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ÖZET

Hem üçüncü dereceden (kübik) hem de beşinci dereceden (kuintik) doğrusal olmayan terim
içeren Schrödinger (CQNLS) denklemi, birçok fiziksel durumu modeller ve özellikle de op-
tikte karşımıza çıkar. Doğrusal olmayan optikte CQNLS denklemi, elektromanyetik dal-
ganın ışık kıran (fotorefraktif) maddelerde yayılımını betimler. Kübik-kuintik doğrusalsız-
lığın nedeni madde içindeki öz rezonanstır. [1]
Bu çalışmada, (1+1) boyutlu CQNLS denkleminin soliton çözümleri incelenmiştir. Önce,
denklemin analitik çözümleri farklı ortamlar için hesaplanmıştır. Sonrasında, çözümler
sayısal olarak elde edilip analitik çözümlerle karşılaştırılmıştır.

ABSTRACT

In nonlinear optics, the propagation of electromagnetic waves in photorefractive materials
with intrinsic nonlinear resonance can be modelled by the nonlinear Schrödinger (NLS)
equation containing both cubic and quintic terms [1].
This study deals with the soliton solutions of the (1+1)D cubic-quintic nonlinear Schrödinger
(CQNLS) equation. First, analytical solutions are calculated for different media. Then,
solutions are obtained numerically and compared with their analytical counterparts.

ANALYTICAL SOLUTIONS

Consider the following (1+1)D CQNLS equation:

iuz(x, z) + uxx(x, z) + α|u(x, z)|2u(x, z) + β|u(x, z)|4u(x, z) = 0 . (1)

where α and β are real constants, u corresponds to the complex-valued, slowly vary-
ing amplitude of the electric field in the x-plane propagating in the z-direction and uxx
corresponds to diffraction. To obtain soliton solutions, the following ansatz is used:

u(x, z) = f(x)eiµz where lim
x→±∞

f(x) = 0 and µ > 0 . (2)
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Substituting

uz = iµfeiµz

uxx = f ′′eiµz

|u|2 = feiµzfe−iµz = f 2

(3)

into Eq. (1) yields (
−µf + f ′′ + αf 3 + βf 5

)
eiµz = 0 . (4)

Multiplying Eq. (4) by 2f ′e−iµz gives

2f ′f ′′ − 2µff ′ + 2αf 3f ′ + 2βf 5f ′ = 0 . (5)

Integrating Eq. (5) with respect to x yields

(f ′)2 − µf 2 +
α

2
f 4 +

β

3
f 6 = C1 . (6)

The localization conditions lim
x→±∞

f(x) = 0 and lim
x→±∞

f ′(x) = 0 require the integration

constant C1 to be zero:

(f ′)2 − µf 2 +
α

2
f 4 +

β

3
f 6 = 0 . (7)

Substituting

f(x) =
1√
y(x)

i.e. f = y−0.5 and f ′ = −y
−1.5

2
y′ (8)

into Eq. (7) yields
y−3

4
(y′)2 − µy−1 +

α

2
y−2 +

β

3
y−3 = 0 . (9)

Multiplying Eq. (9) by 4y3 gives

(y′)2 − 4µy2 + 2αy +
4β

3
= 0 . (10)

Eq. (10) is a separable ODE of first order as follows:

dy

dx
= ±

√
4µy2 − 2αy − 4β

3
. (11)

Separating the variables x and y, one obtains

± 2
√
µdx =

1√
y2 − α

2µ
y − β

3µ

dy . (12)

Integrating both sides of Eq. (12), i.e.

± 2
√
µ

∫
dx =

∫
1√

y2 − α
2µ
y − β

3µ

dy (13)
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results in

± 2
√
µx+ lnC = ln

∣∣∣∣∣
√
y2 − α

2µ
y − β

3µ
+ y − α

4µ

∣∣∣∣∣ , (14)

where lnC is an integration constant. Exponentiating both sides of Eq. (14) gives

Ce±2
√
µx =

√
y2 − α

2µ
y − β

3µ
+ y − α

4µ
. (15)

Squaring Eq. (15) yields

C2e±4
√
µx = y2 − α

2µ
y − β

3µ
+

(
y − α

4µ

)2

+ 2

√
y2 − α

2µ
y − β

3µ

(
y − α

4µ

)

= 2y2 − α

µ
y +

α2

16µ2
− β

3µ
+

√
y2 − α

2µ
y − β

3µ

(
2y − α

2µ

)
.

