.10) and (4.11):

G ST
µν =

1
f (φ)

(
1
2

T φ

µν +
1
2

T M
µν +∇µ∇ν f (φ)−gµν2 f (φ)) (4.10)

where T φ

µν =−gµν(
1
2h(φ)(∇φ)2−U(φ))+h(φ)∇µφ∇νφ .

and

h(φ)2φ +
1
2

h(φ)
′
gµν

∇µφ∇νφ +U(φ)
′
+ f (φ)

′
R = 0 (4.11)

Eventually, it is mentioned about the relation between ST theory and BD theory. By

choosing these functions as f (φ) = φ

16π
, h(φ) = ω

8πφ
and U(φ) = V (φ), where ω is a

coupling constant, the ST action turns out to be the generalized BD action form.

4.3 Conformal Transformation

In 1919, the conformal transformation (CT) was firstly asserted by Weyl, who aimed

to unify gravitation and electromagnetism formulation. In 1973, Weyl’ s theory was

reformulated and was used by Dirac.

Many high energy physics theories and many classical theories are now formulated

by using a CT mapping the Jordan Conformal Frame (JF) to the Einstein Conformal
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Frame1 (EF). The CT techniques are used to generate the solution techniques if

solution is known in one conformal frame, but not in another. In the literature, the

use of CT techniques has become widespread

• on gravitational physics;

– on alternative gravitational theories to GR: BD theory, generalized ST

theories, nonlinear theory of gravity, Kaluze-Klein theories,

– on studies of the scalar fields nonminimally coupled to gravity,

– on the unified theories in multidimensional spaces.

• on cosmology.

By performing a CT the spacetime metric and by redefining the scalar field, new

dynamical variables, g̃µν and ϕ̃ , are obtained. The point dependent rescaled new

set of dynamical variables, (g̃µν , ϕ̃), is obtained in the Einstein Conformal Frame,

as opposed to (gµν ,ϕ) which constitutes the Jordan Conformal Frame, with given a

spacetime (M,gµν), where M is a smooth manifold of the dimension n≥ 2 and gµν is

a Lorentzian or Riemannian metric.

For the gµν , g, Γ
ρ

µν , Rρ

µλν
, and R the CTs from the JF to the EF are shown as the

equations (4.12), (4.13), (4.14), (4.15), (4.16) and (4.17):

gµν →
CT

g̃µν = Ω
2gµν (4.12)

g→
CT

g̃ = Ω
2ng (4.13)

Γ
ρ

µν →
CT

Γ̃
ρ

µν = Γ
ρ

µν +Ω
−1(δ

ρ

µ ∇νΩ+δ
ρ

ν ∇µΩ−gµν∇
ρ

Ω) (4.14)

Rρ

µλν
→
CT

R̃ρ

µλν
= Rρ

µλν
+2gµ[λ ∇ν ]∇

ρ(lnΩ)

−2δ
ρ

[λ
∇ν ]∇µ(lnΩ)−2gµ[λ ∇ν ](lnΩ)∇ρ(lnΩ)

+2δ
ρ

[λ
∇ν ](lnΩ)∇µ(lnΩ)−2gµ[νδ

ρ

λ ]
∇α(lnΩ)∇α(lnΩ) (4.15)

Rρ

µλν
→
CT

R̃ρ

µλν
→

λ→ρ

R̃µν = Rµν +(2−n)(∇µ∇ν(lnΩ)−∇µ(lnΩ)∇ν(lnΩ)

+gµν(∇(lnΩ))2)−gµν∇
2(lnΩ) (4.16)

1as the terminological, frame denotes a set of dynamical variables of the theory.

20



R̃≡ g̃µν R̃µν = Ω
−2[R+(1−n)(2∇

2(lnΩ)− (2−n)(∇(lnΩ))2)] (4.17)

for n≥ 2. Especially, for n = 4 spacetime dimensions, the transformation of the Ricci

scalar is written as the equation (4.18)

R̃ = Ω
−2[R− 62Ω

Ω
],

R̃ = Ω
−2[R− 122(

√
Ω)

(
√

Ω)
+

3gµν∇µΩ∇νΩ

Ω2 ] (4.18)

Here Ω = Ω(x) is called the conformal or Weyl factor, which is known as a nowhere

vanishing, regular function.

The general CTs are not diffeomorphism of the manifold, M, and rescaled metric

is not simply the metric and is different from gµν . It describes the different

gravitational fields and different physics. Nevertheless, in the conformal isometry,

which originates from diffeomorphism, the metric is left unchanged even if metric

coordinate representation of the metric varies.

Since only when a physical frame is uniquely determined in the theory and its

observable predictions are meaningful, to make a physically comparison between the

conformally transformed frames to each other is important. The determination of

which conformal frame is the physical2 one is still a problem. In order to provide

the physical equivalence between two conformal frames, the advocated idea is that the

units of length, mass, and time(they must scale with appropriate powers of the BD

scalar φ ) are varying in the EF [17].

To study the mathematically more convenient, when the theories were formulated for

two conformal frames, firstly, mathematical equivalence had been established between

these frames. Because the space solutions of the theory in one frame are isomorphic

to the space solutions in the conformally related frame [19]. The mathematical

equivalence between the two frames a prior implies nothing about their physical

equivalence.

2as the term physical theory denotes one that is theoretically consistent and predicts the values
of some observables that can, at least in principle, be measured in experiments performed in four
macroscopic spacetime dimensions.
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For the alternative theories of gravity, the JF formulation is unphysical. Since the

Einstein gravity is essentially the only viable classical theory of gravity, the EF

formulation is the only possible one for a classical theory. This statement is strictly

correct only if the purely gravitational part of the action (without matter) is considered:

In fact, when matter is included into the action, in general it exhibits an anomalous

coupling to the scalar field which does not occur in GR. The EF is the physical one

(and the JF and all the other conformal frames are unphysical) for the following classes

of theories:

• (generalized) ST theories of gravity are described by the general form action as

S =
∫

d4x
√
−g
{

f (φ)R− ω(φ)

φ
gµν

∇µφ∇νφ +Λ(φ)

}
+SM

which includes Brans-Dicke theory as a special case.

• classical Kaluza-Klein theories,

• nonlinear theories of gravity whose gravitational part is described by the Lagrangian

density, LG =
√
−g f (R).

Furthermore, for the ST theories, the Einstein-Hilbert and the Palatini actions are

equivalent in the EF, but not in the JF, the formulation, in the EF, is therefore accepted

as the base of relation between its action and GR theory by some authors. Some others

find difficulties in quantizing the scalar field fluctuations in the linear approximation

in the JF, but not in the EF (quantization and the conformal transformation do not

commute.). In terms of the compactification of the extra dimensions in higher

dimensional theories, others claim that the EF is forced upon us [19].

In addition to writing mathematical and physical equivalence between the frames, to

write the conformal invariance (CI) theories is significant, quantum field theory in

curved spaces (Birrell and Davis, 1982), statical mechanics and string theories (Dita

and Georgescu, 1989) can be given as the examples [19]. Since the laws of physics

must be invariant under a transformation of units, conformal invariance must also be

followed [17].
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4.3.1 The conformal transformation of Brans-Dicke theory

To obtain conformally transformed BD action to EF, the dynamics of the theory should

be rescaled. By determining new scaling factor as Ω2 ≡ Gφ and by taking BD scalar

field redefinition as φ̃(φ)≡
√

2ω+3
16πG ln( φ

φ0
), where φ 6= 0, ω > −3

2 and φ
−1
0 = G, in the

EF, the transformed BD action is finally obtained as (4.19):

S̃BD =
∫

d4x
√
−g̃{ R̃

16πG
− 1

2
g̃µν

∇̃µ φ̃ ∇̃ν φ̃}+ S̃M (4.19)

where ∇̃µ is the covariant derivative operator of the rescaled metric g̃µν . In the EF,

matter part of action becomes as (4.20):

S̃M =
∫

d4x
√
−g̃e{−8

√
πG

2ω+3 φ̃}
LM(g̃) (4.20)

The gravitational part of the action contains only Einstein gravity, but a free scalar field

acting as a source of gravitational always appears. In the JF, The gravitational field is

described by both the metric tensor gµν and the BD scalar, φ . Nonetheless, in the EF,

gravitational field is only described by the metric tensor, g̃µν ; but the scalar field, φ̃ ,

which is now a form of matter, remind its fundamental role in the old frame. Also, the

rest of the matter part the Lagrangian in th EF is multiplied by an exponential factor,

an anomalous coupling to the scalar field, φ̃ , is thus displayed.

In the EF, field equation and wave equation for conformally transformed BD theory

are given by the equations (4.21) and (4.22):

G̃ BD
µν = T̃ φ

µν + T̃ M
µν (4.21)

where T̃ φ

µν = ∇̃µφ ∇̃νφ − 1
2 g̃µν(∇̃φ)2.

2̃φ = ζ
2T̃ M (4.22)

where ζ 2 = M −2
Pl

1
6+εξ

; εξ = 4ω and M −2
Pl = 8πG; then, ζ 2 = 4

3+2ω
.

With the help of BD theory and by writing geodesic equation in two frames, the sharp

difference between the EF and the JF can be deduced. While the geodesics equation is

generated in the EF, the expression of fifth force occurs.
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By using the conformally transformed to the EF metric expression, g̃µν , and by using

the BD conformal factor, Ω =
√

Gφ . In the EF, the conservation of T̃ µν

M is found as

(4.23):

∇̃µ T̃ µν =−
√

4πG
2ω +3

T̃ ∇̃
ν
φ̃ (4.23)

By considering a dust fluid with p = 0, the T̃µν = ρ̃ ũµ ũν and T̃ = −ρ̃ are obtained

and an affine parameter λ along the fluid worldlines with tangent ũµ is introduced. By

substituting these into the equation (4.23), the following equation is found as

ũµ(
dρ̃

dλ
+ ρ̃∇̃

α ũα)+ ρ̃(
dũµ

dλ
−
√

4πG
2ω +3

ρ̃∇̃µ φ̃) = 0

From above equation, the following expressions are obtained as dρ̃

dλ
+ ρ̃∇̃α ũα = 0 and

dũµ

dλ
−
√

4πG
2ω+3 ρ̃∇̃µ φ̃ = 0.

The geodesics equation is then modified according to (4.24):

d2xµ

dλ 2 + Γ̃
µ

να

dxν

dλ

dxα

dλ
=

√
4πG

2ω +3
∇̃µ φ̃ (4.24)

in the EF. There is a fifth force proportional to the gradient of φ̃ , the couples in the

same way to any massive test particle. Due to this coupling, scalar-tensor theories in

the EF are nonmetric theories. The universality of free fall3 is violated by the fifth force

correction to the geodesic equation because of the spacetime dependence of ∇̃µ φ̃ . The

interaction range of the fifth force becomes short in the region of high density, which

allows the possibility that the models are compatible with local gravity density.

The study of CI property of BD theory helps to solve the problems arising in the ω→∞

limit of BD theory, this limit is supposed to give back GR, but it fails to do so when

T = 0.

3all bodies fall with the same acceleration in the gravitational field, independently of their mass and
composition.
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5. CHAMELEON GRAVITY

5.1 Chameleon

In our universe, the evidence of the existence of the nearly massless scalar field

can be detected with the help of the cosmic acceleration model. Dark (vacuum)

energy model is accepted as the base and the most general form of the cosmological

models. In the literature, the quintessence scalar field model known as the candidate

of hypothetical non-quantum scalar fields is the source of the vacuum energy scalar

field model. This scalar field slowly rolls and its flat potential slowly rolls down by

evolving on the cosmological time scales today and its mass must be order the present

Hubble parameter, H0 ∼ 10−42 GeV. That is, the existence of the scalar field with a

mass of order the present Hubble parameter, H0, can be given as the evidence for the

accelerated expansion of the Universe.

If the scalar field exists and couples to matter, it is assumed that its coupling to matter

must be tuned to unnaturally small values in order to satisfy the tests of the EP and

this scalar field mediates fifth force which is suppressed in the laboratory and in the

interaction between large bodies like planets, but which may be detectable between

small test masses in space. For example, if the scalar field couples strongly to matter,

it should have been detected by now as a fifth force. Because the coupling between the

nearly massless or light scalar field and matter is relevant to fifth force. Not only the

EP violation and also fifth force depend on the environment of the scalar field.

To evade the EP and fifth force constraints, the main constraint is given as the mass of

the scalar field be sufficiently large on the Earth. This constraint was put forward by J.

Khoury and A. Weltman as cosmological evolution of the scalar field [20]. According

to their idea, the scalar field can cosmologically evolve while having couplings to

matter of order unity, i.e., βi ∼ O(1) and the scalar field acquires a mass whose a

magnitude depends on the local matter density. Because the cosmological effects of
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the scalar field do not arise from large violation of the EP in the laboratory, due to very

dense environment.

Furthermore, in the high density region (like the Earth), the field has a large mass and

the interaction range is typically of order 1 mm on the Earth, the resulting violation of

the EP are exponentially suppressed. In the low density region (like interstellar space),

the mass of the field can be of the order of the present Hubble parameter, thereby

making the fields potential candidates for causing the acceleration of the Universe and

also in the terrestrial experiments, the large mass of the field suppresses its interaction

with matter.

As final, in much lower density region, local matter density is much smaller than the

density of the Earth and in the solar system experiments, the interaction range is of

order 10− 104 AU and in observations of the solar system the action of the field is

suppressed by a new mechanism known as a thin shell mechanism. This mechanism

is used in order to suppress the detectable effect of any coupling to matter. While

sufficiently small objects do not suffer from thin shell suppression, and thus their entire

mass contributes to the exterior field, the scalar field mediated force between large

objects, like between the Earth and the Sun, is suppressed by thin sell effect, which

thereby ensures that solar system experiments of gravity are satisfied.

J. Khoury and A. Weltman have predicted that the near future experiments, which will

test gravity in space, should observe corrections of order unity to Newton’ s constant

compared to its measured value on the Earth, due to fifth force contributions which are

crucial in space but exponentially suppressed on the Earth [20].

If there are the inconsistencies between the measurements in the laboratory and the

expectations, these can be ignored by the new and surprising outcomes arising from

differently behaviors of the scalar field in the regions of high density than in the regions

of low density. The field is able to hide so well from our observations and experiments.

This scalar field is thus called as a chameleon field. Its physical properties, such

as its mass, depend on the environment. Moreover, in region of high density, the
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chameleon blends with its environment and becomes essentially invisible to search for

EP violation and fifth force.

5.2 Chameleon Gravity: Action and Field Equations

The chameleon mechanism is a way to give an effective mass to a light scalar field

via field self-interaction and interaction with matter [21]. The chameleon scalar field,

φ , is conformally coupled to matter. That is, matter experiences a metric which is

a conformal transformation of the Einstein metric. Usually, these fields and their

potentials stem from the scalar-tensor theories.

In the EF, the action for the chameleon field is given by (5.1):

S =
∫

d4x
√
−g

R
2κ

+Sφ +SM (5.1)

where Sφ is the pure scalar field action part of and SM is the matter action part of the

total action, they are given by in the following forms, respectively

Sφ =
∫

d4x
√
−g{−1

2
(∇φ)2−V (φ)} (5.2)

SM =−
∫

d4xLM(gµν ,ψM) (5.3)

If (2κ)−1 is rewritten in terms of the reduced Planck mass as M2
Pl

2 , then the action

becomes (5.4)

S =
∫

d4x
√
−g{

M2
Pl

2
R− 1

2
(∇φ)2−V (φ)− 1√

−g
LM(gµν ,ψM)} (5.4)

where V (φ) is the potential term, LM(gµν ,ψM) is the Lagrangian density of the matter.

By taking the small variation of the chameleon field action with respect to φ , the

field/the wave equation is obtained as

∇
2
φ =V,φ +∑

i

2βi

MPl

1√
−g

δLM

δgµν

gµν (5.5)

in the EF.

In order to write the action of the chameleon field in the EF, taken as g̃µν metric tensor

in the JF is transformed to the EF as (5.6):

g̃ i
µν ≡ g̃µν → gµν = Ω

−2g̃µν (5.6)
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where the conformal factor becomes Ω = Ω(x) = eβiφ/MPl , βi’ s are dimensionless

coupling constants, in principle one for each matter species(in the EF and JF, the metric

tensor and transformed one will be taken as g i
µν ≡ gµν and g̃ i

µν ≡ g̃µν , for simplicity).

c, h̄ = 1 are taken and the metric signature is accepted as (−,+,+,+). The reduced

Planck mass is taken as MPl ≡ (8πG)−1/2 ≈ 2.44 ·1018GeV.

Then, the transformation from the JF to the EF for the determinant of the gµν is given

by the equation (5.7):

g̃→ g = (eβiφ/MPl)−2ng̃ (5.7)

where n is the dimension of the spacetime.

In the EF, the chameleon equation of motion is obtained by defining the trace of the

standard form T µν .

T ≡ T µνgµν =−ρ +3p =−(1−3ωi)p (5.8)

By using the metric (3.1), with the transformed scale factor, a, is obtained as (5.9):

ã→ a≡Ω
−1ã→ a≡ e−βiφ/MPl ã (5.9)

for each species, i.