(16)

Multiplying Eq. (15) by α
2µ

gives

α

2µ
Ce±2

√
µx =

α

2µ

√
y2 − α

2µ
y − β

3µ
+

α

2µ
y − α2

8µ2
. (17)

Adding Eq. (16) and (17) side by side, one obtains

C2e±4
√
µx +

α

2µ
Ce±2

√
µx = 2y2 − α

2µ
y − α2

16µ2
− β

3µ
+ 2y

√
y2 − α

2µ
y − β

3µ
. (18)

After regrouping Eq. (18), one gets

C2e±4
√
µx +

α

2µ
Ce±2

√
µx +

α2

16µ2
+

β

3µ
= 2y

(
y − α

4µ
+

√
y2 − α

2µ
y − β

3µ

)
(19)

and after substituting Eq. (15) in here, one obtains

C2e±4
√
µx +

α

2µ
Ce±2

√
µx +

α2

16µ2
+

β

3µ
= 2y Ce±2

√
µx . (20)

Solving for y yields

y =
1

2
Ce±2

√
µx +

(
α2

32µ2
+

β

6µ

)
C−1e∓2

√
µx +

α

4µ
. (21)

Substituting Eq. (21) back in Eq. (8), one obtains

f =
1√

1
2
Ce±2

√
µx +

(
α2

32µ2
+ β

6µ

)
C−1e∓2

√
µx + α

4µ

. (22)
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The localization condition 0 = lim
x→±∞

f(x) = 1√
1
2
Ce±2

√
µx+ α

4µ

requires the integration con-

stant C to be positive:

C > 0 . (23)

Under the condition in Eq. (23), the localization condition
0 = lim

x→∓∞
f(x) = 1√(

α2

32µ2
+ β

6µ

)
C−1e∓2

√
µx+ α

4µ

requires

α2 +
16

3
βµ > 0 , (24)

which also implies that α and β cannot be zero at the same time:

(α, β) 6= (0, 0) . (25)

Considering Eq. (25) and combining the conditions on µ in Eq. (2) and (24) yield

0 < µ , if β > 0

0 < µ <
3α2

16 |β|
, if β < 0

(26)

given that α is non-zero. If α = 0, β and µ must be positive. For convenience, the
coefficients of the exponential terms in Eq. (22) can be set equal to each other:

1

2
C =

(
α2

32µ2
+

β

6µ

)
C−1 . (27)

Solving for C yields

C =

√
α2 + 16

3
βµ

4µ
. (28)

Note that this choice of C is compatible with Eq. (23) and (24). Substituting Eq. (28)
in Eq. (22) yields

f =
1√(√

α2+ 16
3
βµ

4µ

)(
e±2
√
µx+e∓2

√
µx

2

)
+ α

4µ

=
2
√
µ√

α +
(√

α2 + 16
3
βµ
)

cosh(2
√
µx)

. (29)

Hence, an exact solution of Eq. (1) is

u(x, z) =
2
√
µ√

α +
(√

α2 + 16
3
βµ
)

cosh(2
√
µx)

eiµz (30)

(cf. [2]).
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Figure 1: Existence of analytical solutions of the (1+1)D CQNLS equation.

Figure 2: Numerical solutions (fnumerical) of the (1+1)D CQNLS equation in comparison
with the corresponding analytical solutions (fanalytical) in different media: (a) α = −1, β =
1, (b) α = 0, β = 1, (c) α = 4, β = −1, (d) α = 1, β = 0, (e) α = 1, β = 1.
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As it can be seen from Eq. (29), the existence of a real soliton solution depends on the
values of the coefficient of the cubic nonlinearity α, the coefficient of the quintic nonlin-
earity β and the propagation constant µ. Is the coefficient of nonlinearity positive, then
there is a so-called self-focusing nonlinearity. Is the coefficient of nonlinearity negative,
then there is a so-called self-defocusing nonlinearity. The coefficients α and β may be
negative, zero or positive, so there are 9 different cases to investigate. The propagation
constant µ will be considered positive as set up in Eq. (2).