In the equation (5.6) given metric tensor, gµν , and its components and time-time, and

space-space components of the Γ
ρ

µν are found in terms of the transformed scale factor,

a, the equation (5.9). By using the conserved energy momentum tensor, the equation

of motion is found as (5.10):

∇
2
φ =V,φ +∑

i
ρ

ie(1−3ωi)βiφ/MPl(1−3ωi)
βi

MPl
(5.10)

Also, the chameleon equation of the motion in the same frame becomes simply the

equation (5.11):

∇
2
φ =Ve f f ,φ (5.11)

In the EF, a single effective potential can be expressed by the equation (5.12):

Ve f f (φ) =V (φ)+∑
i

ρ
ie(1−3ωi)βiφ/MPl (5.12)
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where the Ve f f (φ) consists of the itself interaction term, V (φ), plus an exponential

term, ∑i ρ ie(1−3ωi)βiφ/MPl , due to the conformal coupling. It is realized that really

under certain conditions on the self interaction term and the coupling, this effective

potential term has a minimum which depends on the local matter density. As a result,

“the scalar field acquires a mass which increases with local matter density”. For

Figure 5.1: The chameleon effective potential, Ve f f .
Ve f f (solid curve) is the sum of two contributions: First one the actual potential, V (φ)

(dashed curve), and the other one its coupling to matter density,ρ (dotted curve).

cosmic acceleration, a bare potential V (φ) is chosen via slow roll mechanism in the

quintessence model. As in this model, also in here V (φ) should be monotonically

decreasing function of φ . To come up with a mechanism, which makes field acts

as a cosmological constant only today, would be a cumbersome, so without loss of

generality; namely, the positive direction, the potential V (φ) is assumed that it has

always been rolling down a potential slope in. To obtain the behavior of the chameleon

field, it is assumed that V (φ) is of the runaway form, in the following sense:

• limφ→0V (φ) = ∞,

• V (φ) is C∞, bounded below, and decreasing,

• V,φ is negative and increasing,

• V,φφ is positive and decreasing.

As will be seen, a chameleon field has mass as mφ =
√

Ve f f ,φφ , it is not constant but

changes with local matter density. The effective potential,(5.12), can be rewritten as
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the equation (5.13):

Ve f f (φ) =V (φ)+ρMA(φ) (5.13)

where A(φ) = ∑i ρ ie(1−3ωi)βiφ/MPl

If the field, which depends on ρ i, is taken as a finite value, φ = φmin, the last obtained

equation of motion, (5.10), becomes the equation (5.14):

∇
2
φ ≡Ve f f ,φ (φmin) =V,φ (φmin)+∑

i
ρ

ie(1−3ωi)βiφmin/MPl(1−3ωi)
βi

MPl
(5.14)

This equation shows that if any ρ i increases, φmin decreases, since V,φ and

e(1−3ωi)βiφ MPl are an increasing functions of the φ .

The associated mass with the scalar field, φ , is given by the equation (5.15):

m2 ≡Ve f f ,φφ (φ) =V,φφ +∑
i

ρ
ie(1−3ωi)βiφ/MPl(1−3ωi)

2 β 2
i

M2
Pl

(5.15)

if φ = φmin, then m2 ≡ m2
min.

The last equation shows φmin�MPl , since V,φφ is a decreasing function of the φ , mmin

is expected to increase.

Also, in the case where all the (1−3ωi)βi are equal, it is also easy to show that mmin

increase with ρ i, regardless of the magnitude of φmin. For instance, if let (1−3ωi)βi =

B for each i, where B > 0 is constant. Then, equation (5.15) becomes the following

equation (5.16):

m2
min =V,φφ (φmin)+

B
MPl

∑
i

ρ
ie(1−3ωi)βiφmin/MPl(1−3ωi)

2 βi

MPl
(5.16)

where

m2
min =V,φφ (φmin)−

βi

MPl
V,φ (φmin) (5.17)

The given conditions below of the V (φ) is really verified.

• V,φφ is a decreasing function of φ and V,φ is an increasing function of φ .

• φmin is a decreasing function of each ρ i and then mmin is an increasing function of

each ρ i.
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for the quintessence model, two principal potential types are generally used. The

first one is the exponential potential allows chameleon behavior while causing cosmic

acceleration; but, the other one, which is the inverse power law potential, can not cause

acceleration without violating, by several orders of magnitude, existing experimental

bounds for laboratory detection. In the limit of V (φ), the crucial difference between

these potential functions is realized.

Ratra-Peebles or the inverse power law potential and the exponential potential, are

respectively given as (5.18) and (5.19):

V (φ) =
M4+n

φ n (5.18)

V (φ) = M4exp
Mn

φ n (5.19)

and their behavior of in the limit of V (φ) are given below

lim
φ→∞

M4+n

φ n = 0 (5.20)

lim
φ→∞

M4exp
Mn

φ n = M4 (5.21)

Present day observations of the the accelerated expansion universe model estimates

the value of the constant which differ by several orders of magnitude between the two

potential.

5.2.1 The static spherically symmetric solution

In a static chameleon field, the equation for the chameleon force acting on a test mass

and an approximate solution will be given. The interaction of the chameleon field with

the matter is encapsulated by the conformal coupling of the equations (5.6) and (5.7),

so is the interaction of the spacetime geometry with the matter. Since the matter fields

ψ
i

M couple to g i
µν instead of to gµν (in the EF), worldlines of free test particles of

species i are the geodesics of g i
µν rather than of gµν (in the EF).

In the JF, the geodesic equation of the worldline xµ of the test mass of species i is

ẍρ + Γ̃
ρ

µν ẋµ ẋν = 0 (5.22)
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where a dot denotes differentiation with respect to proper time, τ̃ .

In the EF, the geodesic equation of the worldline xµ of the test mass of species i

becomes

ẍρ +Γ
ρ

µν ẋµ ẋν +
βi

MPl
(2φ,µ ẋµ ẋν +gρσ

φ,σ ) = 0 (5.23)

In the left-hand side of this equation the second term is the gravitational term, and the

third term is denoted to be chameleon force term. With the help of the equation (5.6),

g̃µν ,σ = ( 2βi
MPl

φ,σ gµν +gµν ,σ )e2βiφ/MPl is used above.

In the nonrelativistic limit, a test mass m of species i in a static chameleon field,

φ , experiences a force ~Fφ given by
~Fφ

m = − βi
MPl

~∇φ . Thus, φ is the potential for the

chameleon force. On the body with thin shell, the definition for this force (or fifth

force) is given as the same equation. Since all field variations are confined to small

region near body surface, this region is called as a thin shell and also the fifth force

is produced in a body with thin shell becomes very small ∆R
R � 1, where R denotes

the radius of the body and ∆R denotes the thickness of shell. The relations between

Figure 5.2: Thin shell for large ρ .

the couplings and the variation ranges for the scalar field can be summarized in the

following

• For small coupling (long range, small mass) no thin shell effect, no major changes.
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• For large coupling (short range, large mass) thin shell effect, major changes;

because, the stronger the matter coupling provides the faster adaption and the better

hiding from experiments, for scalar fields.

A chameleon field has mass as mφ =
√

Ve f f ,φφ , it is not constant but changes with

local matter density as was found the equation (5.15).

Outside the body, the fifth force is small correction to Newton’ s law. Because the

chameleon field is basically constant inside a big, spherical body and field varies only

inside a thin shell close to outer edge of the body. Therefore, thanks to the existence

of a thin shell regime, the local tests can be evaded.

Now, the our aim is to find time independent solutions of the scalar field, φ(~x), (A) for

static spherically symmetric matter distributions ρ̃(r) of a single pressure free matter

species in the weak field limit. We shall work in the weak gravity regime, assuming

that the new potential is small everywhere and the backreaction of the energy density

in the field, φ , is negligible; therefore, the metric tensor can be approximated to the

one of the Minkowski spacetime, i.e., Assuming gµν ≈ ηµν [10, 20, 22, 23]. Then, the

equation ~∇2φ =Ve f f ,φ =V,φ +
β

MPl
ρeβφ/MPl becomes

d2φ(r)
dr2 +

2
r

dφ(r)
dr

=V,φ (φ(r))+
β

MPl
ρ̃(r)e4βφ(r)/MPl (5.24)

The spherically symmetric solutions to equation (5.24) are briefly discussed in the

following:

Figure 5.3: Sphere figure.
For spherically symmetric approximation solution.
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φ =

{
φ → φ∞ if r > R outside the sphere. Yukawa potential is recognized.
φ → φC if r < R inside the sphere. To recognize the φ , approximation methods are used.

i) Outside the sphere; the harmonic oscillator approximation is used.

ii) Inside the sphere;

? φ � φC; linear approximation and

? φ ∼ φC =


the low contrast solution if RC = R
the thick shell solution if RC = 0
the thin shell solution if 0 < RC < R

are used.

here, in order to divide the interval, [0,R], on which φ ∼ φC as [0,RC], and on which

φ � φC as [RC,R] RC is defined. To remain as a undivided interval [0,R], RC = 0 or

RC = R is taken.

5.3 Chameleon Cosmology

For this cosmology, the assumption of a spatial flatness is given. Initially, the first

Friedmann cosmological equation for the chameleon field in the EF is derived. By

assuming that a flat, homogeneous, isotropic universe, FRW universe, with the metric

gµν = e2βiφ/MPl diag(−1,a2,a2,a2) and φ to be spatially homogeneous scalar field, the

most general form of the wave equation becomes (5.25):

φ̈ +3Hφ̇ =−Ve f f ,φ (φ) (5.25)

The equation (5.11) gives the right-hand side of the last equation and the wave equation

for the FRW universe, ∇2φ =−(φ̈ +3Hφ̇), equals to the left-hand side of the the last

equation.

Suppose that the Universe is composed of φ , pressure free matter with density ρM

coupled to φ by a coupling constant β , and radiation with density ρR. For the matter

of species i conformally coupled to φ .

By using the equations (2.7), (5.6) and (5.7), for n = 4 (four-dimensions), T µν =

T̃ µνe6βiφ/MPl and T̃ ≡ T̃ µν g̃µν = ρ̃ + 3p̃ are obtained. By using the time-time
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component of the T̃ µν and T̃ is given as T̃ 00g̃00 = −ρ̃ . By substituting these into

the time-time component of the T 00 , (A), in the EF, becomes

T 00 = ρe(1−3ωi)βiφ/MPl (5.26)

Then, the first Friedmann Equation becomes the equation (5.27):

3H2M2
Pl =

1
2

φ̇
2 +V (φ)+ρMeβφ/MPl +ρR (5.27)

where ΩM ≡ eβφmin/MPl ρM
ρC

or this equation can be rewritten as

ρc ≡
1
2

φ̇
2 +V (φ)+ρMeβφ/MPl +ρR (5.28)

In addition to the calculated ρc, on the cosmological scales, as an example for the large

φ , the behavior of two potentials can be examined.

Firstly, the Ratra-Peebles potential, (5.18), the matter is described by a single species

with ρ̃ = ρM and ωi ≈ 0.

By using the definition of energy density in the EF,

ρ ≡ e3(1+ωi)βiφ/MPl ρ̃ (5.29)

Putting this into the equation (5.14)

V,φ (φmin)+∑
i

ρ
ie(1−3ωi)βiφmin/MPl(1−3ωi)

βi

MPl
= 0 (5.30)

is found. Then,

V,φ (φmin)+∑
i
(ρ̃e3(1+3ωi)βiφ/MPl)e(1−3ωi)βiφmin/MPl(1−3ωi)

βi

MPl
= 0

Assuming that φ = φ∞ today and taking the (5.18) potential

V,φ (φ∞)+∑
i

ρ̃e3βiφ∞/MPl eβiφmin/MPl
βi

MPl
= 0

⇒−n
M4+n

φ n+1
∞

+
β

MPl
ρ̃e4βφ∞/MPl = 0

⇒ n
M4+n

φ n
∞

1
φ
=

β

MPl
ρMe4βφ∞/MPl (5.31)

35



where the definition of the density for the dark energy, ρDE , ρDE =V (φ∞) =
M4+n

φ n
∞

, and

ρφ n
∞ = ΩM; then,

⇒ n
M4+n

φ n
∞

1
φ∞

=
β

MPl
ρMe4βφ∞/MPl

⇒ nρDE
φ n

∞

φ n+1
∞

=
β

MPl
ρMe4βφ∞/MPl (5.32)

by multiplying 4 both of sides this equation and using ρφ n
∞
∼= ΩDE and ,

4n
ΩDE

ΩM

MPl

4βe4βφ(∞)/MPl
= φ∞ (5.33)

In here, the Lambert function (or product-log) can be defined as

W (4n(
1−ΩM

ΩM
)) = 4n

ΩDE

ΩM
e−4βφ∞/MPl (5.34)

Finally,

⇒ φ∞ =
MPl

4β
W (

1−ΩM

ΩM
) (5.35)

is written. By supposing n = β = 1 and ΩM ≈ 0.237

Second, for the exponential potential, (5.19), this potential can be analyzed: If φ �M

today, for ρDE ≈V (φ)≈M4, and so M ≈ (ρDE)
1
4 ≈ 2.40 ·10−3eV.

Finally, it can easily be seen that there is an important difference between two potential:

For large φ , M4e
Mn
φn ≈ M4 + M4+n

φ n . That is, for φ � M, these potentials differ by the

constant M4 from each other. Because this constant comes to dominate in the case of

the exponential potential.

5.3.1 The cosmological evolution of the chameleon field

From the chameleon field/wave equation, (5.11), the chameleon seeks out the

minimum of the Ve f f . But, now φmin changes over time, as ρM is diluted by the

expansion of the universe.

The most general form of chameleon wave equation, (5.11), imply that the

characteristic time for the evolution of the φmin(t) is roughly that of the evolution of
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ρM, i.e.,
∣∣∣ρM

ρ̇M

∣∣∣ ∼ H−1; where H−1 is the Hubble time. φ keeps up with an attractor

solution φmin from the early universe until today. The field φ(t) can be found by

making the damped. For this, the harmonic oscillator approximation (A) is used. The

last expression of the wave equation, (5.25), is rewritten as

φ̈ +3Hφ̇ = ω(φ −φmin) (5.36)

where the ω is given by ω2 =
dVe f f ,φ

dφ
= Ve f f ,φφ (φmin) = m2

min, for φ = φmin. The

characteristic frequency of the oscillator is found as (5.37):

ω
2 = mmin (5.37)

• If the oscillation is underdamped, then its characteristic response time is the m−1
min.

The condition for this: 2mmin > 3H.

• In order for φ(t) keep up with φmin(t), it must have to be m−1
min � H−1. That is,

mmin� H, which is consistent with the oscillator being underdamped.

By assuming that β is of order unity and n & 1
2 ,

i) If φ(t) is slowly rolling, then mmin � H from the earliest time, i.e. the end of

inflation, until today (with two cases as φmin . M and φmin�M.) (Proof 1.).

ii) If mmin� H, then φ(t) is slowly rolling. But mmin� H also gives φ(t) ≈ φmin(t),

and therefore φ(t) is slowly rolling too. If φ(t)≈ φmin(t) at some initial time, then

φ(t)≈ φmin(t) from that initial time until today. However, in the future, dilution of

ρM and ρR will allow V (φ)≈M4 to dominate the energy budget. At this stage, the

universe will be expanding exponentially as a de Sitter spacetime, so it will become

constant (Proof 2.).

In the early universe, the for the chameleon field, assuming that the universe undergoes

an initial period of inflation driven by an inflation field with ω ≈−1 which is coupled

to φ in the same manner as matter. Then, the equation (5.10) with φ = φmin can be

rewritten as

Ve f f (φmin) =V (φmin)+∑
i

ρe(1−3ωi)βiφmin/MPl (5.38)
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The energy density of the inflation field is taken as ρ = ρvac, by using ω ≈ −1 and

V (φmin)≈M4eMn/φ n
, Ve f f (φ) is rewritten as the following equation.

Ve f f (φ)≈M4e
Mn
φn +ρvace4βiφ/MPl (5.39)

Since ρvac is roughly constant during inflation, the potential function Ve f f (φ) is time

dependent, so the equation

φ̈ +3Hφ̇ =−Ve f f ,φ (φ) (5.40)

The last equation is really the equation of a damped oscillator. The harmonic oscillator

approximation is valid if it is assumed that initial conditions must be such m & H.

At the end of inflation, the inflation decays into mostly radiation plus some matter and

small excitations of the field φ . Because 1− 3ω = 0 for radiation, it does not couple

to φ and so φmin increases dramatically during reheating.

As the universe expands and cools during the radiation era, matter species decouple

from the heat bath one by one. When a species decouples, the perfect fluid

approximation T µνgµν ≈ −ρ for matter becomes invalid for a time because the

decoupling particles have relativistic velocities. This provides kicks to the equation

(5.40), which drive φ back towards φmin.

When the radiation era ends and the matter era begins, the driving term in the equation

(5.40) comes to dominate the friction term, so φ converges to φmin and then follows it.

5.4 Detecting the Chameleon Field

Chameleon scalar fields become a candidate for dark energy if quintessence and gravity

experiments can be reconciled. But more concrete expectations about the existence of

the chameleon scalar fields in the Nature will be given by outcomes of the near future

experiments, which will test gravity in space, including searching for a fifth force

between two test body.

The near future experiments are known as the satellite experiments; for examples, the

Satellite Energy Exchange (SEE) project [24], STEP [25], Galileo Galilei(GG) [26]
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and MICROSCOPE [27]. According to scenario of J. Khoury and A. Weltman, SEE

project experiment should observe corrections of order unity to Newton’ s constant

compared to its measured value on the Earth, due to fifth force contributions which

are important in space but exponentially suppressed on the Earth [20]. It is expected

to test the parameter, η , of the Eöt-Wash experiment, which is briefly known as

universalities of free fall in orbit, to very high accuracy with the help of the other

satellite experiments; STEP [25], Galileo Galilei (GG) [26] and MICROSCOPE [27]

(expected measurements accuracy of 10−18, 10−17 and 10−15, respectively.). J. Khoury

and A. Weltman predict that violation of the strong EP signals can be observed by these

experiments. According to their scenario, the signal will be larger than the ground

based Eöt-Wash bound of 10−13, for a wide range of parameters [20].