1) Self-defocusing cubic, self-defocusing quintic case:

In this case, α < 0 and β < 0. The condition in Eq. (24) becomes α2 − 16
3
|β|µ > 0 and

holds true if µ < 3α2

16|β| . However, since β < 0 and cosh(2
√
µx) > 1,(√

α2 + 16
3
βµ
)

cosh(2
√
µx) < |α| for small values of x. For instance for x = 0, α +(√

α2 + 16
3
βµ
)

cosh(2
√
µx) = − |α| +

√
α2 + 16

3
βµ < 0. That is, there exists no real

soliton solution for positive µ values.

2) Self-defocusing cubic case:

In this case, α < 0 and β = 0. So, Eq. (29) becomes

f =
2
√
µ√

− |α|+ |α| cosh(2
√
µx)

=
2
√
µ√

|α|
(
cosh(2

√
µx)− 1

) . (31)

Since α 6= 0 and cosh(2
√
µx) > 1, f looks like a soliton except at x = 0 where it tends to

infinity. Hence, no real soliton solution exists in this case.

3) Self-defocusing cubic, self-focusing quintic case:

In this case, α < 0 and β > 0. Since β > 0, the condition in Eq. (24) holds true.

Moreover, since β > 0 and cosh(2
√
µx) > 1,

(√
α2 + 16

3
βµ
)

cosh(2
√
µx) > |α|. That is,

there exist real soliton solutions for all positive µ values.

4) Self-defocusing quintic case:

In this case, α = 0 and β < 0. Since β < 0, the condition in Eq. (24) never holds true.
That is, there exists no real soliton solution for positive µ values.

5) Linear case:

In this case, α = 0 and β = 0. So, Eq. (7) becomes

(f ′)2 = µf 2 . (32)

After taking the square root of both sides, the following linear ODE of first order is
obtained

f ′ = ±√µf , (33)
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whose solutions are
f = C̃e±

√
µx . (34)

The localization condition 0 = lim
x→±∞

f(x) = C̃e±
√
µx requires the integration constant

C̃ to be zero. So, the linear case has the trivial zero solution, which is obviously not a
soliton.

6) Self-focusing quintic case:

In this case, α = 0 and β > 0. So, Eq. (29) becomes

f =

√ √
3µ√

β cosh(2
√
µx)

. (35)

Since β > 0 and cosh(2
√
µx) > 1, there exist real soliton solutions for all positive µ

values.

7) Self-focusing cubic, self-defocusing quintic case:

In this case, α > 0 and β < 0. As in the self-defocusing cubic, self-defocusing quintic
case, the condition in Eq. (24) holds true if µ < 3α2

16|β| . Given this and since α > 0 and

cosh(2
√
µx) > 1, α +

(√
α2 + 16

3
βµ
)

cosh(2
√
µx) > 0. That is, there exist real soliton

solutions for 0 < µ < 3α2

16|β| .

8) Self-focusing cubic case:

In this case, α > 0 and β = 0. So, Eq. (29) becomes

f =
2
√
µ√

|α|+ |α| cosh(2
√
µx)

=
2
√
µ√

|α|
(
cosh(2

√
µx) + 1

) . (36)

Since α 6= 0 and cosh(2
√
µx) > 1, there exist real soliton solutions for all positive µ

values.

9) Self-focusing cubic, self-focusing quintic case:

In this case, α > 0 and β > 0. Since β > 0, the condition in Eq. (24) holds true.

Moreover, since α > 0 and cosh(2
√
µx) > 1, α +

(√
α2 + 16

3
βµ
)

cosh(2
√
µx) > 0. That

is, there exist real soliton solutions for all positive µ values.

The results of these 9 cases are summarized in Figure 1.
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NUMERICAL SOLUTIONS

Solutions are also obtained numerically using Spectral Renormalization Method [3]. Fig-
ure 2 represents selected solitons in different media, namely in:

(a) self-defocusing cubic, self-focusing quintic

(b) self-focusing quintic

(c) self-focusing cubic, self-defocusing quintic

(d) self-focusing cubic

(e) self-focusing cubic, self-focusing quintic

media. No soliton could be obtained for the other cases, as expected. The red numbers
by the peak of solitons in Figure 2 mark their maximum amplitudes.

CONCLUSION

In this work, soliton solutions of the (1+1) CQNLS equation are obtained analytically
and numerically for different media. It is seen that the numerical solutions are in perfect
agreement with the analytical ones. This validates the numerical method and is very
important for the cases where an analytical solution does not exist.
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