If an effective Newton’ s constant can measure different from that on the Earth by

the SEE project, or if an EP violating signals larger than from expected Eöt-Wash

experiment are observed by STEP, this will strongly indicate that a mechanism, known

as a chameleon, of the form proposed here is realized in the Nature: Otherwise, to

make explanation about the differences between measurements in the laboratory and

those in orbit is very difficult. These new and surprising outcomes are directly caused

from consequence of the different behavior of scalar field in the regions, which have

the different densities.
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APPENDIX A.1

Derivation of Einstein’ s field equations

In order to obtain Einstein field equation, with the help of the Euler-Lagrange equation
of motion with respect to gµν 1 and by using variation principle δSEH

δgµν
as

δSEH

δgµν
=−∂µ(

δLEH

δ (∂µgµν)
)+

δLEH

δgµν
= 0 (A.1)

where The Euler-Lagrange Equations for a Field Theory in a flat spacetime can be
summarized as

L =
∫

d3xL (φ i,∂µφ
i) (A.2)

So the action is S =
∫

dtL =
∫

d4xL (φ i,∂µφ i),

The Lagrangian density, L , is a Lorentz scalar and all of the EsoM can be derived from
the Lagrangian density. The action should be the unchanged under small variations of
the fields, φ i,

φ
i→ φ

i +δφ
i

∂µ(φ
i)→ ∂µφ

i +δ (∂µφ
i) = ∂µφ

i +∂µ(δφ
i)

Then,
L (φ i,∂µφ

i)→L (φ i +δφ
i,∂µφ

i +∂µδφ
i) (A.3)

= L (φ i,∂µφ
i)+

∂L

∂φ i δφ
i +

∂L

∂ (∂µφ i)
∂µ(δφ

i). (A.4)

Corresponding action expression becomes S→ S+δS, where explicitly,

δS =
∫

d4x(
∂L

∂φ i δφ
i +

∂L

∂ (∂µφ i)
∂µ(δφ

i))

in here, to find the required summation integrand term, δφ i, by integrating the second
term,

∫
d4x

∂L

∂ (∂µφ i)
∂µ(δφ

i) =
∫

d4x∂µ(
∂L

∂ (∂µφ i)
δφ

i)−
∫

d4x∂µ(
∂L

∂ (∂µφ i)
)δφ

i

1for simplicity, variation of the action is taken with respect to inverse of gµν
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finally,

δS =
∫

d4x[
∂L

∂φ i −∂µ

∂L

∂ (∂µφ i)
](δφ

i)

This satisfies δS =
∫

d4x δS
δφ i δφ i, the final EsoM for the field theory are thus:

δS
δφ i =

∂L

∂φ i −∂µ(
∂L

∂ (∂µφ i)
) = 0 (A.5)

The Einstein-Hilbert action is given by

SEH =
∫

d4x
√
−g

R
2κ

+SM (A.6)

Firstly, SEH can be rewritten by separating with respect to the gravitational and the
matter action parts.

SEH = SG +SM,

SEH =
∫

d4xLG(g,R)+
∫

d4xLM(gµν ,ψ),

SG =
∫

d4x
√
−g R

16πG ,

SG = 1
16πG

∫
d4x
√
−ggµνRµν , in here, R = gµνRµν was used.

SM =
∫

d4xLM(gµν ,ψ).

Their variations are taken with respect to gµν ,

δSEH = δSG +δSM;

δSG = 1
16πG

∫
d4xδ (

√
−ggµνRµν),

δSG = 1
16πG

∫
d4x
{

gµνRµνδ
√
−g+

√
−gRµνδgµν +

√
−ggµνδRµν

}
.

δSM =
∫

d4xδ (LM(gµν ,ψ)).

where δgµν = δgµν ,

δ
√
−g =−1

2
√
−ggµνδgµν ,

δRρ

µλν
= ∇λ (δΓ

ρ

νµ)−∇ν(δΓ
ρ

λ µ
).

• Firstly, to calculate the δ
√
−g,∣∣gµν

∣∣= g≡ |−g|=−
√
−g
√
−g this special case, because of metric signature of metric

is accepted to be negative in four dimensions.
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δ
√
−g =−1

2
1√
−gδg,

Let S square matrix S = elnS, the variation of S matrix is given as 1
|S|δ |S|= Tr(S−1δS)

where ln |S|= Tr(lnS).

Now let S = gµν , the variation of g is taken as

1
|gµν |δ

∣∣gµν

∣∣= Tr(gµνδgµν),

δg = ggµνδgµν ,

or using gµνδgµνgµνδgµν = 1

δg =−ggµνδgµν

δ
√
−g =−1

2
1√
−g(−ggµνδgµν); where g≡ |−g|=−

√
−g
√
−g,

δ
√
−g =−1

2
√
−ggµνδgµν is found.

• To find the δRµν ,

By starting the variation of the Christoffel Symbols:

Γ
ρ

µν = 1
2gρλ (gνλ ,µ +gλ µ,ν −gµν ,λ ),

By using gµν → gµν +δgµν ; δgµν =−gµαgνβ δgαβ and Γ
ρ

µν → Γ
ρ

µν +δΓ
ρ

µν .

δΓ
ρ

µν =−1
2 [gνλ ∇µ(δgρλ )+gλ µ∇ν(δgρλ )−gναgµβ ∇ρ(δgαβ )]

in terms of δgρλ .

Then, for the variation of the Riemann tensor:

Rρ

µλν
= Γ

ρ

νµ,λ −Γ
ρ

λ µ,ν +Γ
ρ

λσ
Γσ

νµ −Γ
ρ

νσ Γσ

λ µ
.

By using Γ
ρ

µν → Γ
ρ

µν +δΓ
ρ

µν and Rρ

µλν
→ Rρ

µλν
+δRρ

µλν
.

δRρ

µλν
= ∇λ (δΓ

ρ

νµ)−∇ν(δΓ
ρ

λ µ
) is found.

Then, λ → ρ , the variation for the Ricci Tensor can be obtained as

δRµν = ∇ρ(δΓ
ρ

νµ)−∇ν(δΓ
ρ

ρµ).

Finally,

δSG = 1
16πG

∫
d4x
{

Rδ
√
−g+

√
−gRµνδgµν +

√
−ggµνδRµν

}
,

δSG = 1
16πG

∫
d4x
√
−g
{
(−1

2Rgµν +Rµν)δgµν +gµν [∇ρ(δΓ
ρ

νµ)−∇ν(δΓ
ρ

ρµ)]
}

,
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δSG = 1
16πG

∫
d4x
√
−g
{
(Rµν − 1

2Rgµν)δgµν +∇σ [(gµνδΓ
ρ

νµ)− (gµσ δΓ
ρ

ρµ)]
}

,

the last term equals to zero, from the total derivative. δSM
δgµν = 1√

−g
δLM
δgµν ≡−1

2T M
µν .

Now, by using the obtained variation calculations, the variation of the Einstein-Hilbert
action is taken with respect to δgµν .

δSEH
δgµν = δSG

δgµν +
δSM
δgµν = 0,

δSEH
δgµν = 1√

−g
δLEH
δgµν = 1√

−g(
δLG
δgµν +

δLM
δgµν ) = 0,

δSEH
δgµν = 1

16πG(Rµν − 1
2gµνR− 1

2T M
µν ) = 0

Rµν − 1
2gµνR = 8πGT M

µν

is found or can also be written as

Rµν −
1
2

gµνR = G M
µν (A.7)

where G M
µν ≡ κT M

µν ; κ ≡ 8πG
c4 .

Especially, for T M
µν = 0, the vacuum solution of the EFE’ s can be obtained as

Rµν −
1
2

gµνR = 0 (A.8)
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APPENDIX A.2

Derivation of the field equation for the chameleon field

To find the field equation for the chameleon field in the EF, the variation of the
following given form action is taken as

S =
∫

d4x
√
−g{

M2
Pl

2
R− 1

2
(∇φ)2−V (φ)− 1√

−g
LM(gµν ,ψM)} (A.9)

where

Sφ =
∫

d4x
√
−g{−1

2(∇φ)2 − V (φ)} is the pure scalar field action part with the
potential, V (φ),

SM =−
∫

d4xLM(gµν ,ψM) is the matter action part of the total action.

(2κ)−1 is rewritten in terms of the reduced Planck mass as M2
Pl

2 .

L(m)(gµν ,ψM) is the Lagrangian density of the matter.

By taking the small variation of this action with respect to φ ,

• δSφ =−
∫

d4xδ (
√
−g1

2(∇φ)2 +V (φ)),

−δ (
√
−g1

2(∇φ)2 +V (φ)) =−
√
−g
2 (∂µ(φ +δφ)∂ µ(φ +δφ)+2V (φ +δφ)),

where φ → φ +δφ ,

∂µ(φ +δφ)∂ µ(φ +δφ = ∂µφ∂ µφ +∂µφ∂ µδφ +∂µδφ∂ µφ +O(δφ)2,

V (φ +δφ) =V (φ)+V (φ)
′
δφ ⇒V (φ)

′
= δV (φ)

δφ
.

Then, by substituting these into the variation of the action,

−δ (
√
−g1

2(∇φ)2 +V (φ)) =
√
−g
2 (−gµν(∂µφ∂νδφ +∂µδφ∂νφ)−2V (φ)

′
δφ),

where

−gµν(∂µφ∂νδφ +∂µδφ∂νφ) =−2gµν∂µφ∂νδφ ,

−gµν(∂µφ∂νδφ + ∂µδφ∂νφ) = −2∂ν((gµν∂µφ)δφ) + 2(∂νgµν)∂µφδφ +
2gµν(∂ν∂µφ)δφ ,

where −2∂ν((gµν∂µφ)δφ) = 0 from the total derivative and ∂νgµν = 0.

⇒−2gµν∂µφ∂νδφ = 2gµν(∂ν∂µφ)δφ or

⇒−2gµν∂µφ∂νδφ = 22φδφ ,
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−δ (
√
−g1

2(∇φ)2 +V (φ)) =
√
−g
2 (22φ −2V (φ)

′
(δφ) or

2φ = ∇µ∇µφ = ∇2φ .

Finally,

δSφ =
∫

d4x
√
−g(∇2φ −V (φ)

′
)(δφ) is found.

• δSM =−
∫

d4xδ ( 1√
−gLM(gµν ,ψM)),

due to the Lagrangian density of the matter part doesnot depend on the scalar field and
the scalar field, φ , the chameleon should conformally be coupled to matter, while the
variation of the this action part, by using the chain rule and taking the transformed
metric, gµν , in the EF, as (5.6), g̃ i

µν ≡ g̃µν → gµν = Ω−2g̃µν with Ω = eβiφ/MPl .

Hence,

δSM
δφ

=− 1√
−g

δLM
δφ

=− 1√
−g

δLM
δgµν

δgµν

δφ
,

⇒ − 1√
−g

δLM
δgµν

δ (e2βiφ/MPl g̃µν )
δgµν

= − 1√
−g

δLM
δgµν

2βi
MPl

e2βiφ/MPl g̃µνδφ , where equation (5.6)
was used.

⇒− 1√
−g

δLM
δgµν

(e2βiφ/MPl g̃µν )
δgµν

=− 1√
−g

δLM
δgµν

2βi
MPl

gµνδφ .

⇒ δSM =−∑i
2βi
MPl

1√
−g

δLM
δgµν

gµν(δφ) is obtained.

Eventually, the variation of the total action for the φ ,

δS = δSφ +δSM,

δS =
∫

d4x
√
−g{∇2φ −V,φ −∑i

2βi
MPl

1√
−g

δLM
δgµν

gµν}(δφ),

By using the variational principle, δS
δφ

= 0, then,

∇2φ −V,φ −∑i
2βi
MPl

1√
−g

δLM
δgµν

gµν = 0,

Finally,

∇
2
φ =V,φ +∑

i

2βi

MPl

1√
−g

δLM

δgµν

gµν (A.10)

is obtained in the EF.

In the EF, the chameleon field equation is rewritten in terms of the energy density of
the matter, for each species i, ρ can obtain.

For this: By using the (3.1) metric, the transformed scale factor (5.9), a, and the
transformed metric tensor (5.6),gµν to the EF,
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g̃µν → gµν ≡Ω−2g̃µν

gµν ≡ e−2βiφ/MPl g̃µν

diag (1,a2,a2,a2) = e−2βiφ/MPl diag(−1, ã2, ã2, ã2)

then, the transformed scale factor is obtained as

a≡ e−βiφ/MPl ã

gµν = diag(−e2βiφ/MPl ,a2,a2,a2),

gµν = diag(−e−2βiφ/MPl ,a−2,a−2,a−2).

By using these the components of the Christoffel symbols are computed as

Recalling Γ
ρ

µν ≡ 1
2gρλ (gνλ ,µ +gλ µ,ν −gµν ,λ ).

• Γi
0i =

1
2giλ (giλ ,0 +gλ0,i−g0i,λ ) ; (i = 1,2,3) and (λ = 0,1,2,3).

Then, Γ1
01 = Γ2

02 = Γ3
03 = a−1a,0

• Γ0
ii =

1
2giλ (giρ,i +gλ i,i−gii,λ ) ; (i = 1,2,3) and (λ = 0,1,2,3).

Then, Γ0
11 = Γ0

22 = Γ0
33 = e−2βiφ/MPl aa,0

are found. With the help of these, to expand the conservation equation,

T µν

;ρ = T µν

;ρ +Γ
µ

ρλ
T λν +Γν

ρλ
T λ µ .

Using the conservation equation, 0 = T 0ν

;ν .

For the index µ = 0, its components can be found as

• 0 = T 0ν

;ν +Γ0
νλ

T λν +Γν

νλ
T λ0,

• 0 = T 00
;0 +Γ0

νλ
T λν +Γν

ν0T 00,

where, T 00
;0 = (−ρg00),0 with g00 =−e−2βiφ/MPl ,

Γ0
νλ

T λν = (3)(e−2βiφ/MPl aa,0)(pgλν), where (λ ,ν = i = 1,2,3),

Γ0
νλ

T λν = 3e−2βiφ/MPl aa,0 pgii with gii = a−2,

Γ0
νλ

T λν = 3e−2βiφ/MPl a−1a,0 p

and

Γν
ν0T 00 = 3a−1a,0((−e−2βiφ/MPl)(−ρ))⇒ Γν

ν0T 00 = 3e−2βiφ/MPl ρa−1a,0
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are found. Now, by using −ρ + 3p = −(1− 3ωi)ρ and p = −ρ

3 (1− 3ωi− 1) from
equation of state p = ωiρ ,

0 = e−2βiφ/M(Pl)(ρ,0 +3a−1a,0(1+ωi)ρ) is obtained.

In here, each of the both sides of the last expression, multiplying by e2βiφ/MPl a3(1+ωi),

0 = a3(1+ωi)ρ,0 +3(1+ωi)a3(1+ωi)−1a,0ρ ,

0 = (a3(1+ωi)ρ),0,

0 = ((ãe−βiφ/MPl)3(1+ωi)ρ),0.

It is realized that in the EF the quantity of the energy density transforms as

ρ ≡ e3(1+ωi)βiφ/MPl ρ̃. (A.11)

This obeys the continuity equation (3.4), ρ̃ ∝ ã−3(1+ωi)(in the JF) if φ � MPl; then
ρ̃ ≈ ρ .

Finally, for each species i, ρ̃ can be found in the EF:

For the JF, T̃ ≡ T̃ µν g̃µν =−ρ̃ +3p̃ =−(1−3ωi)ρ̃ from this ρ̃ =− 1
(1−3ωi)

T̃ µν g̃µν ⇒
ρ̃ = (− 1

(1−3ωi)
)(− 2√

−g̃
∂LM
∂ g̃µν

g̃µν),

is obtained. Substituting the found ρ̃ into (A.11) as

ρ ≡ e3(1+ωi)βiφ/MPl(− 1
(1−3ωi)

)(− 2√
−g̃

∂LM
∂ g̃µν

g̃µν)

here, the equation (5.7) is used, for n = 4

ρ = e3(1+ωi)βiφ/MPl 1
(1−3ωi)

2√
−e8βiφ/MPl g

∂LM
∂ g̃µν

g̃µν

By putting ρ̃ i ≡ ρ in the EF,

ρ̃ i = e−(1−3ωi)βiφ/MPl 1
(1−3ωi)

2√
−g

∂LM
∂ g̃µν

g̃µν ,

Furthermore, this equation can be written as

ρ̃
ie(1−3ωi)βiφ/MPl(1−3ωi) =

2√
−g

∂LM

∂ g̃µν

g̃µν . (A.12)

By substituting the (A.12) into the chameleon equation of motion the φ dependence,
(A.10), is obtained as

∇2φ =V,φ (φ)+∑i ρ̃ ie(1−3ωi)βiφ/MPl(1−3ωi)
βi

MPl

in the EF.
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By integrating, the dynamics for φ in terms of a single effective potential can be
expressed by

Ve f f (φ)≡V (φ)+∑
i

ρ̃
ie(1−3ωi)βiφ/MPl (A.13)

Also, the chameleon equation of the motion in the EF becomes simply

∇
2
φ =Ve f f ,φ (φ) (A.14)
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The static spherically symmetric solution

Our aim is to find time independent solutions φ(~x), for spherically symmetric matter
distributions ρ̃(r) of a single pressure free matter species in the weak field limit.

Assuming that g̃µν = η̃µν , and the equation (A) can be rewritten as

d2φ

dr2 +
2
r

dφ

dr
=V,φ (φ(r))+

β

MPl
ρ̃(r)e4βφ(r)/MPl (A.15)

where R is homogeneous spherical mass of radius, ρ is density. Sitting in a background
matter distribution with density ρ∞, with ρc > ρ∞. Then,{

ρ̃(r) = ρc if r < R
ρ̃(r) = ρ∞ if r > R{
φc ≡ φmin(ρ = ρc) if mc ≡ m(φc)

φ∞ ≡ φmin(ρ = ρmin) if mmin ≡ m(φmin)

can be defined, where φc < φ∞.

The spherically symmetric solutions for the equation (A.15) will be discussed below:

Figure A.1: Sphere figure.

φ =

{
φ → φ∞ if r > R outside the sphere. Yukawa potential is recognized.
φ → φc if r < R inside the sphere. To recognize the φ , approximation methods are used.

where

i) Outside the sphere; the harmonic oscillator approximation is used

ii) Inside the sphere;

? φ � φc; linear approximation and

? φ ∼ φc =


the low contrast solution if Rc = R
the thick shell solution if Rc = 0
the thin shell solution if 0 < Rc < R
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are used.

here, in order to divide the interval, [0,R], as [0,Rc], on which φ ∼ φc, and [Rc,R], on
which φ � φc Rc is defined. To remain as a undivided interval [0,R], Rc = 0 or Rc = R
is taken.

i) Outside the sphere, r > R, the solutions: φ drives towards φ∞. The harmonic
oscillator approximation is used. The (5.25) is rewritten as

The equation (A.15) with the help of the equation (5.36) becomes

d2φ

dr2 +
2
r

dφ

dr = m2
∞(φ −φ∞).

The general solution to this differential equation is found as

φ(r) = A
e−m∞(r−R)

r
+B

em∞(r−R)

r
+φ∞

for dimensionless constants A and B.

Imposing the condition that φ → φ∞ as r→ ∞ gives B = 0

φ(r) = A
e−m∞(r−R)

r
+φ∞

where e−m(∞)(r−R) is known as an exponential suppression factor.

ii) Inside the sphere, r < R, the solutions: φ drives towards φc. According to the
divided intervals, there as three approximations are used.

Let define Rc to divide the interval [0,R] into two interval as [0,Rc] on which φ ∼ φc
and [Rc,R] on which φ � φc. The other case is accepted as Rc = 0 or Rc = R, so that
the interval [0,R] remains undivided.

Linear approximation is used if at [Rc,R], φ � φc. In this case the harmonic oscillator
approximation to Ve f f is not valid. But, for φ > φmin, the bare potential V decays
quickly and the term ρeβφ/MPl comes to dominate. In particular,

Ve f f ,φ (φ)≈
β

MPl
ρce4βφ/MPl ≈ β

MPl
ρc (A.16)

Since, today, in all cases; φ �MPl!

Now, the equation (A.15) takes the form as d2φ

dr2 +
2
r

dφ

dr ≈
β

MPl
ρc
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with the general solution,

φ(r) =
β

6MPl
ρcr2 +

C
r
+Dφc

for dimensionless constants C and D.

Harmonic oscillator approximation is used if at [0,Rc],

φ ∼ φc =


the low contrast solution if Rc = R
the thick shell solution if Rc = 0
the thin shell solution if 0 < Rc < R

By using the harmonic oscillator approximation,

Ve f f ,φ (φ)≈ m2
c(φ −φc) (A.17)

then, the solution is given by

φ(r) = A
e−m∞(r−R)

r
+B

em∞(r−R)

r
+φ∞

for this, the solution becomes

φ(r) = E
e−mcr

r
+F

emc(r−R)

r
+φc

for dimensionless constants E and F . By smoothly gluing together these solutions and
imposing dφ

dr → 0 and r→ 0 to ensure continuity of the three dimensional solutions at
the origin.

By recalling the boundary conditions:

{
i. limr→R− φ(r) = limr→R+ φ(r)

ii. limr→R−
dφ(r)

dr = limr→R+
dφ(r)

dr

There are three cases:

Case 1 . Low-contrast solution, if Rc = R. Solutions used are{
φ(r) = F emc(r−R)−e−mc(r+R)

r +φc;r < R

φ(r) = A e−m∞(r−R)

r +φ∞;r > R

The gradients of these solutions are{
dφ(r)

dr = F (mcemc(r−R)+mce−mc(r+R))r+emc(r−R)−e−mc(r+R)

r2 ;r < R
dφ(r)

dr = A−m∞e−m∞(r−R)r+e−m∞(r−R)

r2 ;r > R
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We can show their calculations following forms, φ(r) = F emc(r−R)−e−mc(r+R)

r +φc; r < R

(coming from inside the sphere solution equation φ(r) = E e−mcr

r + F emc(r−R)

r + φc

(limr→0→ dφ

dr → 0;E =−Fe−mcR).)

and

φ(r) = A e−m∞(r−R)

r +φ∞; r > R.

(coming from outside the sphere solution equation φ(r) = A em∞(r−R)

r +φ∞.)

Their gradients are

dφ(r)
dr = F (mcemc(r−R)+mce−mc(r+R))r+emc(r−R)−e−mc(r+R)

r2 ; r < R.

dφ(r)
dr = A−m∞e−m∞(r−R)r+e−m∞(r−R)

r2 ; r > R.

By using the boundary conditions, the constans are obtained below,

From condition i.:

F emc(R−R)−e−mc(R+R)

R2 +φc = A e−m∞(R−R)

R +φ∞,

⇒ F 1−emc2R

R +φc = A 1
R +φ∞ is obtained, let (I).

From condition ii.:

F (mcRemc(R−R)−emc(R−R))+mcRe−mc(R+R)+e−mc(R+R)

R2 = A−m∞Re−m∞(R−R)−e−m∞(R−R)

R2 ,

⇒ F (mcR−1)+(mcR+1)e−mc2R

R2 = A−(m∞R+1)
R2 is obtained, let(II).

the solution to the obtained equations (I) and (II):

φ∞−φc = F(1−e−mc2R

R )−A 1
R ,

(here, by typing the equal value of equation From(II))

φ∞−φc = A(( −(m∞R+1)
(mcR−1)+(mcR+1)e−mc2R )(

1−e−mc2R

R )− 1
R),

(φ∞−φc)((mcR−1)−(mcR+1)e−mc2R)R
−(m∞R+1)(1−e−mc2R)+((mcR−1)+(mcR+1)e−mc2R)

= A,

∴ A =
(φ∞−φc)

m∞ +mc +(mc−m∞)e−2mcR ((1−mcR)− (1+mcR)e−2mcR)

is found.

For the obtaining F ,
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From(II), F((mcR−1)+(mcR+1)e−2mcR) = A(−(m∞R+1)),

⇒ F = A (m∞R+1)
(1−mcR)−(1+mcR)e−2mcR ,

(by substituting the found A value in here)

∴ F =
(φ∞−φc)

m∞ +mc +(mc−m∞)e−2mcR (m∞R+1)

is found.

Case 2 . The thick-shell solution, if Rc = 0. Solutions are given as{
φ(r) = β

6MPl
ρcr2 +Dφc;r < R

φ(r) = A e−m∞(r−R)

r +φ∞;r > R

Let’ s show

φ(r) = β

6MPl
ρcr2 +Dφc; r < R.

(coming from inside the sphere solution equation φ(r) = β

6MPl
ρcr2 + C

r +Dφc, where
the boundary cond. at the origin requires simply C = 0.)

and

φ(r) = A e−m∞(r−R)

r +φ∞; r > R.

(coming from outside the sphere solution equation φ(r) = A e−m∞(r−R)

r +B em∞(r−R)

r +φ∞.)

Their gradients are{
dφ(r)

dr = β

6MPl
2rρc;r < R

dφ(r)
dr = A(−m∞e−m∞(r−R)r−e−m∞(r−R)

r2 );r > R

By using the boundary conditions, the constants are found as

From condition i.:

β

6MPl
ρcR2 +Dφc = A 1

R +φ∞ is obtained, let (III).

From condition ii.:

β

3MPl
ρcR = A−m∞R−1

R2 is found, let (IV).

∴ A =− β

3MPl
ρcR3 1

1+m∞R

is found by using (IV).
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From (III), D = 1
φc
(A 1

R +φ∞− β

6MPl
ρcR2),

(by putting the found A value into here)

∴ D =
φ∞

φ(c)
− (

1
1+Rm∞

+
1
2
)
βρcR2

3MPl

Case 3 . The thin-shell solution, if 0 < R(c) < R. Solutions are
φ(r) = F emc(r−Rc)−e−mc(r+Rc)

r +φc;r ∈ (0,Rc)

φ(r) = β

6MPl
ρcr2 + C

r +Dφc;r ∈ (Rc,R)

φ(r) = A e−m∞(r−R)

r +φ∞;r ∈ (R,∞)

Now, the solution is divided between three regions.

The gradients of solutions are
dφ(r)

dr = F (mcemc(r−Rc)+mce−mc(r+Rc))r−emc(r−Rc)+e−mc(r+Rc)

r2 ;r ∈ (0,Rc)
dφ(r)

dr = β

3MPl
rρc− C

r ;r ∈ (Rc,R)
dφ(r)

dr = A−m∞e−m∞(r−R)r−e−m∞(r−R)

r2 ;r ∈ (R,∞)

in this case, four continuity equations are obtained by using the boundary conditions:

For two at Rc:

From condition i.:

F(1−e−mc2Rc

Rc
)+φc =

β

6MPl
ρcR2

c +
C
Rc
+Dφc,

From condition ii.:

F( (mcemc(r−Rc)+mce−mc(r+Rc))r−emc(r−Rc)+e−mc(r+Rc)

r2 ) = β

6MPl
ρc2Rc− C

R2
c
, at r = Rc.

⇒ F(mcRc−1+mcRce−mc2Rc+e−mc2Rc

R2
c

) = β

6MPl
ρc2Rc− C

R2
c
.

For two at R:

From condition i.:

β

6MPl
ρcR2 + C

R +Dφc = A 1
R +φ∞,

From condition ii.:

β

3MPl
ρcR− C

R2 = A(−m∞R−1) 1
R2 .

For this system, we still need one more equation to tell us what Rc is. In order to
determine Rc ∈ [0,R], the two approximation equations (A.16) and (A.17) have been
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used. While for r ∈ (0,Rc) the harmonic approximation, (A.17), is better, for r ∈
(Rc,R) the linear approximation, (A.16), is better. How to be made a better description
for the Rc?

As φ increases from φc, the harmonic approximation m2
c(φ − φc) increases without

bound from 0. At some point, m2
c(φ −φc) =

β

MPl
ρc. But, it is known that Ve f f ,φ (φ) ≈

V,φ (φ)+
β

MPl
ρc <

β

MPl
ρc, because of V,φ < 0.

Hence, while the harmonic(Taylor) approximation is the better approximation for the
m2

c(φ −φc)<
β

MPl
ρc.

Once m2
c(φ −φc)>

β

MPl
ρc, it should be switched to the linear approximation, therefore

Rc may be defined by the following procedures:

• Try Rc = R and compute the low-contrast solution φ(r).

If m2
c(φ(R)−φc)<

β

MPl
ρc, then the solution is valid and Rc = R.

• Try Rc = 0 and compute the thick-shell solution φ(r).

If m2
c(φ(0)−φc)>

β

MPl
ρc, then the solution is valid and Rc = 0.

• Otherwise, Rc is defined by the equation m2
c(φ(Rc)−φc) =

β

MPl
ρc and the computed

solution φ(r) is given by the thin-shell solution.

By substituting the r→ R−c limit of the thin-shell solution, this becomes m2
c(φ(Rc)−

φc) =
β

MPl
ρc, m2

cF(1−e2mcRc

R2
c

) = β

MPl
ρc,

∴ F =
βρcRc

m2
cMPl(1− e−2mcRc)

The thin shell suppression factor; we need to analyze the behavior of the field φ outside
the sphere, for it is there that experiments to measure the chameleon force must be
take place. By recalling that in the limit m∞R� 1 and (in the thin-shell case) F = 0,
(R−Rc)

R � 1, the thin and thick shell solutions. But, low-contrast solution is simply the
Rc→ R limit of the thin-shell solution. In all cases, the exterior approximation solution
is

φ(r) = A
e−m∞(r−R)

r
+B

em∞(r−R)

r
+φ∞

where the dimensionless constant A tells us about the magnitude of φ and thus of the
chameleon force.

In the thick-shell case, assuming m∞R� 1; A =− β

3MPl
ρc

R3

1+m∞R ,

62



A≈− β

M(Pl)

1
4π

4π

3 R3ρ(c) let (?).

In the thin-shell case, assuming that φ = φc for r < Rc, which translates for us to F = 0.
Then, the two constant equations are found as

F(1−e−mc2Rc

Rc
)+φc =

β

6MPl
ρcR2

c +
C
Rc
+Dφc

and

F(mcRc−1+mcRce−mc2Rc+e−mc2Rc

R2
c

) = β

3MPl
ρcRc− C

R2
c

These will give in the following results

∴C =
β

3MPl
ρcR3

c

and

∴ D = 1− βρcR2
c

2MPl

1
φc

Substituting the constants into the equation

β

3MPl
ρcR− C

R2 = A(−m∞R−1) 1
R2 , at R;

⇒ β

3MPl
ρcR− β

3MPl
ρcR3

c
1

R2 = A(−m∞R−1) 1
R2 ,

⇒ β

3MPl
ρc(R3−R3

c)
1

R2 ≈−A 1
R2 ,

⇒ A≈− β

3MPl
ρc(R3−R3

c).

Now, substituting the found values of A, C, and D into the equation

β

6MPl
ρcR2 + C

R +Dφc = A 1
R +φ∞, at R;

β

6MPl
ρcR− β

3MPl
ρcR3

c
1

R2 +(1− βρcR2
c

2MPl

1
φc
)φc =− β

3MPl
ρc(R3−R3

(c))
1
R +φ∞.

⇒ 1
2

β

MPl
ρcR2− 1

2
β

MPl
ρcR2

c +φc = φ∞,

⇒ R2−R2
c = (φ∞−φc)

2MPl
βρc

is obtained.

Finally, Taylor-expand equation; A≈− β

MPl

1
4π

4π

3 R3ρc, in Rc about R to get

A≈− β

3MPl
ρc(R3−R3

c),
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⇒ A≈− β

3MPl
ρc

3
2R(R2−R2

c),

⇒ A≈− β

3MPl
ρc

3
2R(φ∞−φc)

2MPl
βρc

,

here, by using thick-shell case A≈− β

MPl

1
4π

4π

3 R3ρc.

A =− β

4π
(4π

3 R3ρc)
3MPlR(φ∞−φc)

βρcR2 is obtained, let (??).

is obtained.

The external solution approximation can also be written in the following form:

φthick(r)≈− β

4πMPl
(4π

3 R3ρc)
e−m∞(r−R)

r +φ∞,

(coming from A (?) the term − β

4πMPl
(4π

3 R3ρc))

φthin(r)≈− β

4πMPl
(4π

3 R3ρc)(3
MPl(φ∞−φc)

βρcR2 )e−m∞(r−R)

r +φ∞,

(coming from A (??) the term − β

4πMPl
(4π

3 R3ρc)(3
MPl(φ∞−φc)

βρcR2 ))

The difference between the thin-shell solution and the thick-shell external solution is
the the thin shell suppression factor, 3∆R

R ,

where ∆R
R ≡

MPl
β
(φ∞−φc)

1
ρcR2 .

This factor is used to show the difference between the thick-shell case (∆R & R) and
thin-shell case (∆R� R) by the Weltmann-Khoury.

In here, the criterion, for the thick-shell condition:

m2
c(φ(0)−φc)>

β

MPl
ρc with Rc = 0, can be translated in terms of ∆R

R as

m2
c(φ∞−φc− βρcR2

2MPl
)> β

MPl
ρc,

m2
c(φ∞−φc)−βρcR2 1

2 > βρc
1

m2
c
,

MPl(φ(∞)−φc)
1

βρcR2 − 1
2 > 1

m2
cR2 ,

where MPl(φ∞−φc)≡ ∆R
R ,

∆R
R > 1

m2
cR2 +

1
2 .

Also, in the general form, a chameleon suppression factor is given by

W ≡−A[ β

4πMPl
(4

3πR3ρc]
−1,
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⇒W =−A 3MPl
βR3ρc

.

Clearly, in the thick-shell case, the chameleon suppression factor is taken as W ≈ 1,
and in the thin-shell and in the low-contrast cases it is taken as 0 <W < 1.

The chameleon suppression factor gives us a means of quantifying the thickness of the
shell of a object in a given background density.
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APPENDIX A.3

Derivation of the solutions to cosmological chameleon field equations

To obtain the cosmological equations for the chameleon filed, a flat, homogeneous,
isotropic universe is taken with the metric (3.1) and φ is accepted to be homogeneous.

∇2φ = gµν∇µ∇νφ with ∇µ → ∂µ ,

∇2φ = gµν(∂µ∂νφ −Γ
ρ

νµφ,ρ),

∇2φ = g00∂0∂0φ −giiΓ0
iiφ,0 with (i = 1,2,3),

∇2φ = (−1)φ,00− (3a−2)Γ0
11φ,0,

∇2φ =−φ̈ −3a−2(aȧ)φ̇
∇

2
φ =−(φ̈ +3Hφ̇) (A.18)

In the EF, by using the equations (A.14) and (A.18):

φ̈ +3Hφ̇ =−Ve f f ,φ (φ)

is obtained as the usual result for a spatially homogeneous scalar field. With the help of
these, the Friedmann equations can be derived. Suppose that the universe is composed
of φ , pressure free matter with density ρM coupled to φ by a coupling constant β , and
radiation with density ρR. For the matter of species i conformally coupled to φ .

To obtain the first Friedmann Equation in the EF, T̃ µν is used. The conformal
transformation from the JF to the EF of the T̃ µν is given by T µν = T̃ µνe6βiφ/MPl .

In the JF, T̃ is T̃ µν g̃µν = ρ̃ +3 p̃ for n = 4. By using the time-time component of T̃ µν ,
T̃ is found as T̃ 00g̃00 =−ρ̃ .

In the EF, T 00 is found as T 00 = T̃ 00e6βiφ/MPl =− ρ̃

g̃00
e6βiφ/MPl =−ρ̃e2βiφ/MPl ,

where g̃00 = g00e2βiφ/MPl and g00 =−e2βiφ/MPl ,

T 00 = ρ̃e(1−3ωi)βiφ/MPl , (A.19)

By using (A.11), the Friedmann Equation becomes

3H2M2
Pl =

1
2

φ̇
2 +V (φ)+ρMeβφ/MPl +ρR (A.20)

or
ρc ≡

1
2

φ̇
2 +V (φ)+ρMeβφ/MPl +ρR (A.21)

with ΩM ≡ ρMeβφmin/MPl

ρc
.
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